

INCREASING CHP PRODUCTIVITY WHILE REDUCING BIOSOLIDS VOLUME AND CLIMATE CHANGING GASSES

EPA Region IX

Innovative Energy Management Workshop

Dick York, Retired, Superintendent, City of Millbrae, WPCP, FOG Energy Corp. CTO Joseph Magner, Superintendent, City of Millbrae, WPCP

OVERVIEW

Describe the Millbrae POTW Relate the driving and convincing factors Describe the system Relate reasons to choose grease **Discuss the results** Summarize Questions

UNDERSTANDING THE TERMINOLOGY

- <u>FOG:</u> Acronym for "Fats, Oils, and Grease," often interchanged with trap waste
- × <u>Yellow Grease:</u> Deep fryer grease or oils
- <u>Brown Grease:</u> Grease found floating in a restaurant grease trap
- **Black Grease:** Grease congealed inside sewer pipes
- <u>Trap Waste:</u> Sewage (water and organics) and brown grease from a grease trap, often used synonymously with FOG
- IKG: Acronym for Inedible Kitchen Grease

THE FACILITY

Is small and old

- primary constructed in 1950
- secondary in 1967
- serves a population of 20 k
- less than 5 acre
- produces tertiary quality effluent
- 3 MGD capacity, 1.8 MGD annual flow
- Peak IWWF = 9 MGD; AWWF 6 MGD
- Facility is road locked
- Facility is shared with other PW crews

UNIQUE ATTRIBUTES

KNOWING

your system will enable you to identify and capture the unique attributes of your plant.
 Millbrae identified
 Ample Digester Capacity (2 digesters)
 Easy freeway ON – OFF (road locked)
 Need for major renovation (old)

Millbrae POTW, 7/2007

Millbrae WPCP

© 2009 Tele Allas

Imagery Date: Jul 2007

37 36112,50"N 122 22 48.22"W elev 11 ft

R OF BEER OR

DRIVING FACTORS

- × Antiquated 20 year old ICE co-generator
 - Hard to get parts
 - Polluting

X

- Extended down time
- Rising energy costs
 - No new utility generators
 - Price of fossil fuel

Numerous POTW infrastructure needs...OLD

PROJECT SCOPE: EQUIPMENT REPLACED:

- 55 year old boiler (250 KBTU replaced with 1 MBTU)
- 34 year old stand-by diesel generator (Compressed Natural Gas Storage system and Electrical Switchgear with "basic" island mode functionality)
- 25-55 year old switchgear
- 20 year old co-generator
- 20 year old gas digester mixing system (essential for efficient production of methane from grease)
- 15 year old sludge circulation pump

CONVINCING FACTORS

20 years CHP experience Innovative - well trained staff Ample digester volume Neighboring POTW reported long term success receiving grease POTWs have historically processed grease

WHY CONSIDER RECEIVING GREASE?

- IKG (brown grease / FOG) found in trap waste
 - Is readily available

- Disposal problematic
- Grease is easily digested
- High energy content
- Consistent character
- Improved project economics
 - Additional digester gas produced
 - Additional revenue from tipping fees
 - \$ 0.06 per gallon

BUT, WHAT IS FOG

×UBIQUITOUS

×INSIDIOUS

BIOGAS PRODUCTION FOR VARIOUS FEEDSTOCK

COMMON FATTY ACIDS

FATTY ACID	FORMULA	OCCURENCE
Acetic	СН ₃ соон	Vinegar
Butyric	С ₃ Н ₇ соон	Butter
Caproic	С₅Н₁₁соон	Butter
Caprylic	С₇Н₁₅С оон	Butter
Capric	С₉Н₁₉ СООН	Coconut oil, butter
Lauric	С ₁₁ Н ₂₃ СООН	Spermaceti, coconut oil
Myristic	С₁₃Н₂₇СООН	Nutmeg butter, coconut oil
Palmitic	С₁₅Н₃₁ СООН	Animal and vegetable fats
Stearic	С₁₇Н₃₅СООН	Animal and vegetable fats
Arachidic	C ₁₀ H ₃₀ COOH	Peanut oil

ANAEROBIC BREAKDOWN OF FATS AND OILS

Final reaction: $CH_3COOH \rightarrow CO_2 + CH_4$ **Breakdown is complex Different microorganisms** A WW anaerobic environment ideal **BIOAVAILABILITY IS KEY**

HOW DID WE BOOST BIOAVAILABILITY?

1. Automated Preconditioning

- + Treatment begins immediately as FOG is off loaded.
- + FOG is combined with actively digesting sludge in a precise ratio.

2. 'Bioreactor' Storage

- + FOG-Sludge Mixture Blended into miscible, stable slurry. NO separation, NO clogs.
- + Chemical composition is changed, surface area maximized.
- 3. Continuous introduction

Millbrage FOG Receiving Station

MICROTURBINE

iyersoli Rand III 70 Ingersoll Rand

B 🍘 B

*

(0)

SOME GREASE TRAP PRODUCTION RATES

- National Avg. = 16 lbs / year / person*
- 4.6 billion lbs / year

At 1 kW per pound added, that's equivalent to a generating about 4,600 GWh annually in the US alone (1 GW = 1 billion watts)

That's about 525 MW of new generating capacity (Millbrae system has achieved 3.22 gross, netting 1.22 kW w/microturbine)
Sacramento, CA Ave. = 11.2 lbs / year / person*
Provo, UT Ave. = 26.6 lbs / year / person*

* Source: Wiltsee, G. "Expanding BioEnergy Partnerships." BioEnergy '98, 1998

MILLBRAE BENEFITS

- Facility improvements worth \$6.3 M, w/ \$3.2 M of other critical POTW needs
- × No new cost to the ratepayer
- New revenue (tipping charges; \$0.06 / g)
- Utility savings = \$204,600
 - + 1.1million kWh per year @ \$0.186 / kWh
 - + last year, \$0.165 / kWh, up @11%
- System configured to serve as standby power
- Increased biosolids destruction more than 25 %
- Reduced biosolids dewatering and disposal costs

ENVIRONMENTAL BENEFITS

Clean air Less GHG **Renewable energy Reduced landfill disposal** Less biosolids Local grease disposal facility No residual waste Less trucking No chemicals used

FROM CLOGGED

To Clean

RESULTS

07-09

Digester Stability

SYSTEM PERFORMANCE

and system controls only

Actual FOG Energy Operating Performance

Note: Energy units are expressed as BTU per gallon of brown grease.

TAKE HOME MESSAGES!

BIOAVAILABILITY IS KEY

"OPERATOR APPROVED"

"NO DOWN SIDE"

BIOAVAILABILITY

WHY NOT?

Replicate the Millbrae experience around the US to dispose all FatOilGrease to help reduce the GHG impact by <u>20 million metric tons per</u> year.

IMAGINE THE WORLD!

THAT'S LIKE ELIMINATING

× About 3.7 million cars

Taking that many cars off the road will definitely improve the traffic

- Construction of the second state of the sec
- The electricity used in 1.8 million homes.* That is a pretty dense urban area, like the 9 county San Francisco Bay Area in California

*Equivalency Source: http://www.epa.gov/RDEE/energy-resources/calculator.html

SUMMARY

- × Smooth operation
- Benefits of reduced dewatering
- Encourages proper grease disposal
- × Helps solve the FOG problem
- × Makes electricity from waste
- × Cleaner air
- × Exceptional results
- × Saves money!!!

QUESTIONS ???

CONTACT INFORMATION:

Dick York, Retired, Superintendent City of Millbrae, WPCP, FOG Energy Corporation, CTO 405 Paine Road Castle Rock, Washington, 98611 E-mail: dick@FOGEnergycorp.com www.fogenergycorp.com

