
 
 

 

 

 
 

 

PEST 

Surface Water Utilities 
 

 

 

 

 

 
 

 

 

 

 

 

Watermark Numerical Computing 

and 

University of Idaho 

January, 2003



Preface  i 
 

 
 

 

PREFACE 
The PEST Surface Water Utilities are a series of programs that facilitate the use of PEST 
with surface water models. 

I wish to acknowledge the substantial financial contribution made to the development of the 
software documented herein by the University of Idaho. In particular, I developed the 
“flagship” of the utility suite, viz. the time series processor TSPROC while I was working at 
the Idaho Falls campus of the University of Idaho as a Visiting Research Scientist. 

Other organisations that deserve acknowledgment for providing financial assistance toward 
the development of at least some of the programs documented herein include the United 
States Environmental Protection Agency (USEPA), the Australian Land and Water Resources 
Research and Development Corporation (LWRRDC), and the Queensland Department of 
Natural Resources (QDNR).  

Please report any problems or bugs associated with the use of these utilities to the following 
email address:- 

jdoherty@gil.com.au 

 

Dr. John Doherty 
Watermark Numerical Computing 
Brisbane 
Australia 

 

 



Preface  ii 
 

 
 

 

ALPHABETICAL LISTING OF PEST SURFACE WATER UTILITIES 
adjobs Adjusts observation weights for different observation groups in a PEST control file 

using a simple user-adjustable expression. 

iqqm2smp Converts IQQM output data into site sample file format. 

pestprp1 Automates construction of PEST instruction and control files for calibration of 
models which generate output in site sample file format. 

plt2smp Build a site sample file on the basis of a HSPF-generated plot file. Used as part of a 
composite model run by PEST. 

tsproc A comprehensive time series processor, designed for use as a stand-alone data 
processor, an environmental model post-processor, and a PEST input file generator. 

smp2hyd Rewrites the contents of a site sample file for a user-specified list of sites in a form 
suitable for plotting against time. 

smp2smp Interpolates data contained within one site sample file to the dates and times 
represented in another site sample file. 

smp2vol Calculates volumes between arbitrary dates and times for flow samples listed in a site 
sample file. 

smpcal Calibrates one time series dataset against another. 

smpchek Checks the integrity of a site sample file. 

  



Table of Contents  iii 
 

 
 

 

Table of Contents 
 
Introduction................................................................................................................................1 

General...................................................................................................................................1 
Installation Instructions..........................................................................................................1 
Source Code and Compilation Details...................................................................................1 
Backtracking ..........................................................................................................................2 
Date Format ...........................................................................................................................2 
Other File Formats .................................................................................................................2 

Introduction to TSPROC ...........................................................................................................3 
General...................................................................................................................................3 
Model Calibration using TSPROC ........................................................................................5 
PAR2PAR..............................................................................................................................6 
PEST-ASP..............................................................................................................................7 

Using TSPROC..........................................................................................................................8 
Running TSPROC..................................................................................................................8 
The TSPROC Input File - Overview .....................................................................................9 
The DATE_FORMAT and CONTEXT Settings.................................................................12 
Blocks within a TSPROC Input File....................................................................................13 
TSPROC Entities .................................................................................................................14 

DIGITAL_FILTER..................................................................................................................16 
Butterworth Filter ................................................................................................................19 
Baseflow Separation Filter...................................................................................................19 
Clipping ...............................................................................................................................20 
Settling Time........................................................................................................................20 

ERASE_ENTITY ....................................................................................................................21 
EXCEEDENCE_TIME............................................................................................................23 
GET_MUL_SERIES_SSF.......................................................................................................27 
GET_SERIES_PLOTGEN ......................................................................................................30 
GET_SERIES_SSF..................................................................................................................32 
GET_SERIES_TETRAD.........................................................................................................34 
GET_SERIES_WDM ..............................................................................................................36 
LIST_OUTPUT .......................................................................................................................38 
NEW_TIME_BASE ................................................................................................................41 
REDUCE_TIME_SPAN..........................................................................................................43 



Table of Contents  iv 
 

 
 

 

SERIES_BASE_LEVEL .........................................................................................................45 
SERIES_CLEAN.....................................................................................................................47 
SERIES_COMPARE...............................................................................................................49 
SERIES_DISPLACE ...............................................................................................................54 
SERIES_EQUATION..............................................................................................................56 
SERIES_STATISTICS............................................................................................................59 
SETTINGS...............................................................................................................................62 
V_TABLE_TO_SERIES .........................................................................................................64 
VOLUME_CALCULATION ..................................................................................................66 
WRITE_PEST_FILES.............................................................................................................68 

General.................................................................................................................................68 
Position within a TSPROC Input File..................................................................................68 
Model and Observation Entities ..........................................................................................68 
Keywords .............................................................................................................................69 
Tasks Undertaken by TSPROC in Generating a PEST Input Dataset .................................73 
Parameter and Parameter Group Data..................................................................................74 
Time Series Observations ....................................................................................................76 
S_Table Observations ..........................................................................................................78 
V_Table Observations .........................................................................................................78 
E_Table Observations..........................................................................................................78 
C_Table Observations..........................................................................................................78 
The PEST Control File ........................................................................................................78 
Calibration using “Patterns” ................................................................................................79 

References................................................................................................................................81 
ADJOBS ................................................................................................................................A-1 

Function of ADJOBS.........................................................................................................A-1 
Using ADJOBS..................................................................................................................A-1 
Uses of ADJOBS ...............................................................................................................A-2 
See Also .............................................................................................................................A-3 

IQQM2SMP...........................................................................................................................A-4 
Function of IQQM2SMP ...................................................................................................A-4 
Using IQQM2SMP ............................................................................................................A-4 
Uses of IQQM2SMP..........................................................................................................A-6 
See Also .............................................................................................................................A-7 

PESTPRP1 .............................................................................................................................A-8 
Function of PESTPRP1......................................................................................................A-8 



Table of Contents  v 
 

 
 

 

Using PESTPRP1...............................................................................................................A-8 
Uses of PESTPRP1 ..........................................................................................................A-10 
See Also ...........................................................................................................................A-10 

PLT2SMP ............................................................................................................................A-11 
Function of PLT2SMP.....................................................................................................A-11 
Using PLT2SMP..............................................................................................................A-11 
Uses of PLT2SMP ...........................................................................................................A-12 
See Also ...........................................................................................................................A-12 

SMP2HYD...........................................................................................................................A-13 
Function of SMP2HYD ...................................................................................................A-13 
Using SMP2HYD ............................................................................................................A-13 
Uses of SMP2HYD..........................................................................................................A-15 
See Also ...........................................................................................................................A-15 

SMP2SMP............................................................................................................................A-16 
Function of SMP2SMP....................................................................................................A-16 
Using SMP2SMP.............................................................................................................A-16 
Uses of SMP2SMP ..........................................................................................................A-18 
See Also ...........................................................................................................................A-18 

SMP2VOL ...........................................................................................................................A-19 
Function of SMP2VOL....................................................................................................A-19 
Using SMP2VOL.............................................................................................................A-19 
Uses of SMP2VOL ..........................................................................................................A-20 
See Also ...........................................................................................................................A-21 

SMPCAL..............................................................................................................................A-22 
Function of SMPCAL......................................................................................................A-22 
Using SMPCAL...............................................................................................................A-22 

Configuration Files ......................................................................................................A-22 
Site Sample Files .........................................................................................................A-22 
What SMPCAL Does...................................................................................................A-23 
Running SMPCAL.......................................................................................................A-23 

Uses of SMPCAL ............................................................................................................A-25 
See Also ...........................................................................................................................A-28 

SMPCHEK...........................................................................................................................A-29 
Function of SMPCHEK ...................................................................................................A-29 
Running SMPCHEK........................................................................................................A-29 
Uses of SMPCHEK..........................................................................................................A-29 



Table of Contents  vi 
 

 
 

 

See Also ...........................................................................................................................A-30 
File Formats ...........................................................................................................................B-1 

Site Sample File .................................................................................................................B-1 
Site Listing File..................................................................................................................B-2 



Introduction  1 
 

 
 

 

Introduction 

General 

The PEST Surface Water Utilities are a suite of programs whose primary purpose is to assist 
in the use of PEST with surface water models; however other useful data-processing 
functions, independent of the calibration process, can also be carried out by many of them. 
Surface water models are often characterised by the production of lengthy output files 
containing one or a number of long time series. The data against which the model is to be 
calibrated is also often voluminous. Because of the amount of data involved, automation of 
model post-processing tasks and PEST input file preparation is a necessity. 

The principal member of the Surface Water Utility suite is TSPROC. In fact, use of TSPROC 
makes use of many of the other utilities redundant. Nevertheless, all of the original utility 
programs have been retained within the PEST Surface Water Utility suite, for they may still 
prove useful in some modelling contexts. However the overriding importance of TSPROC is 
reflected in the fact that documentation for this program occupies the bulk of this manual, 
documentation for the other utility programs being relegated to Appendix A.  

Appendix B describes the format of a “site sample file”, an ASCII file used by many of the 
programs described herein for the storage of time series data. The format of this file is such 
that it can be easily exported from, or imported to, a user’s project database, if not directly, 
then with minimal alterations using a standard text editor. 

While most of the programs documented herein are quite general, pertaining to no model in 
particular, a number are specific to certain models. These model-specific programs transform 
model output data written in model-specific format to the format required by the utility 
programs documented herein. Where such a data interface is not provided for a surface water 
model of particular interest to a specific user, an interface will have to be written by the user 
him/herself; this is unlikely to be a difficult task. Once this is done, use of PEST with that 
model can be easily accomplished using the programs documented herein. Alternatively, 
contact Watermark Numerical Computing; I may be able to write the interface for you. 

Installation Instructions 

Copy file swutils.exe (a self-extracting archive) to a suitable directory on your hard disk (eg. 
c:\swutils). Then run it by tying its name at the command-line prompt. Once the program files 
have been extracted, you can delete swutils.exe to save disk space. Then edit file 
autoexec.bat, adding the name of the utilities’ directory to the path environment variable and 
restart your machine. 

Source Code and Compilation Details 

Source code can be provided for all of the PEST Surface Water Utilities on request. All of the 
Utilities are written in (almost) ANSI Standard FORTRAN 90; thus, theoretically, they can 
be compiled to run on any platform for which a FORTRAN 90 compiler is available.  



Introduction  2 
 

 
 

 

Backtracking 

Each of the programs comprising the PEST Surface Water Utilities requires the user to 
supply information in response to command-line prompts. While this can be a cumbersome 
method of communication between a program and its user, inconvenience has been mitigated 
by the fact that a user can always “backtrack” in program execution by entering “e” (for 
“escape”) in response to any prompt. Thus, whether a text string or number is expected 
following the prompt, a simple “e” will cause the program to display its previous prompt; 
responding to this prompt with another “e” will make the program display the prompt before 
that, etc. Hence if, in the process of replying to a succession of screen prompts incorrect data 
is entered at any stage, a user can “wind the program back” to the point at which previous 
data entries were all correct, and recommence execution from that point. 

Date Format 

For programs other than TSPROC (ie. for all of the older programs documented in Appendix 
A), a particular file named a “settings file”, must reside in the directory from they are run. 
This file must be named settings.fig. If a settings file is not present in the working directory, 
these programs will terminate execution with an appropriate error message. 

The presence of a settings file is essential for these older members of the Surface Water 
Utility suite in order that that they know how to read and write date and time information. 
Depending on the information contained in the settings file, dates are read and written using 
either the dd/mm/yyyy convention or the mm/dd/yyyy convention. The figure below shows a 
settings file. The format of this file is obvious from this example; it can be written using any 
text editor. 

A settings file. 

Program TSPROC also needs to know what protocol to use for reading and writing dates. 
However for TSPROC this information is supplied through its SETTINGS block. Hence the 
settings file settings.fig does not need to be present in the directory from which it is run. 

Other File Formats 

See Appendix B for the format specifications of a site sample file and a site listing file. 

date=mm/dd/yyyy 



Introduction to TSPROC  3 
 

 
 

 

Introduction to TSPROC 

General 

TSPROC fills two roles. First, it is a time series processor, having the ability to perform 
many different types of operations on observed and model-generated time series. Second, it 
automates the generation of PEST input files for calibration tasks of arbitrary complexity 
based on these time series. 

In contrast to the functionality available through other time series analysis software, many of 
the operations performed by TSPROC are designed specifically for use in the model 
calibration context. A key element of the processing required in this context is the temporal 
interpolation of a model-generated time series to the times at which measurements 
constituting a measurement time series were made. Because measurements of a particular 
environmental quantity are often intermittent rather than regular, TSPROC does not assume 
that any individual time series which it manipulates has a constant sample interval. In some 
instances the absence of this simplifying assumption makes computations carried out by 
TSPROC a little more inefficient than if time series of constant sample interval were 
processed. However it does mean that most of the operations carried out by TSPROC are 
perfectly general in nature. 

While TSPROC can be run as an independent executable program, it is also designed to be 
run as part of a “composite model” by PEST. A “composite model” is a model comprised of 
two or more executable programs run in succession through a batch or script file. When used 
in this way TSPROC acts as a model post-processor, carrying out operations of arbitrary 
complexity on one or many of the time series generated by the model. Similar operations can 
be carried out on time series comprised of measurement data. The processed measurements 
and their model-generated counterparts can then be compared, and the discrepancies between 
the two reduced to a minimum as part of the calibration process undertaken by PEST. In 
order to facilitate the use of PEST in this context, TSPROC can generate PEST input files 
appropriate to the type of time series processing that it undertakes as part of the composite 
model calibrated by PEST. 

By using TSPROC it is possible to incorporate some or all of the following data types into 
the model calibration process.  

1. “Raw data” such as flow and constituent measurements. Thus field measurements 
can be compared directly with their model-generated counterparts after the latter 
have been interpolated to field measurement times.  

2. “Processed data” such as high-pass and low-pass filtered flow time series. 
TSPROC includes digital filtering capabilities which allow the separation of high, 
medium and low frequency components of any time series. This can be useful in 
baseflow separation; see Nathan and McMahon (1990). Modelled and observed 
filtered counterparts can be individually matched through the calibration process.  



Introduction to TSPROC  4 
 

 
 

 

3. Accumulated volumes and masses. Using TSPROC, flow volumes and constituent 
masses can be accumulated between any number of arbitrary dates and times 
occurring within the model simulation period. It has been found that inclusion of 
volumetric and mass data, calculated on the basis of field measurements on the 
one hand and model-generated flows and constituent concentrations (interpolated 
to field measurement times) on the other hand, can bring numerical stability to the 
parameter estimation process, and result in more robust estimates of parameter 
values. 

4. Exceedence-time characteristics. As with volumetric and mass data, inclusion of 
exceedence-time characteristics in the inversion process can decrease the 
likelihood of numerical instability at the same time as it promotes estimation of a 
realistic set of parameter values. Furthermore, in many modelling applications it is 
crucial that a model predict exceedence-time characteristics as accurately as 
possible under future climatic/management conditions. A necessary (though not 
sufficient) condition for achieving this is that the model replicate these 
characteristics under historical climatic/management conditions; the latter 
condition is ensured by including these characteristics in the model calibration 
process. 

5. Various statistics (mean, sum, maximum, minimum and standard deviation) 
calculated from the terms of a time series (or functions of these terms) over 
varying time intervals. Such items as these can be included in the parameter 
estimation process in their own right (where statistics calculated on the basis of an 
observed time series are matched with statistics calculated on the basis of the 
model-generated counterpart to the observed time series), or can be used in 
conjunction with PEST’s predictive analyser. For example, in the latter capacity 
PEST might be asked to maximise or minimise the maximum value of a possible 
flow or constituent event, while ensuring that model parameters are such that the 
model remains in a calibrated state. 

6. Functions of arbitrary complexity calculated on the basis of one or more 
measured or modelled time series. In many instances of model calibration it may 
be better to include a comparison of  “derived time series”, rather than “raw time 
series” in the parameter estimation process. To achieve this, TSPROC allows the 
user to calculate any number of new time series based on relationships of arbitrary 
complexity between existing time series. For example, in some calibration 
contexts it may be beneficial to compare the log (or some other function) of a 
measurement type with its model-generated counterpart over all or part of the 
model simulation time. Or it may be useful to compare a combination of today’s 
and yesterday’s flow with the model-generated equivalent of this same quantity. 
Minimising the discrepancies between two such “composite time series” may 
result in better parameter estimates, as well as better estimates of the uncertainties 
associated with these parameters, because it incorporates the correlation structure 
of flow and constituent measurements into the parameter estimation process; see, 
for example, Kuczera (1983).  



Introduction to TSPROC  5 
 

 
 

 

7. Data “patterns” and interrelationships pertaining to observed time series and 
their model-generated counterparts. Due to the noisy and erratic nature of some 
types of environmental measurements (particularly those pertaining to some 
aspects of water quality), it may not be possible to calibrate a model by attempting 
to directly match field data with their model-generated counterparts. In such 
situations it may be better to match relationships between flow and constituent 
data calculated on the basis of measurements, with identical relationships 
calculated on the basis of model outputs. Relationships such as those used by the 
USGS ESTIMATOR program (Baier et al., 2000) may be suitable in many 
instances. Implementation of such pattern- or relationship-matching in the 
parameter estimation process can be accommodated through the use of TSPROC. 

Model Calibration using TSPROC 

Inclusion of the above (and many other) types of “processed” data in the calibration process 
is achieved through carrying out the following steps. 

1. Process various types of measurement data to generate an appropriate “value-
added measurement dataset”. 

2. Time-interpolate “raw” model-generated time series to the times at which field 
measurements were made; then process that data in an identical fashion to that in 
which the measurement data were processed. 

3. Generate a PEST input dataset; this is comprised of a PEST control file recording 
the value-added measurements used in the calibration process, and an instruction 
file capable of reading the model-generated counterparts to these “measured” 
quantities from the appropriate model output file. 

The first of the above steps is easily carried out using TSPROC. As presently coded, 
TSPROC can read field measurements from either a WDM file or from a “site sample file” 
(see Appendix B). The second of the above operations can be carried out just as easily, 
provided model-generated time series are recorded in either of these two file formats. Note, 
however, that TSPROC can also read model-generated time series from a HSPF PLOTGEN 
file.  

As mentioned above, when a model is being calibrated by PEST, TSPROC should be run 
following the model as part of a batch or script file run by PEST as a “composite model”. 
Hence the “model output file” in this case will, in fact, be a TSPROC output file. This file 
will contain the model-generated equivalents of the processed field measurements produced 
through the first of the above steps. The role of the calibration process is then to minimise the 
discrepancies between these two data sets. 

TSPROC can also be used to carry out the third of the above tasks. If provided with the set of 
template files pertinent to the current calibration exercise (these carrying the names of the 
parameters to be adjusted through the parameter estimation process), TSPROC will write a 
complete PEST control file in which these parameters are recorded, together with the 
(processed) measurements to which model-generated equivalents must be matched through 



Introduction to TSPROC  6 
 

 
 

 

the parameter estimation process. In doing this, TSPROC will assign names to all 
observations involved in the parameter estimation process, and assign weights to these 
observations according to formulas of arbitrary complexity supplied by the user; a different 
formula can be supplied for each measurement type. TSPROC will then write the instruction 
file by which PEST can read the model-generated equivalents to these (processed) 
measurements from a TSPROC output file when the latter is run as part of a composite model 
by PEST. 

As can be seen from this brief description, TSPROC is a program of considerable 
complexity. It was written in order to provide a tool by which most of the arduous data-
handling tasks required to calibrate a surface water model can be carried out automatically, 
thus making PEST setup relatively easy in this context. Furthermore, its design is such as to 
allow a large degree of flexibility in the way this process is carried out, thus allowing a 
modeller to tailor the parameter estimation process to the demands of his/her particular 
modelling application. As time goes on, and as more experience is gained in applying PEST 
to surface water model calibration, the functionality included in TSPROC will be increased 
accordingly. This is only the beginning. 

Because of the multiplicity of tasks which it undertakes, TSPROC can be used in place of 
many of the older programs of the PEST Surface Water Utility suite. Nevertheless, as 
mentioned above, these older programs are retained in the suite because of their inherent 
usefulness in performing certain specific tasks required in surface water model calibration. 

PAR2PAR 

It is worth noting that TSPROC is a useful complement to the utility program PAR2PAR 
supplied with PEST. The latter program performs arbitrary manipulation of model 
parameters (in contrast to TSPROC, which manipulates model outputs). Using PAR2PAR, 
native model parameters can be calculated from parameters that PEST “sees” (ie. the 
parameters that are actually adjusted as part of the parameter estimation process) using 
mathematical equations involving one or many parameters. By using PAR2PAR, the 
following strategies can be implemented in the parameter estimation process:- 

1. Estimation of “super parameters” from which “native model parameters” are 
calculated. For example, if monthly variation of a parameter can be characterized 
by the mean value, amplitude and phase of a sine wave, the number of parameters 
required to characterize seasonal variation of a particular process can be reduced 
from 12 to 3. This (and similar) reductions in the numbers of parameters can make 
the calibration process much more tractable than it otherwise would be. 

2. Relationships between soil properties and native model parameters can be 
incorporated into the inversion process. The regression coefficients featured in 
such relationships can be estimated together with, or instead of, native model 
parameters through the calibration process. In some instances this can result in a 
substantial reduction in the numbers of parameters requiring estimation, at the 
same time as it ensures that parameters are assigned physically and hydraulically 
realistic values. 



Introduction to TSPROC  7 
 

 
 

 

3. Realistic ordering relationships between parameters can be enforced by 
estimating parameter ratios, rather than native model parameters. Through this 
mechanism, in combination with PEST’s unique parameter bounding 
functionality, a lower bound on one parameter can be set at the current value of 
another parameter. Thus the corresponding native model parameters will always 
take values which obey the correct ordering relationship. 

PEST-ASP 

The ultimate “weapon” in the surface water model calibration “arsenal” available through 
PEST and its Surface Water Utilities is PEST itself, or rather the latest version of PEST, 
named PEST-ASP. Functionality available through PEST-ASP includes a powerful mode of 
operation known as “regularisation mode” – see the PEST manual for further details. Use of 
PEST in regularisation mode allows the estimation of many more parameters than is possible 
using traditional nonlinear parameter estimation techniques and software, a capability that 
serves PEST well when used in surface water model calibration, as many of the models used 
in this field are very highly parameterised. PEST is able to work in such highly-
parameterised contexts by calculating parameter values which deviate from a user-defined 
“default condition” only to the minimum extent necessary to achieve a good fit between 
model outputs and field data. The “default condition” can be supplied in the form of preferred 
values of parameters, or of relationships between parameters. Thus the deleterious effects of 
parameter nonuniqueness that always attend the simultaneous estimation of too many 
parameters (viz. numerical instability and/or the estimation of wild and erratic parameter 
values), are obviated as parameter uniqueness is ensured by reference to the “default 
condition”. 

Another item of PEST-ASP functionality that is also particularly useful in the surface water 
modelling context is PEST’s predictive analyser. When used in “predictive analysis mode”, 
PEST is able to maximise or minimise a key model prediction under the constraint that the 
model remain in a calibrated state. In some surface water modelling applications, particularly 
those associated with water quality, this can be very useful indeed, for in situations such as 
these the complexity of the simulated processes requires that many parameters be introduced 
to the model. Rarely, however, does the calibration dataset allow unique estimation of these 
parameters. The resulting parameter nonuniqueness may then result in a large degree of 
uncertainty associated with key water quality predictions. The magnitude of this uncertainty 
can be fully explored using PEST’s predictive analyser. 



Using TSPROC  8 
 

 
 

 

Using TSPROC 

Running TSPROC 

TSPROC is run by typing its name at the screen prompt. 

TSPROC prompts for only two items of information. The first is the name of its input file; the 
second is the name of its run record file. The TSPROC input file contains all of the 
information required for TSPROC to perform the various operations for which it was 
designed. As it carries out these operations it echoes the contents of its input file, and the 
operations that it performs in response to the instructions provided in that file, to the screen 
and to its run record file. A TSPROC input file is easily prepared using a text editor. 

If TSPROC is requested to generate a set of PEST input files it will prompt the user before 
overwriting any existing files of the same name. For example, it may prompt:- 

File instruct.ins already exists.  Overwrite it?  [y/n]:  

Type “y” or “n”, followed by <Enter> as appropriate. Note that TSPROC does not prompt in 
this manner when overwriting data files as part of its time series manipulation functionality. 
This is because, if it is run many times in the course of a PEST run, such files will need to be 
overwritten on each occasion that it is run. However if the user forgets to de-activate 
instructions within a TSPROC input file for generation of PEST input files (see below) 
before TSPROC is used by PEST in a parameter estimation run, then the above warning 
message may save previously-generated PEST input files (perhaps those being used for the 
current PEST run) from being overwritten. 

If TSPROC is run by PEST as part of a composite model, then the responses to TSPROC’s 
prompts must be placed into a text file prior to the PEST run and provided to TSPROC 
through the command-line re-direction mechanism. For example, if it is desired that 
TSPROC read an input file named tsproc.dat and that it record details of its operations to a 
run record file named tsproc.rec, then a text file (named, for example, tsproc.in) should be 
prepared with its contents as follows:- 

Contents of a text file containing the responses to TSPROC prompts. 

When TSPROC is then run as part of a composite model by PEST, the pertinent line in the 
composite model batch file should be:- 

tsproc < tsproc.in 

(The “<” symbol instructs TSPROC to look for its keyboard input from the ASCII file whose 
name follows it.) Of course the above command can be issued from the keyboard as well if 
file tsproc.in has already been prepared. 

tsproc.dat 
tsproc.rec 



Using TSPROC  9 
 

 
 

 

Because TSPROC is a complex program which carries out many different types of 
operations, its input file must be carefully and thoughtfully prepared. It is not impossible that 
a user will make an error in preparation of this file. Should this occur, TSPROC will report 
the error to the screen, and to its run record file, and then cease execution; it will not read its 
input file any further, nor perform any operations beyond that at which the error occurred. 
Thus while TSPROC’s error-checking functionality is quite comprehensive, it will only find 
one error at a time in a TSPROC input file that contains multiple errors.  

In some circumstances a user may desire that TSPROC not report its activities to the screen, 
for example if TSPROC is being run under the control of PEST and the user wishes that 
TSPROC screen output not interfere with that of PEST. As with any command-line program, 
TSPROC output can be re-directed from the screen to a file, thus leaving the screen bare. 
Because the TSPROC run record file contains all of the information that TSPROC writes to 
the screen, there is nothing to be gained through keeping such a file which contains re-
directed screen output; hence it is best to re-direct TSPROC screen output to the “nul” file, 
(ie. to nowhere). Hence if it is desired that TSPROC look to a file named tsproc.in for its 
keyboard input, and that it re-direct its screen output to the “nul” file, it should be run using 
the command:- 

tsproc < tsproc.in > nul 

The TSPROC Input File - Overview 

The TSPROC input file is divided into a series of sections or “blocks”. Within each block, 
various items of information are supplied following pertinent “keywords” which identify 
each such item. In most blocks these keywords can be supplied in any order; however there 
are some exceptions to this rule which will be pointed out in the pertinent sections of this 
manual. (TSPROC will also inform you, through an appropriate error message, if keyword 
ordering is incorrect.) Keywords are shown capitalised in the illustrations used throughout 
this document for ease of recognition. Note, however, that the contents of a TSPROC input 
file are case-insensitive. 

Any line within a TSPROC input file beginning with the “#” character is ignored. Thus 
comments can be freely interspersed with data elements in a TSPROC input file. The 
complex nature of the instructions that can be supplied to TSPROC through its input file 
makes the inclusion of comments in this file a good idea. 

An example of a TSPROC input file follows.  
 
 
START SETTINGS 
  CONTEXT pest_input 
  DATE_FORMAT mm/dd/yyyy 
END SETTINGS 
 
 
####################################################################  
# Modelled river flows are read from a HSPF output file. 
####################################################################  
 
START GET_SERIES_PLOTGEN 



Using TSPROC  10 
 

 
 

 

  CONTEXT all 
  FILE catchment.plt 
  LABEL “total outflow” 
  NEW_SERIES_NAME flow_mod 
END GET_SERIES_PLOTGEN 
 
 
####################################################################  
# Observed river flows are read from a WDM file. 
####################################################################  
 
START GET_SERIES_WDM 
  CONTEXT all 
  FILE catchment.wdm 
  DSN 113 
  NEW_SERIES_NAME flow_obs 
END GET_SERIES_WDM 
 
 
####################################################################  
# Modelled flows are interpolated to the times of observed flows. 
####################################################################  
 
START NEW_TIME_BASE 
  CONTEXT all 
  SERIES_NAME flow_mod 
  TB_SERIES_NAME flow_obs 
  NEW_SERIES_NAME i_flow_mod 
END NEW_TIME_BASE 
 
 
####################################################################  
# Flow volumes are accumulated for the modelled time series. 
####################################################################  
 
START VOLUME_CALCULATION 
  CONTEXT all 
  SERIES_NAME i_flow_mod 
  NEW_V_TABLE_NAME vol_mod 
  FLOW_TIME_UNITS days 
  DATE_FILE dates.dat 
END VOLUME_CALCULATION 
 
####################################################################  
# Flow volumes are accumulated for the observed time series. 
####################################################################  
 
START VOLUME_CALCULATION 
  CONTEXT pest_input 
  SERIES_NAME flow_obs 
  NEW_V_TABLE_NAME vol_obs 
  FLOW_TIME_UNITS days 
  DATE_FILE dates.dat 
END VOLUME_CALCULATION 
 
 
####################################################################  
# Exceedence times are calculated for the modelled time series. 
####################################################################  
 
START EXCEEDENCE_TIME 
  CONTEXT all 



Using TSPROC  11 
 

 
 

 

  SERIES_NAME i_flow_mod 
  NEW_E_TABLE_NAME time_mod 
  EXCEEDENCE_TIME_UNITS days 
  FLOW 0 
  FLOW 10 
  FLOW 20 
  FLOW 50 
  FLOW 100 
  FLOW 200 
END EXCEEDENCE_TIME 
 
####################################################################  
# Exceedence times are calculated for the observed time series 
####################################################################  
 
 START EXCEEDENCE_TIME 
  CONTEXT pest_input 
  SERIES_NAME flow_obs 
  NEW_E_TABLE_NAME time_obs 
  EXCEEDENCE_TIME_UNITS days 
  FLOW 0 
  FLOW 10 
  FLOW 20 
  FLOW 50 
  FLOW 100 
  FLOW 200 
END EXCEEDENCE_TIME 
 
 
####################################################################  
# Modelled time series and tables are written to a file. 
####################################################################  
 
START LIST_OUTPUT 
  CONTEXT all 
  FILE model.out 
  SERIES_NAME i_flow_mod 
  V_TABLE_NAME vol_mod 
  E_TABLE_NAME time_mod 
  SERIES_FORMAT short 
END LIST_OUTPUT_BLOCK 
 
 
####################################################################  
# PEST input files are written. 
####################################################################  
 
START WRITE_PEST_FILES 
  CONTEXT pest_input 
  NEW_PEST_CONTROL_FILE case.pst 
  TEMPLATE_FILE catchment.tpl 
  MODEL_INPUT_FILE catchment.uci 
  TEMPLATE_FILE extra.tpl 
  MODEL_INPUT_FILE extra.dat 
  NEW_INSTRUCTION_FILE observation.ins 
 
########### Time series observations  ###### 
 
  OBSERVATION_SERIES_NAME flow_obs 
  MODEL_SERIES_NAME i_flow_mod 
  SERIES_WEIGHTS_EQUATION 1.0/sqrt(@_abs_value) 
  SERIES_WEIGHTS_MIN_MAX 1.0 100.0 



Using TSPROC  12 
 

 
 

 

 
############# volumes ###################### 
 
  OBSERVATION_V_TABLE_NAME vol_obs 
  MODEL_V_TABLE_NAME vol_mod 
  V_TABLE_WEIGHTS_EQUATION 5.0 
 
############# exceedence-times ############# 
 
  OBSERVATION_E_TABLE_NAME time_obs 
  MODEL_E_TABLE_NAME time_mod 
  E_TABLE_WEIGHTS_EQUATION log(2.0/@_abs_value) + 2.0 
  E_TABLE_WEIGHTS_MIN_MAX 0 1000 
 
############ other data #################### 
 
  PARAMETER_DATA_FILE param.dat 
 
END WRITE_PEST_FILES 

A TSPROC Input File 

 

Each block within a TSPROC input file instructs TSPROC to carry out a certain type of 
operation. Information supplied within a block informs TSPROC of the names of the entities 
to be processed, and the names of the entities to be produced as a result of that processing. 
Any other information required by TSPROC to enable that processing to take place is also 
supplied within the block through the appropriate keyword. For each block some keywords 
are optional and some are mandatory. Where an optional keyword is not supplied TSPROC 
supplies a default value for its associated variable. 

With one exception (see below) blocks can be arranged in a TSPROC input file in any order. 
However because TSPROC processes blocks in the order in which they are supplied, the 
ordering of blocks can be important in many applications (for example if an entity that is 
produced in one block is used by another block). 

The DATE_FORMAT and CONTEXT Settings 

In any TSPROC input file, there is one block which must be present, and which must precede 
all other blocks. This is the SETTINGS block. The SETTINGS block must contain two 
keywords, viz. the DATE_FORMAT and CONTEXT keywords. 

The DATE_FORMAT keyword informs TSPROC of the protocol to be used for 
representation of dates in all input files which it reads and output files which it generates. 
Only two options are presently available viz. dd/mm/yyyy and mm/dd/yyyy. 

The CONTEXT keyword must be followed by a character string of 20 characters or less 
(with no embedded spaces) which “sets the context” for the current TSPROC run. A 
CONTEXT keyword is also a mandatory element of every other block appearing in a 
TSPROC input file; as in the SETTINGS block, the CONTEXT keyword in all of these 
blocks must be followed by a string of 20 characters or less. Up to five CONTEXT keywords 
can appear in any TSPROC processing block. (A “processing block” is any block other than 
the SETTINGS block.) If the CONTEXT string following any of the CONTEXT keywords in 



Using TSPROC  13 
 

 
 

 

a processing block agrees with that in the SETTINGS block, then the instructions in that 
block will be implemented by TSPROC. If not, they will be ignored (unless at least one of the 
CONTEXT strings supplied in a processing block is “all”, in which case the operations listed 
in the block will be carried out regardless of the current TSPROC context as defined in the 
SETTINGS block). Furthermore CONTEXT keywords must precede all other keywords in 
the block. Use of the CONTEXT concept allows a user to “turn on” and “turn off” various 
processes cited in a TSPROC input file, simply by altering the CONTEXT string in the 
SETTINGS block. This can be very useful when preparing for a PEST run. 

Blocks within a TSPROC Input File 

The following table lists the blocks which may be present within any TSPROC input file. 
Multiple occurrences of any block except the SETTINGS block are permitted.  

Block name Function of Block 

DIGITAL_FILTER Passes a time series through a high-pass, low-pass or band-pass digital 
butterworth filter, or a “base flow separation filter”, to produce a new 
time series. 

ERASE_ENTITY Removes a time series, c_table, s_table, v_table or e_table from 
TSPROC memory. 

EXCEEDENCE_TIME Calculates the times over which terms of a time series exceed user-
specified thresholds, thus creating an e_table. 

GET_MUL_SERIES_SSF Imports multiple time series from a site sample file. 

GET_SERIES_WDM Imports a time series from a WDM file. 

GET_SERIES_PLOTGEN Imports one or a number of time series from a HSPF PLOTGEN file. 

GET_SERIES_SSF Imports a time series from a site sample file. 

GET_SERIES_TETRAD Imports one or a number of time series from a TETRAD output file. 

LIST_OUTPUT Writes TSPROC time series, c_tables, s_tables, v_tables and e_tables to 
a text file. 

NEW_TIME_BASE Interpolates one time series to the sample dates and times of another. 

REDUCE_TIME_SPAN Shortens a time series by deleting terms outside a user-specified 
date/time interval. 

SERIES_BASE_LEVEL Subtracts a single term of one time series from all terms of another time 
series. 

SERIES_CLEAN Erases terms in a series between user-supplied thresholds. 

SERIES_COMPARE Calculates statistics which describe the goodness of fit between one 
time series and another, placing the results in a c_table. 



Using TSPROC  14 
 

 
 

 

SERIES_DISPLACE Advances or retards the terms of a time series by a multiple of the 
sample interval. 

SERIES_EQUATION Carries out mathematical operations of arbitrary complexity between 
the terms of any number of time series of identical time base to create a 
new time series. 

SERIES_STATISTICS Calculates certain statistics based on some or all of the terms 
comprising a time series, thus creating an s_table. 

SETTINGS Provides settings for the current TSPROC run. 

V_TABLE_TO_SERIES Copies data from a v_table to a time series. 

VOLUME_CALCULATION Calculates volume or mass by time-integration of a flow or flux time 
series, thus creating a v_table. 

WRITE_PEST_FILES Generates a PEST control file and a PEST instruction file for a 
parameter estimation process which includes any number of time series, 
s_tables, v_tables and e_tables. 

Blocks occurring within a TSPROC input file. 

 

Each of the blocks present within a TSPROC input file is discussed in detail in the following 
sections. 

TSPROC Entities 

Most of the tasks carried out by TSPROC are related to the processing of time series. As 
stated above, these time series may, or may not, be of constant sample interval. A time series 
can be comprised of as little as one sample, or as many as tens of thousands of samples.  

Each time series must be given a name by the user when it is imported into TSPROC or 
produced as an outcome of the processing encapsulated in a TSPROC processing block; a 
time series is normally named using a NEW_SERIES_NAME keyword. A time series name 
must be 10 characters or less in length. (At first sight it might appear that 10 characters is 
unduly restrictive for the name of a time series. The reason for this restriction in length is 
based on the fact that observation and observation group names used in a TSPROC-generated 
PEST control file must be formed from the names of these TSPROC entities. For lengthy 
time series, observations can number in the tens of thousands; TSPROC creates observation 
names by appending the time series term number to the time series name, or a contraction of 
the time series name if appropriate. The chances of observation name nonuniqueness are 
considerably reduced if time series names are restricted to 10 characters in length within 
TSPROC, thus requiring that the user maintain uniqueness in nomenclature at the 10 
character level. Nevertheless, should duplicate observation names be created as a result of its 
name formation process, TSPROC will detect this and generate an appropriate error message. 
If the shortness of a time series name prevents an adequate characterisation of the source of 
each time series, the user is advised to tabulate the hereditary of each time series on a piece 
of paper.) 



Using TSPROC  15 
 

 
 

 

Many of the processing options provided by TSPROC produce a new time series through the 
processing or manipulation of one or a number of existing time series. Where this occurs the 
user must provide the name of both the existing time series (through a SERIES_NAME 
keyword) and the new time series (through a NEW_SERIES_NAME keyword) to the 
processing block through which the operation is being undertaken.  

Sometimes the processing of a time series results in the creation of an entity which is not 
another time series. When TSPROC calculates certain statistics pertaining to the terms of a 
time series (through the SERIES_STATISTICS block), these statistics are stored in an 
“s_table”. The outcomes of volumetric calculations carried out by the 
VOLUME_CALCULATION block are stored in a v_table. The outcomes of exceedence time 
calculations carried out by the EXCEEDENCE-TIME block are stored in an e_table. 
Statistics based on the comparison of two time series are written to a “c_table”. Like the time 
series entity, each of these other entities must be assigned a name of 10 characters or less in 
length, this name being provided by the user following the NEW_C_TABLE, 
NEW_S_TABLE, NEW_V_TABLE and NEW_E_TABLE keywords in the pertinent 
processing blocks. More entities will probably be added to TSPROC over time as the need 
arises.  

TSPROC will never overwrite one entity with another. Hence the name provided for a new 
entity in a processing block must be different from the name of any existing entity of the 
same type. If desired, entities can be erased from memory in order to make room for other 
entities using the ERASE_ENTITY block. This functionality can be very important when 
processing lengthy time series which make large demands on computer memory. 

Each TSPROC block is now discussed. Descriptions are arranged in alphabetical order.  



DIGITAL_FILTER  16 
 

 
 

 

DIGITAL_FILTER 
The DIGITAL_FILTER block instructs TSPROC to calculate a new time series from an 
existing time series by passing the latter through a digital filter. Two types of filter are 
provided. The Butterworth filter can remove high frequency components (low pass filter), 
low frequency components (high pass filter), or both of these (band pass filter) from the 
original time series. The “baseflow separation” filter allows extraction of quick response 
from a flow time series; baseflow can then be obtained by subtraction from the original series 
using the SERIES_EQUATION block.  

The nature of digital filtering is such that it can only be performed on a time series for which 
the sample interval is constant. Thus before performing filtering operations TSPROC checks 
the nominated time series for this condition; if it is not met, TSPROC terminates execution 
with an error message.  

Keywords available in the DIGITAL_FILTER block are listed in the following table. Two 
examples of a DIGITAL_FILTER block follow that. Keywords can be supplied in any order, 
except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword 
must be supplied; up to 5 are 
permitted. If one of the CONTEXT 
strings matches the CONTEXT 
string in the SETTINGS block, or if 
one of the CONTEXT strings is 
“all”, the DIGITAL_FILTER block 
will be processed. 

Any character string without 
internal spaces of 20 characters 
or less in length. The 
CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time 
series on which filtering operations 
will be carried out. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_SERIES_NAME Mandatory. The name of the new 
series created by TSPROC through 
filtering of an existing time series. 

Any character string without 
spaces up to 10 characters in 
length. 

FILTER_TYPE Mandatory. The type of filter being 
implemented. 

“butterworth” or 
“baseflow_separation” 

FILTER_PASS Mandatory if FILTER_TYPE is 
“butterworth”; disallowed 
otherwise. Informs TSPROC whether 
to carry out low, band or high pass 
filtering. 

“low”, “band” or “high. 



DIGITAL_FILTER  17 
 

 
 

 

CUTOFF_FREQUENCY Mandatory if FILTER_TYPE is 
“butterworth” and  FILTER_PASS is 
“high” or “low”; disallowed 
otherwise. For a high pass filter the 
3db point of low frequency rolloff. 
For a low pass filter the 3db point of 
high frequency rolloff. Frequency in 
days-1. 

Real number. 

CUTOFF_FREQUENCY_1 Mandatory if FILTER_TYPE is 
“butterworth” and FILTER_PASS is 
“band”; disallowed otherwise. The 
3db point of low frequency rolloff. 
Frequency in days-1. 

Real number. 

CUTOFF_FREQUENCY_2 Mandatory if  FILTER_TYPE is 
“butterworth” and FILTER_PASS is 
“band”; disallowed otherwise. The 
3db point of high frequency rolloff. 
Frequency in days-1. 

Real number. 

STAGES Optional if FILTER_TYPE is 
“butterworth”; disallowed 
otherwise. Number of filter stages. 
The more stages, the steeper is the 
high and/or low frequency rolloff. 
Default is 1. 

Integer. 1, 2 or 3. 

ALPHA Mandatory if FILTER_TYPE is 
“baseflow_separation”; disallowed 
otherwise. The assumed relative 
decay rate of baseflow. 

A real number greater than zero 
(normally in the range 0.9 to 
0.975). 

PASSES Optional if FILTER_TYPE is 
“baseflow_separation”; disallowed 
otherwise. The number of filter 
passes. Default is 1. 

Integer. 1 or 3 only. 

CLIP_INPUT Optional for both filter types. If 
activated, prevents terms of filtered 
time series from exceeding terms of 
original time series. Default is “no”. 

“yes” or “no” 

CLIP_ZERO Optional for both filter types. If 
activated, prevents terms of filtered 
time series from becoming negative. 
Default is “no”. 

“yes” or “no” 

Keywords in a DIGITAL_FILTER block. 

 



DIGITAL_FILTER  18 
 

 
 

 

A DIGITAL_FILTER block in which a Butterworth filter is implemented. 

 

A DIGITAL_FILTER block in which a baseflow separation filter is implemented. 

 

Digital filtering is a fast and powerful means of accentuating certain aspects of a time series 
and removing others. A high pass filter removes long-term variations from a time series, 
while a low pass filter removes short term variations. A band pass filter removes both short 
and long-term variations, allowing only medium-term variations to remain in the filtered time 
series. Many different types of filters can be constructed to implement all three of these types 
of operation. TSPROC implements the Butterworth filter; this has the desirable property that 
its frequency response is maximally flat within the pass band. It also implements a “baseflow 
separation” filter – a form of high pass filter with a more gentle frequency rolloff than the 
Butterworth filter outside the pass band. This is suitable for separation of the quickflow 
component of streamflow; baseflow can then be obtained by subtraction from the original 
streamflow. See Nathan and McMahon (1990) for details. 

Frequencies within the pass band of a filter are conveyed with minimal attenuation. However 
as the edge of the pass band is approached, and outside the passband, attenuation of the input 
time series takes place. The diminution of output amplitude with increasing or decreasing 
frequency outside the passband is referred to as “rolloff” in filtering jargon. The more stages 
that a filter employs, the steeper is this rolloff. However steep rolloff comes at a price – this 
being the tendency for the filter output to oscillate or “ring” in response to high amplitude 
events within the input time series. A phase delay between the input and output time series 
can also be introduced. For a 1-stage Butterworth filter the rolloff is 6db/octave; for a 2-stage 
Butterworth filter it is 12 db/octave, while for a 3-stage Butterworth filter it is 18 db/octave. 
Rolloff is 3db/octave for one pass of the baseflow separation filter, and 9db per octave for 3 
passes of this filter. An octave is a doubling of frequency; a db is a measure of signal power 

START DIGITAL_FILTER 
  CONTEXT context_1 
  FILTER_TYPE butterworth 
  SERIES_NAME flow 
  NEW_SERIES_NAME av_flow 
  FILTER_PASS low 
  CUTOFF_FREQUENCY 0.08 
END DIGITAL_FILTER 

START DIGITAL_FILTER 
  CONTEXT context_1 
  FILTER_TYPE baseflow_separation 
  SERIES_NAME flow 
  NEW_SERIES_NAME qflow 
  ALPHA 0.95 
  PASSES 1 
  CLIP_INPUT yes 
  CLIP_ZERO yes 
END DIGITAL_FILTER 



DIGITAL_FILTER  19 
 

 
 

 

gain or loss. A rolloff rate of 6db/octave is equivalent to a halving of output amplitude with 
every factor of two change in frequency. (This is sufficient, or more than sufficient, for most 
applications in surface water hydrology.) 

Use of each of the types of digital filter implemented by TSPROC is now discussed in detail. 

Butterworth Filter  

When using a Butterworth filter, the frequency characteristics of the filter must be provided 
directly through pertinent keywords within the DIGITAL_FILTER block. 

The boundary between the passband and the stopband of a filter is normally denoted by the 
“3db point”. This is the frequency at which the amplitude response is a factor of about √2 less 
than it is in the pass band. In designing a low pass Butterworth filter, one such frequency is 
required; this is supplied with the CUTOFF_FREQUENCY keyword. The same holds for a 
high pass Butterworth filter, except that the amplitude rolls off with decreasing frequency 
from the 3db point for a high pass filter whereas it rolls off with increasing frequency from 
the 3db point for a low pass filter. For a band pass filter an upper and lower 3db frequency 
are required. These must be supplied following the CUTOFF_FREQUENCY_1 and 
CUTOFF_FREQUENCY_2 keywords. The former must be less than the latter or TSPROC 
will terminate processing of the DIGITAL_FILTER block with an appropriate error message. 

Frequencies must be supplied in units of day-1 no matter what the time increment of the 
time series.  Sometimes it is easier to think in terms of period rather than frequency; period is 
the reciprocal of frequency. A fluctuation which repeats itself every n days has a frequency of 
1/n day-1. n can be greater or less than a day. For a period of 6 hours n is ¼ days and the 
frequency is 4 day-1; for a period of 10 days, the frequency is 1/10 day-1. 

A high, low or band pass cutoff frequency must be less than one half the sample frequency of 
the time series which is undergoing filtering. Thus, for example, a cutoff frequency for an 
hourly time series must be less than 12 day-1. A cutoff frequency for a daily time series must 
be less than 0.5 day-1. 

As mentioned above, steeper frequency rolloff can be achieved through using more than one 
filter STAGE; up to three STAGEs are allowed by TSPROC. However if a STAGE keyword 
is not supplied, a single stage is assumed. While more stages mean greater signal rejection 
within the frequency stopband, the resulting propensity for “ringing”, and the greater phase 
lag between the input and output signals, may be unwanted in many hydrologic applications. 

Baseflow Separation Filter 

Only two keywords are required to specify the characteristics of a baseflow separation filter. 
These are the ALPHA and PASSES keywords. ALPHA is the rate of decay of baseflow 
relative to current flow rate; a value of 0.92 to 0.98 is suitable for most applications; however 
as pointed out by Nathan and McMahon (1990), a little trial and error may be required for 
selection of the most appropriate value for any particular application. Its value is independent 
of the series sample interval. PASSES is similar to the STAGE keyword required by the 
Butterworth filter. However it is also a little different in that, unlike the Butterworth filter, 



DIGITAL_FILTER  20 
 

 
 

 

different internal filter coefficients are not used for different passes. Furthermore, only 1 or 3 
passes can be implemented, with the second pass being implemented in the reverse direction 
to mitigate phase shifts. If the PASSES keyword is not supplied, a value of 1 is assumed. 

The outcome of implementation of a baseflow separation filter is a time series which 
represents the “quick response” streamflow. Baseflow can then be obtained by subtracting 
this from the original streamflow time series using the SERIES_EQUATION block. 
Occurrence of subzero filtered terms, or terms which are greater than the original streamflow 
record, can be prevented by clipping – see below. 

Clipping  

The outputs of both the Butterworth and baseflow separation filters can be clipped in order to 
prevent the occurrence of negative values, or of values which are greater than those of the 
input time series. Sub-zero values can be prevented using the CLIP_ZERO keyword, and 
values which are higher than the input time series can be prevented using the CLIP_INPUT 
keyword; in either case a “yes” or “no” specifier must be provided in the DIGITAL_FILTER 
block. A default of “no” is assumed in either case. Clipping is often very useful in 
conjunction with baseflow separation filtering. It should be remembered, however, that the 
action of this filter is to provide time series which have similar characteristics to baseflow 
and quickflow. This, indeed, can be extremely helpful in calibration of a model where the 
contribution of both of these to the objective function can be monitored (and enhanced if 
desired through appropriate weights selection). However it should not be forgotten that the 
calibrated model is then likely to produce a better quickflow/ baseflow time series than the 
digital filter used to assist in the calibration process. 

Settling Time 

You should be aware of the fact that a filter sometimes takes a while to “settle down” when 
filtering operations begin on a time series. This will apply more to a multi-stage Butterworth 
filter than to the other filter types implemented by TSPROC. To ensure integrity of a filtered 
time-series it may sometimes be necessary to remove the first part of the series using the 
REDUCE_TIME_SPAN block. Note also, that TSPROC will not allow filtering operations to 
take place on any time series that has fewer than 20 entries. 

As mentioned above, filtering can only be implemented on a time series in which the sample 
interval is constant throughout the series. TSPROC will report any attempt to filter a time 
series with non-constant sample interval. 

 

 

 



ERASE_ENTITY  21 
 

 
 

 

ERASE_ENTITY 
If a time series, c_table, s_table, v_table or e_table is no longer required by TSPROC, it can 
be erased from TSPROC’s memory in order to make room for other TSPROC entities. This 
may be a wise thing to do if a time series which contains many terms is no longer required. 
This is achieved through use of the ERASE_ENTITY block. Keywords found in the 
ERASE_ENTITY block are listed in the table below; an example of an ERASE_ENTITY 
block follows that. 

Keywords in the ERASE_ENTITY block can be supplied in any order except for the 
CONTEXT keyword(s), which must precede all other keywords. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of the 
CONTEXT strings matches the CONTEXT 
string in the SETTINGS block, or if one of 
the CONTEXT strings is “all”, the 
ERASE_ENTITY block will be processed. 

Any character string without 
internal spaces of 20 characters or 
less in length. The CONTEXT 
keyword(s) must precede all other 
keywords. 

SERIES_NAME Optional. The name of a time series to be 
erased. 

A name of 10 characters or less in 
length referencing an time series 
stored within TSPROC’s memory. 

C_TABLE_NAME Optional. The name of a c_table to be 
erased. 

A name of 10 characters or less in 
length referencing a c_table stored 
within TSPROC’s memory. 

S_TABLE_NAME Optional. The name of an s_table to be 
erased. 

A name of 10 characters or less in 
length referencing an s_table 
stored within TSPROC’s memory. 

V_TABLE_NAME Optional. The name of a v_table to be 
erased. 

A name of 10 characters or less in 
length referencing a v_table stored 
within TSPROC’s memory. 

E_TABLE_NAME Optional. The name of an e_table to be 
erased. 

A name of 10 characters or less in 
length referencing an e_table 
stored within TSPROC’s memory. 

Keywords in an ERASE_ENTITY Block. 

 



ERASE_ENTITY  22 
 

 
 

 

An ERASE_ENTITY block. 

START ERASE_ENTITY 
  CONTEXT context_1 
  C_TABLE_NAME compare 
  E_TABLE_NAME ex_flow 
  S_TABLE_NAME stat_flow 
  V_TABLE_NAME vol_flow 
  SERIES_NAME flow 
END ERASE_ENTITY 



EXCEEDENCE_TIME  23 
 

 
 

 

EXCEEDENCE_TIME 
The EXCEEDENCE_TIME block instructs TSPROC to calculate the time over which user-
supplied flows or fluxes have been exceeded, or over which such nominated flows or fluxes 
have not been exceeded. The outcomes of EXCEEDENCE_TIME calculations are stored in 
an e_table. Like every other storage entity used by TSPROC, the user must provide a name 
for each e_table produced in this manner so that it can be referenced in later processing.  

Keywords available in the EXCEEDENCE_TIME block are listed in the following table; an 
example of an EXCEEDENCE_TIME block follows that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others, and the DELAY 
keyword which (if used) must directly follow a FLOW keyword. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword 
must be supplied; up to 5 are 
permitted. If one of the CONTEXT 
strings matches the CONTEXT 
string in the SETTINGS block, or if 
one of the CONTEXT strings is 
“all”, the EXCEEDENCE_TIME 
block will be processed. 

Any character string without 
internal spaces of 20 characters 
or less in length. The 
CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time 
series on which exceedence time 
calculations will be carried out. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_E_TABLE_NAME Mandatory. The name of the new 
e_table used to store the outcomes of 
exceedence-time calculations carried 
out by TSPROC. 

Any character string without 
spaces up to 10 characters in 
length. 

EXCEEDENCE_TIME_UNITS Mandatory. The time units to be used 
for storage of calculated exceedence 
times. 

“year”, “month”, “day”, “hour”, 
“min” or “sec” 

UNDER_OVER Optional. Informs TSPROC whether 
to calculate times for which flow 
thresholds are exceeded (“over”) or 
are not exceeded (“under”). 

“under” or “over”; default is 
“over”. 

FLOW At least one FLOW keyword must be 
present. This is a threshold for which 
exceedence times are to be 
calculated. 

Real number. 



EXCEEDENCE_TIME  24 
 

 
 

 

DELAY Optional; but if supplied for one 
FLOW, must be supplied for all 
FLOWs. The time delay for any one 
event before time accumulation 
commences. 

Real number. Time units are 
same as those supplied with 
EXCEEDENCE_TIME_UNITS 
keyword. 

Keywords in an EXCEEDENCE_TIME block. 

 

An EXCEEDENCE_TIME block. 

Any number of FLOW keywords can be provided in an EXCEEDENCE_TIME block. For 
each such FLOW, if UNDER_OVER is set to “over” (or if this keyword is omitted) and if no 
DELAY keywords are supplied, TSPROC calculates the accumulated time over which the 
nominated flow was exceeded. Alternatively, if UNDER_OVER is set to “under”, TSPROC 
calculates the accumulated time for which flow was less than each nominated FLOW. Note 
that in carrying out these calculations TSPROC does more than simply count the number of 
time series terms which exceed, or are less than, the value of each FLOW, and then multiply 
the number of terms by the series sampling interval. This would be an incorrect procedure for 
two reasons. The first of these reasons is that, as mentioned above, TSPROC does not assume 
a uniform sampling interval for any series. The second reason is that an exceedence-time 
calculation that is carried out in this way on the basis of a model-generated time-series will 
be slightly discontinuous with respect to model parameters (which will lead to a degradation 
in the performance of PEST as it attempts to estimate these parameters). Instead, TSPROC 
carries out linear interpolation between the terms of a time series to find the “exact time” at 
which a FLOW threshold was crossed, and commences or ceases time-accumulation from 
that point. The result is a continuous relationship between exceedence times and parameters 
as the latter vary during a parameter estimation process. 

Exceedence times calculated by TSPROC can be stored internally (and listed through the 
LIST_OUTPUT block) in time units of years, months, days, hours, minutes or seconds. The 
user must choose one of these options through the mandatory EXCEEDENCE_TIME_UNIT 
keyword. 

Note that exceedence time calculations carried out by TSPROC need not be limited to time 
series which represent flow. A suitable time series could represent any environmental 

START EXCEEDENCE_TIME 
  CONTEXT all 
  SERIES_NAME outflow 
  NEW_E_TABLE_NAME et_flow 
  EXCEEDENCE_TIME_UNITS days 
  FLOW 0.0 
  FLOW 10.0 
  FLOW 20.0 
  FLOW 50.0 
  FLOW 100.0 
  FLOW 200.0 
END EXCEEDENCE_TIME 



EXCEEDENCE_TIME  25 
 

 
 

 

quantity; the numbers following the FLOW keywords in the EXCEEDENCE_TIME block 
would then refer to the same quantity. 

Use of the DELAY keyword requires special consideration. An EXCEEDENCE_TIME block 
in which this keyword is featured is shown below. 

 

An EXCEEDENCE_TIME block featuring the DELAY keyword. 

If a DELAY keyword is used, it must directly follow the FLOW keyword to which it 
pertains. Furthermore a DELAY keyword must follow all FLOW keywords, or follow none 
at all. 

Use of the DELAY keyword controls the way in which exceedence time is accumulated over 
the period spanned by a time series. In the example shown above, UNDER_OVER is set to 
“under”. Hence, for the first FLOW entry (viz. 20), time over which elements of the 
“sim_flow” series are less than 20 is accumulated. However, for any one “below 20” event, 
time accumulation does not begin until 3 days after the beginning of the event; the time units 
pertaining to the DELAY keyword are assumed to be those supplied with the 
EXCEEDENCE_TIME_UNITS keyword. Thus the total exceedence time calculated by 
TSPROC for the flow of 20 will actually be the total time for which the flow was less than 
20, but which was preceded by an interval of at least 3 days for which the flow was also less 
than 20. 

Use of the DELAY keyword can be particularly useful when studying the effect of stream 
condition on biotic health. In many instances, the lethality of a particular adverse condition is 
a function of the magnitude of the condition and the duration over which the condition 
prevails. The more harmful the condition, the shorter the time which elapses before the 
condition exerts a deleterious influence on system health. This relationship is often described 
by “toxicity curves” relating, for example, concentration of a constituent to the exposure 
time. The greater is the concentration, the less is the exposure time required to cause damage. 

By accumulating the time over which a user-specified chemical concentration or sediment 
load is exceeded (or for which flow is below a user-specified threshold), and by subtracting 

START EXCEEDENCE_TIME 
  CONTEXT all 
  SERIES_NAME sim_flow 
  NEW_E_TABLE_NAME sim_extime 
  EXCEEDENCE_TIME_UNITS days 
  UNDER_OVER under 
  FLOW 20.0 
  DELAY 3.0 
  FLOW 50.0 
  DELAY 10.0 
  FLOW 100.0 
  DELAY 15.0 
  FLOW 200.0 
  DELAY 20.0 
END EXCEEDENCE_TIME 



EXCEEDENCE_TIME  26 
 

 
 

 

the time required for the onset of harmful effects during each such “toxicity event”, the total 
time over which biotic health suffered can be calculated. This may be an extremely useful 
model prediction, and one to which PEST’s predictive analysis capabilities may be fruitfully 
turned. 

If a user desires that EXCEEDENCE_TIME calculations be restricted to a certain date/time 
interval, a time series can be shortened prior to EXCEEDENCE_TIME calculations using the 
REDUCE_TIME_SPAN block. 



GET_MUL_SERIES_SSF  27 
 

 
 

 

GET_MUL_SERIES_SSF 
The role of the GET_MUL_SERIES_SSF block is very similar to that of the 
GET_SERIES_SSF block, the only difference being that multiple series can be imported 
from a site sample file in one operation using the former block, whereas only one series can 
be imported using the latter block. See Appendix B for the format of a site sample file. 
Because a site sample file is used for time series storage by other members of the PEST 
Surface Water Utilities suite, TSPROC can readily import time series data written by other 
members of the suite. Also, if it is desired that TSPROC be used in the calibration of a model 
for which it is presently incapable of directly importing results, then this can be implemented 
by writing a small translation program which converts the outputs of that model to site 
sample file format. This program would be run between the model and TSPROC as part of a 
composite model calibrated by PEST. 

The table below shows the keywords appearing in a GET_MUL_SERIES_SSF block. An 
example of a GET_MUL_SERIES_SSF block is shown following that. Note that the 
CONTEXT keyword(s) must precede all other keywords cited in this block. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the GET_MUL_SERIES_SSF 
block will be processed. 

Any character string without 
internal spaces of 20 characters or 
less in length. The CONTEXT 
keyword(s) must precede all other 
keywords. 

FILE Mandatory. The name of the site sample 
file containing the time series to be 
imported. 

Any file name up to 120 characters 
in length. Use quotes if the filename 
contains blank characters. 

SITE Mandatory. The name of a site within the 
site sample file for which a time series is 
to be imported. The name of a new series 
must immediately follow the SITE 
keyword in the GET_MUL_SERIES_SSF 
block. 

Any character string without 
internal spaces up to 10 characters 
in length. 

NEW_SERIES_NAME Mandatory. The name of a new series as 
stored by TSPROC. This keyword must 
immediately follow the SITE keyword 
which specifies the dataset imported from 
the site sample file. 

Any character string without 
internal spaces up to 10 characters 
in length. 

DATE_1 Optional. Terms of time series before 
TIME_1 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 



GET_MUL_SERIES_SSF  28 
 

 
 

 

TIME_1 Optional. Terms of time series before this 
time on DATE_1 are not imported. 

hh:mm:ss. 

DATE_2 Optional. Terms of time series after 
TIME_2 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 

TIME_2 Optional. Terms of time series after this 
time on DATE_2 are not imported. 

hh:mm:ss  

Keywords in a GET_MUL_SERIES_SSF block. 

 

A GET_MUL_SERIES_SSF block. 
 

The DATE_ and TIME_ specifiers are optional. If they are omitted then the entire time series 
pertaining to each of the nominated sites is imported. If a DATE_1 keyword is present but a 
TIME_1 keyword is absent, then TIME_1 is assumed to be 00:00:00; similarly for DATE_2. 
If TIME_1 is present then DATE_1 must be present; the same holds for TIME_2. 

A GET_MUL_SERIES_SSF block can contain multiple incidences of the SITE and 
NEW_SERIES_NAME keywords. However these must be supplied in pairs with the SITE 
keyword immediately preceding the pertinent NEW_SERIES_NAME keyword. The 
character string associated with the SITE keyword, must pertain to a site which appears 
within the nominated site sample file; The same site cannot be supplied twice. 

Correct operation of the instructions contained within the GET_MUL_SERIES_SSF block 
assumes that the site sample file read using this block is correct and consistent. The integrity 
of a site sample file can be checked with the utility program SMPCHEK supplied with the 
Surface Water Utility suite. 

 

 

START GET_MUL_SERIES_SSF 
  CONTEXT all 
  FILE flows.smp 
  SITE rebec_ck 
  NEW_SERIES_NAME rebecca 
  SITE horton_ck 
  NEW_SERIES_NAME horton 
  SITE sandy_ck 
  NEW_SERIES_NAME sandy 
  DATE_1 06/03/1970 
  TIME_1 12:00:00 
  DATE_2 09/01/1980 
  TIME_1 00:00:00 
END GET_MUL_SERIES_SSF 



GET_MUL_SERIES_SSF  29 
 

 
 

 

 



GET_SERIES_PLOTGEN  30 
 

 
 

 

GET_SERIES_PLOTGEN 
The GET_SERIES_PLOTGEN block governs importation of time series data from a HSPF 
PLOTGEN file into TSPROC. There is an important difference between use of this block and 
use of some of the other blocks which import time series data into TSPROC; when importing 
data from a PLOTGEN file, more than one time series can be imported using the same block. 
This saves TSPROC from having to read a HSPF PLOTGEN file many times in order to 
import multiple time series produced during a HSPF run. 

Another slight difference between series importation using the GET_SERIES_PLOTGEN 
block and series importation using other TSPROC blocks is that the ordering of some 
keywords is important in the GET_SERIES_PLOTGEN block. In particular, each 
NEW_SERIES_NAME keyword provided in this block must directly follow a LABEL 
keyword so that the association between the time series label in the HSPF PLOTGEN file and 
the name of the new series as stored within TSPROC is clear. Due to the multiple time series 
importation capabilities of the GET_SERIES_PLOTGEN block, more than one of these 
LABEL/NEW_SERIES_NAME pairs can be present within any such block. See the table 
below. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the GET_SERIES_PLOTGEN 
block will be processed. 

Any character string without 
internal spaces of 20 characters or 
less in length. The CONTEXT 
keyword(s) must precede all other 
keywords. 

FILE Mandatory. The name of the PLOTGEN 
file containing the time series to be 
imported. 

Any file name up to 120 characters 
in length. Use quotes if the filename 
contains spaces. 

LABEL At least one LABEL keyword must be 
present. This is the PLOTGEN label 
pertaining to a time series which is to be 
imported. 

Any character string up to 20 
characters in length. If the string 
contains blank characters, enclose it 
in quotes. 

NEW_SERIES_NAME Mandatory. The name of the new series as 
stored by TSPROC. This must 
immediately follow the LABEL keyword 
pertaining to the imported time series. 

Any character string without spaces 
up to 10 characters in length. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not imported. 

dd/mm/yyyy or mm/dd/yyyy 
depending on the DATE_FORMAT 
setting in the SETTINGS block. 

TIME_1 Optional. Terms of the time series before 
this time on DATE_1 are not imported. 

hh:mm:ss  



GET_SERIES_PLOTGEN  31 
 

 
 

 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 

TIME_2 Optional. Terms of the time series after 
this time on DATE_2 are not imported. 

hh:mm:ss  

Keywords in a GET_SERIES_PLOTGEN block. 
 

A GET_SERIES_PLOTGEN block. 

 

DATE_ and TIME_ specifiers are optional in a GET_SERIES_PLOTGEN block. If they are 
absent from the block, then the entire time series pertaining to each nominated label is 
imported. If a DATE_1 keyword is present but a TIME_1 keyword is absent, then TIME_1 is 
assumed to be 00:00:00; the same applies for DATE_2. However if TIME_1 is present then 
DATE_1 must also be present; the same holds for TIME_2. 

START GET_SERIES_PLOTGEN 
  CONTEXT all 
  FILE hspfout.plt 
  LABEL "total outflow" 
  NEW_SERIES_NAME t_outflow 
  LABEL interflow 
  NEW_SERIES_NAME interflow 
  DATE_1 6/1/1976 
  TIME_1 00:12:00 
  DATE_2 7/1/1976 
  TIME_2 00:12:00 
END GET_SERIES_PLOTGEN 



GET_SERIES_SSF  32 
 

 
 

 

GET_SERIES_SSF 
Instructions provided in a GET_SERIES_SSF block allow TSPROC to import a time series 
from a site sample file; see Appendix B for the format of this file. Because a site sample file 
is used for time series storage by other members of the PEST Surface Water Utilities suite, 
TSPROC can readily import time series data written by other members of the suite. Also, if it 
is desired that TSPROC be used in the calibration of a model for which it is presently 
incapable of directly importing results, then this can be implemented by writing a small 
translation program which converts the outputs of that model to site sample file format. This 
program would be run between the model and TSPROC as part of a composite model 
calibrated by PEST. 

The table below shows the keywords pertaining to a GET_SERIES_SSF block. An example 
of a GET_SERIES_SSF block is shown following that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the GET_SERIES_SSF block will 
be processed. 

Any character string without 
internal spaces of 20 characters or 
less in length. The CONTEXT 
keyword(s) must precede all other 
keywords. 

FILE Mandatory. The name of the site sample 
file containing the time series to be 
imported. 

Any file name up to 120 characters 
in length. Use quotes if the filename 
contains blank characters. 

SITE Mandatory. The name of the site within 
the site sample file for which a time series 
is to be imported. 

Any character string without 
internal spaces up to 10 characters 
in length. 

NEW_SERIES_NAME Mandatory. The name of the new series as 
stored by TSPROC. 

Any character string without 
internal spaces up to 10 characters 
in length. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 

TIME_1 Optional. Terms of the time series before 
this time on DATE_1 are not imported. 

hh:mm:ss. 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 



GET_SERIES_SSF  33 
 

 
 

 

TIME_2 Optional. Terms of the time series after 
this time on DATE_2 are not imported. 

hh:mm:ss  

Keywords in a GET_SERIES_SSF block. 

 

A GET_SERIES_SSF block. 
 

The DATE_ and TIME_ specifiers are optional. If they are omitted then the entire time series 
pertaining to the nominated site is imported. If a DATE_1 keyword is present but a TIME_1 
keyword is absent, then TIME_1 is assumed to be 00:00:00; similarly for DATE_2. If 
TIME_1 is present then DATE_1 must be present; the same holds for TIME_2. 

 

START GET_SERIES_SSF 
  CONTEXT all 
  FILE flows.smp 
  SITE rebec_ck 
  NEW_SERIES_NAME rebecca 
  DATE_1 06/03/1970 
  TIME_1 12:00:00 
  DATE_2 09/01/1980 
  TIME_1 00:00:00 
END GET_SERIES_SSF 



GET_SERIES_TETRAD  34 
 

 
 

 

GET_SERIES_TETRAD 
A GET_SERIES_TETRAD block reads data from a TETRAD plot file. As presently 
programmed it is assumed that the plot file contains well data only (ie. that the TETRAD 
IPLWA variable has been set to zero.) Multiple time series can be read from this file, 
each such series being assigned to a particular well/object combination. 

The table below shows the keywords pertaining to a GET_SERIES_TETRAD block. An 
example of a GET_SERIES_TETRAD block is shown following that. Note that the 
CONTEXT keyword(s) which must precede all other keywords occurring in this block. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the GET_SERIES_TETRAD 
block will be processed. 

Any character string without 
internal spaces of 20 characters or 
less in length. The CONTEXT 
keyword(s) must precede all other 
keywords. 

FILE Mandatory. The name of the TETRAD 
plot file containing the time series to be 
imported. 

Any file name up to 120 characters 
in length. Use quotes if the filename 
contains blank characters. 

WELL_NAME Mandatory. The name of a well within the 
TETRAD plot file. This, in combination 
with the OBJECT_NAME keyword, 
defines the series to be imported.  

Any character string without 
internal spaces up to 25 characters 
in length. 

OBJECT_NAME Mandatory. The name of an object for 
which data is recorded in the TETRAD 
plot file. This, in combination with the 
WELL_NAME keyword, defines the 
series to be imported. This keyword must 
immediately follow a WELL_NAME 
keyword. 

Any character string without 
internal spaces up to 25 characters 
in length. 

NEW_SERIES_NAME Mandatory. The name of the new series as 
stored by TSPROC. This keyword must 
immediately follow an OBJECT_NAME 
keyword. 

Any character string without 
internal spaces up to 10 characters 
in length. 

MODEL_REFERENC
E_DATE 

Mandatory. The date pertaining to zero 
simulation time. Simulation times are 
recorded by TETRAD on its plot output 
file. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 



GET_SERIES_TETRAD  35 
 

 
 

 

MODEL_REFERENC
E_TIME 

Mandatory. The time pertaining to zero 
simulation time. Simulation times are 
recorded by TETRAD on its plot output 
file. 

hh:mm:ss. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 

TIME_1 Optional. Terms of the time series before 
this time on DATE_1 are not imported. 

hh:mm:ss. 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy depending 
on the DATE_FORMAT setting in 
the SETTINGS block. 

TIME_2 Optional. Terms of the time series after 
this time on DATE_2 are not imported. 

hh:mm:ss  

Keywords in a GET_SERIES_TETRAD block. 

 

A GET_SERIES_TETRAD block. 

There is no limit to the number of time series which can be imported from a TETRAD plot 
file (except as imposed by the storage limits of TSPROC itself). Three keywords within a 
GET_SERIES_TETRAD block collectively define a series to be imported and the name to be 
assigned to this series for the purposes of further TSPROC processing. These are the 
WELL_NAME, OBJECT_NAME and NEW_SERIES_NAME keywords. To avoid 
confusion in series definition, these must be listed consecutively within a 
GET_SERIES_TETRAD block for each time series which is to be imported. 

As in other TSPROC blocks which implement series importation, the user is able to limit the 
length of the imported time series by providing a time window using the optional DATE_1, 
TIME_1, DATE_2 and TIME_2 keywords. The MODEL_REFERENCE_DATE and 
MODEL_REFERENCE_TIME are mandatory; these relate zero simulation time to a specific 
date and time. 

START GET_SERIES_TETRAD 
  CONTEXT all 
  FILE dv1.plt 
  MODEL_REFERENCE_DATE 1/1/2000 
  MODEL_REFERENCE_TIME 00:00:00 
  WELL_NAME 2733 
  OBJECT_NAME pav 
  NEW_SERIES_NAME pav2733 
  WELL_NAME 6518p 
  OBJECT_NAME qtotenth 
  NEW_SERIES_NAME qth6518 
END GET_SERIES_TETRAD 



GET_SERIES_WDM  36 
 

 
 

 

GET_SERIES_WDM 
Instructions provided in this block allow TSPROC to import a time series from a Watershed 
Data Management (WDM) file. Many hydrologic and water-quality models and analyses 
developed by the U.S. Geological Survey and the U.S. Environmental Protection Agency 
currently use a WDM file. The WDM file is a binary file which provides the user with a 
common data base for many applications, thus eliminating the need to reformat data from one 
application to another. 

The table below shows the keywords permissible in a GET_SERIES_WDM block. An 
example of a GET_SERIES_WDM block follows that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS block, 
or if one of the context strings is “all”, the 
GET_SERIES_WDM block will be 
processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

FILE Mandatory. The name of the WDM file 
containing the time series to be imported. 

Any file name up to 120 characters 
in length. Use quotes if the 
filename contains blank characters. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series as stored by TSPROC. 

Any character string without 
internal spaces up to 10 characters 
in length. 

DSN Mandatory. The data set number of the time 
series to be imported. 

Any integer for which a time series 
dataset is available within the 
nominated WDM file. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_1 Optional. Terms of the time series before 
this time on DATE_1 are not imported. 

hh:mm:ss 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not imported. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_2 Optional. Terms of the time series after this 
time on DATE_2 are not imported. 

hh:mm:ss 



GET_SERIES_WDM  37 
 

 
 

 

DEF_TIME Optional. If the time series imported from a 
WDM file has a time step of a day or 
greater, each term pertains to a date, but no 
time. Upon importation into TSPROC, each 
term of such a series is referenced to 
REF_TIME. Default is 00:00:00. 

hh:mm:ss Note that if DEF_TIME 
is supplied as 24:00:00 a time of 
00:00:00 on the following day will 
be assigned to all samples. 

FILTER Optional. Terms of the time series which 
have this value are ignored upon 
importation into TSPROC. 

Real number. 

Keywords within a GET_SERIES_WDM block. 

 

A GET_SERIES_WDM block. 

 

The DATE_ and TIME_ specifiers are optional in a GET_SERIES_WDM block. If they are 
omitted then the entire time series pertaining to the nominated data set number is imported. If 
a DATE_1 keyword is present but a TIME_1 keyword is absent, then TIME_1 is assumed to 
be 00:00:00; similarly for DATE_2. If TIME_1 is present then DATE_1 must be present; the 
same holds for TIME_2. 

If the sample interval for a time series stored in a WDM file is a day or greater, then each 
term of the series will have no time reference; however within TSPROC each time series 
term is associated with both a date and a time. When importing such a time series into 
TSPROC, TSPROC’s default behaviour is to assign each term a time of 00:00:00 on the day 
with which it is associated. However, this time can be altered to the user’s choice using the 
optional DEF_TIME keyword. Note that if DEF_TIME is supplied as “24:00:00” then each 
sample will be assigned a time of 00:00:00 on the following day. 

START GET_SERIES_WDM 
  CONTEXT all 
  FILE catchment.wdm 
  DSN 1013 
  NEW_SERIES_NAME coal_ck 
  DATE_1 06/03/1970 
  TIME_1 12:00:00 
  DATE_2 09/01/1980 
  TIME_1 00:00:00 
  DEF_TIME 12:00:00 
  FILTER –999.99 
END GET_SERIES_WDM 



LIST_OUTPUT  38 
 

 
 

 

LIST_OUTPUT 
The LIST_OUTPUT block provides the means whereby the outcomes of calculations carried 
out by TSPROC can be written to an ASCII (ie. text) file. The format of this file is such that 
these quantities can be easily read by a user. They can also be easily read by PEST. An 
instruction file by which PEST can read the contents of a LIST_OUTPUT file can be 
generated automatically using the WRITE_PEST_FILES block. 

Keywords associated with a LIST_OUTPUT block are recorded in the following table. An 
example of a LIST_OUTPUT block follows that. Keywords can be supplied in any order, 
except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the LIST_OUTPUT block will be 
processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

FILE Mandatory. The name of the file to be 
written by the LIST_OUTPUT block. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces. 

SERIES_NAME Optional. The name of a time series to be 
written by the LIST_OUTPUT block to its 
output file. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s 
memory. 

SERIES_FORMAT Mandatory if a SERIES_NAME keyword is 
present. Determines whether dates, times 
and the series name should accompany 
series terms in the file generated by the 
LIST_OUTPUT block. 

“short” or “long” 

C_TABLE_NAME Optional. The name of a c_table to be 
written by the LIST_OUTPUT block to its 
output file. 

A name of 10 characters or less in 
length referencing a c_table 
stored within TSPROC’s 
memory. 

S_TABLE_NAME Optional. The name of an s_table to be 
written by the LIST_OUTPUT block to its 
output file. 

A name of 10 characters or less in 
length referencing an s_table 
stored within TSPROC’s 
memory. 



LIST_OUTPUT  39 
 

 
 

 

V_TABLE_NAME Optional. The name of a v_table to be 
written by the LIST_OUTPUT block to its 
output file. 

A name of 10 characters or less in 
length referencing a v_table 
stored within TSPROC’s 
memory. 

E_TABLE_NAME Optional. The name of an e_table to be 
written by the LIST_OUTPUT block to its 
output file. 

A name of 10 characters or less in 
length referencing an e_table 
stored within TSPROC’s 
memory. 

Keywords in a LIST_OUTPUT block. 

 

A LIST_OUTPUT block. 

Any number of time series, c_tables, s_tables, v_tables and e_tables can be written to a file 
generated by the LIST_OUTPUT block. Hence as many of the keywords pertaining to these 
entities as desired can be supplied in this block. In generating its output files, time series are 
written first, followed by s_tables, followed by c_tables, followed by v_tables, and finally 
e_tables. However the ordering of the individual entities of each type within the different 
segments of the TSPROC output file is the same as the order in which respective keywords 
referencing those entities are supplied in the LIST_OUTPUT block. 

If a SERIES_NAME keyword is provided in a LIST_OUTPUT block then a 
SERIES_FORMAT keyword must also be provided; options are “short” and “long”. If the 
former option is supplied, the LIST_OUTPUT block will list the terms of the time series as a 
single column in its output file. If the latter option is supplied the terms of the time series will 
be accompanied by the date and time corresponding to the term, as well as the name of the 
time series. This format corresponds to that of a site sample file (see Appendix B) and can 
thus be used by other members of the PEST Surface Water Utilities; note however that the 
header to each time series, written by the LIST_OUTPUT block to its output file, must first 
be removed. 

If you are running TSPROC as part of a composite model under the control of PEST, it is 
best to use the “short” option for time series formatting. This is because, where a time series 
is large, a considerable amount of computation time may be spent in converting TSPROC’s 

START LIST_OUTPUT 
  CONTEXT all 
  FILE output.txt 
  SERIES_NAME flow_216 
  SERIES_NAME flow_342 
  V_TABLE_NAME vol_216 
  V_TABLE_NAME vol_342 
  S_TABLE_NAME st_216 
  S_TABLE_NAME st_342 
  E_TABLE_NAME dur_216 
  E_TABLE_NAME dur_342 
  C_TABLE_NAME comp_ser 
  SERIES_FORMAT short 
END LIST_OUTPUT 



LIST_OUTPUT  40 
 

 
 

 

internal representation of sample dates and times to the dd/mm/yyyy (or mm/dd/yyyy) and 
hh:mm:ss formats required for output listing. This can add considerably to overall composite 
model execution time. Note also that if the “long” protocol is employed, in accordance with 
site sample file protocol, TSPROC does not represent midnight as “24:00:00”; instead 
midnight is represented as 00:00:00 on the following day. 

Output formatting for other TSPROC entities is such that they are clearly labelled and easily 
understood by the user. In the case of s_tables and c_tables, it is important to note that 
statistics not requested in the SERIES_STATISTICS or SERIES_COMPARE block in which 
an s_table or c_table respectively is created are not recorded in the file written by the 
LIST_OUTPUT block. Thus if this file is considered as the output file of a composite model, 
and that composite model is being calibrated by PEST, such statistics will not be included in 
the calibration process.  

Exceedence times stored in an e_table are recorded by the LIST_OUTPUT block both as 
accumulated times, and as proportions of the total time spanned by the parent time series. 
Note that if this file is used by PEST, only the latter quantities (ie. the exceedence 
proportions) are actually read by PEST on the basis of the instruction file created through a 
WRITE_PEST_FILES block. 



NEW_TIME_BASE  41 
 

 
 

 

NEW_TIME_BASE 
The NEW_TIME_BASE block is used to carry out time-interpolation from the sample times 
pertaining to one time series to the sample times pertaining to another. Keywords belonging 
to the NEW_TIME_BASE block are listed in the following table. An example 
NEW_TIME_BASE block follows that. Keywords can be supplied in any order, except for 
the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT 
strings is “all”, the NEW_TIME_BASE 
block will be processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time series 
whose terms are to be time-interpolated 
to a new time base. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s memory. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series produced as an outcome of time-
interpolation. 

Any character string without 
internal spaces up to 10 characters 
in length. 

TB_SERIES_NAME Mandatory. The name of the time series 
to whose dates and times time-
interpolation will take place. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s memory. 

Keywords in a NEW_TIME_BASE block. 

 

Example of a NEW_TIME_BASE block. 

 

Time interpolation of one time series to the time-base of another will only occur if the time-
span of the latter time series is equal to, or smaller than, that of the former time series. The 
result will be a new time series with terms pertaining to exactly the same dates and times as 
those of the time-base time series. If the original time series and the time-base time series 
pertain to the same data type, this will allow the two series to be directly compared with each 

START NEW_TIME_BASE 
  CONTEXT all 
  SERIES_NAME mod_flow 
  TB_SERIES_NAME obs_flow 
  NEW_SERIES_NAME int_flow 
END NEW_TIME_BASE 



NEW_TIME_BASE  42 
 

 
 

 

other. Such a comparison of “apples with apples” is crucial when calibrating a model against 
field data. Hence one of the principal roles of TSPROC when used as a model post-processor 
in a “composite model” run by PEST, is to carry out this all-important time-interpolation of 
model-generated time series to the dates and times of their measured counterparts. An 
interpolated time series produced in this manner can then be written to a TSPROC output file 
(using the LIST-OUTPUT block), where it can be read by PEST and compared with 
measured values recorded in a PEST control file. Both the PEST control file, and the 
instruction file by which the time-interpolated time series can be read from the 
LIST_OUTPUT file, can be written using the WRITE_PEST_FILES block. 



REDUCE_TIME_SPAN  43 
 

 
 

 

REDUCE_TIME_SPAN 
The REDUCE_TIME_SPAN block reduces the time spanned by a time series. This may be a 
useful precursor to other aspects of TSPROC processing. For example, using the 
REDUCE_TIME_SPAN block, the time spanned by an “observed time series” can be 
reduced to that spanned by a model-generated time series. This will allow time interpolation 
from the model’s output times to the times at which measurements were made, to be carried 
out using the NEW_TIME_BASE block. 

Keywords found in a REDUCE_TIME_SPAN block are listed in the table below. An 
example of a REDUCE_TIME_SPAN block follows that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the REDUCE_TIME_SPAN 
block will be processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time series 
whose time span is to be reduced. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s memory. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series produced as an outcome of time 
span reduction. 

Any character string without 
internal spaces up to 10 characters 
in length. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not copied to the 
new time series. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT in the 
SETTINGS block. 

TIME_1 Optional. Terms of the time series before 
this time on DATE_1 are not copied to 
the new time series. 

hh:mm:ss 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not copied to the 
new time series. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT in the 
SETTINGS block. 

TIME_2 Optional. Terms of the time series after 
this time on DATE_2 are not copied to 
the new time series. 

hh:mm:ss 

Keywords in a REDUCE_TIME_SPAN block. 



REDUCE_TIME_SPAN  44 
 

 
 

 

 

A REDUCE_TIME_SPAN block. 

 

When a new time series is created by reducing the time span of an existing time series, the 
original time series still remains within TSPROC’s memory. If desired, it can be removed 
using the ERASE_ENTITY block. 

At least one of DATE_1 or DATE_2 must be supplied. If the corresponding TIME_ keyword 
is not supplied, a default time of 00:00:00 is used. If the DATE_1 keyword is omitted 
DATE_1 and TIME_1 are assumed to be the first date and time cited in the original time 
series, ie. no time-span reduction from the front of the time series takes place. Similarly, if 
the DATE_2 keyword is omitted, no time-span reduction takes place from the end of the 
existing time series. Note that a TIME_ keyword cannot be supplied without the 
corresponding DATE_ keyword. 

START REDUCE_TIME_SPAN 
  CONTEXT all 
  SERIES_NAME intflow 
  NEW_SERIES_NAME  intflow_1 
  DATE_1 02/01/1976 
  TIME_1 13:13:00 
  DATE_2 06/01/1976 
  TIME_2 00:00:00 
END REDUCE_TIME_SPAN 



SERIES_BASE_LEVEL  45 
 

 
 

 

SERIES_BASE_LEVEL 
Use of the SERIES_BASE_LEVEL block allows a user to subtract a constant amount from 
all terms of a time series. This constant amount is the value of one term of an existing time 
series, either the time series from which subtraction is taking place, or another time series 
stored within the memory of TSPROC.  

A common use of the SERIES_BASE_LEVEL block is in calculation of changes in the 
quantity represented by the time series over the data recording or model simulation interval 
that gave rise to the time series in the first place. In this case the first term of the time series 
may be taken as the base level, this term being subtracted from all other elements of the time 
series to create the new series with altered base level. SERIES_BASE_LEVEL functionality 
allows this new series to either replace the original time series or to exist as its own separate 
entity. 

Keywords found in a SERIES_BASE_LEVEL block are listed in the table below. An 
example of a SERIES_BASE_LEVEL block follows that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the SERIES_BASE_LEVEL 
block will be processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time series 
whose base level is to be altered. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s memory. 

SUBSTITUTE Mandatory. If this is supplied as “yes”, 
the new time series replaces the old one 
in TSPROC’s memory and retains the 
same name. If it is supplied as “no”, a 
new series is created. 

“yes” or “no”. 

NEGATE Optional. If this is supplied as “yes” all 
terms of the new base series are 
multiplied by –1 after subtraction of the 
constant. 

yes” or “no”. 

NEW_SERIES_NAME Mandatory if SUBSTITUTE is supplied 
as “yes”. The name of the new time 
series produced as an outcome of base 
level alteration. 

Any character string without 
internal spaces up to 10 characters 
in length. 



SERIES_BASE_LEVEL  46 
 

 
 

 

BASE_LEVEL_SERIES_
NAME 

Mandatory. The name of the time series 
of which one element will be subtracted 
from all elements of the original time 
series to effect the base level change. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s memory. 

BASE_LEVEL_DATE Mandatory. This is used in conjunction 
with BASE_LEVEL_TIME to identify 
the term of series 
BASE_LEVEL_SERIES_NAME which 
is subtracted from all elements of 
SERIES to effect the base level change. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT in the 
SETTINGS block. 

BASE_LEVEL_TIME Mandatory. This is used in conjunction 
with BASE_LEVEL_DATE to identify 
the term of series 
BASE_LEVEL_SERIES_NAME which 
is subtracted from all elements of 
SERIES to effect the base level change. 

hh:mm:ss 

Keywords in a SERIES_BASE_LEVEL block. 

 

A SERIES_BASE_LEVEL block. 

As is documented elsewhere in this manual, the SERIES_EQUATION block can also be used 
to subtract a constant from the terms of a series. However in that case, the constant is 
supplied as a number in an equation. In the case of the SERIES_BASE_LEVEL block, the 
subtractor is a term in a series, identified through the name of the series and the date and time 
to which the term pertains. If there is no term corresponding to the supplied date and time, 
TSPROC will cease execution with an appropriate error message. 

The NEGATE keyword can be useful in incidences such as where it is desired that drawdown 
be calculated from head. Drawdown is calculated as the negative of the change in head from 
its initial value. Thus after base level alteration by subtraction of the initial series term, all 
terms of the new time series are multiplied by –1. 

 

 

 

START SERIES_BASE_LEVEL 
  CONTEXT all 
  SERIES_NAME head 
  BASE_LEVEL_SERIES_NAME head 
  BASE_LEVEL_DATE 01/04/1996 
  BASE_LEVEL_TIME 12:00:00 
  SUBSTITUTE no 
  NEGATE yes 
  NEW SERIES_NAME drawdown 
END SERIES_BASE_LEVEL 



SERIES_CLEAN  47 
 

 
 

 

SERIES_CLEAN 
Using the SERIES_CLEAN block, unwanted terms can be eliminated from a time series or 
replaced with a preferred value. This is sometimes required for correcting the deleterious 
effects of model misbehaviour whereby model-generated time-series are “polluted” with 
intermittent spurious values. It can also be used for eliminating outliers in an observation 
time series. 

Keywords pertaining to the SERIES_CLEAN block are listed in the table below. An example 
SERIES_CLEAN block follows that. Keywords can be supplied in any order, except for the 
CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword 
must be supplied; up to 5 are 
permitted. If one of the CONTEXT 
strings matches the CONTEXT 
string in the SETTINGS block, or if 
one of the CONTEXT strings is 
“all”, the SERIES_CLEAN block 
will be processed. 

Any string without internal 
spaces of 20 characters or less in 
length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

SERIES_NAME Mandatory. The name of the time 
series whose terms are to be 
“cleaned”. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_SERIES_NAME Mandatory if SUBSTITUTE_VALUE 
is “delete”; optional otherwise . The 
name of a new time series formed by 
removal or replacement of terms in 
the original time series. 

Any character string without 
internal spaces up to 10 
characters in length. 

LOWER_ERASE_BOUNDAR
Y 

Optional. Terms equal to and above 
this threshold and equal to and below 
the UPPER_ERASE_BOUNDARY 
threshold are removed or replaced. 

A real number. 

UPPER_ERASE_BOUNDARY Optional. Terms equal to or below 
this threshold and equal to or above 
the LOWER_ERASE_BOUNDARY 
threshold are removed or replaced. 

A real number. 

SUBSTITUTE_VALUE Mandatory. If supplied as a real 
number this is the value substituted 
for terms between the upper and 
lower erase thresholds. If supplied as  
“delete”, instructs TSPROC to delete 
terms between these thresholds. 

A real number or “delete”. 



SERIES_CLEAN  48 
 

 
 

 

Keywords within a SERIES_CLEAN block. 

 

A SERIES_CLEAN block. 

The SERIES_CLEAN block presents the user with a number of different options for handling 
unwanted terms. In the simplest case these terms are replaced by the number supplied 
through the SUBSTITUTE_VALUE keyword. If this is done, terms can be replaced “in situ” 
(ie. in the existing time series without creating a new one), or a new time series can be 
created to hold the altered time series, with the original time series remaining intact. If a 
NEW_SERIES_NAME keyword is supplied, the latter option is taken; if not, the former 
option is taken. 

A further option is for unwanted terms to be eradicated altogether. This is achieved by 
supplying the string “delete” with the SUBSTITUTE_VALUE keyword instead of a real 
number. In this case TSPROC insists that a NEW_SERIES_NAME keyword be supplied in 
the SERIES_CLEAN block, for the altered time series will be stored as a new entity, leaving 
the original one intact; the latter can then be erased if desired using the ERASE_ENTITY 
block. 

Terms of a series are identified for deletion or replacement using the 
LOWER_ERASE_BOUNDARY and UPPER_ERASE_BOUNDARY keywords. Either one 
or both of these keywords can be supplied. If both of them are supplied, all terms of the time 
series between and including the specified boundary values are replaced or deleted. If only 
the LOWER_ERASE_BOUNDARY keyword is supplied, all terms equal to and above this 
threshold are removed or replaced; if only the UPPER_ERASE_BOUNDARY keyword is 
supplied, all terms equal to or below this boundary are removed or replaced. (If you are in 
any doubt of the action of the SERIES_CLEAN block when only one of these keywords is 
supplied, then supply both of them, with one of them either very high or very low. However 
if you do this, note that TSPROC will not accept numbers whose absolute value is greater 
than about 1037. 

START SERIES_CLEAN 
  CONTEXT all 
  SERIES_NAME series1 
  LOWER_ERASE_BOUNDARY  100.0 
  UPPER_ERASE_BOUNDARY 200.0 
  SUBSTITUTE_VALUE delete 
  NEW_SERIES_NAME series2 
END SERIES_CLEAN 



SERIES_COMPARE  49 
 

 
 

 

SERIES_COMPARE 
The SERIES_COMPARE block calculates statistics that quantify the similarity of one time 
series with another. The outcomes of these calculations are placed in a c_table (which can be 
written to a file using the LIST_OUTPUT block). Keywords pertaining to the 
SERIES_COMPARE block are listed in the table below. An example SERIES_COMPARE 
block follows that. Keywords can be supplied in any order, except for the CONTEXT 
keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS block, 
or if one of the CONTEXT strings is “all”, 
the SERIES_COMPARE block will be 
processed. 

Any string without internal 
spaces of 20 characters or less in 
length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

SERIES_NAME_SIM Mandatory. The name of the “simulated” 
time series whose terms are to be compared 
with the “observed” time series. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

SERIES_NAME_OBS Mandatory. The name of the “observed” 
time series whose terms are to be compared 
with the “simulated” time series. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

SERIES_NAME_BASE Optional if either the 
COEFFICIENT_OF_EFFICIENCY or 
INDEX_OF_AGREEMENT keyword is 
present. The name of a baseline time series 
that can be used in the calculation of these 
two quantities. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_C_TABLE_NAM
E 

Mandatory. The name of the new c_table 
used to store the outcomes of comparison 
statistics calculations. 

Any character string without 
internal spaces up to 10 
characters in length. 

BIAS Optional. Requests calculation of bias 
between the observed and simulated time 
series (B in the equations below). 

“yes” or “no”. Default is “no”. 

STANDARD_ERROR Optional. Requests calculation of the 
standard error between the observed and 
simulated time series (S in the equations 
below). 

“yes” or “no”. Default is “no”. 



SERIES_COMPARE  50 
 

 
 

 

RELATIVE_BIAS Optional. Requests calculation of the 
relative bias between the observed and 
simulated time series (Br in the equations 
below). 

“yes” or “no”. Default is “no”. 

RELATIVE_STANDAR
D_ERROR 

Optional. Requests calculation of the 
relative standard error between the 
observed and simulated time series (Sr in 
the equations below). 

“yes” or “no”. Default is “no”. 

NASH_SUTCLIFFE Optional. Requests calculation of the Nash-
Sutcliffe (1970) coefficient (R2 in the 
equations below). 

“yes” or “no”. Default is “no”. 

COEFFICIENT_OF_EFF
ICIENTY 

Optional. Requests calculation of the 
coefficient of efficiency (E in the equations 
below); see Legates and McCabe (1999). 

“yes” or “no”. Default is “no”. 

INDEX_OF_AGREEME
NT 

Optional. Requests calculation of the index 
of agreement (d in the equations below); 
see Legates and McCabe (1999). 

“yes” or “no”. Default is “no”. 

EXPONENT Mandatory if either the 
COEFFICIENT_OF_EFFICIENCY or 
INDEX_OF_AGREEMENT keyword is 
present. The exponent used in the 
calculation of these quantities (k in th 
equations below). 

An integer – must be 1 or 2. 

DATE_1 Optional. Terms of the simulated and 
observed time series before TIME_1 on this 
date are not used in series comparison. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_1 Optional. Terms of the simulated and 
observed time series before this time on 
DATE_1 are not used in series comparison. 

hh:mm:ss 

DATE_2 Optional. Terms of the simulated and 
observed time series after TIME_2 on this 
date are not used in series comparison. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_2 Optional. Terms of the simulated and 
observed time series after this time on 
DATE_2 are not used in series comparison. 

hh:mm:ss  

Keywords within a SERIES_COMPARE block. 

 



SERIES_COMPARE  51 
 

 
 

 

A SERIES_COMPARE block. 

The names of two time series must be provided in a SERIES_COMPARE block. One of these 
is denoted as the “observed” time series while the other is the “simulated” time series; the 
difference is important in calculating relative bias, relative standard error, the Nash-Sutcliffe 
coefficient, the index of agreement and the coefficient of efficiency, for standardisation of 
these quantities is undertaken with respect to the observed time series. The simulated and 
observed time series must contain samples taken at identical dates and times within the time 
interval spanned by the DATE_1, TIME_1 and DATE_2, TIME_2 entries. If these keywords 
are not provided the sample dates and times of the observed and simulated time series must 
be identical over the entire length of these series. 

If either of the COEFFICIENT_OF_EFFICIENCY or INDEX_OF_AGREEMENT keywords 
are present, then an EXPONENT keyword must be present. The theory underpinning use of 
the coefficient of efficiency and index of agreement as bases for series comparison is 
discussed in Legates and McCabe (1999). The exponent must be either 1 or 2. If either of 
these keywords are present, then a SERIES_NAME_BASE keyword can also be supplied, 
this providing the name of a “baseline time series” that can optionally be used in place of the 
mean observation value over the comparison time window; see the above reference for 
details. The baseline time series must have terms at identical dates and times to those of the 
simulated and observed time series over the comparison time window. If the 
SERIES_NAME_BASE keyword is omitted, then the mean observation is employed in the 
formulae presented below instead of the terms of the baseline time series. 

Equations for the quantities calculated in the SERIES_COMPARE block are as follows. Note 
that the Nash-Sutcliffe coefficient is equal to the coefficient of efficiency when the exponent 
in the latter equation is zero, and when a baseline time series is not provided. 

Bias:- 

( )ii OS
N

B −∑=
1  

Standard error: 

START SERIES_COMPARE 
  CONTEXT all 
  SERIES_NAME_SIM mod_flow 
  SERIES_NAME_OBS obs_flow 
  NEW_C_TABLE_NAME com_series 
  BIAS yes 
  RELATIVE_BIAS yes 
  STANDARD_ERROR yes 
  RELATIVE_STANDARD_ERROR yes 
  NASH_SUTCLIFFE yes 
  COEFFICIENT_OF_EFFICIENCY yes 
  INDEX_OF_AGREEMENT yes 
  EXPONENT 1 
END SERIES_COMPARE 



SERIES_COMPARE  52 
 

 
 

 

( )2

1
1

ii OS
N

S −∑
−

=  

Relative bias: 

O
BBr =  

Relative standard error: 

o
r S

S
S =  

Nash-Sutcliffe coefficient: 

( )
( )2

2
2 1

OO

OS
R

i

ii

−∑

−∑
−=  

Coefficient of efficiency: 

k

i

k
ii

k
OO

OS
E

−∑

−∑
−=1  

 

Index of agreement: 

( )kii

k
ii

k
OOOS

OS
d

−+−∑

−∑
−=1  

 

where: 

iO
N

O ∑=
1  

( )2
1

1 OO
N

S io −∑
−

=  

and N is the number of terms in the series (or subseries) between which comparison takes 
place; summation in the above equations takes place over all of these terms. Where a 
SERIES_NAME_BASE keyword is supplied, O  in the equations for coefficient of efficiency 
and index of agreement is replace by Bi, the respective term of the baseline time series. 



SERIES_COMPARE  53 
 

 
 

 

If it is desired that weights be applied to terms of the series before comparison (as is often the 
case), weighted observation and simulated time series can easily be generated using the 
SERIES_EQUATION block. 

 

 



SERIES_DISPLACE  54 
 

 
 

 

SERIES_DISPLACE 
The SERIES_DISPLACE block is used to “migrate” the terms of a series with respect to its 
time-base, lagging or leading these terms as requested by the user. Keywords pertaining to 
the SERIES_DISPLACE block are listed in the table below. An example 
SERIES_DISPLACE block follows that. Keywords can be supplied in any order, except for 
the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the SERIES_DISPLACE block 
will be processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

SERIES_NAME Mandatory. The name of the time series 
whose terms are to be displaced. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s 
memory. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series formed by term-displacement of an 
existing series. 

Any character string without 
internal spaces up to 10 
characters in length. 

LAG_INCREMENT Mandatory. The number of sample 
intervals by which terms of the original 
time series are lagged. 

An integer. 

FILL_VALUE Mandatory. Values assigned to migrated 
terms at the beginning or end of the time 
series where no other terms can take their 
place 

A real number. 

Keywords within a SERIES_DISPLACE block. 

 

A SERIES_DISPLACE block. 

START SERIES_DISPLACE 
  CONTEXT all 
  SERIES_NAME outflow 
  NEW_SERIES_NAME outflow_1 
  LAG_INCREMENT 1 
  FILL_VALUE 0.00 
END SERIES_DISPLACE 



SERIES_DISPLACE  55 
 

 
 

 

The SERIES_DISPLACE operation is the only procedure undertaken by TSPROC which 
requires that the time series upon which the operation is carried out have a constant sample 
interval. If the sample interval is not constant throughout the time spanned by the time series, 
TSPROC will display an appropriate error message before ceasing execution. 

A positive LAG_INCREMENT is used to delay terms in the time series. For example, if a 
LAG_INCREMENT of 1 is used, then each term within a time series will be assigned to the 
time and date previously occupied by the term which follows it. If it is desired that terms in 
the series be shifted in the opposite direction instead, this can be accomplished by using a 
negative LAG_INCREMENT. 

When terms of a time series are shifted in this manner, terms at one end of the series “drop 
off the edge” (the time-base of the series is not altered by the SERIES_DISPLACE 
operation). At the other end of the series, at least one term of the shifted series must be 
assigned a “dummy value” as end positions within the series become vacated by the shifting 
operation. The user must provide this “dummy value” using the FILL_VALUE keyword. 

In undertaking sophisticated (and extremely powerful) parameter estimation procedures such 
as that described by Kuczera (1983), it is necessary that a combination of an original and a 
lagged “observed time series” be compared with its model-generated counterpart. Residuals 
(ie. model-to-measurement differences) achieved through the model calibration process using 
such combinations of time series are often superior to those achieved using the original time 
series because the former have drastically reduced inbuilt inter-term correlation structure. 
The existence of such inter-term correlation can lead to misleading estimates of parameter 
uncertainty. 

A composite series, comprised of an original time series summed with various combinations 
of lagged time series, can be created using the SERIES_EQUATION block. 



SERIES_EQUATION  56 
 

 
 

 

SERIES_EQUATION 
Through use of the SERIES_EQUATION block a new time series can be formed based on an 
equation of arbitrary mathematical complexity involving one or a number of other time 
series. The only two conditions on time series that are cited in this equation are that:- 

1. all time series featured in the series equation must have samples at identical dates 
and times (this can be ensured by using the REDUCE_TIME_SPAN and 
NEW_TIME_BASE blocks if necessary), and 

2. a series equation must feature at least one time series (in order to provide the 
time-base of the resulting time series). 

Keywords appearing in a SERIES_EQUATION block are listed in the following table. An 
example of a SERIES_EQUATION block follows the table. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS block, 
or if one of the CONTEXT strings is “all”, 
the SERIES_EQUATION block will be 
processed. 

Any string without internal 
spaces of 20 characters or less in 
length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series formed through undertaking the 
calculations embodied in the series 
equation. 

Any character string without 
internal spaces up to 10 
characters in length. 

EQUATION Mandatory. The equation by which the 
terms of the new series are calculated. 

See below. 

Keywords within a SERIES_EQUATION block. 

 

A SERIES_EQUATION block. 

 

START SERIES_EQUATION 
  CONTEXT all 
  NEW_SERIES_NAME new_series 
  EQUATION log10(outflow * concentration) 
END SERIES_EQUATION 



SERIES_EQUATION  57 
 

 
 

 

The terms of the new time series that results from the action of the series equation are 
computed by implementing the equation on a term-by-term basis on each of the series cited in 
the equation. Thus each term in the new series is calculated from the corresponding terms of 
the existing series.  

As stated above, the series equation can be of arbitrary complexity, involving any number of 
terms, and citing any number of existing time series (as long as the above-mentioned time-
base-consistency rule is followed). In formulating the equation, the operators “^”, “/”, “*”, “-
” and “+” have their usual meanings of “raised to the power of”, “division”, “multiplication”, 
“subtraction” and “addition”; optionally the “**” operator can be used in place of the “^” 
operator to signify raising to the power. Operations are carried out in the order indicated 
above (ie. the normal ordering of mathematical operations); if in doubt, use brackets to set 
precedence between operators. 

An equation supplied in the SERIES_EQUATION block can include most of the commonly-
used mathematical functions, viz. abs, acos, asin, atan, cos, cosh, exp, log, log10, sin, sinh, 
sqrt, tan and tanh. Note the following:- 

1. The log function is to base e; to calculate logs to base 10, use the log10 function. 

2. The arguments to trigonometric functions must be supplied in radians. 

3. Caution must be exercised when using some of these functions that their argument 
lies within the proper numerical range for that function. For example, if any of the 
terms of a series upon which a log operation is performed are zero or negative, a 
numerical error will result. TSPROC will detect this error and cease execution 
with an appropriate error message. 

Caution must also be exercised when using the “/” operator that a divide-by-zero condition is 
not encountered. If this occurs, TSPROC will issue an appropriate error message before 
ceasing execution. 

In addition to the above functions, TSPROC allows two “native TSPROC functions” to be 
used in a series equation; these are the @_days_start_year and 
@_days_“mm/dd/yyyy_hh:nn:ss”  functions (the “@_” string indicates to the subroutine that 
parses this equation that the term represents neither a series, a number, nor one of the 
mathematical functions discussed above).  

When the @_days_start_year term is encountered in a series equation, the days since the 
start of the year pertaining to the current series term is substituted for the string. Where a 
sample does not occur at midnight, fractional days are used in the calculation of the 
@_days_start_year function, the outcome of which is a real number.  

When the @_days_“mm/dd/yyyy_hh:nn:ss” term is encountered, TSPROC calculates the 
days (as a real number – fractional if necessary) since the indicated date and time. Note that 
the date and time strings must be collectively enclosed in quotes and must be separated by an 
underscore. Note also that the correct format to use in expressing the date (ie. mm/dd/yyyy or 
dd/mm/yyyy) is determined by the DATE_FORMAT keyword in the SETTINGS block. 



SERIES_EQUATION  58 
 

 
 

 

The following are some examples of legal series equations. 

outflow 

log10(outflow) + 3.456 * sediment ^ 3.23 

34.5 / (interflow + 3.432) 

0.0 * series1 + @_days_start_year 

3.495 + sin((@_days_start_year + 124.5)*6.284/365.25) 

1.0/sqrt(@_days_”1/21/1978_12:00:00”) 

In the third of the above equations the time series named series1 is multiplied by zero. In this 
case the series is included in the equation because of the fact that each equation must cite at 
least one time series in order to set the time-base of the resultant time series. In the fourth of 
the above equations the argument of the sine function is multiplied by 2π/365.25 in order to 
achieve periodicity of one year. 

Note that, for those not familiar with programming, the equation a/b*c is evaluated as 
(a/b)*c. To divide a by b*c formulate the equation as: a/(b*c) or a/b/c. 



SERIES_STATISTICS  59 
 

 
 

 

SERIES_STATISTICS 
Using the SERIES_STATISTICS block, a number of simple statistics can be calculated from 
the terms of a time series. Optionally, the terms of the series upon which statistical 
calculations are based can be limited to those lying within a specified date/time interval. 
Another option provided by the SERIES_STATISTICS block is for statistics to be calculated 
on the basis of the log (to base 10) of the terms of the time series, or on the terms of the series 
raised to an arbitrary power. If it is desired that statistics be calculated on the basis of more 
complex functions of the terms of a time series, this can be easily achieved by first 
calculating a new time series using the SERIES_EQUATION block, and then undertaking 
statistical calculations on the basis of this new time series. 

At present, only 5 statistical measures can be calculated using the SERIES_STATISTICS 
block. These are the mean, standard deviation, sum, maximum and minimum. Note that, as is 
explained below, if it is intended to use any statistics in a calibration exercise undertaken by 
PEST, then only those statistics that are actually involved in the parameter estimation process 
should be calculated in a SERIES_STATISTICS block. This, in turn, will limit the output 
from the LIST_OUTPUT block to only those statistics. 

TSPROC stores the outcomes of statistical calculations carried out by the 
SERIES_STATISTICS block in an s_table. Like other TSPROC entities, each s_table must 
be provided with a name so that it can be referenced by other TSPROC processing blocks. 
This name must be 10 characters or less in length and must not include a space character. 

Keywords featured in the SERIES_STATISTICS block are listed in the following table. An 
example of a SERIES_STATISTICS block follows that. Keywords can be supplied in any 
order, except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of the 
CONTEXT strings matches the CONTEXT 
string in the SETTINGS block, or if one of 
the CONTEXT strings is “all”, the 
SERIES_STATISTICS block will be 
processed. 

Any string without internal 
spaces of 20 characters or less 
in length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

SERIES_NAME Mandatory. The name of the time series on 
which statistical calculations will be carried 
out. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_S_TABLE_NAME Mandatory. The name of the new s_table 
used to store the outcomes of statistical 
calculations. 

Any character string without 
internal spaces up to 10 
characters in length. 



SERIES_STATISTICS  60 
 

 
 

 

SUM Optional. Requests calculation of the sum of 
the terms of the time series. 

“yes” or “no”. Default is “no”. 

MEAN Optional. Requests calculation of the mean 
of the terms of the time series. 

“yes” or “no”. Default is “no”. 

STD_DEV Optional. Requests calculation of the 
standard deviation of the terms of the time 
series. 

“yes” or “no”. Default is “no”. 

MAXIMUM Optional. Requests calculation of the 
maximum of the terms of the time series. 

“yes” or “no”. Default is “no”. 

MINIMUM Optional. Requests calculation of the 
minimum of the terms of the time series. 

“yes” or “no”. Default is “no”. 

LOG Optional. Requests that statistics be 
calculated based on the logs (to base 10) of 
the terms of the time series. 

“yes” or “no”. Default is “no”. 
The LOG keyword cannot be 
used if the POWER keyword is 
used. 

POWER Optional. Requests that statistics be 
calculated based on the terms of the time 
series raised to the nominated power. 

A real number other than zero. 
Default is 1. The POWER 
keyword cannot be used if the 
LOG keyword is used. 

DATE_1 Optional. Terms of the time series before 
TIME_1 on this date are not used in statistics 
calculations. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_1 Optional. Terms of the time series before this 
time on DATE_1 are not used in statistical 
calculations. 

hh:mm:ss 

DATE_2 Optional. Terms of the time series after 
TIME_2 on this date are not used in 
statistical calculations. 

dd/mm/yyyy or mm/dd/yy 
depending on the 
DATE_FORMAT setting in the 
SETTINGS block. 

TIME_2 Optional. Terms of the time series after this 
time on DATE_2 are not used in statistical 
calculations. 

hh:mm:ss  

Keywords in a SERIES_STATISTICS block. 

 



SERIES_STATISTICS  61 
 

 
 

 

A SERIES_STATISTICS block 

Caution should be exercised when using the POWER and LOG keywords. It is illegal for 
both of these keywords to be present within the same SERIES_STATISTICS block. 
Furthermore, there is a potential for numerical errors to occur through the use of these 
keywords. In particular if LOG is set to “yes” and if any of the terms of the time series are 
zero or negative, TSPROC will cease execution with an appropriate error message. Also if a 
POWER with an absolute value of less than 1 is supplied and if any of the terms of the time 
series are negative, or if the POWER is negative and any of the terms of the time series are 
zero, TSPROC will likewise cease execution with an error message before attempting this 
impossible calculation. 

 

START SERIES_STATISTICS 
  CONTEXT all 
  SERIES_NAME outflow 
  NEW_S_TABLE_NAME outflow 
  MEAN yes 
  STANDARD_DEVIATION yes 
  SUM yes 
  MAXIMUM yes 
  MINIMUM yes 
  POWER 0.5 
  DATE_1 3/1/1976 
  TIME_1 00:00:00 
  DATE_2 3/3/1976 
  TIME_2 00:00:00 
END SERIES_STATISTICS 



SETTINGS  62 
 

 
 

 

SETTINGS 
The SETTINGS block differs from the other blocks in a TSPROC input file in that it must be 
the first block listed in this file; furthermore its presence is mandatory. 

At the present stage of TSPROC development, only two keywords can be used in a 
SETTINGS block; both of these are mandatory. See the table below. 

 

Keyword Role Specifications 

DATE_FORMAT Mandatory. Determines the format with 
which dates are represented in TSPROC 
input and output files. 

“dd/mm/yyyy” or “mm/dd/yyyy” 

CONTEXT Mandatory. Sets the context for the current 
TSPROC run, thus determining which 
blocks in the TSPROC input file are 
processed. 

Any character string without internal 
spaces of 20 characters or less in 
length. 

Keywords within a CONTEXT block. 

 

A CONTEXT block. 

 

The DATE_FORMAT setting allows TSPROC to adapt to the different methods by which 
the date is represented in different countries. If the month precedes the day, then the date 
format should be supplied as “mm/dd/yyyy”. However if the day precedes the month, then it 
should be written as “dd/mm/yyyy”. 

A SETTINGS block can contain only one CONTEXT keyword, the purpose of this being to 
“set the context” of the entire TSPROC run. Every other block used in a TSPROC input file 
must contain a minimum of one, and a maximum of five, CONTEXT keywords followed by a 
character string (of 20 characters or less in length and without internal spaces). If any of these 
character strings match the CONTEXT character string provided in the SETTINGS block, or 
if any of these strings is supplied as “all”, then that block will be processed.  

Use of TSPROC CONTEXT functionality allows the user to vary the tasks carried out by 
TSPROC by simply varying one entry in its input file, viz. the CONTEXT variable supplied 
in the SETTINGS block. This can be particularly useful when using TSPROC in conjunction 
with PEST. In preparing for a PEST run, a user can set up a complex TSPROC input file 
which processes both measured and model-generated time series, and then generates a PEST 

START SETTINGS 
  DATE_FORMAT mm/dd/yyyy 
  CONTEXT pest_input 
END SETTINGS 



SETTINGS  63 
 

 
 

 

input dataset in which the terms of the processed measured time series act as “calibration 
targets” to which the terms of the processed model-generated time series are matched. If 
CONTEXT settings in the various TSPROC processing blocks are carefully selected, it will 
then be possible for the same TSPROC input file to be used by TSPROC in its capacity as a 
model post-processor, simply by altering the run CONTEXT in the SETTINGS block. 



V_TABLE_TO_SERIES  64 
 

 
 

 

V_TABLE_TO_SERIES 
The V_TABLE_TO_SERIES block copies information stored in a v_table to a new time 
series. Information stored in time series format has access to more processing functionality 
than that available for v_tables, including calculation of comparison statistics with other 
series, digital filtering, time interpolation etc. 

Keywords associated with the V_TABLE_TO_SERIES block are listed in the following 
table. An example of a V_TABLE_TO_SERIES block follows that. Keywords can be 
supplied in any order, except for the CONTEXT keyword(s) which must precede all others.  

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the V_TABLE_TO_SERIES 
block will be processed. 

Any string without internal 
spaces of 20 characters or less in 
length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

NEW_SERIES_NAME Mandatory. The name of the new time 
series formed through copying entries 
from a v_table. 

Any character string without 
internal spaces up to 10 
characters in length. 

V_TABLE_NAME Mandatory. The name of a v_table from 
which entries are to be copied to the new 
time series. 

A name of 10 characters or less 
in length referencing a v_table 
stored within TSPROC’s 
memory. 

TIME_ABSCISSA Mandatory. Informs TSPROC whether the 
date and time corresponding to each new 
time series entry pertains to the beginning, 
middle or end of the corresponding v_table 
interval. 

“start”, “centre” or “end” 

Keywords in a V_TABLE_TO_SERIES block. 

 

A V_TABLE_TO_SERIES block. 

START V_TABLE_TO_SERIES 
  CONTEXT all 
  V_TABLE_NAME volume 
  NEW_SERIES_NAME ssvol 
  TIME_ABSCISSA end 
END V_TABLE_TO_SERIES 



V_TABLE_TO_SERIES  65 
 

 
 

 

As is apparent when the contents of a v_table are written to file using the LIST_OUTPUT 
block, there are two dates and times associated with every term of a v_table, ie. the date and 
time corresponding to the beginning of the interval over which volume was accumulated, and 
the date and time corresponding to the end of the interval. However there is only one date and 
time associate with every time series entry. Thus in transferring data between the two entity 
types, the user must inform TSPROC how time series dates and times are calculated from 
v_table dates and times. Three options are available:- 

1. Time series dates and times can correspond to the beginnings of respective 
volume accumulation intervals of the v_table from which they are derived;  

2. Time series dates and times can correspond to the ends of respective volume 
accumulation intervals of the v_table from which they are derived;  

3. Time series dates and times can correspond to the centres of respective volume 
accumulation intervals of the v_table from which they are derived. 

Selection of the appropriate one of these three options is undertaken by providing the 
character string “start”, “end” or “centre” (or “center”) with the TIME_ABSCISSA keyword 
of a V_TABLE_TO_SERIES block. 

 



VOLUME_CALCULATION  66 
 

 
 

 

VOLUME_CALCULATION 
The VOLUME_CALCULATION block instructs TSPROC to integrate a time series with 
respect to time over the time-span bracketed by two dates and times. While the most obvious 
application of this functionality is in volume calculation, it can also be used for mass 
calculation if the integration is carried out on a time series which represents the mass flux of 
some constituent. A mass flux time series can be calculated from time series representing 
concentration and flow using the SERIES_EQUATION block. 

Integration can be carried out over one or multiple time spans. These time spans are defined 
in a “dates file”, the format of which is illustrated below. Dates and times are supplied in a 
dates file rather than as part of the VOLUME_CALCULATION block because in many 
instances of model calibration a large number of volumes or constituent masses may be used 
in the calibration process. In some circumstances integration may take place over regularly 
spaced (for example monthly) time intervals, whereas in other cases integration may take 
place over a number of discrete, significant events. 

A dates file. 

 

A dates file can be of any length. Each line must contain 4 entries, viz. the date and time 
defining the beginning of the integration interval and the date and time defining the end of 
the interval. The date format must be dd/mm/yyyy or mm/dd/yyyy; the option chosen must be 
consistent with the DATE_FORMAT setting in the TSPROC SETTINGS block. 

The outcomes of TSPROC’s volume calculations are stored in a v_table. Like other TSPROC 
entities, each v_table must be given a name; this name is supplied through the 
NEW_V_TABLE_NAME keyword. This, and other keywords associated with a 
VOLUME_CALCULATION block are listed in the following table. An example of a 
VOLUME_CALCULATION block follows that. Keywords can be supplied in any order, 
except for the CONTEXT keyword(s) which must precede all others. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must be 
supplied; up to 5 are permitted. If one of 
the CONTEXT strings matches the 
CONTEXT string in the SETTINGS 
block, or if one of the CONTEXT strings 
is “all”, the VOLUME_CALCULATION 
block will be processed. 

Any string without internal 
spaces of 20 characters or less in 
length. The CONTEXT 
keyword(s) must precede all 
other keywords. 

03/12/1976  11:23:53    04/03/1976  03:00:00 
04/30/1976  12:43:00    09/02/1976  23:59:59 
04/30/1976  12:43:00    04/30/1976  23:59:59 



VOLUME_CALCULATION  67 
 

 
 

 

SERIES_NAME Mandatory. The name of the time series on 
which time integration will be carried out. 

A name of 10 characters or less 
in length referencing a time 
series stored within TSPROC’s 
memory. 

NEW_V_TABLE_NAME Mandatory. The name of a new v_table 
used to store the outcomes of time-
integration carried out by TSPROC. 

Any character string without 
internal spaces up to 10 
characters in length. 

DATE_FILE Mandatory. The name of the dates file 
containing the time spans over which time 
series integration will take place. 

Any filename up to 120 
characters in length. Use quotes 
if the filename contains spaces. 

FLOW_TIME_UNITS Mandatory. The time units of flow 
employed by the time series. 

“year”, “month”, “day”, “hour”, 
“min” or “sec” 

FACTOR Optional. Factor by which integrated 
volumes or masses are multiplied before 
storage 

A real number. Default is 1.0. 

Keywords in a VOLUME_CALCULATION block. 

 

A VOLUME_CALCULATION block. 

 

Two VOLUME_CALCULATION keywords require further explanation. The first is the 
TIME_UNITS keyword; using this keyword, the user must supply the time units employed 
by the flow time series. For example if flow is recorded in cubic feet per second, then 
TIME_UNITS should be provided as “sec”. The second is the optional FACTOR keyword. 
With this keyword the user should supply a multiplier which TSPROC applies to each 
integrated volume or mass which it calculates. The predominant use of this multiplier is in 
units conversion. For example if it were desired that the volume in cubic feet calculated in 
the above example be stored in units of acre feet, gallons, megalitres or some other 
volumetric unit, then the appropriate conversion factor should be supplied. 

START VOLUME_CALCULATION 
  CONTEXT all 
  SERIES_NAME outflow 
  NEW_V_TABLE_NAME volout 
  FLOW_TIME_UNITS days 
  DATE_FILE "volume dates.dat" 
  FACTOR 3.4953 
END VOLUME_CALCULATION 



WRITE_PEST_FILES  68 
 

 
 

 

WRITE_PEST_FILES 

General 

The WRITE_PEST_FILES block instructs TSPROC to generate PEST input files for a 
parameter estimation run. Use of this block to generate PEST input files is predicated on the 
assumption that TSPROC will be used as a model post-processor as part of a composite 
model (encapsulated in a batch or script file) run by PEST. It is further assumed that the input 
file supplied to TSPROC when used in this mode is almost identical to that used by TSPROC 
to generate the PEST input files upon which the parameter estimation process is based. 
However when used in the latter capacity, a number of items specific to construction of the 
PEST input dataset are enabled using TSPROC CONTEXT functionality. These processing 
options must then be disabled once the PEST input dataset has been written, and before 
TSPROC assumes its role as a model post-processor. 

Position within a TSPROC Input File 

If present, a WRITE_PEST_FILES block must immediately follow a LIST_OUTPUT block 
in a TSPROC input file. In writing the PEST input dataset, TSPROC assumes that the 
LIST_OUTPUT block which immediately precedes the WRITE_PEST_FILES block is 
exactly the same as that which it will use to generate “model output files” when run as a 
model post-processor in the forthcoming calibration run. The time series, s_tables, v_tables 
and e_tables which are cited in the LIST_OUTPUT block are thus classified as the “model” 
time series, s_tables, v_tables and e_tables. For each of these model-generated entities a 
corresponding “observation” entity must be supplied. Like the model entities to which they 
are matched, the observation entities must have been generated (or simply imported) during 
the current TSPROC run. (Like the WRITE_PEST_FILES block itself, some of the 
functionality implemented by TSPROC to generate observation entities used by the 
WRITE_PEST_FILES block will probably be disabled through appropriate CONTEXT 
selection before the current TSPROC input file is supplied to TSPROC for use in its 
forthcoming role as a model post-processor.) 

Model and Observation Entities 

It is important to note that any model entity that is matched to an observation entity must 
have the same design specifications as that entity. Thus an observation time series must have 
the same number of terms as the model time series to which it is matched, and each of the 
terms in these paired time series must pertain to the same date and time. This can be achieved 
using the REDUCE_TIME_SPAN and NEW_TIME_BASE blocks; using the former block 
an observation time series can be contracted in length to the time spanned by a model 
simulation run, while model outputs can be time-interpolated to measurement times using the 
latter block. Model and observation s_tables must include the same statistics, calculated over 
the same time spans; however a model s_table will normally have been calculated on the 
basis of a model-generated time series, whereas an observation s_table will have been 
calculated on the basis of an observation time series. Similarly, exceedence times contained 



WRITE_PEST_FILES  69 
 

 
 

 

in model and observation e-tables must have been calculated from model-generated and 
observation time series using the same flow thresholds; and model and observation v_tables 
must have been calculated from model-generated and observation time series using the same 
set of integration time intervals. Should TSPROC detect any inconsistencies in such paired 
entities, it will cease execution with an appropriate error message. 

It is a very good idea for model s_tables, v_tables and e_tables to be calculated from model-
generated time series after the latter have been time-interpolated to the times and dates of the 
observation time series to which they correspond. This is especially important if observations 
are intermittent and irregular. By doing this, any bias or miscalculation of the quantities 
stored within the various TSPROC entities is “cancelled out” in the calibration process 
because both the model and observation quantities are subject to exactly the same error 
caused by limitations in the time base on which they were calculated. If desired, exact 
calculations of these quantities can be made on the basis of model-generated time series after 
the calibration process is complete. 

Keywords 

The following table describes the keywords associated with a WRITE_PEST_FILES block. 

 

Keyword Role Specifications 

CONTEXT At least one CONTEXT keyword must 
be supplied; up to 5 are permitted. If 
one of the CONTEXT strings matches 
the CONTEXT string in the 
SETTINGS block, or if one of the 
CONTEXT strings is “all”, the 
WRITE_PEST_FILES block will be 
processed. 

Any string without internal spaces 
of 20 characters or less in length. 
The CONTEXT keyword(s) must 
precede all other keywords. 

TEMPLATE_FILE Mandatory. The name of a PEST 
template file. Use as many 
TEMPLATE_FILE entries as there are 
template files involved in the parameter 
estimation process. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces. 

MODEL_INPUT_FILE Optional. If present, this keyword must 
immediately follow a 
TEMPLATE_FILE keyword. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces.  

PARAMETER_DATA_FIL
E 

Optional. The name of a file containing 
data normally found in the “parameter 
data” section of a PEST control file. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces.  

PARAMETER_GROUP_FI
LE 

Optional. The name of a file containing 
data normally found in the “parameter 
groups” section of a PEST control file. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces. 



WRITE_PEST_FILES  70 
 

 
 

 

OBSERVATION_SERIES_
NAME 

Optional. The name of a time series 
containing measurement data. Must be 
followed by a 
MODEL_SERIES_NAME keyword. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s 
memory. 

MODEL_SERIES_NAME Mandatory for every 
OBSERVATION_SERIES_NAME 
keyword. Model-generated time series 
corresponding to an observation time 
series. Must follow an 
OBSERVATION_SERIES_NAME 
keyword. 

A name of 10 characters or less in 
length referencing a time series 
stored within TSPROC’s 
memory. 

SERIES_WEIGHTS_EQUA
TION 

Mandatory for every 
OBSERVATION_SERIES_NAME 
keyword. Equation by which 
observation weights are calculated. 
Must follow a 
MODEL_SERIES_NAME keyword. 

An equation, optionally enclosed 
in quotes. 

SERIES_WEIGHTS_MIN_
MAX 

Optional. The minimum and maximum 
weights for observations pertaining to 
the previous 
OBSERVATION_SERIES_NAME 
keyword. If present, must immediately 
follow a 
SERIES_WEIGHTS_EQUATION 
keyword.  

Two real non-negative numbers 
separated by a space. First the 
minimum weight, then the 
maximum weight. 

OBSERVATION_S_TABLE
_NAME 

Optional. The name of an s_table 
containing processed measurement 
data. Must be followed by a 
MODEL_S_TABLE_NAME keyword. 

A name of 10 characters or less in 
length referencing an s_table 
stored within TSPROC’s 
memory. 

MODEL_S_TABLE_NAME Mandatory for every 
OBSERVATION_S_TABLE_NAME 
keyword. Model-generated s_table 
corresponding to an observation 
s_table. Must follow an 
OBSERVATION_S_TABLE_NAME 
keyword. 

A name of 10 characters or less in 
length referencing an s_table 
stored within TSPROC’s 
memory. 

S_TABLE_WEIGHTS_EQU
ATION 

Mandatory for every 
OBSERVATION_S_TABLE_NAME 
keyword. Equation by which 
observation weights are calculated. 
Must follow a 
MODEL_S_TABLE_NAME keyword. 

An equation, optionally enclosed 
in quotes. 



WRITE_PEST_FILES  71 
 

 
 

 

S_TABLE_WEIGHTS_MIN
_MAX 

Optional. The minimum and maximum 
weights for observations pertaining to 
the previous 
OBSERVATION_S_TABLE_NAME 
keyword. If present, must immediately 
follow an 
S_TABLE_WEIGHTS_EQUATION 
keyword. 

Two real non-negative numbers 
separated by a space. First the 
minimum weight, then the 
maximum weight. 

OBSERVATION_V_TABL
E_NAME 

Optional. The name of a v_table 
containing processed measurement 
data. Must be followed by a 
MODEL_V_TABLE_NAME keyword. 

A name of 10 characters or less in 
length referencing a v_table 
stored within TSPROC’s 
memory. 

MODEL_V_TABLE_NAM
E 

Mandatory for every 
OBSERVATION_V_TABLE_NAME 
keyword. Model-generated v_table 
corresponding to an observation 
v_table. Must follow an 
OBSERVATION_V_TABLE_NAME 
keyword. 

A name of 10 characters or less in 
length referencing a v_table 
stored within TSPROC’s 
memory. 

V_TABLE_WEIGHTS_EQ
UATION 

Mandatory for every 
OBSERVATION_V_TABLE_NAME 
keyword. Equation by which 
observation weights are calculated. 
Must follow a 
MODEL_V_TABLE_NAME keyword. 

An equation, optionally enclosed 
in quotes. 

V_TABLE_WEIGHTS_MIN
_MAX 

Optional. The minimum and maximum 
weights for observations pertaining to 
the previous 
OBSERVATION_V_TABLE_NAME 
keyword. If present, must immediately 
follow a 
V_TABLE_WEIGHTS_EQUATION 
keyword. 

Two real non-negative numbers 
separated by a space. First the 
minimum weight, then the 
maximum weight. 

OBSERVATION_E_TABLE
_NAME 

Optional. The name of an e_table 
containing processed measurement 
data. Must be followed by a 
MODEL_E_TABLE_NAME keyword. 

A name of 10 characters or less in 
length referencing an e_table 
stored within TSPROC’s 
memory. 

MODEL_E_TABLE_NAME Mandatory for every 
OBSERVATION_E_TABLE_NAME 
keyword. Model-generated e_table 
corresponding to an observation 
e_table. Must follow an 
OBSERVATION_E_TABLE_NAME 
keyword. 

A name of 10 characters or less in 
length referencing an e_table 
stored within TSPROC’s 
memory. 



WRITE_PEST_FILES  72 
 

 
 

 

E_TABLE_WEIGHTS_EQU
ATION 

Mandatory for every 
OBSERVATION_E_TABLE_NAME 
keyword. Equation by which 
observation weights are calculated. 
Must follow a 
MODEL_E_TABLE_NAME keyword. 

An equation, optionally enclosed 
in quotes. 

E_TABLE_WEIGHTS_MIN
_MAX 

Optional. The minimum and maximum 
weights for observations pertaining to 
the previous 
OBSERVATION_E_TABLE_NAME 
keyword. If present, must immediately 
follow an 
E_TABLE_WEIGHTS_EQUATION 
keyword. 

Two real non-negative numbers 
separated by a space. First the 
minimum weight, then the 
maximum weight. 

NEW_PEST_CONTROL_FI
LE 

Mandatory. The name of the PEST 
control file to be written by TSPROC. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces. 

NEW_INSTRUCTION_FIL
E 

Mandatory. The name of the 
instruction file to be written by 
TSPROC. 

Any filename up to 120 
characters in length. Use quotes if 
the filename contains spaces. 

MODEL_COMMAND_LIN
E 

Optional. The model command line to 
be recorded in the “model command 
line” section of the PEST control file. 

A command line which satisfies 
the requirements of the operating 
system, in the present case the 
name of a batch or script file. 

Keywords in a WRITE_PEST_FILES block. 

 

An example of a WRITE_PEST_FILES block follows. Note that while this example is based 
on the use of only one time series, s_table, v_table and e_table in the inversion process, 
others of each of these entities could have been included simply through adding the 
appropriate sets of keywords and associated entries to the block below. 

 
 



WRITE_PEST_FILES  73 
 

 
 

 

A WRITE_PEST_FILES block. 

 

Tasks Undertaken by TSPROC in Generating a PEST Input Dataset 

In processing the entries contained within a WRITE_PEST_FILES block, TSPROC 
undertakes the following tasks. 

1. It reads all template files cited in the WRITE_PEST_FILES block, accumulating 
the names of all parameters cited in those files. 

2. If a PARAMETER_DATA_FILE keyword is present within the 
WRITE_PEST_FILES block, TSPROC reads that file, storing the data contained 
therein (see below). 

3. If a PARAMETER_GROUP_FILE keyword is present within the 
WRITE_PEST_FILES block, TSPROC reads that file, storing the data contained 
therein (see below). 

START WRITE_PEST_FILES 
  CONTEXT pest_input 
  NEW_PEST_CONTROL_FILE case.pst 
  TEMPLATE_FILE catchment.tpl 
  MODEL_INPUT_FILE catchment.uci 
  NEW_INSTRUCTION_FILE observation.ins 
 
  OBSERVATION_SERIES_NAME flow_obs 
  MODEL_SERIES_NAME i_flow_mod 
  SERIES_WEIGHTS_EQUATION 1.0/@_abs_value 
  SERIES_WEIGHTS_MIN_MAX 1.0 1000.0 
 
  OBSERVATION_V_TABLE_NAME vol_obs 
  MODEL_V_TABLE_NAME vol_mod 
  V_TABLE_WEIGHTS_EQUATION 5.0 
 
  OBSERVATION_S_TABLE_NAME stat_obs 
  MODEL_S_TABLE_NAME stat_mod 
  S_TABLE_WEIGHTS_EQUATION 1.0/@_abs_value 
 
  OBSERVATION_E_TABLE_NAME time_obs 
  MODEL_E_TABLE_NAME time_mod 
  E_TABLE_WEIGHTS_EQUATION log(2.0/@_abs_value) + 2.0 
  E_TABLE_WEIGHTS_MIN_MAX 0 1000 
 
  PARAMETER_DATA_FILE param.dat 
  PARAMETER_GROUP_FILE pargroup.dat 
  MODEL_COMMAND_LINE model.bat 
END WRITE_PEST_FILES 



WRITE_PEST_FILES  74 
 

 
 

 

4. TSPROC checks that all model entities (ie. time series, s_tables, v_tables and 
d_tables) cited in the WRITE_PEST_FILES block are also cited in the 
LIST_OUTPUT block that should immediately precede it in the TSPROC input 
file. 

5. It checks that each observation entity that is matched to a model entity has the 
same design specifications as its model counterpart. 

6. It then generates names for all observations featured in the parameter estimation 
process (ie. for the individual terms of all time series, and the individual elements 
of all s_tables, v_tables and e_tables); as is discussed below, these names are 
based on the names of the respective entities. 

7. TSPROC then writes an instruction file by which the “model-generated data” 
written by the previous LIST_OUTPUT block can be read by PEST. 

8. TSPROC then writes the “control data”, “parameter group” and “parameter data” 
sections of the new PEST control file. Included in this file are all parameters 
referenced in the template files cited in the WRITE_PEST_FILES block. 
Information contained within the parameter data and parameter group files is 
included in the pertinent sections of the PEST control file where appropriate. 
Default values are used for all other PEST variables. 

9. The “observation group” and “observation data” sections of the new PEST control 
file are then written. Observation weights are calculated according to formulae 
supplied through various WEIGHTS_EQUATION keywords. 

10. The “model command line” and “model input/output” sections of the new PEST 
control file are then written. 

These tasks are now discussed in greater detail. 

Parameter and Parameter Group Data 

TSPROC ascertains the names of the parameters that it must include in the PEST control file 
by reading all template files cited in the WRITE_PEST_FILES block. Any number of 
TEMPLATE_FILE keywords can be included in a WRITE_PEST_FILES block. Optionally, 
each such keyword can be followed by a MODEL_INPUT_FILE keyword.  If so, PEST links 
the cited model input file to the previous template file when writing the “model input/output” 
section of the PEST control file. If a MODEL_INPUT_FILE keyword is not associated with 
a particular TEMPLATE_FILE keyword, PEST supplies a default model input filename to 
correspond to the template file; this filename should be altered to the correct filename in the 
PEST control file before running PEST. 

In writing a PEST control file, TPROC must supply each parameter with an initial value, an 
upper and lower bound, and all of the other information contained within the “parameter 
data” section of a PEST control file. It must also assign each parameter to a parameter group. 
Recall that variables which govern the calculation of derivatives are assigned to parameter 
groups rather than to individual parameters. For some parameter types, the values assigned to 



WRITE_PEST_FILES  75 
 

 
 

 

these derivative-calculation variables can be crucial to the success of the parameter 
estimation process. 

If no PARAMETER_DATA_FILE keyword is present within a WRITE_PEST_FILES block, 
PEST assigns default values to all parameter variables. It assigns each parameter to a group 
of its own, and supplies default values to the derivatives-calculation variables pertaining to 
each such group. The user should carefully inspect all of these variables, altering them as 
necessary to suite the calibration problem at hand. 

If desired, default TSPROC parameter data can be overridden by supplying the values for 
parameter variables and parameter group variables through a “parameter data file” and a 
“parameter group file” respectively. The names of these files are supplied following optional 
keywords of the same name in the WRITE_PEST_FILES block. 

A parameter data file is illustrated below. 

 

A parameter data file. 

 

For the most part, a parameter data file emulates the “parameter data” section of a PEST 
control file, containing the same variables in the same order. However, note the following. 

1. There is no need to supply a value for the DERCOM variable (the command line 
number for derivatives calculation - the 10th variable on each line of the 
“parameter data” section of a PEST control file). TSPROC will always provide a 
default value of 1 for this variable when it writes a PEST control file. 

2. Not all parameters cited in template files need to be cited in a parameter data file. 
TSPROC will provide default data for parameters that are absent from the latter 
file. 

3. If a parameter is tied to another parameter, the name of the parent parameter must 
be attached to the “tied” string following an underscore, as illustrated in the above 
example. 

4. If a parameter is assigned to a particular parameter group, and if a parameter 
group file is not cited in the WRITE_PEST_FILES block, or if the name of the 
group is not included in a cited parameter group file, then TSPROC will supply 
default values for variables governing derivatives calculation for that group when 
it writes the PEST control file. 

ro1  fixed    factor  0.5   .1  10     ro    1.0   0.0 
ro2  log      factor  5.0   .1  10     ro    1.0   0.0 
ro3  tied_ro1 factor  0.5   .1  10     ro    1.0   0.0 
h1   none     factor  2.0   .05 100    h     1.0   0.0 
h2   none     factor  5.0   .05 100    h     1.0   0.0 



WRITE_PEST_FILES  76 
 

 
 

 

The contents of a parameter group file emulate those of the “parameter groups” section of a 
PEST control file. An example is provided below. 

A parameter group file. 

 

Time Series Observations 

For every time series involved in the parameter estimation process, at least three, and up to 
four, keywords must be supplied in the WRITE_PEST_FILES block. These keywords must 
be provided in the order presented in the above table.  

The time series associated with the OBSERVATION_SERIES_NAME keyword should 
contain measurement data. TSPROC will write the terms of this series to the PEST control 
file. The goal of the parameter estimation process will be to minimise the discrepancies 
between these terms and those of a corresponding model-generated time series. The latter 
will be produced by TSPROC in its role as a model post-processor; as mentioned above, 
when acting in this latter role CONTEXT settings must be such that a PEST input dataset is 
NOT generated, and any unnecessary processing of observation data is dispensed with. 

The name of the model time series which forms the model-generated counterpart to the 
observation time series must be supplied with the MODEL_SERIES_NAME keyword 
directly following the OBSERVATION_SERIES_NAME keyword. It is important to note 
that this same series must be featured in the LIST_OUTPUT block immediately preceding 
the WRITE_PEST_FILES block. This LIST_OUTPUT block, and all calculations and data 
importations giving rise to the time series and tables cited in that block, must be retained 
when TSPROC is run as a model post-processor during the parameter estimation process. 

As was mentioned above, a model time series must have identical specifications to an 
observation time series with which it is paired, both in the number of terms, and the 
dates/times pertaining to each of its terms. This will ensure that it is valid to compare the two 
series on a term-by-term basis for the purposes of calibrating a model. 

When writing a PEST input file, TSPROC assigns all observations comprised of the terms of 
an observation time series to a single observation group. This group is given the same name 
as the model time series to which the observation time series corresponds. Individual 
observation names are generated by affixing the string “#n..n” to a contraction of the group 
name, where “n..n” is the term number of the time series. If for some reason this process does 
not result in unique observation names (which can occur under some circumstances if time 
series names are too similar), TSPROC will inform you of the problem through an 
appropriate error message and will then cease execution. 

When writing the “observation data” section of a PEST control file, TSPROC must assign a 
weight to each observation. Observation weights are calculated by TSPROC on the basis of 

ro  relative  0.01  0.00    switch 1.5 parabolic 
h   relative  0.01  1.0e-4  switch 2.0 parabolic 



WRITE_PEST_FILES  77 
 

 
 

 

the equation supplied by the user with the WEIGHTS_EQUATION keyword. The format of 
the weights equation is the same as that described in the SERIES_EQUATION block, except 
for two important differences. These are as follows. 

1. If a series name is cited in a weights equation, that series must have the same 
time-base (same number of terms, and same date/time pertaining to each term) as 
the observation time series for which weights are being calculated. In 
implementing the equation for weights calculation, series are matched on a term-
by-term basis. 

2. An extra TSPROC-specific function is provided for use in a weights equation that 
is not available for use in a series equation. This is the @_abs_val function. This 
function returns the value of the term of the observation time series for which a 
weight is currently being calculated. 

Some example weights equations follow. 

wt_series 

1.0/sqrt(@_abs_val) 

4.0 

1.0 + 0.5 * sin((@_days_start_year + 124.5)*6.284/365.25) 

sqrt(@_days_”1/1/1989_00:00:00”) 

In the first of the above equations, weights are simply equated to the terms of an existing time 
series (which may have been calculated within TSPROC specifically for this purpose). In the 
second of the above equations, observation weights are calculated as the inverse of the square 
root of the absolute value of each observation. In the third example a uniform weight of 4.0 is 
assigned to all observations comprising the observation time series, while in the fourth 
example weights show a seasonal dependence, being a function of time of year (note the 
factor of 2π /365.25 in the argument to the sine function). Recall from the documentation to 
the GET_SERIES_EQUATION block that the argument to the sin, cos and tan functions 
must be supplied in radians; 2π radians is the same as 360 degrees. In the fifth of the above 
equations, weights increase as the square root of the number of days that have elapsed since 
the first moment of 1989. 

If any observation weight is calculated as less than zero, TSPROC raises the weight to zero. 
However the user has the option of supplying upper and lower bounds to the weights 
him/herself through a SERIES_WEIGHTS_MIN_MAX keyword. (If a user requests a 
minimum weight of less than 0.0, TSPROC will override this with a minimum weight of 
zero.) 

Note that when generating instructions to read the TSPROC output file whose name is cited 
in the LIST_OUTPUT block that immediately precedes the WRITE_PEST_FILES block, 
TSPROC automatically adjusts these instructions according to whether the 
SERIES_FORMAT is specified as “long” or “short” in that block. Considerable computation 
time can be saved if the SERIES_FORMAT is “short”. 



WRITE_PEST_FILES  78 
 

 
 

 

S_Table Observations 

The mechanism by which s_table observations are included in a calibration dataset is very 
similar to that by which series observations are included in this dataset. The name of an 
observation s_table must be provided through the OBSERVATION_S_TABLE keyword. 
This keyword must be immediately followed by a MODEL_S_TABLE keyword through 
which the name of a corresponding model s_table is provided. This s_table must contain the 
same statistics as those contained within the observation s_table (statistics for inclusion in an 
s_table are requested through the SERIES_STATISTICS block). This same s_table must also 
be featured in the LIST_OUTPUT block immediately preceding the WRITE_PEST_FILES 
block. 

TSPROC assigns all observations pertaining to a particular s_table to a single observation 
group whose name is the same as that of the model s_table. Individual members of the 
s_table are provided with observation names by contracting the name of the observation 
group and appending a shortened form of the name of the statistic which each represents. 

Weights for s_table observations are generated using a weights equation. However unlike the 
weights equation used in the generation of weights for time series observations, the weights 
equation used for the generation of s_table observation weights cannot site a series name. 
Nor can it use the @_days_start_year or @_days_“mm/dd/yyyy_hh:nn:ss” functions. 
However it can use the @_abs_val function; in this case the value refers to the particular 
statistical entity contained in the s_table to which the weight is assigned.  

V_Table Observations 

V_table observations are included in a calibration dataset in the same way that s_table 
observations are included. The only difference is that individual observations are named by 
affixing a number (rather than a contracted form of the name of a statistical measure) to a 
contracted form of the observation group name. The latter is named after the model v_table to 
which the observation v_table is matched in the WRITE_PEST_FILES block. 

E_Table Observations 

Inclusion of e_table observations in the calibration process follows the same procedure as 
that used for inclusion of v_table observations. 

C_Table Observations 

As presently programmed, data contained within c_tables cannot be included in the model 
calibration process. If the name of a c_table is cited in a WRITE_PEST_FILES block, 
TSPROC will cease execution with an error message. 

The PEST Control File 

In the PEST control file written by TSPROC, PEST is asked to run in parameter estimation 
mode. Default values are provided for all PEST control variables. Fortunately, these are 



WRITE_PEST_FILES  79 
 

 
 

 

suitable for most occasions; however if a control variable is not suitable for a particular 
parameter estimation run, it can easily be altered by the user. Similarly, if it is desired that 
PEST run in another mode, this too can easily be accomplished by direct editing of the PEST 
control file written by TSPROC. If it is desired that PEST run in regularisation mode, a set of 
regularisation observations and/or prior information equations must also be added to this file. 

If a TEMPLATE_FILE keyword in a WRITE_PEST_FILES block is followed by a 
MODEL_INPUT_FILE keyword, then the model input file is linked to the corresponding 
template file in the “model input/output” section of the PEST control file. The name of the 
instruction file recorded in the “model input/output” section of the PEST control file is that 
which is written by TSPROC, the name of which is associated with the 
NEW_INSTRUCTION_FILE keyword. This is matched to the model output file whose name 
is provided with the FILE keyword in the LIST_OUTPUT block immediately preceding the 
WRITE_PEST_FILES block. 

If a MODEL_COMMAND_LINE keyword is provided in a WRITE_PEST_FILES block, the 
user-supplied command line is transferred to the “model command line” section of the PEST 
control file written by TSPROC. Otherwise a default command line is used; this will 
probably need to be altered by the user before running PEST. Note that the model command 
line will be the name of a batch or script file. Commands cited in this file will include the 
name of a model executable, as well as the command to run TSPROC. TSPROC’s keyboard 
responses will need to be written in advance to a small file whose name must be included in 
the command to run TSPROC following the “<” symbol denoting keyboard re-direction. 

Notwithstanding the fact that it may require some alterations before being used by PEST, a 
PEST control file written by TSPROC is complete enough to withstand the scrutiny of 
PESTCHEK. As is described in the PEST manual, PESTCHEK checks both the PEST 
control file whose name is provided on its command line, as well as all template and 
instruction files cited within the PEST control file. Because TSPROC uses parameter names 
found in one or a number of template files in its construction of the PEST control file, and 
because it generates the instruction file itself for the current parameter estimation process, 
PESTCHEK should not detect any errors or inconsistencies in the PEST input dataset built by 
TSPROC (unless these have been introduced through a spurious parameter data file or 
parameter group file). 

Calibration using “Patterns” 

There are some instances of model calibration where the direct matching of raw or processed 
observation data to corresponding raw or processed model-generated data might not work as 
well as other strategies for at least some of the data types that may be included in the model 
calibration process. Certain types of stream quality data fall into this category. For these data 
types a better calibration strategy may be to attempt to match some relationship between 
flows and constituent measurements (calculated on the basis of observations on the one hand 
and model outputs on the other), rather than the individual constituent concentrations 
themselves. For example the calibration process may attempt to ensure that a regression 
relationship involving flows, constituent data, and possibly other factors such as time of year, 
is respected by the model, even if the model is incapable of replicating individual constituent 
measurements due to the erratic and noisy nature of these measurements. 



WRITE_PEST_FILES  80 
 

 
 

 

As an example of the application of this principal, consider that it is “known” that a certain 
regression relationship exists between flow and constituent concentrations. The coefficients 
in such a relationship may have been determined through using a model such as the USGS 
program ESTIMATOR; or they may even have been determined using PEST in conjunction 
with TSPROC, with the SERIES_EQUATION block of TSPROC comprising the “model”. 
As part of TSPROC’s model post-processing duties, model-generated flows and constituent 
concentrations could be time-interpolated to the dates and times at which constituent 
measurements were made. Using the SERIES_EQUATION block, the difference between 
model-calculated concentrations and those “predicted” using the regression equation applied 
to model-generated flows could be evaluated. The closer that the difference between these 
two quantities is to zero, the closer does the “constituent pattern” generated by the model 
match the observed “constituent pattern”. (Other factors will come into play here, such as the 
average and standard deviation of the constituent measurements which, as discussed above, 
are also easily incorporated into the parameter estimation process.) 

In order to incorporate “pattern matching” of this type into the parameter estimation process, 
a time series expressing the difference between modelled constituent concentrations and 
those calculated from modelled flows using the “known” regression equation can be supplied 
as a model time series in the WRITE_PEST_FILES block (and the LIST_OUTPUT block 
preceding it). For consistency, dates and times for this time series should correspond only to 
constituent measurement times. The corresponding observation time series would be one with 
an identical time-base, but with all terms equal to zero. Weights assigned to these 
“observations” could be uniform; alternatively they could be a function of the actual 
observed constituent concentrations, calculated using a SERIES_EQUATION block and 
supplied through the SERIES_WEIGHTS_EQUATION keyword. 



References  81 
 

 
 

 

References 
Baier, G., Cohn, T. and Gilroy, E., 1995. Instructions for using the ESTIMATOR software. 
Downloaded from the “Unofficial Estimator2000 Home Page” at:- 
http://www159.pair.com/cohns/TimCohn/TAC_Software/Estimator 

Kuczera, G., 1983. Improved parameter inference in catchment models. 1. Evaluating 
parameter uncertainty. Water Resources Research, v 19, no. 5, pp 1151-1172. 

Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in 
hydrologic and hydroclimatic model validation. Water Resources Research, v35, no. 1, 
pp233-241. 

Nathan, R.J. and McMahon, T.A., 1990. Evaluation of automated techniques for base flow 
and recession analysis. Water Resources Research, v 26, no. 7, pp1465-1473. 

Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part 
1: A discussion of principles. J. Hydrol. 10, 282-290. 

 

 

 



   
 

 
 

 

 

 

 

Appendix A 
 

Documentation of Other Utility Programs 
 



ADJOBS  A-1 
 

 
 

 

ADJOBS 

Function of ADJOBS 

ADJOBS is an acronym for “adjust observations”. ADJOBS reads an existing PEST control 
file. It allows the user to perform the following tasks:- 

• introduce new observation groups on the basis of observation names, and 

• calculate observation weights on the basis of observation values; different formulae can 
be used for weights calculation for different observation groups. 

ADJOBS is useful in preparing for a PEST run in conjunction with a model that produces one 
or a number of lengthy time series. In this capacity it is complementary to programs 
TSPROC and PESTPRP1. 

Using ADJOBS 

ADJOBS commences execution by prompting the user for the name of an existing PEST 
control file. Before being read by ADJOBS, this file should have been checked using 
PESTCHEK for, while ADJOBS will detect and report many of the types of errors that may 
be present in a PEST control file, its checking functionality is not as complete as that of 
PESTCHEK. 

ADJOBS then reads the PEST control file whose name has been supplied. It pays particular 
attention to the “observation groups” and “observation data” sections of this file. It counts the 
number of observations belonging to each observation group and then asks the user a series 
of questions pertaining to each such group. 

First:- 
Observation group "obsgp1" (245 observations belong to this group) ----> 
  Do you wish to make any adjustments  [y/n]?: 

If you do not wish to subdivide this group into other observation groups, or to re-assign 
weights to the members of this group, answer “n” to the above prompt. However if you 
answer “y”, ADJOBS will then prompt:- 

Divide group into subgroups  [y/n]? 

Division into subgroups takes place on the basis of observation names. Thus if different 
observation types have different name types, these different observation types can be easily 
placed into different groups. For example if discharge observations are named dis001, dis002, 
dis003, etc. and pollutant concentrations are labelled conc001, conc002, conc003, etc, and 
both of these observation types presently belong to the same group, they can be separated on 
the basis of the first three letters of each of their observation names, with observations 
beginning with the letters “dis” being assigned to one group and those beginning with the 



ADJOBS  A-2 
 

 
 

 

letters “con” being assigned to another group. To achieve this, answer the following prompt 
with the number “3”:- 
Use first n characters of observation name for group definition. 
Enter n: 

ADJOBS inspects the names of all of the observations belonging to the current group. It 
ascertains the number of groups into which the present group is now subdivided and, for each 
such group, it asks:- 
Observations in group "obsgp1" beginning with "dis" ---> 
Enter observation group name for these observations: 

Provide an observation group name as requested. Note that the user may, in response to this 
or any other prompt, press the “e” key followed by return. This provides an “escape” 
mechanism, returning the user to the previous prompt. 

After a new observation group name has been supplied, ADJOBS prompts for the variables 
required for weights calculation. If the user desires, weights can be calculated differently in 
each new group. ADJOBS prompts:- 

Adjust weights for this observation subgroup  [y/n]? 

Then, if “y”, 
Weights are calculated as w = a*(abs[observation_value])**b+c 
 Enter a:  
 Enter b:  
 Enter c:  
 Enter maximum allowable weight:  
 Enter minimum allowable weight:  

Respond to these prompts as appropriate; note that the formula for weights calculation is:- 

w = a[abs(observation_value)]b + c 

By supplying b as –1, weights can be made inversely proportional to observation values. This 
is often useful when estimating parameters for a runoff-generation model on the basis of 
observed values of discharge. All calculated weight values are constrained to lie within the 
maximum and minimum bounds provided by the user; neither of which can be less than zero. 

Note that weights can be adjusted in this manner whether or not a group is subdivided into 
smaller groups. The user simply informs ADJOBS that he/she does not wish to carry out 
group subdivision; he/she will then be prompted for the parameters of the weights calculation 
formula for the entire group. 

Finally, ADJOBS prompts for the name of a new PEST control file. It then writes this file 
using the new observation group names and/or weights provided by the user. You should 
check this file using PESTCHEK before supplying it to PEST. 

Uses of ADJOBS 

As has already been mentioned, ADJOBS is particularly useful in PEST pre-processing 
where PEST is to be used in the estimation of parameters for a model which generates one or 
a number of lengthy time series, particularly flow time series. Because there are often many 



ADJOBS  A-3 
 

 
 

 

measurements comprising an observation dataset in this context, preparation for a PEST run 
requires software assistance. Such assistance is available through TSPROC and PESTPRP1, 
whose use is documented elsewhere in this manual. 

In many instances of parameter estimation on the basis of discharge time series, it is wise to 
vary weights in accordance with discharge values. It is often useful to set weights in inverse 
proportion to discharge in order that the objective function is not dominated by high flows. 
This can be achieved through supplying a negative exponent in the weight generation 
equation. Note that if this is done, it is wise to set appropriate upper and lower bounds on 
weights by responding to ADJOBS prompts in the appropriate manner. 

See Also 

See also PESTPRP1, SMP2SMP and TSPROC. 



IQQM2SMP  A-4 
 

 
 

 

IQQM2SMP 

Function of IQQM2SMP 

IQQM2SMP reads unformatted files produced by IQQM (Integrated Quality and Quantity 
model produced by the New South Wales Department of Land and Water Conservation). It 
converts data of user-nominated types at user-nominated sites to site sample file format. Thus 
if IQQM2SMP is run after IQQM as part of a composite model, selected IQQM output 
datasets are available in site sample file format. As such, they are amenable to plotting using 
SMP2HYD and volumetric calculation using SMP2VOL. Most importantly, however, they 
are also amenable to processing using TSPROC, this greatly facilitating the use of IQQM in 
conjunction with PEST. 

Using IQQM2SMP 

Because IQQM2SMP uses dates and times, it is essential that a settings file named 
settings.fig reside in the subdirectory from which IQQM2SMP is run. Recall that the contents 
of this file inform any utility which reads it of the format to use when reading and writing 
dates, in particular whether the day precedes the month or vice versa. If a settings file is not 
present in the subdirectory from which IQQM2SMP is run, IQQM2SMP will terminate 
execution with an appropriate error message. 

Use of IQQM2SMP requires that the user be aware of the contents of IQQM unformatted 
direct access output files. For version 6.31 of IQQM, direct access output files are named 
*n.out where n is [00] to [12], this number representing the node type; there is thus a different 
output file written for each node type. Within each such file, data is stored for each of a 
number of data types for each pertinent node. (Data types for storage are selected using the 
IQQM “output” menu.) Thus at each IQQM output time, m variables are written to each 
IQQM direct access output file, where m is the number of nodes of the pertinent type for that 
file multiplied by the number of data types for which output was requested for that node type. 
IQQM output can be generated at either hourly or daily intervals. 

IQQM2SMP begins execution by prompting for the name of the IQQM unformatted output 
file which it must read:- 

Enter name of IQQM output file: 

It then prompts for the starting and finishing dates of the simulation. IQQM2SMP must be 
supplied with exactly the same starting and finishing dates as were supplied to IQQM when it 
commenced the model run which generated the files. The next prompt is:- 

Enter number of output times per day: 

The response to this prompt depends on the value supplied for Odt on the IQQM input file. If 
Odt is set to 1 hour, there will be 24 output times per day; if it is set at 24 hours, there will be 
only 1 output time per day. 



IQQM2SMP  A-5 
 

 
 

 

IQQM2SMP’s next prompt is:- 

Pre-read IQQM file to determine number of variables in file? [y/n]: 

If the user wishes, IQQM2SMP will quickly read the IQQM direct access output file to 
determine how many records are in this file. It will then divide the number of records by the 
number of simulated days times the number of outputs per simulated day to evaluate the 
number of output variables stored in this file. This will be equal to m × d where m is the 
number of nodes of the pertinent type cited in the output file and d is the number of data 
types recorded for each such node. If the user responds to the above prompt with “y”, IQQM 
will write a number of lines to the screen similar to the following. 
Details of file ine500.out:- 
   Number of days of stored data  = 1474 
   Number of records              = 165088 
   Number of data output times    = 1474 
   Number of variables            = 112 

The number of days of stored data is calculated according to the simulation beginning and 
end dates as supplied previously to IQQM2SMP by the user. The item of most interest in the 
above table from the point of view of answering the ensuing prompts is the number of 
variables. If there is any inconsistency between the user-supplied simulation dates, the user-
supplied number of output times per day, and the number of records found in the file, such 
that the number of variables cannot be calculated as an integer in the manner described 
above, IQQM2SMP will report an appropriate error message and cease execution. 

If you already know the number of variables residing in the IQQM-generated unformatted 
file, then this section of IQQM2SMP execution can be by-passed by answering “n” to the 
above prompt. This will normally be the case when using IQQM2SMP as part of a composite 
model run by PEST. Informing IQQM2SMP of the total number of variables (thus 
eliminating the need for it to determine this itself) saves IQQM2SMP the trouble of having to 
read the IQQM output file twice each time it is run. So if the user answers “n” to the above 
prompt, IQQM2SMP prompts:- 

Enter the number of variables stored in file filename: 

where filename is the name of the IQQM unformatted, direct access output file. 

IQQM2SMP next asks:- 

For how many variables do you wish to extract data: 

Supply an integer equal to the number of variables that you would like represented in the site 
sample file generated by IQQM2SMP. It this is supplied as p, then IQQM2SMP issues the 
following set of prompts p times:- 
Variable number 1 for IQQM2SMP output file:- 
   Enter IQQM variable number:  
   Enter identifier for variable [10 characters or less]: 

The variable number can be calculated from the data output sequence represented in the 
IQQM output file. Thus if the 5th data type for the 4th node cited in the file is required, and 12 
data types are written to the output file for each of these kinds of node, then the variable 



IQQM2SMP  A-6 
 

 
 

 

number will be 41 ie. (4-1) × 12 + 5. The variable number must not exceed the number of 
variables recorded in the file as either calculated by IQQM2SMP or as supplied by the user. 

The identifier to be supplied in response to the second of the above prompts is the “site 
identifier” that will be recorded for that data type on the site sample file generated by 
IQQM2SMP. In accordance with site sample file protocol, supply a name of 10 characters or 
less in length. 

Next IQQM2SMP prompts for the name of the site sample file which it must generate. Once 
this is supplied, IQQM2SMP writes this file and terminates execution. 

As pointed out in the first section of this manual, at any stage of execution the user can return 
to the previous prompt by responding to the current prompt with “e” (for escape) followed by 
the <Enter> key. 

If there is any doubt in the user’s mind surrounding the issue of whether the correct variable 
number was supplied in order to extract data of the required type for the required node, the 
matter can soon be resolved by comparing the site sample file produced by IQQM2SMP with 
a text file containing the same data produced by selection of the “List” option of the IQQM 
menu. The text file produced by this latter method will contain fewer significant figures than 
data written by IQQM2SMP; however a comparison of the two files will quickly reveal 
whether the data contained in each is the same. 

An inspection of a site sample file produced by IQQM2SMP may reveal something that at 
first appears like an inconsistency; however a closer inspection will reveal that nothing is 
amiss. Dates recorded in the IQQM2SMP output file may appear to be delayed by one day 
from those used by IQQM. However it should be noted that site sample file format requires 
that midnight at the end of one particular day is represented as zero hours on the following 
day. Thus if the user is at first confused by the fact that there appears to be a date represented 
in the IQQM2SMP output file that actually postdates the end of IQQM simulation by a day, a 
closer inspection will reveal that the time associated with this date is 00:00.00, this being 
midnight on the last day of the simulation.  

Uses of IQQM2SMP 

Once IQQM-generated data is in site sample file format, it is available for further processing 
using other members of the PEST Surface Water Utilities documented in this manual. For 
example SMP2HYD can be used to re-caste IQQM output data into a form where it is ready 
for plotting using commercial scientific plotting software. Volumetric calculations can be 
carried out using SMP2VOL or TSPROC. 

If IQQM calibration is being undertaken using PEST, then use of IQQM2SMP becomes 
indispensable. Once IQQM outputs have been converted to site sample file format, TSPROC 
can be used as a model post-processor and as a PEST input file generator for calibration 
exercises of arbitrary complexity. 



IQQM2SMP  A-7 
 

 
 

 

See Also 

See also PESTPRP1, SMP2HYD, SMP2SMP, SMP2VOL, and TSPROC. 

 

 



PESTPRP1  A-8 
 

 
 

 

PESTPRP1 

Function of PESTPRP1 

Program PESTPRP1 undertakes the laborious task of preparing a PEST control file and a 
PEST instruction file prior to using PEST with a model which generates an output time 
series. The laborious nature of this work arises from the fact that a great deal of observation 
data normally needs to be processed; however with PESTPRP1 the entire process is 
automated. It is assumed that the “model” to be calibrated consists of the simulator followed 
by a program that translates model output data to site sample file format (eg. PLT2SMP or 
IQQM2SMP), followed by SMP2SMP. On this basis PESTPRP1 prepares an instruction file 
to read the SMP2SMP output file, and builds a PEST control file containing measured values 
as listed in the “measurement” site sample file on which the model-generated site sample file 
produced by SMP2SMP is based; parameters listed in a set of template files are also recorded 
in the PEST control file generated by PESTPRP1. 

Note that, with the advent of TSPROC, the role of PESTPRP1 in conjunction with 
SMP2SMP has now been largely usurped by this considerably more powerful program. 

Using PESTPRP1 

PESTPRP1’s use as a PEST pre-processor is predicated on the assumption that the model run 
by PEST produces as one of its output files a site sample file in which model outputs are 
time-interpolated to measurement dates and times. Recall that SMP2SMP writes a site sample 
file containing model-generated quantities interpolated to the times at which field 
measurements were made, the latter being supplied in a “measurement” site sample file. It is 
the role of PESTPRP1 to write an instruction set by which the SMP2SMP-generated site 
sample file can be read, and to generated a PEST control file whose corresponding 
observation values are extracted from the “measurement” site sample file. 

PESTPRP1 begins execution with the prompts:- 
 Enter name of observation site sample file: 
 Enter name of    model    site sample file: 

The first is the site sample file containing measured data. The second is the site sample file 
generated by SMP2SMP as part of the model. Note that it is essential that the above site 
sample files be “paired” in the sense that the latter is generated by SMP2SMP on the basis of 
the former as part of the composite model run. 

As already stated, PESTPRP1 writes an instruction set by which the model-generated site 
sample file can be read, as well as a PEST control file. The production of both of these files 
entails the generation of observation names. PESTPRP1 generates observation names in one 
of three ways, depending on the user’s choice. PESTPRP1 prompts:- 

 Use numbers or site identifiers for observation names?  [n/s]: 



PESTPRP1  A-9 
 

 
 

 

If “n” is selected, observations are named from 1 to 99999999 in order of their appearance in 
the SMP2SMP-generated site sample file (which will also be the order of their appearance in 
the measurement site sample file upon which the SMP2SMP-generated site sample file is 
based).  Alternatively, select “b” for greater ease in relating observation names to actual 
measurements. In that case PESTPRP1 prompts:- 

 Use first n or last n characters of site identifier?  [f/l]: 

where n is a number from 3 to 6. If “f” is typed in response to the above prompt, PESTPRP1 
generates observation names by taking the first n characters of the site identifier and affixing 
the suffix “_m” to the identifier’s name, where m signifies the m’th sample pertaining to that 
site as read from the SMP2SMP-generated site sample file. PESTPREP determines n in the 
above prompt through counting the maximum number of observations pertaining to any site 
and thus determining how many of the twelve characters available in an observation name 
can be assigned to sample numbering in this fashion. If this method of assigning observation 
names does not result in a unique set of names due to the fact that different site identifiers 
have the same first n letters in common, PESTPRP1 informs the user of this. He/she is then 
prompted for an alternative method of observation name generation. 

If the response to the above prompt is “l”, PESTPRP1 uses the last n characters of each site 
identifier in conjunction with the measurement sequence numbering scheme to determine 
observation names. Once again, if this methodology does not result in a set of unique 
observation names PESTPRP1 will not proceed, requesting instead that the user employ an 
alternative scheme for observation name generation. 

PESTPRP1’s next prompt is:- 

 Enter name for instruction file: 

Once it is supplied with this name (preferably with an extension of .ins) PESTPRP1 generates 
the instruction set by which the SMP2SMP-generated site sample file can be read. Then it 
gathers the names of the various parameters involved in the current parameter estimation 
problem by reading all template files involved in the current PEST run. It prompts:- 
 How many template files are there? 
 Enter name for template file # 1: 
 Enter name for template file # 2: 

Once it has read these template files it prompts for the name of the PEST control file which it 
must write:- 

 Enter name for output PEST control file: 

which it then proceeds to write. 

When generating the “parameter data” section of the PEST control file, PESTPRP1 assigns 
all parameters an initial value of 1.0 and provides lower and upper bounds of –1010 and 1010 
respectively. A default transformation type or “none” is assumed. This will almost certainty 
require manual editing in order to provide values which are more appropriate for the current 
parameter estimation problem. Note in particular that logarithmic transformation of certain 
parameter types is often crucial to the success of the parameter estimation process. 



PESTPRP1  A-10 
 

 
 

 

In building the “parameter groups” section of the PEST control file, PEST assigns each 
parameter to a group of its own and supplies certain default values which control the 
calculation of derivatives. This user should be aware of the need to assign more appropriate 
values in many circumstances. 

PESTPRP1 assumes that only one instruction file is required by the inversion process, this 
being the one that it has written itself to read the SMP2SMP-generated site sample file, of 
which it also knows the name. PESTPRP1 also knows the names of all template files 
involved in the inversion process (but not the names of the corresponding model input files). 
It records all of this information to the PEST control file. Once this has been written, the 
status of the PEST input dataset can be immediately checked using program PESTCHEK. 
However, at the very minimum, the user will need to alter the model command line (which 
PESTPRP1 assumes to be simply model) and the names of the model input files 
corresponding to the various template files (which PESTPRP1 has temporarily named 
model1.in, model2.in, etc) before actually running PEST. 

PESTPRP1 assumes that PEST will run in parameter estimation mode. It adds no “predictive 
analysis” or “regularisation” section to the PEST control file which it generates. Likewise, it 
records no prior information. If required, both of these can be easily added by the user. 

Note that when using PESTPRP1, or any other member of the PEST Surface Water Utilities 
suite, the user can “backtrack” in execution by responding to any prompt by simply pressing 
“e” followed by the <Enter> key; “e” stands for “escape”. 

Uses of PESTPRP1 

PESTPREP automates most of the laborious work required in preparing for a PEST run. 
Because it can rapidly process the large amounts of data that often accompany model 
calibration, it can accomplish in seconds that which would take hours to accomplish in any 
other way. 

See Also 

See also SMP2SMP and TSPROC. 

 



PLT2SMP  A-11 
 

 
 

 

PLT2SMP 

Function of PLT2SMP 

PLT2SMP generates a site sample file on the basis of a “plotting file” written by the 
PLTGEN module of HSPF. This makes HSPF results accessible for processing by various 
members of the Surface Water Utility programs documented herein. It also allows HSPF 
results to be directly compared with field data by running HSPF followed by PLT2SMP 
followed by SMP2SMP. Calibration of HSPF can then be undertaken using PEST in 
conjunction with a composite model comprised of these three programs. 

Note however that, with the advent of TSPROC, the role of PLT2SMP has now been largely 
superseded by this considerably more powerful program. 

Using PLT2SMP 

Because PLT2SMP uses dates and times, it is essential that a settings file named settings.fig 
reside in the subdirectory from which PLT2SMP is run. Recall that the contents of this file 
inform any utility which reads it of the format to use when reading and writing dates, in 
particular whether the day precedes the month or vice versa. If a settings file is not present in 
the subdirectory from which PLT2SMP is run, PLT2SMP terminates execution with an 
appropriate error message. 

PLT2SMP commences execution with the prompt:- 

Enter name of PLTGEN-generated HSPF output file:- 

Supply an appropriate filename in response to this prompt. PLT2SMP then reads the header 
to this file, extracting the following information:- 

• the number of time series (ie. curves) represented in this file, and 

• the labels associated with these time series. 

It then presents each of these to the user and asks whether these should be reproduced in the 
site sample file to be written by PLT2SMP. If so, a “site identifier” is required for each such 
time series. PLT2SMP asks the user for such an identifier if a series is to be transferred, 
supplying as a default identifier the first 10 characters of the HSPF time series label (with 
underscores substituted for blanks if appropriate). In each case the user may either accept the 
default by pressing the <Enter> key, or supply a label him/herself. 

After PLT2SMP has prompted in this fashion for all time series represented in the PLTGEN 
file, it prompts for the name of the site sample file which it must write. After being supplied 
with this name it writes the file, informing the user when the task is complete. 

When writing dates and times to the site sample file, PLT2SMP makes a slight alteration to 
the HSPF representation of some dates and times. If a time series value corresponds to 



PLT2SMP  A-12 
 

 
 

 

midnight, HSPF represents the time as 24:00:00 and the date as that of the preceding day. 
However the convention adopted by the Surface Water Utilities is that the time be 
represented as 00:00:00 on the following day. PLT2SMP makes the appropriate adjustment 
where necessary. 

Uses of PLT2SMP 

PLT2SMP is used to translate HSPF-generated data into a format where it is accessible by 
programs of the Surface Water Utilities for further processing. 

A particularly useful application of PLT2SMP is the building of a site sample file as part of a 
composite model comprised of HSPF, PLT2SMP and SMP2SMP. Outputs of such a model 
are model-generated quantities time-interpolated to the times at which corresponding field 
measurements were made, thus allowing the two sets of data to be directly compared. Such a 
composite model is readily used in conjunction with PEST for HSPF calibration. You should 
note, however, that if versions of HSPF prior to version 12 are to be used with PEST in this 
fashion, it would be very wise to adjust the HSPF source code slightly in order to ensure that 
the PLTGEN module writes numbers to its output files with the full number of available 
significant figures. If you cannot do this yourself, contact Watermark Computing for a copy 
of HSPF in which this has already been done. 

See Also 

SMP2SMP. 

 



SMP2HYD  A-13 
 

 
 

 

SMP2HYD 

Function of SMP2HYD 

SMP2HYD reads a site sample file. For each member of a list of user-specified sites, 
SMP2HYD extracts all of the information pertinent to those sites within a user-specified time 
window. It then rewrites this information to a series of output files (one for each site) in a 
form fit for immediate use by scientific graphing software. 

Using SMP2HYD 

Program SMP2HYD will not run unless a settings file (settings.fig) is present within the 
directory from which it is invoked. As discussed in the introduction to this manual, a settings 
file determines the manner in which dates are represented by the Surface Water Utilities. 

SMP2HYD begins execution with the prompt: 

 Enter name of site sample file: 

to which you should respond by typing an appropriate filename. 

Next SMP2HYD prompts for the names of the sites for which time-dependent information is 
required, and for the files to which it should write this information. 
 Enter sites for which hydrographs are required (Press <Enter> if no more):- 
   Enter site for hydrograph number 1: 
   Enter output file for hydrograph number 1: 
   Enter site for hydrograph number 2: 
   Enter output file for hydrograph number 2: 
   . 
   . 

Enter, in response to the first of each pair of these prompts, a site identifier. In each case the 
site should be featured in the site sample file whose name was provided earlier. Press 
<Enter> when you wish to supply the identifiers for no further sites. In response to the 
second of each pair of prompts supply a filename to which SMP2HYD should write the 
information which it extracts from the site sample file for the site whose identifier was 
provided in response to the first prompt of the pair. 

When there are no further sites SMP2HYD asks: 

 Use all samples for nominated sites, or specify sample window?  [a/w]: 

If you enter “a” in response to the above prompt, SMP2HYD will extract from the site 
sample file the entirety of the information found in that file for each of the sites supplied in 
response to the preceding prompts. However if you respond with “w”, SMP2HYD will 
extract information for each site only within a time window whose details must be supplied 
next in response to the prompts: 
   Enter sample window start date  [dd/mm/yyyy]: 
   Enter sample window start time    [hh:mm:ss]: 
   Enter sample window finish date [dd/mm/yyyy]: 



SMP2HYD  A-14 
 

 
 

 

   Enter sample window finish time   [hh:mm:ss]: 

Note that SMP2HYD will employ a mm/dd/yyyy format for date representation if dictated by 
the settings in file settings.fig.  

Because SMP2HYD writes an output file in which site measurements are recorded against 
elapsed time, it needs to know the reference time from which elapsed time is measured. So it 
asks: 
 When is zero time? 
   Enter reference date [dd/mm/yyyy]: 
   Enter reference time   [hh:mm:ss]: 

Next SMP2HYD prompts for the units in which it should express elapsed time on its output 
file: 

 Enter output time units (yr/day/hr/min/sec) [y/d/h/m/s]: 

Having now acquired all of the data that it requires, SMP2HYD reads the site sample file, 
extracting information for those sites for which this information was requested, and writing it 
to the output file nominated for that site. The figure below shows part of such a SMP2HYD 
output file. 

Extract from a SMP2HYD output file. 

The first column of a SMP2HYD output file lists time elapsed since the reference time; for 
samples prior to the reference time elapsed times are negative. (Note that the header to this 
column records the units used for elapsed time as previously supplied by the user.) The 
second and third columns list sample dates and times respectively; these were transferred 
directly from the site sample file (reset file settings.fig to record dates in the mm/dd/yyyy 
format). The fourth column lists the sample value. Note that if a value was marked by an “x” 
in the site sample file, the “x” is transferred to the SMP2HYD output file. However instead of 
being in a column of its own, it is placed directly against the number which it denotes as 
suspect. This makes the sample value an invalid number. Some plotting packages, when they 
fail to read the number, will object with an error message; others will simply ignore the 

TIME_IN_DAYS      DATE           TIME           SITE_13500006A 
    -490.50       02/12/1965     12:00:00        18.5200 
    -435.50       26/01/1966     12:00:00        18.5000 
    -434.50       27/01/1966     12:00:00        18.5000 
    -434.50       27/01/1966     12:01:01        18.0000 
    -402.50       28/02/1966     12:00:00        18.4500 
    -371.50       31/03/1966     12:00:00        18.4300x 
    -322.50       19/05/1966     12:00:00        18.3000x 
    -300.50       10/06/1966     12:00:00        18.3300x 
    -275.50       05/07/1966     12:00:00        18.1500 
    -182.50       06/10/1966     12:00:00        18.1200 
    -119.50       08/12/1966     12:00:00        18.0000 
    -048.50       17/02/1967     12:00:00        17.9200x 
     -31.50       06/03/1967     12:00:00        17.9200x 
       1.50       15/05/1967     12:00:00        17.9200x 
      24.50       21/06/1967     12:00:00        18.5600 
     102.50       13/07/1967     12:00:00        18.5300 
     175.50       09/08/1967     12:00:00        18.6300 
     217.50       06/10/1967     12:00:00        18.6300 
     257.50       05/12/1967     12:00:00        18.5600 
     323.50       08/01/1968     12:00:00        18.5600 
     360.50       11/03/1968     12:00:00        19.2900 
     393.50       17/05/1968     12:00:00        19.4700 



SMP2HYD  A-15 
 

 
 

 

number, probably a desirable feature when the data is plotted. A user can search for the 
presence of suspect data in a SMP2HYD output file by simply importing the file into a text 
editor and searching for “x”. 

The header to the values column of a SMP2HYD output file records the name of the site to 
which the values pertain. 

Uses of SMP2HYD 

For cases where a site sample file has been created by exporting data from a site database, 
SMP2HYD provides the means whereby hydrographs can be generated from that data with 
the maximum flexibility. A site sample file can also be created by a model; see, for example 
programs IQQM2SMP and PLT2SMP; the LIST_OUTPUT block of TSPROC can also write 
files which, with only minor editing, conform to site sample file specifications. In these cases 
SMP2HYD provides a mechanism for the plotting of model-generated data as well. Once 
again, by using a commercial  scientific graphing package to undertake this plotting, graphs 
can be constructed with maximum flexibility. 

See Also 

See also programs IQQM2SMP, PLT2SMP, SMPCHEK and TSPROC.  



SMP2SMP  A-16 
 

 
 

 

SMP2SMP 

Function of SMP2SMP 

Although it can be used in many situations, SMP2SMP was designed for use in a model 
calibration context. It is assumed that the outcome of a model run is a site sample file in 
which model-generated outcomes at a number of points, or of a number of different kinds, are 
listed together with the dates and times to which they pertain. Normally such model-
generated data will be available at a large number of dates and times distributed regularly, or 
semi-regularly, through the model simulation time. 

It is also assumed that another site sample file is available, this file containing field 
observations of certain quantities within the model domain. This file may contain 
measurements at locations, and of types, not cited in the model-generated site sample file. It 
will almost certainly contain samples at times which differ from model output times; some of 
these times may pre-date the commencement of the model simulation, while others may 
postdate the model simulation time span. 

SMP2SMP reads both the model-generated and observed site sample files. It produces a third 
site sample file by time-interpolating model results to the times and dates of field 
measurements for measurement types that are represented in both files; measurement types 
are recognised as being equivalent if they possess the same site identifier. Thus the outcome 
of SMP2SMP’s execution is a site sample file containing model-generated data interpolated 
to field measurement times, thereby allowing a ready comparison to be made between field 
and model-generated data. However the site sample file produced by SMP2SMP is likely to 
be shorter than the observation site sample file, as measurement types not represented in the 
model-generated site sample file are omitted. Measurement dates and times either before or 
after the model simulation time span are also omitted as interpolation cannot take place to 
these dates and times. 

If SMP2SMP is run as part of a composite model, the “model-output file” generated by it is 
amenable to processing by PESTPRP1 (also documented within this manual). Thus 
preparation for a parameter estimation run using PEST becomes a trivial task. 

Note that most of the functionality available through SMP2SMP is also available through the 
newer, more powerful, TSPROC. 

Using SMP2SMP 

A settings file (named settings.fig) must be present within the subdirectory from which 
SMP2SMP is run. Depending on the contents of this file, dates are assumed to be represented 
either in the format dd/mm/yyyy or mm/dd/yyyy in all site sample files processed and 
produced by SMP2SMP. 

SMP2SMP begins execution with the prompt:- 

 Enter name of observation site sample file: 



SMP2SMP  A-17 
 

 
 

 

The user should respond with the appropriate site sample filename. 

SMP2SMP then prompts for the name of a model-generated site sample file:- 

 Enter name of model-generated site sample file: 

in response to which an appropriate filename should be supplied. 

The following points should be noted regarding both the observation and model-generated 
site sample files:- 

• Both of these files should be checked for errors and inconsistencies using program 
SMPCHEK prior to being supplied to SMP2SMP. 

• It is not necessary that one site sample file contain observation data and the other contain 
model-generated data. Though this will often be the case, these descriptions are used 
within the present context to differentiate between the two different files. 

• The two site sample files should have at least some site identifiers in common, for this is 
the variable that SMP2SMP uses to link data types in one file to those in the other. Note 
that site identifiers are case insensitive. 

SMP2SMP next prompts:- 

 Enter extrapolation threshold in days (fractional if necessary): 

SMP2SMP carries out linear temporal interpolation between model output times as 
represented in the model-generated site sample file, to measurement times as represented in 
the observation site sample file; linear interpolation to a measurement time takes place on the 
basis of two model output times, one on either side of the measurement time. However if the 
measurement time precedes the first model output time for a particular measurement type, or 
postdates the last model output time, then SMP2SMP will assign a data value to that time 
equal to the first or last model sample if the measurement time is within x days of the 
beginning or end of the model simulation time, x being the user’s response to the above 
prompt. If desired, x can be less than a day, or even zero. 

Finally SMP2SMP prompts for the name of the site sample file which it must generate. After 
having been supplied with this name, it searches for site identifiers represented in the 
observation site sample file which are also represented in the model-generated site sample 
file. If any of the samples pertaining to these identifiers fall within the model simulation time 
window, SMP2SMP interpolates model results to the dates and times corresponding to the 
samples. It then writes a new site sample file containing model-generated equivalents to field 
observations. 

As was mentioned above, the observation site sample file can contain measurements outside 
of the model simulation time span, and can reference sites (or measurement types) that are 
not cited in the model-generated site sample file. In neither case is a corresponding model-
generated sample represented in the SMP2SMP-produced site sample file. Also, if a sample 
in the observation site sample file is accompanied by an “x” in the final column indicating 
suspect data (see Appendix B of this manual), then SMP2SMP does not interpolate model 



SMP2SMP  A-18 
 

 
 

 

results to this sample. In the unlikely event that a model-generated sample is “x-affected”, 
that sample is not used in the temporal interpolation process; the preceding sample or the 
next sample is used instead. 

At the end of its execution SMP2SMP lists to the screen the names of sites which are 
represented in the observation site sample file, but which are not represented in the model-
generated site sample file (if any such sites exist). It also lists the names of sites for which all 
observation samples fall outside the model simulation time window. 

Uses of SMP2SMP 

SMP2SMP is particularly useful in model calibration. By including SMP2SMP as part of a 
composite model encapsulated in a batch file, the model is able to generate model outputs at 
the exact times at which there are field measurements. Thus a direct comparison between the 
two can be made. If model calibration is undertaken using PEST, program PESTPRP1 (also 
documented in this manual) can be run in order to automate the building of PEST input files; 
through this mechanism the time required for PEST setup can be reduced to minutes even 
when calibrating complex models. 

SMP2SMP is used where a particular model executable program or post-processor produces 
a site sample file listing model results at model output times. Thus SMP2SMP can be run 
following, for example, programs PLT2SMP and IQQM2SMP as part of a composite model. 

See Also 

PESTPRP1 and TSPROC. 



SMP2VOL  A-19 
 

 
 

 

SMP2VOL 

Function of SMP2VOL 

SMP2VOL reads a site sample file; it is assumed that values recorded in this site sample file 
represent flows. For any of the sites listed in this file, SMP2VOL is able to calculate the total 
flow volume between two arbitrary dates and times; these dates and times need not 
correspond to sample dates and times. 

Note that most of the functionality available through SMP2VOL is also available through the 
newer, more powerful, TSPROC. 

Using SMP2VOL 

Usage of SMP2VOL requires that a setting file named settings.fig be present in the directory 
from which it is run. As is explained in the introduction to this manual, the contents of this 
file inform SMP2VOL of the date format being used. 

Upon commencement of execution SMP2VOL prompts for the name of a site sample file 
containing flows recorded at one or more sites. As is the case for all programs which use 
them, the site sample file should be checked for data integrity using program SMPCHEK 
before use by SMP2VOL. 

After checking for the presence of this file and then opening it, SMP2VOL prompts:- 

Enter time units used for flow in this file [s/m/h/d]: 

Allowed units are seconds, minutes, hours and days respectively. Volumes calculated by 
SMP2VOL are expressed in the same volume units as those used for flow in the site sample 
file which it reads; SMP2VOL does not need to know these units. 

SMP2VOL next prompts for the name of a “dates file”. This is a file that must be prepared by 
the user prior to running SMP2VOL. Its format is shown below:- 

Part of a dates file. 

Each line of a dates file must contain five entries. The first entry is the name of a site listed in 
the site sample file. The next two entries are the date and time corresponding to the beginning 
of the interval over which volume is to be calculated for that site; the last two entries are the 
date and time corresponding to the end of the volumetric calculation interval. 

Note the following points concerning a dates file:- 

guage_1   23/04/1989  12:00:00  01/09/1993  12:00:00 
guage_1   30/06/1990  12:00:00  30/07/1990  15:00:00 
guage_4   03/04/1970  00:00:00  03/04/1990  12:00:00 
guage_1   12/12/1996  12:00:00  12/12/1996  19:00:00 
etc 



SMP2VOL  A-20 
 

 
 

 

• the second date and time must postdate the first date and time on each line of the file; 

• the site comprising the first entry of each line must correspond to a site listed in the site 
sample file; 

• site entries can be in any order in the dates file; they need not correspond to the ordering 
of entries in the site sample file; nor do references to any one site need to be together; 

• time intervals represented on different lines of the dates file can overlap, predate or 
postdate intervals represented on other lines of the file. 

After it has read the dates file (and checked it for any errors, the presence of which will be 
reported immediately to the screen), SMP2VOL prompts for the name of an output file to 
which it will write the outcomes of its volumetric calculations. Once this has been supplied, 
SMP2VOL writes this file and terminates execution. 

The SMP2VOL output file has identical format to the user-supplied dates file. However a 
sixth column is added in which volumetric calculations over the nominated intervals are 
recorded. These are written with 7 significant digits of precision in case of PEST usage based 
on this file (see below). However if, for some reason, the requested volume cannot be 
calculated, SMP2VOL writes a text string in place of the number, this string explaining the 
reason for absence of the number. Reasons why volumetric calculation cannot take place 
include the following:- 

• a site listed in the dates file is not cited in the site sample file, 

• the beginning of the volumetric calculation interval predates the earliest sample for a 
particular site, 

• the end of the volumetric calculation interval postdates the latest sample for a particular 
site, 

• all flow readings for a particular site are of questionable integrity (denoted by an “x” in 
the final column of the site sample file – see Appendix B for further details). 

Uses of SMP2VOL 

Apart from its obvious application of allowing accumulation of flow rates over arbitrary time 
intervals in order to calculate volumes, SMP2VOL can form a useful component of a 
composite model run by PEST. Stability of a model calibration exercise undertaken by PEST 
in which model-generated flows are matched to observed flows can often be enhanced if 
volumetric data is used in conjunction with flow data in the inversion process. Using this 
methodology, one or a number of volumetric observations can be added to the flow time 
series (with appropriate weights). “Measured” flow volumes can be calculated on the basis of 
a field-observation site sample file, whereas model-generated flow volumes can be computed 
by running SMP2VOL as part of the composite model to calculate volumes on the basis of a 
model-generated site sample file. The latter may be produced by programs such as PLT2SMP 
and IQQM2SMP which would also comprise part of the composite model. An even better 



SMP2VOL  A-21 
 

 
 

 

idea is to compute “modelled volumes” on the basis of a SMP2SMP output file (SMP2SMP 
being run as part of the composite model). If this is done, volumetric calculation will be 
carried out on the basis of flows pertaining to exactly the same times in both observation and 
modelled datasets. Any interpolation errors will then effect both of the calculated volumes 
equally. 

See Also 

IQQM2SMP, PLT2SMP and TSPROC.  

 

 

 



SMPCAL  A-22 
 

 
 

 

SMPCAL 

Function of SMPCAL 

Program SMPCAL is used to calibrate one dataset against another. In most cases data 
requiring adjustment will be that gathered by an electronic logging device (for example a 
pressure sensor or flow meter) while data used for calibration will consist of a number of 
manual readings taken over the time period during which the logger was operating. 

Using SMPCAL 

Configuration Files 

As soon as SMPCAL commences execution it searches the current directory for a file named 
settings.fig in order to ascertain the protocol which it must use to represent dates. See the 
introduction to this manual for further details. 

Site Sample Files 

SMPCAL must be supplied with the names of two site sample files. In most cases these site 
sample files can be easily downloaded from a user’s database. 

Each of the site sample files supplied to SMPCAL can be comprised of data from one or 
many sites. It is presumed that one of these site sample files contains “raw” data (usually 
logger data) for which sampled values need to be adjusted against data contained in another 
site sample file containing “true” or “standard” readings (for example manually-gathered 
data). In the discussion that follows the site sample file containing data that requires 
adjustment is referred to as the “logger” site sample file; the file containing data against 
which this adjustment takes place is referred to as the “standard” site sample file. 

The following points regarding the contents of the two site sample files supplied to SMPCAL 
should be noted.  

• Every site cited in the logger site sample file should also be cited in the standard site 
sample file; the converse is not the case. 

• For each site cited in the logger site sample file, there should be at least two samples in the 
standard site sample file within the time frame spanned by the first and last readings for 
that site in the logger site sample file (or just slightly outside of that time span - see 
below). 

• Both site sample files supplied to SMPCAL should obey all rules pertaining to the 
construction of a site sample file; it is a good idea to check them both using program 
SMPCHEK before processing them with SMPCAL. 



SMPCAL  A-23 
 

 
 

 

What SMPCAL Does 

SMPCAL evaluates constants m and c by which logger data may be adjusted to agree with 
standard measurements of the same quantities using the equation: 

ds = m dl + c  

where dl is logger data and ds represents standard data. SMPCAL calculates a different value 
of m and c for every interval between standard measurements within the standard site sample 
file. When adjusting logger data, this m and c is then applied to all logger measurements 
taken between the two standard samples used in their derivation. For logger samples 
preceding the first standard sample, the m and c determined for the first standard interval are 
employed in data adjustment. For logger samples post-dating the last standard sample, the m 
and c determined for the last standard interval are employed in data adjustment. 

Where a logger sample time does not coincide with a standard sample time, logger data 
(normally more closely spaced than standard data) is linearly interpolated to the time of the 
standard measurement to determine a notional logged value at that time for the purposes of 
determining m and c. Where a standard sample precedes or post-dates the first logger sample, 
logger readings can be linearly extrapolated (using the first or last two logger samples) to the 
standard sample time for this same purpose. 

It is worth noting that the interpolation scheme used by SMPCAL to obtain notional logged 
values at standard measurement times is actually a linear extrapolation process using the two 
sample values either before or after the standard measurement time, depending on whether 
calibration coefficients are being sought for the preceding or following logged interval. The 
reason for this is that, for some logging systems, the downloading of logger data (which often 
accompanies manual measurement) results in an unfortunate “glitch”, or offset, in logged 
values at the time at which these values are downloaded. By undertaking individual 
extrapolation from either side of the standard measurement point, the effect of this extraneous 
offset can be “calibrated out”. 

Running SMPCAL 

SMPCAL is run using the command: 

 smpcal 

It requires only five items of information, the first two of which are the names of the logger 
and standard site sample files. The prompts are as follows:- 
 Enter name of site sample file requiring calibration: 
 Enter name of standard site sample file: 

Note that, in common with other programs from the Surface Water Utilities, the user can 
“backtrack” at any time to the previous prompt by replying with an “e” (for “escape”) to any 
particular prompt. Note also that, in accordance with the specifications of a site sample file as 
set out in Appendix B of this manual, an “x” in the 5th column of a site sample file signifies 
dubious data in the 4th column. Such lines are ignored by SMPCAL, being used neither for 



SMPCAL  A-24 
 

 
 

 

data calibration (if occurring in the standard data file) nor for data adjustment (if occurring in 
the logger data file). 

Next SMPCAL prompts: 

 Enter maximum extrapolation time in hours: 

All standard samples lying within a time period beginning h hours before the first logged 
sample for a particular site and h hours after the last logged sample for that site (where h is 
supplied in response to the above prompt) will be used in the data calibration process (ie. the 
process of determining m and c). Next SMPCAL prompts for the names of its output files. 
First the site sample file which it generates by multiplying each logged data value by an 
appropriate m and c: 

 Enter name for calibrated site sample file: 

Then  its run record file: 

 Enter name for report file: 

The figure below shows part of a SMPCAL report file. A record similar to that shown in the 
figure is presented for each site cited in the logger site sample file. Note that the string “not 
used” depicts the case where adjacent standard samples both lie between neighbouring 
logger samples, or where two adjacent standard samples both pre- or postdate all logger 
samples. In neither of these cases is an m or c value required for the adjustment of any logger 
data. 

Part of a SMPCAL report file. 

If, during its execution, SMPCAL encounters a problem with either of its input site sample 
files it writes an appropriate error message to the screen and terminates execution. Normally 
only a single message is written, this being clearly visible upon termination of SMPCAL 
execution. However for certain types of error, SMPCAL continues execution until all of the 

 

Data adjustment for site SA123:- 

 
   Raw data ----> 
       First sample of raw data at:      31/12/1996  14:00:00 
       Last  sample of raw data at:      12/02/1997  16:00:00 
       Total number of samples: 512 
 
   Standard data within calibration time frame ----> 
       First sample of standard data at: 31/12/1996  13:25:00 
       Last  sample of standard data at: 12/02/1997  14:30:00 
       Total number of samples: 6 
 
   Calibration equation  -   Y = M*X + C  ----> 
 
                      Interval                         M           C 
   ----------------------------------------------------------------------- 
    31/12/1996 13:25:00 to 06/01/1997 13:20:00      2.1323E-03  -16.21 
    06/01/1997 13:20:00 to 13/01/1997 13:25:00      2.1738E-03  -16.27 
    13/01/1997 13:25:00 to 20/01/1997 13:25:00        not used 
    20/01/1997 13:25:00 to 29/01/1997 13:07:00      2.1787E-03  -16.29 
    29/01/1997 13:07:00 to 12/02/1997 14:30:00      2.2019E-03  -16.36 
 



SMPCAL  A-25 
 

 
 

 

logger sample file is processed, continuing to report further errors to the screen as necessary. 
To inspect all errors generated in this way, place the answers to the five SMPCAL prompts in 
a file (for example smpcal.in), one under the other, and run SMPCAL using the command: 

 smpcal < smpcal.in > temp.dat 

In this case SMPCAL takes its input from file smpcal.in and writes its normal screen output 
to a file named temp.dat which can be inspected at leisure. 

It is a general principal of data calibration that standard samples should span as wide a data 
range as possible. As is documented below, if this procedure is not followed data adjustment 
using SMPCAL can lead to unpredictable results. If neighbouring standard points have 
identical value, the calibration process breaks down altogether and SMPCAL reports an 
appropriate error message to the screen. It will also report an error to the screen if logger 
readings, as interpolated to neighbouring standard readings, are identical, even if the manual 
readings are not, for then m is assigned the impossible value of zero. 

Uses of SMPCAL 

The most obvious use of SMPCAL is to calibrate logger data against manual readings taken 
over the time that the logger was operating. The fact that m and c (as determined by 
SMPCAL) can vary with time facilitates automatic logger data adjustment to real 
measurement datum, even where logger calibration drifts with time. However this can also 
lead to serious errors in data adjustment if the user is not extremely careful, as the following 
example demonstrates. 

The figure below shows a graph of raw logger data plotted against time. Following that is 
another graph, this one showing corrected logger data. Corrections were made on the basis of 
the four manual readings depicted in that figure. 



SMPCAL  A-26 
 

 
 

 

Raw logger data plotted against time. 

 

 

Adjusted logger data plotted against time; adjustment carried out on basis of the four 
points shown. 

It is obvious from the second of these two graphs that there is something seriously wrong 
with the data adjustment process, for the peak occurring in the latter half of the logged 

40.0 60.0 80.0
Time (days)

0

2000

4000

Lo
gg

er
 o

ut
pu

t

 

40.0 60.0 80.0
Time (days)

-20

-16

-12

Ad
ju

st
ed

 lo
gg

er
 o

ut
pu

t

 



SMPCAL  A-27 
 

 
 

 

interval has been converted to a trough. The reason for this is as follows. As can be seen from 
the first graph, a slight “glitch” occurs in logger readings just before 60 days, this being 
shortly after the second last manual reading was taken. As a result of this glitch, all 
subsequent logger output data is displaced downwards. The two manual readings that were 
used to derive m and c for the final interval span this glitch. To make matters worse, the 
levels recorded for these two manual readings are very similar, the vertical separation of 
these readings being of lower magnitude than the size of the glitch. Unfortunately there is a 
considerable logged level change within the last data interval; hence all logged readings 
comprising this event had to be adjusted using an m and c calculated on the basis of two 
manual readings whose vertical separation was minimal. This, compounded by the glitch of 
larger magnitude than the vertical separation of the standard sample points, resulted in an m 
of opposite sign to that calculated for other manual data point pairs, with the result that 
positive variations in logger output resulted in negative movements of the adjusted dataset.  

Other possible pitfalls are many. For example a peak in logger response can be amplified or 
attenuated if calibration points of approximately equal data value are situated on either side 
of it. This is a result of erroneous determination of m because of measurement inaccuracies or 
the limited number of significant figures used by the logger. 

Hence the user must exercise considerable caution when using SMPCAL. In particular, the 
following points must be observed. 

• always plot both the raw logger data and adjusted data, 

• inspect the SMPCAL report file; significant variations of m and c between measurement 
data pairs is a good indicator or an unreliable calibration, 

• it is best to use only a few standard data points spanning as high a vertical interval (ie. 
range of data values) as possible. Neighbouring standard points should not have 
similar data values. 

• if possible, it is good practice to take two manual readings when visiting a site, one before 
downloading logger data and one after, in case the process of downloading the logger is 
responsible for any glitches. 

Plotting of data within a site sample file can be easily accomplished using program 
SMP2HYD together with a commercial plotting package. If GRAPHER is used in the latter 
capacity, then updated site sample files generated on subsequent SMPCAL runs can be easily 
viewed by writing subsequent SMP2HYD plotting data to files of the same name; 
SMP2HYD’s operations can be automated through writing its input data to a file and 
supplying this data to SMP2HYD using input file re-direction. 

When plotting adjusted data together with standard data as in the second of the above figures, 
standard data points will plot on the adjusted data curve. However the coincidence will not 
always be exact for, as has been mentioned above, where the time of a standard sample does 
not coincide with the time of a logged sample, the logged time series is interpolated to the 
time of standard measurement. If there are rapid logger variations in the immediate vicinity 
of a manual reading (such as the glitch depicted above), the appearance that the standard 
reading does not plot exactly on the adjusted data results from the fact that the “join” between 



SMPCAL  A-28 
 

 
 

 

two neighbouring data intervals (in which different m and c values were used for adjustment) 
lies between two logged data points. The plotting package used to plot the adjusted data uses 
straight lines to join neighbouring logged data points; it does not deviate to account for the 
notional data value at the joining point. The latter, if it were determined by extrapolation 
from each neighbouring data time interval, would indeed plot at the same location as the 
standard point. 

See Also 

See also SMP2HYD. 



SMPCHEK  A-29 
 

 
 

 

SMPCHEK 

Function of SMPCHEK 

SMPCHEK checks the integrity of a site sample file, reading it in its entirety and reporting 
any errors that it finds to the screen. 

Running SMPCHEK 

Upon commencement of execution, SMPCHEK prompts: 

 Enter name of site sample file: 

Respond to this prompt by typing the name of an appropriate site sample file. 

SMPCHEK then reads the site sample file, checking: 

• that every line of the file has sufficient entries, 

• that all numbers, dates and times are readable, 

• that all dates and times are legal, 

• that site identifiers are 10 characters or less in length, and 

• that all entries for each site are consecutive and are in order of increasing date and time. 

SMPCHEK writes any errors it detects to the screen (redirect screen output to a file for a 
more permanent record). Each error message includes a line number, allowing a user to 
locate the error and rectify it. 

Uses of SMPCHEK 

Though many of the PEST Surface Water Utilities documented in this manual read a site 
sample file, none of them check the file for errors to the same extent that SMPCHEK does. 
Furthermore if an error is detected by one of these programs, execution is often aborted after 
the error has been detected and reported; thus other errors are left undetected, only to be 
reported in later processing after errors closer to the top of the site sample file have been 
rectified. SMPCHEK was written to overcome the inconvenience of detecting and reporting 
errors in a piecemeal manner by programs that were written to perform other tasks. 
SMPCHEK can detect and report all of the errors in a site sample file at once. (However it is 
configured to report only the first 40; if there are more than 40 errors there is probably 
something seriously wrong with the formatting or layout of the site sample file.) 

Once a site sample file has been created (either by directly downloading a file from a 
database or by performing some elementary processing of a database-downloaded file), the 



SMPCHEK  A-30 
 

 
 

 

file should be checked with SMPCHEK to establish its integrity. Errors can then be corrected 
so that use of the file in subsequent processing will hold no surprises. 

See Also 

See also SMP2HYD, SMP2SMP, SMP2VOL. 



   
 

 
 

 

 

 

 

Appendix B 
 

File Formats 



File Formats  B-1 
   

 
 

 

File Formats 

Site Sample File 

The “site sample file” is fundamental to the operation of many of the Surface Water Utilities; 
it holds time series data gathered at one or a number of sites. The data stored in this file can 
be of any type. 

A site sample file records data gathered at discrete sample times at a number of specific 
locations, eg. water level or chemical concentration data gathered through sampling 
programs. Each line of a site sample file has four (or possibly five) entries, each of which 
must be separated from its neighbouring entry by one or more white space (including tab) 
characters. Typically a site sample file will hold data extracted from a database. Part of a site 
sample file is shown below. 

Extract from a site sample file. 

The first item on each line of a site sample file is a site identifier. This identifier must be of 
10 characters or less in length. When used with programs of the Surface Water Utilities the 
site identifier is case-insensitive. The second item is the date; depending on the contents of 
the settings file settings.fig (see the introduction to this manual), this must be expressed either 
in the format dd/mm/yyyy or mm/dd/yyyy. Then follow the time (in the format hh:mm:ss) and 
the measurement pertaining to the cited date and time. An optional fifth item may be present 
on any line; if present, this item must consist solely of the single character “x” to indicate that 
the previous data element lacks integrity. 

The following rules must be observed when generating a site sample file: 

• For any one site dates and times must be listed in increasing order.  

  13500002A    25/09/1991   12:00:00  12.00 
  13500002A    02/01/1992   12:00:00  11.83 
  13500002A    24/03/1992   12:00:00  12.81 
  13500002A    29/06/1992   12:00:00  13.54 
  13500002A    22/09/1992   12:00:00  13.24 
  13500002A    17/12/1992   12:00:00  12.84 
  13500002A    22/03/1993   12:00:00  12.38 x 
  13500002A    21/06/1993   12:00:00  11.83 x 
  13500002A    27/09/1993   12:00:00  11.61 x 
  13500002A    16/12/1993   12:00:00  12.35 
  13500002A    01/03/1994   12:00:00  11.79 
  13500002A    22/03/1994   12:00:00  11.89 
  1351235A     19/02/1959   12:00:00  29.84 
  1351235A     05/03/1959   12:00:00  30.33 
  1351235A     20/03/1959   12:00:00  30.76 
  1351235A     06/04/1959   12:00:00  31.19 
  1351235A     17/04/1959   12:00:00  31.45 
  1351235A     01/05/1959   12:00:00  31.65 
  site_a       15/05/1959   12:00:00  31.65 
  site_a       29/05/1959   12:00:00  31.65 
  site_a       12/06/1959   12:00:00  31.65 
  site_a       26/06/1959   12:00:00  31.46 
  site_a       10/07/1959   12:00:00  31.34 



File Formats  B-2 
   

 
 

 

• All entries for the same site must be in juxtaposition; in other words, it is not permitted to 
list some of the entries for a particular site in one part of a site sample file and the 
remainder of the entries in another part of the same file, with data pertaining to one or 
more other sites in between. 

• A time entry of 24:00:00 is not permitted; this must be represented as 00:00:00 on the 
following day. 

The integrity of a site sample file can be checked using program SMPCHEK documented 
herein. If any errors are present in a particular file of this type, they will be reported to the 
screen. 

Site Listing File 

A site listing file simply provides a list of sites, one to a line. Part of such a file is illustrated 
below. 

Extract from a site listing file. 

Different site listing files are often used in conjunction with a single site sample file, thus 
providing a mechanism whereby a subset of the latter can be selected for a particular type of 
processing. 

A site listing file may possess more than one data column. If it does, columns after the first 
are ignored. 

Site identifiers are case insensitive, being translated internally to upper case by programs of 
the Surface Water Utilities. No site should be cited more than once in a site listing file.  

 

  13500002A 
  13500002B 
  13500005A 
  13500006A 
  13500007A 
  13500008A 
  13500009A 
  13500012A 
  13500015A 
  13500017A 
  13500023A 
  13500032A 
  13500032B 
  13500032C 
  site_a 
  site_b 
  site_c 
  site_d 
  site_e 
  site_f 
  site_g 
  site_h 


