Container Storage Warehouse Section Bay 1 (consisting of areas DW-1, DW-2, DW-3, DW-4, DW-5 and DW-6)
a. Overall interior floor area: $\mathbf{1 , 8 3 6} \mathbf{~ S F}$

54 Ft. X $34 \mathrm{Ft} .=1836 \mathrm{SF}$
b. Incompatible storage room dimensions floor area: $\mathbf{1 3 2} \mathbf{~ S F}$
$12 \mathrm{Ft} . \mathrm{x} 11 \mathrm{Ft} .=132 \mathrm{SF}$
c. Trench and sump dimensions floor area: 53 SF

Trench dimensions: 6 " wide 94 Linear Ft. length (2" deep)
Sump dimensions: 12 " $\times 12$ " (10 " deep)
Note: there are 6 sumps within the Bay 1 area
Trench area: 94Ft. x 6/12 Ft. $=47 \mathrm{SF}$
Sump area: $1 \times 1 \times 6=6 \mathrm{SF}$
Total Trench \& Sump area; $47 \mathrm{SF}+6 \mathrm{SF}=53 \mathrm{SF}$
d. Curb dividers area: $\mathbf{1 2} \mathbf{~ S F}$

There are two curb dividers within area: 12 Ft. x 6 " wide $2(12 \mathrm{Ft} . \mathrm{x} 6 / 12 \mathrm{Ft})=.12 \mathrm{SF}$
e. Area available (contained storage): 1639 SF
$\mathrm{e}=\mathrm{a}-(\mathrm{b}+\mathrm{c}+\mathrm{d})$
$e=1836-(132+53+12)$
$\mathrm{e}=1639 \mathrm{SF}$
f. Number of drums ${ }^{1}$:

PCB: $\quad 144$ (55gal. drums on two levels) 72 (55gal. drums on floor level)

RCRA: $\quad 240$ (55 gal . drums on two levels) 120 (55 gal . drums on floor level)
g. Number of pallets on floor level: 48 (4"high)

72 drums +120 drums $=192$ drums
192 drums/ 4 drums per pallet $=48$ pallets

[^0]h. Floor area occupied by drums 553 SF

Area $=\pi \mathrm{R}^{2}$
Drum area: $3.14 \times(11.5 \mathrm{Ft} . / 12 \mathrm{Ft} .)^{2}=2.88 \mathrm{SF} /$ drum
192 drums x $2.88 \mathrm{SF}=553 \mathrm{SF}$

i. Containment curb height: $\mathbf{6}$ inches

j. Volume occupied by pallets: $\mathbf{1 6}$ CF or 120 gal.

48 pallets $\times 0.33 \mathrm{CF} /$ pallet $=16 \mathrm{CF}$ or 120 gal.
k. Volume occupied by 192 drums: 92 CF or 699 gal.

Height considered $=$ containment curb height - pallet height
Height considered $=6 "-4 "=2 "$ drum in liquid
$553 \mathrm{SF} \times 2 / 12 \mathrm{Ft} .=92 \mathrm{CF}$

1. Net containment volume available: $\mathbf{7 2 5} \mathbf{C F}$ or $\mathbf{5 , 4 2 3}$ gallons

Gross volume $=$ contained storage area SF x containment curb height
Gross volume $=1,639 \mathrm{SF} \times 6 / 12 \mathrm{Ft} .=820 \mathrm{CF}$ or 6,134 gallons
Less: Volume of Pallets: 16 CF
Volume of drums in liquid: 92 CF
Add: Volume of trenches: 8 CF or 60 gallons $47 \mathrm{SF} \times 2 / 12 \mathrm{Ft} .=8 \mathrm{CF}$

Volume of sumps: 5 CF or 37 gallons 6 SF x 10/12 = 5 CF

Net volume available $=\mathrm{V}$ Gross $-(\mathrm{V}$ pallets +V drums $)+(\mathrm{V}$ trench +V drums $)$
$820 \mathrm{CF}-(16 \mathrm{CF}+92 \mathrm{CF})+(8 \mathrm{CF}+5 \mathrm{CF})=725 \mathrm{CF}$ or 5,423 gallons
Net volume available $=\underline{725 \mathrm{CF}}$ or $(725 \mathrm{CF} \times 7.48)=\underline{5,423}$ gallons

m. Maximum liquid volume

Maximum liquid volume - PCB
144 drums x $55 \mathrm{gal} /$ drum $=7,920$ gallons. or $1,059 \mathrm{CF}$
Maximum liquid volume - RCRA
240 drums x $55 \mathrm{gal} /$ drum $=13,200$ gallons or $1,765 \mathrm{CF}$

n. Require containment volume

PCB requirement at 25% : 1,980 gallons or 265 CF 7920 gal. x $0.25=1,980$ gallons

RCRA requirements at $25 \%^{2}: 3,300$ gallons or 441 CF
13,200 gal. $\mathrm{x} 0.25=3,300$ gallons ${ }^{2}$
Minimum containment volume required: 706 CF or 5,281 gallons
Bay 1 is constructed with a secondary containment capacity of 725 CF or 5,423 gallons which exceeds the minimum volume required of 706 CF of 5,241 gallons.

[^1]
[^0]: ${ }^{1}$-For ease of calculation, anticipating worst case, area is described in drum equivalents.

[^1]: ${ }^{2}$-RCRA secondary containments are required at 10%. However 25% secondary containment was used in the event of catastrophic failure (e.g. earthquake or fire) assuming entire containment contents were to become comingled

