Laboratory Testing In Support of Site Specific Water Quality Criteria Assessment and Hydrographic Data Collection for New Bedford Harbor

TASK 2B TOXICITY IDENTIFICATION EVALUATION TESTING WITH MYSIDS AND SEA URCHINS

Data Report

Prepared for:

Massachusetts Coastal Zone Management Agency 251 Causeway Street, Suite 900 Boston, MA 02202

Submitted by:

Maguire Group Inc.

July 2003

١

Laboratory Testing In Support of Site Specific Water Quality Criteria Assessment and Hydrographic Data Collection for New Bedford Harbor

TASK 2B TOXICITY IDENTIFICATION EVALUATION TESTING WITH MYSIDS AND SEA URCHINS

Data Report

Prepared for:

Maguire Group Inc.

Prepared by:

Science Applications International Corporation 221 Third Street Newport, RI 02840

January 13, 2003

NEW BEDFORD HARBOR TOXICITY IDENTIFICATION EVALUATION

Introduction and Background

Task 2B of SAIC's Site Specific Water Ouality Assessment Study is a follow-on study conducted to resolve cause(s) of toxicity observed in Suspended Particulate Phase testing (SPP; Task 2A). Task 2A found that only one of six site samples, NBH-202, was found to be toxic to Americanysis bahia, the species chosen for SPP testing. Hence, SPP from NBH-202 was further evaluated using a sequential toxicity identification evaluation (TIE) testing approach (SAIC, 2002). TIEs are used to identify cause and affect relationships between toxicity observed in toxicity tests and factors that have contributed to the observed effects. These relationships are revealed through manipulations that remove the toxicity of individual toxicant classes (e.g., metals, organics, or ammonia) from (e.g., SPP and elutriates). Associated reductions in toxicity are used to characterize causative factors. It was expected that the cause of acute toxicity in the NBH-202 sample would be due principally to copper, PCBs, confounding factors, or a combination of factors. Per EPA Marine TIE methodology (EPA, 1994) two species were tested, as differential sensitivity to specific toxicants provide additional evidence regarding the factors causing toxicity. For this study, the mysid (A. bahia) survival test and the sea urchin (Arbacia punctulata) larval development test were selected because they were previously used in monitoring of potential dredging-related water column impacts in Upper New Bedford Harbor (Nelson, 1991), and because they are relatively sensitive to PCBs and copper, respectively. Results from the TIE tests will contribute to the basis for an approach to derive Water Effect Ratios (Task 2C) and site specific protective exposure limits for New Bedford Harbor aquatic life.

Methods

Sample Collection, Preparation and Transport

Sediment and water collection for the TIE conducted with NBH-202 were described in the Task 2A report, "Suspended Particulate Phase Acute Toxicity Tests with Myids" (SAIC, 2002). The samples were stored $(4 \pm 2^{\circ} C)$ at the toxicity testing laboratory (SAIC's subcontractor, Aquatec Biological in Williston, VT) from 12 October to 28 October 2002. On 28 October 2002, new SPP was prepared for TIE manipulations and testing. Suspended Particulate Phase samples were prepared as described in the Task 2A report (SAIC, 2002) except that GP-2 artificial sea salts were substituted for the commercial Forty Fathoms® artificial seasalt mixture because GP-2 may be more reliable with the sea urchin larval development test used in the TIE (Aquatec, personal communication). The volume of prepared SPP required for mysid testing was sub-sampled, and the remaining SPP was prepared for the sea urchin larval development tests with *Arbacia punctulata* by centrifuging for approximately10 minutes at 6000 rpm to remove fine particulates that may inhibit larval development. SPP was shipped overnight to SAIC's Newport, RI laboratory for TIE manipulations (see below), and TIE samples were subsequently shipped back to Aquatec for toxicity testing to commence on 30 October 2002.

To serve as a positive control for the TIE tests, SAIC prepared a spiked solution using GP-2 artificial seawater, neat copper chloride (Sigma Chemical) and neat Arochlor 1242 (PP-310) standard from Ultra Scientific, North Kingstown, RI. The copper was spiked from a 10 mg/L stock solution prepared in deionized water manipulated to a pH of 2.0 with nitric acid to result in a test concentration of 120 ug copper/L. Aliquots of 100 mg Aroclor 1242/L in methanol were added to the copper-spiked sample to result in a nominal concentration of 200 μ g/L. The copper spike is expected to be largely dissolved and stable (Lussier et al., 1999), while the nominal Aroclor concentration would be expected to be approximately an order of magnitude higher than the actual exposure concentration (Ho et al., 1997). Concentrations were chosen to approximate those that would affect approximately 50% of at least on of the test species (based on known LCs0 or ECs0). While copper and PCBs were the only constituents in the spiked sample for sequential TIE treatments (see TIE Manipulations and Testing, below), ammonia was added from a 1,000 mg/L standard solution (Orlon) to produce a 14 mg/L concentration in the spike prior to the final individual TIE treatments. The ammonia was added immediately prior to the TIE treatments that affect ammonia so that that the effects of treatments to reduce copper and PBC toxicity would not be obscured by ammonia toxicity.

Upon arrival at each laboratory, samples were inspected to determine their temperature and condition (e.g., caps in place or leakage). All samples met transit protocols. Standard chain-of-custody procedures were followed. Chain-of custody (CoC) forms were signed and copied. SAIC retains copies of the CoCs, along with test data in experiment binders and project files.

Organism Selection and Source

Mysids for testing were supplied by Aquatic Biosystems in Fort Collins Colorado. They were hatched on 28 October, received at Aquatec on 30 October, and the test was initiated on the same day. Newly hatched Artemia were fed to mysids on each day prior to test initiation, and daily feeding continued during the test.

Mysids were evaluated using a standard reference toxicant water-only test with potassium chloride. In this test, survival is determined in each of two replicate chambers to which ten animals have been added. The reference test uses a six dilution series with concentrations ranging between 0.1 and 1.0 g/L, and is used to determine LCs0 values for comparison with Control Chart values. Aquatec's Control Chart for the mysid (*A. bahia*) includes > 20 tests from mysid tests conducted since 1999. Sea Urchins used in TIE tests were from Aquatec's inhouse cultures. Along with the TIE tests, sea urchin larval development was tested in a standard reference toxicant series with copper sulfate as the toxicant.

Toxicity Identification Evaluation Manipulations and Testing

In all, four samples, GP-2 control water, spiked water, SPP site sample, and centrifuged SPP site sample were used in TIE testing. The GP-2 control water served as a negative control to monitor for potential ancillary effects associated with the TIE manipulations described below. The spiked water served as a positive control to document the effectiveness of the

manipulations in reducing toxicity as intended, and the two site samples were prepared to resolved contributors to toxicity in mysids and sea urchins respectively. For the spiked sample, in addition to the 100% undiluted samples, the untreated samples and sodium thiosulfate-treated samples were diluted in a series to include 50%, 25% and 10% dilutions. These extra samples served to discriminate the expected reduction in toxicity that would occur with the first TIE treatment, and to characterize the over-all sensitivity of the organisms to the untreated sample (e.g., to demonstrate differences in sensitivity between the two test species). Centrifuged samples were used for the sea urchin test because physical damage to these organisms may occur when exposed to high concentrations of particulate matter.

Sample Manipulations

As illustrated in Figure 1, the TIE manipulations involved a series of sequential manipulations followed by two independent treatments. The principle of the sequential approach is that as each sample is treated and tested for toxicity, a potential source of toxicity can be identified or eliminated. The procedure begins with untreated samples, followed by the most specific treatments and ends with the most general. For SPP constituents, STS and EDTA act quite specifically on certain groups of common heavy metal contaminants. By treating the metals first, and then applying filtration and Solid Phase Extraction (SPE) to remove organic contaminants, reductions in toxicity following each individual treatment can be associated with specific toxicant groups.

By applying the independent *Ulva* treatment and associated pH adjustments at the end of the sequential treatments, the role of ammonia as a contributor to toxicity can be more clearly discerned. The *Ulva* addition is best suited as a final treatment because it could also remove metals and organics to varying degrees. Its application as final treatment limits uncertainty in the interpretation of results. Similarly, pH adjustments can affect the toxicity of multiple potential contaminants, including certain metals and potentially toxic organic compounds. The elimination or reduction of toxicity due to these groups prior to pH adjustment facilitates the direct association between pH change and commensurate changes in the relative toxicity of both ammonia and sulfides due to ionic shift.

Untreated SPP is sub-sampled to determine baseline toxicity for the SPP, provide a starting point to assess relative changes in toxicity associated with each subsequent treatment. Likewise, sub-sampling occurs after each treatment for TIE toxicity testing. The objective of each treatment step is described below.

Sequential Treatments

Establish Baseline Toxicity with Untreated sample: For this step, sub-samples of untreated SPP are tested to assess toxicity relative to TIE-manipulated sub-samples. Even though SPP tests was performed during toxicity screening (Task 2A) new baseline samples should still be collected and tested to correspond temporally with the manipulated treatments for each sample.

Reduce Metals Concentrations with STS and EDTA: Two treatments are conducted in sequence to reduce bioavailability of metals, specifically by rendering them unavailable for direct uptake into cell tissues. First is the addition of sodium thiosulfate (STS; Na2S203) and second is the addition of ethylenediaminetetraacetic acid (EDTA). Reduction in toxicity of the sample after either or both treatments indicates the presence of metals in toxic concentrations.

- a. Reduce Cationic Metals and Oxidants with STS: Sodium thiosulfate addition was performed as the first metals reduction step because it is generally effective with a smaller subset of metal contaminants relative to EDTA. It is reported by EPA to be most effective in reducing toxicity due to Cd²⁺, Cu²⁺, Ag¹⁺ and Hg (with lesser affinity for Ni²⁺, Zn²⁺, Pb²⁺ and Mn^{z+} (U.S. EPA 1994)). Reduction in toxicity of the sample after STS treatment indicates the above metals are present in toxic concentrations. Sodium thiosulfate is added at the rate of 50 mg/L with no apparent effects on test species (U.S. EPA, 1996).
- b. Chelate Cationic Metals with EDTA: This reducing agent chelates divalent cationic metals (i.e., AI²⁺, Ba²⁺, Fe²⁺, Mn²⁺, Sr²⁺, Cu²⁺, Ni²⁺, Pb²⁺, Cd²⁺, 002+, and Zn^{2+} (U.S. EPA., 1996). Reduction in toxicity of the sample after EDTA treatment indicates that members of the above listed group of metals are present in toxic concentrations. If reduction in toxicity does not occur with STS, but does occur with EDTA addition, there are two potential explanations. One possibility is that the metals causing toxicity are amongst the group that is less reactive with STS (NI, Zn, Pb and Mn) and the other is that the magnitude of toxicity was high enough that the addition of both reducing agents was required to affect toxicity. Generally, a fully or partially toxic response following the sequential EDTA treatment indicates that something other than divalent cationic metallic compounds are a major contributor to sediment toxicity. In other words, either metals are not toxic, or alternatively, if the samples remain fully toxic (i.e., no normal response is observed), other toxic agents may be masking the reductions in toxicity associated with metals. EDTA is added at the rate of 60 mg/L with no apparent effects on test species. According to the marine TIE guide (1996) this could potentially chelate 26 mg of divalent metal per liter.

The absence of reduction in toxicity indicates that metals are not toxic in the sample, and/or that remaining constituents are present at levels that still influence toxicity and/or that the toxic load of metals in the sample exceeded the binding capacity of the TIE agents.

Extract Particulate-associated Contaminants with Filtration: Because filtration may remove metals and organics, the placement of the filtration step after the treatments for

metals (STS and EDTA) reduces ambiguity of interpretations associated with filtration effects. Filtration is operationally defined by filter type and the filtration procedure used. To assure the removal of all suspended particles that could clog or compromise the integrity of the SPE column used in the following procedure, samples were filtered with 0.45 mm membrane filter (i.e., polyvinylidene fluoride to minimize sorption of organics). Toxicity tests conducted on the pre- and post-filtered fraction permit elucidation of potential toxicity associated with large colloids or particulates in the SPP. Filtration has not been found to affect the concentrations of sample ammonia. Filters used in this step were retained for any subsequent analyses that would be helpful if reduction in toxicity occurred due to filtration.

Extract Organics with a Solid-phase Extraction (SPE) Column: In this step, filtered SPP samples were eluted through a SPE column (Waters C18) to remove organic compounds (Waters, 2001). According to general recommended manufacturer's procedures, the samples were eluted through the column at a rate of 10 ml/min. For each sample, the column was exchanged after 500 ml was eluted. The column was monitored visually to limit the possibility that its capacity would be exhausted prior to elution of 500 ml. Nevertheless, prevention of column break-through cannot be assured for samples with unknown constituents, and removal of toxic organic toxicants may be incomplete.

Independent Treatments

Remove Ammonia with Ulva: For saltwater samples, treatment with the green seaweed (Ulva lactuca) is generally more effective than zeolite in removing ammonia. However, this treatment may also remove other residual sources of toxicity to varying degrees, including metals and organics. Ulva is a cosmopolitan macroalgae, and is generally found in estuarine lagoons, often floating on mudflats. It inhabits the upper to mid-intertidal, and in some locations may be found up to the subtidal zone and is associated with nutrient-enriched conditions. For this study, the algae was collected on the day prior to test treatments and held in aerated seawater at 15°C. Batches of Ulva to be added to each sample were prepared by weighing out 1g of Ulva per 15 ml sample. Whole leaves of Ulva were used to treatment each sample. The pre-weighed batches were held together with skewer sticks and stored in seawater until addition. After addition, the samples were incubated for 5 hours at 15°C (Ho et al., 1997; 1999).

Manipulate Ammonia and Sulfide with Adjusted pH: As noted above, methods to remove ammonia, while generally effective, may provide inconclusive evidence to deduce ammonia toxicity. Hence, it is useful to conduct pH manipulations to provide additional evidence of ammonia toxicity, as well as discriminate between ammonia and hydrogen sulfide as potential toxicants. To achieve a reduction in pH, dilute hydrochloric acid (e.g. 1N) is added in small increments (μ Ls), followed by mixing, and measurement, repeating the procedure until the target (pH= 7.0 to 7.5) is achieved. If toxicity decreases with decreased sample pH, ammonia is suspected, while an increase in toxicity with lower pH would implicate hydrogen sulfide or residual metals.

TIE Exposures

Mysids were exposed with ten animals in each of three replicates. In all other respects, the mysid tests with each treatment were conducted as described in the report for Task 2A.

Tests with the sea urchin, Arbacia punctulata, were conducted according to methods developed by SAIC, as reported in "Laboratory Testing In Support of Environmental Assessment NAE O&M Projects" (U.S. EPA and U.S. ACE, 2002). The test chambers were 20 mL polyethylene scintillation vials. Ten milliliter aliquots of elutriate were added to each of three replicate chambers per sample. Tests were conducted in a temperature-controlled chamber at $20 \pm 1^{\circ}$ C. Gametes for the test were collected and mixed as follows:

Four male urchins were placed in seawater in shallow bowls. Males were stimulated to release sperm by touching the shell for about 30 seconds with the steel electrodes of a 12 V transformer. Sperm were collected using a 1 mL disposable syringe fitted with an 18-gauge, blunt tipped needle. The sperm were diluted with seawater to achieve approximately 1×10^8 sperm/ml, held on ice and used within 1 hr of release.

Four female urchins were placed in seawater in shallow bowls. Females were stimulated to release eggs by touching the shell as described above. Eggs were collected and held at room temperature for up to two hours with aeration. The eggs were washed two times with seawater by gentle centrifugation (500xg) for two minutes in a conical centrifuge tube. The eggs were diluted with seawater to a concentration of 2,000 eggs/mL and were aerated until used. Sperm and egg suspensions were mixed to a final concentration of 1:500 egg: sperm ratio.

After 60 minutes, fertilization was confirmed (100% in this case) and 1 mL of fertilized egg suspension was added to 10 mL of sample in each of three replicates and was incubated for 72 hours at 20 ± 1 EC. The test was terminated by adding 2 mL of preservative to each vial.

One mL of suspension from each of the three replicates was transferred to a Sedgwick-Rafter counting chamber. Embryos were examined using a compound microscope (100X). One hundred embryos were examined for normal (i.e., not delayed) development as indicated by the presence of the pluteus larva.

The number of normal pluteii larvae and the number of abnormal pluteii larvae per 100 organisms were counted, as well as the total number of surviving organisms per ml.

For both tests, acceptable dissolved oxygen concentrations were documented to be in the range of 7.8 to 8.2 mg/L at the start of the test, and 5.3 to 6.6 mg/L at the end of the test. Salinity increased by = 3 mg/Kg, from 31 mg/Kg at test initiation, pH ranged between 7.8 and

1

8.2, across samples, with no apparent temporal trend. All water quality parameters were acceptable (U.S. EPA/U.S. ACE, 1998; U.S. ACE, 1991). Ambient laboratory lighting was set for constant light during the test exposure period.

Full strength SPP solutions were analyzed for ammonia on day 0. Samples were diluted 1 to 10 with deionized water. Total ammonia was measured spectrophotometrically.

Data Analysis

Mean responses to baseline and TIE treatments were calculated, for mysids and sea urchins. Responses are presented for performance control, the spiked sample and NBH-202 samples. For mysids, results are expressed for both 48 hr and 96 hr responses. For sea urchins, results are expressed as percent normal development and survival relative to controls.

Results

Quality Assurance/Quality Control

Up to 96 hrs, control responses for mysids through all treatments remained > 90%. For sea urchins, control responses, normal development ranged from 98 to 100% and survival counts ranged from 83 to 92 per ml. These results, along with documentation of acceptable water quality, confers validity of test results.

The summary report for reference toxicant testing with mysids and sea urchins using potassium chloride and copper sulfate is presented at the end of the Toxicity Test Data Report provided by Aquatec (Appendix A). The LC₅₀ for *A. bahia* was 0.360 g/L (as potassium), well within the Control Chart lower and upper boundaries of 0.11 and 0.83 g/L, established the normal response of these organisms. The EC₅₀ calculated for *A punctulata* was 30.9 μ L (as copper) is equivalent to the value reported previously reported for this test (SAIC, 1994).

Chemical Exposure Concentrations

Results from the toxicity testing component of the TIE study are best interpreted in the context of the chemical exposure levels present in the untreated toxic sample under investigation. This is accomplished by using hazard Quotients (HQ= measured chemical concentrations divided by species-specific LC_{50} s or EC_{50} s) to represent expected sensitivity of the test species to the chemical exposure. In a single toxicant exposure, HQs less than 1 would result in less than 50% adverse affect while HQs > 1 would generally result in higher percentage of exposed organisms affected; the higher the HQ, the greater and more likely the observation of high percentage effects. For the current study, HQs were derived using chemical concentrations presented in the Task 2A report, Appendix C, and literature values that to represent effect concentrations for each of the toxicants of concern.

Table 1 presents HQs for the spike sample and the site sample (NBH-202), for the two species. Based on the chemical exposure concentrations, the mysid is expected to be more sensitive to PCBs in the TIE testing with NBH-202 (HQ=1.36 vs. 0.02, respectively) given

the lower (*i.e.*, more sensitive) LC_{50} value, while sea urchins would be more sensitive to copper (HQ = 5.43 vs. 0.64, respectively) and ammonia (HQ = 17.7 vs. 0.82, respectively). The comparison of the spike sample and the NBH sample HQs show that the test concentrations in the spike approximated the concentrations of the toxicants of concern in the site sample, except for ammonia, where a reduced potency was chosen to increase the likelihood of demonstrating an effective treatment for the more sensitive sea urchin response.

In summary, the analyses of the chemical exposures suggest that both copper and PCB concentrations are in the exposure range were toxicity could occur, depending on species sensitivity and site-specific water quality conditions. Also, the spike concentrations are in the proper range to adequately assess the effectiveness of the TIE treatments in mitigating the toxic response.

Toxicity Identification Evaluation Test Results and Interpretation

Summaries of the TIE toxicity tests with mysids and sea urchins are provided in Tables 1 and 2, respectively, synthesized from the raw data presented in Appendix A (Aquatec data report). Changes in toxicity are highlighted in yellow, and are indicative of reduction/removal of bioavailability of a toxic constituent that was present in the untreated sample.

The most relevant findings from TIE treatments for each of the targeted toxicant classes are reviewed below, particularly with regard to the relationship between expected toxicity based on species-specific HQs, and observed responses. The results from the spike sample are presented first, to establish the interpretive process.

Results for the Spiked Sample

Metal treatments (STS, EDTA): Tables 2a and 2b show TIE results from 48 hour and 96 hour tests with mysids. Untreated sample results show complete mortality in both 100% and 50% exposures. STS completely removed toxicity in the 50% dilution, and in the undiluted sample survival reached 90% following STS treatment, and 100% following EDTA treatment. This indicates that copper was causing the majority of the toxicity in the untreated sample, given that the metal treatments alone were successful in improving survival to 100% despite the presence of PCBs in the sample. The mysid results also indicate that toxicity of copper was greater than would be expected for exposures to copper alone (i.e., no survival, but HQ was <1; see Table 1), indicating that copper was more toxic in the presence of Aroclor).

Sea urchin results are presented in Tables 3a (survival) and 3b (larval development). While larval development is generally the more sensitive endpoint, and the one most commonly reported for the embryo-larval test (U.S. EPA, 2002), both endpoints demonstrated responses to TIE treatments of the spiked sample. Unlike mysids, only partial mortality was observed in sea urchins exposed to the spike samples. The survival endpoint was less reliable, as a clear dose-response pattern (survival proportional to

concentration) was not observed. Where survival responses were low in untreated samples (25% and 50% dilutions), the metal treatments appeared to increase survival, indicating that toxic forms of copper were removed (one anomaly occurred, with lower survival in the STS treatment than in the untreated sample, but EDTA restored survival to 91%). Sea urchin larval development was more affected by copper than expected, with high toxicity occurring in all untreated samples, including the 10% dilution (HQ= 0.7). Copper effects on sea urchin normal development in the spike was removed by STS in the 10% dilution, and by the combination of STS and EDTA in the 100% dilution, indicating that, even for this more sensitive endpoint, the TIE treatments were effective in removing copper from the sample.

Organics Treatment (PCBs): In mysid 48 and 96 hr exposures (Table 2), PCB in the spike was not toxic. This indicates that after available copper was bound the concentration of PCB was insufficient to cause toxicity. Because the estimated HQ was 1.2 for PCB in the sample, it is possible that the estimated concentration was less toxic to mysids than predicted. However, the actual exposure concentration of Aroclor used to derive the HQ (10% of the nominal concentration; losses expected to result largely from sorption to exposure chambers) is uncertain, such that the expectation of toxicity was equally uncertain. Results from the TIE treatments for particulates and organics were similar to control responses, indicating that the treatments had no adverse affect on survival. Similarly, the sea urchin normal development was not affected by either the particulate or organic treatments of the spiked sample.

Ulva Treatment: Ammonia was added to the non-toxic C18 -treated sample to demonstrate efficiency of ammonia removal. For mysids, the concentration of ammonia added (HQ= 0.3) was not be expected to result in toxicity, and the absence of toxicity in the spike sample (90%) indicates that Ulva had no adverse affect on survival (Table 2). For the sea urchin, the Ulva treatment did not improve larval development (0.3%), indicating that the treatment did not reduce ammonia to a non-toxic level (Table 3b). For the survival endpoint (Table 3a), the 41% survival response at the spike concentration can be used for comparison with results obtained in the site sample (see below), where ammonia is a natural constituent of the sediment matrix.

Low pH (Independent Post-C18 Treatment): As with the Ulva treatment, ammonia was added to the non-toxic C18 -treated sample to reduce the proportion of the more toxic unionized ammonia form through pH reduction. In the mysid tests, the ammonia-spiked Iow-pH sample was not toxic, as expected, although the finding is somewhat uncertain due to variability of pH over time. Similarly, the spiked Iow-pH sample was non-toxic to sea urchin survival and larval development, indicating that the reduction in unionized ammonia was sufficient to remove toxicity.

Site sample NBH-202

Metal treatments (STS, EDTA): Table 2a shows that for mysids at 48 hours, the EDTA increased survival from 20 to 37%, indicating that metal(s) have likely contributed to toxicity in the filed sample. The 96 hour results (Table 2b) indicate an increased level of toxicity in the untreated sample could not be mitigated by the metal treatments. It also suggests the possibility that reductions in toxicity due to the metal treatments were masked by other sample constituents that remained at highly toxic levels after the STS and EDTA treatments (discussed below).

Table 3a shows that the elutriate prepared from the Harbor sediment was highly toxic, both in survival and development of sea urchin larvae. Sea urchin survival and larval development did not improve following treatments to bind metals, even though the copper concentration appears to be similar to the spiked sample where reduction in toxicity did occur. This indicates a presence of residual contributors to toxicity, including organics, ammonia and/or copper and other metals that were not completely bound by the TIE treatments.

Organics treatment (PCBs): For mysids, the filtration and C18 steps each sequentially removed site sample toxicity at 48 hours (increasing survival to 70 and 93%, respectively; Table 2a), indicating that organics were the principal contributors the toxicity observed at this exposure interval. As with the metal treatment, the 96 hour results (Table 2b) indicate a residual source of toxicity (discussed below) that precluded observed reductions in toxicity due to the metal treatments.

For sea urchins, larval development was not improved by filtration and C_{18} treatments of the site sample (Table 3b), while a slight trend of increasing survival was observed (count per ml increasing from 9% in the untreated sample to 16% in the filtered sample and 21% after the C18 treatment; Table 3b).

Ulva Treatment: Ulva treatment of the site sample was performed to remove ammonia as a source of toxicity. In the NBH-202 sample, Ulva completely removed toxicity to mysids at 96 hrs (Table 2b). survival remained at <10% prior to the Ulva treatment. This indicates that the mortality due to ammonia did likely mask potential chemical toxicity removed by previous sequential TIE treatments. Ulva may also reduce residual toxicity associated with metals and organics. This fact will be important in interpreting the results of the Low pH treatment discussed below.

In the sea urchin exposures to the site sample, the *Ulva* treatment had a large impact on sea urchin survival (increased to 65% from 21%; Table 3a). This indicates that survival was affected by ammonia, and possibly other residual toxicants, as noted above. *Ulva* did not increase normal development (the principal, and more sensitive endpoint for this test; Table 3b). The concentration of total ammonia through the C_{18} treatment was 37 mg/L and was reduced by the *Ulva* treatment to 7.8 mg/L (as unionized, 0.06 mg/L). Reported EC₅₀s for this species exposed to ammonia are as low as1.7 mg/L and 0.06 mg/L as total and unionized ammonia respectively, indicating that the treatment may not have removed enough ammonia; hence ammonia most likely remained a factor contributing to toxicity.

Low pH (independent post- C_{18} treatment): Mysid survival at 48 hours was lower with the low pH treatment than it was following the C_{18} -treatment. Normally, ammonia toxicity would be reduced by this treatment, but in this case, an increased toxicity could be due to residual copper. Copper toxicity may is inversely related to pH in some marine organisms (Ho et al., 1999b) not sequestered by the STS and EDTA treatments. The low pH shift can increase the proportion of the toxic Cu²⁺ ion by an order of magnitude within the pH range evaluated for this study (Leckie and Davis, 1979)

The low pH treatment resulted in 27% sea urchin survival (indicating that unionized ammonia may not have been the principal toxicant for this endpoint. Larval development did not improve with the low pH treatment, most likely due to residual ammonia and other residual toxicants.

Summary of Findings for Site Specific Water Quality Study

The TIE conducted in this study addressed the relative roles of metals, organic constituents and ammonia are contributors to toxicity associated with SPP generated from a New Bedford Harbor sediment (NBH 202). The sequential TIE method relies on evaluation of results from multiple treatments and multiple species. Results with spiked samples demonstrated that the sea urchin (particularly larval development) is more sensitive to copper and ammonia relative to the mysid, in fact, too sensitive for the purposes of this study. Accordingly, the 48 hour mysid results were determined to be most useful in identifying sources of toxicity prior to the *Ulva* treatment. For mysids following 48-hour exposures to 100% SPP, survival gradually increased from 20% to 90%, apparently due to treatments for both metals and organics.

The SPP and elutriate for NBH-202 at 100% strength was highly toxic to both species. Ulva eliminated and reduced toxicity, respectively in the 96-hour mysid and sea urchin survival results, where prior treatments had been ineffective. This indicates that ammonia toxicity masked the removal of toxicity that would have been occurred in prior sequential steps that target metals and organics.

Specific Hazard Quotients and TIE results generally both support the finding of multiple sources of toxicity. Copper and ammonia toxicity to sea urchins appeared to have exceeded the capacity of the TIE treatments to sufficiently limit observed effects. Mysids were most affected by PCBs and ammonia, but their sensitivity to copper appears to increase with near-toxic levels of PCBs, as seen with the spike sample responses. The role of PCBs is the most uncertain of the three toxicants due to the need to use toxicity values derived for specific PCB mixtures (e.g. Aroclor 1242) that are different from the mixture presented in the NBH sediment sample.

References

Adams and Slaughter-Williams. 1988. The effect of PCBs (Aroclors 1254 and 1016) on fertilization and morphology in *Arbacia punctulata*. Water, Soil and Air Pollution.38:299-310.

Bay, S. R. Burgess and D. Nacci. Status and Applications of echinoid (phylum Echinodermata) toxicity test methods. ASTM Standard Tech. Publication 1179. 1993. pp 281-286.

Ho. K.T., R.A. McKinney, A. Kuhn, M.C. Pelletier, R.M. Burgess. 1997. Identification of acute toxicants in New Bedford Harbor Sediments. Environmental Toxicology and Chemistry. 16: 551-557.

Ho, K.T., Kuhn, A., Pelletier, MC. Hendricks, TL and Helmstetter, A. 1999. pH dependent toxicity of five metals to three marine organisms. 14: 235-240.

Leckie, J.O. and J.A. Davis. 1979. Aqueous Environmental Chemistry of Copper. In: Copper in the Environment. Part 1: Ecological Cycling. Jerome Nriagu (Ed.). pp 89-121. John Wiley and Sons.

Lussier, S.M., W.S. Bootman, S. Poucher, D. Champlin and A. Helmstetter. 1999. Comparison of dissolved and total metals concentrations from acute tests with saltwater organisms. Environmental Toxicology and Chemistry, 18: 889-898.

Miller, D.C., S. Poucher, J.A. Cardin and D. Hansen. 1990. The acute and chronic toxicity of ammonia to marine fish and a mysid. Arch. Environ. Contam. Toxicol. 19: 40-48.

Nacci, D., U. Jackim and R. Walsh. 1986. Comparative evaluation of three rapid marine toxicity tests: sea urchin early embryo growth tests, sea urchin sperm cell toxicity test and Microtox. Environmental Toxicology and Chemistry. 5: 521-525.

National Biological Service. 1996. Sediment SPP toxicity survey and Phase I Sediment Toxicity Identification Evaluation studies in Lavaca Bay, Texas. Corpus Christi, TX.

Nelson, W.G., R.J.Pruell (SAIC) and D.J. Hansen (EPA). 1991. Monitoring plan for remediation of the first operable unit ("hot spot") at the New Bedford Harbor Superfund Site. Document prepared for EPA Region 1 and the US Army Corp. of Engineers, New England Division.

SAIC. 1993. Toxicity testing to support the New York/New Jersey Harbor Site specific criteria study. Science Applications Intl. Corp. Final Report to EPA. Contract No. 68-C8-0066. Work Assignment C-4-94. Internal Report # 1037.

U.S. EPA. 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA/600/4-90/027.

U. S. Environmental Protection Agency and United States Army Corps of Engineers. 1991. "Evaluation of dredged material proposed for ocean disposal: Testing manual," EPA/503R 91/001 Washington, DC.

US EPA. 1996. Marine Toxicity Identification Evaluation (TIE), Phase I Guidance Document. EPA/600/R-096/054. US EPA Office of Research and Development.

U. S. Environmental Protection Agency and United States Army Corps of Engineers. 1998. Evaluation of dredged material proposed for inland disposal: Testing manual, Washington, DC.

Figure 1. Simplified Flow Diagram for Sequential TIE: Fractionation, Testing and Interpretation

New Bedford TIE; SAIC/Maguire, January 2003

i

Table 1. Species-specific elutriate Hazard Quotients for chemical exposures to Americamysis bahia and Arbacia punctulata exposed to New Bedford Harbor Suspended Particulate Phase samples.

	Mysid	Mysid (Americamysis bahia ¹)								
Analyte	Acute LC ₅₀	Reference for Acute value	HQ for Spike ^{1,2,3}	HQ for NBH-202- Elutriate						
Copper	153	a,g	0.78	0.64						
PCB Unionized ammonia	17	c t	1.18 0.26	1.36 0.82						

	Sea Ur	Sea Urchin (Arbacia punctulata ¹)									
Analyte	Acute EC ₅₀	Reference for Acute value	HQ for Spike ^{1,2,3}	HQ for NBH-202- Elutriate							
Copper	18	g	6.67	5.43							
PCB	1000	d	0.02	0.02							
total ammonia	4.06	e	3:45	9.33							
Unionized ammonia	0.09	b, e	5.56	17.71							

1 - Hazard Quotient = elutriate concentration/species LCs0 (larval development for sea urchin)

2 - Hazard Quotients for spiked sample based on estimate from nominal concentrations

3 Copper = 100% nominal concentration and PCB =10% nominal concentration^h

a Nacci, Jackim and Walsh. 1986.

b, Bay, S. R. Burgess and D. Nacci. 1993.

c Ho, K.T., R.A. McKinney, A.Kuhn, M.C. Pelletier, and R.M. Burgess. 1997. Value for Aroclor1242; Aroclor 1254 = 57 ug/L

d Adams and Slaughter-Williams, 1988.

e National Beological Service. 1996. Value used is geometric mean of values from Bay et al. and NBS.

f Miller, D.C., S. Poucher, J.A. Cardín and D. Hansen. 1990.

geo. Mean = 1,94 mg/L unionized ammonia

g, SAIC 1993.

h. Ho et al., 1999b.

Table 2 Survival in the mysid, *Americamysis bahia*, after exposures to Spiked Water and Suspended Particulate Phase sediment in the New Bedford Harbor TIE study.

		TIE Treatment ¹ Result (% Survival)										
		Metals		Particulates	Organics	Ammonia						
Sample-dilution %	Untreated	STS EDT		Filtered	C ₁₈	Ulva	Low pH ²					
Spike - 50 %	0	100										
Spike - 100 %	0	90	100	100	93	90	100					
STA 202 100%	20	20	37 .	* 70 ·	93	90	23					
PC-100 %	100	100	100	100	93	90	100					

A. 48 hour results

B. 96 hour results

		TIE Treatment ¹ Result (% Survival)									
		Metals		Particulates	Organics	Amı	mmonia				
Sample-dilution %	Untreated	reated STS EDTA		Filtered	C ₁₉	Ulva	Low pH ²				
Spike - 50 %	0	100					∦·				
Spike - 100 %	0	80	97	100	93	90	97				
STA 202 100%	0	0	0	0	3	90	3				
PC-100 %	100	100	97	97	100	90	100				

¹ Treatments were sequential, from left to right (except Low pH, which followed C₁₈- Ulva).

Blank cell indicate that no sample was tested.

Yellow highlighting indicates apparent reduction (> 15%) in toxicity.

Bold outline indicates statistically significant change in toxicitiy (a= 0.05).

No toxicity tests were conducted on Spike dilutions after the STS treatment.

Table 3. Responses of the sea urchin, *Arbacia punctulata*, after exposures to spiked water and sediment elutriate in the New Bedford Harbor TIE study.

		TIE Treatment ¹ Result (% Survival) ²									
		Me	etals	Particulates	Organics	Ammonia					
Sample-dilution %	Untreated	STS EDTA		Filtered	C ₁₈	Ulva	Low pH				
Spike - 10 %	82.0	85.0									
Spike - 25 %	26.0	76									
Spike - 50 %	54.7	79									
Spike - 100 %	81.0	35.0	91	90.0	87.7	41.3	84.0				
STA 202 100%	8.7	17	4.7	16	21	65	27.0				
PC-100 %	90	88.0	82.3	87.7	92.3	83.0	93.3				

A. Survival at 72 hrs.

B. Normal development at 72 hours.

		TE Trea	utment ¹ F	Result (% Norr	nal Develo	pment) ³		
		Me	etals	Particulates	Organics	Amr	nonia	
Sample-dilution %	Untreated	STS	STS EDTA F		C ₁₈	C ₁₈ Ulva Lor		
Spike - 10 %	0.7	99						
Spike - 25 %	0.0	0.0						
Spike - 50 %	0.0	0.0						
Spike - 100 %	0.0	0.0	.98	98.3	98.0	0.3	96.7	
STA 202 100%	0.0	0.0	0.3	3.0	1.3	0	0.0	
PC-100 %	100	99.7	99.7	99.7	97.7	98.7	99.3	

¹ Treatments were sequential, from left to right (except Low pH, which followed G₁₈- Ulva).

² The survival endpoint is defined as number of larvae present in 1 ml.

³ The normal larval development endpoint is defined as achievement of the pluteus stage Blank cell indicate that no sample was tested.

Yellow highlighting indicates apparent reduction (> 15%) in toxicity.

Bold outline indicates statistically significant change in toxicitiy (a= 0.05).

Aquatec Biological Sciences

Ecology

Environmental Texticology Natural Resource Assessments

December 2, 2002

Ms. Sherry Poucher SAIC 221 Third Street Newport, Rhode Island 02840

Dear Ms. Poucher:

Enclosed please find a report (two copies, one bound, one unbound) of the toxicity test results for TIE preparations with *Americamysis bahia* and *Arbacia puntulata* completed on samples received on October 31, 2002 (New Bedford).

If you have any questions regarding the report, please contact Dr. Philip C. Downey or me.

Sincerety

John Williams Manager, Environmental Toxicology

Aquatec Biological Sciences

Sciences

÷.

Environmental Toxicology

Ecology

Natural Resource Assessments

Toxicity Detail Report

Science Appli	cations International Corp	••	Date:	12/2/2002
221 Third Stre	et		Project:	02065
			SDG	6560
Newport, RI	02840		Site:	New Bedford

Method: Species:	TIEAP <i>Arbacia punctulata</i>			Repi De (norr	icate Normal velopment nal/counted)		·
Number	Treatment	Conc(%)	Day	A	B	C	Average Normal (%
023135	Control-Filtered	100	3	99 / 100	99/100	98/100	98.7
023136	NBH_SPP_Cent-C18	100	3	1/50	37100	0/ 100	1.6
023138	Spike-C18	100	3	96 / 100	99/100	99/100	98.0
023139	Control-C18	100	3	96 / 100	987100	99/100	97.7
023140	NBH_SPP_Cent-Ulva	100	3	0/100	0/100	0/ 100	0.0
023142	Spike-Ulva	100	3	0/100	0/100	1/ 100	0.3
023143	Control-Ulva	100	3	99/100	100 / 100	97/100	98.7
023144	NBH_SPP_Cent-LOpH	100	3	07 100	07100	0/ 100	0.0
023146	Spike-LOpH	100	3	96/100	97/100	97/100	96.7
023147	Control-LOpH	100	3	99/100	100/100	997 100	99.3
023148	NBH_SPP_Cent-Untreat	100	3	0150	0/50	0/ 50	0.0
023150	Spike-Untreated	. 10	3	1/100	1/100	0/ 100	0.7
023150	Spike-Untreated	25	3	0/100	0/100	0/ 100	0.0
023150	Spike-Untreated	50	3 ·	0/100	0/100	0/ 100	0.0
023150	Spike-Untreated	100	3	0/100	0/100	0/ 100	0.0
023151	Control-Untreated	100	3	100/100	100/100	99/100	99.7
023152	NBH_SPP_Cent-STS	100	3	0/50	0/100	0/ 50	0.0
023154	Spike-STS	10	3	99/100	99/100	98/100	98.7
023154	Spike-STS	25	3	0/100	0/100	0/100	0.0
023154	Spike-STS	50	3	0/100	07 100	0/ 100	0.0
023154	Spike-STS	100	3	0/100	0/100	0/ 100	0.0
023155	Control-STS	100	3	100/100	100/100	99/100	99.7
023156	NBH_SPP_Cent-EDTA	100	3	0150	1/_50	0/28	08
023158	Spike-EDTA	100	3	95/100	99/100	100/ 100	98.0
023159	Control-EDTA	100	3	99/100	100/100	100/ 100	99.7
023160	NBH_SPP_Cent-Filtered	100	3	3/100	67100	0/ 100	3.0
023162	Spike-Filtered	100	3	100/100	1007 100	95/100	98.3
023163	Seawater	0	3	100/100	OD TEB	100/100_	99.7

Page 1 of 1 273 Commerce Street, Williston, VT 05495 Tel: 802.860.1638 Fax: 802.658.3189

Aquatec Biological Sciences

Sciences

Environmental Toxicology

Ecology

Natural Resource Assessments

Toxicity Detail Report

Science 221 Thir Newport	Applications Internationa d Street , RI 02840		D P S S	ate: rojec DG ite:	12/2/2002 02065 6560 ew Bedford			
Method D	escription: TIE Using Mysidop	sis bahia			Bool	ionto C		Average
Species:	Mysidopsis bahia	Conc (%)	Test End Day	Start Count	A	B		Survival (%)
23135	Control-Filtered	100	4	10	10	10	9	96.7
23137	NBH_SPP_202-C18	100	4	10	0	1	, 0	3.33
23138	Spike-C18	100	4	10	9	9	10	93.3
23139	Control-C18	100	4	10	10	10	10	100
23141	NBH_SPP_202-UIva	100	4	10	10	9	8	90
23142	Spike-Ulva	100	4	10	10	9	8	90
23143	Control-Ulva	100	4	10	10	9	8	90
23145	NBH_SPP_202-LOpH	100	4	10	3	0	0	10
23146	Spike-LOpH	100	4	10	10	9	10	96.7
23147	Control-LOpH	100	4	10	10	10	10	100
23149	NBH_SPP_202-Untreated	100	4	10	0	0	0	0
23150	Spike-Untreated	100	4	10	0			
23151	Control-Untreated	100	4	10	10	10	10	100
23153	NBH_SPP_202-STS	100	4	10	3	0	0	10
23154	Spike-STS	50	4	10	10			
23154	Spike-STS	100	4	10	8			
23155	Control-STS	100	4	10	10	10	10	100
23157	NBH_SPP_202-EDTA	100	4	10	0	0	0	0-
23158	Spike-EDTA	100	4	10	10	9	10 [°]	96.7
23159	Control-EDTA	100	4	10	10	10	9	96.7
23161	NBH_SPP_202-Filtered	100	4	10	0	0	0	0
23162	Spike-Filtered	100	4	10	10	10	10	100
23163	Seawater	0	4	10	10	10)	10	
			Subr	vitted By:		6	·	

273 Commerce Street, Williston VT05495 Tel: 802.860.1638 Fax: 802.658.3189

.

對

Aquatec Biological Sciences

Environmental T*oxicology* Natural Resource Assessments

Quality Assurance Report

Science Appl. 221 Third Stre	ications International Corporation	Date: Project:	12/2/2002 02065
		SDG	6560
Newport, RI	02840	Site:	New Bedford

Qualifiers and Special Conditions

For the untreated spike sample (sample 23150) and the STS-treated spike sample (sample 23154) dilutions of 10%, 25%, 50%, and 100% sample were tested with Arbacia. For the mysids there was only enough sample to run the 100% (one replicate for the untreated spike) or the 50% and 100% (one replicate each for the STS-spike).

Dissolved oxygen concentrations were low in two treatments, sample 23156 and sample 23160 and were aerated briefly before starting the toxicity tests.

For the Arbacia punctulata embryo development test, a subsample of 100 embryos was counted and scored for normal/abnormal development. When it was evident that few embryos survived in some test solutions, only 50 embryos were scored. These replicates were sample 23136 replicate A; sample 23148 replicates A,B,C; and sample 23152 replicates A,C.

Page 1 of 1

Supportive Documentation

Chain-Of-Custody Toxicity Test Methods Sea Urchin, Arbacia Punctulata, 72-h embryo development TIE Using Mysidopsis bahia Standard Reference Toxicant Control Charts

Science Applications International Corporation

Chain-Of-Custody

4) 5

Science Applications International Corporation

3 1 *

			Aqu	atec B Chain-	iolo(of-Cus	gical Scie	ences			273 4Will 4TEL FAX	Commen ston, VT (802) 80 (802) 61	xe Street 054951 0-1638 58-3189	
COMPANY INFORMATION COMPANY'S PROJECT					ATION	SHIPPING		VOLUME/CONTAINER TYPE/ PRESERVATIVE (NOTE 4)					
ame: <u>Sherry Pourper</u> adress: <u>221 Third Sirer</u>	ss: 221 Third Swert		Carrier: Fed E	×									
illy/Slate/Zip: <u>Newport R. I. or</u> elephone: <u>(401)</u> 847-4110	<u>254 u</u>	Project Nur Sampler Na	nber: ame(s):		`	Airbill Number: <u>83</u>	0/24/or	- Jp. 2"	nt nt				
FaceImlie:		(Quote #:	Clie	ent Code:		Hand Delivered:	Yes No	190	infe		_	·	1
SAMPLE IDENTIFICATION (NOTE1)	COLI DATE	ECTION TIME	GRAB	COMPOSITE	MATRIX	ANALYSIS/RE	EMARKS (NOTE 2,3)		NUMB	ER OF C		NERS	
NBH-202- SPP	9/2/0	1305	<u> </u>		SPP	TIE Man	pularisns	(port)					
NBI-1-202-SPP-	y 14/03	4:00			SPP Irac	TIE Man	ipulanung		2				
Clarified by contribuge									n GU Leze	(<u>,,</u>)			
<u>.</u>													
										-		 	╞
Relinnuished by (reignature)		E TIM	E Rece	lyed by: (elans	i i i i i i i i i i i i i i i i i i i	NOTES TO 5	SAMPLER(S): (1) Limit S	ample Identifi		30 charac		esible: (
Relinquished by (signature)	0/29 DAT	<i>luz 13:1</i> E TIM	3 /2/ E Rece	ived by: (signa ived by: (signa	<u>Fed F</u> ature)	Indicate designment of the sample; (3) F Notes to La	gnated Lab Q.C. sample Field duplicates are separ b:	and type (e.g ale sample; (::MS/MSE 4) e.g.: 40	D/REP) an 0 ml/glass	d provide /H₂SO₄	e sufficie	nl
Relinquished by: (signature)	DAT	Е ТІМ	E Rece	ived by: (signa	ature)	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				

المراجعة والمراجع وال

•---

.

1 A 1 A 1

-

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

÷.,

An Employee-Owned Company Science Applications International Corporation Chain of Custody Record Science Applications International Corporation/ 221 Third Street/ Admiral's Gate/ Newport RI 02840 phone (401)847-4210 fax (401)849-9786

Project: NBH	<u>ا</u>	Dredgi	ሳይ		Client Name and Contact:	Maq	uire.	/AC	E. Sherry Puncher
	Ca	ontainers	Colle	tion	<u></u>	f		<u>/</u> {	/
Sample No.	No.	Туре	Date	Time	Sample Description		<u>.</u>		Requested Parameters
Control		185mL	10/30/02	14.00	Filtered	··			TIE
NBH_SPP_Cent		60mL		15:00	<u>C18</u>		<u></u>		
NBIT-SPP-202		150ml			<u>C18</u>	·			
Spike		185mL			- 618	. <u> </u>			
Control		185mL		<u> </u>	<u> </u>				
NBH_SPP_Cent	╎╵	_60mL		1530	_llivA				
NBH_SPP. 202	<u> </u>	150mL			- MVA	····	··	··	
SPike		185 mL	┨────		LIVA				
Centrel		195mL	(́		- WIVA	·····	···		
NBH SPP CCol	1.	60mL		<u></u>	10 PH	<u></u>		<u>·</u>	
NBIT_SPY_02		100 h					<u> </u>	<u> </u>	
Instrul	╌┼╌┼╴	19(-1)	1 <u> </u>	- <u>i</u> -		<u> </u>		······	<u> </u>
Control	-	<u></u>	<u>+</u>	······					······································
Sea water	1	1 Gal	11/30/02		🚝 EPA AED	Sea	Wate	cr	Use for Dilutions
Total	14								
Packed/Released L		······································	Date	Time	Received By		Date	Time	Remarks:
Signature: A	Mes	into man	151.1		Signature:		·		
Printed Name: Kate	A	Montgomer &	10/30/02	16:00	Printed Name:				
Released By , , ,	~		Date	Time	Received By		Date	Time	
Signature:	J.]]	marin		1 H Sam	Signature:		10/3/	04:30	· · · · · · · · · · · · · · · · · · ·
Printed Name: Kat	e A.	Monterner	10/30/02	16.00	Printed Name: T.d. LiL	HANS	102		
Final Destination:		17			Contact Name and Phone Number:				Shipping Method: Fed-Ex
Aquatec	- [v]	:lliston	$\nabla \tau$		John Williams	802	8W .	1639	Page 2 of (2)
T				••••••					

An Employee-Owned Company Science Applications International Corporation

Chain of Custody Record

Science Applications International Corporation/ 221 Third Street/ Admiral's Gate/ Newport RI 02840 phone (401)847-4210 fax (401)849-9786

Project: NBI-	}	Dredai	ny,		Client Name and Contact: MAQUICE ACE	: Sherry Poucher
	C	ontainers (()Co	llection		· · · · · · · · · · · · · · · · · · ·
Sample No.	No.	Туре	Ďate	Time	Sample Description	Requested Parameters
NBH_SPP-Cent,	1	60 mL	10 30 0	- 11:00	Untreated (uni)	TIE
NBH_SPD_202		150mL			Untreated (unt.)	
SPike	1	150m6			Untreated (unt.)	
Control		150 mL		¥	Untracted (Unt.)	
NBH_SPP. Cent		60mL	<u> </u>]	12:00	Sedium Thicsulfate (STS)	
NBH_SPP_202		150mL			Sadium Thiosulfate (STS)	
, SPike		150mL			Sodium Thiosulfate (STS)	
Control	<u> </u>	150mL		<u> </u>	Scalium Thiosulfate (STS)	
NBH_SPP_Cent	1	60mL		13:00	EDTA	
NBH_SPP_202	1	150mL			EDTA	
SPiKe	1	150mL			EDTA	
Control)	150m		1	EDTA	
NBH_SPP_ Cent	- 1	60.4		14:00	Filtered	·
NBH_SPP_201		150mL	<u> </u>		Filtered	
Spike		185-			Filtered	<u> </u>
Total	:115					

Date Time **Received By** Time Remarks: Packed/Released By Dale 10/30/02 Signature: Lec. Temp 1.3°C Signature: 16:00 Printed Name: Kate Printed Name: Date Time 10/31/01 04:30 Date Received By Released By Time Signature: Signature: 10/30/02 16:00 Printed Name: Kale Printed Name; Montromery Fed-Ex Contact Name and Phone Number: Final Destination: Shipping Method: Williston, VT John Williams Q02860-1638 2 Aquatec Page of

Science Applications International Corporation

Toxicity Test Methods

61

Test Protocol

Client: SAIC Project: 0.	2065, New Bedford TIE	SDG: 6560
Test Description: Arbacia punctulata	Embryo development Toxicity Test	harma in 14/atoms of the
U.S. – Inland Testing Manual (EPA-823-B-98-	. Evaluation of Dredged Material Proposed for Disc -004)	narge in vvaters of the
1. Test type:	Static, no renewal] .
2. Test temperature:	20 ± 1°C	
3. Light quality:	Ambient laboratory illumination	
4. Photoperiod;	Continuous illumination	
5. Test chamber size:	20-mL HDPE scintillation vials	
6. Test solution volume:	20 ml / replicate	
7. Renewal of test concentrations:	None	
8. Age of test organisms:	Embryos, approximately 1-h old	
9. No. embryos / test chamber:	~ 2000	
10. No. of replicate chambers / concentration:	3	
11. No. of embryos / concentration:	~ 6000	j ·
12. Feeding regime:	None	}
13. Cleaning:	None during test	
14. Aeration:	None	
15. Dilution water:	Seawater	
16. Test concentrations:	100% for SPP and spike; 10%, 25%, 50%, % % % % % % % % % % % % % % % % % %	
17. Controls:	Seawater	
18. Test duration;	72 hours	1
19. Monitoring:	Daily: Temperature Day 0: DO, temperature, pH, salinity.	
19. End points:	Embryo development	
20. Reference toxicant test:	Copper sulfate 48-h embryo development	
21. Test acceptability (control performance):	70% or greater normal development in control	
22. Data interpretation:	Embryo development	

-

'n.

•

Test Protocol -

Client: SAIC Project: 02	2065, New Bedford TIE	SDG: 6560
Test Description: Americamysis bahia 96-h a	cute toxicity	
ASSOCIATED PROTOCOL: EPA/ACE 1998.	Evaluation of Dredged Material Proposed for Disc	charge in Waters of the
1 Test type:	Static, no renewal	- 7
2. Test temperature:	25 <u>+</u> 1 ⁰ C	
3. Light quality:	Ambient laboratory illumination	
4. Photoperiod:	16 h light, 8 h dark	
5. Test chamber size:	250-mL disposable polystyrene	
6. Test solution volume:	Nominally, 200 ml / replicate	
7. Renewal of test concentrations:	None	
8. Age of test organisms:	1 – 5 days	
9. No. mysids / test chamber:	10	
10. No. of replicate chambers / concentration:	3	
11. No. of mysids / concentration:	30 .	
12. Feeding regime:	Daily, 0.2 mL Artemia nauplii	
13. Cleaning:	None during test	
14. Aeration:	None during test	
15. Dilution water:	Seawater	
16. Test concentrations:	100% for SPP and spike. Insufficient sample available to test 10% or 25% spiked sample.	
17. Controls:	Seawater	
18. Test duration:	96 hours	
19. Monitoring:	Daily: Temperature Days 0, 4: DO, temperature, pH, salinity.	
19. End points:	Survival	
20. Reference toxicant test:	Potassium chloride	
21. Test acceptability (control performance):	90% or greater survival in control	
22. Data interpretation:	Survival (%)]

4

!

Sea Urchin, Arbacia Punctulata, 72-h embryo development

.

4

Science Applications International Corporation

•

For the Arbacia punctulata embryo development test, percent survival may be estimated by using the number of embryos (including normal and abnormal) from a 1-mL aliquot removed from each test vial (preserved embryos) after the test was ended. Presence of any embryo material, no matter how undeveloped or degraded, was scored as "a live embryo" (Actual survival could not be verified because the embryos were preserved.). Data were recorded on the bench sheet labeled as "# in 1-mL".

Percent surviving may be calculated by:

÷.

_ **z**.*

[("# in 1-mL" X 23) / 2000] X 100 = percent survival

23 = the total volume of solution per vial, including preservative

2000 = the nominal number of embryos added per test vial when the test was started.

One exception to this is for Sample 23152 ("Cent SPP-STS") Replicate B. The total volume in this vial was 13 mL after preservation.

Percent surviving = [(29 X 13) / 2000] X 100 = 18.8%

t: SA	ic	Pro	ject: 02065,	New Bedfor	rd TIE	·····			SDG:
Desci	ription: A	Arba <mark>cia pun</mark>	<i>ctulata</i> Embi	ryo developi	ment To	xicity Te	st		
		72-1	BIOLOGIC	AL DATA	-	WAT	ER CHE	MISTR	Y DATA
ĺ	Sample	# Norma	I # Abnorma	# in (2) 1 1-mC		Day	D Day	1 Day	2 Day 3
Ì	23136	A <u>I</u>	49	10	pH	7.9			
Í	Cent SPP	в <u>з</u>	97	29	DO	6.9			
	C-18	c	100	24	Temp	19.2			20.3
ŀ					Salinit	<u>v 30</u>	<u> </u>		
	23138 . SDIKE		$\frac{3}{3}$	89		7-6			
	C-18 (1	91	Temp	202	•		120.4
		D 77		05	Salinity	200			120.7
ŀ	23139	A 96	4	101	DH	7.8	+	+	
	Control I	3 48	2	85	DO	77		1	
	C-18 (99	1	91	Temp	20.9	19.9		20.3
L					Salinity	80			
Ľ	I/D	J/	Voz.			10/31/02	11/1	11/2	11/3.jw
F	De art	72-h			i 	WATE		MISTRY	DATA
	sample	# Normal	# Abnormal	I-mL		Day 0	Day 1	Day 2	Day 3
ŀ	23140 A	0	100	13	рН	7.3		1	
c	ent SPP E	0	100	70	DO	4.1	1	<u> </u>	1
	ULVA C	0	100	51	Temp	21.6			20.5
					Salinity	30			
	23142 A	0	100	35	pН	7.5			
	SPIKE	0	100	53	DO	5.1	<u> </u>		
ļ	JLVA C	·	99	36.	Salinity	20.2		<u> </u>	20.4
┢	23143 A	99	/	88	DH	7.7			
	Control	100	0	79	DO	5.2		<u>}</u>	
	ULVA C	97	3	82	Тетр	20.4			20.5
					Salinity	30			
	I/D	11/4	02			10/31/02	11/1	11/2JG	11/3
	Pamela	72-h B				WATE		ISTRY I	
	sample		# Abnormal	j-mc		nayu	uay 1	Day 2	Day 3
	23144 A	0	100	38	pН	7.2			
Ce	nt SPP B	0	100	24	DO	5.7			
L	орн с	0	100	19	Temp	21.0			<u>م</u> .20
					Salinity	80			
	23146 A	96	4	40	pH	8.6			
		97	3	76	UU Témp	8.8			
	JEA C	<u> </u>	<u> </u>	-06	Salinity	17.8			<u>فا ب</u> ے
	23147 4	0 98	· / 1		, pH	30			[
	Control	100		98	DO	8.0			
	орн с	99	$\overline{}$	85	Тетр	20.4		20.3	20.3
	D				Salinity	30			
F.	_	- / 4	7			10/31/02 -	11/1	11/2 TG	11/3641
E	I/D	J 11/9	or h	I.		1001102			7100

eliquot Me mixer ONTONT. looding = rabyos rizl. Islume = (20 T sol. L embryos Ł -venve) 200 esnurch

Plureus prise, small, slightly

misses.

Project: 02065, New Bedford TIE

SDG: 6560

Test Description: Arbacia punctulata Embryo development Toxicity Test

Client: SAIC

- 19

Sample

23148 A

UNT C

Cent SPP B

I/D

72-h BIOLOGICAL DATA

WATER CHEMISTRY DATA

WATER CHEMISTRY DATA

# Normal	# Abnormal	Hin I-mL		Day 0	Day 1	Day 2	Day 3
0	50	11	рH	7.9			
0	50	8	DO	8.4			
0	50	5	Temp	2.0.3			20.2
			Salinity	30			
$\overline{\mathbf{O}}$	11/8/02			10/31/02	11/1	11/2	11/3/11/
	···· , , , · · · · · ·			11			7

72-h BIOLOGICAL DATA

Sample	e	# Normai	# Abnormal	#11/1	71		Day 0	Day 1	Day 2	Day 3
23150	Α	1	99	70	٦٢	pН	· ·			
SPIKE	в	1	99	89][DO				
UNT	C	0	100	87	7Г	Temp	à e e	1	1	20.3
10%][Salinity				
23150	A	00	100	180	1	pН	(25			· ·
SPIKE	в[0	100	30][DO		[ľ	4
UNT	С	0	100	80	1	Temp	ł			20.5
25%	ſ				1	Salinity				
23150	A	$o^{(j)}$	100	680		рH				, in the second s
SPIKE	в	0	100	57		DO				
UNT	c[0	100	39		Temp				20.5
50%	Γ					Salinity				
23150	A	00	100	690		pН	7.6		•	
SPIKE	в[0	100	75		DO	8.7			
UNT	с[0	100	99		Temp	19.9	20,5	20.5	20.5
100%	ſ				E	Salinity	30			
1/D		\Box	"/8/02		Γ		10/31/02	11/1	11/2,76	11/3/4/

72-h BIOLOGICAL DATA

WATER CHEMISTRY DATA

# Normal	# Abnormal	# embryos in Iml		Day 0	Day 1	Day 2	Day 3
100	0	Not Countd	pН	8.0			
100	0	93	DO	8.2			
99	1	87	Temp	20.5			20.5
			Salinity	30			
$\overline{\Box}$	11/11/02			10/31/02	11/1	11/2	11/3/N
	/		. v	D			7

OAbnormal embryos are undarelaped spheres - arrested development 27 very early singe.

Solunon vol = 23 mL, unless ortherwise north (20 mL original rest vol + 1 mL embryos + 2mL formalin) - J

Aquatec Biological Sciences Williston, Vermont Reviewed by: _____ Date: ____ Date: ____

Sample 23151 A

Control

UNT C

I/D

ApTIEToxForms

Client: SAIC

(7)

Sample

23154 A

STS C

SPIKE B

10% 23154 A

SPIKE B

25% 23154 A

SPIKE B

50% 23154 A

SPIKE B

STS

100% ΝD

С

STS C

STS C

99

99 98

0

0

Ó

0

 \mathcal{O}

0

 \mathcal{O}

0

Ô

 \subset

Project: 02065, New Bedford TIE Test Description: Arbacia punctulata Embryo development Toxicity Test

72-h BIOLOGICAL DATA

WATER CHEMISTRY DATA

Sample	# Normal	# Abnormal	Hinl		Day 0	Day 1	Day 2	Day 3
23152 A	0	50	11	рН	7.7			
Cent SPP E	10 D	100	29	DO	8.4			
STS C	0	50	11	Temp	20.9			20.6
	[Salinity	31			
I/D	0	11/8/02]	10/31/02	11/1	11/2	11/3 (u)
TUDEN	A RED RE	BAL.			5			

1-mL

87

79

89

85

76

66

37

69

31

39

46

24

72-h B	IOL(DGICAL	DATA
--------	------	--------	------

WATER CHEMISTRY DATA							
	Day 0	Day 1	Day 2	Day 3			
pН	Í		1				
DO]						
Temp				20.6			
 Salinity							
pН							
DO							
Temp				20.6			
Salinity							
pН							
DO							
Temp		20.3	203	20.5			
Salinity							
pН	7.8						
DO	8.6						
Temp	20.1			Z0.6			
Salinity	30						
	10/31/02	11/2	11/2 <u>1</u> G	11/3/10			
	0	\sim					

Abnormal # IA # Normal

2

100

100

100

100

100

100

100

<u>100</u>

100

72-h BIOLOGICAL DATA

4/8/02

Sample	# Normal	# Abnormal	#in I-mL
23155 A	100	0	99
Control	100	0	81
STS C	99	1	84
I/D		18/02	

WATER CHEMISTRY DATA

	Day 0	Day 1	Day 2	Day 3
рН	8.0		:	
ĐO	8.7			
Temp	20.3			205
alinity	30			
	10/31/02	11/1	11/2	11/3 JW
	T			

Client: SAIC Project: 02065, New Bedford TIE Test Description: Arbacia punctulata Embryo development Toxicity Test SDG: 6560

entes

Aerzieh before

resning

20.6

20.6

20.6

11/3/

	72-	h BIOLOGIC	AL DATA		WA.	TER CHE	EMISTR	Y DATA
Sample	# Normal	# Abnormal	#in LMC		Day 0	Day 1	Day 2	Day 3
23156 A	0	50	8	рH	7.4		1	
Cent SPP B	1	49	10	DO	1.7/7.2	⊢ ←		╞╼╼═╋
EDTA C	D	28	. 5	Temp	20.6	1		20.6
				Salinity	_30		l.	
23158 A	95	5	107	_ pH	7.8			
SPIKE B	99		- 81	DO	8.6		i.	
EDTA C	100	0	84	Temp	20.1			ZO.6
				Salinity	30			
23159 A	99		76	рН	7.8			
Control B	100	0	90	DÖ	8.3			
EDTA C	100	0	81	Temp	205			206
				Salinity	30			
I/D	σ	11/11/00		A	10/31/02	11/1	11/2	11/3 (W)
7	2-h BIOLO	GICAL DATA		WAT	ER CHE	MISTRY	DATA	· <u> </u>
Sample	# Normal	# Abnormal	din,		Day 0	Day 1	Day 2	Day 3

		72-h Biolo	GICAL DAT	A	WA	TER CH	EM
Samp	le	# Normal	# Abnormal	# in I-mL		Day 0	
23160	A	3	97	20	pН	7.9	Τ
Cent SPF	B	6	94	17	DO	3.4/7.0	
FILT	С	0	100	//	Temp	20.5	Γ
					Salinity	30	
23162	A	100	0	92	pН	7.6	Ī
SPIKE	в	100	0	90	DO	8.0	
FILT	C	95	5	88	Temp	19.9	
					Saiinity	30	
23135	A	99	1	88	pН	7.7	
Control	в[99	1	97	DO	7.4	
FILT	C[98	2	78	Temp	20.5	
				÷	Salinity	30	
I/D			11/10			10/31/02	11/
		_	· ·				

72-h BIOLOGICAL DATA

	14-11	010200101	EPAIR	
Sample	# Normal	# Abnormal	#11 1-A(
23163 A	100	0	BU	
Seawater B	99	(75	
c	100	0	85	Ť
				Sa
I/D	L .	1/11/02	/	

WATER CHEMISTRY DATA

11/2

	Day 0	Day 1	Day 2	Day 3
pН	8.0			
50	g.6			
етр	20.4	20.4	20.7	20.5
alinity	33			
	10/31/02	11/1	11/23G	11/3礼)
	9	J		5

Aquatec Biological Sciences Williston, Vermont Reviewed by: _____ Date: _____ 'ふぇ

ai 5

<u>ر</u>

Client:

SAIC

Project: New Bedford 0206	oject:	1ford 02.06	New Bedford	2065
---------------------------	--------	-------------	-------------	------

SDG: 6560

Egg Collection and Dilution

· · · · · · · · · · · · · · · · · · ·
Egg injection time:2:40 No. females used:4
#eggs in 9:1 dilution of egg stock = $327 = 3270$ eggs/m/
Egg dilution:
Volume egg stock = 200 mL
Egg count / 200 = DF = 1.635
(DF X vol. Egg stock) – vol. Egg stock = $\frac{127}{2}$
volume of FSW added to egg stock = $\frac{12.7}{12.7}$
Recount= 227 eggs - 2Hdid HUML,
Confirmation: #eggs in 9:1 dilution of egg
stock. Final egg count =
Final volume of egg stock: 367
Total number of eggs in egg stock: $367 \times 2000 = 734,000$ eggs
Total number of eggs X 500 = number of
sperm required: = $367,000,000$ ($3.67 \times 10^{\circ}$)
Sperm Collection and Dilution
Sperm injection time: 12:10 No. males used: 4
0,4AL
Add 0.25 mL sperm to Vial A (containing 10 20 mL g

mL seawater. Serially dilute to Viais B, C, and

D. Add 5 mL 10% acetic acid/seawater to vial

C. Transfer 1 mL from Vial C to Vial E

(contains 4 mL seawater). Hemacytometer count:, Vial E X 10⁴ = Side 1: <u>171</u> Side 2: <u>187</u> Avg. <u>179</u>.

Avg. X 0.001 = X sperm X $10^7 =$ $\bigcirc .179$ $X 10^7 = 0.0179$ $X 10^8$ Sperm concentration Vial A = 40 X Vial E = $\bigcirc .716$ $X 10^8$ Sperm concentration Vial B = 20 X Vial E = $X 10^8$ Sperm concentration Vial D = 5 X Vial E = $X 10^8$ Vial selected for sperm stock =Vial

Sperm dilution to obtain 500:1 (sperm:egg) 3.67×10^{8} Number of eggs in egg stock X 500 = -Vial selected as sperm stock = A 0.716×10^{8} sperm per mL Target #sperm / sperm stock per mL = volume 3.67 / 0.716 = 5.12 mL

Date / Time Sperm added to	Fertilization in 1:9 dilution of	Time Embryo Development
egg stock	embryo stock	Test Started
13:54	100/100 = 100%	15:00

Initials: _____ Date: <u>0/31/02</u>.

Test preserved 11/3/02 JW 15:00

Reviewed by: _____ Date____ Date____ /02 Laboratory: Aquatec Biological Sciences, Inc. Williston, Vermont

ApEmbryoE&SP

Peak Table: ammonia

File name: A:\110502A.RST Date: November 05, 2002 Operator: JJG

Pear	Cup.	Name	Type	Dil	Wt	Height	Calc. (mg/L)	Flags
	· • • • • • •					174482	1 034395	·
- -	÷ c	Sync	SINC	ב ר	1	2455	0 011859	}
2	0	CarryOver	CO CO	<u>۲</u>	<u>ר</u> ז	192	-0 001407	
د ح	0	Banalina		1 1	<u>≁</u> ז	. 0	-0 002491	BL
2	0	Daseline	תת פפ	1	±. 1		-0.002491	51.
5	2		RD C		<u>ר</u>	134	-0.001694	T.O
ρŗ	⊥ ⊃			1	1 7	25152	0.001001	20
- / 	2			- 1	± 1	67065	0.200.00	
5	2			÷	- 1	167974	0.401000	
5	- -	Cal 3	Ċ	÷ 1	÷ 1	841872	5 000472	
10	- -	ter 4 trans	13	<u>+</u> נ	± 1	041072 L1293	-0.010710	10
	U O	Dialk Dialing	0 ⊅⇒	1 1	- ר	0	-0.002091	20 37.
 > >	0 2	Deserine	7.5 1)	- 7	<u>∸</u> ז	171505	1 017242	~~
13	о г			1	÷ 7	-300	-0 004271	T.O
14	1	10B 226210TEND	11	1	1 1	13540	0.004271	20
10 10	21	22621CIEND	0	± 1	⊥ 1	25/0	0.070027	
10 117	32	22022CIEND 22622CTEND	11	1	1. T	1827	0.012002	
<u>31</u> /	22	22623CTEND	11	1		1027	0.000000	
10	34 21	22024CILND 22625CTEND	11	1	- 1	1338	0.002000	
20	30	22625CIEND	U 11	÷ 1	1	1742	0.000440	
20	סכ		0 11	± 1	- 1	C685	0.055061	
4-	27	22643CIEND 22644CTEND	11	1	- 1	3578	0.018770	
24	20	22644C12ND 22645CTEND	11	. +	ב ז	12628	0.072553	
20	25	22050CJEND 22646C7END	11	- 1	1	2160	0.010347	
24	40 5		П	- 1	1	845598	5 022618	
25	1	002	0 11	- 1	1	~1442	-0 011063	LO
20	<u>^</u>		פפ	- 7	<u>ተ</u> ጎ	 Ò	-0.002491	BL
29 29	43	226/7CTEND	RD 17	'n	1	420	0.000003	
20	⊐⊥ ∆2	22648CTEND	11	1	1	3940	0.020925	
30	 	22655CTEND	13	1	1	3573	0.018741	
21	44	22656CTEND	11	1	1	91378	0.540535	
32	45	22657CTEND	n	··	1	12101	0.069422	
	46	22658CTEND	р 1	-	1	3716	0.019593	
÷∠	47	22659CTEND	11	1	, ī	3217	0.016628	
22	48	22660CTEND	0	1	1	8246	0.046514	
÷4	49	22661 CTEND	Ū	1	1	9784	0.055649	
37	50	22562CTEND	บ้	- 1	1	6265	0.034737	
38	5	CCV	0	1	1	841834	5.000246	
39	ì	CC3	Ū	l	<u>1</u>	-1163	-0.009403	LO
Б	ō	Baseline	RB	1	1	Û	-0.002491	31
42	51	22663CTEND	υ	1	1	8469	0.047840	
42	52 _	22668CTEND	ţ1	1	<u> </u>	25019	0.146189	
43	53	230358FP (201)	U ·	10	1	191119	11.332678	566
44	54	23036SPP (202)	U	10	1	637488	37.857109	Ammoni 25
4 E	55	230378PP (204)	U	10	<u>1</u>	21825	1.272105	10/17/02
46	56	230385PP (205)	U	10	1	154015	9.127696	1
47	57	230395PP (206)	J	20	<u> 1</u>	-105337	6.234899	
43	58	23040SFP (207)	υ	10	1	-232029	13.763792	
49	59 _	220595DD (REF)	<u></u>		recuel -	23615	1.378450	
E 0	60	23137TIE - (202)	A CV3 A	of where 04	2.) C-10 J.	628496	37.323933	すい
51	5	ссл	Ü	. 1	<u>1</u>	852664	5.064609	- Amuania
52	1	CCB	U	1	1	-1146	-0.009300	LO TIPSTOLE
6	0	Baseline	RB	1	att	J	-0.002491	BL 11/4/02
54	61	23141TIE - (202)	Urnd 1	of mystar	, utv∄	1315797	7,816853	1
								\checkmark

•

ł

2

. .

Peak	Cup	Name	Type	Dil Wt		Height	Calc. (mg/L)	Flags
 ≲5	62	23153TIE (202)	end of	mysid rest,	878 <u>1</u>	610643	36.263691	- -
·56	5	CCV	υ	1	Ţ	850516	5.051842	
57	1	CCB	υ	Ĵ	1	-2047	-0.008715	LO
Ξ	0	Easeline	RB	1	1	0	-0.002491	BL

.

.

•

-

Suspended Particulate Phase Preparation for TIE

Client: SAIC	Project: 02065, New Bedford FEIR	SDG: 6519
		· · · · · · · · · · · · · · · · · · ·

SPP / Elutriate Preparation:

91

Quantitatively mix Site Sediment with matched Site Water in a 1:4 ratio. Mix this solution 30 minutes with a mixer. At approximately 10 min intervals, manually stir to ensure complete mixing. Allow the solution to settle 1 hour. At 1 hour remove the SPP for the toxicity tests. Ideally, approximately 4.7 L or SPP is needed for the TIE, however, we may be limited by sediment quantity. Approximately 4.2 L of SPP will be shipped to SAIC for the mysid TIE. A sub-sample of approximately 500 mL will be centrifuged (10 min @ 6000 RPM) for the *Arbacia* TIE and shipped to SAIC. The SPP prep water will be the matched site water for Sample 202: Our lab numbers 23024 (sediment) and 23030 (water).

Water & Sediment Samples	Volume Sediment: Water (mL)	SPP Mix Time	SPP Settle Time	SPP TOX Vol for Mysid	SPP TSS Vol For Arbacia	Spin 1 Time 6000 RPM
23030 202-W-ELUT 23024 202-ELUT	4800 mL HzD , 1200m Sed = (0L	11:35 - 12:05	12:05- 13:05	<u>~</u> 1200	+ mysid baseline.	4°C 13: 5°U- 14:00
		~	_ : .	· · · · ·		
	141 16/29	1102				

SPP / Elutriate Preparation (October 29, 2002)

Aquatec Biological Sciences, Inc. Reviewed by: Date: 2/2/02

TIEForms

Science Applications International Corporation

TIE Using Mysidopsis bahia

÷

Lutent: Santy Project: U2000 Project: U2000						BIOLOG		NU WAT	ERCHE	INUSTRI	UAIA				
Lest Description: Antericary ise danka Acute Toxicity Test WATER CHEMISTRY DATA Sample Day 0 Day 1 Day 2 Day 3 Day 4 Sample Day 0 Day 1 Day 2 Day 3 Day 4 Day 0 Day 1 Day 2 Day 3 Day 4 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""><td></td><td>ent: SAIC</td><td></td><td></td><td><u> </u></td><td>oject: 0</td><td>2065, N</td><td>ew Bedfo</td><td></td><td></td><td></td><td></td><td></td><td>j: 6560</td></th>	<td></td> <td>ent: SAIC</td> <td></td> <td></td> <td><u> </u></td> <td>oject: 0</td> <td>2065, N</td> <td>ew Bedfo</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>j: 6560</td>		ent: SAIC			<u> </u>	oject: 0	2065, N	ew Bedfo						j: 6560
NUMBER SURVING WATER CHEMISTRY DATA Sample Day 0 Day 1 Day 2 Day 3 Day 4 Day 6 Day 1 Day 2 Day 3 Day 4 Day 6 Day 1 Day 2 <thd< td=""><td>Tes</td><td>st Descrip</td><td>otior</td><td>n:_Ame</td><td>ricamys</td><td>sis bahi</td><td>a Acute</td><td>Toxicity</td><td>Test</td><td></td><td><u></u></td><td></td><td></td><td></td></thd<>	Tes	st Descrip	otior	n:_Ame	ricamys	sis bahi	a Acute	Toxicity	Test		<u></u>				
Sample Day 0 Day 1 Day 2 Day 3 Day 4 Day 2 Day 3 Day 4 Day 2 Day 3 Day 4 Day 4 Day 4 Day 3 Day 4 Day 4 Day 4 Day 3 Day 4 Day 4 <t< td=""><td></td><td></td><td></td><td></td><td>NU</td><td>MBER :</td><td>SURVIV</td><td>ING</td><td>-</td><td>WA</td><td>TER CI</td><td>HEMIST</td><td>RY DAT</td><td><u>A</u>.</td></t<>					NU	MBER :	SURVIV	ING	-	WA	TER CI	HEMIST	RY DAT	<u>A</u> .	
23137 A 10 G I C O PH 2.7 X:1 8.4 SPP B 10 8 4 3 I Gr PH 2.7 X:1 8.4 SPP B 10 6 I O 0 6.1 6.7 1.4 7.2 23138 A 10 10 10 10 9 9 10 2.2.1 2.4.2 2.4.7 SPIKE B 10 10 10 10 10 10 10 10 10 10 10 2.4.2 2.4.7 Sainay 30 10 10 10 10 10 10 10 10 10 10 10 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 11.3.3 11.2 13.3 12.4 13.3 <t< td=""><td></td><td>Samp</td><td>le</td><td>Day (</td><td>) Day 1</td><td>i Day 🕽</td><td>2 Day 3</td><td>3 Day 4</td><td>ŧ1 –</td><td>Day (</td><td>) Day</td><td>1 Day 2</td><td>2 Day 3</td><td>3 Day 4</td></t<>		Samp	le	Day () Day 1	i Day 🕽	2 Day 3	3 Day 4	ŧ1 –	Day () Day	1 Day 2	2 Day 3	3 Day 4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e	- 0040	7 4	+		+	$\frac{1}{2}$	+	┦ ┝ <u></u>				1~.	124	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	he	2313	- A		6					177	<u> </u>		8.1	0.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SPF	, 6	10	8	4	3	190		8.(6.7		17.4	7.2	
C Sainty So 33 33 SPIKE B 10 <td< td=""><td></td><td>C-18</td><td>C</td><td>10</td><td>6</td><td></td><td>0</td><td>0</td><td>Tem</td><td>20.1</td><td>· ·</td><td>25.0</td><td>24.2</td><td>24.9</td></td<>		C-18	C	10	6		0	0	Tem	20.1	· ·	25.0	24.2	24.9	
23138 A 10 /0 /0 9 9 7.4 7.4 SPIKE B 10 /0 /0 9 9 7.4 5.4 SPIKE B 10 /0 10 /0 9 9 7.4 5.4 23139 A 10 /0 10 /0 10 /0 10 7.7 7.7 7.7 23139 A 10 /0 10 /0 10 7.7 7.7 7.4 4.4 Cantrol B 10 /0 10 10 10 7.7 7.7 7.4 4.4 UDT 105/02 11.7 1012 40 1102 40 102 40 32.1 3	って	1					T		Salini	y 20			33	33	
SPIKE B 10 1	1	2313	8 Δ	10	10	10	a	a		171	+		<u> </u>	1 71	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31/02	CDIVE		10	10	10				1.0	+				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2:22	SPIKE			10	$\frac{10}{10}$	<u>14</u>	47		8.6	<u> </u>	_		5.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C-18	C C	10	10	10	10	10	lemp	20.3			24.2	24.7	
23139 A 10 /0 10 /0 10 /0 0 7.7 Control B 10 /0 10 /0 10 /0 10 7.7 C-18 C 10 /0 10 /0 10 7.7 2.5.5 7.7 2.5.7 <td< td=""><td></td><td>· ·</td><td>D</td><td>i.</td><td>1</td><td>1</td><td></td><td></td><td>Salinit</td><td>80</td><td>1</td><td></td><td>ł –</td><td>32</td></td<>		· ·	D	i.	1	1			Salinit	80	1		ł –	32	
$\begin{array}{c c} \mbox{Control B} & 10 & 10 & 10 & 10 & 10 \\ \mbox{C-18 C} & 10 & 10 & 10 & 10 & 10 & 10 \\ \mbox{T} & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ \mbox{T} & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 1$		2313	9 A	10	10	in	10	ID	pH.	78	1	1	1	7.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Contro	ыΒ	10	1 10		10	10	DŌ	77	1	1	1	4.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C 19	- -			$\frac{1}{2}$	13		Temp	20.4		1	-{	26 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		U U-10			10	10		10	Call-2	- mark	25.5	·	<u> </u>	127.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10	L.T.	1	ļ	ļ	Sauna	1 30	L	_	1.	52	
UNUMBER SURVIVING 2e-P WATER CHEMISTRY DATA J Sample Day 0 Day 1 Day 2 Day 3 Day 4 Day 0 Day 3 Day 4 Sample Day 0 Day 1 Day 2 Day 3 Day 4 Day 2 Day 3 Day 4 Sample Day 6 Q Q Q Q Q Day 6 Day 7 Q	-0:30	[/D/T	5	10/31/02	11/1 (5:0	11/2 36	11/3/W	11/4 Ú		10/31/02	11/1	11/2 JG	11/3 W	111/4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	£			U NUM	/IBER S	URVIVI	IG Č	20:00	WA	TER CH	EMISTR	Y DATA	. J		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sampl	е	Day 0	Day 1	Day 2	Day 3	Day 4		Day 0	Day 1	Day 2	Day 3	Day 4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				L	<u> </u>	16	ļ	<u> </u>		26 8		[ļ	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	23141	A	10	10	910	10	10	pH	7.3	1 - 14 S	· ·		3.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	er ch	SPP	В	10	9	9	19	9	DO	6.1	i .			17.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r: 0.5h	ULVA	c	0189	9	9	र	8	Temp	20.4	24	1	24.1	24.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PO				<u> </u>			\vdash	Salinity	20	- //	1		22	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		02440		10	()		10				l	<u> </u>		1.5 L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	23142		<u></u>	10	<u>10</u>	10	10	pn DO	1.5		<u> </u>		1.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SPIKE	B	10	9	4	9	9		6.1		[[3.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ULVA	C	10	10	9	7	8	Temp	20.2	- 	24.5		24.G	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			F						Salinity	30	•			30	
Control B 10 0109 9 9 9 9 9 10 5.2 5.9 ULVA C 10 9 9 9 9 9 10 5.2 5.9 ULVA C 10 9 9 9 9 9 10 5.2 5.9 10 10 10 10 10 10 10 10 10 10 10 10 10 1		23143	A	10	10	10	10	10	рH	72		1		76	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Control		10	0.00	-	- C	6						<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.**		러		<u> 107</u>	-7-	7	7		0.4				3.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ULVA	C	10	9	7	9	8	temp	20.4				247	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Į		D	10	LO	toe	<u>.</u>		Salinity	30				31	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40	I/D/T	1	10/31/02	11/1 0 515	11/2JG-	11/3 W	11/4/20.20		10/31/02	11/1	11/2_JG	11/3 /11	11/4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2. 100			σ	NUME	ER SUP	WIVING	5		🐭 WAT	ER CHE	MISTRY	/ DATA	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ	Sample	,	Dav 0	Day 1	Dav 2	Day 3	Day 4		Dav 0	Dav 1	Dav 2	Dav 3	Day 4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ļ														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ĺ	23145	٩L	10	6	5	5	3	рН	7.7			8.0	7.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		SPP	в	10	6	<u> </u>	0	<u> </u>	DO	masured	6.9		73	6.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LO PH	٦С	10	7	1	\cap	0	Тетр	21.0	74.4	24.4	24.1	24.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			F						Salinity	27	<u> </u>	~ 11	27	34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŀ	224.40	$\frac{1}{2}$			7.0	-1-1-1		<u></u>				<u></u>	<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23146	<u>_</u> +		10	10	-10-1	<u>-12</u> -1		8-6				<u></u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f	SPIKE	빌	10		7	<u> </u>	-71	- UU	8.8				4.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł	LO PH	c	10	/0	<u> </u>	10	<u>(0</u>	₹emp	12.8			24.2	24.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		_ [T	ľ				Satinity	30				32	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	۲ ا	23147	A	10	101	in	FUT	70	рН	7.11			j	7.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control	B	10	- ', , +		<u>+</u> ត†	- <u>-</u>	DO	ant.	ł				
$5^{0} \underbrace{\begin{array}{c c c c c c c c c c c c c c c c c c c$	ľ		٦Ľ		~~	-12 +		<u></u>	Temp		<u></u>			1.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LO PH	<u>_</u> _	10	10	10	10	10	1emp	20.4			!·	27.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50		Pt	10-	[Ì		Satinity	30	<u> </u>			32	
ec Biological Sciences Williston, Vermont Fed Fed V ved by: Date:	· · · · Γ	I/D/T	1	0/31/02	11/1/5:30	1/2 16-1	Wg(u)	11/4 2028		10/31/02 1	1/1	1/2 361	14311 1	11/4	
ec Biological Sciences Williston, Vermont Fed Fed Williston, Vermont Fed Fed Williston, Vermont Fed Fed Willier in Wrong MEASUR ved by: Date:	-			0	0	14:30	1 10 00			J			J	FINM	
ved by: Date: Date: OWNTHEN IN WRONG TEST (22.10-200 All most fed Space 11/1+11/2 JUST P	uatec Bio	ological Scie	ence	s Willist	on, Vermo	nt Fed	Fed	¥ '				SPPToxFo	orms	MEAC	
22.10-20 All reps for spore 11/1+11/2 JUST P	viewed by	r:	-Æ	<u> </u>)ate:	11/5	102	. .	0Wn	Hen in	wron	9.		TROP	
			7	2	ll n	11/02	61			spare	2 44	+11/2		Tote /	
The second and the second seco			r	(pliceros	- 1+ d	is FT(") Sine A	/ የታ ሰሐ/ርጉኦ ረጉ	4		-				10000 1 10000 1	

:

-

	BIOLOGICAL AND WATER CHEMISTRY DATA												
Cli	ent: SAIC		Pro	oject: 0	2065, N	ew Bedf	010	<u>f</u> TIE				SDG	: 6560
Te	st Descriptio	n: Amei	ricamys	is bahi	a Acute	Toxicity	Te	est					
			NUN	IBER SI	URVIVIN	IG			WA		EMIST		A
	Sample	Day 0	Day 1	Day 2	2 Day 3	3 Day 4			Day 0	Day 1	Day 2	Day 3	Day 4
	23149 4	10	9	5	10	0	1	рH	17.9	T	8.5	85	
	SPP E	3 10	7		ΤΟ	0	11	DO	9.0	6.6	6,5	7.3	1/
	UNT C	10	6	0	$\int O$	10	71	Temp	20.0		24.3	24.2	
							11	Salinity	30	i.	30	31	
	I/D/T	10/31/02	11/1 0	11/2 JG	- 11/3 W	11/4			10/31/02	11/1	11/2 G	11/3/10	11/4
21.0	(15:35	-	<u> </u>	0			0				
			NUN	IBER SI	URVIVIN	1G			WA	TER CH	EMISTR	Y DATA	۱
	Sample	Day 0	Day 1	Day 2	Day 3	Day 4			Day 0	Day 1	Day 2	Day 3	Day 4
	23150 A	10	\sim	1			1Г	pН	1				
	SPIKE B	10			1	1	11	DO		1	1	1	
	UNTE	10			1	Í	11	Temp			^		
thrit	10%					1	11	Salinity			1	1	
troun.	23150 A	10	\sim	-		1	11	pН		-	i	1	
- le ro	SPIKE B	10			1		11	DO	· ·				
Sout		10			1		١Ľ	Temp			İ .		
in an	25%							Salinity					
dilving	23150 A	10						рН					·
, 10 1/2 1 X	SPIKE B	10						DO					
((0°/s)	UNT	10	i					Temp					
Ŷ	.80%						Ľ	Salinity					
	23150 A	10	0	· 0	0	0	Ľ	pН	7.6	78			
Dre only	SPIKE B	19						DO	8.7	6.9			/
al 00%-	UNT C	/10						Temp	19.9		-		\leq
21	100%						1	Salinity	30	30			/
10	₩D/T	10/31/02	11/18-39	11/236	11/3	11/4		_	10/31/02	11/1 0	11/2	11/AN	11/4
21:10	SPIRE U	NT- OA	1. PNON	gh soli	min 1	for on	e i	CP -	100%			$\overline{\mathbf{J}}$	
	,		NUMB	ER SUF	RVIVING	<u> </u>			WAT	ER CHE	MISTRY	<u>' DATA</u>	
	Sample	Day 0	Day 1	Day 2	Day 3	Day 4			Day 0	Day 1	Day 2	Day 3	Day 4
	23151 A	10	10	10	10	10	L	рН	B.0				8.0
	Control B	10	10	10	10	10		DO	8.2				7.3
	UNT C	10	10	10	10	10		Гетр	20.5	25.2	24.5	24.2	24.9
ĺ							s	alinity	30				34-
		10/31/02 1	1/1	1/236	11/3 W	11/4 5			10/31/02	17/1	11/2 76	11/3/W	11/4
21	:15	4	15:50	14:00 Fed	14:00 Fed v	20:30	5		-0	0			J

1	<u>Cli</u>					BIOLOG	SICAL A	ND WAT	ΓE	R CHE	NISTRY	DATA				
		t Deserie	tion			oject: U	2065, NG	ew Bear					<u>.</u>	1506	0000	-
l	103	<u>i bescrip</u>		I. Ame	ricaniya		Acute	FOXICITY F		621						[®]
					NUN	NBER SI	URVIVIN	IG			WA	TER CH	EMIST		A	
		Samp	le	Day 0	Day 1	Day 2	2 Day 3	Day 4			Day (Day 1	Day 2	Day 3	Day 4	
		23153	A	10	10	6	5	3		pН	7.6		8.4		8.3	Amon
		SPP	В	10	7	To	0	O		DO	7.1		6.4		7.(Seme
		STS	С	10	6	0	O	0		Temp	12.8	3	24.5	24.2	24.9	
										Salinity	30		30		32	10
		I/D/T		10/31/02	11/1	11/216	- 11/3/V) 11/4][10/31/0	2 11/1	11/2JG	11/3 JW	11/4]
	5	21:20			15:57		<i>,</i>	-			0		,	<u> </u>		
					NUN	IBER SI	URVIVIN	IG			-WA	TER CH	EMISTR	Y DATA	<u> </u>	9
		Sampl	e	Day 0	Day 1	Day 2	Day 3	Day 4	11		Day 0	Day 1	Day 2	Day 3	Day 4	
U	71001	23154	A	10		1		1	11	рH		1	1			1
Trouth	<u> </u>	SPIKE	в	10			1		11	DO		1		1	1	1
Comple		STS	c	10		1	1		11	Temp	··				1	1
10	7»	10%				1	1	1	11	Salinity	1. 1 . 14	1				1
1 2×	~/~.	23154	A	10		1			11	pН					[1
04		SPIKE	₽	10				1	11	DO	м					1
3 Dat VI	p	SIS	ົດໄ	10		l	1	1	11	Temp						1
	1	25%	Ī				¢		İ٢	Salinity]
0110	4	23154	A	10	10	10	8	10	11	pН					7.7	f · ·
5012		SPIKE	вГ	19/		/	/		11	DO					5.6	
100,	/>	STS	cĮ	10					Γ	Тетр					25.0	1
-		50%	ſ							Satinity					32	
	Г	23154	A	10	/0	9	9	в	Γ	pН	7.8	· ·			7.4	
	_ !	SPIKE	вГ	10	/	/			Γ	DO	8.4				6.4	
	1	STS	c	/10	/	/	1	<u> </u>	Γ	Temp	20.1			Z4.Z	2513	
	,	100%	[15:57			~	F	Salinity	30				31	
. •	Ē	I/D/T	Ĩ	0/31/02	11/1 5	11/23G	11/3 W	11/40 36			10/31/02	11/1	11/2JG	11/3 JW	11/4	
, ,	Ju	SPIKE	53	75 - Un	NUMB	いらん イン ER SUF	or / sto RVIVING	% - On (e 🖌	ې د جه	≤ % ₀ ₀ ₩AT	ER CHE	ρ. MISTRY			
	Г	Sample		Day 0	Day 1	Day 2	Day 3	Day 4	Γ		Day 0	Day 1	Day 2	Day 3	Day 4	
	F	23155	A	10	10	10	101	$\overline{\Omega}$	F	Hq	8.n				24	7.9 5
		Control	вΗ	10	<u>/ - </u> / N	10	JŬ	70	F	DO	8.7				5,4	7.0
		STS	c۲	10	/0 1	10		76	F	Temp	202			74 1	25.1	σ
			F					<u></u>	s	Salinity	20			<u></u>	37	
	H	I/D/T	11	0/31/02 1	ا م 1/1	11/2-1 G-1	11/3.1	11/4	F		0/31/02	11/1 1	1/2 (6-	1/3/11/1	11/4	
	L				16:06	14:00	713:50	4	ц. 40	C	٦	P``	14	J	-6-1	÷.,
		(21:2	20			For	Fod	. 10.1	0							

.

.

Client: SAIC Project: 02065, New Bedford TIE Test Description: Americamysis bahia Acute Toxicity Test SDG: 6560

		NU	MBER	SURVIV	NG		w	; ATER CI	HEMIST	RY DAT	A		
Sampi	le	Day	D Day	1 Day 2	2 Day 3	Day 4] [Day	Day 1	Day 2	2 Day :	3 Day 4	ī
2315	7 A	10	10	8	1-0	0	рн	7.4		83	7.2	/ //	7
SPP	B	10	7	10	0	10	DO	1 B.C	1 6.4	6.8	7.2		1
EDTA	С	10	6	3	10	$\overline{0}$	Temp	2.0	3 24-7	7	24.2	1/	1
ļ		ļ	1	1	1		Salinit	y 31	1.	30	31	33	7
23158	3 A	10	10	110	10	10	рH	7.8				7.5	7
SPIKE	в	10	10	110	10	9	DO	8.6			1	4.0	1
EDTA	С	10	10	10	10	10	Temp	20.1		24.3	1	25.2	1
			1	1	1		Salinit	1 30	1	1		32	1
23159	A	10	10	170	10	10	pH	7.8	1	1	1	7.8	1
Control	в	10	1/0	10	10	10	DO	8.3		1	1	6.9	1
EDTA	С	10	10	110	10	9	Temp	20.0		1	ZA.Z	25.3	1
			1	1	1		Salinity	20			1	3231	1
I/D/T		10/31/02	2 11/1 20	11/25G	11/3/W	11/4		10/31/02	111/2-	11/2JG	11/3/11	11/4	1
:28	J		76.		- 0-	10:3	5				<u> </u>	0	-
			NŬN	ABER SU	IRVIVIN	<u> </u>		WA	TER CH	EMISTR	Y DATA	\	_
Sample		Day 0	Day 1	Day 2	Day 3	Day 4		Day 0	Day 1	Day 2	Day 3	Day 4]
23161	Α	10	10	8	0	0	рН	7.6			8.3		
SPP	в	10	9	7	0	0	DO	6.0			6.6		1
FILT	c	10	20	G	0	0	Temp	20.3	25.1		24.2	<u> </u>	
							Salinity	31			34	32	l
23162	A	10	10	10	10	10	pН	7.6				7.2	J
SPIKE	В	10	10	10	10	10	DO	8.0				4.6	
FILT	c[10	10	10	10	10	Temp	19.9		24.2		25.2	
							Salinity	30				3/031	<
23135	A	10	10	10	10	10	рН	7.7				7.8	l
Control	в	10	10	10	10	10	DO	7.4	:			6.8	
FILT	င	10	/0	10	10	9	Тетр	20.5			24.Z	25.4	
	Ì						Salinity	30				31	
1/D/T (0/31/02	11/1 5	11/2JG	11/3 W	11/4		10/31/02	11/1	11/2JG	11/3 JW	11/4	ĺ
1:35			26:27 NUME	BER SUF		20:47		WAT	ER CHE	MISTRY	DATA		
Sample	Τ	Day 0	Day 1	Day 2	Day 3	Day 4		Day 0	Day 1	Day 2	Day 3	Day 4	
23163	A	10	10	10	$\overline{101}$	10	рH	8.0				8.0	
ieawater	в∣⊤	10	70	10		10	DO	8.6				69	
	c٢	10	10	10		101	Temp	20.4	i		<u>z</u> 4.1	25.0	
						[]	Salinity	33				31	
I/D/T G	7	0/31/02	111	11/2 7 6	11/3 (1) 1	1/4		10/31/02	11/1	11/2	1/3	11/4	
21:38		<u></u>	16:30	14:15	13:30	21.0	 D	0			- <u>J</u>	السائن ويورون	
				Fedi		c	-						
					rea 🗸								

. .

Reference Toxicant Control Chart Arbacia punctulata Embryo Development in Copper sulfate (ug/L)

Number	Test Date	48-h EC50	Mean EC50	Lower Limit	Upper Limit		Organism Source
1 2 3 4	10/31/0	2 30.935	30.94		- <u>-</u>	Aquate	c Biologicał Scienc
5 6 7 8 9							
11 12 13 14			-				
16 17 18 19							
							<u> </u>
50 .00		<u>;</u>	<u></u>	· _	·	<u> </u>	
45.00			۰,				
40 00				•			
35 00 -							
30.00							
25.00							9
20.00							
15.00			· .		·		
10.00				10 11 1	2 12 14	15 16	17 18 19 20

lgagclsrts\APEmbDevCUSC

Reference Toxicant Control Chart Americamysis bahia in Potassium chloride (g/L)

		Organism		- h _a e - e	·	1 Star Barrie	
Test	Test	Age	48-Нг.	Mear	Lower	Upper	Organism 🦛
Number	Date	(Days)	LC50	LC50	Limit	Limit	Source
			5.5	ي ۾ ^{پري} د	77.A. J. S.		
1	05/24/01	3	0.330	0.33			Aquatic Research Organisms
2	06/06/01	3 ິ≱	0.397	ାର୍ଶ୍ୱ 0.36	0.27	0.46	Aquatic BioSystems
3	07/06/01	4 🖓	0.386	0.37	. 0.30	. 💭 0.44 🚽	Aquatic BioSystems
4	08/15/01	3	0.162	0.32	े 0.10 ु	ຼິ 0.54 🐊	Aquatic Research Organisms
5	09/12/01	4	0.369	0.33	0.14	0.52	Aquatic BioSystems
6	10/05/01	3 3	0.157	0.30	0.08	0.52	Aquatic BioSystems
7	12/05/01	2	0.308	ି ପୁରୁ ପି. 30	0.10	0.50 ,	Aquatic BioSystems
8	01/04/02	2	0.333	ି (0.31	0.12	0.49	Aquatic Research Organisms
9	01/04/01	3 (1967)	0.330	<u></u> 0.31	0.13	0.49 🔾	Aquatic BioSystems
10	03/07/02	3	0.612	0.34	0.08	0.59	Aquatic BioSystems
11	03/19/02	2	0.628	0.36	0.07	0.66	Aquatic BioSystems
12	04/08/02	5	0.656	0.39	0.06	0.72	Aquatic BioSystems
13	04/10/02	4 (14)	0.668	∼÷č0.41	0.06	0.76	Aquatic BioSystems
14	06/03/02	4	0.619	0.43	0.07	0.78	Aquatic BioSystems
15	08/15/02	5	0.668	0.44	0.08	0.81	Aquatic BioSystems
16	09/11/02	4	0.668	0.46	0.08	0.83	Aquatic BioSystems
17	09/21/02	5	0.703	0.47	0.09	0.85	Aquatic BioSystems
18	09/30/02	5	0.612	0.48	0.10	0.85	Aquatic BioSystems
19	10/18/02	4	0.373	··· 0.47	0.11	0.84	🐴 🍓 Aquatic BioSystems 👘 👘 👘
20	11/01/02	3	0.360	0.47	<u> </u>	0.83	Aquatic BioSystems

lqaqclarts\Myackcl

Appendix A

Toxicity Testing Data Report and Statistical Analyses

New Bedford TIE; SAIC/Maguire, January 2003

				Mysid Survival, Growti	h and Fecundity Test-48	-lr	
Start Date:			Test ID:	NBHMYS48	Sample ID:	NBH MYS 48	
End Date:			Lab ID:		Sample Type:	AMB1-Ambient water	
Sample Date:			Protocol:	EPAA 91-EPA Acute	Test Species:	AB-Americamysis bahia	
Comments:	New Bedfo	rd Harbo	r, 48hr Ame	ericamysis bahia		-	
Conc-%	1	2	3				
STA_C18	1.0000	0.9000	0.9000				•••
STA_STS	0.6000	0.0000	0.0000				

			_		Transform	n: Untrans	sformed		_	1-Tailed		
_	Conc- <u>%</u>	Mean	N-Mean	Меал	Min	Max	CV%	N	t-Stat	Critical	MSD	
	STA_C18	0.9333	1.0000	0.9333	0.9000	1.0000	6.186	3				
	*STA_STS	0.2000	0.2143	0.2000	0.0000	0.6000	173.205	3	3.617	2.920	0.5921	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.860401		0.713		1.320255	2.03981
F-Test indicates equal variances (p = 0.05)	36		199.012			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates significant differences	0.592053	0.634342	0.806667	0.061667	0.022421	1,4

Dose-Response Plot

				Mysid SurvIval, Growth	h and Fecundity Test-48	Hr	
Start Date:			Test ID:	NBHURC72	Sample ID:	NBH URC 72hr	
End Date:			Lab ID:		Sample Type:	AMB1-Ambient water	
Sample Date:			Protocol:	EPAA 91-EPA Acute	Test Species:	AP-Arbacia punctulata	
Comments:	New Bedfo	rd Harbo	r, 72hr Urch	nin Survival		-	
Conc-%	1	2	3			······································	
STA_ULVA	0.7300	0.7000	0.5100				
STA_C18	0.1000	0,2900	0.2400				

		_	Transform: Untransformed					1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
STA_ULVA	0.6467	1.0000	0.6467	0.5100	0.7300	18.449	3				
*STA_C18	0.2100	0.3247	0.2100	0.1000	0.2900	46.899	3	4.889	2.353	0.2102	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.809437		0.713		-0,83728	-1.71803
F-Test indicates equal variances (p = 0.81)	1.467354		199.012			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates significant differences	0.210199	0.325049	0.286017	0.011967	0.008109	14

4

;

.

				Mysid Survival, Growth and F	ecundity Test-48	3 Hr
Start Date:			Test ID:	NBHURC	Sample ID:	NBH URC
End Date:			Lab ID:		Sample Type:	AMB1-Ambient water
Sample Date:			Protocol:	EPAA 91-EPA Acute	Test Species:	AP-Arbacia punctuiata
Comments:	New Bedfor	rd Harboi	r, Arbacia p	unctulata, Normal Development		-
Conc-%	1	2	3			
SPK100_EDTA	0.9500	0.9900	1.0000			
SPK100_STS	0.0000	0.0000	0.0000			

		_	Transform: Untransformed				_	1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
SPK100_EDTA	0.9800	1.0000	0.9800	0.9500	1.0000	2.700	3				
*SPK100_STS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	3	64.156	2.920	0.0446	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.873051		0.713		-1.15254	2.5
Equality of variance cannot be confirmed						
Hypothesis Test (1-tail, 0.05)	MSDu N	MSDp	MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates significant differences	0.044604 0.0	045514	1.4406	0.00035	3.5E-07	1, 4

Dose-Response Plot

ł

Mysid Survival, Growth and Fecundity Test-48 Hr												
Start Date:			Test ID:	NBHURCS48	Sample ID:	NBH URC 48						
End Date:			Lab ID:		Sample Type:	AMB1-Ambient water						
Sample Date:			Protocol:	EPAA 91-EPA Acute	Test Species:	AP-Arbacia punctulata						
Comments:	New Bedfo	rd Harbol	r, Arbacia p	unctulata, Normal Development								
Conc-%	1	2	3									
SPK10_STS	0.9900	0.9900	0.9800									
SPK10_UNT	0.0100	0.0100	0.0000									

			Transform: Untransformed					1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
SPK10_STS	0.9867	1.0000	0.9867	0.9800	0.9900	0.585	3			
*SPK10_UNT	0.0067	0.0068	0.0067	0.0000	0.0100	86.603	3	207.889	2.132	0.0100

Auxiliary Tests	Statistic	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.639916	0,713		-0.96825	-1.875
F-Test indicates equal variances (p = 1.00)	1	199.012			
Hypothesis Test (1-tail, 0.05)	MSDu M	/SDp MSB	MSE	F-Prob	df
Heteroscedastic t Test indicates significant differences	0.01005 0.0	010185 1.4406	3.33E-05	3.2E-09	1, 4

Dose-Response Plot

