APPENDIX C CONTAINMENT CALCULATIONS

Summary Table - Storage Capacity Calculations for Compliance with 40 CFR 761.65 b(1)(ii)

Storage Area Identification	Area Use	Location	Containers Stored	Maximum Totes/Boxes	$\begin{aligned} & \text { Maximum } \\ & \text { Volume } \\ & \text { Totes/Boxes } \end{aligned}$	Maximum Drums	Maximum Volume Drums	Maximum Storage Capacity (gallons)	Comments
POD + Curbed	PCB Storage	Inside Building 2	Drums, Totes, Cubic Yard Boxes, Bins, or Equipment Storage	36.00	12,600.00	192.00	10,560.00	12,600.00	
Building 3	PCB Storage	Inside Building 3	Drums, Bins, Cubic Yard Boxes, Totes, or Equipment Storage	132.00	46,200.00	768.00	42,240.00	46,200.00	
Building 4 POD	PCB Storage	Inside Building 4	Drums, Bins, or Cubic Yard Box Storage	16.00	3,232.00	32.00	1,760.00	3,232.00	

Area Use	Location	Containers Stored	$\underset{\substack{\text { Length } \\(\mathrm{ft})}}{ }$	$\begin{gathered} \text { widt } \\ \text { (f) } \end{gathered}$	$\begin{gathered} \text { Height } \\ (\mathrm{ft}) \end{gathered}$	$\text { Vsto }^{1}$ $\left(\mathrm{ft}^{3}\right)$	Vsto ${ }^{2}$ (gal)	$\begin{gathered} \mathrm{v}_{\substack{\text { Lungrger } \\ \text { (gal) }}} \end{gathered}$	$\mathrm{n}_{\text {max }}{ }^{4}$	$\mathrm{n}_{\max }{ }^{5}$		$\begin{gathered} \mathrm{v}_{\mathrm{k} 1}{ }_{(\mathrm{gal}}{ }^{7} \end{gathered}$	$\mathrm{V}_{\mathrm{k} 2}{ }^{8}$ (gal)	$\underset{\substack{\mathrm{V}_{\text {Requineal }} \\ \text { (gal) }}}{ }$	$\underset{\substack{\mathrm{v}_{\text {cacail }}^{\text {(gal }} \\ \text { (gil }}}{ }$	$\mathrm{V}_{\text {Pod }}$ Complies 761.65 b(1)(ii) based on $\mathrm{n}_{\text {max }}$	${ }^{\text {nalowed }}$	Comments
PCB Storage	Inside Building 2 POD	Totes, Electrical Equipment	72.33	10.33	0.83	622.87	4,659.07	350.00	12.00	24.00	1992.67	700.00	2,100.00	2,100.00	2,66.40	Yes	24.00	Maximum tote storage is based on tote and aisle size.
PCB Storage	Inside Building 2 Curbed, Sealed, Concrete	Totes	19.75	24.583	0.625	303.45	2,26978	. 00	6.00	12.00	747.25	00	1,050.00	1,050.00	1,522.53	Yes	12.00	Maximum tote storage is based on tote and aisle size.
PCB Storage	Inside Building 3; Area A	Totes, Electrical Equipment	59.42	46.17	0.50	1371.63	10,259.82	350.00	45.00	90.00								This row is used only to calculate the maximum number of totess, $n_{\max 2}$, that can be stored based on tote size and required aisle space. The actual number of totes that can be stored based on Building 3 are calculated for Building 3 as a whole below.
PCB Storage	Inside Building 3; Area B	Totes, Electrical Equipment	57.08	23.67	0.50	675.54	5,05.05	350.00	18.00	36.00								This row is used only to calculate the maximum number of totes, $\mathrm{n}_{\max 2}$, that can be stored based on tote size and required aisle space. The actual number of totes that can be stored based on containment volume are calculated for Building 3 as a whole below.
PCB Storage	Inside Building 3; Area C	Totes, Electrical Equipment	20.50	7.50	0.50	76.88	57.03	350.00	3.00	3.00								This row is used only to calculate the maximum number of totes, $\mathrm{n}_{\max 2}$, that can be stored based on tote size and required aisle space. The actual number of totes that can be stored based on containment volume are calculated for Building 3 as a whole below.
PCB Storage	$\begin{aligned} & \text { Inside Building 3; } \\ & \text { Area D } \end{aligned}$	Totes, Electrical Equipment	22.92	6.50	0.50	74.49	557.19	350.00	3.00	3.00								This row is used only to calculate the maximum number of totes, $\mathrm{n}_{\max }$, that can be stored based on tote size and required aisle space. The actual number of totes that can be stored based on containment whole below.
PCB Storage	Inside Building 3	$\begin{array}{l}\text { Totes, Electrical } \\ \text { Equipment }\end{array}$		$\begin{aligned} & \text { tal } \\ & \text { nent for } \\ & \text { chaped } \\ & \text { Shape of } \\ & \text { H5 for } \\ & \text { ding } \\ & \text { ing and } \\ & \text { agae } \end{aligned}$	0.50	271.88	20,314.75	350.00	NA	132.00	6575.82	700.00	11,550.00	11,550.00	13,738.93	Yes	132.00	Maximum tote storage is based on tote and aisle size and is not limited by containment volume
PCB Storage	Inside Building 4 POD	Cubic Yard Boxes ", Electrical Equipmen	28.16	8.66	0.83	202.41	1,514.02	202.00	4.00	16.00	661.57	404.00	808.00	808.00	85.45	Yes	16.00	Maximum cubic yard box storage is based on pallet and aisle size and doublestacking

Totes ne 4 " $\times 48^{\prime \prime}\left(333^{\prime \prime} \times 4\right.$) and $53^{\prime \prime}$ in heieght the tote
lises Space recquired between each tote assumed to be 2 ft
Cubic yard boxes in Building 4 are stored on pallets shat are $40^{\prime \prime} \mathrm{X} 48^{\prime \prime}\left(3.33^{\prime} \times 4^{4}\right)$, the same dimensions as the 350 -gallon tote. The boxes are 3^{\prime} 'in height.
Notes:
. $V_{\text {pod }}=$ Volume of the Pod $\left(\mathrm{ft}^{\mathrm{t}}\right)=$ Length $(\mathrm{ft}) *$ Widh $(\mathrm{ft}) *$ Height $(f \mathrm{ft}$
. $\mathrm{V}_{\text {pod }}(\mathrm{gal})=\operatorname{Vpod}\left(\mathrm{ft}^{3}\right) * 7.48(\mathrm{gal} / \mathrm{ft})$

5. $\mathrm{n}_{\text {man }}=\mathrm{n}_{\text {max }} 1$ multiplied by a factor of 2 to account for the doubled tote /pallet width used in Column K (6.66 feet rather than 3.33 feet); this value is then rounded down to nearest whole number
6. $\mathrm{V}_{\text {Dipheced }}($ gal $)=\mathrm{n}_{\text {mam }} *$ (Tote Lx Tote W \times Pod berm height $\times 7.48$ gal/cu.f

3. $V_{\text {Requird }}\left(\right.$ gal) is ither $V_{R 1}$ or $V_{\mathrm{V}_{2}}$ (whichever is argeer)
11. Number of cubic (gail - Disiphecd (gal

1. Number of cubic yard boxes that can fit in the pod is based on the size of the pallet on which the box sits. The pallet is assumed to displace fluid, a conservative assumption. Boxes are assumed to be stacked two-high in determining total volume of storage

Area Use	Location	Containers Stored	$\underset{\substack{\text { Length } \\(f f)}}{ }$	Width (ft)	$\underset{\substack{\text { Height } \\(\text { ft })}}{ }$		$\begin{gathered} \mathrm{y} \mathrm{v}_{\mathrm{ta}}{ }_{(\mathrm{gal}}^{2} \end{gathered}$	$\underset{\substack{\mathrm{v}_{\text {Lagases }} \mathrm{c} \\ \text { (gala }}}{ }$	$\mathrm{n}_{\text {max }}{ }^{4}$	$\mathrm{n}_{\text {max }}{ }^{5}$	$\mathrm{v}_{\substack{\text { pispockect } \\ \text { (gald }}}$	$\begin{gathered} \left.\mathrm{r}_{\mathrm{r}}{ }_{(}{ }^{1}\right) \end{gathered}$	$\mathrm{v}_{\mathrm{k} 2}{ }^{\text {g (gal) }}$		$\underset{\substack{\text { cacaul) } \\ \text { (gala }}}{ }$		$\mathrm{n}_{\text {alomed }}$	Comments
PCB Storage	Inside Building 2 POD	Drums, Electrical Equipment, Debris	72.33	10.33	0.83	622.87	4,659.07	55.00	12.00	48.00	939.49	110.00	1,320.00	1,320.00	3,719.58	Yes	96.00	Maximum drum storage is based on drum and aisle size.
PCB Storge	$\begin{aligned} & \hline \begin{array}{l} \text { Inside Building } 2 \\ \text { Bermed, Sealed, } \\ \text { Concrete } \end{array} \\ & \hline \end{aligned}$	Drums	19.75	24.583	0.625	303.45	2,26978	55.00	12.00	48.00	704.62	110.00	1,320.00	1,320.00	1,565.16	Yes	96.00	Maximum drum storage is based on drum and aisle size.
PCB Storage	Inside Building 3; Area A	Drums, Debris	59.42	46.17	0.50	1371.63	10,259.82	55.00	6.300	252.00								
PCB Storge	${ }_{\substack{\text { Inside Building 3; } \\ \text { Area } \\ \text { B }}}$	Drums, Debris	57.08	23.67	0.50	67.54	5,05.05	55.00	27.00	108.00								
PCB Storge	Inside Building 3; Area C	Drums, Debris	20.50	7.50	0.50	76.88	57.03	55.00	3.00	12.00								
PCB Storge	$\begin{aligned} & \text { Inside Building 3; } \\ & \text { Area D } \end{aligned}$	Drums, Debris	22.92	6.50	0.50	74.49	557.19	55.00	3.00	${ }^{12.00}$								
PCB Storge	Inside Building 3	Drums, Debris		ular-Shaped Area of $1.75 \mathrm{ft}^{2}$ processing storage	0.50	2715.88	$20,314.75$	55.00	96.00	384.00	4509.54	1110.00	10,560.00	10,560.00	15,805.20	Yes	768.00	Maximum drum storage is based on drum and aisle size and is not limited by containment volume.
PCB Storge	Inside Building 4	Drums, Debris	28.16	8.66	0.83	202.41	1,514.02	55.00	4.00	10.00	311.91	110.00	440.00	440.00	1,202.11	Ycs	32.00	Maximum drum storage is based on drum and aisle size.

stand

Notes:

3. V. Vhanere (gal) $=$ Volume of the largest drum that is stpically stored at Veolia $=55$ gallons

his calculation includes $a 4$ drum unit configuration (drums stored togecher in groups of four with no interceding asis space).

. $V_{\text {Requiwad }}$ (gal) is cither $V_{\mathrm{R} 1}$ or $\mathrm{V}_{\mathrm{V} 2}$ (whichever is larger)
$V_{\text {Acran }}($ gal $)=V_{\text {pad }}$ (gall $)-V_{\text {Disphed }}($ gal $)$

Building 3 - Storage Area and Containment Area Calculations Veolia ES Technology Solutions, LLC 5736 West Jefferson Street
 Phoenix, AZ

