

Blue Water Satellite

Using Satellite Imaging to Monitor the World's Land and Water Resources™

What we do

- We use satellite images and patented image processing algorithms to monitor the world's land and water resources
- We provide you with images and data that allow you to
 - Determine land and water body quality
 - Spot problems areas
 - Develop cost effective remediation strategies (cost savings offset image costs)

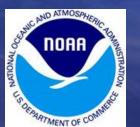
Some of our Customers

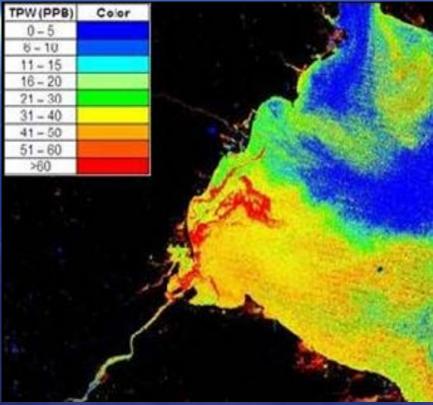
Environmental Engineering

Oil Companies

Power Companies

Federal, State, Local Agencies, HOA's



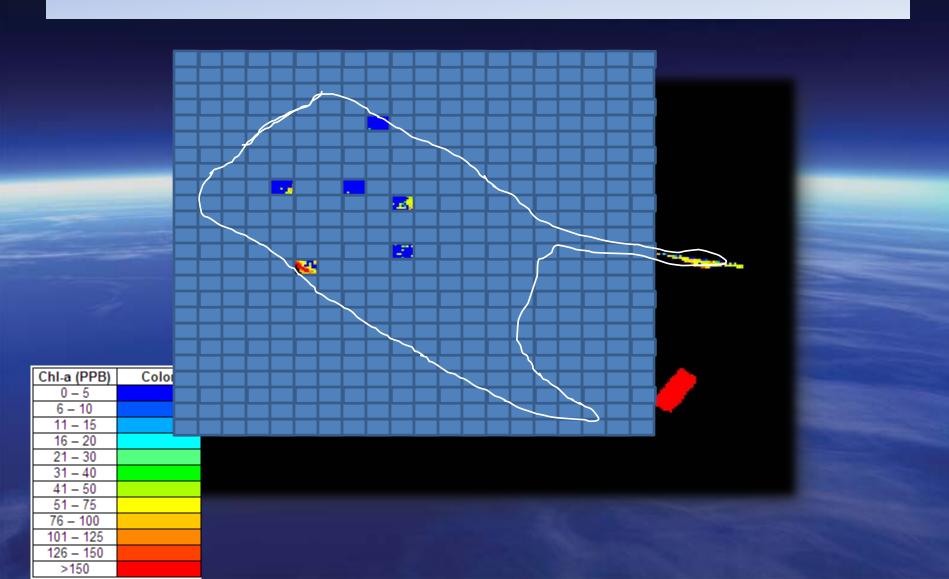


Blue Water Satellite

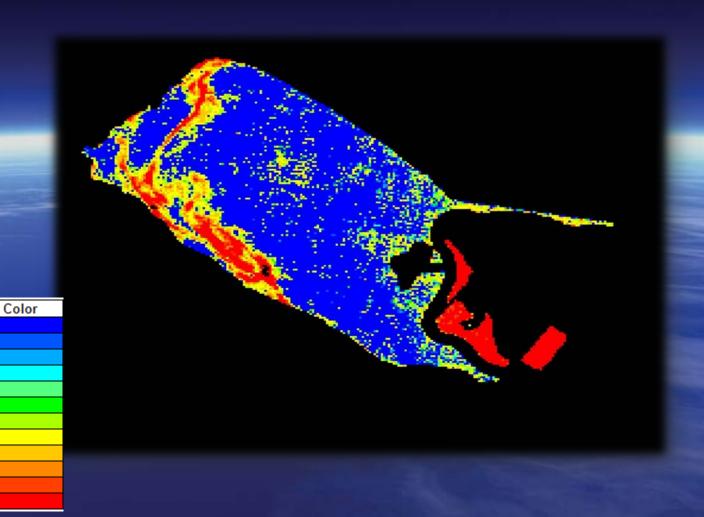
Using Landsat and other satellites...

...to see where the problems are.

You CAN'T tell this.....


To make intelligent decisions,

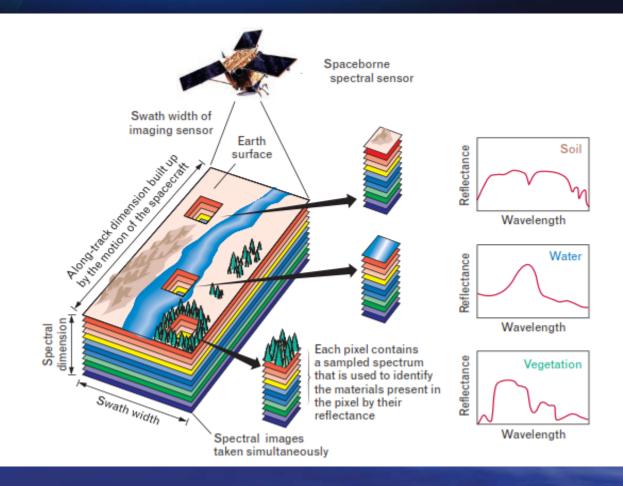
From this.



you need more data. BWS=5 samples/acre

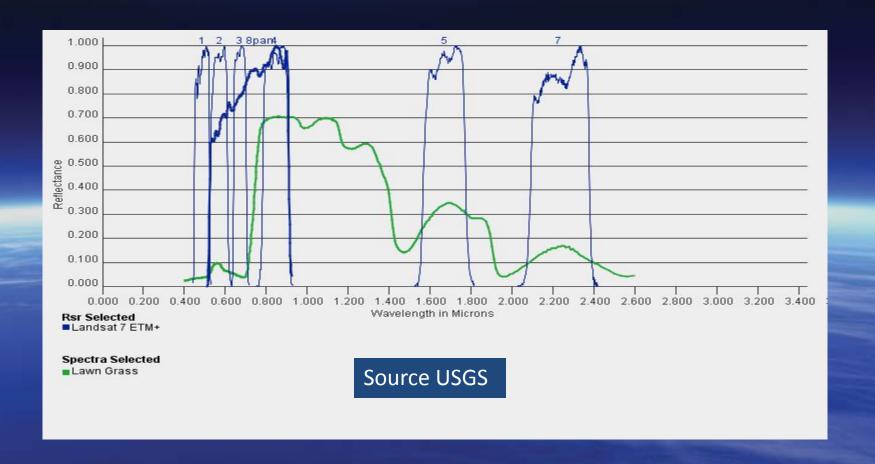
Lake Elsinore 10/01/1997 Chl-a Scan

Lake Elsinore 10/01/1997 Chl-a Scan


Chl-a (PPB)

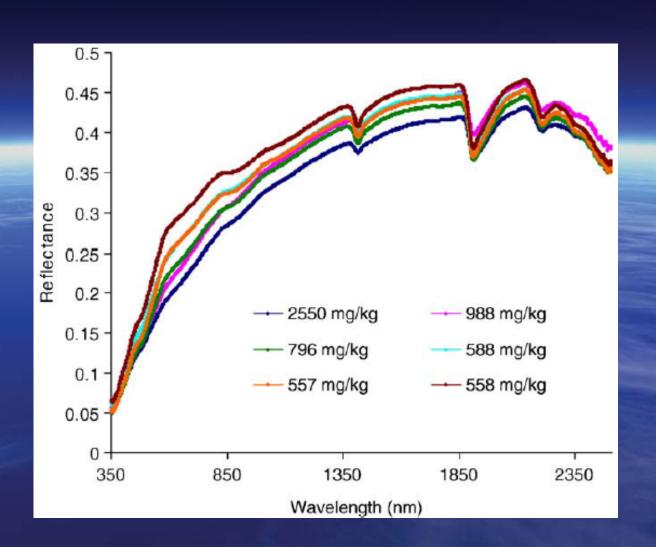
0 – 5

Most Water Bodies are not Homogeneous!


Station	Station	Mean	Mean
		Chl a	PC
ST 196	1	187.825	143.5
ST 197	2	371.225	309.225
ST 198	3	122.675	137.625
ST 199	4	616.775	568.525
ST 200	5	106.075	108.975
ST 201	6	65.775	60.625
ST 202	7	42.375	33.2
ST 203	8	51.65	39.7
ST 204	9	52.725	44.225
ST 205	10	32.675	23.1
ST 206	11	53.975	57.05
ST 207	12	52.375	45.05
ST 208	13	35.175	30.45
ST 209	14	30.175	23.6
ST 210	15	28.425	20.675
ST 606	16	26.75	23.55
ST 607	17	31.975	33.7
ST 608	18	33.2	37.275
ST 609	19	71.575	49.175
ST 610	20	143.125	69.55

How it works

Many chemical and biological constituents produce a unique spectral reflectance signature (Courtesy MIT Lincoln Labs)


How Blue Water Satellite Works

The ratios between the 7 bands of reflected light is a "fingerprint" for each constituent

Spectral Reflectance Curve Phosphorus on Land

Phosphorus in Soils
Spectra of Soil at Various Phosphorus Levels used in BWSI Algorithm

- + NASA Portal
- + Goddard Homepage

Search NASA:

Keywords

+ ABOUT LANDSAT

- NEWS & FEATURES

+ IMAGES

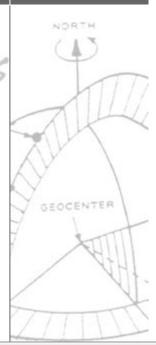
+ DATA

+ EDUCATION

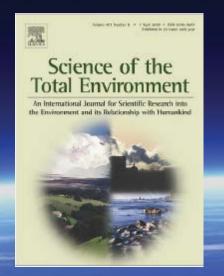
+ REFERENCES

News & Features

- + How Landsat Helps
- + Special Features
- + Science Articles
- + People of Landsat
- + Did You Know?
- + Podcasts & Videos
- Article Archive


landsat news

Landsat Enables Remote Detection of Dangerous Water Pollutants


Nov. 12 • A young Ohio business, Blue Water Satellite, Inc., is using Landsat 5 and 7 data to detect potentially harmful pollutants in water bodies across the U.S. used for recreation and for drinking water supplies. Using Landsat and algorithms developed at Ohio's Bowling Green State University, Blue Water can detect E. Coli, cyanobacteria, phosphorus, and Red Tide. Dr. Robert K. Vincent, a geology professor at BGSU, used NASA and NOAA grant money to help develop the pollutant-detection algorithms.

More information:

+ Bowling Green business goes global [external link]

Years of Research & Peer Review

(12) United States Patent

(54) METHOD AND APPARATUS FOR DETECTING PHYCOCYANIN-PIGMENTED ALGAE AND BACTERIA FROM

(75) Inventor: Robert Vincent, Bowling Green, OH (US)

(73) Assignce: Bowling Green State University, Bowling Green, OH (US)

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Zoom of Single Station 09/02/2003

(21) Appl. No.: 10/763,138

Total Phosphorus Water Monitoring Using

Figure 1: BWSI Total Phosphorus Processed Image Example, Lake Washington

Satellite Imagery

Lake Wiishington Total Phosphorous 09/02/2003

Vincent

(22) Filed: Jan. 22, 2004

US 7,132,254 B2 (10) Patent No.: (45) Date of Patent: Nov. 7, 2006

OTHER PUBLICATIONS

Richardson, Laurie, Remote sensing of algal bloom tynamies, Jul /Aug. 1996, Bioscience, vol. 46, No. 7, pp. 492-601. Gitelson, A., et al., Optical properties of dense algal cultures outdoors and their application to remote estimation of biomass and pigment concentration in Spirulina plateusis (Cyanobacteria), 1995, Jun of Phycology, vol. 31, No. 5, pp. 828-834, abstract.

Green, S., 2003, http://www.ued.ie/~app.phys/stuart/MODEL. HTM, The effect of chlorophyll concentration on airborne hyperspectrial reflectance.*

Landsat 7 Science Data Users Handbook, http://ltpwww.gsfc.nasa.gov/IAS/handbook_htmls/chapter8/chater8.html, last updated Aug. 7, 2001; accessed Dec. 16, 2004.*

Gitelson, A. et al. Creice.

Gitelson, A et al. Optical properties of dense algal cultures outdoors and their application to remote estimation of biomass and pigment concentration in *Spirulina platensis* (cyanoacteria). 1995. J. Phycol. 31: 828-834.*

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Mapping the total phosphorus concentration of biosolid amended surface soils using LANDSAT TM data

B.B. Maruthi Sridhar 4.8, Robert K. Vincent 3, Jason D. Witter 5, Alison L. Spongberg 5

Department of Goology, Euveling Green State University, Reveling Green, OH 43463, United States Department of Environmental Sciences, University of Toleda, Toleda, DM 43686, United States

ARTICLE INFO

PAGE 5

ABSTRACT

Conventional methods for soil sampling and analysis for soil variability in chemical characteristics are too

Science of the Total Environment

Mapping the total phosphorus concentration of biosolid amended surface soils using LANDSAT TM data

B.B. Maruthi Sridhar 4.9, Robert K. Vincent A. Jason D. Witter b., Alison L. Spongberg b

redully lested for robustness by applying it in another LANDSAT TM is to enabled us to conclude that LANDSAT TM imagery of bare-soil field county.

Applications of model assesses designs (benefited to approximated law) Applications of model as the control of the control of

arthronousy money. el 400 372 7205. — arthron belajarah byra odu (M.H.M. braha r.)

sal corranivation in Bioodid-applied fields. Deventhough conventional methods of and sampling and losting are being assolid for this purpose, and control of an analysis of the purpose of 0046-00878 - see from matter 6 2000 Clarylor E.V. All rights reserved

Available online at www.sciencedirect.com SCIENCE CONBESTS

Remote Sensing Environment

0,525-6-040

compared propertisation. t within analyzed the R² and bove. For I value was cates there despite the wer the field

starts of the

pixel fleid at

ANTONIO - DECOMA - CONTINUE OFFICE NA C. THE RES THE THE CASE HIS DESCRIPTION OF

show that using the BWSI processed images for Phosphorus screening is certainly i fristorical and future monitoring atterts. The next evaluation shows now the data ime of field sample collection and satellitle overpass are closer together.

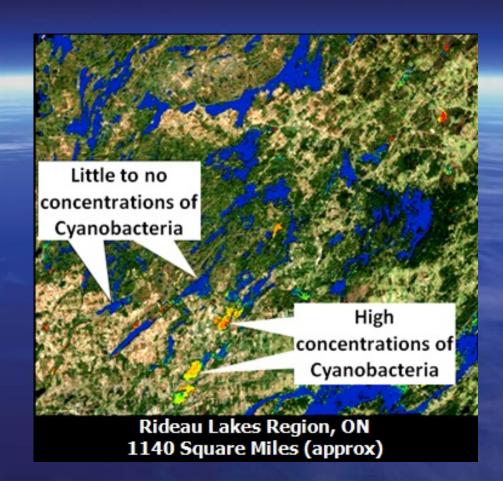
Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie

Robert K. Vincerx a.*, Xiaoming Qina, R. Michael L. McKayb, Jeffrey Minerb, Kevin Czajkowski*, Jeffrey Savino*, Thomas Bridgeman*

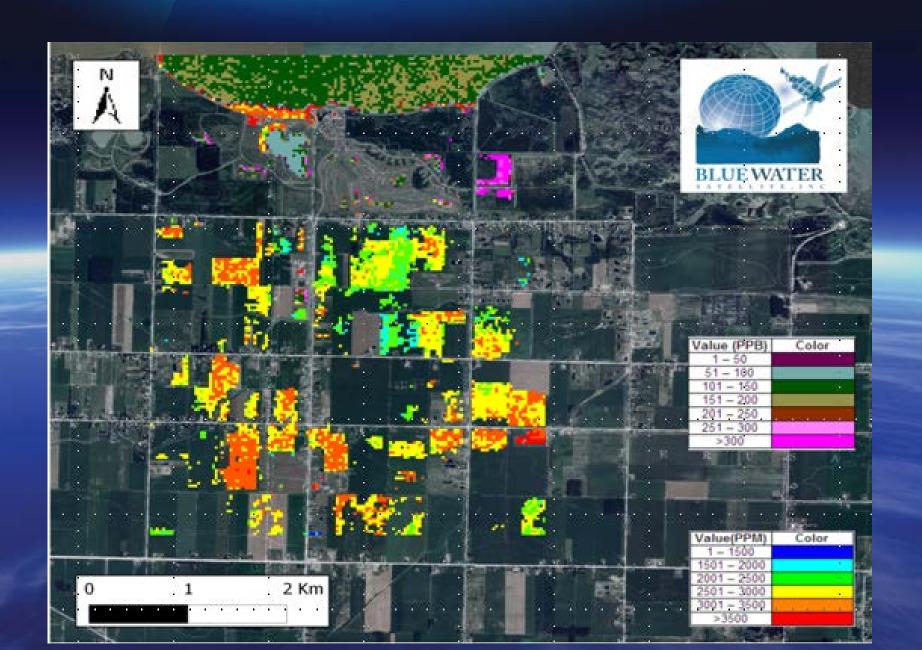
⁹ Department of Geology, Moviling Green State University, 217 Life Sciences Building, Booking Green, 691 43495, USA *Department of Biological Sciences, Bowling Green State University, 199 Overmon Hall, Bowling Green, OH 43403-0318, USA * Department of Geography and Planning, University of Tokah, University Hull, 45 804, 2801 West Baseruft Street. Tokaho, OH 45606, USA * University of Tolicals Loke Erric Contro. 6280 Bisshore Ed., Origin, 139 45618, USA

Received 2 May 2000; received in revised form 14 October 2001; accepted 26 October 2003

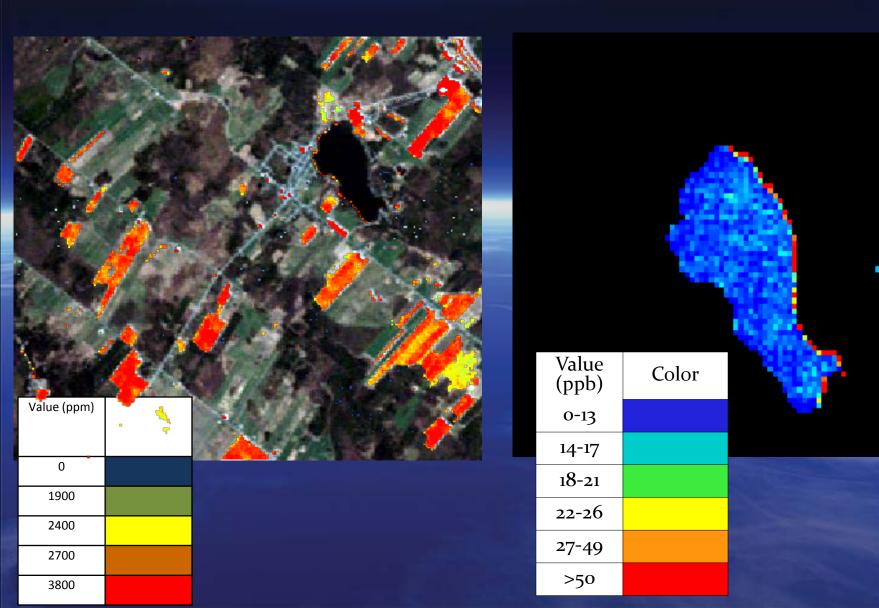
BWS to Laboratory Data Comparison


		Data com	parison Blue	e Water Satellite, Heidelberg Nati	ional Center for Water Quality	/. UNH
	Phosphorus in water ppb datafrom samples taken at Moultonborough NH					
#	Date	Lat	Long	Landsat TP (Averaged) ppb	Heidelberg Data ppb	UNH Data ppb
1	7/16/2011	43 40' 29.9"	71 20' 45.3"	4.7	9.8	5.6
2	7/16/2011	43 42' 23.0"	71 21' 16.1"	11.3	11.6	6.9
3	7/16/2011	43 43' 07.8"	71 24 33.7"	9.3	11.6	8.5
4	7/16/2011	43 43' 34.2"	71 22 32.6"	6.5	12.5	8.6
5	7/16/2011	43 42' 57.4"	71 22' 08.7"	2.6	14.8	9
6	7/16/2011	43 43' 03.2"	71 24' 37.3"	13.4	12.4	11
7	7/16/2011	43 43' 26.0"	71 24' 37.3"	*	16	8.4
8	7/16/2011	43 43' 14.7"	71 22' 58.7"	8.8	11.6	8.5
*In an a	rea where sa	tellite meas	urement cou	ld not be made		
				Δ Landsat to Heidleberg (ppb)	Δ Landsat to UNH (ppb)	Δ Heidleberg to UNH (ppb)
				5.1	0.9	4.2
				0.3	4.4	4.7
				2.3	0.8	3.1
				6.0	2.1	3.9
				12.2	6.4	5.8
				1.0	2.4	1.4
						7.6
				2.8	0.3	3.1
Average	e of Absolute	Value delta	(ppb)	4.3	2.5	4.2

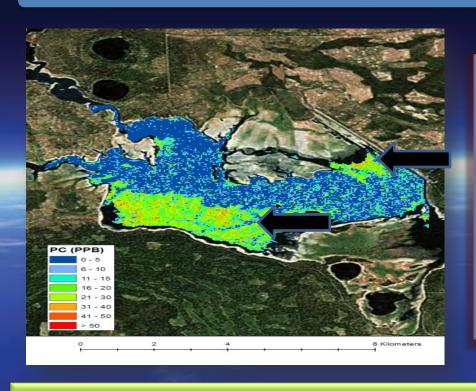
Technology


- Uses Landsat and commercial satellites
- Technology Bowling Green State University (BGSU).
- \$1 million in funding from NASA and NOAA over 2 ½ years for validation.
- 3 issued patents and 8 pending patents
- Peer reviewed science
- Ability to go back in time to 1984
- 5 samples/acre
- Worldwide China, Australia, Canada, US, Etc.

Case Study #1 Identifying where the problems are Area with 106 Lakes



Case Study #2 Sources Phosphorus Land


Case Study #3 Identifying Point Source Problems on Land

The image below details Total Phosphorus on Land (TPL) in an agricultural area

Case Study #4 Reducing Treatment Cost

BWSI is the only technology that enables significant savings in treatment costs!

Planned Treatment:

Apply Alum in entire lake

\$2,200,000

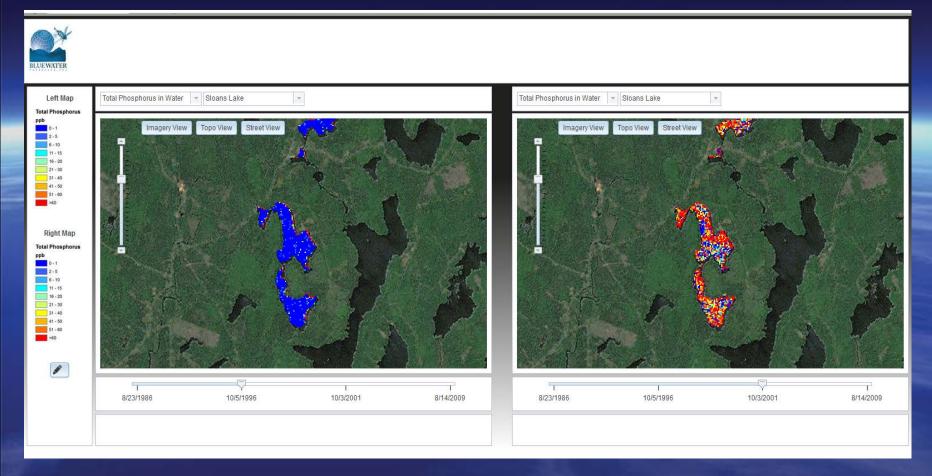
BWSI Solution:

Target Alum to affected areas
Cost of Satellite Images
Total

\$1,300,000 \$ 40,000

\$1,340,000

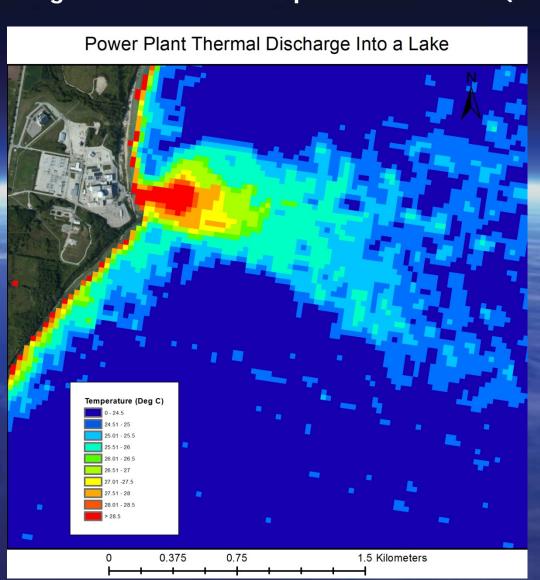
Customer Savings:


\$860,000!

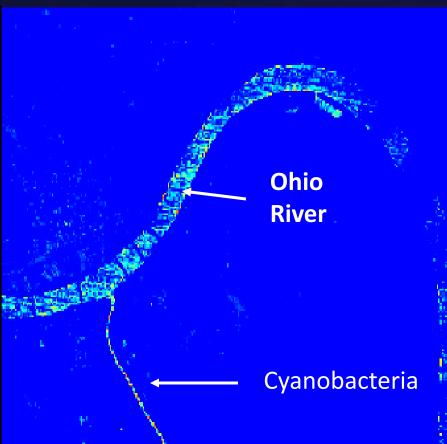
"You really can't get this information in a cost-effective manner any other way. It's a real bargain if you're trying to do comprehensive sampling of the lake. It's the only way to get the information we want in a cost effective manner because it's lake wide and it's a big lake. – Frank Pickett PPL Montana

Case study #5 Risk Mitigation

The Blue Water Satellite Viewer (BWS Viewer™) enables clients to:


Compare water bodies and constituents Quickly evaluate current and historic trends

Case Study #6 Temperature Plumes


The image below details temperature in water (Deg C)

Case Study #7 Aid in Determining Problem Sources Ohio River 2008

Landsat Natural Color Image

Landsat processed Image

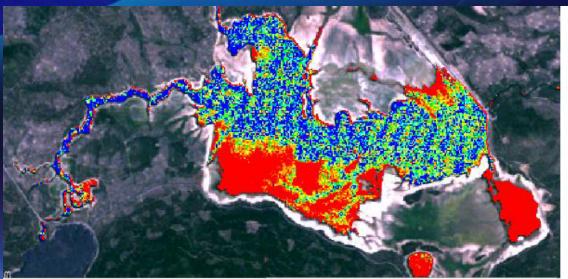
Case Study #7 Aid in Determining Problem Sources Licking River 2008

Landsat Natural Color Image

Landsat Processed image

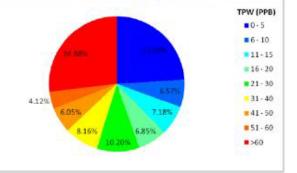
Case Study # 8 Total Phosphorus Land Finding a leaky septic system in abandoned summer camp

1998 Aerial Photograph **Total Phosphorus Land High Phosphorus Land Abandoned Summer** Camp with leaky Septic system



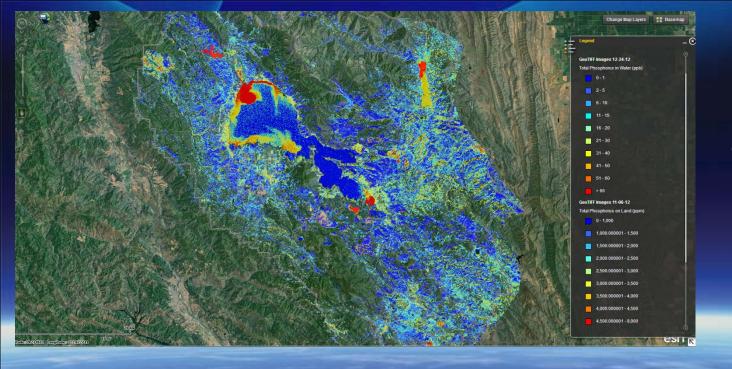
BWS Range and Accuracy

Blue Water Satellite Constituent Accuracy and Range Data				
Constituent	Range	Accuracy		
Cyanobacteria (Phycocyanin)	0-17 ppb	±2 ppb		
Cyanobacteria (Phycocyanin)	17-60 ppb ^A	±17 ppb		
Total Phosphorus Water (TPW)	0-20 ppb	±6 ppb		
Total Phosphorus Water (TPW)	20-100 ppb	±11 ppb		
Total Phosphorus Land (TPL)	0-4000 ppm	±530 ppm		
Chlorophyll-a	1-155 ppb	±22 ppb		
Temperature	1.9 - 27.6°C	± 1.52°C		
Aquatic Vegetation	Relative	Presence/ Absence		
Note: ppb = parts per billion				
Note: ppm = parts per million				


Blue Water Satellite Deliverables

- Geo TIFF file for each image (for ArcGIS)
- Processed images (pdf, tiff, or jpeg)
- •Custom report (sample page as shown)
- Accuracy data
- •BWS Viewer ™ (optional)

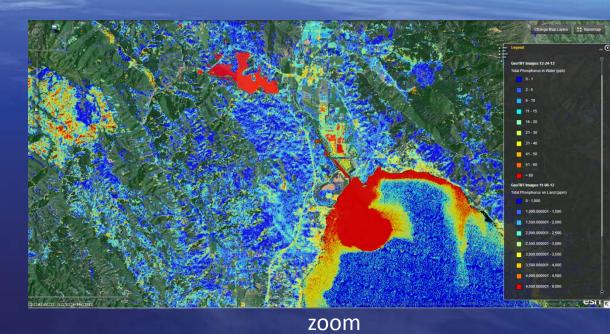
TPW (PPB)	Color
0 - 5	
6 - 10	
11 - 15	
16 - 20	
21 - 30	
31 - 40	
41 - 50	
51 - 60	
>60	


TPW (PPB)	Area (Acres)	Percent of Lake
0-5	1174.24	23.99
6-10	321.81	6.57
11 - 15	351.38	7.18
16 - 20	335.15	6.85
21 - 30	499.28	10.20
31 - 40	399.64	8.16
41 - 50	296.23	6.05
51 - 60	201.93	4.12
>60	1315.91	26.88

Color scale (above left) indicates ranges of concentration of phosphorus in parts per billion as represented in scan image (top).

Pie chart histogram (above) indicates percentage of water within view delineated by concentration ranges.

Table (left) indicates actual acreage falling within each range of concentration of phosphorus.



Phosphorus on land and in water analysis

http://gispublic.co.lake ca.us/BWS/

Blue Water Satellite Customer Example: Clear Lake, California

Lake County makes BWS data available online for public outreach

Blue Water Satellite

No one sees it like Blue Water Satellite.

No one.

For additional information 855-885-5648 ext 1