Long Term Risk of Potable Aquifer Contamination via Fracking Fluids

James Montague and George Pinder

Field Information

Field data to develop near and far field fractures was obtained to develop statistically probable physical models. The data set on induced fractures, obtained from Richard Davies ${ }^{1}$, will be used to develop hydraulic properties of shale immediately around the well. Data on natural fractures, obtained from Terry Engelder ${ }^{2}$, will be used to model discrete fractures within shale and rock layers.

Figure 1: Statistical distribution of 5,000 fractures observed in Barnet, Eagle Ford, Marcellus, Niobrara, and Woodford shales.

Technical Approach

Simulation
-Fracking fluid flow and trans
surrounding intact source rock. equations describing fracking fluid flow and transport have physically-based coefficients that are -The statistics of the uncertain physically-based coefficients can be determined for a specific site from field information.
-The resulting stochastic equations are used to produce realizations (samples) from the random fields.
Each realization is used to do a simulation of the physical system (fracked and natural media) and obtain a concentration field.

Model

A two dimensional triangular finite element model with discrete one dimensional fracture elements was developed to model flow and transport through discrete fractures as a stepping stone to a more robust three dimensional model with finite element volumes representing the rock and soil matrix while a planar element represents discrete fractures. The benefit of including lower dimensional transport equations than is needed for the continuum model.

Results and Conclusion

The generation of preliminary realizations for random fields for the near-field and far-field fractures las been achieved. Flow and transport for selected test problems has also been realized, while proposed method.
The assessment of the risk of potable aquifer contamination by fracking fluids over very long time rames can be determined using stochastic models wherein the hydraulic conductivity of both near field and far-field fractures can be represented as random fields.

This material is based upon work supported by the National Science Foundation under Grant No. 1247437. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Figure 3: Pressure and Concentration at the time when concentration exceeds the threshold at the top boundary.

