US ERA ARCHIVE DOCUMENT

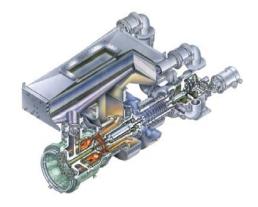
A Megawatt Made is a Million Dollars Earned: Energy Production from Digester Gas

Mark McDannel

Los Angeles County Sanitation Districts Energy Recovery Engineering Section

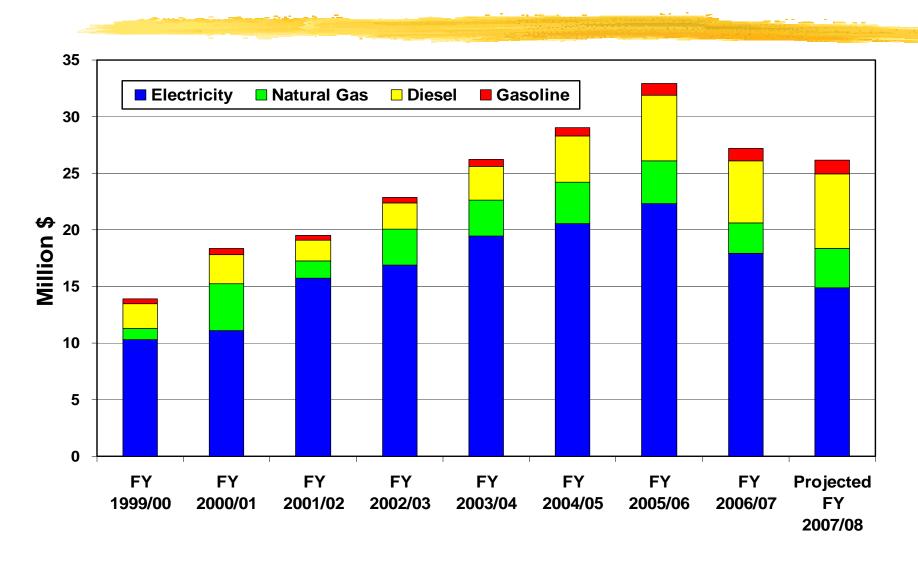
Innovative Energy Management Workshop December 16, 2008

Presentation Overview


- **#Districts Energy Program**
- **#Technology Review**
- **#Capital and Operating Costs**
- **#Barriers to Energy Recovery**
- ****A** paper with more details available from the speaker

Districts Energy Management Program

- ****** Maximum development of bio-gas resources
- **#** Minimize energy usage
- ****** Minimize procurement cost and maximize sales income
- **#** Demonstrate new technologies that reduce air emissions


IC POWER ENGINE INSTALLED at JWPCP in 1938

Why Self Generation?

- **Save and Make Money**
 - □ Displace Expensive Retail Purchases
 - □ Renewable Energy Credits Can Be Sold in 2009
- **Reduce Emissions**
- ****Reduce Global Warming**
- **#Increased Redundancy**
 - □ Digester Heating (Cogeneration)
 - □ Decrease Run Hours on Standby Generators

Historical Energy Expenditures at LACSD

System Wide Wastewater Treatment Plant Power Consumption

Existing Districts Digester Gas-Fired Facilities

- **# Boilers**
 - □ Digester Gas for Heating
- **#** Turbines
 - △JWPCP 22 MW (400 MGD)
- **# Engines**
 - △Valencia 0.4 MW (12.5 MGD)
- **#** Microturbines
 - △Lancaster 250 kW (10 MGD)
- # Fuel Cell
 - △Palmdale 250 kW (15 MGD)

Energy Recovery Equipment

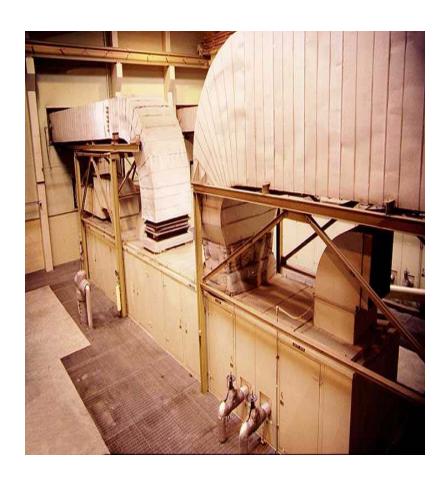
¥Gas Turbines 1 MW to 15 MW

IC Engines

25 kW to 3 MW

#Fuel Cells 200 kW to 2 MW

#Microturbines 30 kW to 250 kW


#Emerging technology-conversion of digester gas to natural gas (not covered in this presentation)

Gas Turbines

- ****Medium to High Efficiency**
- ****Low Operating & Maintenance Cost**
- #Higher Installed Cost
- ***Excellent for Heat** Recovery
- **#Island Operation**

JWPCP Total Energy Facility

Location - Carson, California Combined Cycle Cogeneration Power Plant

- Three 9 MW Solar Mars T-13000 gas turbine generators
- One 3 MW DeLaval HJT steam turbine generator
- Offsets \$15-20MM/yr in electricity purchases

IC Engines

- #Higher Air Emissions
- **#**High Efficiency
- **X** Inexpensive
- **X** Suppliers

 - **△**CAT

 - Deutz

IC Engine Cogeneration Facility at Valencia WRP

Location - Valencia, CA

- # 500 kw Cooper-Superior Model 6GTLA Engine Generator
- Steam used to heat digesters
- ₩ Will be shut down in2009 due to expense of air compliance

Fuel Cells

****Near Zero Air Emissions**

#High Efficiency

 ★ Expensive, but subsidized

 △ PUC Rebates \$4500/kW in California

300 kW modules Availability unclear

Palmdale Fuel Cell Project

- # Fuel Cell Energy molten carbonate fuel cell
- # Heat recovery to heat water for digesters
- **X** Combined heat and power efficiency 73%
- ★ Startup completed Jan 2005
- ★ Capital cost \$1.9 million (before 50% rebate)

Microturbines

XLow Air Emissions

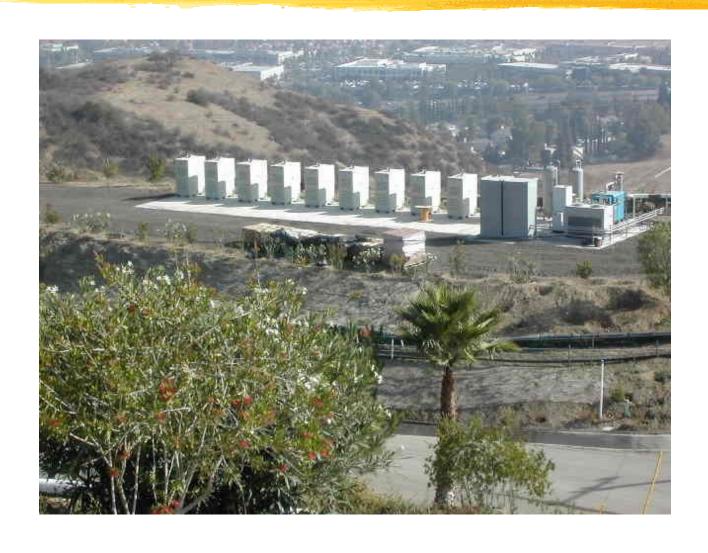
****** Medium Efficiency – High Temperature Exhaust

#Cost Effective

XTwo Suppliers in California

Capstone

30 kW, 60 kW, 200 kW


70 kW, 250 kW

Lancaster Microturbine Project

- **#** Ingersoll Rand microturbine
- **#** Heat recovery to heat water for digesters
- **%** Combined heat and power efficiency 51%
- ★ Capital cost \$684k
- # 40% of cost recovered from California Self Generation Incentive Program (SGIP)

Calabasas Landfill Microturbine Facility- Ten Capstone 30 kW

Digester Gas Cleanup

- #Digester gas is not natural gas
- **#Some technologies require removal of gas** contaminants
- **#**Can add up to 2 cents/kWhr to O&M costs

Siloxane Removal

- **X** Required for fuel cells, microturbines, engines or turbines w/ NOx or CO catalysts
- **#** Optional for turbines or engines w/out catalysts-cost based decision
- **X** Sorbents
 - **Effective**
 - Need to monitor for breakthrough and replace sorbent
- **X** Pressure Swing Absorption
 - **区**Continuous operation
 - Requires flaring of off gas, loss of 2-8% of fuel heating value
- **#** Deep Chilling
 - ■No longer considered commercially available

Sorbent Based Fuel Skid

Other Contaminants

- #Fuel cell requires removal of sulfur compounds, VOCs, chlorinated VOCs
- #Future application of catalysts on engines may require removal of S, Cl

Self Generation Cost Summary Comparison

	Installed Cost (\$/kW)	Operating Cost (\$/kWh)	Power Production Cost* (\$/kWh)
Gas Turbines	\$2,000	\$0.010	\$0.04
IC Engines	\$1,700	\$0.015	\$0.04
Microturbines	\$3,000	\$0.016	\$0.06
Fuel Cell	\$8,500	\$0.035	\$0.16

^{*10} year write down @5%

Challenges

- ****Many technologies are new**

 - Experience and resources of some suppliers
- **XInstitutional** barriers
 - △Air agencies

Contact Info

****Mark McDannel**

△562-908-4288 x2442

