
1

MARPLOT® 4.0 Technical Documentation
For Overlay Objects and Inter-application communication

Table of Contents
Overlay Object Import/Export .. 2

MARPLOT Simple Point Format .. 2

MARPLOT Import/Export (MIE) File Format ... 3

MARPLOT 1.0.1 Import/Export File Format .. 6

Map File Formats ... 10

MARPLOT ID Numbers .. 19

MARPLOT Colors ... 21

Polygon Union ... 22

Inter-application Communication (IAC) Dictionary ... 24

2

Overlay Object Import/Export
• MARPLOT Simple Point Format
• MARPLOT Import/Export (MIE) File Format
• MARPLOT 1.0.1 Import/Export File Format

MARPLOT Simple Point Format
For Overlay Objects

MARPLOT can import and export point (symbol) objects in a tab-delimited text file, where each line, one per
object, has the following format (<> represents a tab character):

longitude <> latitude <> name <> overlay name <> map name <> symbol <> color <> ID

Only the first two fields (longitude and latitude) are required. The remaining fields are optional; you can specify
as many as you want. However, if you want to specify a field, you must also include all fields to its left on the
line. For instance, if you want to specify the symbol, you must also include name, overlay, and map, but
including color and ID is still optional. For further flexibility in cases where you want to specify a field to the
right of an unspecified field, you can use a placeholder for the unspecified field, which causes MARPLOT to use
its default value. In the example just given, suppose you wanted to specify the symbol, but not the overlay or
map. In this case you would use the placeholder value 0 (zero) for both the overlay and map name fields.

This table shows the type of data in each field, the default value used if the field is not present or is equal to the
placeholder value, and the placeholder value to force MARPLOT to assign the default.

Field Format / Example Default Value Placeholder Value

longitude decimal degrees (west negative) / -122.123456 N/A N/A
latitude decimal degrees (south negative) / 47.123456 N/A N/A
name string of characters / Observation Site object’s ID

number
0

overlay
name

string of characters / My Sites the name of the
topmost overlay

0

map name string of characters / CAMEO Map User’s Map 0
symbol either the symbol LANDMARK (specifying the standard

flag symbol) or the ASCII value of the symbol in the
MARPLOT font set 1 (or 256 plus the ASCII value of the
symbol in font set 2)

LANDMARK 0

color one of the names of the available colors (listed in
MARPLOT Color menu) or an RGB value /
R123G64B0

BLACK 0

ID a 16-digit number (the digits are hexadecimal so you can
use A-F in addition to 0-9)

NOTE: it is important that any IDs you assign are unique
on a given overlay of a given map (i.e., no two objects on
a given overlay of a given map should have the same ID)

a random code N/A

3

MARPLOT Import/Export (MIE) File Format
For Overlay Objects

marplot-object = keys head body

keys = owner modifier location mod-date

owner = modifier = "4 (or fewer) character string"

location-code = "5 (or fewer) character string"

mod-date = "mm/dd/yyyy"

head = version-number prefix name alias-count overlay map type id
 digitization-scale CFCC FIPS-place-code etc state-county

(Note: In head of ALIAS objects, all fields are same as original object, except id is prefixed with unique digit(s)
and prefix, name differ.)

alias-count = version-number = short

overlay = prefix = name = "string"
map = "string" | "" (if empty, current "user's map" is used)

type = RECT | CIRCLE | POINT (SYMBOL) | POLYLINE | POLYGON | TEXT |
 PICTURE | ALIAS

id = "16-digit hex string" | "" (if empty, random ID is assigned)

digitization-scale = FIPS-place-code = state-county = long

etc = ONLY | ETC

CFCC = "XXX" (3-character string)
 -> for city/place polygon objects, CFCC is M00
 -> for county polygon objects, CFCC is M01
 -> for census block polygon objects, CFCC is M02
 -> for PICT objects, CFCC starts at X00 (unclassified)
 -> for TEXT objects, CFCC starts at X00 (unclassified)

body = color line-width symbol long lat ;;; for POINT

 | color line-width line-pat fill-pat
 lo-long low-lat hi-long hi-lat ;;; for RECT, CIRCLE

 | frame "filename" lo-long low-lat hi-long hi-lat ;;; for PICT

 | color frame font style "text"
 lo-long low-lat hi-long hi-lat ;;; for TEXT

 | color line-width line-pat
 fill-pat { segment ... segment } ; for POLYLINE, POLYGON

 | id ; for ALIAS

4

lat = long = low-lat = lo-long = hi-lat = hi-long = signed float
 | floatdirection | deg°min'sec"direction | signdeg°min'sec"

direction = N | S | W | E

sign = + | - (Note: western longitudes are -, eastern longitudes are +.)

color = BLACK | WHITE | DARKGRAY = DARKBLUE | GRAY | LIGHTGRAY | BROWN |
 LIGHTBROWN = OLIVE | DARKGREEN | GREEN | LIGHTBLUE | BLUE |
 PURPLE | PINK | RED | ORANGE = AQUA | YELLOW
 (Note: an extended format is used for RGB colors; see MARPLOT Colors)

font = style = symbol = integer (short)

frame = YES | NO

line-width = 1 | 2 | 4 | 6 | 8 | 10

fill-pat = BLACK | WHITE (NONE) | DARKGRAY | GRAY | LIGHTGRAY
 | VERTSTRIPES | HORIZSTRIPES | UPSTRIPES | DOWNSTRIPES
 | BOXES

line-pat = BLACK | WHITE (NONE) | DARKGRAY = TWOPOINT
 | GRAY = THREEPOINT | LIGHTGRAY = FOURPOINT
 | VERTSTRIPES = DOTS | HORIZSTRIPES = DASHDOTDOT
 | UPSTRIPES = DASHDOT | DOWNSTRIPES = DASHES | RAILROAD

segment = { from-to long lat { attribute value } ... { attribute value } }

from-to = FROM | TO

attribute = TLID | CFCC | VERS | SAL | SAR | EAL | EAR | ZCL | ZCR | INVIS

value = integer (long)

Meaning of Terms

owner, modifier = code of person/organization that created/modified object.
location-code = usually FIPS state/county code of county the object is in.
version-number = version of MIE syntax used (current version is 2).
prefix = the prefix of the object’s name (usually for roads) such as “N” or “SW”.
alias-count = the number of alias “objects” (alternate) names the object has.
digitization-scale = scale at which object was originally digitized.
CFCC = Census Feature Classification Code.
FIPS-place-code = city/town FIPS number, unique within the given county.
etc = ETC if object crosses into other places (cities/towns), otherwise ONLY.
state-county = usually the same as the location-code.

TLID = TIGER/Line ID number of segment from TIGER record type 1.
VERS = TIGER/Line database version number.
SAL, SAR, EAL, EAR = start address left/right, end address left/right
ZCL, ZCR = ZIP code left/right
INVIS = segment is invisible (value = 0).

5

Sample MIE Entries

The text in the box represents an actual sample MIE file, except that the <bracketed> terms would have to be
filled in or left empty. This sample file contains two objects, a polygon and a point.

"FRED" "FRED" "00000" "05/24/1994" 2
"" "Central Park" 0 "overlay name" "<map name>" POLYGON "<id number>" 0 "X00" 0 ONLY 0
BLACK 1 BLACK NONE { { FROM -76.992700 38.844000 }
 { TO -76.992400 38.842600 }
 { TO -76.992100 38.841100 }
 { TO -76.992200 38.840000 }
 { TO -76.991700 38.839200 } }

"MSIS" "MSIS" "00000" "05/24/1994" 2
"" "ABC Chemical" 0 "overlay name" "<map name>" POINT "<id number>" 0 "X00" 0 ONLY 0
BLACK 1 LANDMARK -76.992700 38.844000

Notes: Items in <brackets> can be empty (i.e., ""). The constant LANDMARK can be replaced with any integer
ASCII value to specify any character in the MARPLOT font set 1 (or 256 plus the ASCII value to specify
characters in font set 2).

Special MIE Symbols

ASCII code Macintosh character Windows character MIE value
---------- ------------------- ----------------- ---------
0x27 single quote single quote minutes
0x22 double quote double quote seconds

0xA1 degrees i (monetary unit) degrees
0xB0 infinity sign degrees degrees
0xBA integral sign degrees degrees

0xAB slanted apostrophe << (Romance quote) minutes
0xD5 smart apostrophe O with tilde minutes
0xB4 yen slanted apostrophe minutes
0x92 accented i smart apostrophe minutes

0xD3 smart close quotes O with accent seconds
0x94 i with caret smart close quotes seconds

6

MARPLOT 1.0.1 Import/Export File Format
For Overlay Objects

Note: While this old format is still supported, we recommend that you use the MIE file format.

The first line of the file contains just the number 1. This is a flag for MARPLOT that the file is in the extended
format.

The next lines, which are optional, associate overlay names with overlay ID numbers. For each line, the format,
including the leading asterisk, is: * <overlay ID> <overlay name>

Then, on the subsequent lines, each object is described by a group of eight or nine lines:

 first line (all on the same line even though there are three lines here):
 <object ID>, <overlay ID>, <type code>, <hilat>, <hilong>, <lowlat>, <lowlong>,
 <color>, , <size>, <style>, <fill pattern>, <line pattern>, <line width>,
 <symbol code or 0>, <object name>

 next line (for polygons only):
 [indent] <number of points>, <point1 lat>, <point1 long>, ... , <pointn lat>, <pointn long>

 next lines:
 [indent] <pseudo signature>
 [indent] <real signature>
 [indent] <alias>
 [indent] <application path>
 [indent] <document path>
 [indent] <record>
 [indent] <note>

Notes:

1) Each object is defined by 8 lines (9 for polygons). There are no blank lines between objects; the ID
of one object starts the line right after the note of the previous object.

2) [indent] indicates that the line must start with at least one space or tab character. Other lines must
NOT be indented.

3) If you want to leave one or more of the last 7 lines of a given object’s definition blank, you must still
indent the line (a space followed immediately by a return would do).

4) Here is a description of each of the fields:

a. The <object ID> is a 16-character hexadecimal string that MARPLOT uses to uniquely
identify objects. You should never invent object IDs yourself. When importing a new
object, use -1 for <object ID>. This is a flag to MARPLOT to generate a new ID for this
new object. You should fill in the <object ID> with a real ID only when you want to modify
an object that you know is on the map. In this case, MARPLOT will not create a new object
but will modify the attributes of the object whose ID you specify. If you export objects from
one MARPLOT map and import them onto another, the objects will retain their IDs. Note,
therefore, that there are two ways in which an object can be imported. A “new” import
creates a new object with a new ID. An “overwrite” import modifies an object that already
exists on the map. This new/overwrite terminology is used below.

7

b. The <overlay ID> is a small (base 10) integer indicating which overlay the object is on.
Each map contains at least one overlay, which has some ID number. If the <overlay ID>
number for an object being imported is the ID of an actual overlay on the map, the object
will be placed on that overlay. Otherwise, the object will be placed on the top overlay.
Since -1 is not a valid overlay number, you can use -1 for <overlay ID> to put the object on
the top overlay, for a new import, or retain the object’s previous overlay, for an overwrite
import. If overlays have been defined on starred lines at the top of the file, these can
override the normal behavior. In particular, if the <overlay ID> field of the object being
imported matches one of the <overlay ID> numbers at the top of the import file, the object
will be placed on the overlay with the name that is associated with this ID at the top of the
file. If there is no overlay with this name, a new overlay with this name is created. Thus,
objects “carry along” their overlays when they are exported from one map and imported onto
another.

c. The <type code> is a small integer that determines the type of the object. The type codes
are: line = 0, ellipse = 1, rectangle = 2, symbol = 5, polygon = 6. You can use -1 to retain the
object’s type in an overwrite import. For new imports, you must provide a type. On an
overwrite import, it is an error to specify a type other than the one the object previously had.

d. The <hilat>, <hilong>, <lowlat> and <lowlong> fields specify the bounding rectangle of the
object. These are decimal numbers. The “hi” values are northern- and western-most, and the
“low” values are southern and eastern-most. Negative values indicate southern and eastern
hemispheres. For point objects, <hilat> = <lowlat> and <hilong> = <lowlong>. For polygon
and ellipse objects, <hilat> = highest latitude value, <lowlat> = lowest latitude value, etc.
These fields can be -1 to keep the object in the same position for an overwrite import. For a
new import, you must provide real lat/long values.

e. The <color> is a small integer from 1 to 16 indicating the color of the object. The colors are
ordered in the same way as the Color menu in MARPLOT:

black = 1, white = 2, dark grey = 3, grey = 4, off white = 5, brown = 6,

light brown = 7, dark green = 8, green = 9, light blue = 10, blue = 11,

purple = 12, pink = 13, red = 14, orange = 15, yellow = 16.

For an overwrite import, use -1 to retain the object’s previous color. On a new import, -1 can be
used to give the object the default color for its overlay.

f. The value is no longer used. However, you must have a value (e.g., -1) in the file.

g. The <size> value is no longer used. However, you must have a value (e.g., -1) in the file.

h. The <style> value is no longer used. However, you must have a value (e.g., -1) in the file.

i. The <fill pattern> determines the pattern with which the object will be filled.

0 = no fill, 1 = black, 2 = white, 3 = dark grey, 4 = gray, 5 = light gray,

6 = vertical stripes, 7 = horizontal stripes, 8 = downward-sloping stripes,

9 = upward-sloping stripes.

Fill pattern has no meaning for symbol and line objects but you must still provide a value. For an
overwrite import, use -1 to retain the object’s previous fill pattern. On a new import, -1 can be
used to give the object the default fill pattern for its overlay.

8

j. The <line pattern> determines how the outline of the object will be drawn.

1 = black, 2 = white, 3 = dark grey, 4 = gray, 5 = light gray,

6 = vertical stripes, 7 = horizontal stripes, 8 = downward-sloping stripes,

9 = upward-sloping stripes, 10 = plaid.

Line pattern has no meaning for symbol objects but you must still provide a value. For an
overwrite import, use -1 to retain the object’s previous line pattern. On a new import, -1 can be
used to give the object the default line pattern for its overlay.

k. The <line width> is a small integer that determines the width (and height) of the outline of the
object. Line width must be one of 1, 2, 4, 6, 8 or 10. For symbol objects, <line width>
determines the size of the dots when symbols are shown as dots in MARPLOT. For an overwrite
import, use -1 to retain the object’s previous line width. On a new import, -1 can be used to give
the object the default line width for its overlay.

l. The <symbol code or 0> field should be 0 for all objects except symbol objects. For symbols,
this field is the ASCII number of the character in the MARPLOT font set 1 (or 256 plus the
ASCII number of the character in font set 2) that is drawn to represent the object. You can
determine these numbers by looking at the MARPLOT helps. For an overwrite import, use -1 to
retain the object’s previous icon. On a new import, -1 can be used to give the object the default
icon for its overlay.

m. The <object name>, which ends the line, is any string of characters. Only the first 30 characters
are used by MARPLOT in the object’s name. For an overwrite import, use -1 to retain the
object’s previous name. On a new import, you must provide a name (which can of course be
empty).

n. If the type code of an object is 6, the object is a polygon, and MARPLOT expects that the second
line of the object’s definition will contain the points that define the polygon. The first number
on this line indicates the number of lat/long pairs to follow. Next are the pairs, again using
decimals with western longitudes positive. Even if there are many points, they must all be on
this one line of the file. To indicate that the polygon is “closed”, the coordinates of the first point
should be the same as the coordinates of the last point. Otherwise the polygon is considered
“open”. For an overwrite import, if you have specified the <type> with -1, but the object is a
polygon, you must NOT include this line containing the polygon points. On the other hand, if
you do specify <type> 6, you MUST include this line.

The next seven lines of the object definition were used to define link information between the object and an
external application. This feature is no longer supported, but the fields must be present. These lines should be
blank.

9

Example:

This sample import file contains two objects, each on a different overlay. The second object is a polygon and
thus its second line contains the polygon points.

1
* 1 Scenarios
* 0 Hospitals
A6CBE00FA0060404, 0, 5, 38.929328, 77.624480, 38.929328, 77.624480,14, 3, 9, 0, 0, 1, 1, 52, St. Mark's Hospital

A73158EFCC7044F0, 1, 6, 38.927548, 77.566264, 38.897768, 77.512048,1, 3, 9, 0, 4, 1, 1, 0, Facilities #CC7044F0
 5, 38.927548, 77.548000, 38.897768, 77.566264, 38.901768, 77.512048, 38.917768, 77.512616, 38.927548, 77.548000

10

Map File Formats

The Map file formats are cross platform (Macintosh and Windows) and so it is important to understand
the binary format and the extended ASCII character set being used in these files.

Binary format

In short and long integers, the most significant byte is on the left (old Mac binary style, opposite of Intel
style).

The Extended ASCII Character Set

The following 16 characters from the ISO 8859-1 may appear in the Census 2000 TIGER/Line ® files:

Character Name ISO (dec, hex)

Á A-Acute Accent 193,c1
á a-Acute Accent 225,e1
É E-Acute Accent 201,c9
é e-Acute Accent 233,e9
Í I-Acute Accent 205,cd
í i-Acute Accent 237,ed
Ñ N-Tilde 209,d1
ñ n-Tilde 241,f1
Ó O-Acute Accent 211,d3
ó o-Acute Accent 243,f3
Ú U-Acute Accent 218,da
ú u-Acute Accent 250,fa
Ü U-Diaresis 220,dc
ü u-Diaresis 252,fc
Å A Ring 197,c5
å a Ring 229,e5

ÁáÉéÍíÑñÓóÚúÜüÅå

It was originally specified that the .LYR files would be cross-platform and to that end, those files used MAC
binary. Unfortunately, the extended char set was not specified at that time.

Starting with MARPLOT 3.3, the TIGER files have started using the extended ASCII set for a number of Spanish
characters; we need to address the problem of the assumed character mapping for the names/text in the “binary”
files (.LYR, .SUM etc.).

The basic plan is that MARPLOT will assume the “binary” files are using the “Windows” character set.
Specifically the char set used by Census (ISO Latin).

11

The MAC will convert that char set when writing and reading the “binary” files, just as the Windows MARPLOT
converts the MAC binary in these files when writing and reading.

The final catch is the import/export files. Because we wanted the users to be able to export objects and then hand
edit them, it makes sense that the export files use the char set that is the native char set of the platform.
Fortunately the Census only uses a limited number of the extended characters, and those extended characters are
non-overlapping in the MAC and Windows extended char sets, so we can, in theory, detect which is being used
and handle it accordingly.

MARPLOT 3.3 includes code that looks at each “name” and determines which character set is being used on a
name by name basis. So in theory, a MAC MIE file can be imported using a Windows MARPLOT, and the
conversion will be automatic.

Note under this implementation, you could actually switch character sets in the middle of an MIE file (not a
planned-for feature, but the current implementation allows it).

Auto Character Set Recognition

Here is how the new auto character set recognition code works:

• Given a character string, the characters of the string are examined to see if they are all in the supported
extended ASCII set for the given platform.

• If they are, the string is left untouched.
• If they are not, and if all of the characters are in the character set of the other platform, the string is

converted.
• If the characters of the string do not fit into the supported extended ASCII set of either platform, the

string is left untouched.

The auto character set recognition feature of MARPLOT can be turned off by including the line
UseAutomaticCharacterSetRecognition NO
in the MPConfig.txt file.

Users may want to do this if they are using, say, the French character set which includes characters outside of the
supported extended ASCII set.

The “User’s Map” Problem

The smart apostrophe was used in “User’s Map” on the Macintosh in previous versions of MARPLOT. The
MAC smart apostrophe collides with the Windows extended character set.

The new MARPLOT standardizes on the normal apostrophe on both platforms, but it has to deal with the
historical files. Because of the historical files, the new MARPLOT will inspect map names before using auto
character set recognition. If the map name is User’s Map, the map name will be changed to User's Map.

Levels of support

• Extended ASCII object names (and prefixes)
• Extended ASCII overlay and map names
• Extended ASCII group names
• Extended ASCII view names

12

(General files)
The following files are “binary” and use the Windows char set:

• USERS.PLT
• SETTINGS2.PLT
• LAYERS2.PLT
• GROUPS.PLT
• extra maps.PLT (Note: path names will not be cross platform anyway)
• Views

The following files are text files and it is possible that users will be manipulating them, so we will write these
files using the native platform char set and use the auto_char_set_recognition technique when reading these files:

• Saved search collections
• CDMaps/ MARPLOT.VNX

(map/overlay files)
The following files are “binary” and so use the Windows char set:

• .SUM (the first 4 chars of the name)
• .SM2
• .LYR (object name, object prefix., object text)
• Name.Map

These files are assumed to be in native platform char set:

• Font name --
• Meta data -- (not an issue)

(Import export files)
The import/export files are text files and it is possible that users will be manipulating them. So MARPLOT will
write them using the native platform char set.

The auto_char_set_recognition technique is used when reading the following files:

• .MIE
• Simple point

The following files assume the platform native char set (i.e., auto_char_set_recognition technique is not
supported):

• old MARPLOT IMPORT format

13

OBJ (object) files

1: length of object (not counting the four bytes for the length) (long)
 owner code (long)
 modifier code (long)
 location code (state + county for TIGER objects) (5 bytes)
 modification date (number of seconds since midnight January 1, 1904 = long)
 version flags (nth even bit = app #n can read obj; nth odd bit = app #n can write obj) (long)
 type (high bit = 0, reserved for future use) (byte)
 id (8 bytes)
 object 1 low-long + 180000000 (long) low long/lat used to hold ID of original
 object 1 low-lat + 90000000 (long) for alias objects
 object 1 hi-long + 180000000 (long)
 object 1 hi-lat + 90000000 (long)
 digitization scale (long)
 CFCC (long)
 FIPS place-code (place code of majority of segments,
 or 0 if no place;high order bit set if in more than one place) (long)
 state-county (long) // holds the RGB values for RGB-colored objects (see MARPLOT Colors)
 alias count (byte)
 length of prefix (total number of bytes allocated for prefix) (byte)
 prefix (variable, might contain 0-terminator and thus not use all bytes allocated)
 length of name (total number of bytes allocated for name) (byte)
 name (variable, might contain 0-terminator and thus not use all bytes allocated)

2: POINT OBJECTS:
 color (4 bits) + line-width (4 bits) (total = byte)
 symbol (byte)

 RECT/CIRCLE OBJECTS:
 color (4 bits) + line-width (4 bits) (total = byte)
 line-pat (4 bits) + fill-pat (4 bits) (total = byte)

 PICT OBJECTS:
 frame (byte)
 file name (32 bytes)

 TEXT OBJECTS:
 color (4 bits) + frame (4 bits) (total = byte)
 font (short)
 style (byte)
 length of text (short)
 text (variable, might end with 0-space)

 POLYLINE/POLYGON OBJECTS:
 color (4 bits) + line-width (4 bits) (total = byte)
 line-pat (4 bits) + fill-pat (4 bits) (total = byte)
 number of segments (long)
 segment 1 long + 180000000 (long; high order bit: 1 = FROM, 0 = TO)
 segment 1 lat + 90000000 (long)
 segment 1 flags (see below) (short)
 segment 1 attribute 0 (long)
 . . .

14

 segment 1 attribute n (n < 15) (long)
 < repeat for number of segments; possibility of extra 0-filled segment space at the end >

flags: bit indicates presence, in order, of
 0 TLID
 1 CFCC
 2 VERS (+ polyID * 100 for TIGER polygons)
 3 - 4 available for use by MARPLOT users
 5 start address left
 6 start address right
 7 end address left
 8 end address right
 9 zip code left
 10 zip code right
 11 - 14 reserved for future use
 15 segment is invisible (no corresponding attribute long is needed or used)

SUM (summary) files

 offset (long) // byte index of start of object in OBJ file (negative -> object is deleted)
 low-long + 180000000 (long) <-
 low-lat + 90000000 (long) <- all 0 for
 hi-long + 180000000 (long) <- alias objects
 hi-lat + 90000000 (long) <-
 id (8 bytes)
 first four characters of object’s name (null terminated if < 4 chars) (4 bytes)
 < repeat for number of objects >

SM2 (summary of summary) files

This file may not always exist for a given overlay on a given map. When it does, it is a list of bounding
rectangles, one rectangle for each 1000 summary records. Each rectangle is the union of its 1000
constituent object rectangles. The format of each rectangle is:

 low-long + 180000000 (long)
 low-lat + 90000000 (long)
 hi-long + 180000000 (long)
 hi-lat + 90000000 (long)

1000 * <number of SM2 records> may be less than <number of SUM records>, but not greater.

NNX (name index) files
 NOTE: NNX files are no longer used in MARPLOT.

15

LYR (overlay information) files

 overlay name (32 chars)
 overlay’s world rectangle on this map
 low-long + 180000000 (long)
 low-lat + 90000000 (long)
 hi-long + 180000000 (long)
 hi-lat + 90000000 (long)
 number of object on overlay on this map (long)

MAP (map information) files

 map name (42 chars)
 map ID (long; unused)
 default location / owner (5 characters) ***
 inUse (char; unused)
 searchMe (char)
 intersectMe (char)

 *** either a state-county code or

SSSS0, where SSSS = owning application signature (first char non-digit) number of object on
overlay on this map (long)

FNT (alternate font) files

This feature of earlier version of MARPLOT has been removed for MARPLOT 4.0.

VEW (view information) files

 view name (32 chars)
 map name (42 chars)
 view’s world rectangle
 low-long + 180000000 (long)
 low-lat + 90000000 (long)
 hi-long + 180000000 (long)
 hi-lat + 90000000 (long)
 scale at which view was saved (long)
 user owned flag (char; unused)
 owned flag (char; unused)
 file name (32 chars; unused)
 volume reference number (short; unused)
 directory ID (long; unused)

16

MSC (MARPLOT search collection) files

 These files contain one line per object. Each line has the format:

 "<map name>" "<overlay name>" "<id>" <flags> <offset>

 Where
 <map name> is the name of the object’s map
 <overlay name> is the name of the object’s overlay
 <id> is the object’s 16-digit MARPLOT id number
 <flags> is an integer meaningful to MARPLOT
 <offset> is the offset in the given OBJ file of the object

 Note: <offset> is currently unused; for each object, MARPLOT searches for the given <id> on the

given overlay file, if it exists.

 Note: <flags> is a combination of the following bits:

 OP_SORTED = 1 ; used internally by MARPLOT
 OP_ALIAS = 2 ; object is an ALIAS
 OP_MARKED = 4 ; not used

VWR and MNU files

These are files that store information about friend applications and their Sharing menus.

PROG.VWR contains the “business card” information about a friend application.

It has the form:

signature
pseudo-signature
application name
application path
document path

For example, here is a file called CAMEOfm.VWR:

CFAM
CFAM
CAMEOfm
C:\Program Files\CAMEO\CAMEOfm.EXE
C:\Program Files\CAMEO\MapData.CAM

Not all applications need a corresponding document; in fact most don’t. In this case the fourth line can
just be blank (but you need to extra return).

PROG.MNU contains the text of the Sharing menu for the friend.

17

CDMAPS and volume index (.VNX) files

Note: This feature is still supported in MARPLOT 4.0, but the Basemap Builder has replaced the needs for large
collections of maps.

These files are used by MARPLOT to access large collections of maps on CDs or other media without having to
read each .MAP and .LYR file at startup.

There are two methods supported. First MARPLOT examines all .TXT files in the CDMaps folder. Then it looks
at the root level of all mounted volumes/drives for a file called MARPLOT.VNX.

The format of these volume index files is as follows:

The first line gives the volume label (disc name) of the CD or drive containing the maps. In the case where the
file is being used to index a hard drive, this can be a drive letter followed by a colon (e.g., “C:”).

This is followed by n lines, one for each overlay that is represented in any of the maps on the CD. Each line has
the following format:

 N FILENAME, Overlay_Name

where N is a unique character, such as a digit, used to flag the overlay throughout the file, FILENAME is the name
of the files, without the suffix, that the overlay is stored in on the disc, and Overlay_Name is the name of the
overlay as it appears in MARPLOT. The comma is the delimiter, hence both FILENAME and Overlay_Name can
contain spaces.

Following these overlay definitions is one line that contains just the word MAPS, which flags the start of the maps
section. For each map, the first line is of the format:

 path FIPS Map_Name

where path is the DOS-format path to the map’s directory on the disc, starting from but not including the root
directory, FIPS is the 5-digit FIPS state/county code for the map, and Map_Name is the name of the map as it
appears in MARPLOT. Prior to MARPLOT 3.3.1, the path and FIPS could not contain any space characters,
since the delimiter is a space.

Starting with MAPLOT 3.3.1, if this line contains two tab characters, the line is assumed to be tab delimited.
This allows the use of spaces in the path and FIPS code.

After this first line, there is one line for each overlay represented on the map. Each of these overlay lines is of
the format:

 N LOLONG LOLAT HILONG HILAT NUMOBJECTS

where is N is the unique character corresponding to the overlay, as specified at the top of the file, the next 4
fields are the MARPLOT-format low longitude, low latitude, high longitude and high latitude of the bounding
world rectangle of the overlay on the map, NUMOBJECTS is the number of objects in the overlay on the map. To
convert to the MARLOT format from a decimal lat/long value (using negative numbers in the western and
southern hemispheres), write the value to six decimal place accuracy, but leave out the decimal, then add
180000000 to longitude values and 90000000 to latitude values.

A sample file follows.

18

Atlas
4 PLACES, Places
8 WATER, Water
MAPS
\SHIO\MAPS\09\09007\ 09007 MIDDLESEX COUNTY, CT
4 107246597 131177673 107693992 131646900 16
8 107250747 131177673 107692817 131644699 870
\SHIO\MAPS\09\09009\ 09009 NEW HAVEN COUNTY, CT
4 106672447 131087009 107471633 131644214 19
8 106672447 131087009 107471633 131643100 1012
.
.

Overlay index (.LNX) and group index (.GNX) files

New to MARPLOT 3.3 is the idea of overlay and group index files to augment the volume index (.VNX) files.

Whenever MARPLOT processes a volume index (.VNX) file or a CDMaps (.TXT) file, it will look for a file in
the same location with the same base name and .LNX and .GNX extensions.

The .LNX and .GNX files contain information about the desired default setting of the overlays and the overlay
groups that should be used for the overlays described in the corresponding .VNX or .TXT file.

The .LNX file is simply a renamed LAYERS2.PLT file and the .GNX file is simply a renamed GROUPS.PLT
file.

19

MARPLOT ID Numbers

MARPLOT ID numbers are 8 bytes. They are often interpreted as two sequential long values (the “hi” and “lo”
fields of the ObjectID structure) or as a 16-character hex string.

ID Numbers Randomly Assigned by MARPLOT

When an object is created by hand in MARPLOT, or is imported with an ID of -1, MARPLOT assigns the objects
a new ID number which is designed to be random enough to be universally unique. The following function is
used to generate the ID.

void GenerateNewID(ObjectID *id)
{
 static long ticks = 0, count = 0;
 unsigned long seconds;

 if (!ticks) ticks = TickCount();
 GetDateTime(&seconds);
 id->lo = (ticks << 16) + (++count);
 id->hi = seconds;
}

This function builds the 8 random bytes out of:
(1) The computer’s tick count the first time GenerateNewID() is called during this run of MARPLOT,
(2) The computer’s second count at the time the ID is being generated, and
(3) A running count of the total number of objects made during this run of MARPLOT.

ID Numbers Pre-set to Help an External Application Identify an Object

In the following, ssccc stands for the two-digit state code and three-digit county code.

• A Census Block Group polygon object is output from the TIGER Translator with its

 id = "000Asscccttttxxb"

 where tttt is the four-digit basic Census Tract number (padded on the left with 0’s)

 xx is the two-digit Census Tract suffix (padded on the left with 0’s)

 b is the first digit of the Block Number of the blocks that make up the group

• A city/place polygon object is output from the TIGER Translator with its

 id = "00000Bsscccppppp"

 where ppppp is the five-digit FIPS place code (padded on the left with 0’s)

• A county polygon object is output from the TIGER Translator with its

 id = "0000000000Cssccc"

 Note: A thinned county polygon object has the same ID as its complete counterpart.

20

• A landmark polygon object, such as a water body or university, is output from the TIGER Translator
with its

 id = "Dsscccpppppppppp"

 where pppppppppp is the ten-digit polygon code (padded on the left with 0’s)

• A landmark point object, such as a school or lighthouse, is output from the TIGER Translator with its

 id = "Esscccllllllllll"

 where llllllllll is the ten-digit landmark code (padded on the left with 0’s)

• A polyline object, such as a road, is output from the TIGER translator with its

 id = "Fssccctttttttttt"

 where tttttttttt is the ten-digit TIGER line ID of one of the segments making up
 the object; the segment chosen is the one with the lowest TIGER line ID
 number of all the segments making up the object (padded on the left with 0’s)

• An alias object for a polyline object is output from the TIGER translator with its

 id = "FFn000tttttttttt"

 where n (1 - 9) is the alias count (e.g., 5 for the 5th alias of the original)

 tttttttttt matches the tttttttttt part of the of the original (padded left)

21

MARPLOT Colors

Millions of Colors

With the release of MARPLOT 3.2, MARPLOT allows each object to carries its own RGB color value, allowing
for millions of colors. You can assign colors to objects by hand, using the Color menu in MARPLOT’s menu bar
and the color popup menu in the Object Settings dialog box, or via import.

The MIE and Simple Point MARPLOT import formats have been extended to allow an RGB value in the fields
where previously a short (1 -16) integer value (or an equivalent constant name) was allowed. In place of a
constant such as RED, for example, you could use the string of characters R200G100B50. This value represents the
RGB color with a red value of 200, a green value of 100, and a green value of 50. These values are each in the
range of 0 (least bright) to 255 (most bright). Starting with MARPLOT 3.3.3, MARPLOT will use the RGB
format in export files for those objects not using the standard 16 colors.

Note: Internally, MARPLOT stores the RGB values for an object in its state-county field. The high byte of this
long is used for flags. If bit 0 of the high byte is set, the field represents an RGB value (as opposed to an obsolete
state-county value). If bit 1 of the high byte is set, the RGB value is active and overrides the object’s old style (1
– 16) color. The remaining three bytes hold, from right to left, the red, green and blue values. Note that it is
possible to transfer RGB-colored objects in import files without the use of the extended color format (e.g.,
R200G100B50) in the color field; the state-county field contains all of the information necessary and the extended
color format is provided only for encoding convenience.

“Ideal” and ESI colors

MIE value MARPLOT 3.0
“ideal” color MARPLOT 3.2 color Old ESI color New ESI color

(* = change)

1 black black black black
2 white white white white
3 dark-gray dark-gray brown brown
4 gray gray purple purple
5 light-gray light-gray light-purple light-purple
6 brown brown blue blue
7 light-brown light-brown light-blue light-blue
8 dark-green dark-green blue-green blue-green
9 green green green green
10 light-blue light-blue green-yellow green-yellow
11 blue blue yellow yellow
12 purple dark-blue (MIE = 15) orange light-brown *
13 pink purple (MIE = 12) red orange *
14 red pink (MIE = 13) pink red *
15 orange red (MIE = 14) light-brown pink *
16 yellow yellow off-white TBA

22

Polygon Union

This section describes some technical problems related to polygon union, and how these problems are
solved by MARPLOT 3.0 and MARPLOT 3.2.

Figure A above shows two overlapping polygons. When the union of these two polygons is computed,
we would like to get the polygon in figure D. In most cases, it is not difficult to compute results as in
figure D. However, in the case of very convoluted polygons, and especially polygons that have one or
more sides in common, computing the “right” answer as in figure D is quite difficult.

A backup method is simply to take the two component polygons and “throw them together” in a “poly-
polygon,” that is, a single polygon object that retains both component polygons as pieces. This would
work, except that normally, when a polygon in MARPLOT is made up of more than one piece (more
than one connected “island”, “loop” or “chain”), it is the case for any two given pieces either that they do
not overlap at all (imagine a lake that is made up of two disjoint water bodies), or that one is included
entirely in the other (imagine a lake with an island in the middle). MARPLOT’s general rule is that
when two pieces of a poly-polygon overlap, the overlapping area is treated a hole (again, think of a lake
with an island). But in the case of unions, thinking of the overlapping area as a whole is not what we
want (see figure B above).

The solution to this problem in MARPLOT is to give these union polygons a line pattern of Ø (null or
white). This is a flag for MARPLOT not to treat the overlapping areas as holes. Thus, if we give the
polygon in figure B a Ø line pattern, it appears in MARPLOT as in figure C. Figure C looks good, but
remember that there are really two separate pieces there. This fact can be ignored until we try to
compute the polygon’s area. MARPLOT 3.0 will report an area that is too large, being the sum of the
areas of the two components. MARPLOT 3.2 simply does not report an area at all for polygons that
have a Ø line pattern.

With all of this as background, here is the situation with polygon unions in MARPLOT 3.0 and
MARPLOT 3.2.

Because of the possibility of being unable to compute the “right” answer (as in figure D), MARPLOT
3.0 always makes a poly-polygon with a Ø line pattern (figure C). These polygons look OK, but their
area is reported incorrectly by MARPLOT 3.0 and not reported at all by MARPLOT 3.2.

23

When MARPLOT 3.2 computes a union, it checks whether the two pieces have segments in common. If
so, it gives up on computing the “right” answer, and creates a poly-polygon as in MARPLOT 3.0. If
there are no overlapping segments, it creates (or at least attempts to create) the right answer as in figure
D.

When MARPLOT (version 3.0 or version 3.2) computes an “envelope” or “buffer zone” polygon around
a polyline, this is really just a complicated case of several successive polygon unions. Because these
unions almost always involve shared or very close segments, both versions of MARPLOT revert to the
poly-polygon/Ø line pattern solution. This means that the areas of these envelope polygons are reported
incorrectly by MARPLOT 3.0, and not at all by MARPLOT 3.2.

24

Inter-application Communication (IAC)
Dictionary

Overview of CAMEO/MARPLOT/ALOHA IAC Mechanism

These programs send each other messages. On the Macintosh this is done through Apple Events. On Windows it
is done through a combined mechanism of DLL calls, window messages and file passing. In both cases, an IAC
message can be thought of much like a function call to another program. The name of the function and each of
its parameters are specified by 4–character strings. Unlike a regular function call, some of the parameters in an
IAC message are sometimes optional. Also unlike a regular function call, all parameters in an IAC message are
strings.

Besides sending each other messages, the programs need to be able to do things like launch each other, bring
each other forward, check if another program is running, ask the user to locate a program that it knows about but
can’t find, etc. All of this is machine and application-dependent.

On both the Macintosh and Windows, there is the option for the client to wait for a reply to a message before
continuing on. For a number of reasons, we don’t use this option. When any CAMEO suite program sends a
message, it simply sends it and goes on. If the application sends a response in another message a moment later,
great, if not, oh well. The main drawback to this scheme is that applications can lose track of conversations that
require a number of messages back and forth. However, this can be solved by the use of global status variables,
or better yet by the use of the XTRA standard parameter.

Standard Parameters

Each message includes the four parameters MSSG, SIGN, PSIG and XTRA.

The data for the MSSG parameter is the 4-character “function name” for the IAC function that is being invoked.

The data for the SIGN parameter is the “signature” of the client (calling) application. This is Macintosh
terminology for a 4-character code that identifies the application. MARPLOT’s signature is MRP1,
CAMEOfm’s signature is CFAM, and ALOHA’s signature is ALH5. On Windows, the signatures are used as the
server name of the application.

To allow for greater flexibility, and to accommodate some quirks of the Macintosh, we use a two-level
application identification scheme. Each application, in addition to its signature, also has a “pseudo-signature,”
which is sent in the PSIG parameter. MARPLOT’s pseudo-signature is PLOT, CAMEOfm’s pseudo-signature is
CFAM, and ALOHA’s pseudo-signature is ALHA.

Finally, each message includes a parameter called XTRA. When an application receives a message, it should
store the contents of the XTRA parameter in a static/global variable. When it sends a message, it should pass the
current contents of the XTRA global again as the XTRA parameter. This allows the XTRA parameter to serve as
a transaction identifier. An application can send off a request for information, tagged in a certain way through
the use of the XTRA parameter. When it gets a reply from the other application, it can “remember” what it was
doing, by looking at the XTRA parameter. Of course, in the case that an application sets the XTRA parameter, it
cannot simultaneously return another application’s previous XTRA parameter. Fortunately, we never want to do
this, since an application is generally either “asking” or “responding,” not both.

25

Mechanism on Macintosh

To send a message:

Check if the receiving application is running. If not, try to launch it. Create an Apple Event of type
'NOAA', class 'AEVT'. The individual parameters are packed as Apple Event parameters, where the
keyword of the parameter is the 4-character parameter name, and the data of the parameter is the data
string for the IAC parameter. The parameters are added with AEPutParamPtr(), and the entire message is
sent with AESend().

To receive a message:

At startup, install an AE handler to handle 'NOAA', 'AEVT' events:

 AEInstallEventHandler('NOAA', 'AEVT', MyHandler, 0, false);

In the event loop, process Apple Events:

 case kHighLevelEvent: AEProcessAppleEvent(&event); break;

In MyHandler, extract parameters "MSSG", "SIGN", and "XTRA". Extract additional parameters as needed
for the given message. Process message.

To see if an application is running:

Boolean SigToProcessInfo(char *sig, ProcessInfoRec *pInfo,
 char *name, FSSpec *spec)
{
 char dummyName[32];
 ProcessSerialNumber PSN;
 FSSpec dummySpec;

 pInfo->processInfoLength = sizeof(ProcessInfoRec);
 pInfo->processName = (name ? name : dummyName);
 pInfo->processAppSpec = (spec ? spec : &dummySpec);

 PSN.highLongOfPSN = 0;
 PSN.lowLongOfPSN = kNoProcess;

 while (GetNextProcess(&PSN) != procNotFound) {
 GetProcessInformation(&PSN, pInfo);
 if (!strncmp((char *)&pInfo->processSignature, sig, 4))
 return TRUE;
 }

 return FALSE;
}

Boolean AppIsRunning(char *sig)
{
 ProcessInfoRec pInfo;

 return SigToProcessInfo(sig, &pInfo, 0, 0);
}

26

Mechanism on Windows

The message sent is a string of the following form:

param 1 name • param 1 • param 2 name • param 2 • . . . • param n name • param n ø

 where • is the vertical tab character (ascii 11) ø is a null-terminator

 param 1 is always MSSG
 param 2 is always SIGN
 param 3 is always PSIG
 param 4 is always XTRA
 of the remaining parameters, the largest should come last, for efficiency

The following constants are used below:

 #define WM_IAC (WM_USER + 1)
 #define NE_GET_ALL_MESSAGES 1
 #define NE_APP_IS_RUNNING 2
 #define NE_TRANSFER_MESSAGE 3

Mechanism used by MARPLOT

To start:

You may either assume that the NOAA_32.DLL is in the Windows directory, or, if your application has a
copy of NOAA_32.DLL , it can check whether its copy is newer than the one currently in the Windows
directory, and replace it if so.

Load the NOAA32 DLL that is in the Windows directory and register with it by calling its NERegister()
function. For example, here is how an application named MARPLOT, with signature MRP1, would
register:

HINSTANCE gNoaaDllInst = 0;
char gMySignatureStr[] = "MySg"; // a 4 character identifier you wish to use
for your application
HWND gMyMainWindowHWND = 0;
char gMyMainWindowClassName[256];

long MyStartupTasks(HWND myMainWindowHWND, char * myMainWindowClassName) //
call this when you program is starting
{
 long errorCode = 0;
 gMyMainWindowHWND = myMainWindowHWND; // record the value of your
main window handle
 if(myMainWindowClassName)
strcpy(gMyMainWindowClassName,myMainWindowClassName);

 return errorCode;
}

void MyShutdownTasks(void)

27

{
 // say goodbye to ALOHA if it is running

 CallNEBye(); // this will unload the NOAA 32 dll
}

/////////////////////
/////////////////////

void LoadNoaaDll (void)
{
 char dllPath[256];

 if(gNoaaDllInst)
 return; //if already loaded, don't reload

 GetWindowsDirectory(dllPath, 255);
 strcat(dllPath, "\\NOAA_32.DLL");

 gNoaaDllInst = LoadLibrary(dllPath);
}

void CallNERegister(void)
{
 char sigStr[6];
 char fullPath[256];
 char humanName[64];
 FARPROC proc=NULL;
 LoadNoaaDll();
 if((UINT) gNoaaDllInst > 32)
 {
 //we have the library
 proc = GetProcAddress(gNoaaDllInst,"NERegister");
 if(proc)
 {
 my_getindstring(humanName, 1000, 1); //ALOHA
 (*proc)(gMySignatureStr,
 gMyMainWindowHWND,
 gMyMainWindowClassName,
 "", //messageStringForHola,unused
 "", // human name,unused
 "", //wakeUpTopicString,unused
 "", // fullPath,unused
 0, //SA_APPTASK,unused
 0, //unused
 0); //unused
 }
 }
 }

28

To send a message:

First make sure the receiving application is running. If not, launch it. Then:

long CallNESendMessage(char* toSigStr, char* messageStr)
{

 FARPROC proc=NULL;
 long err = -1;
 if((UINT)gNoaaDllInst > 32)
 {
 //we have the library
 proc = GetProcAddress(gNoaaDllInst, "NESendMessage");
 if(proc)
 {
 err = (long)(*proc)(toSigStr, messageStr, FALSE, NULL, NULL);
 }
 return err;
 }
}

To receive a message:

In your WndProc(), check for messages on idle (e.g. set a timer):

long HandleNEMessage(void)
{
 // check for a message and handle it
 FARPROC proc=NULL;
 long err = -1;
 long len;
 long maxLength = 1023;
 char msgStr[1024]="";
 LoadNoaaDll();
 if((UINT)gNoaaDllInst > 32)
 {
 //we have the library
 proc = GetProcAddress(gNoaaDllInst, "NEGetNextMessageLength");
 if(proc)
 {
 len = (long) (*proc)(gMySignatureStr);
 if(len > 0)
 {
 //we have a message
 proc = GetProcAddress(gNoaaDllInst, "NEGetNextMessage");
 if (proc)
 {
 BOOL gotIt;
 gotIt = (BOOL)(*proc)(sigStr, messageString, maxLength);
 if(gotIt) {
 // code to handle the message goes here

 }
 }

29

 }
 }
 }
 return err;
}

To see if an application is running:

BOOL CallNEAppIsRunning(char* toSigstr)
{
 FARPROC proc=NULL;
 BOOL isRunning = FALSE;
 LoadNoaaDll();
 if((UINT)gNoaaDllInst > 32)
 {
 //we have the library
 proc = GetProcAddress(gNoaaDllInst, "NEAppIsRunning");
 if(proc)
 {
 isRunning = (BOOL)(*proc)(toSigStr);
 }
 }
 return isRunning;
}

To quit:

void CallNEBye(void)
{
 char sigStr[6];
 FARPROC proc=NULL;
 if((UINT) gNoaaDllInst > 32)
 {
 //we have the library
 proc = GetProcAddress(gNoaaDllInst,"NEBye");
 if(proc)
 {
 (*proc)(gMySignatureStr,
 gMyMainWindowHWND,
 gMyMainWindowClassName,
 ""); // messageStringForBye, unused
 }
 FreeLibrary(gNoaaDllInst);
 gNoaaDllInst = NULL;
 }
}

30

History: How Applications Greet Each Other

A central design goal has been not to hard-code information about these applications within each other. We have
since revised this to say that MARPLOT should not have any hard-coded information about CAMEO, ALOHA
and other “clients,” but those applications can “know” about MARPLOT, since they specifically use MARPLOT
as a tool (this is much the same as saying that your C program can reference the stdio library by name, but that
that program shouldn’t be required to know specifically about your C program).

In any event, we needed to develop schemes, involving both technical and user interface issues, to allow
programs to work with each other in a natural way without knowing about each other ahead of time. For the user
interface, we invented Sharing menus. The idea is that each application (MARPPLOT in particular, since it is the
“server”) has a menu called Sharing. Other application can send MARPLOT the MENU message, which
contains the text of a new sub-menu to install in the Sharing menu. When the user chooses an item from, say,
CAMEO’s Sharing sub-menu in MARPLOT, MARPLOT does not take any action except to send a message to
CAMEO (an MHIT message) informing it that item n of its Sharing sub-menu was just selected. CAMEO can
then take the appropriate action, usually by initiating another IAC conversation with MARPLOT. There are two
key advantages to the use of Sharing sub-menus. First, it allows the user to operate naturally within the server
program, while actually performing functions in the client application. For instance, it would be much more
awkward if the user had to select the object in MARPLOT, then switch to the CAMEO application and choose a
Get Info function from CAMEO’s own menu. Second, because applications can save the state of their Sharing
menu between runs, and can launch applications as they are needed to respond to Sharing menu selections (when
an application installs a Sharing menu in another application, it also provides that other application with the
information necessary to launch it in the future), this gives the user the illusion that all of these related
applications are always “up and running.” Normally, the user would have to explicitly start each of the programs
that were meant to talk to each other in a given session.

This scheme works well once all of the Sharing menus are installed, but there are some tricky issues about how
the Sharing menus get installed in the first place. The basic idea has been for client applications, when they start,
to “broadcast” HOLA (hello) messages to their sever application(s) if they are running. Those server
applications respond with OKHI messages, and the client can the send the appropriate Sharing sub-menus with
MENU messages. Thus, this scheme requires that the applications get run simultaneously “by hand” just one
time, and from then on can launch each other as needed.

To help with this problem, we have introduced the .VWR and .MNU files. A .VWR file contains essentially the
same information that is passed in an HOLA or OKHI message, and a .MNU file contains the information passed
in a MENU message. When MARPLOT starts up, it looks for .VWR and .MNU files in its “FRIENDS”
directory and adds the found menus to its Sharing menu and makes a note of its friends. This allows an
application to “greet” MARPLOT simply by putting a couple of files in MARPLOT’s directory.

IAC Dictionary 3.0 Notes

The addition of the VERS parameter in HOLA, OKHI and MENU messages allows MARPLOT to identify older
friend applications that are not compatible with the 3.0 dictionary.

 =====> indicates the appropriate response to a message.
 # indicates parameters or options that were not yet implemented as of the
 date this document was printed

It is not considered an error to send parameters in addition to those required for a certain message. In fact, one
way to stay compatible with multiple versions of MARPLOT is to take advantage of parameter name changes by
sending parameters under both the new and the old names; newer versions of MARPLOT ignore the old name,
and older versions ignore the new names.

31

Messages From MARPLOT

All messages include 'SIGN' ('MRP1'), 'PSIG' ('PLOT'), 'MSSG' and 'XTRA' parameters.

Message Parameters Description

'BYE ' MARPLOT is quitting. This is to inform you that if you plan to send
MARPLOT any more messages, you will have to wait until it gets started again
(perhaps by your launching it) and sends you an HOLA message. This
message is sent to all friend applications that are currently running.

'CPT!' Here is the Click Point. You have sent MARPLOT a 'CPT?' message
requesting the location of the Click Point. MARPLOT is responding to give
you the coordinates. In MARPLOT 1.0.1 western longitudes were given as
positive numbers, with eastern longitudes negative. This is the reverse of the
standard convention. In newer versions, if you provide the 'VERS' parameter
in the 'CPT?' message, the standard conventions are used for the longitude sign
in the 'CPT!' message.

 'LAT ' latitude (decimal format)
 'LONG' longitude (decimal format)
'CTL!' You have sent MARPLOT a 'CTRL' message, requesting to control the look of

objects on a certain map/overlay, and MARPLOT is responding. MARPLOT
has written out a file containing the ID numbers of all of the objects on the
map/overlay that are inside of or touching the current view rectangle. Each ID
number is a 16-digit hexadecimal string. There is no delimiter between the the
ID numbers; the 17th character in the file is the first digit of the second ID
number. Some of the ID numbers may be all zeros: 0000000000000000.
These represent objects that have been deleted or that for some other reason
will not be drawn. When writing the TDO file (explained below), you need to
include entries for these non-drawn objects; any four bytes will do, since these
entries will be skipped by MARPLOT.

The PATH parameter is the full path to the file of ID numbers. This file has a
name of the form "X.IDS". The task of your application at this point is to read
through the IDS file and create a TDO (thematic draw override) file. The
name of the file is of the form "X.TDO" (i.e., the same name as the IDS file,
but with the TDO suffix) and it goes in the same directory (folder) as the IDS
file (i.e., the path stays the same; just the file name changes).

The TDO file contains, corresponding to each ID number in the IDS file, five
characters, again without any delimiting characters. The four chars specify the
look of the object with the given ID number. So the basic routine is to step
through the IDS file and for each ID, look up the corresponding record in your
database and write five chars into the TDO file. You must write the five chars
for each object even if the ID is not found in your database.

32

'CTL!'
(continued)

 The meaning of the five chars is as follows:

• char 1: Color. Use a digit from ‘1’ through ‘G’ (i.e., “hex” digits),
corresponding to the colors in MARPLOT's Color menu. 1 is
BLACK, 2 is WHITE, ... , G is YELLOW.

• char 2: Fill Pattern. Use a digit from ‘1’ to ‘A’, corresponding to the

patterns represented in MARPLOT's Fill Pattern menu.

• char 3: Line Pattern. Use a digit from ‘1’ to ‘A’, corresponding to the
patterns represented in MARPLOT’s Line Pattern menu.

• char 4: Symbol. Use the ASCII value of the character you want to use

from the MARPLOT font set 1, or 256 plus the ASCII value of the
character from font set 2.

• char 5: Width. Use a digit from ‘1’ to ‘6’, corresponding to the line

widths represented in MARPLOT’s Line Width menu. The width
value determines the width of lines, as well as the size of the dots
when symbols show as dots for the given overlay.

If any of the five chars is ‘0’, the object will not be displayed at all in
MARPLOT. If any of the five chars is ‘X’, the given attribute will be
displayed as it would if the overlay were not being controlled.

Once you have finished writing the TDO file and have closed it, you must send
a DRW+ message to MARPLOT to force it to update its display. MARPLOT
will continue to draw using your TDO file until you send a CTRL message
with "OFF" for the MODE parameter.

 'PATH' full path to IDS file
'HOLA' Initial greeting from MARPLOT. MARPLOT sends this message to all

running friend applications when it starts up. This tells any friend applications
that MARPLOT is alive and ready to handle messages.

 'NAME' "MARPLOT"
 'PATH' full path to MARPLOT
 empty string; provided for consistency with other applications
 "2"
 =====> When you get an HOLA message from MARPLOT, you should respond with

an OKHI message.

33

'IMP!' Report on result of MIE import. You sent an 'IMP2' message to MARPLOT.
MARPLOT has attempted to import the specified MIE file.

 'STAT' "Y" = import was successful, "C" = user canceled import, "E" = error
 Note: If the 'IDS ' parameter of the IMP2 message was "Y", MARPLOT also

writes a file into the same directory as the MIE file to report the ID numbers
that were assigned to the objects as they were imported. The name of the file
is X.OUT, where the name of the MIE file was X.MIE. X.OUT contains one
line for each object ID generated by MARPLOT during the import. Each line
has the following format:

<app ID> "<MARPLOT ID>" "<overlay>" "<map>"

<app ID> is the integer identifier that the calling application
included at the start of each object line in the extended MIE file,

<MARPLOT ID> is the ID number that MARPLOT assigned to the object,

<overlay> and <map> are the overlay and map names of the object.

The calling application is responsible for deleting the X.OUT file.

'INFO' Please show information about this object. The user has selected one or more
objects that are linked to your application and has chosen the generic "Get
Info" item from the Sharing menu (not the "Get Info" item from your
application’s Sharing sub-menu). Typically, your application will want to
bring itself to the foreground and display information about the selected
objects. If you have nothing to display for the selected objects, you should still
respond to the user in some way, perhaps by displaying a message in
MARPLOT with an ALRT message.

 'LST2' a return-delimited string where each line (one per object) has the format:

 <object id> \t <overlay name> \t <map name> \t <app ID>

<app ID> is the friend-application-owned ID associated with the record at the
time it was linked to MARPLOT

Note: This message is only sent by the SPEARS version of MARPLOT for the
Macintosh.

34

'MAPA' The user has performed or wants to perform an action on a map that the
receiving application owns. LSTA contains the list of objects before the action
took place. LSTB contains the same objects after the action took place. In the
case of DELETE, which is sent before the objects are actually deleted, LSTB
is empty. When you receive a DELETE ACTN, you must decide which if any
of the listed objects may be deleted, warn or alert the user if necessary, update
your database appropriately, and then send MARPLOT a DELO message, if
you actually want to delete some or all of the listed objects. When you receive
any other ACTN, just update your database appropriately; no special response
to MARPLOT is required.

 'ACTN' the type of action: one of DELETE, MOVEMAP, MOVELAYER, DRAG, or
ADD

 'LSTA' a return-delimited string where each line (one per object) has the format:

 <object id> \t <overlay name> \t <map name>

 'LSTB' a return-delimited string where each line (one per object) has the format:

 <object id> \t <overlay name> \t <map name>

 Note: In the case that ACTN is DRAG, the LST lines have the format:

 <object id> \t <overlay name> \t <map name> \t <lat> \t <long>

'MHIT' Your menu item was selected. Once you have installed a menu in
MARPLOT’s Sharing menu, MARPLOT will send you this message whenever
the user selects an item in your menu. You can then take whatever actions are
necessary to respond to the menu selection.

 'YRPS' Pseudo-signature of menu hit; you can ignore this unless you have installed
multiple menus in MARPLOT

 'ITEM' item number hit (the first item is number 1)
 'TEXT' text of item hit (i.e., the menu item text)
'NBH!' Neighborhood result. You have sent MARPLOT an NBH? message to create a

neighborhood/threat zone around an existing object, P. MARPLOT is
reporting information about the newly created object, N.

 'OBJ2' a string of the format

 <object id> \t <overlay name> \t <map name>

 Note: If OBJ2 is empty, an error occurred during the creation of the
neighborhood object, probably because P was not found.

35

'OBID' Here are IDs generated by the most recent old-style import. You have sent

MARPLOT an IMPT message to import a list of objects in the 1.0.1 import
format. MARPLOT is reporting the ID numbers that were assigned to the
imported objects (this includes both newly created ID numbers for new
imports and old ID numbers for overwrite imports). Both the 'IDS ' and
'LST2' parameters are sent, but an application will typically use just one or
the other.

 'IDS ' string of IDs, each (including the last) followed by a return; the order of the
IDs is the same as the order of objects in the import file; the string might
contain fewer IDs than were imported, in case of an error part-way through
importing

 'LST2' a return-delimited string where each line (one per object) has the format:

 <object id> \t <overlay name> \t <map name>

'OKHI' Acknowledge receipt of HOLA. MARPLOT has received an HOLA
message from an application that just started up and is acknowledging so the
other application will know MARPLOT is alive. You should treat an
incoming OKHI message the same as an incoming HOLA message; they
give the same information but you will get one or the other depending on
whether your application or MARPLOT is started first.

 'NAME' alias name of MARPLOT (i.e., "MARPLOT")
 'PATH' full path to MARPLOT
 'VERS' "2"
 'DOC ' empty string; included for consistency with other applications
'OVL!' This overlay does or does not exist. If you have sent MARPLOT an OVX?

message asking if a particular overlay exists. MARPLOT is responding to
tell you the answer. If you have sent MARPLOT a MKOV message,
MARPLOT is informing you of the overlays ID.

 'ANSR' "Y" if the overlay exists, "N" if not
 'OVID' ID of overlay if it exists
'ATBS' attributes of the overlay if it exists (see 'SLAT' message for a description of

this parameter and the possible values that come with it)
 Note: The names 'OVL!' and 'OVID' and historical, from when overlays

were called overlays.
'VER!' Here is MARPLOT’s version number.
 'VNUM' the version number
 Note: Do not confuse VNUM with the VERS parameters in other messages;

VNUM is MARPLOT’s version number while VERS is a shared IAC
version number.

36

'VEW!' Here’s the current view.
 'LLAT' low latitude, as a decimal string (South is negative)
 'LLNG' low longitude, as a decimal string (West is negative)
 'HLAT' high latitude, as a decimal string (South is negative)
 'HLNG' high longitude, as a decimal string (West is negative)
'YROD' Your Object Data.

You have sent MARPLOT a MYOD or SRCH message requesting
information about certain objects. This message contains the requested
information. If you specified the "SELECTED" keyword in the OPTN
parameter with MYOD, information about all currently selected objects is
given. If you specified the "COLLECTED" keyword, information about all
objects currently in the search collection is given. If you specified the "IDS"
keyword, it is expected that you provided a list of MARPLOT object
references in the LST2 parameter. In this case, and according to whether
you have included "ANYLAYER", "ANYUMAP, or "ANYMAP" in the
OPTN parameter, MARPLOT returns information about all of the objects
from the LST2 that it is able to locate.

If you have included the "FILE" keyword in the OPTN parameter, the LST2
parameter to MYOD (when it is provided) is taken as the full path to the file
containing the LST2 information. Similarly, when "FILE" is specified, the
LST2 parameter with YROD is the path name of the file containing the
LST2 information.

Depending on the OPTN parameter sent with MYOD, the resulting object
data contains different information.

In all cases information is reported one object per line, with the format

 <object id> \t <overlay name> \t <map name> ... RETURN

The "..." in the above line represent extra text that is included with each
object, according to the keywords included in the OPTN parameter sent with
MYOD. The various keywords, along with the included information, are
specified below. The order in which the extra information appears in the
text is the same as the order of the entries in the table.

OPTN keyword extra info format

TYPE \t <type> one of POINT, POLYGON, POLYLINE,
 RECTANGLE, CIRCLE, TEXT or PICT
NAME \t <name> name of the object
LATLONG \t <lat> decimal strings, S and W negative,
 \t <long> center of object

37

'YROD'
(continued)

 # GRAPHICS \t C \t S \t P \t L \t W

C = color number, 1 - 16, see MARPLOT menu for values

S = symbol, 1 - 255, see MARPLOT menu for values

P = fill pattern, 1 - 10, see MARPLOT menu for values

L = line pattern, 1 - 10, see MARPLOT menu for values

W = line/dot width, 1 - 6, see MARPLOT menu for values

Another OPTN keyword is "TAGS". When you include the "TAGS"
keyword, each of the items in each of the lines returned by YROD is
preceded by a tag so you can identify the field using a more general parser.
For instance, is you include "TAGS" and "NAME", your data lines will have
the format

ID: \t <object id> \t LAYER: \t <overlay name> \t MAP: \t<map name> \t
NAME: \t <name> RETURN

Finally, you can include the "MIE" keyword in the OPTN parameter. This
keyword overrides any use of APPID, NAME, LATLONG, GRAPHICS or
TAGS. It causes the objects to be exported in full MIE format, just as if the
user had chose Export from the File menu in MARPLOT.

 'NUM ' the number of objects in the LST2
 'LST2' the requested object information
 'TYPE' MYOD is this YROD message is in response to a MYOD message, or SRCH

if it is in response to a SRCH message

38

Messages To MARPLOT

All messages include 'SIGN', 'PSIG', 'MSSG' and 'XTRA' parameters.

Message Parameters Description

'ALRT' Show alert dialog in MARPLOT with beep. This message causes MARPLOT
to beep and to display an alert window with the given text and the given icon in
the upper-left corner. The alert has an OK button that the user clicks to dismiss
it.

 'TEXT' text to show
 'ICON' resource ID of icon to show (0 = stop, 1 = note, 2 = warning)
'BYE ' The friend application is quitting. MARPLOT should not send any more

messages to it.
'CPT?' Where is the click point? In MARPLOT 1.0.1 western longitudes were given as

positive numbers, with eastern longitudes negative. This is the reverse of the
standard convention. In newer versions, if you provide the 'VERS' parameter in
the 'CPT?' message, the standard conventions are used for the longitude sign in
the 'CPT!' message.

 'VERS' (optional) any value "2" or greater
 =====> MARPLOT responds with the 'CPT!' message.
'CTRL' Control the look of objects on a certain map/overlay within the current view.

The MODE parameter determines whether you want to start (on) or stop (off)
controlling the overlay. When you start controlling an overlay, it is
automatically put into “show” mode. Note that you must specify a map and an
overlay. Objects on the given overlay but on a different map will appear as they
would normally, as will objects on the given overlay and map, but not in the
current view at the time the CTRL message is sent.

 'MAPN' name of the map
 'LAYR' name of the overlay
 'MODE' "ON" or "OFF"; ON means you want to start controlling the overlay; OFF

means you are done controlling the overlay. "ON2" is the same as "ON" except
the IDS file returned by MARPLOT in the CTL! message will be empty. Use
ON2 when you have already computed the TDO file for a given overlay (an
overlay that is pretty certain not to have changed since your last use of it), and
you want to avoid the overhead of MARPLOT having to write out the IDS file
again. If you use ON2 you must send the VIEW parameter.

 'VIEW' (send only if MODE is ON2) a string containing four decimal numbers
separated by spaces; the numbers represent, in order, low latitude, low
longitude, high latitude, high longitude (south and west are negative); the view
should be the same view as was shown on the map (as determined using the
VEW? message) at the time the overlay was originally controlled (MARPLOT
needs to know this view to know what the “clipping rectangle” is for the TDO
file).

39

'CTRL'
(continued)

=====> MARPLOT writes out an ".IDS" file (which is empty if MODE was ON2) and
responds with the 'CTL!' message.

'DELO' Delete a set of objects. Use this message with caution. You can specify an
arbitrary set of objects to be deleted using the LST2 parameter, or delete objects
from a single overlay using the LAYR parameter. In the latter case, you can use
the ' IDS ' and 'MAP ' parameters to delete only certain objects on the overlay.

 'LST2' (must be given if LAYR is not given) a return-delimited string where each line
(one per object) has the format:
 <object id> \t <overlay name> \t <map name>

for a large number of objects, as an alternative to sending a large LST2
parameter, the LST2 information can be written to a file; in this case, the LST2
parameter should be the word FILE, followed by a tab, followed by the full path
to the file, that is
 FILE\t <path>
MARPLOT does not delete the file after reading it

 'IDS ' (must be given if LST2 is not given) return delimited and return-terminated list
of IDs of objects on the named overlay to be deleted

 'LAYR' (must be given if LST2 is not given) the name of the overlay on which the
objects are to be found

 'MAP ' (optional) the name of the map from which objects on the named overlay are to
be deleted (objects on the overlay but on other maps will not be touched); use
the name "USER" to indicate the current user map. Default is the current user
map.

'DLOV' This message is used to delete all the objects from an overlay; unless the
REMOVELAYER option is used, the overlay itself is still retained in
MARPLOT, in its specified position in the overlay list.

 'LAYR' The name of the overlay
 'MAP ' (optional) The name of the map from which the named overlay is to be deleted

(objects on the overlay but on other maps will not be touched); use the name
"USER" to indicate the current user map.; use the name ALLMAPS to delete
the overlay on all maps. Default is the current user map.

 'OPTN' (optional) a string containing keywords from the following table:

keyword meaning
REMOVELAYER this keyword requests that the overlay be deleted from

MARPLOT’s overlay list, after the specified overlay
map combination specified is deleted. Note: The
overlay will not be deleted from the overlay list if there
are objects remaining on this overlay on another map.

'DRW+' Re-enable map window updates, and update the map window.

40

'FRWD' There are a number of technical issues involved in getting an application to
come automatically to the foreground. These issues are different for each
platform/system. In some cases, when an application wants to bring some
application (often itself) to the foreground, it is easier (and sometimes more
polite) to ask another application to do the job. Your application can ask
MARPLOT to bring it to the foreground using this message.

 'WHO ' signature of application to bring forward (usually the sending app itself)
 'NAME' name of application to bring forward; in Windows, NAME should be the title of

your main window, or the name of your main window class.
 Note: On the Macintosh, it is sometimes better to use the Notification Manager

and let the user bring you forward.
'GOTO' Set the Click Point at this location and center on it, using this scale.
 'LAT ' latitude value, as decimal string (South is negative)
 'LONG' longitude value, as decimal string (West is negative)
 'SCAL' (optional) n, where desired scale is 1:n (if not given, scale is not changed)
'HOLA' Initial greeting from a friend application. The friend sends this message to

MARPLOT when it starts up and sees that MARPLOT is running. This tells
MARPLOT that the friend is alive and ready to handle messages.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated IAC
messages

 'NAME' name of the friend application
 'PATH' full path to friend application’s executable file
 'DOC ' (optional) full path to default document to be opened when MARPLOT

launches the friend
'IMP2' Import this MIE file.
 'FILE' full path of MIE file to import
 'FRWD' (optional) If the first character is "N" or "n", MARPLOT will not come

forward. Coming forward is the default behavior. (This optional parameter was
added for MARPLOT 3.3.2)

 'MOD?' (optional) Supports the same features as the Import Options Dialog... answering
the question: "If an object being imported, Object I, has the same ID as an
object already on the map, Object M:"

"R" (default) = add Object I and delete Object M ("R" means Replace)

"S" = do not import Object I ("S" means Skip)

"A" = add Object I and do not delete Object M
(this allows multiple objects with a given ID on a given map/overlay
combination) ("A" means Add)

41

'IMP2'
(continued)

'IDS ' "Y" = return a list of the IDs assigned to the imported objects, "N" = no list
(default)

 Note: When the 'IDS ' parameter is "Y", the MIE file is expected to be in a
slightly modified format, where each object is preceded by an integer chosen by
the calling application. When MARPLOT writes out the file of generated IDs,
each ID is preceded by its object number.

 =====> MARPLOT responds with an 'IMP!' message.
'IMPT' Old-style import (MARPLOT 1.0.1 format).
 'TEXT' text of “file” to be imported; instead of importing from an actual file on disk,

you simply send the text of the old-style import file with your message by using
this parameter; see the MARPLOT 1.0.1 import format for the format of an old-
style import file

 'MAP ' (optional) the name of the map onto which the objects should be imported; if
this parameter is not specified, the current "user's map" is used

 'MOD?' (optional)

"R" (default) = if an ID in the import file matches the ID of an object on the
given overlay, overwrite the object with the import file data; if there is no
object with a matching ID, create a new object with the ID

"M" = if an ID in the import file matches the ID of an object on the given
overlay, overwrite the object with the import file data; if there is no object with
a matching ID, do NOT create a new object with the ID

"N" = ignore the object IDs in the import file and generate a new object with a
new ID for each import file entry

 'SEL?' (optional)

"Y" (default) = when objects have been imported, select only imported objects
in MARPLOT

"N" = don’t change selections after import, don’t select imported objects

 'SHOW' (optional)

"Y" (default) = bring MARPLOT forward once the import is complete and
change the view if necessary so that all imported objects are visible

"N" = do not bring MARPLOT forward and do not change the view

 'DIST' (optional)

"Y" = interpret all coordinate values in the import file not as absolute positions,
but as distance offsets from the point given in the CNTR parameter

"N" (default) = treat coordinate values in the import file normally as absolute
lat/long values

42

'IMPT'
(continued)

'CNTR' this is a string of the format "lat, long", where lat and long are decimals; this
parameter must be provided if the DIST parameter is "Y"; these lat/long values
define the point from which all coordinate values in the import file are
interpreted as offsets

 'UNIT' (optional) this is only used when the DIST parameter is "Y"; it specifies the
units that the offset values in the import file represent

"M" (default) = miles
"Y" = yards
"K" = kilometers
"E" = meters

 =====> MARPLOT responds to an IMPT message with an OBID message in order to
tell the sending application the ID's of the objects that were created and/or
overwritten as a result of the import.

 Note: All longitude values in this file are oriented in the reverse from the
normal convention: increasing positive to the West and decreasing negative to
the East.

'LGND' Define and show a legend on the map. The legend can be specified as a bitmap
(picture) file with the PATH parameter or as a list of names and attributes with
the LIST parameter. The legend temporarily overrides any legend the user is
currently using. Send a LGND message with no parameters to remove the
previously-sent legend and revert back to the user’s legend (if any).

 'PATH' full path to the picture (or bitmap) file to be used as a legend; this file should
not already be in the MARPLOT directory; the file is not deleted after it is
copied to the MARPLOT directory by MARPLOT

 'LIST' return-delimited and return-terminated list of lines for the legend; each line
contains the name to be shown on the list, a tab, and then five characters that
specify the graphical attributes to be shown on the line; the five characters
specify color, fill pattern, line pattern, symbol and line width, as explained in
the CTL! message but there is also an expanded format to allow RGB colors as
explained below; the symbol characters corresponding to ASCII values 33 and
34 (decimal) are special: 33 means to show just a polyline graphic using the
given color, fill pattern, line pattern, and width, while 34 means to show just a
polygon graphic using the given color, fill pattern, line pattern, and width; for
all other ASCII values, the corresponding symbol is shown in the given color
(and the fill pattern, line pattern, and width are not used)

Note: If the user is showing a overlay-list legend at the time the LGND message
is received, the overlay-list lines are retained at the bottom of the legend, below
the lines specified in LIST.

RGB extension: The first 5 characters continue to represent the color, fill
pattern, line pattern, symbol and line width, but if the color char is an 'R', then
the color is an RGB color specified by 9 additional characters following the
original 5, specifying the red, green and blue values on a scale of 0 to 255.

43

44

'LGND'
(continued)

'XOUT' (optional) return-delimited and return-terminated list of names of overlays NOT
to be included in the legend when the user is showing a overlay-list legend at
the time the LGND message is received; that is, these specific overlays are not
retained in the new legend, but other overlays that the user was showing in the
legend are retained

'MAP ' Use this map. This message adds a map to MARPLOT’s map list and by
default considers the map to be “owned” by the sending application. If the map
is already in the map list, it changes to “owned” status. MARPLOT does not
allow the user to delete overlays if they contain objects on owned maps.
Owned maps can be removed by the user if the owning application is not
running. MARPLOT does not allow the user to rename owned maps.
New feature: You can specify a parameter to indicate that your application does
not wish to be the owner. Using this parameter allows your application to add
maps to MARPLOT’s map list without becoming the owner.

 'PATH' full path name to map folder, including the ':' or '\' terminator
 'OPTN' a string containing keywords from the following table:

keyword meaning
DEFAULTMAP This keyword is no longer supported.
NODEFAULT This keyword is no longer supported.

DELETENO (default) objects on this overlay may not be deleted
DELETEYES or
DELETEOK objects on this overlay may be freely deleted by

the user
DELETEALERT when the user attempts to delete objects on this

overlay, MARPLOT sends a MAPA message to
the owning application (the owning application
must be running BEFORE the user makes the
change)

MOVEMAPNO (default) objects on this map may not be moved to other

maps
MOVEMAPYES or
MOVEMAPOK objects on this map may be freely moved to

other maps by the user
MOVEMAPALERT when the user moves an object on this map to

another map, MARPLOT sends a MAPA
message to the owning application (the owning
application must be running BEFORE the user
makes the change)

45

'MAP '
(continued)

'OPTN'
(continued)

MOVELAYERNO (default) the user cannot change the overlay of objects on
this map

MOVELAYERYES or
MOVELAYEROK the user can freely change the overlay of objects

on this map
MOVELAYERALERT when the user changes the overlay of objects on

this map, MARPLOT sends a MAPA message
to the owning application (the owning
application must be running BEFORE the user
makes the change)

DRAGNO (default) the user cannot change the position of objects

on this map
DRAGYES or DRAGOK the user can freely change the position of

objects on this map
DRAGALERT when the user changes the position of objects on

this map, MARPLOT sends a MAPA message
to the owning application (the owning
application must be running BEFORE the user
makes the change)

ADDNO the user cannot add objects to this map, either

by using tools or moving them from other maps
ADDYES or
ADDOK (default) the user can add objects to this map
ADDALERT when the user adds objects to this map,

MARPLOT sends a MAPA message (the
owning application must be running BEFORE
the user makes the change)

OWNEDNO add the map to MARPLOT’s map list but do

NOT consider the map to be “owned” by the
sending application.

UNIVERSALNO the map is not a universal map.
UNIVERSALYES the map is a universal map.

Note: If neither flag is specified, the map is assumed to be an old style map and
MARPLOT will assume the map is not a universal map (unless it is owned by
'CAMO'). A universal map is basically a map which should be considered to
have the bounding rect equal to the entire world. A universal map is always in
view when searching. Universal maps have no alert when the user extends the
map bounds when adding an object. A universal map is not included as an
entire map view in the view list. The USER MAP is always considered a
universal map.

46

'MENU' Install sub-menu in MARPLOT’s Sharing menu. This adds a new sub-menu to
MARPLOT’s Sharing menu. If a sub-menu with the same name already exists,
it is replaced with the new menu. (Thus, a friend application can send a MENU
message each time it greets MARPLOT, without worrying about duplicating the
menu.) Menus installed in MARPLOT are automatically saved by MARPLOT.
They can be used later, even when the friend application is not running. In this
case, MARPLOT launches the friend application before sending it the MHIT
message.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated IAC
messages

 'NAME' name of menu
 'ITMS' return-delimited string of menu items
 'PATH' full path to the friend application’s executable file
 'DOC ' (optional) full path to default document to be opened when the friend is

launched
 Note: If for some reason the MARPLOT user wants to remove a sub-menu from

the Sharing menu, the user can delete the appropriate ".MNU" file from the
MARPLOT "FRIENDS" directory.

'MKOV' Make overlay. This message asks MARPLOT to create a new overlay. This
will not create a new overlay if one with the same name already exists.

 'NAME' name of overlay to create
 'ATBS' attributes of the new overlay (see 'SLAT' message for a description of this

parameter and the possible values that come with it)
 =====> MARPLOT responds with an 'OVL!' message to communicate the overlay ID of

the newly created overlay.
 Note: This message should be called MKLR but is misnamed to support

existing applications.
'MYOD' MY Object Data.

This message is used to request information about one or more objects in
MARPLOT. The OPTN parameter is used to specify which objects you would
like information about, and what types of information you want for the chosen
objects. OPTN is a string containing any number of keywords separated by
spaces, tabs or commas. The meanings of the various keywords possible in the
OPTN string are given in the following table and are explained more fully in
the documentation for the 'YROD' message.

47

'MYOD'
(continued)

 keyword meaning

The following three keywords are used to specify the objects of interest. These
three keywords are mutually exclusive.

SELECTED give info for the objects currently selected in MARPLOT
COLLECTED give info for the objects currently in the search collection
IDS give info for the specific objects specified in the LST2

parameter

FILE this keyword has two uses. The primary use of this keyword is

to indicate that the object data should be written to a file, and
that the path to this file should be returned in the LST2
parameter of the YROD message. The secondary use of this
keyword is that if "IDS" is specified and "FILE" is also
specified, the "LST2" parameter is taken as a path to a file
containing the LST2 information.

The following three keywords only have meaning when used with "IDS".

ANYLAYER if an object is not found on the given overlay, search all

overlays
ANYMAP if an object is not found on the given map, search all maps
ANYUMAP if an object is not found on the given map, search all

“universal” maps

MIE write the data using the full MIE format (using one line per

object)

The remaining keywords are used to specify the type of information to be
returned in the LST2 parameter. These keywords cannot be used with the
"MIE" keyword.

TAGS prefix each data element with a tag

TYPE include the type of the objects in the data

NAME include the name of the objects in the data

LATLONG include the lat/long of the centers of the objects in the data

GRAPHICS include the graphical attributes of the objects in the data

 'PATH' {optional; only has meaning when the FILE keyword is used}
a string containing the path to a directory where the YRODLST2.TXT file
should be written. Use of this keyword overrides MARPLOT’s default location
for the file, which is the friends directory;
(This parameter is new in MARPLOT 3.3)

 'OPTN' a string containing keywords from the table above

48

'MYOD'
(continued)

'LST2' (only necessary when the "IDS" keyword is specified in OPTN) a return-
delimited string where each line (one per object) has the format:

 <object id> \t <overlay name> \t <map name>

if you have specified ANYLAYER in OPTN, you can leave the <overlay
name> empty and MARPLOT will search all overlays; similarly, if you have
specified ANYMAP or ANYUMAP, you can leave the <map name> blank and
MARPLOT will search; if "FILE" is specified in OPTN, LST2 is the full path
to the file containing the information

 =====> MARPLOT responds with the YROD message.
'NAME' Set the name of an object. Note: The object’s name on the screen only changes

visually when MARPLOT is the front application (or when it later becomes the
front application after a NAME message). When using NAME, you should
either be sure MARPLOT is or is about to become the front application, or else
use a DRW+ message to force an update in the background.

 'OBJ ' a string of the format <object id> \t <overlay name> \t <map name>
 'NAME' the new name for the object
 'PFIX' (optional) the prefix of the name (such as "N." or "NW"); if the prefix is

included in this parameter, it should not also be part of NAME
 'ID ' (optional) a 16-characater (hex) ID number to replace the object’s current ID

number
'NBH?' Make a neighborhood/threat zone about a symbol or polyline object by creating

a circle or a polygon made up of many pieces. This message is useful for friend
applications that want to indicate the area on a map within a given distance
from a given object. For instance, if the object is a polyline representing a
transportation route, this message could be used create a threat zone “tube” with
a certain radius about the polyline to show the area that would be affected by a
spill of a certain chemical anywhere along the route. The neighborhood about a
polyline is constructed from several polygon pieces: each vertex of the polyline
is surrounded by a circular polygon piece and each segment is surrounded by a
four-sided polygon piece that forms a box about it. The union of all of these
pieces in the single threat zone object covers the area of the map within the
specified distance from any point on the polyline.

For the purposes of the following parameter descriptions, let P be the polyline
or symbol object about which the neighborhood is to be built, and let N be the
neighborhood object.

 'OBJ1' information about P in a string of the form
 <object id> \t <overlay name> \t <map name>

 'LYR2' the name of the overlay on which N is to be created
 'MAP2' (optional) the name of the map on which N is to be created (default = user's

map)

49

'NBH?'
(continued)

'ID2 ' (optional) the id number of N (default = a MARPLOT-generated ID)

 'RAD ' radius of N in miles
 'NAME' (optional) name assigned to N (default = "")
 'SHOW' (optional)

"Y" (default) = bring MARPLOT forward once N is created and change the
view if necessary so that N is visible. Starting with MARPLOT 3.3, the created
object will also be selected

"N" = do not bring MARPLOT forward and do not change the view

 =====> MARPLOT responds with a 'NBH!' message.
'OKHI' Acknowledge receipt of HOLA from MARPLOT. The friend application has

received an HOLA message from MARPLOT, and is acknowledging so that
MARPLOT will know the friend is running.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated IAC
messages

 'NAME' name of the friend application
 'PATH' full path to the friend application’s executable file
 'DOC ' (optional) full path to default document to be opened when MARPLOT

launches the friend
'OVX?' Does this overlay exist?
 'NAME' name of overlay
 =====> MARPLOT responds with an 'OVL!' message.

50

'SHOW' Show certain objects in MARPLOT, either on the map or in the search
collection.

 'LST2' a return-delimited string where each line (one per object) has the format:
 <object id> \t <overlay name> \t <map name>

<map name> (in this message and in other messages with LST2 parameters) can
be either the actual name of the map, or the (5) digits of the map's default
location code (which usually corresponds to a TIGER state+count)

if you have specified ANYLAYER in OPTN, you can leave the <overlay
name> empty and MARPLOT will search all overlays; similarly, if you have
specified ANYMAP or ANYUMAP, you can leave the <map name> blank and
MARPLOT will search

 'FILE' (optional) full path to file containing LST2 information; in this case you should
not include a LIST2 parameter

 'OPTN' a string of keywords separated by spaces, tabs or commas; the meanings of the
various keywords are given in the following table:

keyword meaning

>>>>>> The following two keywords are mutually exclusive.
 DRAW show the given objects on the map; this is the

default if no keyword is given

COLLECTION put the given objects in the search collection
<<<<<<<<<<<<<<<<<<<<<<<<<<<

ANYLAYER if an object is not found on the given overlay,

search all overlays

ANYMAP if an object is not found on the given map,

search all maps

ANYUMAP if an object is not found on the given map,

search all “universal” maps

51

'SHOW'
(continued)

'OPTN'
(continued)

>>>>>> The following four keywords are mutually exclusive and only have
meaning if the DRAW keyword is given

YESZOOM change the scale of the map to cover just enough area

to show the objects

NOZOOM leave the scale of the map unchanged, except possibly

zoom out to encompass all shown objects; this is the
default if no keyword is given

NEVERZOOM leave the scale of the map unchanged, even if it means

leaving some shown objects off the screen

SAMEVIEW leave the current view unchanged, even if it means

leaving some shown objects off the screen
<<<<<<<<<<<<<<<<<<<<<<<<<<<

>>>>>> The following two keywords are mutually exclusive and only have
meaning if the DRAW keyword is given.

YESSELECT select the shown objects, deselecting any others; this

keyword is equivalent to the old keyword SELECT
which is still supported

NOSELECT do not select or deselect any objects; this is the default

if no keyword is specified
<<<<<<<<<<<<<<<<<<<<<<<<<<<

CTRL take control of the overlay map these objects are on

and hide all objects not in the list of objects in this
message; this keyword will be ignored unless the
objects are all on a single overlay on a single map;
using this keyword here is similar to the CTRL
message, but the bounding rect is the entire world;
calling program is responsible for turning the control
off; this only has meaning if the DRAW keyword is
given

52

'SHOW'
(continued)

'OPTN'
(continued)

RGBCONTROL take control of the overlay map these objects
are on and hide all objects not in the list of
objects in this message; The LST2 parameter
has a special format; the first line is a standard
LST2 line, which is used to obtain the overlay
and map for all of the objects; the ID on the
first line must be present, but is ignored; The
subsequent lines have 28 chars each including
the single return char and are of the form:
<object id> <tab><fill pattern code><red
value- 000-255> <green value- 000-255>
<blue value- 000-255> ; Fill Pattern. Code:
Use a char from '1' to 'A', corresponding
to the patterns represented in MARPLOT's
Fill Pattern menu. 'X' means don’t override
the fill pattern. Using this keyword here is
similar to the CTRL message, but the
bounding rect is the entire world; calling
program is responsible for turning the control
off; this only has meaning if the DRAW
keyword is given

UPDATE this keyword specifies that you want

MARPLOT to return information about the
specified objects; this information comes in a
YROD message; the resulting YROD message
is the same as if you had called MYOD with
the same LST2 parameter; when you specify
UPDATE in OPTN, you can also specify any
of the MYOD OPTN parameters to alter the
contents of the information returned (IT IS
NECESSARY TO SEND THE "IDS"
KEYWORD WHEN USING "UPDATE")

NONOTFOUNDALERT this keyword specifies that you want

MARPLOT to suppress the usual alert that
MARPLOT gives the user when one or more
of the objects cannot be found. This is useful
when sending MARPLOT messages in a batch
mode because the alert would stop the
message processing.

 Note: When the objects are put in the search collection, and the sending
application is a known friend, MARPLOT changes the title of the Search
Collection dialog box to "Search Collection From N", where N is the name of
the friend application.

53

'SLAT' Set the attributes of an overlay.
 'NAME' the name of the overlay
 'ATBS' a string containing any of the following keywords, plus their associated data,

separated tabs or commas; if a keyword has an "extra data" entry, it is expected
that that data is the next item or items in the ATBS string.

keyword meaning [extra data]

LOCKEDYES overlay is locked
LOCKEDNO or
UNLOCKED overlay is unlocked
TEMPORARY overlay is temporary
PERMANENT overlay is permanent
APPOWNED overlay is owned by sending app
MARPLOTOWNED overlay is owned by MARPLOT
DELETEOK even if overlay is owned, user can delete objects
 on overlay
DELETENO when overlay is owned, user cannot delete objects
 on overlay
GRAPHICS default overlay graphics [C, S, P, L, W (see
 YROD)]
INDIVIDUAL individual graphics
COMMON use default graphics
HIVISSCALE scale at which overlay shows
 [n, where scale is 1:n]
LOVISSCALE scale at which overlay hides
 [n, where scale is 1:n]
DOTSSCALE scale at which symbols->dots
 [n, where scale is 1:n]
NAMESSCALE scale at which names show [n, where scale is 1:n]
SHOWNAMESMODE show + names mode
SHOWMODE show mode
RANGEMODE range mode
HIDEMODE hide mode
NAME name of overlay
POSITION position of overlay in list ["TOP", "BOTTOM" or

n (1 = top)]

54

'SRCH' Search for objects.
 'FUNC' a keyword specifying the type of search you want to perform

keyword meaning

ANYNAME show the given objects on the map

NAMESTARTS names that start with...

NAMECONTAINS names that contain...

WITHIN objects within a certain distance of...

NOTWITHIN objects not within a certain distance of...

TOUCHING objects that touch…

NOTTOUCHING objects not touching...

Note: To have the found objects in the resulting YROD message sent in a file,
the recommended method is to use the OPTN parameter described below, but
you can also use the older method of appending a space and the word FILE to
the FUNC parameter. For example:

WITHIN FILE

In this case, the LST2 parameter with YROD is the path name of the file
containing the LST2 information (i.e., the found objects).

 'NAME' the text to match for a NAMESTARTS or NAMECONTAINS search
 'DIST' the distance for a WITHIN or NOTWITHIN search

Required for WITHIN and NOTWITHIN searches.
 'UNIT' (optional; default = MI) one of the following keywords, specifying the units of

the values in the DIST parameter: FT, YDS, M, KM, MI, NM.
 'OF ' (optional; default = FOCUSPOINT) referent for a WITHIN , NOTWITHIN,

TOUCHING or NOTTOUCHING search; one of the following keywords:
FOCUSPOINT, MARKEDPOINT, SELECTEDOBJECTS,
PREVCOLLECTION.

 'LYRS' a return-delimited list of the overlays to be searched; an empty string indicates
that all overlays should be searched. Note that unless the
SEARCHSIMILARLAYERS option key is used, overlays must be explicitly
listed. For example, if the parameter is "Roads ", the Roads overlay will be
searched but the Roads (Major) overlay will not be searched. If you want
MARPLOT to search Roads and all of the similar overlays, use the
SEARCHSIMILARLAYERS key in the OPTN parameter.

 'MAPS' a return-delimited list of the maps to be searched; an empty string indicates that
all maps in the current view should be searched; # the special value
SEARCHALLMAPS indicates that all maps should be searched

55

'SRCH'
(continued)

'OPTN' The OPTN parameter is used to specify what to do with the found set of objects
and what types of information you want returned for the found objects. OPTN
is a string containing any number of keywords separated by spaces, tabs or
commas. The meanings of the various keywords possible in the OPTN string
are given in the following table and are similar to those in the 'MYOD'"
message.

keyword meaning

SEARCHSIMILARLAYERS search overlays with names similar to the

names in the LYRS parameter. For example,
if the LYRS parameter is "Roads ", both the
Roads overlay and the Roads (Major) overlay
will be searched when this keyword is used.

SHOWINCOLLECTION show the found objects in the MARPLOT

search results dialog. MARPLOT will come
forward, perform the search and present the
user with the results. Note that the search
results are not returned via a YROD message.

NONFILLEDASFILLED (new to MARPLOT 3.2.4) when checking

polygon, circle and rectangle objects for
touching or within searches, treat non-filled
objects as filled objects. If this parameter is
not specified, a non-filled object is assumed to
represent its boundary and not its interior.
(note the selection behavior of non-filled
objects changed with MARPLOT 3.2.4.)

The remaining keywords apply to the returned YROD message and have no
meaning when used with the "SHOWINCOLLECTION" keyword.

FILE write the data to a file and pass its path in the

LST2 parameter from YROD.

Depending on the keys sent in the OPTN parameter the resulting object data
contains different information.

In all cases information is reported one object per line.
The default format is

 <object id> \t <overlay name> \t <map name> ... RETURN

The following keywords can be used.

MIE write the data using the full MIE format (using

one line per object)

56

'SRCH'
(continued)

'OPTN'
(continued)

The remaining keywords cannot be used with the "MIE" keyword

TAGS prefix each data element with a tag
TYPE include the type of the objects in the data
NAME include the name of the objects in the data
LATLONG include the lat/long of the centers of the

objects in the data
GRAPHICS include the graphical attributes of the objects

in the data
 =====> Unless the keyword SHOWCOLLECTION is used, MARPLOT responds with a

YROD message, with SRCH in the TYPE parameter. The LST2 parameter of
the YROD message contains the results of the search.

'VER?' What is MARPLOT’s version number?
 =====> MARPLOT responds with a 'VER!' message.
'VEW?' What is the current view?
 =====> MARPLOT responds with a 'VEW!' message.
'VIEW' Show this world rect on the map.
 'LLAT' low latitude, as a decimal string (south is negative)
 'LLNG' low longitude, as a decimal string (west is negative)
 'HLAT' high latitude, as a decimal string (south is negative)
 'HLNG' low longitude, as a decimal string (west is negative)

Messages Specific to ALOHA

'MAPA' I’m the mapping application. By default, MARPLOT is the mapping

application with which ALOHA communicates. If another mapping application
wants to take over that role, and is capable of supporting all of the MARPLOT-
ALOHA IAC communication, it should send ALOHA this message when it
starts up and/or detects that ALOHA is running. ALOHA then uses the
signature and pseudo-signature of the sending application for all mapping IAC.

 'SIGN' the signature of the sending application
 'PSIG' the pseudo-signature of the sending application
 'PATH' the full path to the sending application's executable file
 'DOC ' the full path to the sending application's default document (or empty)
 'SAVE' "YES" means that ALOHA should record the sender as the permanent mapping

application; "NO" means that ALOHA should use this sender for this session
only and go back to MARPLOT for the next session; "ON" means to use this
mapping application now during this session; "OFF" means to resume using
MARPLOT now during this session.

	Table of Contents
	Overlay Object Import/Export
	MARPLOT Simple Point Format
	MARPLOT Import/Export (MIE) File Format
	Sample MIE Entries
	Special MIE Symbols

	MARPLOT 1.0.1 Import/Export File Format

	Map File Formats
	Binary format
	The Extended ASCII Character Set
	Auto Character Set Recognition
	The “User’s Map” Problem

	MARPLOT ID Numbers
	ID Numbers Randomly Assigned by MARPLOT
	ID Numbers Pre-set to Help an External Application Identify an Object

	MARPLOT Colors
	Millions of Colors
	“Ideal” and ESI colors

	Polygon Union
	Inter-application Communication (IAC) Dictionary
	Overview of CAMEO/MARPLOT/ALOHA IAC Mechanism
	Standard Parameters
	Mechanism on Macintosh
	Mechanism on Windows
	History: How Applications Greet Each Other
	IAC Dictionary 3.0 Notes
	Messages From MARPLOT
	Messages To MARPLOT
	Messages Specific to ALOHA

