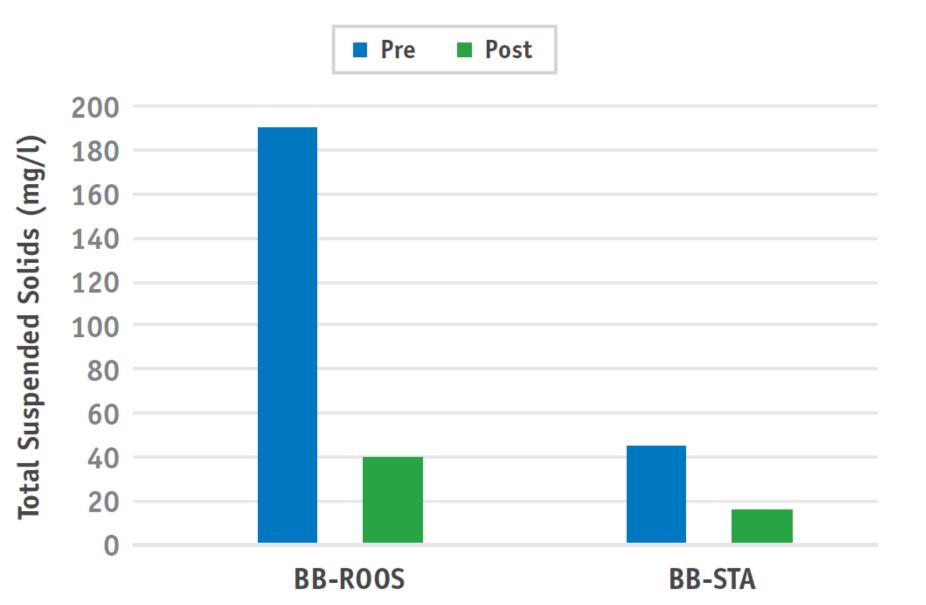
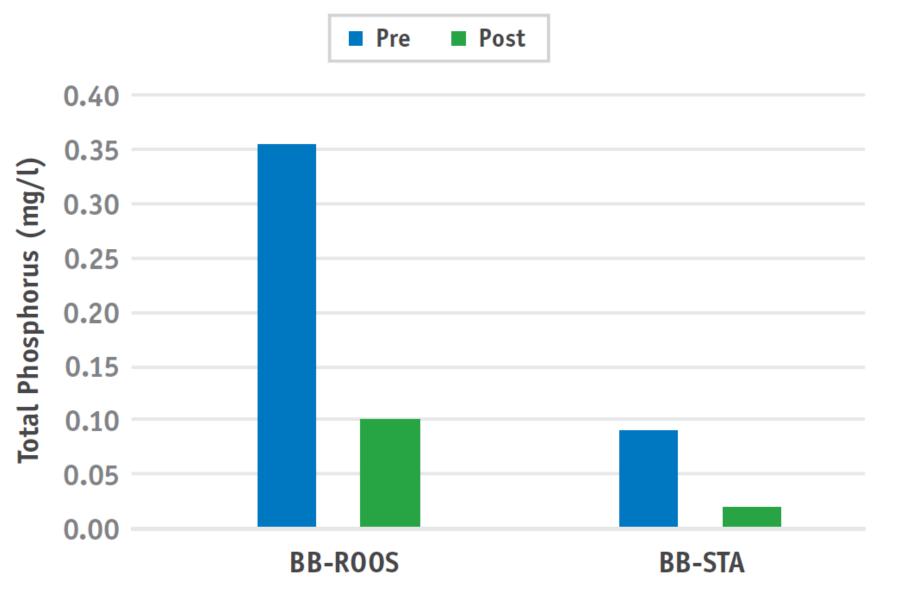

Evolving Research for Stormwater Management James Houle, UNH Stormwater Center Providing Data to Protect Water Quality Since 2004

Berry Brook


Results for Berry Brook at Station Drive

1-Inch Storm, $Ia = 0.05 S^{1}$


Year	% IC	P (in)	Q (in)	S (in)	CN	Q Reduction
2011	30	1.00	0.153	3.59	74	
2012	20	1.00	0.084	5.54	64	45.3%
2015	14	1.00	0.055	7.02	59	64.0%

¹Hawkins, R.H.; Jiang, R.; Woodward, D.E.; Hjelmfelt, A.T.; Van Mullem, J.A. (2002). <u>"Runoff Curve Number Method: Examination of the Initial Abstraction Ratio"</u>.

Berry Brook Water Quality

Berry Brook Water Quality

Berry Brook Expenses

Expenses	\$1,321,700
Grant	\$793,000
Match	\$528,700
BMPs	22
DA Treated	89.5
TSS Reduction	38,070
TP Reduction	127.2
TN Reduction	709.8

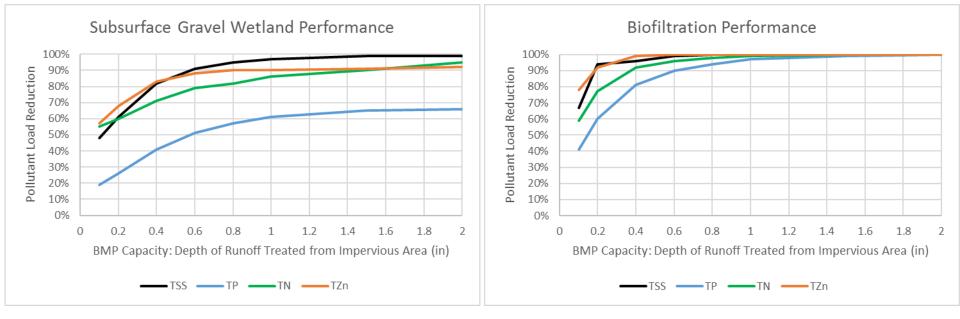
Costs per disconnected acre of IC							
	PA NY NH						
Actual	\$250,000.00	\$320,000.00	\$30,000.00				

installation and maintenance cost data, with normalization by area

Parameter	Vegetated Swale	Wet Pond	Dry Pond	Sand Filter	Gravel Wetland	Bioretention	Porous Asphalt
Capital Cost (\$)	12,000	13,500	13,500	12,500	22,500	21,550	21,800
Inflated 2012	14 600	16 500	16 500	15 200	27 400	25 600	26 600
Capital Cost	14,600	16,500	16,500	15,200	27,400	25,600	26,600
Maintenance and							
Capital Cost	17.8	5.4	6.9	5.4	12.8	13.5	24.6
Comparison							
Personnel (hr/yr)	9.5	28.0	24.0	28.5	21.7	20.7	6.0
Personnel (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	380
Subcontractor Cost (\$/yr)	0	0	0	0		0	700
Total Operational Cost (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	1,080
Operation/Capital Cost (%)	6%	19%	14%	18%	8%	8%	4%

Life Cycle Costs Including Maintenance

ВМР	Area of IC treated	WQv (cf)	BMP Area ft3	Annual Ave Maintenance \$	Annual Maintenance hours	Capital Cost per acre of IC treated	2010 Adj Capital Cost of system *	Added design contingency of 35%		Capital Costs per cf treated (WQv)	Capital Costs per BMP storage volume (cf)	Capital Costs/sf of IC	Amoritized Life Cylce Costs ***
Vegetated Swale	1.00	3,630	5,400	\$822.50	9.5	\$11,200.00	\$12,928.68	\$17,453.72	\$3.23	\$4.81	NA	\$0.26	\$33,903.72
Retention Pond	1.00	3,630	12,880	\$3,060.00	28.0	\$13,700.00	\$15,814.54	\$21,349.63	\$1.66	\$5.88	\$5.88	\$0.31	\$82,549.63
Detention Pond	1.00	3,630	12,880	\$2,380.00	24.0	\$13,700.00	\$15,814.54	\$21,349.63	\$1.66	\$5.88	\$5.88	\$0.31	\$68,949.63
Chamber System	1.00	3,630	434	Not assessed	Not assessed	\$34,000.00	\$34,434.75	\$46,486.91	\$107.13	\$12.81	\$107.13	\$0.78	Not assessed
Sand Filter	1.00	3,630	640	\$2,807.50	28.5	\$12,417.00	\$14,333.52	\$19,350.25	\$30.23	\$5.33	\$15.51	\$0.29	\$75,500.25
Gravel Wetland	1.00	3,630	1,920	\$2,138.33	21.7	\$22,300.00	\$25,741.92	\$34,751.59	\$18.10	\$9.57	\$7.59	\$0.51	\$77,518.26
Bioretention	1.00	3,630	4,326	\$1,890.00	20.7	\$20,000.00	\$23,086.92	\$31,167.34	\$7.21	\$8.59	\$13.37	\$0.46	\$68,967.34
Enhanced Bio	0.39	935	373	\$1,890.00	21.0	\$29,000.00	\$29,000.00	\$39,150.00	\$105.09	\$41.86	\$105.09	\$0.67	\$68,967.34
Porous Asphalt	1.00	3,630	32,670	\$1,080.00	6.0	\$21,780.00	\$22,058.49	\$29,778.96	\$0.91	\$8.20	\$4.60	\$0.50	\$51,378.96
Pervious Concrete**	1.00	3,630	32,670	\$1,080.00	6.0	\$74,052.00	\$74,998.88	\$101,248.49	\$3.10	\$27.89	\$15.63	\$1.70	\$122,848.49
Permiable Interlocking Concrete Pavement **	1.00	3,630	32,670	\$1,080.00	6.0	\$74,052.00	\$74,998.88	\$101,248.49	\$3.10	\$27.89	\$15.63	\$1.70	\$122,848.49


note all costs were converted from 2004 dollars to 2010 dollars with the exception of the permeable pavements which were converted from 2008 dollars to 2010 dollars

* See reference information from USDOL

** PA cost estimates were calculated as the difference between PA installations and a typcical dense mix pavement equivalent. PC and PICP costs were developed using the same methodology and compared to typical DMA, not typical concrete or paver pavements.

*** Life cycle costs were calculated based on 2010 capital costs and amoritized annual maintenance costs over an expected useful life of 20 years

https://www3.epa.gov/region1/npdes/stormwater/ma/green-infrastructure-stormwater-bmp-cost-estimation.pdf

physical storage capacity - runoff depth from IA (in)

	te Dept txt	n Mod R	
0	0.1	4	8 75
0	0.1	5	7 75
0	0.1	5	5 23
0	0.1	1	9 53

Stormwater Management Design - 70.5 acre Ultra-Urban Drainage Area							
Sizing Comparison of Capital Costs and Relative Phosphorus Load Removal Efficiency							
Best Management Practice Size	Depth of Runoff Treated from Impervious Area (in)	*Storage Volume Cost (\$/ft³)	**Total Phosphorus Removal Efficiency (%)				
Subsurface Gravel Filter - Minimum Size	0.35	\$1,016,912	62%				
Subsurface Gravel Filter - Moderate Size	0.5	\$1,452,732	80%				
Subsurface Gravel Filter - Full Size 1.0 \$2,905,463 96%							
*Storage Volume Cost estimates provided by EPA-Region 1 for Opti-Tool methodology, 2015-Draft							
**Total Phosphorus %RE based on Appendix F Massachusetts MS4 Permit							

SGWS Costs

Cost per pound removed						
Years	ТР	TN				
1	8	41				
\$/lb	\$289.25	\$ 56.44				
Years	ТР	TN				
10	80	410				
\$/lb	\$ 28.93	\$ 5.64				

Questions???