

Service and the service of the servi

Refrigeration 201

Travis D. Lumpkin, PE Director, Sustainability & Senior Product Leader Refrigeration Systems Hussmann

September 2011

Key Learning's

- Review of Refrigeration 101
- Basic understanding of more complex components of a refrigeration system
- Overview of more complex mechanical refrigeration systems
- Interaction of the mechanical system with the building
- Equipment planning and location

2011

E+SC

REFRIGERATION 101 REVIEW

E+SC 2011 Energy & Store Development Conference

Refrigeration Cycle

LPV - Low Pressure Vapor LPL – Low Pressure Liquid HPV – High Pressure Vapor HPL – High Pressure Liquid

SYSTEM MAJOR COMPONENTS OVERVIEW

Reciprocating Compressor

-+5

2011

MEDIUM TEMP PRESSURES

- Moving pistons compress refrigerant gas within cylinders.
- On the downstroke, the suction inlet valve is open as low pressure gas refrigerant is drawn into the cylinder.
- When the piston begins its upstroke, the suction inlet valve is closed and pressure increases.
- High pressure gas exits through the discharge port .

Scroll Compressor

Intake Stationary Scroll Compression orbiting Scroll Compression after 1 rotation Compression after 2 rotations Discharge

- Rotation is critical on scroll compressors.
- An orbiting scroll moves in a circular motion within a second, fixed scroll.
- The gas entering the low pressure inlet is pressurized into continuously smaller areas until it exits through the discharge line.

Screw Compressor

^{2.} Auxiliary Rotor

Intake: the vapor passes through the inlet and into the void which is wide open at the suction end.

Compression: as the rotors contrarotate, the inlet void closes, the volume is reduced and the pressure increases.

Discharge: compression is completed, final pressure achieved and the vapor is discharged.

Round Tube Plate Fin (RTPF) Air Cooled Condenser

• Coil comprised of:

E+SC

- copper tubes to transport refrigerant
- aluminum fins to increase heat transfer capability

2011

• Fans pull ambient air across coil section

- Heat is rejected to atmosphere
- Refrigerant changes from superheated vapor to sub-cooled liquid

MicroChannel Air Cooled Condenser

- Same operation as RTPF air cooled condenser
- Coil comprised of:
 - flattened aluminum tube with narrow channels
 - aluminum fins in between
- Reduced refrigerant charge
- Smaller size with less weight

Evaporative Cooled Condenser

- Copper tubes transport refrigerant through coil slab
- Ambient air blown over coils
- Water from a sump is sprayed over the coils to increase heat removal

- Allows the condensing temperature to approach the wet bulb (WB) temperature of the ambient air versus the dry bulb (DB) temperature, which is normally higher.
- Increases system efficiency

Dry Fluid Cooler / Plate-to-Plate Condenser

E+SC

- Fan cooled coil assembly
- Draws ambient air across coil slab to remove heat from glycol mixture

- Glycol mixture used as condenser fluid for refrigeration system
- Refrigeration system uses heat exchanger (plate-toplate shown) to condense compressor discharge gas
 - Located near compressors

Hybrid Fluid Cooler / Condenser

- Uses RTPF coil or microchannel coil
- Equipped with pre-cooling pads to cool incoming ambient air with water that is distributed over the cooling pads

- Air is drawn through the cooling pads and the heat exchangers
- Increases system efficiency

Display Case Operation (DX)

+S

Display Case Operation (Secondary)

+5

through it (sensible heat) Removes humidity (latent heat) Low pressure liquid refrigerant is boiled off

- Low pressure liquid refrigerant is boiled off into low pressure vapor
- Proper airflow though the evaporator coil is critical to its function
- Moisture from ambient air freezes on coil tubes. This frost or ice prevents proper air flow across the coil and air curtain velocities.
- Defrost is the removal of frost or ice from an evaporator coil
 - •Off time MT Coils •Electric – LT / MT Coils •Hot Gas – LT / MT Coils •Cool Gas – LT / MT Coils •Warm Fluid – MT Glycol Coils

Display Case Equipment

E+SC

 Reduces the temperature of the air passing through it (sensible heat)

Case Temperature Control

Thermostatic Expansion Valve (TXV)

Electronic Expansion Valve (EEV)

- Expansion Valve (EV)
 - Regulates refrigerant flow
 - Maintains superheat at the evaporator outlet

Mechanical EPR w/solenoid

Electronic EPR (EEPR)

- Evaporator Pressure Regulator (EPR)
 - Maintain accurate display case pressure and temperature
 - Allows multiple evaporator systems to operate at different temperatures when piped to a common suction group

SYSTEM TYPES

2011 7. E+SC Energy & Store Development Conference FOOD MARKETING INSTITUTE **DX System Operation** LT Compressor **Cold Gas** (≈35°F) Hot Gas МΤ (≈250°F) Compressor Cold Gas 70% Liquid Condenser **R404A** (≈55°F) EEV 30% Gas Mix Case (15°F)

Warm Liquid (~105°F) Warm Liquid (~105°F) Warm (15°F) TXV 30% Gas Mix (15°F) TXV 30% Gas Mix (15°F) T0% Liquid 30% Gas Mix (15°F) Case Case Case

DX – Direct Expansion refrigeration system

DX Condensing Unit Equipment

E + S C 2011 Energy & Store Development Conference

DX Rack Equipment (Circuit Piping)

DX Rack Equipment (Loop Piping)

Lower refrigerant charge than circuit piping

Distributed – Multiple small compressor units located close to their loads throughout the store

Secondary Glycol System Operation

* MT Only

Secondary – Intermediate medium for heat transfer between cooling load and refrigerant

Low refrigerant charge

Reduced leaks

Less Copper

Secondary CO₂ System Operation

* LT and MT

Cascade CO₂ DX System Operation

* LT Only

Cascade – Two independent refrigeration systems in series sharing a common heat exchanger

Ammonia (NH3) Primary System

•Primary Refrigeration Enclosure

Primary Refrigeration Loop

PLATE HEAT

- Typically used with secondary systems
 - Example range of operation (-60°F to +60°F)
- Displaces use of HFC's
- Can not be used with copper
- Use of water system for scrubbing in case of leak

SYSTEM & BUILDING INTERACTION

Water Heat Reclaim

E+SC

2011

Heat Reclaim

- Uses available compressor heat to heat building water or air rather than rejecting to
 - · Good source for air reheat or dehumidification
 - Increases refrigerant charge

Split Condenser

E+S(

2011

Split Condenser

- Condenser sized with two parallel coils (50% - 50%)
- In Winter operation, 50% of condenser is disabled
- Reduces capacity of condenser for proper system control in cold climates
- Controlled by ambient temp sensor
 - 25% 50% 50% split is also available

E+SC 2011 Energy & Store Development Conference

Heat Reclaim & Split Condenser

•Enhances condenser performance

2011

Suction groups

Manages multiple compressor racks
Optimizes compressor cycling and energy savings

Microprocessor Controller

- •Central point of equipment control and monitoring
- Increases equipment life and energy with logical control algorithms
- •Allows equipment monitoring, alarming and optimization

Controller boards

•Expandable I/O system •Allows for multiple control and monitoring points

Refrigerant leak detectors

•Immediate notification when leak occurs

•Program multiple set points

Circuits/display cases Flexible control options to choose from Supports multiples of cases and case types

Tools Used by Engineers / Designers

ANALYSIS & COMPARISONS

Energy Analysis

• Energy Efficiency Ratio (EER)

E+S

- Btu/hour per watt
- Coefficient of Performance (COP)

2011

- Unitless
- The amount of cooling divided by the power needed to do the cooling
- A higher value is better
 - it means less energy is used to do a given amount of cooling
- EER and COP depend on many factors
 - evaporating temperature
 - condensing temperature
 - size of condenser
 - type of compressor
 - etc

EER is heavily influenced by ambient temp:Hot dayCold day• COP = 2• COP = 5• EER = 7 Btu/hr/watt• EER = 17 Btu/hr/watt

Energy use is less than half on cold days

Ambient Temperature Bin Hours

Dry Bulb BIN Hour Comparison

Temperature (Deg F)

Temperature (Deg F)

Technology Comparison

E+SC

Approach	Central DX	Distributed DX	Distributed Glycol Secondary	Central Glycol Secondary	Liquid Recirc CO ₂	Cascade CO ₂
Equipment 1 st Cost	Baseline					
Energy Efficiency	Baseline	÷				÷
Refrigerant Charge	Baseline	÷	+	÷	÷	÷
Total Cost of Ownership	Baseline	÷				
Carbon Footprint	Baseline	÷	÷	÷	÷	÷
Service and Complexity	Baseline	÷			÷	

	$=+Sd^2$	2011 Energy & Store Development Conference				
SS-ENVIRONMENTAL PROTECTI GREENCH	ATTNERONN					
	System Type	Possible Level Attainable				
	Distributed	Silver when air-cooled Gold when air-cooled with microchannel				
	Secondary Distributed	Gold when air-cooled condenser Platinum when water-cooled				
	MT Secondary Glycol	Silver with centralized LT DX Gold with other advanced LT				
	Secondary CO ₂	Gold when used for both LT & MT Loads				
	LT CO ₂ Cascade	Gold when combined with MT secondary glycol or secondary CO_2 MT				
	MT Glycol Compact Chiller	Platinum when water cooled and combined with LT CO_2				

Application of any system type does not guarantee certification ability. Proper planning, equipment selection, application, placement, and refrigerant are required.

Risk Increases Significantly w/ Product Temp

Listeria

•E Coli on Beef

•Note: Y axis is 1000's of colony forming units per gram. It only takes < 100 cells to cause illness

Why refrigeration is important - for the preservation and distribution of food...

Thank you for your attention!

Questions?

Travis D. Lumpkin, PE

Director, Sustainability & Senior Product Leader Refrigeration Systems

Hussmann