Home Menu

Wetlands

Wetlands Classification and Types

Classification of Wetlands

One commonly used classification system for wetlands was developed by Cowardin and is described in Classification of Wetlands and Deepwater Habitats of the United States Exit. The Cowardin system is used by the U.S. Fish and Wildlife Service for the National Wetlands Inventory. In this system, wetlands are classified by landscape position, vegetation cover and hydrologic regime. The Cowardin system includes five major wetland types: marine, tidal, lacustrine, palustrine and riverine.

Another common wetland classification system, used by the Army Corps of Engineers, was developed by Brinson and is described in A Hydrogeomorphic Classification for Wetlands Exit. As the title implies, wetlands are classified by their geomorphic setting, dominant water source (e.g. precipitation, groundwater or surface water) and hydrodynamics. The hydrogeomorphic (HGM) includes five major wetland types: riverine, slope depressional, flat and fringe.

marshTidal marsh along the Edisto River, South Carolina.
cattailCommon Cattail (Typha latifolia) is a freshwater and estuarine marsh species.  

Marshes are defined as wetlands frequently or continually inundated with water, characterized by emergent soft-stemmed vegetation adapted to saturated soil conditions. There are many different kinds of marshes, ranging from the prairie potholes to the Everglades, coastal to inland, freshwater to saltwater. All types receive most of their water from surface water, and many marshes are also fed by groundwater. Nutrients are plentiful and the pH is usually neutral leading to an abundance of plant and animal life. We have divided marshes into two primary categories: non-tidal and tidal.


Functions & Values

Marshes recharge groundwater supplies and moderate streamflow by providing water to streams. This is an especially important function during periods of drought. The presence of marshes in a watershed helps to reduce damage caused by floods by slowing and storing flood water. As water moves slowly through a marsh, sediment and other pollutants settle to the substrate or floor of the marsh. Marsh vegetation and microorganisms also use excess nutrients for growth that can otherwise pollute surface water such as nitrogen and phosphorus from fertilizer.


Non-Tidal Marshes

muskratMuskrat (Ondatra zibethicus) next to its house in a cattail-dominated marsh.

Description

Non-tidal marshes are the most prevalent and widely distributed wetlands in North America. They are mostly freshwater marshes, although some are brackish or alkaline. They frequently occur along streams in poorly drained depressions and in the shallow water along the boundaries of lakes, ponds and rivers. Water levels in these wetlands generally vary from a few inches to two or three feet, and some marshes, like prairie potholes, may periodically dry out completely.

Highly organic, mineral rich soils of sand, silt, and clay underlie these wetlands, while lily pads, cattails (see photo), reeds and bulrushes provide excellent habitat for waterfowl and other small mammals, such as Red-winged Blackbirds, Great Blue Herons, otters and muskrats. Prairie potholes, playa lakes, vernal pools and wet meadows are all examples of non-tidal marshes.

Functions & Values

Due to their high levels of nutrients, freshwater marshes are one of the most productive ecosystems on earth. They can sustain a vast array of plant communities that in turn support a wide variety of wildlife within this vital wetland ecosystem. As a result, marshes sustain a diversity of life that is disproportionate with their size. In addition to their considerable habitat value, non-tidal marshes serve to mitigate flood damage and filter excess nutrients from surface runoff.

minkMink (Mustela vison), a predator of the muskrat.pickerelweedPickerelweed (Pontederia cordata).

Status

Unfortunately, like many other wetland ecosystems, freshwater marshes have suffered major acreage losses to human development. Some have been degraded by excessive deposits of nutrients and sediment from construction and farming. Severe flooding and nutrient deposition to downstream waters have often followed marsh destruction and degradation. Such environmental problems prove the vital roles these wetlands play. This realization has spurred enhanced protection and restoration of marsh ecosystems, such as the prairie potholes and the Everglades.

Top of Page


Tidal Marshes

railThe Clapper Rail of the saltmarshes, which is more commonly heard than seen. 

Description

Tidal marshes can be found along protected coastlines in middle and high latitudes worldwide. They are most prevalent in the United States on the eastern coast from Maine to Florida and continuing on to Louisiana and Texas along the Gulf of Mexico. Some are freshwater marshes, others are brackish (somewhat salty), and still others are saline (salty), but they are all influenced by the motion of ocean tides. Tidal marshes are normally categorized into two distinct zones, the lower or intertidal marsh and the upper or high marsh.

In saline tidal marshes, the lower marsh is normally covered and exposed daily by the tide. It is predominantly covered by the tall form of Smooth Cordgrass (Spartina alterniflora). The saline marsh is covered by water only sporadically and is characterized by Short Smooth Cordgrass, Spike Grass and Saltmeadow Rush (Juncus gerardii). Saline marshes support a highly specialized set of life adapted for saline conditions.

Functions & Values

Tidal marshes serve many important functions. They buffer stormy seas, slow shoreline erosion and are able to absorb excess nutrients before they reach oceans and estuaries. Tidal marshes also provide vital food and habitat for clams, crabs and juvenile fish, as well as offering shelter and nesting sites for several species of migratory waterfowl.

egretThe Great Egret (Casmerodius albus) winters in the tidal marshes along the Gulf Coast.

Status

Pressure to fill in these wetlands for coastal development has led to significant and continuing losses of tidal marshes, especially along the Atlantic coast. Pollution, especially near urban areas, also remains a serious threat to these ecosystems. Fortunately, most states have enacted special laws to protect tidal marshes, but diligence is needed to assure that these protective measures are actively enforced.

Top of Page