TRIM.FaTE Public Reference Library Background Document September 2016 (Updated)

This document contains tables listing the following input properties for which numerical values are provided in the September 2016 TRIM.FaTE Public Reference Library:

- chemical-independent parameters for abiotic compartment types;
- chemical-dependent (i.e., value varies by chemical) parameters for abiotic compartment types;
- chemical-independent parameters for biotic compartment types;
- chemical-dependent parameters for biotic compartment types;
- chemical-dependent parameters, independent of compartment type;
- source inputs; and
- "unset" inputs.

NOTE: These values are provided to assist new users in learning how to use TRIM.FaTE and set up TRIM.FaTE scenarios. It remains each user's responsibility to confirm or identify alternative values that are appropriate for their application and customize the library for their use accordingly.

For each property listed in the tables, the parameter name, input units, value used (except where values are "unset" in the Public Reference Library), and a reference are given. Full citations for each reference are provided at the end of this document. There are five sets of chemical-dependent tables, one for mercury species, the second for cadmium, the third for arsenic, the fourth for polycyclic aromatic hydrocarbons (PAHs), and the fifth for dioxins/furans. Two attachments, referred to in the tables, provide additional detailed documentation.

Within the framework of the TRIM.FaTE computer model, several different kinds of properties are defined and used. The model inputs listed in this document fall into the following categories of TRIM.FaTE properties in the September 2016 Public Reference Library:

- compartment properties (includes by far the largest number of input parameters);
- volume element (VE) properties;
- link properties;
- chemical properties;
- source properties; and
- scenario properties.

In the following tables, the type of object (e.g., volume element, link) for which the property is defined is identified for all input parameters that are **not** compartment properties. Note that volume element, link, and scenario properties are not part of a TRIM.FaTE library. These properties are included in the tables for completeness, but values are not always included.

This document includes only those properties for which the Public Reference Library value is a numerical constant. There are many other properties in the library, described in the TRIM.FaTE Technical Support Document Volume II: Description of Chemical Transport and Transformation Algorithms (EPA 453/R-02-011b, September 2002), that are calculated from these inputs. These formula properties are not listed in the following tables.

Some of the tables in this document contain information for various terrestrial and semiaquatic animal compartments. This information has not been updated or curated since 2005.

Note that the units listed in these tables are the units in which model input values need to be expressed for the algorithms in the current library. In a few cases, these computer model input units do not match the units used for the same parameter in equations and derivations in the TRIM.FaTE Technical Support Document Volume II. In such cases, there are internal unit conversions in the computer model that account for the differences.

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
AirDensity_g_cm3	Mass of air per unit volume of air, in g/cm3	g/cm ³	0.0012	U.S. EPA 1997.
DustDensity	Mass of atmospheric particulate per unit volume of atmospheric particulate	kg[dust]/m ³ [dust]	1,400	Bidleman 1988.
DustLoad	Concentration of atmospheric dust particles in the air compartment	kg[dust]/m³[air]	6.15E-08	Bidleman 1988.
FractionOrganicMatteronParticulates	Mass fraction of air particulates that is organic material	unitless	0.2	Harner and Bidleman 1998.

TRIM FoTE Bronorty Name	Property Description	Units		Value		Reference
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0	Professional judgment
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	n/a
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	Professional judgment.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0.00385	n/a	n/a	Low end of half-life range (6 months to 2 years) in U.S. EPA 1997.
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Professional judgment.
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	500	500	Caltox value cited in McKone et al. 2001
Washout Ratio ^b	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles	m³[air]/ m³[rain]	200,000	200,000	200,000	MacKay et al. 1986.

^aOn this and all following tables for mercury species:

Hg(0) = Elemental Mercury

Hg(2) = Divalent Mercury

MHg = MethylMercury

^bFrom the MacKay et al. 1986 article: "For chemicals that are primarily or totally in particulate form, Wv [ratio of precipitation concentration in moles per cubic meter of water to total air concentration in moles per cubic meter of air] approaches Q [scavenging ratio]. Vickers and Slinn (1979) quote Wv values for metals and radionuclides in the range 200,000 - 500,000 For illustrative purposes [the authors] select a value of 200,000. But it is likely that Q depends on particle size, collection efficiency, and meteorological factors such as storm type." Essentially, Q and Wv are approximately equal if most of the chemical in the air is sorbed to particles and not present as vapor. For metals that do not exit as vapor, the default value of 200,000 for Q cited in the paper is an upper-end approximation of the relative volume of air that a raindrop will scavenge particles from. If this value is adjusted to account for the particle bound fraction of chemical in the atmosphere, then multiplied by rain rate, you have the transfer factor.

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	260	Calculated from Muhlbaier and Tissue 1980.
Washout Ratio ^a	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles.	m³[air]/ m³[rain]	200000	MacKay et al. 1986.

^aFrom the MacKay et al. 1986 article: "For chemicals that are primarily or totally in particulate form, Wv [ratio of precipitation concentration in moles per cubic meter of water to total air concentration in moles per cubic meter of air] approaches Q [scavenging ratio]. Vickers and Slinn (1979) quote Wv values for metals and radionuclides in the range 200,000 - 500,000 For illustrative purposes [the authors] select a value of 200,000. But it is likely that Q depends on particle size, collection efficiency, and meteorological factors such as storm type." Essentially, Q and Wv are approximately equal if most of the chemical in the air is sorbed to particles and not present as vapor. For metals that do not exit as vapor, the default value of 200,000 for Q cited in the paper is an upper-end approximation of the relative volume of air that a raindrop will scavenge particles from. If this value is adjusted to account for the particle bound fraction of chemical in the atmosphere, then multiplied by rain rate, you have the transfer factor.

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
linitial concentration a per m3 liser supplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a
1400	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	McKone et al. 2001
	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles.	m ³ [air]/ m ³ [rain]	200000	MacKay et al. 1986.

TRIM.FaTE Property Name	Property Description	Units				Value				Reference
TRIM.Fait Froperty Name	Property Description	Onits	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	0.046	0.125	0.596	0.458	0.334	0.178	0.262	Howard et al. 1991; upper bound measured or estimated value.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a						
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	500	500	500	500	500	500	McKone et al. 2001
Washout Ratio ^{b,c}	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles.	m³[air]/ m³[rain]	200,000	200,000	200,000	200,000	200,000	200,000	200,000	MacKay et al. 1986.

^aOn this and all following tables for polycyclic aromatic hydrocarbons (PAHs)

BaP = benzo(a)pyrene

BaA = Benz(a)anthracene

BbF = Benzo(b)fluoranthene

BkF = Benzo(k)fluoranthene

Chr = Chrysene

DahA = Dibenz(a,h)anthracene

IcdP = Indeno(1,2,3-cd)pyrene

^bFor this class of chemicals, some chemical-specific values for this property may be available in the literature. Depending on user-specific considerations, users may want to revise the library value from the general value t a chemical-specific one (see Wania et al. 1998).

^cFrom the MacKay et al. 1986 article: "For chemicals that are primarily or totally in particulate form, Wv [ratio of precipitation concentration in moles per cubic meter of water to total air concentration in moles per cubic meter of air] approaches Q [scavenging ratio]. Vickers and Slinn (1979) quote Wv values for metals and radionuclides in the range 200,000 - 500,000. For illustrative purposes [the authors] select a value of 200,000. But it is likely that Q depends on particle size, collection efficiency, and meteorological factors such as storm type." Essentially, Q and Wv are approximately equal if most of the chemical in the air is sorbed to particles and not present as vapor. For metals that do not exit as vapor, the default value of 200,000 for Q cited in the paper is an upper-end approximation of the relative volume of air that a raindrop will scavenge particles from. If this value is adjusted to account for the particle bound fraction of chemical in the atmosphere, then multiplied by rain rate, you have the transfer factor.

		Unite				Value				Deference
TRIM.FaTE Property Name	Property Description	Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Reference
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	0.154	0.092	0.3	0.208	0.215	0.46	0.46	Howard et al. 1991; upper bound measured or estimated value Exceptions include ATSDR 2005 (2-Methylnaphthalene), USEPA 1998 (7,12- Dimethylbenz(a)anthracene, Benzo(g,h,i)perylene, and Fluoranthene) / average of range, HSDB 2001d (Acenaphthene), HSDB 2001b (Acenaphthylene), and Spero et al. 2000 (Fluorene).
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	500	500	500	500	500	500	McKone et al. 2001
Washout Ratio ^{b,c}	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles.	m³[air]/ m³[rain]	200000	200000	200000	200000	200000	200000	200000	Mackay et al. 1986.

^aOn this and all following tables for polycyclic aromatic hydrocarbons (PAHs)

2Methyl = 2-Methylnaphthalene

712DMB = 7,12-Dimethylbenz[a]Anthracene

BghiP = Benzo(ghi)perylene

^bFor this class of chemicals, some chemical-specific values for this property may be available in the literature. Depending on user-specific considerations, users may want to revise the library value from the general value t a chemical-specific one (see Wania et al. 1998).

^cFrom the MacKay et al. 1986 article: "For chemicals that are primarily or totally in particulate form, Wv [ratio of precipitation concentration in moles per cubic meter of water to total air concentration in moles per cubic meter of air] approaches Q [scavenging ratio]. Vickers and Slinn (1979) quote Wv values for metals and radionuclides in the range 200,000 - 500,000. For illustrative purposes [the authors] select a value of 200,000. But it is likely that Q depends on particle size, collection efficiency, and meteorological factors such as storm type." Essentially, Q and Wv are approximately equal if most of the chemical in the air is sorbed to particles and not present as vapor. For metals that do not exit as vapor, the default value of 200,000 for Q cited in the paper is an upper-end approximation of the relative volume of air that a raindrop will scavenge particles from. If this value is adjusted to account for the particle bound fraction of chemical in the atmosphere, then multiplied by rain rate, you have the transfer factor.

TRIM.FaTE Property						Value				
Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8, 9-OCDD	Reference
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	12	18	42	28	28	64	162	Atkinson 1996 as cited in U.S. EPA 2000b; vapor phase reaction with hydroxyl radical.
initialConcentration_g_per _m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	500	500	500	500	500	500	McKone et al. 2001.
Washout Ratio ^b	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles	m³[air]/ m³[rain]	18,000	18,000	9,000	9,000	9,000	64,000	91,000	Vulykh et al. 2001.

^aOn this and all following tables for dioxins:

2,3,7,8-TCDD = 2,3,7,8-Tetrachlorodibenzo(p)dioxin

1,2,3,7,8-PeCDD = 1,2,3,7,8-Pentachlorodibenzo(p)dioxin

1,2,3,4,7,8-HxCDD = 1,2,3,4,7,8-Hexachlorodibenzo(p)dioxin

1,2,3,6,7,8-HxCDD = 1,2,3,6,7,8-Hexachlorodibenzo(p)dioxin

1,2,3,7,8,9-HxCDD = 1,2,3,7,8,9-Hexachlorodibenzo(p)dioxin

1,2,3,4,6,7,8-HpCDD = 1,2,3,4,6,7,8-Heptachlorodibenzo(p)dioxin

1,2,3,4,6,7,8,9-OCDD = 1,2,3,4,6,7,8,9-Octachlorodibenzo(p)dioxin

^bOther chemical-specific values may be available in the literature see Hites and Harless (1991) and Koester and Hites (1992

TRIM.FaTE Property								Value					
Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	19	31	33	78	55	51	59	137	122	321	Atkinson 1996 as cited in U.S. EPA 2000b; vapor phase reaction with hydroxyl radical
initialConcentration_g_ per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	0	0	0	n/a
vdep	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	m/day	500	500	500	500	500	500	500	500	500	500	McKone et al. 2001.
	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles	n/a	19,000	13,000	14,000	10,000	10,000	10,000	10,000	32,000	32,000	22,000	Vulykh et al. 2001.

^aOn this and all following tables for furans:

2,3,7,8-TCDF = 2,3,7,8-Tetrachlorodibenzo(p)furan

1,2,3,7,8-PeCDF = 1,2,3,7,8-Pentachlorodibenzo(p)furan

2,3,4,7,8-PeCDF = 2,3,4,7,8-Pentachlorodibenzo(p)furan

1,2,3,4,7,8-HxCDF=1,2,3,4,7,8-Hexachlorodibenzo(p) furantial function of the second statement of the

1,2,3,6,7,8-HxCDF = 1,2,3,6,7,8-Hexachlorodibenzo(p)furan

1,2,3,7,8,9-HxCDF = 1,2,3,7,8,9-Hexachlorodibenzo(p)furan

2,3,4,6,7,8-HxCDF = 2,3,4,6,7,8-Hexachlorodibenzo(p)furan

 $1,2,3,4,6,7,8\mbox{-HpCDF}=1,2,3,4,6,7,8\mbox{-Heptachlorodibenzo}(p)\mbox{furantial} further and a statement of the statem$

1,2,3,4,7,8,9-HpCDF = 1,2,3,4,7,8,9-Heptachlorodibenzo(p)furan

1,2,3,4,6,7,8,9-OCDF = 1,2,3,4,6,7,8,9-Octachlorodibenzo(p)furan

^bOther chemical-specific values may be available in the literature see Hites and Harless (1991) and Koester and Hites (1992)

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
Surface Soil Compartment Type	,			
AirSoilBoundaryThickness	Thickness of air above soil surface soil within which molecular diffusion between media can be significant (defines boundary between the well- mixed portion, where turbulent mixing is rapid and continuous, and the stable portion at the very edge of the interface)	m	0.005	Thibodeaux 1996; McKone et al. 2001 (Table 3).
AverageVerticalVelocity	Average speed of water movement downward through soil column (i.e., percolation)	m ³ [water]/m ² [surface soil]-day (or m/day)	8.08E-04	Assumed as 0.2 times average precipitation for New England in McKone et al. 2001.
Fractionofareaavailableforerosion	Fraction of the total surface area for which erosion can occur	m ² [area available]/m ² [total]	1	Professional judgment; area assumed rural.
FractionofAreaAvailableforRunoff	Fraction of the total surface area for which runoff can occur	m ² [area available]/m ² [total]	1	Professional judgment; area assumed rural.
Fractionofareaavailableforverticaldiffusion	Fraction of the total surface area for which vertical diffusion can occur	m ² [area available]/m ² [total]	1	Professional judgment; area assumed rural.
OrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic carbon	kg [organic carbon]/kg[solids wet wt]	0.008ª	U.S. average in McKone et al. 2001 (Table 16 and A-3).
rho	Density (mass per unit volume) of solid materials (e.g., dry soil, dry sediment particles)	kg[solid]/m ³ [solid]	2,600	Default in McKone et al. 2001 (Table 3).
TotalErosionRate_kg_m2_day	Total mass of eroded surface soil particles per unit surface area per day	kg[soil]/m²[surface soil]- day	unset	n/a
TotalRunoffRate_m3_m2_day	Total volume of liquid runoff from surface soil per unit surface area per day	m ³ [water]/m ² [surface soil]-day	1.62E-03ª	Calculated using scenario-specific precipitation rate and assumptions associated with water balance.
VolumeFraction_Liquid	Fraction of total compartment volume that is in liquid phase (e.g., soil or sediment pore space occupied by water)	volume[water]/volume[compartment]	0.19ª	McKone et al. 2001 (table 15).
VolumeFraction_Vapor	Fraction of total compartment volume that is in vapor/gas phase (e.g., soil pore space occupied by air instead of water)	m ³ [gas]/m ³ [compartme nt]	0.28ª	McKone et al. 2001.
Root Zone Soil Compartment Type				
AverageVerticalVelocity	Average speed of water movement downward through soil column (i.e., percolation)	m ³ [water]/m ² [surface soil]-day (or m/day)	8.08E-04	Assumed as 0.2 times average precipitation for New England in McKone et al. 2001.
OrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic carbon	kg[organic carbon]/kg[solids wet wt]	0.008ª	McKone et al. 2001 (Tables 16 and A-3, U.S. average).
rho	Density (mass per unit volume) of solid materials (e.g., dry soil, dry sediment particles)	kg[solid]/m ³ [solid]	2,600	McKone et al. 2001 (Table 3).

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
VolumeFraction_Liquid	Fraction of total compartment volume that is in liquid phase (e.g., soil or sediment pore space occupied by water)	volume[water]/volume[compartment]	0.21ª	McKone et al. 2001 (Table 16).
VolumeFraction_Vapor	Fraction of total compartment volume that is in vapor/gas phase (e.g., soil pore space occupied by air instead of water)	m ³ [gas]/m ³ [compartme nt]	0.25ª	McKone et al. 2001 (Table 16).
Vadose Zone Soil Compartment Type				
AverageVerticalVelocity	Average vertical velocity of water (percolation)	m ³ [water]/m ² [surface soil]-day (or m/day)	8.08E-04	Assumed as 0.2 times average precipitation for New England in McKone et al. 2001.
OrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic carbon	kg[organic carbon]/kg[solids wet wt]	0.003ª	McKone et al. 2001 (Tables 16 and A-3, U.S. average).
rho	Density (mass per unit volume) of solid materials (e.g., dry soil, dry sediment particles)	kg[solid]/m ³ [solid]	2,600	Default in McKone et al. 2001 (Table 3).
VolumeFraction_Liquid	Fraction of total compartment volume that is in liquid phase (e.g., soil or sediment pore space occupied by water)	m³[liquid]/m³[compartm ent]	0.21ª	McKone et al. 2001 (Table 17 – national average).
VolumeFraction_Vapor	Fraction of total compartment volume that is in vapor/gas phase (e.g., soil pore space occupied by air instead of water)	m ³ [gas]/m ³ [compartme nt]	0.22ª	McKone et al. 2001 (Table 17).
Ground Water Compartment Type				
OrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic carbon	kg[organic carbon]/kg[solids wet wt]	0.004	Professional judgement.
Porosity	Volume fraction of soil, ground water, or sediment compartment that is pore space (i.e., fraction liquid phase plus fraction gas phase in soil compartments or fraction liquid phase in groundwater and sediment compartments)	L[total pore space]/L[total compartment]	0.2	Default in McKone et al. 2001 (Table 3).
rho	Density (mass per unit volume) of solid materials (e.g., dry soil, dry sediment particles)	kg[solid]/m ³ [solid]	2,600	Default in McKone et al. 2001 (Table 3).

^aScenario-specific parameters, values provided are for Tier 1 screenings.

TRIM.FaTE Property Name	Property Description	Units		Value		Reference
· ·	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
Surface Soil Compartment Type			r			
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.06	Range reported in Porvari and Verta 1995 is 3E-2 to 6E-2 /day; value is average maximum potential demethylation rate constant under anaerobic conditions.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	unset	unset	unset	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	Not used (model set to calculate value).
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[soil wet wt]	1,000	58,000	7,000	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	0.001	0	Range reported in Porvari and Verta 1995 is 2E-4 to 1E-3 /day; value is average maximum potential methylation rate constant under anaerobic conditions.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	0	0	Value assumed in U.S. EPA 1997.
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	1.25E-05	0	Value used for untilled surface soil (2cm), 10% moisture content, in U.S. EPA 1997; general range is (0.0013/day)*moisture content to (0.0001/day)*moisture content for forested region (Lindberg 1996; Carpi and Lindberg 1997).
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	0	0	Setting selected for Reference Library
VaporDryDepositionVelocity_m_day	Speed at which chemical in vapor form in air moves downward; used in estimating dry deposition and/or diffusion of chemical vapors to soil and surface water	m/day	50	2,500	0	Hg(0) - from Lindberg et al. 1992; Hg(2) - estimate by USEPA using the Industrial Source Complex (ISC) Model - [See Vol. III, App. A of the Mercury Study Report (USEPA 1997)].
Root Zone Soil Compartment Type						
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.06	Range reported in Porvari and Verta 1995 is 3E-2 to 6E-2 /day; value is average maximum potential demethylation rate constant under anaerobic conditions.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	unset	unset	unset	n/a

TRIM.FaTE Property Name	Property Description	Units		Value		Reference
	Toperty Description	onits	Hg(0)	Hg(2)	MHg	Kelelelice
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	not used (model set to calculate value)
Кd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[soil wet wt]	1,000	58,000	7,000	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	0.001	0	Range reported in Porvari and Verta 1995 is 2E-4 to 1E-3 /day; value is average maximum potential methylation rate constant under anaerobic conditions.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	0	0	Value assumed in U.S. EPA 1997.
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	3.25E-06	0	Value used for tilled surface soil (20cm), 10% moisture content, in U.S. EPA 1997 (Lindberg 1996; Carpi and Lindberg, 1997).
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	0	0	Setting selected for Reference Library
Vadose Zone Soil Compartment Type	•					•
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.06	Range reported in Porvari and Verta 1995 is 3E-2 to 6E-2 /day; value is average maximum potential demethylation rate constant under anaerobic conditions.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	unset	unset	unset	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	Not used (model set to calculate value).
Кd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[soil wet wt]	1,000	58,000	7,000	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	0.001	0	Range reported in Porvari and Verta 1995 is 2E-4 to 1E-3 /day; value is average maximum potential methylation rate constant under anaerobic conditions.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	0	0	Value assumed in U.S. EPA 1997.

TRIM.FaTE Property Name	Property Description	Units		Value		Reference
	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	3.25E-06	0	Value used for tilled surface soil (20cm), 10% moisture content, in U.S. EPA 1997 (Lindberg 1996; Carpi and Lindberg, 1997).
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes			0	setting selected for Reference Library
Ground Water Compartment Type						
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.06	Range reported in Porvari and Verta 1995 is 3E-2 to 6E-2 /day; value is average maximum potential demethylation rate constant under anaerobic conditions.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	unset	unset	unset	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[soil wet wt]	1,000	58,000	7,000	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	0.001	0	Range reported in Porvari and Verta 1995 is 2E-4 to 1E-3 /day; value is average maximum potential methylation rate constant under anaerobic conditions.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	1/day 1.00E-08 0		0	Small default nonzero value (0 assumed in U.S. EPA 1997).
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	3.25E-06	0	Value used for tilled surface soil (20cm), 10% moisture content, in U.S. EPA 1997 (Lindberg 1996; Carpi and Lindberg, 1997)

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
Surface Soil Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of	m	0.08	Professional judgment
	the concentration at top of compartment	III		
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	Calculated ^a	U.S. EPA 2005c.
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	Setting selected for Reference Library
Root Zone Soil Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment		0.08	Professional judgement
InputCharacteristicDepth_m		m		
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	Calculated ^a	U.S. EPA 2005c.
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	Setting selected for Reference Library
Vadose Zone Soil Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	Professional judgement
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	Calculated ^a	U.S. EPA 2005c.
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	Setting selected for Reference Library
Ground Water Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	0	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	Calculated ^a	n/a

^aEquation provided: 10**(-2.87671+0.495043*compartment.pH -0.00500349*compartment.fractionsand*100+0.55245*log10(compartment.organiccarboncontent*1000000))

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
Surface Soil Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	2512	Ambrose, 2005
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	n/a
Root Zone Soil Compartment Type		1 1		
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	2512	Ambrose, 2005
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	n/a
Vadose Zone Soil Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	2512	Ambrose, 2005
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user- provided characteristic depth	0 = no, Else = yes	0	n/a
Ground Water Compartment Type				
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	0	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[liquid phase]/kg[solid phase]	Calculated ^a	n/a

^aEquation provided: 10**(-2.87671+0.495043*compartment.pH -0.00500349*compartment.fractionsand*100+0.55245*log10(compartment.organiccarboncontent*1000000))

						Value				P (
TRIM.FaTE Property Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference
Surface Soil Compartment Type			1		1			1	1	1
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	530	680	610	2140	1000	940	730	MacKay et al. 2000 / average of range.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a						
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value).
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Root Zone Soil Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	530	680	610	2140	1000	940	730	Howard et al. 1991 / upper bound measured or estimated value.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a						
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value)
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Vadose Zone Soil Compartment Type	• ·									•
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1060	1360	1220	4280	2000	1880	1460	Howard et al. 1991 / upper bound measured or estimated value.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	n/a						
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value)
UseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library
Ground Water Compartment Type								+	+	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1060	1360	1220	4280	2000	1880	1460	Howard et al. 1991 / upper bound measured or estimated value.
initialConcentration_g_per_L_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	0.00E+00	n/a						

Chemical-Dependent / Abiotic for PAHs -- Documentation for TRIM.FaTE Public Reference Library

Soil Compartment Types

TRIM.FaTE Property Name	Property Description	Units				Value				Reference
	Topeny Description	Onita	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Kererende
Surface Soil Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	18	24	56	66.5	415	275	33	MacKay et al. 2000 / average of range. Exceptions include ATSDR 2005 (2-Methylnaphthalene, value recorded for Napthalene), USEPA 1998 (7,12- Dimethylbenz(a)anthracene, Benzo(g,h.i)perylene and Fluoranthene) / average of range, HSDB 2000 (Acenaphthene), HSDB 2001b (Acenaphthylene), and HSDB 2001e (Fluorene).
nitialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	n/a
nputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Professional judgement.
JseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Root Zone Soil Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	18	24	56	66.5	415	275	33	Howard et al. 1991 / upper bound measured or estimated value. Exceptions include ATSDR 2005 (2-Methylnaphthalene, value recorded for Napthalene), USEPA 1998 (7,12- Dimethylbenz(a)anthracene, Benzo(g,h,i)perylene and Fluoranthene) / average of range, HSDB 200 (Acenaphthene), HSDB 2001b (Acenaphthylene), and HSDB 2001e (Fluorene).
nitialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	n/a
nputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Professional judgement
JseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	setting selected for Reference Library
/adose Zone Soil Compartment Type										1
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	36	48	112	133	830	550	66	See footnote ^a .
nitialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	n/a
nputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Professional judgement
JseInputCharacteristicDepth_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library
Ground Water Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions.	day	36	48	112	133	830	550	66	See footnote ^a .
nitialConcentration_g_per_L_UserSupplied	Initial concentration in the compartment, provided by the user	g/L[water]	0	0	0	0	0	0	0	n/a

*Howard et al. 1991 / upper bound measured or estimated value. Exceptions include ATSDR 2005 (2-Methylnaphthalene, value recorded for Napthalene), USEPA 1998 (7,12-Dimethylbenz(a)anthracene, Benzo(g,h,i)perylene, and Fluoranthene) / twice average of range, HSDB 2001a (Acenaphthene) / multiplied by 2, HSDB 2001b (Acenaphthylene) / multiplied by 2, and HSDB 2001e (Fluorene) / multiplied by 2.

						Value				
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-		1,2,3,4,6,7,8		Reference
			TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD	9-OCDD	
Surface Soil Compartment Type	Length of time for chemical amount to be				1	1	1	1	1	
Halflife	reduced by one-half by degradation reactions	day	3650	3650	3650	3650	3650	3650	3650	Mackay et al. 2000; the degradation rate was cited by multiple authors, value is for 2,3,7,8-TCDD.
initialConcentration_g_per_m3_User Supplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	not used (model set to calculate value)
UseInputCharacteristicDepth_0_Mea nsNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Root Zone Soil Compartment Type			1			1	1	1		I
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3650	3650	3650	3650	3650	3650	3650	Mackay et al. 2000; the degradation rate was cited by multiple authors, value is for 2,3,7,8-TCDD.
initialConcentration_g_per_m3_User Supplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	not used (model set to calculate value)
UseInputCharacteristicDepth_0_Mea nsNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Vadose Zone Soil Compartment Ty	pe									•
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1008	1008	1008	1008	1008	1008	1008	Average value of the range presented in Mackay et al. 2000; based on estimated unacclimated aerobic biodegradation half- life, value is for 2,3,7,8-TCDD.
initialConcentration_g_per_m3_User Supplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	not used (model set to calculate value)
UseInputCharacteristicDepth_0_Mea nsNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	Setting selected for Reference Library.
Ground Water Compartment Type						1	1	1	1	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1008	1008	1008	1008	1008	1008	1008	Average value of the range presented in Mackay et al. 2000; based on estimated unacclimated aerobic biodegradation half- life, value is for 2,3,7,8-TCDD.
initialConcentration_g_per_m3_User Supplied	Initial concentration in the compartment, provided by the user	g/L	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

							1	/alue					
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
Surface Soil Compartmen	t Туре		r	r		1		1					
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3650	3650	3650	3650	3650	3650	3650	3650	3650	3650	Mackay et al. 2000; the degradation rate was cited by multiple authors, value is for 2,3,7,8-TCDD.
initialConcentration_g_per _m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_ m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value).
UseInputCharacteristicDep th_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	0	0	0	Setting selected for Reference Library.
Root Zone Soil Compartm													
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3650	3650	3650	3650	3650	3650	3650	3650	3650	3650	Same as for surface soil compartment type
initialConcentration_g_per _m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_ m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value).
UseInputCharacteristicDep th_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	0	0	0	Setting selected for Reference Library.
Vadose Zone Soil Compar													
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1008	1008	1008	1008	1008	1008	1008	1008	1008	1008	Average value of the range presented in Mackay et al. 2000; based on estimated unacclimated aerobic biodegradation half-life, value is for 2,3,7,8- TCDD.
initialConcentration_g_per _m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
InputCharacteristicDepth_ m	Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of compartment	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	Not used (model set to calculate value).
UseInputCharacteristicDep th_0_MeansNo_ElseYes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	0 = no, Else = yes	0	0	0	0	0	0	0	0	0	0	Setting selected for Reference Library.
Ground Water Compartme	ent Type												
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1008	1008	1008	1008	1008	1008	1008	1008	1008	1008	Same as for vadose zone soild compartment.
initialConcentration_g_per _m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
Surface Water Compartment Type				
AlgaeCarbonContentDryWt	Mass fraction of algae that is carbon (dry wt basis)	unitless	0.465	APHA 1995
AlgaeDensity_g_m3	Mass of algae per unit volume of algae cells, in g/m3	g[algae]/m ³ [algae]	1,000,000	Mason et al. 1995b, Mason et al. 1996
AlgaeDensityinWaterColumn_g_L	Mass of algae per unit volume of surface water	g[algae wet wt]/L[water]	0.0025 ^b	Millard et al. 1996 as cited in ICF 2005.
AlgaeGrowthRate	First-order rate constant for increase of algae mass per day	1/day	0.7	Hudson et al. 1994, in Watras and Huckabee, eds., as cited in Mason et al. 1995b.
AlgaeRadius	Average radius of algae cell	um	2.5	Mason et al. 1995b.
AlgaeWaterContent	Mass fraction of algae that is water	unitless	0.9	APHA 1995
BoundaryLayerThicknessAboveSediment	Thickness of surface water above sediment within which molecular diffusion between media can be significant (defines boundary between the well mixed portion, where turbulent mixing is rapid and continuous, and the stable portion at the very edge of the interface)	m	0.02	Cal EPA 1993.
ChlorideConcentration_mg_L	Concentration of chloride ion in surface water compartment	mg[chloride]/L[surface water])	8 ^b	Kaushal et al. 2005.
ChlorophyllConcentration_mg_L	Concentration of chlorophyll in surface water compartment	mg[chlorophyll]/L[surface water]	0.0029 ^b	ICF 2005.
CurrentVelocity ^a	Average speed of moving water in flowing surface water compartments	m/s	unset	Calculated from flow and cross-sectional area.
DimensionlessViscousSublayerThickness	Parameter used in calculating gas- and liquid-phase transfer coefficients, which are used to calculate diffusion from air to surface water and volatilization from surface water to air	unitless	4	Ambrose et al. 1995.
DragCoefficient	Coefficient used to calculate the shear velocity of wind, which is used in calculating volatilization transfers between surface water and air	unitless	0.0011	Ambrose et al. 1995.
Flushes_per_year	Number of times surface water compartment volume is completely turned over (flushed) in a year	1/year	12.17 ^ь	Calculated based on pond dimensions and flow calculations.
DrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic carbon	kg[organic carbon]/kg[solids wet wt]	0.02 ^b	Professional judgement.
Н	Negative logarithm (base 10) of concentration of hydrogen ion in surface water	unitless	7.3 ^b	Professional judgement.
ho	Density (mass per unit volume) of solid materials (e.g., dry soil, dry sediment particles)	kg[solid]/m ³ [solid]	2,600	McKone et al. 2001.
SedimentDepositionVelocity	Speed of suspended sediments moving downward through the water column to the sediment bed	m/day	2	U.S. EPA 1997.
SuspendedSedimentconcentration	Total suspended sediments (TSS) concentration (i.e., mass of suspended sediment particles per unit volume water)	kg[sediment]/m ³ [water column]	0.05 ^b	U.S. EPA 2005a.
ediment Compartment Type				
OrganicCarbonContent	Mass fraction of soil or sediment solids that consists of organic Carbon.	kg[organic carbon]/kg[solids wet wt]		McKone et al. 2001 (Table 3).
Н		unitless 7.3 ^b		Professional judgement.
ho		kg[sediment]/m ³ [sediment]	2,600	McKone et al. 2001 (Table 3).
SedimentResuspensionVelocity		m/day	7.62447E-05 ^b	Calculated from water balance model.

^L ^aApplies to flowing water bodies only (i.e., rivers, streams). ^bScenario-specific parameters, values provided are for Tier 1 screenings.

TRIM.FaTE Property Name	Property Description	Units		Value		Poference
IRIM.Faile Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
Surface Water Compartment Type						
AlgaeUptakeRate	Surface-area-specific rate constant for uptake into algae of a chemical in water	nmol/[µm²-day- nmol]	0	2.04E-10		Assumes radius = 2.5mm, Mason et al. 1995b, Mason et al. 1996; Hg(0) assumed same as Hg(2).
D_ow	Weighted (by mass fraction) sum of individual K_ow values for all mercury species present	L[water]/kg[octa nol]	0	_ ^a	_b	Mason et al. 1996.
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day n/a n/a 0.013 a			Average range of 1E-3 to 2.5E-2/day from Gilmour and Henry 1991.	
initialConcentration_g_per_L_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	unset	unset unset unset r		n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[solids wet wt]	1,000	100,000	100,000	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	0.001	0	Value used in EPA 1997; range is 1E-4 to 3E-4/day (Gilmour and Henry 1991).
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0->Hg2)	1/day	0	0	0	Professional judgment.
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	0.0075	0	Value used in U.S. EPA 1997; reported values range from less than 5E-3/day for depths greater than 17m, up to 3.5/day (Xiao et al. 1995; Vandal et al. 1995; Mason et al. 1995a; Amyot et al. 1997).
VaporDryDepositionVelocity_m_day	Speed at which chemical in vapor form in air moves downward; used in estimating dry deposition and/or diffusion of chemical vapors to soil and surface water	m/day	n/a	2,500	n/a	U.S. EPA 1997 (Vol. III, App. A).
Sediment Compartment Type						
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a		Average range of 2E-4 to 1E-1/day from Gilmour and Henry 1991.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	unset	unset	unset	n/a
Kd	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	L[water]/kg[solids wet wt]	3,000	50,000	- /	U.S. EPA 1997.
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	0	1.00E-04		Value used in EPA 1997; range is 1E-5 to 1E 3/day, Gilmour and Henry 1991.
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0->Hg2)	1/day	0	0	0	Professional judgment
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	0	1.00E-06		Inferred value based on presence of Hg(0) in sediment porewater (USEPA 1997; Vandal et al. 1995).

^aTRIM.FaTE Formula Property (calculated, not an input), which varies from 0.025 to 1.625 depending on pH and chloride concentration ^bTRIM.FaTE Formula Property (calculated, not an input), which varies from 0.075 to 1.7 depending on pH and chloride concentration

TRIM.FaTE Property Name	Property Description	Units	Value	Reference					
Surface Water Compartment Type									
initialConcentration_g_per_L_ UserSupplied	Initial concentration in the compartment, provided by the user	g/L	0	n/a					
RatioOfConcInAlgaeToConc DissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	L[water]/ g[algae wet wt]	1.87	McGeer et al. 2003.					
Sediment Compartment Type				•					
	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a					

TRIM.FaTE Property Name	Property Description	Units	Value	Reference						
Surface Water Compartment Type										
-0-1	Initial concentration in the compartment, provided by the user	g/L	0	n/a						
RatioOfConcInAlgaeToConc DissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	L[water]/ g[algae wet wt]	01200	Mean value from Table 5.5 Crompton 1998.						
Sediment Compartment Type										
	Initial concentration in the compartment, provided by the user	g/m ³	0	n/a						

Chemical-Dependent / Abiotic for PAHs -- Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Property Name	Property Description	Units				Value				Reference
		Onits	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Kelelence
Surface Water Compartment	, , , , , , , , , , , , , , , , , , ,	-		-	-					
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.138	0.375	90	62.4	1.626	97.8	750	Howard et al. 1991; upper bound measured or estimated value.
initialConcentration_g_per_L_ UserSupplied	Initial concentration in the compartment, provided by the user	g/L	unset	n/a						
RatioOfConcInAlgaeToConc DissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	(g[chem]/k g[algae]) / (g[chem]/L[water])	510	325	317	473	280	1388	1653	Calculated from Kow from Del Vento & Dachs 2002.
Sediment Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	2,290	2,290	2,290	2,290	2,290	2,290	2,290	Mackay et al. 1992 / PAH values are the mean half-life of the log class that Mackay et al. assigned for sediment, except for BbF and IcdP, which were not in Table 2.3 of Mackay et. al.
initialConcentration_g_per_m3 _ UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	unset	n/a						

Chemical-Dependent / Abiotic for PAHs -- Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Property Name	Property Description	Units				Value				Reference
TRIM.Fall Property Name	Property Description	Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Kererence
Surface Water Compartment	Туре									
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	78	216	25	184	1670	160	8.5	Howard et al. 1991 / upper bound measured or estimated value. Exceptions include HSDB 2005 (2-Methylnaphthalene), HSDB 2001a (7-12 Dimethylbenz(a)anthracene), HSDB 2001d (Acenaphthene), HSDB 2001b (Acenaphthylene), and HSDB 2001c (Benzo(g,h,i)perylene), Montgomery 2000 (Fluoranthene), and Boyle 1985 (Fluorene).
initialConcentration_g_per_L_ UserSupplied	Initial concentration in the compartment, provided by the user	g/L	Unset	Unset	Unset	Unset	Unset	Unset	Unset	n/a
RatioOfConcInAlgaeToConc DissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	(g[chem] /kg[alga e])/(g[ch em]/L[w ater])	2.6	333.4	3	3.7	1539	67.4	5.8	Calculated from Kow from Del Vento and Dachs 2002.
Sediment Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	2290	2290	2290	2290	2290	2290	2290	Mackay et al. 1992 / PAH values are the mean half-life of the log class that Mackay et al. assigned for sediment, except for BbF and IcdP, which were not in Table 2.3 of Mackay et. al.
initialConcentration_g_per_m3 _ UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	Unset	Unset	Unset	Unset	Unset	Unset	Unset	n/a

						Value				
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	1,2,3,4,6,7,8-		Reference
Surface Water Compartment Type			TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD	9-OCDD	
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	2.7	2.7	6.3	6.3	6.3	47		Kim and O'Keefe 1998, as cited in USEPA 2000b.
initialConcentration_g_per_L_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	unset	unset	unset	unset	unset	unset	unset	n/a
RatioOfConcInAlgaeToConcDissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	(g[chem]/g [algae])/ (g[chem]/L [water])	1.76	1.55	3.88	5.36	5.36	4.54	5.31	Estimated from Kow value using model from DelVento and Dachs 2002
Sediment Compartment Type										
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	1095	1095	1095	1095	1095	1095	1095	Estimation based on Adriaens and Grbic-Galic 1992,1993 and Adriaens et al. 1995 as cited in U.S. EPA 2000b.
initialConcentration_g_per_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	n/a

TRIM.FaTE Property								Value					
Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	2,3,4,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	2,3,4,6,7,8-	1,2,3,4,6,7,8-	1,2,3,4,7,8,9-	1,2,3,4,6,7,8,	Reference
Name			TCDF	PeCDF	PeCDF	HxCDF	HxCDF	HxCDF	HxCDF	HpCDF	HpCDF	9-OCDF	
Surface Water Compar	urface Water Compartment Type												
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions.	day	0.18	0.19	0.190	0.58	0.58	0.58	0.58	0.58	0.58		Kim and O'Keefe 1998, as cited in USEPA 2000b.
initialConcentration_g_p er_L_UserSupplied	Initial concentration in the compartment, provided by the user	g/L	unset	unset	unset	unset	unset	unset	unset	unset	unset	unset	n/a
RatioOfConcInAlgaeTo ConcDissolvedInWater	1,000 times the ratio of concentration in algae to the concentration dissolved in surface water. Note: At equilibrium, this property divided by 1,000 equals the bioconcentration factor (BCF).	(g[chem]/ g[algae])/ (g[chem]/ L[water])	0.71	1.75	1.39	2.06	4.25	3.26	4.26	2.83	1.9	4.54	Estimated from Kow value using model from DelVento and Dachs 2002.
Sediment Compartmen	nt Type												
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	1095	1095	1095	1095	1095	1095	1095	1095	1095	1095	Estimation based on Adriaens and Grbic-Galic 1992,1993 and Adriaens et al. 1995 as cited in U.S. EPA 2000b.
initialConcentration_g_p er_m3_UserSupplied	Initial concentration in the compartment, provided by the user	g/m ³	0	0	0	0	0	0	0	0	0	0	n/a

Terrestrial Plant Compartment Types

				Agriculture	(Coniferous		Deciduous	(Grass/Herb
TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference
Leaf Compartment Type										
AttenuationFactor	Effective attenuation by plant leaves of dry depositing particles per unit dry weight of the plant species; used to calculate interception fraction	m²/kg	2.9	Grass/hay, Baes et al. 1984.	2.9	grass/hay, Baes et al. 1984	2.9	Grass/hay, Baes et al. 1984.	2.9	Grass/hay, Baes et al. 1984.
AverageLeafAreaIndex_No_Time_ Dependence	Average one-sided surface area of leaves per unit area surface soil (no time dependence)	m²[total leaf area]/m²[underlying soil area]	2	Average for crops (growing season), GLEAMS, North Carolina State University.	5	Harvard Forest, dom. red oak and red maple, CDIAC website.	3.4	Harvard Forest, dom. red oak and red maple, CDIAC website.		Professional judgement.
CalculateWetDepInterceptionFracti on	Switch used to allow use of user- supplied value or model calculations	true=yes, false=no	true	Setting selected for Reference Library.	true	Setting selected for Reference Library.	true	Setting selected for Reference Library.	true	Setting selected for Reference Library.
CorrectionExponent	Correction exponent for the differences between octanol and lipids	unitless	0.76	From roots, Trapp 1995.	0.76	From roots, Trapp 1995.	0.76	From roots, Trapp 1995.	0.76	From roots, Trapp 1995.
DegreeStomatalOpening	Mean degree of opening of stomatal pores (greater than or equal to 0 and less than or equal to 1)	unitless	1	Set to 1 for daytime based on professional judgment (stomatal diffusion is turned off at night using a different property, IsDay).	1	Set to 1 for daytime based on professional judgment (stomatal diffusion is turned off at night using a different property, IsDay).	1	Set to 1 for daytime based on professional judgment (stomatal diffusion is turned off at night using a different property, IsDay).	1	Set to 1 for daytime based on professional judgment (stomatal diffusion is turned off at night using a different property, IsDay).
LeafWettingFactor	Vegetation-dependent leaf- wetting factor (retention coefficient)	m	3.00E-04	1E-04 to 6E-04 for different crops and elements, Muller and Prohl 1993.	3.00E-04	1E-04 to 6E-04 for different crops and elements, Muller and Prohl 1993	3.00E-04	1E-04 to 6E-04 for different crops and elements, Muller and Prohl 1993.	3.00E-04	1E-04 to 6E-04 for different crops and elements, Muller and Prohl 1993.
LengthofLeaf	Average length of flat leaf	m	0.1	Professional judgment.	0.01	Professiona I judgment.	0.1	professional judgment		Professional judgment.
LipidContent	Mass fraction of leaf that is lipid (wet wt basis)	kg[lipid]/kg[leaf wet wt]	0.00224	European beech, Riederer 1995. In Trapp and McFarlane, eds.	0.00224	European beech, Riederer 1995. In Trapp and McFarlane, eds.	0.00224	European beech, Riederer 1995. In Trapp and McFarlane, eds.		European beech, Riederer 1995. In Trapp and McFarlane, eds.
LitterFallRate ^a	First-order rate constant for fall of plant leaves (and particles on leaves) to soil (can be made seasonal by setting litter fall start and stop dates)	1/day	unset	n/a	0.0021 ^b	see note b	unset	n/a	unset	n/a
StomatalAreaNormalizedEffectiveDi ffusionPathLength	Portion of total leaf surface area comprised of stomatal pores divided by the effective path length for a diffusing molecule through a pore; value is relatively similar across plant species	1/m	200	Wilmer and Fricker 1996	200	Wilmer and Fricker 1996	200	Wilmer and Fricker 1996.	200	Wilmer and Fricker 1996.
WaterContent	Mass fraction of leaf that is water (wet wt basis)	kg[water]/kg[leaf wet wt]	0.8	Paterson et al. 1991	0.8	Paterson et al. 1991	0.8	Paterson et al. 1991.	0.8	Paterson et al. 1991.
WetDensity	Density of fresh (i.e., wet) plant leaf	kg[leaf wet wt]/m ³ [leaf wet]	820	Paterson et al. 1991	820	Paterson et al. 1991	820	Paterson et al. 1991.	820	Paterson et al. 1991.
WetDepInterceptionFraction_UserS upplied	Fraction of wet deposition intercepted by leaves (input used only if option set)	unitless	0.2	Calculated based on 5 years of local met data, 1987-1991.	0.2	Calculated based on 5 years of local met data, 1987- 1991.	0.2	Calculated based on 5 years of local met data, 1987-1991.		Calculated based on 5 years of local met data, 1987-1991.

Terrestrial Plant Compartment Types

			1	Agriculture	0	Coniferous		Deciduous	(Grass/Herb
TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference
WetMassperArea	Fresh mass of plant part (leaf, root, or stem) per unit surface soil area	kg [plant part wet wt]/ m²[surface soil]	0.4	Calculated from leaf area index and Leith 1975, in Leith and Whitaker.	2	Calculated from leaf area index, leaf thickness (Simonich & Hites 1994), density of wet foliage.	0.6	n/a	0.6	Calculated from leaf area index and Leith 1975, in Leith and Whitaker.
Particle on Leaf Compartment	Туре									
VolumeParticlePerAreaLeaf	Volume of leaf particles per unit area of leaf; used to calculate compartment volume	m ³ [leaf particles]/m ² [leaf]	1.00E-09	Based on particle density and size distribution for atmospheric particles measured on an adhesive surface, Coe and Lindberg 1987	1.00E-09	Based on particle density and size distribution for atmospheric particles measured on an adhesive surface, Coe and Lindberg 1987.	1.00E-09	Based on particle density and size distribution for atmospheric particles measured on an adhesive surface, Coe and Lindberg 1987	1.00E-09	Based on particle density and size distribution for atmospheric particles measured on an adhesive surface, Coe and Lindberg 1987.
Root Compartment Type - Non										
CorrectionExponent	Correction exponent for the differences between octanol and lipids	unitless	0.76	Trapp 1995; in Trapp and McFarlane, eds.					0.76	Trapp 1995; in Trapp and McFarlane, eds.
LipidContent	Mass fraction of root that is lipid (wet wt basis)	kg[lipid]/kg [root wet wt]	0.011	From bean root, Trapp 1995; in Trapp and McFarlane, eds.					0.011	From bean root, Trapp 1995; in Trapp and McFarlane, eds.
WaterContent	Mass fraction of root that is water (wet wt basis)	kg[water]/kg[root wet wt])	0.8	Professional judgment.					0.8	Professional judgment.
WetDensity	Density of fresh (i.e., wet) plant root.	kg[root wet wt]/m ³ [root wet]	820	Soybean, Paterson et al. 1991.					820	Soybean, Paterson et al. 1991.
WetMassperArea	Fresh mass of plant part (leaf, root, or stem) per unit surface soil area	kg[plant part wet wt]/m ² [surface soil]	0.15	Temperate grassland, Jackson et al. 1996.					1.4	Temperate grassland, Jackson et al. 1996.
Stem Compartment Type - Nor										
CorrectionExponent	Correction exponent for the differences between octanol and lipids	unitless	0.76	From roots, Trapp 1995; in Trapp and McFarlane, eds.					0.76	From roots, Trapp 1995; in Trapp and McFarlane, eds.
FlowRateofTranspiredWaterperAre aofLeafSurface	Flow rate of transpired water per leaf area	m ³ [water]/m ² [stem] day	0.0048	Crank et al. 1981, in Paterson et al. 1991.					0.0048	Crank et al. 1981, in Paterson et al. 1991.
FractionPhloemRatewithTranspirati onFlowRate	Fraction of transpiration flow rate that is phloem rate	unitless	0.05	Paterson et al. 1991.					0.05	Paterson et al. 1991.
LipidContent	Mass fraction of stem that is lipid (wet wt basis)	kg[lipid]/kg[stem wet wt]	0.00224	Leaves of European beech, Riederer 1995. In Trapp and McFarlane, eds.					0.00224	Leaves of European beech, Riederer 1995. In Trapp and McFarlane eds.
PhloemDensity	Density of phloem fluid	kg[phloem]/m ³ [phlo em]	1,000	Professional judgment.					1,000	Professional judgment.
WaterContent	Mass fraction of stem that is water (wet wt basis)	kg[water]/kg[l stem wet wt]	0.8	Paterson et al. 1991.					0.8	Paterson et al. 1991.
WetDensity	Density of fresh (i.e., wet) plant stem.	kg[stem wet wt]/m ³ [stem wet]	830	professional judgment					830	Professional judgment.
WetMassperArea	Fresh mass of plant part (leaf, root, or stem) per unit surface soil area	kg[plant part wet wt]/m ² [surface soil]	0.16	Calculated from leaf and root biomass density based on professional judgment.					0.24	Calculated from leaf and root biomass density based on professional judgment.
XylemDensity	Density of xylem fluid	kg[xylem fluid]/m ³ [xylem fluid]	900	Professional judgment.					900	Professional judgment.

^aCan be made to vary seasonally (scenario-specific).

^bValue assumes first-order relationship and that 99 percent of leaves fall in six years.

^cRoots and stems are not modeled for deciduous or coniferous forest in the current.

	Drawerty Description	11		Value		Beference	
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference	
Leaf Compartment Type							
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.03	Calculated from Bache et al. 1973.	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	Assumed from Gay 1975, Bache et al. 1973	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	1.0E+06	n/a	n/a	Professional judgement; assumed close to instantaneous.	
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Professional judgment.	
TransferFactortoLeafParticle	First-order rate constant for chemical transfer from leaf to leaf particle	1/day	0.002	0.002	0.002	Assumed based on 1% of transfer factor from leaf particle to leaf.	
Particle on Leaf Compartment Type							
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0	Professional judgment.	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	Professional judgment.	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	n/a	n/a	Professional judgment.	
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Professional judgment.	
TransferFactortoLeaf	First-order rate constant for chemical transfer from leaf particle to leaf	1/day	0.2	0.2	0.2	Professional judgment.	
Root Compartment Type - Nonwoody P	lants Only ^b						
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0	Professional judgment.	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	Professional judgment.	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	n/a	n/a	Professional judgment.	
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Professional judgment.	

TRIM FaTE Branatty Name	Dreparty Description	Units		Value		Reference	
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference	
Root_RootZonePartitioningBulkSoil_AlphaofSt eadyState	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	Professional judgement.	
Root_RootZonePartitioningBulkSoil_PartitionC oefficient	Equilibrium ratio of concentration in root to concentration in bulk (i.e., wet) root zone soil	m ³ [bulk root soil]/m ³ [root]	0	0.18	1.2	Hg2- geometric mean Leonard et al. 1998, John 1972, Hogg et al. 1978; MHg- assumed, based on Hogg et al. 1978.	
Root_RootZonePartitioningBulkSoil_TimetoRe achAlphaofSteadyState	Time to reach 100 x alpha percent of equilibrium	day	21	21	21	Professional judgment.	
RootSoilWaterInteraction_Alpha	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	Selected value.	
Stem Compartment Type - Nonwoody P	lants Only⁵			•			
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0.03	Calculated from Bache et al. 1973.	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	Professional judgment.	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	0	n/a	n/a	Professional judgement.	
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Professional judgment.	
TSCF	Transpiration stream concentration factor; the ratio of concentration dissolved in xylem fluid to concentration dissolved in soil pore water	m ³ [soil pore water]/m ³ [xylem fluid]	0	0.5	0.2	Calculation from Norway spruce, Scots pine, Bishop et al. 1998.	

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

Parameter Name	Units	Value	Reference
Leaf Compartment Type			
Transfer factor to leaf particle	1/day	0.002	Professional judgment (assumed 1% of transfer factor from leaf particle to leaf).
Particle on Leaf Compartment Type			
Transfer factor to leaf	1/day	0.2	Professional judgement.
Root Compartment Type - Grasses and	Herbs ^b		
Root to Root Soil Partition- Alpha of Steady State	unitless	0.95	Henning et al. 2001.
Root to Root Soil Partition- Partitioning Coefficient	m ³ [bulk soil]/m ³ [root]	0.23	Nriagu 1980; based on average value calculated from various agricultural plant species.
Root to Root Soil Partition- Time to Reach Alpha	day	28	Henning et al. 2001.
Stem Compartment Type - Grasses and	l Herbs ^b		
Transpiration stream concentration factor (TSCF)	m ³ [soil pore water]/m ³ [xylem fluid]	0.45	Tsiros et al. 1999.

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural. ^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

Parameter Name	Units	Value	Reference
Leaf Compartment Type			
Transfer factor to leaf particle	1/day	0.002	Professional judgment (assumed 1% of transfer factor from leaf particle to leaf).
Particle on Leaf Compartment Type			
Transfer factor to leaf	1/day	0.2	Professional judgement.
Root Compartment Type - Grasses and	Herbs ^b		
Root to Root Soil Partition- Alpha of Steady State	unitless	0.95	Henning et al. 2001.
Root to Root Soil Partition- Partitioning Coefficient	m ³ [bulk soil]/m ³ [root]	0.05	Bergqvist 2013
Root to Root Soil Partition- Time to Reach Alpha	day	10	Iriel, 2015
Stem Compartment Type - Grasses and	Herbs ^b		
Transpiration stream concentration factor (TSCF)	m ³ [soil pore water]/m ³ [xylem fluid]	0.24	Zhao, 2008

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural. ^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

TRIM.FaTE Property	Property Description	Units				Value				Reference	
Name		Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Kelelence	
Leaf Compartment Ty											
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.50	3.50	3.50	3.50	3.50	3.50	3.50	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds., and unpublished research (McKone 1997).	
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	n/a							
TransferFactortoLeaf Particle	First-order rate constant for chemical transfer from leaf to leaf particle	1/day	1.00E-04	Professional judgment.							
Particle on Leaf Com	partment Type			L	l.	l	l	l.		1	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	2.31	1.84	3.56	17.80	4.12	17.80	17.80	Calculated as 2 times the measured photolysis half-life from Mackay et al. 1992.	
nitialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	n/a							
TransferFactortoLeaf	First-order rate constant for chemical transfer from leaf particle to leaf	1/day	1.00E-04	Professional judgment.							
Root Compartment Ty	ype – Grasses and Herbs [®]									I	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	34.60	34.60	34.60	34.60	34.60	34.60	34.60	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds.; for bush beans in nutrient solution.	
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	n/a							
RootSoilWaterInteraction_ Alpha	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Assumption.	
Stem Compartment T	ype – Grasses and Herbs [®]		•	i	i	1	1	i		i	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.50	3.50	3.50	3.50	3.50	3.50	3.50	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds.; for bush beans in nutrient solution.	
nitialConcentration_g_per_ <g_usersupplied< td=""><td>Initial concentration in the compartment, provided by the user</td><td>g/kg</td><td>0.00E+00</td><td>0.00E+00</td><td>0.00E+00</td><td></td><td>0.00E+00</td><td>0.00E+00</td><td>0.00E+00</td><td>n/a</td></g_usersupplied<>	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	n/a	

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

Terrestrial Plant Compartment Types^a

TRIM.FaTE Property	Property Description	Units				Value				Reference
Name		Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Kelelence
Leaf Compartment Ty										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds., and unpublished research (McKone 1997).
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeaf Particle	First-order rate constant for chemical transfer from leaf to leaf particle	1/day	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	Professional judgement.
Particle on Leaf Com	partment Type		•							
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	2.31	2.31	2.31	2.31	2.31	2.31	2.31	Calculated as 2 times the measured photolysis half-life from Mackay et al. 1992. Exceptions include values that have been set equal to Benzo(a)pyrene (2-Methylnaphthalene; 7,12- Dimethylbenz(a)anthracene; Acenaphthene; Acenaphthylene; Benzo(ghi)perylene; Fluoranthene; and Fluorene).
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeaf	First-order rate constant for chemical transfer from leaf particle to leaf	1/day	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	Professional judgement.
Root Compartment T	ype – Grasses and Herbs [®]									L
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	34.6	34.6	34.6	34.6	34.6	34.6	34.6	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds.; for bush beans in nutrient solution.
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
RootSoilWaterInteraction_ Alpha	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Selected value.
Stem Compartment T	ype – Grasses and Herbs ^o			-	-	-			-	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Approximated based on data from Edwards, N.T. 1988. In M. Cooke and A.J. Dennis, eds.; for bush beans in nutrient solution.
initialConcentration_g_per_ kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

Terrestrial Plant Compartment Types^a

TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8, 9-OCDD	Reference
Leaf Compartment Type	9						T			
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
initialConcentration_g_per_kg _UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeafParticle	First-order rate constant for chemical transfer from leaf to leaf particle	1/day	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	Calculated as 1 percent of transfer factor to leaf; highly uncertain.
Particle on Leaf Compa	rtment Type						•		•	•
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	4.4	4.4	4.4	4.4	4.4	4.4	4.4	McCrady and Maggard 1993; photodegradation sorbed to grass foliage in sunlight; assumed 10% sunlight per day.
initialConcentration_g_per_kg _UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeaf	First-order rate constant for chemical transfer from leaf particle to leaf	1/day	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	Assumption based on U.S. EPA 2000c (an estimate for mercury) and Trapp 1995; highly uncertain.
Root Compartment Type	e [°]									•
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
initialConcentration_g_per_kg _UserSupplied	compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
ha	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Assumption.
Stem Compartment Typ	e		i				-			
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
initialConcentration_g_per_kg _UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

Terrestrial Plant Compartment Types^a

TRIM.FaTE Property	Value												
Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
Leaf Compartment T	уре												
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
initialConcentration_g_per _kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeaf Particle	First-order rate constant for chemical transfer from leaf to leaf particle	1/day	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	3.00E-03	Calculated as 1 percent of transfer factor to leaf; highly uncertain.
Particle on Leaf Com	ticle on Leaf Compartment Type												
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	McCrady and Maggard 1993; photodegradation sorbed to grass foliage in sunlight; assumed 10% sunlight per day.
initialConcentration_g_per _kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
TransferFactortoLeaf	First-order rate constant for chemical transfer from leaf particle to leaf	1/day	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	Assumption based on USEPA 2000c (an estimate for mercury) and Trapp 1995; highly uncertain.
Root Compartment T	ype												•
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
Alpha	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Assumption.
Stem Compartment	Гуре	1						1		1	1		
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba et al. 1995, in Trapp and Mc Farlane,eds; soybean root cell culture metabolism test data for DDE.
initialConcentration_g_per _kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

* TRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous or coniferous forest in the current version of TRIM.FaTE.

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
Macrophyte Compartment Type				
BiomassPerArea_kg_m2	Mass of macrophytes per unit surface water area (wet wt basis)	kg/m²	0.6	Bonar et al. 1993.
Density	Mass of plant matter (wet weight) per unit volume of plant	kg[wet wt]/L	1	Professional judgment.

	Bronorty Deparimtion	Units		Value		Reference	
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference	
Macrophyte Compartment Type							
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0->Hg2)	1/day	1.00E+09	n/a	n/a	Professional judgment.	
WaterColumnDissolvedPartitioning_AlphaofE quilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	Selected value.	
WaterColumnDissolvedPartitioning_Partition Coefficient	Equilibrium ratio of concentration in macrophyte to concentration dissolved in water	L[water]/kg[mac rophyte wet wt]	0.883	0.883	44	<i>Elodea densa,</i> Ribeyre and Boudou 1994.	
WaterColumnDissolvedPartitioning_TimeToR eachAlphaofEquilibrium	Time to reach 100 x alpha percent of equilibrium	day	18	18	18	Experiment duration from Ribeyre and Boudou 1994.	

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
Macrophyte Compartment Type	•			
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0	n/a
WaterColumnDissolvedPartitioning_AlphaofE quilibrium	Proportion of equilibrium value reached	unitless	0.95	Maine et al. 2001 (based on assumption that equilibrium was nearly reached during 21 day experiment).
WaterColumnDissolvedPartitioning_Partition Coefficient	Equilibrium ratio of concentration in macrophyte to concentration dissolved in water	L[water]/kg[mac rophyte wet wt]	100	Maine et al. 2001 (based on calculations from an average of four macrophyte species).
WaterColumnDissolvedPartitioning_TimeToR eachAlphaofEquilibrium	Time to reach 100 x alpha percent of equilibrium	day	21	Maine et al. 2001

TRIM.FaTE Property Name	Property Description	Units	Value	Reference
Macrophyte Compartment Type				
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user.	g/kg	0	n/a
WaterColumnDissolvedPartitioning_AlphaofE quilibrium	Proportion of equilibrium value reached.	unitless	0.95	Maine et al. 2001 (based on assumption that equilibrium was nearly reached during 21 day experiment).
WaterColumnDissolvedPartitioning_Partition Coefficient	Equilibrium ratio of concentration in macrophyte to concentration dissolved in water.	L[water]/kg[mac rophyte wet wt]	0	n/a
WaterColumnDissolvedPartitioning_TimeToR eachAlphaofEquilibrium	Time to reach 100 x alpha percent of Equilibrium.	day	21	Maine et al. 2001

TRIM.FaTE Property Name	Property Description	Units				Value				Reference	
TRIM.FatE Froperty Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference	
Macrophyte Compartment Type											
Halflite	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Edwards 1988, in Cooke and Dennis,eds., as cited in Efroymson, 1997; calculated from metabolic rate constant.	
	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	n/a							

Chemical-Dependent / Biotic for PAHs -- Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Property Name	Property Description	Units				Value				Reference	
	Property Description	2Methyl 712DMB Ace		Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Reference		
Macrophyte Compartment Type											
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Edwards 1988, in Cooke and Dennis,eds., as cited in Efroymson, 1997; calculated from metabolic rate constant.	
-0-1 -	Initial concentration in the compartment, provided by the user	g/kg	0	0	0	0	0	0	0	n/a	

TRIM.FaTE Property						Va	lue					
Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	1,2,3,4,6,7,8-	1,2,3,4,6,7,8,9-	Reference		
Name			TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD	OCDD			
Macrophyte Compartment Type												
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70		Arjmand and Sandermann 1985, as cited in Komoba, et al. 1995, in Trapp and Mc Farlane,eds. Soybean root cell culture metabolism test data for DDE.		
initialConcentration_g_per _kg_UserSupplied	Initial concentration in the compartment, provided by the user		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a		

TRIM.FaTE Property								Value					
Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
Macrophyte Compartment Type													
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Arjmand and Sandermann 1985, as cited in Komoba, et al. 1995, in Trapp and Mc Farlane,eds. Soybean root cell culture metabolism test data for DDE.
initialConcentration_g_ per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
Soil Detritivore Compartment	Type - Earthworm			
Aragii jangiti/ Fragnwaight	Mass of worm per unit surface area of soil, deciduous.	kg[worm wet wt]/m ² [soil]	unset	n/a
Density_Freshweight	Density of worm (wet wt basis); used to calculate compartment volume.	kg[worm wet wt]/L[worm]	1	professional judgment
Water_content	Mass fraction of worm that is water.	unitless	0.84	U.S. EPA 1993
Soil Detritivore Compartment	Type - Soil Arthropod			
BiomassPerArea_kg_m2	Mass of macrophytes per unit surface water area (wet wt basis).	kg[arthropod wet wt]/m ² [soil]	3.01E-04	grasshopper, Porter et al. 1996
BW	Fresh body weight of individual animal (i.e., wet weight).	kg	1.31E-04	grasshopper, Porter et al. 1996
FractionPartitionwithSurfSoil	Fraction of total partitioning between arthropod and soil that occurs with surface soil (remainder with root zone soil).	unitless	1.00E+00	n/a

TRIM.FaTE Property Name	Property Description			nivore - Long-tailed Veasel		nivore - Red-tailed awk		ound-Invertebrate ort-tailed Shrew		ound-Invertebrate wbridge Shrew	Terrestrial Her	bivore - Long-taile Vole
		Units	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference
	All Other Terrestrial Animal Compartment Typ	es										
								0.015-0.029kg				
								reported for				
	Fresh body weight of individual animal			Mumford and		North America,		Manitoba, Silva		Silva and Downing		Smolen and Kelle
BW	(i.e., wet weight)	kg	0.147	Whitaker 1982	1.13	Dunning 1993	0.022	and Downing 1995	0.00449	1995	0.0467	1987
	()					g						
				calc from Brown								mean Microtus
				and Lasiewski								spp., Dark et al.
				1972, Golley								1983, Burt and
	Total amount of food eaten per day, normalized	kg[diet wet wt]/kg[body		1961, U.S. EPA		Preston and		Barrett and Stueck				Grossenheider
FoodIngestionRate [®]	to body weight	wet wt]-day	0.0735	1993	0.12	Beane 1993	0.47	1976	1.17	Rust 1978	0.097	1976, Dice 1922
oballigestion tate	Fraction of diet comprised of black-capped	werwig day	0.0700	1000	0.12	beane 1999	0.47	1370	1.17	1403(1570	0.001	1010, 2100 1022
FractionDietChickadee	chickadee	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietMouse	Fraction of diet comprised of mouse	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
TactionDietiviouse	r laction of diet comprised of modise	unitess	unser	1va	unser	iva	unser	1va	unsei	Iva	unser	iva
FractionDietPlant	Fraction of diet comprised of terrestrial plant	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
TactionDietFlaint	Fraction of diet comprised of terrestrial plant	uniness	unsei	ll/d	unsei	li/d	unsei	1Vd	unsei	li/d	unsei	1/d
FractionDietshorttailedshrew	Fraction of diet comprised of short-tailed shrew	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FlactionDietsnorttailedsniew	Fraction of diet comprised of short-tailed shiew	unness	unsei	11/d	unsei	II/d	unsei	11/d	unsei	li/d	unsei	11/d
FractionDietSoilArthropod	Fraction of diet comprised of soil arthropod	unitless		n/a		- /-		- /-	unset	- /-	unset	n/a
			unset		unset	n/a	unset	n/a		n/a		
FractionDietvole	Fraction of diet comprised of vole	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietWorm	Fraction of diet comprised of worm	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
	Fraction of total wildlife elimination in urine and			professional		professional		professional		professional		professional
FractionExcretiontoSoil	feces that goes to surface soil	unitless	1	judgment	1	judgment	1	judgment	1	judgment	1	judgment
	Fraction of total wildlife elimination in urine and			professional		professional		professional		professional		professional
FractionExcretiontoWater	feces that goes to surface water	unitless	0	judgment	0	judgment	0	judgment	0	judgment	0	judgment
	Allometric scaling constant used to calculate					Lasiewski and						
InhalationProps_A	inhalation rate based on body weight	unitless	0.546	Stahl 1967	0.409	Calder 1971	0.546	Stahl 1967	0.546	Stahl 1967	0.546	Stahl 1967
	Allometric scaling constant used to calculate					Lasiewski and						
InhalationProps_B	inhalation rate based on body weight	unitless	0.8	Stahl 1967	0.8	Calder 1971	0.8	Stahl 1967	0.8	Stahl 1967	0.8	Stahl 1967
NumberofIndividualsPerSquare												
Meter	Number of individuals per unit surface area	#/m ²	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
	Fraction of total dry wt intake comprised of soil.											
	When											
	UseSoilFractionofDryDietToCalculateSoilIngesti							not used; user				
	onRate is set to TRUE, this property is used to			professional		professional		input available for		Talmage and		
SoilFractionofDryDiet	calculate soil ingestion rate.	unitless, dry wt basis	0	judgment	0	judgment	0	soil ingestion rate	0.13	Walton 1993	0.024	Beyer et al. 1994
				not used (model		not used (model				not used (model		not used (model
				set to calculate		set to calculate				set to calculate		set to calculate
	Total amount of soil eaten per day by birds or			value based on		value based on				value based on		value based on
	mammals, normalized to body weight			fraction diet-soil		fraction diet-soil				fraction diet-soil		fraction diet-soil
	(calculated from value for FractionDiet_Soil (dry	kg[soil dry wt]/kg[body		and food ingestion		and food ingestion		Talmage and		and food ingestion		and food ingestion
SoilIngestionRate_UserSupplied	wt basis) and food ingestion rate)	wet wt]-day	0	rate)	0	rate)	0.0611	Walton 1993	0	rate)	0	rate)
	Specifies whether to use calculated or user-											
	supplied soil ingestion rate. If true,											
	SoilIngestionRate is calculated based on							1				
UseSoilFractionofDryDietToCalc	SoilFractionofDryDiet. If false, SoilIngestionRate							user input		user input not		user input not
ulateSoilIngestionRate	is user-supplied.	true=yes, false=no	true	set to calculate 0	true	set to calculate 0	false	available	true	available	true	available
	Allometric scaling constant used to calculate			Calder and Braun		Calder and Braun		Calder and Braun		Calder and Braun		Calder and Braun
WaterIngProps A	water ingestion rate based on body weight	unitless	0.099	1983	0.059	1983	0.099	1983	0.099	1983	0.099	1983
Wateringi Topo_X												
Watering: Topo_/												
Watering 10p5_7	Allometric scaling constant used to calculate			Calder and Braun		Calder and Braun		Calder and Braun		Calder and Braun		Calder and Braun

^aSee Attachment 1 for documentation of food ingestion rate calculations.

TRIM.FaTE Property Name	Property Description	Units		rbivore - Meadow Vole		lerbivore - Mule k-tailed Deer		erbivore - White- ed Deer	Terrestrial Insectivore - Black- capped Chickadee		Terrestrial O	mnivore - Mouse
			Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference
All Other Terrestrial Animal Compartm	ent Types											-
BW	Fresh body weight of individual animal (i.e., wet weight)	kg	0.0441	Reich 1981	66.2	Colorado, Alldredge et al. 1974	74.8	Silva and Downing 1995	0.0108	Dunning 1993	0.02	North America, Silva and Downing 1995
FoodIngestionRate	Total amount of food eaten per day, normalized to body weight	kg[diet wet wt]/kg[body wet wt]- day	0.097	mean Microtus spp., Dark et al. 1983, Burt and Grossenheider 1976, Dice 1922	0.11	estimated for mule deer from Alldredge et al. 1974	0.05	Mautz et al. 1976	0.74	calculated from Bell 1990, Dunning 1993	0.2	Green and Millar 1987
FractionDietChickadee	Fraction of diet comprised of black-capped chickadee	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietMouse	Fraction of diet comprised of mouse	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietPlant	Fraction of diet comprised of terrestrial plant	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietshorttailedshrew	Fraction of diet comprised of short-tailed shrew	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietSoilArthropod	Fraction of diet comprised of soil arthropod	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietvole	Fraction of diet comprised of vole	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietWorm	Fraction of diet comprised of worm	unitless	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
FractionExcretiontoSoil	Fraction of total wildlife elimination in urine and feces that goes to surface soil	unitless	1	professional judgment	1	professional judgment	1	professional judgment	1	professional judgment	1	professional judgment
FractionExcretiontoWater	Fraction of total wildlife elimination in urine and feces that goes to surface water	unitless	0	professional judgment	0	professional judgment	0	professional judgment	0	professional judgment	0	professional judgment
InhalationProps_A	Allometric scaling constant used to calculate inhalation rate based on body weight	unitless	0.546	Stahl 1967	0.546	Stahl 1967	0.546	Stahl 1967	0.409	Lasiewski and Calder 1971	0.546	Stahl 1967
InhalationProps_B	Allometric scaling constant used to calculate inhalation rate based on body weight	unitless	0.8	Stahl 1967	0.8	Stahl 1967	0.8	Stahl 1967	0.8	Lasiewski and Calder 1971	0.8	Stahl 1967
NumberofIndividualsPerSquareMeter	Number of individuals per unit surface area	#/m ²	unset	n/a	unset	n/a	unset	n/a	unset	n/a	unset	n/a
SoilFractionofDryDiet	Fraction of total dry wt intake comprised of soil. When UseSoilFractionofDryDietToCalculateSoilInge stionRate is set to TRUE, this property is used to calculate soil ingestion rate.	unitless, dry wt basis	0.024	Beyer et al. 1994	0.02	north central Colorado, Arthur and Alldredge 1979	0.01	Beyer et al. 1994	0	assumed, rarely observed on ground, Smith 1993	0.02	Beyer et al. 1994
SoilIngestionRate_UserSupplied	Total amount of soil eaten per day by birds or mammals, normalized to body weight (calculated from value for FractionDiet_Soil (dry wt basis) and food ingestion rate)	kg[soil dry wt]/kg[body wet wt]-day	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)
UseSoilFractionofDryDietToCalculate	Specifies whether to use calculated or user- supplied soil ingestion rate. If true, SoillngestionRate is calculated based on SoilFractionofDryDiet. If false, SoillngestionRate is user-supplied.	true=yes,false=no	true	user input not available	true	user input not available	true	user input not available	true	set to calculate 0	true	user input not available
WaterIngProps_A	Allometric scaling constant used to calculate water ingestion rate based on body weight	unitless	0.099	Calder and Braun 1983	0.099	Calder and Braun 1983	0.099	Calder and Braun 1983	0.059	Calder and Braun 1983	0.099	Calder and Braun 1983
WaterIngProps_B	Allometric scaling constant used to calculate water ingestion rate based on body weight	unitless	0.9	Calder and Braun 1983	0.9	Calder and Braun 1983	0.9	Calder and Braun 1983	0.67	Calder and Braun 1983	0.9	Calder and Braun 1983

^aSee Attachment 1 for documentation of food ingestion rate calculations.

TRIM FoTE Broporty Name	Bronorty Deparintion	Units		Value		Reference
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Kererence
Soil Detritivore - Earthworm	i	ii		1	i	i .
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	n/a
WormSoilPartitionCoefficient_dryweight	Equilibrium ratio of concentration in earthworm to concentration in soil (dry wt basis)	kg[soil dry wt]/kg[worm dry wt]	0.36	0.36	0.36	Bull et al. 1977
WormSoilInteraction_alpha	Proportion of equilibrium value reached for earthworn to bulk soil transfer	unitless	0.95	0.95	0.95	selected value
WormSoilInteraction_t_alpha	Time to reach 100 x alpha percent of equilibrium for earthworn to bulk soil transfer	day	21	21	21	assumed same as metals in earthworms, Janssen et al. 1997
Soil Detritivore - Soil Arthropod	·					*
Arthropod_SoilPartitionCoefficient	Equilibrium ratio of concentration of chemical in arthropod (wet wt basis) to concentration in bulk soil (wet wt basis)	kg[soil wet wt]/kg[arthropod wet wt])	0	0.46	2.9	Hg(2) - median from Talmage and Walton 1993; MHg - median from Nuorteva and Nuorteva 1982
ArthropodSoilPartitioning AlphaofEquilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	selected value
ArthropodSoilPartitioning_TimetoReachAlphao fEquilibrium	Time to reach 100 x alpha percent of equilibrium for earthworn to bulk soil transfer	day	21	21	21	assumed same as metals in earthworms, Janssen et al. 1997
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	n/a
All Other Terrestrial Animal Compart						-
AssimilationEfficiencyFromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHq->Hq2)	1/day	n/a	n/a	0.09	for rats, Takeda and Ukita 1970
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	0.75	0.4	0.75	Hg(0) - based on human values, ATSDR 1997, Teisinger and Fiserova-Bergerova 1965; Hg(2) - based on dog value, U.S. EPA 1997; MHg - assumed same as Hg(0)
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	n/a
MethylationRate	First-order rate constant for methylation (Hg2- >MHg)	1/day	n/a	0	n/a	professional judgment
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0->Hg2)	1/day	1	n/a	n/a	professional judgment
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	professional judgment
TotalExcretionRate	First-order rate constant for elimination of chemical from the body (in urine, feces, feathers, fur)	1/day	0.05	0.48	0.086	see Attachment 2 for documentation

^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Red-tailed Hawk, Terrestrial Insectivore - Black-capped Chickadee, Terrestrial Carnivore - Long-tailed Weasel, Terrestrial Ground - Invertebrate Feede Short-tailed Shrew, Terrestrial Ground-Invertebrate Feeder - Trowbridge Shrew, Terrestrial Herbivore - Long-tailed Vole, Terrestrial Herbivore - Mule Deer/Black-tailed Deer, Terrestrial Herbivore - White-tailed Deer, and Terrestrial Omnivore - Mouse

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal

TOW FATE Descents N	Drenerty Deceription	1 Junit a				Value				Peference	
TRIM.FaTE Property Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference	
Soil Detritivore - Earthworn	1										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	61	61	61	61	61	61	61	Ma et al. 1995; estimated from fluoranthene bioaccumulation curve	
initialConcentration_g_per_kg_Use rSupplied	the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a	
WormSoilWaterInteraction_alpha	Proportion of equilibrium value reached for earthworn to soil pore water transfer	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	selected value	
WormSoilWaterInteraction_t_alpha	Time to reach 100 x alpha percent of equilibrium for earthworn to soil pore water transfer	day	28	28	28	28	28	28	28	professional judgment	
Soil Detritivore - Soil Arthro	ppod				-	-	-		-		
Arthropod_SoilPartitionCoefficient	Equilibrium ratio of concentration of chemical in arthropod (wet wt basis) to concentration in bulk soil (wet wt basis)	(kg[soil wet wt]/kg[arthrop od wet wt])	1.26E-02	1.51E-02	5.74E-03	1.19E-02	1.62E-02	1.26E-02	1.26E-02	geometric mean of data for three isopod species BAFs in litter, fragmentation and humus soils in van Brummelen and van Straalen 1996	
ArthropodSoilPartitioning_AlphaofE quilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	selected value	
ArthropodSoilPartitioning_TimetoR eachAlphaofEquilibrium	Time to reach 100 x alpha percent of equilibrium	day	28	28	28	28	28	28		no data found; used phenanthrene accumulation data for earthworms in Ma et a 1995	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.6	0.6	0.6	0.6	0.6	0.6	0.6	van Brummelen and van Straalen 1996; model estimate from data in <i>Porcellio scabe</i>	
initialConcentration_g_per_kg_Use rSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a	
All Other Terrestrial Animal	Compartment Types ^a										
	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
AssimilationEfficiencyFromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b	
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate	
initialConcentration_g_per_kg_Use rSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a	

^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Long-tailed Weasel, Terrestrial Carnivore - Red-tailed Hawk, Terrestrial Ground - Invertebrate Feeder - Short-tailed Shrew, Terrestrial Ground-Invertebrate Feeder - Trowbridge Shrew, Terrestrial Herbivore - Long-tailed Vole, Terrestrial Herbivore - Meadow Vole, Terrestrial Herbivore - Mule Deer/Black-tailed Deer, Terrestrial Herbivore - White-tailed Deer, Terrestrial Insectivore - Black-capped Chickadee, and Terrestrial Omnivore - Mouse.

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal 1.

TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8, 9-OCDD	Reference
Soil Detritivore - Earthworm										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	140	100	330	330	330	250	650	estimated based on data for yellow perch in Kleeman et al. 1986.
initialConcentration_g_per_kg_User Supplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
WormSoilPartitionCoefficient_ dryweight	Equilibrium ratio of concentration in earthworm to concentration in soil (dry wt basis)	kg[dry soil]/kg[dry worm]	1.99E+00	1.83E+00	6.10E-01	2.40E-01	2.80E-01	1.00E-01	2.00E-02	U.S. EPA 1999; recommended soil-to-soil invertebrate BCF (dry wt soil/wet wt worm) based on measured data for TCDD, converted value to wet wt soil/wet wt worm assuming 20% as fraction water content.
WormSoilWaterInteraction_alpha	Proportion of equilibrium value reached for earthworn to bulk soil transfer	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	selected value
WormSoilWaterInteraction_t_alpha	Time to reach 100 x alpha percent of equilibrium for earthworn to bulk soil transfer	day	50	50	50	50	50	50	50	Reinecke and Nash 1984; measured for TCDD
Soil Detritivore - Soil Arthrop	ood								•	
Arthropod_SoilPartitionCoefficient	Equilibrium ratio of concentration of chemical in arthropod (wet wt basis) to concentration in bulk soil (wet wt basis)	(kg[soil wet wt]/kg[arthropod wet wt])	1.26E-02	1.51E-02	5.74E-03	1.19E-02	1.62E-02	1.26E-02	1.26E-02	geometric mean of data for three isopod species BAFs in litter, fragmentation and humus soils in van Brummelen and van Straalen 1996
ArthropodSoilPartitioning_Alphaof Equilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	selected value
ArthropodSoilPartitioning_Timeto ReachAlphaofEquilibrium	Time to reach 100 x alpha percent of equilibrium	day	28	28	28	28	28	28	28	no data found; used phenanthrene accumulation data for earthworms in Ma et al. 1995
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	140	100	330	330	330	250	650	estimated based on data for yellow perch in Keeman et al. 1986b
initialConcentration_g_per_kg_User Supplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
Terrestrial Bird Compartmen	nt Types ^a									
AssimilationEfficiencyFromArthropo ds	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	0.58	0.58	0.58	0.58	0.58	0.58	0.58	Noseck et al. 1992; TCDD data for ring- necked pheasant
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	0.33	0.33	0.33	0.33	0.33	0.33	0.33	Noseck et al. 1992; TCDD data for ring- necked pheasant
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Noseck et al. 1992; TCDD data for ring- necked pheasant

TRIM.FaTE Property Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-		1,2,3,4,6,7,8,	Reference
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	PeCDD 1	HxCDD 0.9	HxCDD 0.9	Н хСDD 0.9	НрСDD 0.8	0.8	Based on rat transpulmonary absorption data for TCDD published in Nessel et al. 1990, Nessel et al. 1992, and Diliberto et al., 1996 (as cited in U.S. EPA 2000c); professional judgment was used to scale HxCDD, HpCDD, and OCDD lower due to lower water solubility and large MW
initialConcentration_g_per_kg_User Supplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
Terrestrial Mammal Compar										
AssimilationEfficiencyFromArthropo ds	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	set to 1 ^b
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	0.9	0.9	0.9	0.8		Professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_per_kg_User Supplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a

^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Red-tailed Hawk, and Terrestrial Insectivore - Black-capped Chickadee.

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not ^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Long-tailed Weasel, Terrestrial Ground - Invertebrate Feeder - Short-tailed Shrew,

			Value								
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	
Soil Detritivore - Earthworm											
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	140	100	100	330	330	330	330	250	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WormSoilPartitionCoefficient_dryweight	Equilibrium ratio of concentration in earthworm to concentration in soil (dry wt basis)	kg[dry soil]/kg[dry worm]	1.59E+00	4.00E-01	3.18E+00	1.50E-01	3.80E-01	1.25E+00	1.34E+00	2.00E-02	
WormSoilWaterInteraction_alpha	Proportion of equilibrium value reached for earthworn to bulk soil transfer	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
WormSoilWaterInteraction_t_alpha	Time to reach 100 x alpha percent of equilibrium for earthworn to bulk soil transfer	day	50	50	50	50	50	50	50	50	
Soil Detritivore - Soil Arthropod											
Arthropod_Soil PartitionCoefficient	Equilibrium ratio of concentration of chemical in arthropod (wet wt basis) to concentration in bulk soil (wet wt basis)	(kg[soil wet wt]/ kg[arthropod wet wt])	1.59E+00	4.00E-01	3.18E+00	1.50E-01	3.80E-01	1.25E+00	1.34E+00	2.00E-02	
ArthropodSoilPartitioning_ AlphaofEquilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
ArthropodSoilPartitioning_TimetoReachAlphaof Equilibrium	Time to reach 100 x alpha percent of equilibrium	day	50	50	50	50	50	50	50	50	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	140	100	100	330	330	330	330	250	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Terrestrial Bird Compartment Types ^a				•							
AssimilationEfficiencyFromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1	

								Value		
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Terrestrial Mammal Compartment Ty	pes ^c									
AssimilationEfficiencyFromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	1	0.9	0.9	0.9	0.9	0.8
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Red-tailed Hawk, and Terrestrial Insectivore - Black-capped Chickadee

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal 1

^aTRIM.FaTE Reference Library includes Terrestrial Carnivore - Long-tailed Weasel, Terrestrial Ground - Invertebrate Feeder - Short-tailed Shrew, Terrestrial Ground-Invertebrate Feeder - Trowbridge Shrew, Terrestri Deer/Black-tailed Deer, Terrestrial Herbivore - White-tailed Deer, and Terrestrial Omnivore - Mouse.

TRIM.FaTE Property Name	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
Soil Detritivore - Earthworm			
Halflife	250	400000	TCDF: used TCDD data; HxCDF and HpCDF: used HxCDD and HpCDD data; OCDF: Clark and Mackay 1991; metabolism of OCDF in guppy; PeCDF: Sijm et al. 1990 quoted elimination rate for carp, metabolic rate calculated assuming 9% metabolites like hepta and hexa isomers as cited in Muir et al. 1986.
initialConcentration_g_per_kg_UserSupplied	0.0	0.0	n/a
WormSoilPartitionCoefficient_dryweight	7.80E-01	3.00E-02	U.S. EPA 1999; recommended soil-to-soil invertebrate BCF (dry wi soil/wet wt worm) (EPA calculated value by multiplying the TCDD BCF by a bioaccumulation equivalency factor), converted to wet wt soil/wet wt worm assuming 20% as fraction water content.
WormSoilWaterInteraction_alpha	0.95	0.95	selected value
WormSoilWaterInteraction_t_alpha	50	50	Reinecke and Nash 1984; measured for TCDD
Soil Detritivore - Soil Arthropod			
Arthropod_Soil PartitionCoefficient	7.80E-01	3.00E-02	U.S. EPA 1999; recommended soil-to-soil invertebrate BCF (dry wt soil/wet wt worm) (EPA calculated value by multiplying the TCDD BCF by a bioaccumulation equivalency factor), converted to wet wt soil/wet wt worm assuming 20% as fraction water content.
ArthropodSoilPartitioning_ AlphaofEquilibrium	0.95	0.95	default
ArthropodSoilPartitioning_TimetoReachAlphaof Equilibrium	50	50	no data were found; used time to reach alpha of equilibrium for TCDD in earthworm in Reinecke and Nash 1984.
Halflife	250		TCDF: used TCDD data; HxCDF and HpCDF: used HxCDD and HpCDD data; OCDF: Clark and Mackay 1991; metabolism of OCDF in guppy; PeCDF: Sijm et al. 1990 quoted elimination rate for carp, metabolic rate calculated assuming 9% metabolites like hepta and hexa isomers as cited in Muir et al. 1986.
initialConcentration_g_per_kg_UserSupplied	0.0	0.0	n/a
Terrestrial Bird Compartment Types ^a	ı	I	l
AssimilationEfficiency FromArthropods	0.58	0.58	Noseck et al. 1992; TCDD data for ring-necked pheasant
AssimilationEfficiency FromFood	1	1	set to 1 ^b

TRIM.FaTE Property Name	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8, 9-OCDF	Reference
AssimilationEfficiency FromPlants	1	1	set to 1 ^b
AssimilationEfficiency FromSoils	0.33	0.33	Noseck et al. 1992; TCDD data for ring-necked pheasant
AssimilationEfficiencyFromWater	1	1	set to 1 ^b
AssimilationEfficiency FromWorms	0.3	0.3	Noseck et al. 1992; data for ring-necked pheasant
InhalationAssimilationEfficiency	1	1	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_per_kg_UserSupplied	0.0	0.0	n/a
Terrestrial Mammal Compartment Typ	1) ;		
AssimilationEfficiency FromArthropods	1	1	set to 1 ^b
AssimilationEfficiency FromFood	1	1	set to 1 ^b
AssimilationEfficiency FromPlants	1	1	set to 1 ^b
AssimilationEfficiencyFromSoils	1	1	set to 1 ^b
AssimilationEfficiencyFromWater	1	1	set to 1 ^b
AssimilationEfficiencyFromWorms	1	1	set to 1 ^b
InhalationAssimilation Efficiency	0.8	0.8	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_per_kg_UserSupplied	0.0	0.0	n/a

^aTRIM.FaTE Reference Library includes Terrestrial Herbivore - Long-tailed Vole, Terrestrial Herbivore - Meadow Vole, Terrestrial Herbivore - Mul Deer/Black-tailed Deer, Terrestrial Herbivore - W

^bAll ingestion assimilation efficiencies set to 1

Chemical-Independent / Biotic -- Documentation for TRIM.FaTE Public Reference Library

Semi-aquatic Animal Compartment Types

			Semi-aqua	tic Carnivore - Bald Eagle	Semi-aq	uatic Carnivore - Mink	Semi-aquatic Insectivore - Tree Swallow		
TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference	Value Used	Reference	Value Used	Reference	
All Compartment Types									
BW	Fresh body weight of individual animal (i.e., wet weight)	kg	4.74	Dunning 1993	0.831	Mumford and Whitaker 1982	0.0201	Dunning 1993	
FoodIngestionRate ^a	Total amount of food eaten per day, normalized to body weight	kg[diet wet wt]/kg[body wet wt]-day	0.12	Stalmaster and Gessaman 1984	0.14	mink in captivity, Bleavins and Aulerich 1981	0.198	calculated from Williams 1988, Quinney and Ankney 1985, and Bell 1990	
FractionDietBenthicInvertebrate	Fraction of diet comprised of benthic invertebrate	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietChickadee	Fraction of diet comprised of black-capped chickadee	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietEmergingBenthicInsects	Fraction of diet comprised of emerging benthic insects	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishbenthiccarnivore	Fraction of diet comprised of benthic carnivore	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishbenthicomnivore	Fraction of diet comprised of benthic omnivore	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishcarnivore	Fraction of diet comprised of water-column carnivore	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishherbivore	Fraction of diet comprised of water-column herbivore	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishomnivore	Fraction of diet comprised of water-column omnivore	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietMacrophyte	Fraction of diet comprised of macrophyte	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietMouse	Fraction of diet comprised of mouse	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietPlant	Fraction of diet comprised of terrestrial plant	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietvole	Fraction of diet comprised of vole	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionDietWorm	Fraction of diet comprised of worm	unitless	unset	n/a	unset	n/a	unset	n/a	
FractionExcretiontoSoil	Fraction of total wildlife elimination in urine and feces that goes to surface soil	unitless	0.5	professional judgment	0.5	professional judgment	1	professional judgment	
FractionExcretiontoWater	Fraction of total wildlife elimination in urine and feces that goes to surface water	unitless	0.5	professional judgment	0.5	professional judgment	0	professional judgment	
InhalationProps_A	Allometric scaling constant used to calculate inhalation rate based on body weight	unitless	0.409	Lasiewski and Calder 1971	0.546	Stahl 1967	0.409	Lasiewski and Calder 1971	
InhalationProps_B	Allometric scaling constant used to calculate inhalation rate based on body weight	unitless	0.8	Lasiewski and Calder 1971	0.8	Stahl 1967	0.8	Lasiewski and Calder 1971	
NumberofIndividualsPerSquareMeter	Number of individuals per unit surface area	#/m ²	unset	n/a	unset	n/a	unset	n/a	
SoilFractionofDryDiet	Fraction of total dry wt intake comprised of soil. When UseSoilFractionofDryDietToCalculateSoilIngestionRate is set to TRUE, this property is used to calculate soil ingestion rate.	unitless, dry wt basis	0	professional judgment	0	professional judgment	0	professional judgment	
SoilIngestionRate_UserSupplied	Total amount of soil eaten per day by birds or mammals, normalized to body weight (calculated from value for FractionDiet_Soil (dry wt basis) and food ingestion rate)	kg[soil dry wt]/kg[body wet wt]-day	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	
UseSoilFractionofDryDietToCalculateS oilIngestionRate	Specifies whether to use calculated or user-supplied soil ingestion rate. If true, SoilIngestionRate is calculated based on SoilFractionofDryDiet. If false, SoilIngestionRate is user-supplied.	true= yes, false= no	true	set to calculate 0	true	set to calculate 0	true	set to calculate 0	
WaterIngProps_A	Allometric scaling constant used to calculate water ingestion rate based on body weight	unitless	0.059	Calder and Braun 1983	0.099	Calder and Braun 1983	0.059	Calder and Braun 1983	
WaterIngProps_B	Allometric scaling constant used to calculate water ingestion rate based on body weight	unitless	0.67	Calder and Braun 1983	0.9	Calder and Braun 1983	0.67	Calder and Braun 1983	

^aSee Attachment 1 for documentation of food ingestion rate calculations

Chemical-Independent / Biotic -- Documentation for TRIM.FaTE Public Reference Library

Semi-aquatic Animal Compartment Types

	Semi-aquatic Omnivore - Mallard		Semi-aq	uatic Omnivore - Raccoon	Semi-aqua	atic Piscivore - Common Loon	Semi-aquatic Piscivore - Kingfisher		
TRIM.FaTE Property Name	Value Used	Reference	Value Used	Reference	Value Used	Reference	Value Used	Reference	
All Compartment Types									
BW	1.13	Nelson and Martin 1953	6.35	Lotze and Anderson 1979	4.13	Dunning 1993	0.148	Dunning 1993	
FoodIngestionRate ^a	0.1	Heinz et al. 1987	0.11	calculated based on allometric equation (Nagy et al.1999) and professional judgment	0.23	Barr 1996	0.35	calculated based on allometric equation (Nagy 1987) and professional judgment	
FractionDietBenthicInvertebrate	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietChickadee	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietEmergingBenthicInsects	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishbenthiccarnivore	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishbenthicomnivore	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishcarnivore	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietFishherbivore	unset	n/a		n/a	unset	n/a		n/a	
FractionDietFishomnivore	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietMacrophyte	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietMouse	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietPlant	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietvole	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionDietWorm	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
FractionExcretiontoSoil	0.5	professional judgment	0.5	professional judgment	0.5	professional judgment	0.5	professional judgment	
FractionExcretiontoWater	0.5	professional judgment	0.5	professional judgment	0.5	professional judgment	0.5	professional judgment	
InhalationProps_A	0.409	Lasiewski and Calder 1971	0.546	Stahl 1967	0.409	Lasiewski and Calder 1971	0.409	Lasiewski and Calder 1971	
InhalationProps_B	0.8	Lasiewski and Calder 1971	0.8	Stahl 1967	0.8	Lasiewski and Calder 1971	0.8	Lasiewski and Calder 1971	
NumberofIndividualsPerSquareMeter	unset	n/a	unset	n/a	unset	n/a	unset	n/a	
SoilFractionofDryDiet	0.033	Beyer et al. 1994	0.094	Beyer et al. 1994	0	professional judgment	0	professional judgment	
SoilIngestionRate_UserSupplied	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	0	not used (model set to calculate value based on fraction diet-soil and food ingestion rate)	
UseSoilFractionofDryDietToCalculateS oilIngestionRate	true	user input not available	true	user input not available	true	set to calculate 0	true	set to calculate 0	
WaterIngProps_A	0.059	Calder and Braun 1983	0.099	Calder and Braun 1983	0.059	Calder and Braun 1983	0.059	Calder and Braun 1983	
WaterIngProps_B	0.67	Calder and Braun 1983	0.9	Calder and Braun 1983	0.67	Calder and Braun 1983	0.67	Calder and Braun 1983	

Semi-aquatic Animal Compartment Types^a

	Dronorty Deparimtion	l lucitor		Value		Deferrer
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
AssimilationEfficiencyFromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
AssimilationEfficiencyFromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1	1	1	set to 1 ^b
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg- >Hg2)	1/day	n/a	n/a	0.09	for rats, Takeda and Ukita 1970
InhalationAssimilationEfficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	0.75	0.4	0.75	Hg(0) - based on human values, ATSDR 1997, Teisinger and Fiserova-Bergerova 1965; Hg(2) - based on dog value, U.S. EPA 1997; MHg - assumed same as Hg(0)
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a
MethylationRate	First-order rate constant for methylation (Hg2->MHg)	1/day	n/a	0	n/a	professional judgment
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0- >Hg2)	1/day	1	n/a	n/a	professional judgment
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	professional judgment
TotalExcretionRate	First-order rate constant for elimination of chemical from the body (in urine, feces, feathers, fur)	1/day	0.05	0.48	0.26 ^c 0.086 ^d	see Attachment 2 for documentation

^aTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Bald Eagle, Semi-aquatic Carnivore - Mink, Semi-aquatic Insectivore - Tree Swallow, Semi-aquatic Omnivore - Mallard, Semi-aquatic Omnivore - Raccoon, Semi-aquatic Piscivore - Common Loon, and Semiaquatic Piscivore - Kingfisher.

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal value for all mammals.

^dValue for all birds.

Semiaquatic Animal Compartment Types^a

TRIM.FaTE Property	Ducucanto: Decemination	Units				Value				Deference
Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference
AssimilationEfficiency FromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_ per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a

^aTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Bald Eagle, Semi-aquatic Carnivore - Mink, Semi-aquatic Insectivore - Tree Swallow, Semi-aquatic Omnivore - ^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation

Chemical-Dependent / Biotic for Dioxins -- Documentation for TRIM.FaTE Public Reference Library

Semiaquatic Animal Compartment Types

TRIM FoTE Bronorty						Val	ue			
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8,9- OCDD	Reference
Semiaquatic Bird C	Compartment Types ^a			-						
AssimilationEfficiency FromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	0.58	0.58	0.58	0.58	0.58	0.58	0.58	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	set to 1 ^b
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1.0	1.0	0.9	0.9	0.9	0.8	0.8	based on rat data published in Nessel et al. 1990, Nessel et al. 1992, and Diliberto et al., 1996 (as cited in U.S. EPA 2000c)
initialConcentration_g_p er_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
Semiaquatic Mamn	nal Compartment Types ^c									
AssimilationEfficiency FromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b

Chemical-Dependent / Biotic for Dioxins -- Documentation for TRIM.FaTE Public Reference Library

Semiaquatic Animal Compartment Types

TRIM FoTE Bronorty						Val	ue			
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8,9- OCDD	Reference
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1.0	1.0	0.9	0.9	0.9	0.8	0.8	based on rat data published in Nessel et al. 1990, Nessel et al. 1992, and Diliberto et al., 1996 (as cited in U.S. EPA 2000c)
initialConcentration_g_p er kg UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a

^aTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Bald Eagle, Semi-aquatic Insectivore - Tree Swallow, Semi-aquatic Omnivore - Mallard, Semi-aquatic Piscivore - Common Loon, and Semiaquatic Piscivore - Kingfisher.

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal ^cTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Mink, and Semi-aquatic Omnivore - Raccoon

Chemical-Dependent / Biotic for Furans -- Documentation for TRIM.FaTE Public Reference Library

Semiaquatic Animal Compartment Types

			Value										
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8,9- OCDF	Reference
Semiaquatic Bird	Compartment Types ^a												
AssimilationEfficiency FromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	set to 1 ^b
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	1	1	1	1	1	1	1	1	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_ per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
Semiaquatic Mam	mal Compartment Types ^c												
AssimilationEfficiency FromArthropods	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
AssimilationEfficiency FromSoils	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Noseck et al. 1992; data for ring-necked pheasant
AssimilationEfficiency FromWater	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b

Chemical-Dependent / Biotic for Furans -- Documentation for TRIM.FaTE Public Reference Library

Semiaquatic Animal Compartment Types

TRIM.FaTE Property								Value				_	
Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8,9- OCDF	Reference
AssimilationEfficiency FromWorms	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	set to 1 ^b
InhalationAssimilation Efficiency	Fraction of amount of chemical breathed that is actually absorbed by the animal	unitless	1	1	1	0.9	0.9	0.9	0.9	0.8	0.8	0.8	professional judgment, assuming inhalation rate in model is total rate, not alveolar rate
initialConcentration_g_ per kg UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a

^aTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Bald Eagle, Semi-aquatic Insectivore - Tree Swallow, Semi-aquatic Omnivore - Mallard, Semi-aquatic Piscivore - Common Loon, and Semiaquatic Piscivore - Kingfisher.

^bAll ingestion assimilation efficiencies set to 1 to be consistent with excretion rate calculations. Excretion rates are all based on ingested (not absorbed) dose, hence assimilation efficiency must equal 1.

^cTRIM.FaTE Reference Library includes Semi-aquatic Carnivore - Mink, and Semi-aquatic Omnivore - Raccoon

Chemical-Independent / Biotic -- Documentation for TRIM.FaTE Public Reference Library

Aquatic Animal Compartment Types

TRIM.FaTE Property	Dramarty Description	Units	Water-colu	ımn Carnivore	Water-colu	mn Herbivore	Water-colu	mn Omnivore	Benthic	Carnivore	Benthic	Omnivore
Name	Property Description	Units	Value Used	Reference								
All Fish Compartment Ty	pes											
BW	Fresh body weight of individual animal (i.e., wet weight)	kg	2 ^a	professional judgment	0.025 ^a	professional judgment	0.25 ^a	professional judgment	2 ^a	professional judgment	2 ^a	professional judgment
FractionDietAlgae	Fraction of diet comprised of algae	unitless	unset	n/a								
FractionDietBenthic Carnivore	Fraction of diet comprised of benthic carnivore	unitless	unset	n/a	n/a	n/a	unset	n/a	n/a	n/a	unset	n/a
FractionDietBenthic Invertebrate	Fraction of diet comprised of benthic invertebrate	unitless	unset	n/a								
FractionDietFishbenthico mnivore	Fraction of diet comprised of benthic omnivore	unitless	unset	n/a	n/a	n/a	unset	n/a	unset	n/a	n/a	n/a
FractionDietMacrophyte	Fraction of diet comprised of macrophyte	unitless	n/a	n/a	unset	n/a	unset	n/a	n/a	n/a	n/a	n/a
FractionDietFishherbivore	Fraction of diet comprised of water-column herbivore	unitless	unset	n/a	n/a	n/a	unset	n/a	unset	n/a	unset	n/a
FractionDietFishomnivore	Fraction of diet comprised of water-column omnivore	unitless	unset	n/a	n/a	n/a	unset	n/a	unset	n/a	unset	n/a
FishLipidFraction	Mass fraction of fish that is lipid (wet wt basis)	kg[lipid]/kg[fish wet wt]	0.057	Thomann 1989	0.034	Thomann 1989	0.07	Thomann 1989	0.057	Thomann 1989	0.07	Thomann 1989
NumberofFishperSquareM eter	Number of fish per unit surface water area	#/m ²	calculated ^b	n/a								

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference
Benthic Invertebrate Con	npartment Type			
BiomassPerArea_kg_m2	Mass of macrophytes per unit surface water area (wet wt basis)	kg/m ²	0.02	n/a
BW	Fresh body weight of individual animal (i.e., wet weight)	kg	2.55E-04	n/a

^aScenario-specific parameters ^bEquation provided: compartment.BiomassPerArea_kg_m2/compartment.BW

	Dreparty Description	Units		Value		Reference	
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference	
Benthic Invertebrate Compartment T						•	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user.	g/kg	unset	unset	unset	n/a	
SedimentPartitioning_AlphaofEquilibrium	Proportion of equilibrium value reached	unitless	0.95	0.95	0.95	Selected value (i.e., proportion of equilibrium achieved by time "t").	
SedimentPartitioning_PartitionCoefficient	Equilibrium ratio of concentration in benthic invertebrate to concentration in either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm).	kg[bulk sediment]/kg[inver tebrate wet wt]	0.0824	0.0824	5.04	Hg(0) - assumed based on Hg(2) value; Hg(2) and MHg - Saouter et al. 1991.	
SedimentPartitioning_TimeToReachAlphaofEq uilibrium	Time to reach 100 x alpha percent of equilibrium	day	14	14	14	Experiment duration from Saouter et al.1991.	
All Fish Compartment Types [®]							
DemethylationRate	First-order rate constant for demethylation of methyl- to divalent mercury (MHg->Hg2)	1/day	n/a	n/a	0	Assumption.	
initialConcentration_g_per_kg_UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	unset	unset	unset	n/a	
MethylationRate	First-order rate constant for methylation (Hg2- >MHg)	1/day	n/a	0	n/a	Assumption.	
OxidationRate	First-order rate constant for oxidation of elemental to divalent mercury (Hg0->Hg2)	1/day	1.0E+06	n/a	n/a	Assumption.	
ReductionRate	First-order rate constant for reduction (Hg2->Hg0)	1/day	n/a	0	n/a	Assumption.	
Water-column Carnivore Compartme	nt Type						
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.06	0.06	0.2	Williams et al. 2010.	
	Factor used to adjust experimental data on elimination rate for MHg to estimate elimination rates for Hg0 and Hg2	unitless	3	3	1	Trudel and Rasmussen 1997	
Water-column Herbivore Compartme							
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.06	0.06	0.5	Williams et al. 2010.	
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	Professional judgment.	
HowMuchFasterHgEliminationIsThanForMHg	Factor used to adjust experimental data on elimination rate for MHg to estimate elimination rates for Hg0 and Hg2	unitless	3	3	1	Trudel and Rasmussen 1997.	
Water-column Omnivore Compartme		·				·	
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.06	0.06	0.5	Williams et al. 2010.	

	Property Description	Unito		Value		Deference
TRIM.FaTE Property Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference
AssimilationEfficiencyFromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	1	1	1	Professional judgment.
с с	Factor used to adjust experimental data on elimination rate for MHg to estimate elimination rates for Hg0 and Hg2	unitless	3	3	1	Trudel and Rasmussen 1997
Benthic Carnivore Compartment Typ	e					
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.06	0.06	0.5	Williams et al. 2010.
HowMuchFasterHgEliminationIsThanForMHg	Factor used to adjust experimental data on elimination rate for MHg to estimate elimination rates for Hg0 and Hg2	unitless	3	3	1	Trudel and Rasmussen 1997
Benthic Omnivore Compartment Typ	e					-
AssimilationEfficiencyFromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.06	0.06	0.5	Williams et al. 2010.
HowMuchFasterHgEliminationIsThanForMHg	Factor used to adjust experimental data on elimination rate for MHg to estimate elimination rates for Hg0 and Hg2	unitless	3	3	1	Trudel and Rasmussen 1997

^aTRIM.FaTE Reference Library includes Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, and Water-column Omnivore.

Parameter Name	Units	Value	Reference
Zooplankton Compartment Type			
Absorption rate constant	L[water]/kg[fish wet wt]-day	1500	Goulet 2007.
Assimilation efficiency from algae	unitless	0.5	Goulet 2007.
Elimination rate constant	1/day	0.03	Goulet 2007.
Benthic Invertebrate Compartment	Гуре		
Sediment partitioning - alpha of equilibrium	unitless	0.95	Assumption.
Sediment partitioning - partition coefficient	kg[bulk sed/kg[benthic invertebrate wet wt]	0.27	Assumption.
Sediment partitioning - time to reach alpha of equilibrium	day	21	Hare et al. 2001.
Benthic Omnivore Compartment Typ	be the second se		
Assimilation efficiency from food	unitless	0.1	Assumption based on Yan and Wang 2002.
Absorption rate constant	L[water]/kg[fish wet wt]-day	1.23 ^a	Calculated based on body weight from regression in Hendriks and Heikens 2001.
Elimination rate constant	1/day	1.732E-02	Assumption.
Benthic Carnivore Compartment Typ	De la		
Assimilation efficiency from food	unitless	0.1	Professional judgement based on Yan and Wang 2002.
Absorption rate constant	L[water]/kg[fish wet wt]-day	0.66 ^a	Calculated based on body weight from regression in Hendriks and Heikens 2001.
Elimination rate constant	1/day	1.68E-03	Computed based on empirical equation ^b .
Water-column Herbivore Compartme	ent Type		
Assimilation efficiency from food	unitless	0.1	Assumed value based on Yan and Wang 2002.
Assimilation efficiency from plants	unitless	0.1	Assumed value based on Yan and Wang 2002.
Absorption rate constant	L[water]/kg[fish wet wt]-day	2.46 ^a	Calculated based on body weight from regression in Hendriks and Heikens 2001.
Elimination rate constant	1/day	1.732E-02	Assumption.

Parameter Name	Units	Value	Reference			
Water-column Omnivore Compartme	nt Type		·			
Assimilation efficiency from food	unitless	0.1	Assumption based on Yan and Wang 2002.			
Assimilation efficiency from plants	unitless	0.1	Assumption based on Yan and Wang 2002.			
Absorption rate constant	L[water]/kg[fish wet wt]-day	vater]/kg[fish wet wt]-day 1.23 ^a Calculated based on body v in Hendriks and Heikens 20				
Elimination rate constant	1/day	1.732E-02	Assumption.			
Water-column Carnivore Compartme	nt Type	-				
Assimilation efficiency from food	unitless	0.1	Assumption based on Yan and Wang 2002.			
Absorption rate constant	L[water]/kg[fish wet wt]-day	0.66ª	Calculated based on body weight from regression in Hendriks and Heikens 2001.			
Elimination rate constant	1/day	1.732E-02	Assumption.			

^aFormula used: 10**(-0.30*log10(compartment.BW)-0.09). ^bFormula used: 10**(-0.25*log10(compartment.BW)-2.7).

TRIM.FaTE Property	Property Description	l In ita	Value							Deference
Name		Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference
Benthic Invertebrate C	Compartment Type									
ClearanceConstant	Rate of water passing over respiratory surface scaled to benthic invertebrate mass	unitless	100.6	100.6	100.6	100.6	100.6	100.6	100.6	Stehly et al. 1990.
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	16.5	1.284	17	17	0.495	17	17	Moermond et al. 2007.
initialConcentration_g_per_ kg_UserSupplied	Initial concentration	g/kg	unset	n/a						
of Equilibrium	Alpha of equilibrium for sediment partitioning	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Selected value.
SedimentPartitioning_Time To ReachAlphaofEquilibrium	t-alpha for equilibrium for sediment partitioning	days	14	14	14	14	14	14	14	Professional judgment.
V_d	Ratio of concentration in benthic invertebrate to concentration in water	L[water]/kg[benthic invertebrate wet wt]	7,235	7,235	7,235	7,235	7,235	7,235	7,235	Stehly et al. 1990; estimated for mayfly, 120-day-old nymphs.
All Fish Compartment	Types ^a			-	-		-	-		-
initialConcentration_g_per_ kg_UserSupplied	Initial concentration	g/kg	unset	n/a						
Gamma_fish	Gamma_fish	unitless	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Thomann 1989.
Water-column Carnivo	ore Compartment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1.925	0.408	2	2	0.533	2	2	See footnote ^b
Water-column Herbivo	ore Compartment Type									·
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	n/a
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1.925	0.408	2	2	0.533	2	2	See footnote ^b

TRIM.FaTE Property						Value				Deference	
Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference	
Water-column Omniv	ore Compartment Type		-					_			
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).	
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	n/a	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1.925	0.408	2	2	0.533	2	2	See footnote ^b	
Benthic Carnivore Co	mpartment Type			-	-	-					
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1.925	0.408	2	2	0.533	2	2	See footnote ^b	
Benthic Omnivore Co	mpartment Type										
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.15	0.15	0.15	0.15	0.15	0.15	0.15	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	1.925	0.408	2	2	0.533	2	2	See footnote ^b	

^aTRIM.FaTE Reference Library includes Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, Water-column Omnivore.

^bBaA,BaP,Chr: Moermond et al. 2007. BbF, BkF, DahA, IcdP: Values for higher MW PAHs set equal to value for highest MW PAH with data from Moermond et al. 2007.

TRIM.FaTE Property	Proporty Description	Units				Value				Reference
Name	Property Description	Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Reference
Benthic Invertebrate Cor	npartment Type									
ClearanceConstant	Rate of water passing over respiratory surface scaled to benthic invertebrate mass	L[water cleared]/kg[benthi c invertebrate wet wt]-hr	100.6	100.6	100.6	100.6	100.6	100.6	100.6	Stehly et al. 1990; estimated for mayfly, 120-day-old nymphs, CLVM model.
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.722	17	0.722	0.722	17	0.722	0.722	See footnote ^d
initialConcentration_g_per_ kg_UserSupplied	Initial concentration	g/kg	Unset	Unset	Unset	Unset	Unset	Unset	Unset	n/a
SedimentPartitioning_Alpha of Equilibrium	Alpha of equilibrium for sediment partitioning	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Selected value
SedimentPartitioning_Time To ReachAlphaofEquilibrium	t-alpha for equilibrium for sediment partitioning	day	14	14	14	14	14	14	14	Professional judgement
V_d	Ratio of concentration in benthic invertebrate to concentration in water	L[water]/kg[bent hic invertebrate wet wt]	7235	7235	7235	7235	7235	7235	7235	Stehly et al. 1990; estimated for mayfly, 120-day-old nymphs.
All Fish Compartment Ty	/pes ^a									
initialConcentration_g_per_ kg_UserSupplied	Initial concentration	g/kg	Unset	Unset	Unset	Unset	Unset	Unset	Unset	n/a
Gamma_fish	Gamma_fish	unitless	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Thomann 1989.
Water-column Carnivore	Compartment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	Lemair et al. 1992. Exceptions include Barber 2008 (2-Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.2	2	0.2	0.2	2	0.165	0.2	(See footnote) ^b
Water-column Herbivore	Compartment Type								-	-
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	Lemair et al. 1992. Exceptions include Barber 2008 (2-Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	n/a; Exceptions: (Acenaphthylene) Niimi and Dookhran 1989 (Fluoranthene and Fluorene) Niimi and Palazzo 1986.
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.2	2	0.2	0.2	2	0.165	0.2	(See footnote) ^b

TRIM.FaTE Property	Dramarty Danistic	l lec't e				Value				Deferring
Name	Property Description	Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Reference
Water-column Omniv	ore Compartment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	n/a; Exceptions: (2Methyl and Acenaphthene, see footnote ^c), (Acenaphthylene) Niimi and Dookhran 1989. (Fluoranthene and Fluorene) Niimi and Palazzo 1986.
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.2	2	0.2	0.2	2	0.165	0.2	(See footnote)⁵
Benthic Carnivore Co	mpartment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.2	2	0.2	0.2	2	0.165	0.2	(See footnote) ^b
Benthic Omnivore Co	mpartment Type			-					-	
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.5	0.15	0.5	0.32	0.15	0.14	0.14	Lemair et al. 1992. Exceptions include Barber 2008 (2- Methylnaphthalene and Acenaphthene) and Niimi and Palazzo 1986 (Acenaphthylene, Fluoranthene, and Fluorene).
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	0.2	2	0.2	0.2	2	0.165	0.2	(See footnote) ^b

^aTRIM.FaTE Reference Library includes Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, Water-column Omnivore.

^b Values for [(2Methyl, Acenaphthene, Acenaphthylene, Fluorene) lower, (712DMB, BghiP) higher] MW PAHs set equal to value for [(2Methyl, Acenaphthene, Acenaphthylene, Fluorene) lowest, (712DMB, BghiP) highest] MW PAH with data from Moermond et al. 2007. Exception: Fluoranthene (value still from Moermond et al. 2007).

^cHighest assimilation efficiency from the range for BaP that was reported in Wang & Wang 2006.

^dValues for the lower [2Methyl, Acenaphthene, Acenaphthylene, Flouranthene, Fluorene] or higher [712DMB, BgiP] MW PAHs set equal to the value for fluoranthene [2Methyl, Acenaphthene, Acenaphthylene, Flouranthene, Fluorene] or BaP [712DMB, BgiP]; Moermond et al. 2007.

			Value								
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD		1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8 HpCDD	1,2,3,4,6,7,8 ,9-OCDD	Reference	
Benthic Invertebrate Cor	mpartment Type										
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	2,3,7,8-TCDD: Calculated from Rubinstein et al. (1990) elimination half-life of 120 days for sandworms exposed to 2,3,7,8-TCDD and assuming 2% metabolites reported for fish. All others: assumed to be the same as for 2,3,7,8-TCDD. 1,2,3,4,6,7,8-HpCDD: depends on proportion of congeners with 2, 3 & 7,8 substitutions.	
initialConcentration_g_per_kg_ UserSupplied	Initial concentration	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a	
SedimentPartitioning_AlphaofE quilibrium	Alpha of equilibrium for sediment partitioning	unitless	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Rubenstein et al. 1990.	
SedimentPartitioning_ PartitionCoefficient	Equilibrium ratio of concentration in benthic invertebrate to concentration in either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm)	kg/kg	0.205	0.098	0.033	0.013	0.015	0.0055	0.0013	Rubinstein et al. 1990; used TCDD data for sandworm.	
SedimentPartitioning_TimeToR eachAlphaofEquilibrium	t-alpha for equilibrium for sediment partitioning	day	120	120	120	120	120	120	120	Rubenstein et al. 1990.	
Water-column Carnivore	Compartment Type										
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.31	0.31	0.31	0.13	0.08	Morrison et al. 1999. Exceptions: (1,2,3,4,6,7,8,9-OCDD) Niimi and Oliver 1986, (1,2,3,4,6,7,8-HpCDD) Van den Berg et al. 1994.	
FishChemicalUptake RateviaGill	Fish uptake rate of chemical via gill (equivalent to fish ventilation rate)	L[water]/kg[fish wet wt]-day	600	700	102	300	300	56	11	See footnote ^a	
GillEliminationRate ^b	Rate constant for chemical elimination from fish to water via gills	1/day	use formula	use formula	use formula	use formula	use formula	use formula	use formula	n/a	
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Berntssen et al. 2007 single rate constant of 0.01/day yields a halflife of approximately 69 days. Cited as representing all PCDD/Fs.	
initialConcentration_g_per_kg_ UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a	
Water-column Herbivore	Compartment Type										
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.37	0.31	0.31	0.21	0.08	Morrison et al. 1999. Exceptions include Niimi and Oliver 1996 (1,2,3,4,6,7,8,9-OCDD) and Van den Berg et al. 1994 (1,2,3,4,6,7,8- HpCDD).	

TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8 HpCDD	1,2,3,4,6,7,8 ,9-OCDD	Reference
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.37	0.31	0.31	0.21	0.08	Same as AssimilationEfficiencyFromFood.
FishChemicalUptake RateviaGill	Fish uptake rate of chemical via gill (equivalent to fish ventilation rate)	L[water]/kg[fish wet wt]-day	600	700	102	300	300	56	11	See footnote ^a
GillEliminationRate ^b	Rate constant for chemical elimination from fish to water via gills	1/day	use formula	use formula	use formula	use formula	use formula	use formula	use formula	n/a
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Berntssen et al. 2007 single rate constant of 0.01/day yields a halflife o approximately 69 days. Cited as representing all PCDD/Fs.
UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a
Water-column Omnivore	Compartment Type									_
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.31	0.31	0.31	0.21	0.08	Morrison et al. 1999. Exceptions include Niimi and Oliver 1996 (1,2,3,4,6,7,8,9-OCDD) and Van den Berg et al. 1994 (1,2,3,4,6,7,8- HpCDD).
AssimilationEfficiency FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.31	0.31	0.31	0.21	0.08	Same as assimilation efficiency from food
FishChemicalUptake RateviaGill	Fish uptake rate of chemical via gill (equivalent to fish ventilation rate)	L[water]/kg[fish wet wt]-day	600	700	102	300	300	56	11	See footnote ^a
GillEliminationRateb	Rate constant for chemical elimination from fish to water via gills	1/day	use formula	use formula	use formula	use formula	use formula	use formula	use formula	n/a
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Berntssen et al. 2007 single rate constant of 0.01/day yields a halflife o approximately 69 days. Cited as representing all PCDD/Fs.
initialConcentration_g_per_kg_ UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	n/a

						Value				
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8 HpCDD	1,2,3,4,6,7,8 ,9-OCDD	Reference
Benthic Carnivore Comp	partment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.31	0.31	0.31	0.13	0.08	Morrison et al. 1999. Exceptions: (1,2,3,4,6,7,8,9-OCDD) Niimi and Oliver 1986, (1,2,3,4,6,7,8-HpCDD) Van den Berg et al. 1994.
FishChemicalUptake RateviaGill	Fish uptake rate of chemical via gill (equivalent to fish ventilation rate)	L[water]/kg[fish wet wt]-day	600	700	102	300	300	56	11	See footnote ^a
GillEliminationRateb	Rate constant for chemical elimination from fish to water via gills	1/day	use formula	use formula	use formula	use formula	use formula	use formula	use formula	n/a
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Berntssen et al. 2007- single rate constant of 0.01/day yields a halflife of approximately 69 days. Cited as representing all PCDD/Fs
initialConcentration_g_per_kg_ UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
Benthic Omnivore Comp	partment Type									
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.41	0.42	0.31	0.31	0.31	0.21	0.08	Morrison et al. 1999. Exceptions include Niimi and Oliver 1986 (1,2,3,4,6,7,8,9-OCDD) and Van den Berg et al. 1994 (1,2,3,4,6,7,8- HpCDD).
FishChemicalUptake RateviaGill	Fish uptake rate of chemical via gill (equivalent to fish ventilation rate)	L[water]/kg[fish wet wt]-day	600	700	102	300	300	56	11	See footnote ^a
GillEliminationRate ^b	Rate constant for chemical elimination from fish to water via gills	1/day	use formula	use formula	use formula	use formula	use formula	use formula	use formula	n/a
Halflife	Length of time for chemical amount to be reduced by one-half by degradation reactions	day	70	70	70	70	70	70	70	Berntssen et al. 2007- single rate constant of 0.01/day yields a halflife of approximately 69 days. Cited as representing all PCDD/Fs.
initialConcentration_g_per_kg_ UserSupplied	Initial concentration in the compartment, provided by the user	g/kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	n/a

a(1,2,3,4,6,7,8,9-OCDD, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD): Muir et al. 1985. (1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD): Interpolated from Muir et al. 1985 considering congener-specific differences in relative assimilation efficiencies from food. (1,2,3,7,8-PeCDD, 2,3,7,8-TCDD): Values compiled for one year-old guppies at start of experiment from Opperhuizen et al. 1986. bFormula provided: compartment.Chemical.FishChemicalUptakeRateviaGill / currentChemical.K_ow.

Property Description ompartment Type Initial concentration Alpha of equilibrium for sediment partitioning t-alpha for equilibrium for sediment partitioning Equilibrium ratio of concentration in benthic	Units g/kg unitless day	2,3,7,8- TCDF 0.0 0.95	1,2,3,7,8- PeCDF 0.0	2,3,4,7,8- PeCDF 0.0	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8,9- OCDF	Reference
Initial concentration Alpha of equilibrium for sediment partitioning t-alpha for equilibrium for sediment partitioning Equilibrium ratio of	unitless			0.0								
Alpha of equilibrium for sediment partitioning t-alpha for equilibrium for sediment partitioning Equilibrium ratio of	unitless			0.0								
sediment partitioning t-alpha for equilibrium for sediment partitioning Equilibrium ratio of		0.95			0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
sediment partitioning Equilibrium ratio of	day		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Rubinstein et al. 1990.
		42	42	42	42	42	42	42	42	42	42	Rubinstein et al. 1990.
invertebrate to concentration in either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm)	kg/kg	0.056	0.024	0.17	0.0081	0.02	0.067	0.072	0.0012	0.042	0.0017	Rubinstein et al. 1990; used TCDD data for sandworm.
Length of time for chemical amount to be reduced by one- half by degradation reactions	day	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	5776.2	Rubinstein et al. 1990; Assumed to be the same as for 2,3,7,8-TCDD data for sandworm, Except for 1,2,3,4,6,7,8-HpCDF and 1,2,3,4,7,8,9-HpCDF which are same as 1,2,3,4,6,7,8 HpCDD.
Types ^a					•		•	•				
Allometric scaling factor used in estimating gill uptake	unitless	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Thomann 1989
Initial concentration in the compartment, provided by the user	g/kg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a
re Compartment Type												
Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	See footnote ^b
Length of time for chemical amount to be reduced by one- half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Berntssen et al. 2007.
re Compartment Type												
Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	See footnote ^b
Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	Same as AssimilationEfficiencyFromFood.
Length of time for chemical amount to be reduced by one- half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Berntssen et al. 2007.
	either bulk sediment (i.e., wet wit sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm) Length of time for chemical amount to be reduced by one- half by degradation reactions Types^a Allometric scaling factor used in estimating gill uptake Initial concentration in the compartment, provided by the user e Compartment Type Fraction of amount of chemical amount to be reduced by one- half by degradation reactions e Compartment Type Fraction of amount of chemical in food eaten that is actually absorbed by the animal Fraction of amount of chemical in food eaten that is actually absorbed by the animal Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal Length of time for chemical animal	either bulk sediment (i.e., wet wit sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm) kg/kg Length of time for chemical amount to be reduced by one- half by degradation reactions day Types* unitless Allometric scaling factor used in estimating gill uptake unitless Initial concentration in the compartment, provided by the user g/kg P Compartment Type tractional aday Fraction of amount of chemical amount to be reduced by one- half by degradation reactions day P Compartment Type traction of amount of chemical amount to be reduced by one- half by degradation reactions unitless E Compartment Type traction of amount of chemical in ford eater that is actually absorbed by the animal unitless Fraction of amount of chemical in torrestrial plants eaten that is actually absorbed by the animal unitless Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal unitless	either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.056Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.2Types*	either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.0560.024Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.2Types*	either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether the partition coefficient is based on bulk sediment or sediment pore water (user adjorithm)kg/kg0.0560.0240.17Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.25776.2Ilometric scaling factor used in estimating gill uptakeunitless0.20.20.2Initial concentration in the compartment, provided by the amount to be reduced by one- half by degradation reactionsunitless0.510.420.42Fraction of amount of chemical amount to be reduced by one- half by degradation reactionsunitless0.510.420.42Fraction of amount of chemical in food eater that is actually absorbed by the animalunitless0.510.420.42Fraction of amount of chemical in food eater that is actually absorbed by the animalunitless0.510.420.42Fraction of amount of chemical in food eater that is actually absorbed by the animalunitless0.510.420.42Fraction of amount of chemical in food eater that is actually absorbed by the animalunitless0.510.420.42Fraction of amount of chemical in torestrial plants eaten that is actually absorbed by the animal0.510.420.42Length of time for chemical animal0.510.420.42Length of time for chemical in tore extra that is actually absorbed by the animal0.510.420.42 <td>either bulk sediment (i.e., wet wr sediment) or sediment pore water, depending on whether pased on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.0560.0240.170.0081Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.25776.25776.25776.2Ilometric scaling factor used in estimating gill uptakeunitless0.20.20.20.20.2Initial concentration in the compartment provided by the userunitless0.510.420.420.31Fraction of amount of chemical amount to be reduced by one- half by degradation reactionsunitless0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animalunitless0.510.420.420.31Fraction of amount of chemical in torostration planes eaten that is actually absorbed by the animal0.510.420.420.31Length of time for chemical in torostration of amount of chemical animal0.510.420.420.31Fraction of amount of chemical animal0</td> <td>either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether based on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.0560.0240.170.00810.02Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.20</td> <td>either buk sediment (i.e., wet wit sediment) or sediment por water, depending on whether the partition coefficient is based on bulk sediment or sediment por evater (user must select corresponding algorithm)kg/kg$0.056$$0.024$$0.17$$0.0081$$0.02$$0.067$Length of time for chemical amount to be reduced by one- half by degradation reactionsday$5776.2$$5776.$</td> <td>einher buk sediment (a., wett wis defined) or sediment (a., wett wis defined) or sediment or sediment pore water (user must select corresponding algorithm) Length of time for chemical amount to be reduced by one- half by degradation reactions and by degradation reactions and by degradation reactions and by degradation reactions absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical animal.</br></td> <td>either bulk sediment (i.e., wet, wis doment) or sediment pore sediment por sediment pore sediment pore sediment por sediment pore sediment pore sediment por sediment por s</td> <td>either buk sediment (i.e., wethy wethy the partition coefficient is based on buk sediment (or version of the sediment of version ve</td> <td>either buck sediment (i.e., with sediment per water, depending on whether partition certificate is based on buck sediment or whether (user must select corresponding algorithm). kg/kg 0.056 0.024 0.17 0.0081 0.02 0.067 0.072 0.0012 0.042 0.0017 absendent per water, depending on whether (user must select corresponding algorithm). day 5776.2</td>	either bulk sediment (i.e., wet wr sediment) or sediment pore water, depending on whether pased on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.0560.0240.170.0081Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.25776.25776.25776.2Ilometric scaling factor used in estimating gill uptakeunitless0.20.20.20.20.2Initial concentration in the compartment provided by the userunitless0.510.420.420.31Fraction of amount of chemical amount to be reduced by one- half by degradation reactionsunitless0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animal0.510.420.420.31Fraction of amount of chemical in food eaten that is actually absorbed by the animalunitless0.510.420.420.31Fraction of amount of chemical in torostration planes eaten that is actually absorbed by the animal0.510.420.420.31Length of time for chemical in torostration of amount of chemical animal0.510.420.420.31Fraction of amount of chemical animal0	either bulk sediment (i.e., wet wt sediment) or sediment pore water, depending on whether based on bulk sediment or sediment pore water (user must select corresponding algorithm)kg/kg0.0560.0240.170.00810.02Length of time for chemical amount to be reduced by one- half by degradation reactionsday5776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.25776.20	either buk sediment (i.e., wet wit sediment) or sediment por water, depending on whether the partition coefficient is based on bulk sediment or sediment por evater (user must select corresponding algorithm)kg/kg 0.056 0.024 0.17 0.0081 0.02 0.067 Length of time for chemical amount to be reduced by one- half by degradation reactionsday 5776.2 $5776.$	einher buk sediment (a., wett wis defined) or sediment (a., wett wis defined) or sediment or sediment pore water (user must select corresponding algorithm) Length of time for chemical amount to be reduced by one- half by degradation reactions and by degradation reactions and by degradation reactions and by degradation reactions absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical in food eaten that is actually absorbed by the animal reaction of amount of chemical 	either bulk sediment (i.e., wet, wis doment) or sediment pore sediment por sediment pore sediment pore sediment por sediment pore sediment pore sediment por sediment por s	either buk sediment (i.e., wethy wethy the partition coefficient is based on buk sediment (or version of the sediment of version ve	either buck sediment (i.e., with sediment per water, depending on whether partition certificate is based on buck sediment or whether (user must select corresponding algorithm). kg/kg 0.056 0.024 0.17 0.0081 0.02 0.067 0.072 0.0012 0.042 0.0017 absendent per water, depending on whether (user must select corresponding algorithm). day 5776.2

								Value					
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8-	1,2,3,7,8-	2,3,4,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	2,3,4,6,7,8-	1,2,3,4,6,7,8-	1,2,3,4,7,8,9-	1,2,3,4,6,7,8,9-	Reference
			TCDF	PeCDF	PeCDF	HxCDF	HxCDF	HxCDF	HxCDF	HpCDF	HpCDF	OCDF	
Water-column Omnivor	e Compartment Type												
	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	See footnote ^b
FromPlants	Fraction of amount of chemical in terrestrial plants eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	Same as assimilation efficiency fror food.
	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Berntssen et al. 2007.
Benthic Carnivore Com	partment Type									1			•
	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	See footnote ^b
	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Berntssen et al. 2007.
Benthic Omnivore Com	partment Type												
AssimilationEfficiency FromFood	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	unitless	0.51	0.42	0.42	0.31	0.31	0.31	0.31	0.09	0.2	0.05	See footnote ^b
Halflife	Length of time for chemical amount to be reduced by one- half by degradation reactions	day	70	70	70	70	70	70	70	70	70	70	Berntssen et al. 2007.

*Screening scenario includes: Benthic Omnivore, Benthic Carnivore, Water-column Herbivore, Water-column Omnivore, and Water-column Carnivore. *Morrison et al. 1999. Exceptions include Niimi and Oliver 1996 (1,2,3,4,6,7,8,9-OCDF), Berntssen et al. 2007 (1,2,3,4,6,7,8-HpCDF), and 1,2,3,4,7,8,9-HpCDF set conservatively as approximate linear interpolation between values for 1,2,3,4,7,8-HxCDD and 1,2,3,4,6,7,8-HpCDD / 1,2,3,4,6,7,8-HpCDF (i.e., 0.3 to 0.1–0.2).

Chemical-Dependent / Independent of Compartment Type for Mercury --Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Property	Droporty Deparintion	Units		Value		Reference	
Name	Property Description	Units	Hg(0)	Hg(2)	MHg	Reference	
CAS	A unique Chemical Abstract Service (CAS) number for this Chemical; used in downstream TRIM modules	unitless	7439-97-6	14302-87-5	22967-92-6	ChemFinder database	
D_pureair	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion, in m2/day	m²[air]/day	0.478	0.478	0.456	U.S. EPA 1997	
D_purewater	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion, in m2/day	m²[water]/day	5.54E-05	5.54E-05	5.28E-05	U.S. EPA 1997	
HenryLawConstant	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	Pa-m ³ /mol	719	7.19E-05	0.0477	(Ele): Iverfeldt & Persson, 1985 [in U.S. EPA 1997] (Div): U.S. EPA 1997 (Meth): Lindquist & Rodhe, 1985 [in U.S. EPA 1997].	
MeltingPoint	Temperature at which a solid becomes a liquid at standard atmospheric pressure	degrees K	234.23	550.1	443	(Ele): U.S. EPA 2004 [in U.S. EPA 2005a] (Div): SRC 2005 [in U.S. EPA 2005a] (Meth): USDHHS 1992 [in CARB 1994]	
molecularWeight	Molecular weight	g/mol	201	201	216	U.S. EPA 1997	
K_ow	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	L[water]/kg[octanol]	4.15	3.33	1.7	Mason et al. 1996	
VaporWashoutRatio	Precipitation scavenging ratio for vapors (ratio of concentration in rain to concentration in vapor form in air); used in estimating wet deposition of vapors	m ³ [air]/m ³ [rain]	1,200	1.6E+06	0	U.S. EPA 1997, based on Petersen et al. 1995.	

Parameter Name ^a	Units	Value	Reference
CAS number ^b	unitless	7440-43-9	-
Diffusion coefficient in pure air	m²[air]/day	0.71	U.S. EPA 1996 [in U.S. EPA 1999].
Diffusion coefficient in pure water	m²[water]/day	8.16E-05	U.S. EPA 1996 [in U.S. EPA 1999].
Henry's Law constant	Pa-m ³ /mol	1.00E-37	U.S. EPA 1999 (Table A-2-35; assumed to be zero).
Melting point	degrees K	593.15	U.S. EPA 2004 [in U.S. EPA 2005a].
Molecular weight	g/mol	112.41	SRC 2005 [in U.S. EPA 2005a].
Octanol-air partition coefficient (K _{oa})	m ³ [air]/m ³ [octanol]	-	-
Octanol-carbon partition coefficient (K_{oc})		-	-
Octanol-water partition coefficient (K_{ow})	L[water]/kg[octanol]	-	-

^aAll parameters in this table are TRIM.FaTE chemical properties. ^bThis CAS numbers applies to elemental Cd; however, the cations of cadmium are being modeled.

Parameter Name ^a	Units	Value	Reference
CAS number	unitless	7440-38-2	-
Diffusion coefficient in pure air	m²[air]/day	0.92	U.S. EPA 1996 [in U.S. EPA 1999]
Diffusion coefficient in pure water	m²[water]/day	1.07E-04	U.S. EPA 1996 [in U.S. EPA 1999]
Henry's Law constant	Pa-m ³ /mol	1.00E-37	U.S. EPA 1999
Melting point	degrees K	1093.15	U.S. EPA 2004 [in U.S. EPA 2005a]
Molecular weight	g/mol	77.95	SRC 2005 [in U.S. EPA 2005a]
Octanol-air partition coefficient (K_{oa})	m ³ [air]/m ³ [octanol]	-	-
Octanol-carbon partition coefficient (K_{oc})		-	-
Octanol-water partition coefficient (K _{ow})	L[water]/kg[octanol]	-	-

^aAll parameters in this table are TRIM.FaTE chemical properties.

Chemical-Dependent / Independent of Compartment Type for PAHs -- Documentation for TRIM.FaTE Public Reference Library

	Drenerty Decemintion	Unite				Value				Reference	
TRIM.FaTE Property Name	Property Description	Units	BaP	BaA	BbF	BkF	Chr	DahA	IcdP	Reference	
CAS	A unique Chemical Abstract Service (CAS) number for this Chemical; used in downstream TRIM modules	unitless	50-32-8	56-55-3	205-99-2	207-08-9	218-01-9	53-70-3	193-39-5	ChemFinder database	
D_pureair	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion, in m2/day	m²[air] / day	0.372	0.441	0.00864	0.00864	0.00864	0.00864	0.00864	U.S. EPA 2004 [in U.S. EPA 2005a]	
D_purewater	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion, in m2/day	m²[water]/ day	7.78E-05	7.78E-05	8.64E-05	8.64E-05	8.64E-05	8.64E-05	8.64E-05	U.S. EPA 2004 [in U.S. EPA 2005a]	
HenryLawConstant	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	Pa-m ³ /mol	7.40E-02	1.22E+00	4.85E-02	4.30E-02	5.30E-01	7.60E-03	2.90E-02	See footnote ^a	
MeltingPoint	Temperature at which a solid becomes a liquid at standard atmospheric pressure	degrees K	454.1	433.5	441	490	528.5	542.5	435	Lide 2003 [in Mackay et al. 2006]	
molecularWeight	Molecularweight	g/mol	252.31	228.29	252.31	252.31	228.29	278.35	276.33	Mackay et al. 2006	
K_ow	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	L[water]/ kg[octanol]	9.33E+05	6.17E+05	6.03E+05	8.71E+05	5.37E+05	3.16E+06		Hansch et al. 1995. Exceptions: (BbF) Sangster 1993, (BkF and IcdP) Passivirta et al. 1999. All in Mackay et al. 2006.	
ReferenceBird_BodyWeight	Mass of individual reference bird used for allometric scaling of degradation rate	kg	0.25	0.25	0.25	0.25	0.25	0.25	0.25	U.S. EPA 1992, default rat body weight recommended by EPA for evaluation of toxicity studies in which rat body weight is not reported	
ReferenceBird_GeneralDegradationRate	First-order rate constant for chemical degradation in reference bird used for allometric scaling of degradation rate	1/day	2.04	2.04	2.04	2.04	2.04	2.04	2.04	Weyand and Bevan 1986, rat study; no data available for birds, use mammalian value	
ReferenceBird_EliminationRate	First-order rate constant for elimination of chemical from the body (terrestrial birds)	1/day	0.6	0.9	0.9	0.9	0.9	0.9	0.9	ATSDR 1995, no avian data, values based on mammalian oral absorption/fecal excretion data	
ReferenceMammal_BodyWeight	Mass of individual reference mammal used for allometric scaling of degradation rate	kg	0.25	0.25	0.25	0.25	0.25	0.25	0.25	U.S. EPA 1992, default rat body weight recommended by EPA for evaluation of toxicity studies in which rat body weight is not reported	
ReferenceMammal_GeneralDegradationRate	First-order rate constant for chemical degradation in reference mammal used for allometric scaling of degradation rate	1/day	2.04	2.04	2.04	2.04	2.04	2.04	2.04	Weyand and Bevan 1986, rat study	
ReferenceMammal_EliminationRate	First-order rate constant for elimination of chemical from the body (terrestrial mammals)	1/day	0.6	0.9	0.9	0.9	0.9	0.9	0.9	ATSDR 1995, values based on mammalian oral absorption/fecal excretion data	

^aHenry's Law constant references: All are referenced in Mackay et al. 2006 from: (BaP) Altschuh et al. 1999, (BaA, Chr) Bamford et al. 1999, (BbF, IcdP) Staudinger & Roberts 2001, (BkF) Hulscher et al. 1992, (DahA) Eastcott et al. 1988.

Chemical-Dependent / Independent of Compartment Type for PAHs -- Documentation for TRIM.FaTE Public Reference Library

	Drementer Description	Units				Value				Reference	
TRIM.FaTE Property Name	Property Description	Units	2Methyl	712DMB	Acena- phthene	Acena- phthylene	BghiP	Fluro- anthene	Fluorene	Kererence	
CAS	A unique Chemical Abstract Service (CAS) number for this Chemical; used in downstream TRIM modules	unitless	91-57-6	57-97-6	83-32-9	208-96-8	191-24-2	206-44-0	86-73-7	ChemFinder database	
D_pureair	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion, in m2/day	m²[air] / day	0.451	0.691	0.009	0.388	0.19	0.009	0.009	U.S. EPA 2005b. Exceptions: (712 DMB): U.S. EPA 1995a. (Acenaphthene, Fluoranthene, Fluorene) U.S. EPA 2004 [in U.S. EPA 2005a].	
D_purewater	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion, in m2/day	m²[water]/ day	6.70E-05	6.91E-05	8.64E-05	6.03E-05	4.5E-05	8.64E-05	8.64E-05	U.S. EPA 2005b. Exceptions: (712 DMB): U.S. EPA 1995a. (Acenaphthene, Fluoranthene, Fluorene) U.S. EPA 2004 [in U.S. EPA 2005a].	
HenryLawConstant	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	Pa-m ³ /mol	50.56	0.203	18.5	12.7	0.0278	1.96		Bamford et al. 1999 [in Mackay et al. 2006]. Exceptions: (2Methyl): Yaws et al. 1991 [in Mackay et al. 2006]. (712DMB): Derived from Meylan, 1991 in ToxNet HSDB. (BghiP): Staudinger & Roberts 2001 [in Mackay et al. 2006].	
MeltingPoint	Temperature at which a solid becomes a liquid at standard atmospheric pressure	degrees K	307.6	395.5	366.4	364.8	545.5	383.19	387.77	Lide 2003 [in Mackay et al. 2006]	
molecularWeight	Molecularweight	g/mol	142.2	256.34	154.21	152.2	276.33	202.25	162.22	Mackay et al. 2006	
K_ow	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	L[water]/ kg[octanol]	7244	630957	8318	10000	4265795	144544	15136	Hansch et al. 1995. Exception: (Acenaphthylene) Passivirta et al. 1999. All in Mackay et al. 2006.	

Chemical-Dependent / Independent of Compartment Type for Dioxins -- Documentation for TRIM.FaTE Public Reference Library

						Value				
TRIM.FaTE Property Name	Property Description	Units	2,3,7,8 - TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7, 8-HxCDD			1,2,3,4,6,7, 8-HpCDD	1,2,3,4,6, 7,8,9- OCDD	Reference
CAS	A unique Chemical Abstract Service (CAS) number for this Chemical; used in downstream TRIM modules	unitless		4	39227-28-6					ChemFinder database
	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion, in m2/day	m²[air] / day	0.899	0.854	0.816	0.816	0.816	0.782		U.S. EPA 2000b [in U.S. EPA 2005a]. Exception: 2,3,7,8-TCDD; U.S. EPA 2004 [in U.S. EPA 2005a].
D_purewater	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion, in m2/day	m²[water] / day	4.84E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	U.S. EPA 1995b [in U.S. EPA 2005a]. Exception: 2,3,7,8-TCDD; U.S. EPA 2004 [in U.S. EPA 2005a].
2	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	Pa-m³/mol	3.33	0.26	1.08	1.11	1.11	1.28		Mackay et al. 1992 [in U.S. EPA 2000b]. Exceptions: (1,2,3,7,8-PeCDD) Sijm et al. 1989 [in U.S. EPA 2000b], 1,2,3,6,7,8-HxCDD and 1,2,3,7,8,9-HxCDD) U.S. EPA 2000b [in U.S. EPA 2005a].
MeltingPoint	Temperature at which a solid becomes a liquid at standard atmospheric pressure	degrees K	578.7	513.7	547.2			537.7	598.7	Rodorf 1987 [in U.S. EPA 2000b]. Exception: (1,2,3,4,6, 7,8,9- OCDD) Friesen et al. 1985 [in U.S. EPA 2000b].
molecularWeight	Molecular weight	g/mol	321.98	356.42	390.87	390.87	390.87	425.31	460.76	U.S. EPA 2000b [in U.S. EPA 2005a]
K_ow	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	L[water] / kg[octanol]	6.31E+06	1.86E+07	6.31E+07	1.62E+08	1.62E+08	1.00E+08		Mackay et al. 1992 [in U.S. EPA 2000b]. Exceptions: (1,2,3,7,8-PeCDD) Passivirta et al. 1999 [in Mackay et al. 2006]], (1,2,3,6,7, 8-HxCDD and 1,2,3,7,8,9- HxCDD) U.S. EPA 2000a.
ReferenceBird_BodyWeight	Mass of individual reference bird used for allometric scaling of degradation rate	kg	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Nosek et al. 1992
ReferenceBird_General DegradationRate	First-order rate constant for chemical degradation in reference bird used for allometric scaling of degradation rate	1/day	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	Nosek et al. 1992
ReferenceBird_Elimination Rate	First-order rate constant for elimination of chemical from the body (terrestrial birds)	1/day	0	0	0	0	0	0	0	Nosek et al. 1992
	Mass of individual reference mammal used for allometric scaling of degradation rate	kg	0.021	0.021	0.021	0.021	0.021	0.021	0.021	Gasiewicz et al. 1983
ReferenceMammal_General DegradationRate	First-order rate constant for chemical degradation in reference mammal used for allometric scaling of degradation rate	1/day	0.41	0.41	0.41	0.41	0.41	0.41	0.41	Gasiewicz et al. 1983
ReferenceMammal_Eliminati on Rate	First-order rate constant for elimination of chemical from the body (terrestrial mammals)	1/day	0.12	0.12	0.2	0.2	0.2	0.3		Average of mean percent unabsorbed oral dose in Piper et al.1973; OCDD based on Birnbaum and Couture 1988; HpCDD and HxCDD based on professional judgment

TRIM.FaTE	Value												
Property Name	Property Description	Units	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,6,7,8 ,9-OCDF	Reference
CAS	A unique Chemical Abstract Service (CAS) number for this Chemical; used in downstream TRIM modules	unitless	51207-31-9	57117-41-6	57117-31-4	70648-26-9	57117-44-9	72918-21-9	60851-34-5	67562-39-4	55673-89-7	39001-02-0	ChemFinder database
D_pureair	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion, in m2/day	m²[air] / day	0.203	0.192	0.192	0.183	0.183	0.183	0.183	0.176	0.176	0.168	U.S. EPA 2000b [in U.S. EPA 2005a]. Exception: (2,3,7,8-TCDF) U.S. EPA 2004 [in U.S. EPA 2005a]
D_purewater	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion, in m2/day	m²[water] / day	5.19E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	6.91E-05	U.S. EPA 1995b [in U.S. EPA 2005a]. Exception: (2,3,7,8-TCDF) U.S. EPA 2004 [in U.S. EPA 2005a].
Henry's Law Constan	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	Pa- m³/mol	1.459	0.507	0.505	1.449	0.741	1.115	1.115	1.429	1.419	0.190	Mackay et al. 1992 [in U.S. EPA 2000b]. Exceptions: (1,2,3,7,8- PeCDF, 1,2,3,4,7,8- HxCDF, 1,2,3,7,8,9- HxCDF, 2,3,4,6,7,8- HxCDF, 1,2,3,4,6,7,8 ,9-OCDF) U.S. EPA 2000b [in U.S. EPA 2005a]
MeltingPoint	Temperature at which a solid becomes a liquid at standard atmospheric pressure	degrees K	500.7	499.2	469.4	499.2	505.7	520.7	512.7	509.7	495.2	532.2	Rodorf 1989 [in U.S. EPA 2000b]
molecularWeight	Molecular weight	g/mol	305.98	340.42	340.42	374.87	374.87	374.87	374.87	409.31	409.31	444.76	U.S. EPA 2000b [in U.S. EPA 2005a]
K_ow	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	L[water] / kg[octano I]	1.26E+06	6.17E+06	3.16E+06	1.00E+07	8.31E+07	3.80E+07	8.31E+07	2.51E+07	7.94E+06	1.00E+08	Mackay et al. 1992 [in U.S. EPA 2000b]. Exceptions: (1,2,3,7,8-PeCDF) Sijm et al. 1998 [in U.S. EPA 2000b], (1,2,3,6,7,8- HxCDF, 1,2,3,7,8,9-HxCDF, 2,3,4,6,7,8- HxCDF) U.S. EPA 2000a, (1,2,3,4,7,8,9- HpCDF) Broman et al. 1991 [in Mackay 2006].
ReferenceBird_Body Weight	Mass of individual reference bird used for allometric scaling of degradation rate	kg	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Nosek et al. 1992
ReferenceBird_Gene ral DegradationRate	First-order rate constant for chemical degradation in reference bird used for allometric scaling of degradation rate	1/day	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	0.0018	Nosek et al. 1992
ReferenceBird_Elimi nationRate	First-order rate constant for elimination of chemical from the body (terrestrial birds)	1/day	0	0	0	0	0	0	0	0	0	0	Nosek et al. 1992
ReferenceMammal_ BodyWeight	Mass of individual reference mammal used for allometric scaling of degradation rate	kg	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	Decad et al. 1981
ReferenceMammal_ General DegradationRate	First-order rate constant for chemical degradation in reference mammal used for allometric scaling of degradation rate	1/day	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	Decad et al. 1981
ReferenceMammal_ Elimination Rate	First-order rate constant for elimination of chemical from the body (terrestrial mammals)	1/day	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	Average of mean percent unabsorbed oral dose in Piper et al.1973

Source Inputs – Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Property Name	Property Description	Units	Value Used	Reference					
Source Inputs (all TRIM.FaTE source properties)									
emissionRate	Quantity of chemical emitted from the source per unit time	g/day	unset	n/a					
х	Source location, x	spatial coordinates	unset	n/a					
Y	Source location, y	spatial coordinates	unset	n/a					
elevation	Source height	m	unset	n/a					

"Unset" Inputs – Documentation for TRIM.FaTE Public Reference Library

TRIM.FaTE Compartment Type	TRIM.FaTE Property Name
All compartment types	Initial concentration (chemical-specific)
Benthic Invertebrate	Biomass per water area
Fish (all) ^a	Fraction diet
Fish (all) ^a	Population per water area
Leaf	Allow exchange
Leaf	Litter fall rate
Particle on Leaf	Allow exchange
Root - Nonwoody Plants Only	Allow exchange
Root Zone Soil	Organic carbon fraction
Sediment	Organic carbon fraction
Stem - Nonwoody Plants Only	Allow exchange
Surface Soil	Total erosion rate
Surface Soil	Total runoff rate
Surface Water - Pond	Algae density in water column
Surface Water - Pond	Chloride concentration
Surface Water - Pond	Chlorophyll concentration
Surface Water - Pond	Flush rate
Surface Water - Pond	Organic carbon fraction in suspended sediments
Surface Water - Pond	рН
Surface Water - Pond	Total suspended sediment concentration
Surface Water - Stream	Algae density in water column
Surface Water - Stream	Chloride concentration
Surface Water - Stream	Chlorophyll concentration
Surface Water - Stream	Current velocity
Surface Water - Stream	Flush rate
Surface Water - Stream	Organic carbon fraction in suspended sediments
Surface Water - Stream	рН
Surface Water - Stream	Total suspended sediment concentration
Vadose Zone Soil	Organic carbon fraction

^aIncludes Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, and Water-column Omnivore.

Reference List for TRIM.FaTE Public Reference Library Input Parameters

Adriaens, P., Q. Fu, and D. Grbic-Galic. 1995. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol. 29(9): 2252-2260, as cited in U.S. EPA 2000b.

Adriaens, P., and D. Grbic-Galic. 1992. Effect of cocontaminants and concentration on the anaerobic biotransformation of PCDD/F in methanogenic river sediments. Organohalogen Compounds 8: 209-212.

Adriaens, P., and D. Grbic-Galic. 1993. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Organohalogen Compounds 12: 107-110.

Alldredge, A.W., J.F. Lipscomb, and F.W. Whicker. 1974. Forage intake rates of mule deer estimated with fallout Cesium-137. J. Wildl. Manage. 38: 508-515.

Ambrose, R.A., Jr., J.D. Allison, and T.L. Allison. 2005. Partition coefficients for metals in surface water, soil, and waste. Washington, DC: U.S. Environmental Protection Agency Office of Research and Development.

Ambrose, R.A., Jr., T.A. Wool, and J.L. Martin. 1995. The water quality analysis simulation program, WASP5, Part A: Model documentation. Athens, GA: U.S. EPA National Exposure Research Laboratory, Ecosystems Division.

Amyot, M., D. Lean, and G. Mierle. 1997. Photochemical formation of volatile mercury in high arctic lakes. Environmental Toxicology and Chemistry. 16(10):2054-2063.

APHA. 1995. American Public Health Association. Standard methods for the examination of water and waste water. Washington, DC.

Arjmand, M., and H. Sandermann. 1985. Metabolism of DDT and related compounds in cell suspension cultures of soybean (Glycine max L.) and wheat (Tritucum aestivum L.) Pestic. Biochem. Physiol. 23: 389, as cited in Komoba, D., C. Langebartels, and H. Sandermann. 1995. Metabolic processes for organic chemicals in plants. In: Plant Contamination Modeling and Simulation of Organic Chemical Processes. Trapp, S., and Mc Farlane, J.C., eds., CRC Press, Boca Raton, FL. Pages 69-103.

Arthur, W.J., III and A.W. Alldredge. 1979. Soil ingestion by Mule deer in north central Colorado. J. Range Manage. 32: 67-70.

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Agency for Toxic Substances and Disease Registry. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). http://www.atsdr.cdc.gov/toxprofiles/tp69.html. August. U.S. Department of Health and Human Services.

Atkinson, R. 1996. Atmospheric chemistry of PCBs, PCDDs and PCDFs. Issues in Environmental Science and Technology. 6: 53-72. (as cited in U.S. EPA 2000b).

ATSDR. 1997. Toxicological profile for mercury. Draft for public comment (Update). ATSDR-7P-97-7 (Draft). U.S. Department of Health and Human Services.

ATSDR. 2005. Toxicological Profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene.

Bache, C.A., W.J. Gutenmann, L.E. St. John, Jr., R.D. Sweet, H.H. Hatfield, and D.J. Lisk. 1973. Mercuryand methylmercury content of agricultural crops grown on soils treated with various mercury compounds. J.September 201690TRIM.FaTE Public Reference Library

Agr. Food Chem. 21:607-613.

Baes, C.F., III, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. A review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. ORNL-5786. Oak Ridge National Laboratory, Oak Ridge, TN.

Bamford, H., DL Poster, & JE Baker. (1999). Temperature dependence of Henry's law constants of thirteen polycylclic aromatic hydrocarbons between 4°C and 31°C Environ. Toxicol. Chem, 18, 1905–1912, in Mackay et al. 2006.

Barber, M.C. 2008. Dietary uptake models used for modeling the bioaccumulation of organic contaminants in fish. Environmental Toxicology and Chemistry 27(4):755-777.

Barr, J.F. 1996. Aspects of common loon (Gavia immer) feeding biology on its breeding ground. Hydrobiologia. 321:119-144.

Barrett, G.W. and K.L. Stueck. 1976. Caloric ingestion rate and assimilation efficiency of the short-tailed shrew, Blarina brevicauda. Ohio J. Sci. 76:25-26.

Bell, G.P. 1990. Birds and mammals on an insect diet: a primer on diet composition analysis in relation to ecological energetics. Stud. Avian Biol. 13:416-422.

Berntssen, M.H.G., T.A. Giskegjerde, G. Rosenlund, B.E. Torstensen, and A.K. Lundebye. 2007. Predicting world health organization toxic equivalency factor dioxin and dioxin-like polychlorinated biphenyl levels in farmed Atlantic salmon (Salmo salar) based on known levels in feed. Environmental Toxicology and Chemistry 26(1):13-23. doi: 10.1897/06-122r.1.

Bergqvist, C. 2013. Arsenic accumulation in plants for food and phytoremediation: Influence by external factors. Stockholm University; Department of Ecology, Environment and Plant Sciences.

Beyer, W.N., E. Conner, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. J. Wildl. Mgmt. 58:375-382.

Bidleman, T.F. 1988. Atmospheric processes. Environmental Science and Technology. 22:361-367.

Birnbaum, L.S., and Couture, L.A. 1988. Disposition of octachlorodibenzo-p-dioxin (OCDD) in male rats. Toxicol. Appl. Pharmacol. 93: 22-30.

Bishop, K.H., Y.H. Lee, J. Munthe, and E. Dambrine. 1998. Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry. 40:101-113.

Bleavins, M.R. and R.J. Aulerich. 1981. Feed consumption and food passage time in mink (Mustela vison) and European ferrets (Mustela putorius furo). Lab. Anim. Sci. 31:268-269.

Bonar, S.A., G.L. Thomas, S.L. Theisfield, G.B. Pauley, and T.B. Stables. 1993. Effort of triploid grass carp on the aquatic macrophyte community of Devils Lake, Oregon. North American Journal of Fisheries Management. 13:757-765.

Boyle, T. 1985. Validation and predictability of laboratory methods for assessing the fate and effects of contaminants in aquatic ecosystems. Baltimore, MD: ASTM International.

Brown, J.H. and R.C. Lasiewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology. 53:939-943.

Bull, K.R., R.D. Roberts, M.J. Inskip, and G.T. Goodman. 1977. Mercury concentrations in soil, grass, earthworms, and small mammals near an industrial emission source. Environmental Pollution. 12:135-140.

Burt, W.H., and R.P. Grossenheider. 1976. A field guide to the mammals. Third Edition. Houghton Mifflin Co, Boston.

Calder, W.A. and E.J. Braun. 1983. Scaling of osmotic regulation in mammals and birds. Am. J. Physiol. 224:R606.

California Environmental Protection Agency (CalEPA). 1993. CalTOX, A Multimedia Total-Exposure Model for Hazardous-Waste Sites, Part II: The Dynamic Multimedia Transport and Transformation. Model Prepared for: The Office of Scientific Affairs. Department of Toxic Substances Control. Sacramento, California. December. Draft Final.

CARB. 1994. California Air Resources Board. Development of intermedia transfer factors for pollutants, Volume II: Metals and non-volatile organic compounds. PB95-260691. California: Air Resources Board. March.

Carpi, A. and S.E. Lindberg. 1997. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science and Technology. 31(7):2085-2091.

Carbon Dioxide Information Analysis Center (CDIAC) website. http://cdiac.ornl.gov/home.html.

Chemfinder. Database and Internet searching website. http://chemfinder.cambridgesoft.com.

Clark, K.E., and D. Mackay. 1991. Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies. Environ. Toxicol. Chem. 10: 1205-1217.

Coe, J.M., and S.E. Lindberg. 1987. The morphology and size distribution of atmospheric particles deposited on foliage and inert surfaces. JAPCA. 37:237-243.

Crank, J., N.R. McFarlane, J.C. Newby, G.D. Paterson, and J.B. Pedley. 1981. Diffusion processes in environmental systems. In: Paterson et al. 1991. London: Macmillan Press, Ltd.

Crompton, T.R. 1998. Occurrence and analysis of organometallic compounds in the environment. West Sussex: John Wiley & Sons.

Dark, J., I. Zucker, and G.N. Wade. 1983. Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles. Am. J. Physiol. 245:R334.

Decad, G.M., Birnbaum, L.S., and Matthews, H.B. 1981. Distribution and excretion of 2,3,7,8-tetrachlorodibenzofuran in C57BL/6J and DBA/2J mice. Toxicol. Appl. Pharmacol. 59: 564-573.

Del Vento, S., & Dachs, J. (2002). Prediction of uptake dynamics of persistent organic pollutants by

bacteria and phytoplankton. Environmental Toxicology and Chemistry, 21(10), 2099-2107.

Dice, L.R. 1922. Some factors affecting the distribution of the prairie vole, forest deer mouse, and prairie deer mouse. Ecology 3: 29-47.

Diliberto, J.J., J.A. Jackson, and L.S. Birnbaum. 1996. Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disposition following pulmonary, oral, dermal, and parenteral exposures to rats. Toxicol. Appl. Pharmacol. 138: 158-168. (as cited in EPA 2000a).

Dunning, J.B. 1993. CRC handbook of avian body masses. Boca Raton, FL: CRC Press. pp. 371.

Edwards, N.T. 1988. Assimilation and metabolism of polycyclic aromatic hydrocarbons by vegetation -an approach to this controversial issue and suggestions for future research, pp. 211-229. In M. Cooke and A.J. Dennis,eds. Polynuclear Aromatic Hydrocarbons: A Decade of Progress. Tenth International Symposium. Batelle Press, Columbus, OH.

Edwards, N.T. 1988. Assimilation and metabolism of polycyclic aromatic hydrocarbons by vegetation -an approach to this controversial issue and suggestions for future research, pp. 211-229. In M. Cooke and A.J. Dennis,eds. Polynuclear Aromatic Hydrocarbons: A Decade of Progress. Tenth International Symposium. Batelle Press, Columbus, OH; as cited in Efroymson, R. 1997. Evaluation of plant PAH metabolism data. Oak Ridge National Laboratory. Unpublished

Gasiewicz, T.A., Geiger, L.E., Rucci, G., and Neal, R.A. 1983. Distribution, excretion and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BZL/6J, DBA/2J and B6D3F/J mice. Drug Metab. Disp. 11: 397-403.

Gay, D.D. 1975. Biotransformation and chemical form of mercury in plants. International Conference on Heavy Metals in the Environment, pp. 87-95. Vol. II, Part 1. October.

Gilmour, C.C. and E.A. Henry. 1991. Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution. 71:131-169.

Groundwater Loading Effects of Agricultural Management Systems (GLEAMS). 1993. http://sacs.cpes.peachnet.edu/sewrl/Gleams/gleams y2k update.htm.

Golley, F.B. 1961. Energy values of ecological materials. Ecology. 42:581-584.

Goulet, R.R., S. Krack, P.J. Doyle, L. Hare, B. Vigneault, and J.C. McGeer. 2007. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterbourne and dietborne exposures. Aquatic Toxicology. 81: 117-125.

Green, D.A. and J.S. Millar. 1987. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can. J. Zool. 65:2159-2162.

Hansch, C., A. Leo, and D. Hoekman. 1995. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society, 154 (in Mackay et al. 2006).

Hare, L; Tessier, A; and Warren, L. 2001. Cadmium accumulation by invertebrates living at the sediment–water interface. Environmental Toxicology and Chemistry 20: 880-889.

Harner and Bidleman. 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science and Technology. 32:1494-1502.

Heinz, G.H., D.J. Hoffman, A.J. Krynitsky, and D.M.G. Weller. 1987. Reproduction in mallards fed selenium. Environ. Toxicol. Chem. 6:423-433.

Hendriks, AJ; and Heikens, A. 2001. The power of size. 2. Rate constants and equilibrium ratios for accumulation of inorganic substances related to species weight. Environmental Toxicology and Chemistry 20: 1421-1437.

Henning, B.J., H.G. Snyman, and T.A.S. Aveling. 2001. Plant-soil interactions of sludge-borne heavy metals and the effect on maize (Zea mays L.) seedling growth. Water SA 27(1):71-78.

Hites, R. A., and Harless, R. L. 1991. Atmospheric transport and deposition of polychlorinated dibenzo-pdioxins and dibenzofurans. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development. EPA-600/3-91/002.

Hogg, T.J., J.R. Bettany, and J.W.B. Stewart. 1978. The uptake of 203Hg-labeled mercury compounds by bromegrass from irrigated undisturbed soil columns. J. Environ. Qual. 7:445-450.

Howard, P.H., R.S. Boethling, W.F. Jarvis, W.M. Meylan, and E.M. Michalenko. 1991. Handbook of Environmental Degredation Rates. Chelsea, Michigan: Lewis Publishers.

HSDB. 2001a. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 08/09/2001]. 7,12-Dimethylbenz(a)anthracene; Hazardous Substances Databank Number: 2938. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2938.

HSDB. 2001b. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 08/09/2001]. Acenaphthylene; Hazardous Substances Databank Number: 2661. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2661.

HSDB. 2001c. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 08/09/2001]. Benzo(ghi)perylene; Hazardous Substances Databank Number: 6177. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+6177.

HSDB. 2001d. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 08/09/2001]. Acenaphthene; Hazardous Substances Databank Number: 2659. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2659.

HSDB. 2001e. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 08/09/2001]. Fluorene; Hazardous Substances Databank Number: 2165. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2165.

HSDB (Hazardous Substances Data Bank). 2005. Bethesda, MD: National Library of Medicine, U.S. [Last Revision Date 10/27/2005]. 2-Methylnaphthalene; Hazardous Substances Databank Number: 5274. Available at: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+5274.

Hudson, R., S.A. Gherini, C.J. Watras, and D. Porcella. 1994. Modeling the biogeochemical cycle of mercury in lakes: The Mercury Cycling Model (MCM) and its application to the MTL Study Lakes. In: C.J. Watras and J.W. Huckabee, eds. Mercury pollution integration and synthesis. Lewis Publishers. pp.

473-523. (as cited in Mason et al. 1995b).

ICF (ICF International). 2005. Memorandum: TRIM.FaTE screening scenario: Aquatic food web analysis; submitted to Deirdre Murphy and Terri Hollingsworth, U.S. EPA, from Margaret McVey and Rebecca Kauffman, ICF Consulting. October 18.

Iriel, A., M. Lagorio, A.F. Cirelli. 2015. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere. 138: 383-389. doi: 10.1016/j.chemosphere.2015.06.053

Jackson, R.B., J. Canadell, J.R. Ehleringer, H.A. Mooney, O.E. Sala and E.D. Schulze. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia. 108:389-411.

Janssen, R.P.T., L. Posthuma, R. Baerselman, H.A. DenHollander, R.P.M. van Veen, and W.J.G.M. Peijnenburg. 1997. Equilibrium partitioning of heavy metals in Dutch field soils. II. Prediction of metal accumulation in earthworms. Environ. Toxicol. Chem. 16:2479-2488.

John, M.K. 1972. Mercury uptake from soil by various plant species. Bull. Environ. Contam. Toxicol. 8:77-80.

Kaushal, S.S., P.M. Groffman, G.E. Likens, K.T. Belt, W.P. Stack, V.R. Kelly, L.E. Band, and G.T. Fisher, 2005. Increased Salinization of Fresh Water in the Northeastern United States. Proceedings of the National Academy of Sciences 102:13517-13520.

Kim, M., and P. O'Keefe. 1998. The role of natural organic compounds in photosensitized degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Organohalogen Compounds 36: 377-380, as cited in U.S. EPA 2000b.

Kleeman, J.M., J.R. Olson, S.M. Chen, et al. 1986. 2,3,7,8-Tetrachlorodibenzo-p-dioxin metabolism and disposition in yellow perch. Toxicol Appl Pharmacol. 83: 402-411.

Koester, C.J. and Hites, R.A. 1992. Wet and dry deposition of chlorinated dioxins and furans. Environ. Sci. and Technol. 26(7):1375-1382.

Komoba, D., C. Langebartels, and H. Sandermann. 1995. Metabolic processes for organic chemicals in plants. In: Plant Contamination Modeling and Simulation of Organic Chemical Processes. Trapp, S., and Mc Farlane, J.C., eds., CRC Press, Boca Raton, FL. Pages 69-103.

Lasiewski, R.C. and W.A. Calder, Jr. 1971. A preliminary allometric analysis of respiratory variables in resting birds. Resp. Physiol. 11:152-166.

Leith, H. 1975. Primary productivity in the biosphere. In: H. Leith and R.W. Whitaker. Ecological studies, volume 14. Springer-Verlag.

Lemair, P., A. Mathieu, S. Carriere, J.F. Narbonne, M. Lafaurie, and J. Giudicelli. 1992. Hepatic biotransformation enzymes in aquaculture European sea bass (Dicentrarchus labrax): kinetic parameters and induction with benzo(a)pyrene. Comparative Biochemistry and Physiology 103(B): 847-853.

Leonard, T.L., G.E. Taylor, Jr., M.S. Gustin, and G.C.J. Fernandez. 1998. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ. Toxicol. Chem.

17:2063-2071.

Lindberg, S.E. 1996. Forests and the global biogeochemical cycle of mercury: The importance of understanding air/vegetation exchange processes. In: W. Baeyans et al., eds. Global and regional mercury cycles: Sources, fluxes, and mass balances. pp. 359-380.

Lotze, J.H. and S. Anderson. 1979. Procyon lotor. Mammalian Species. 119:1-8.

Ma, W.-C., J. Immerzeel, J. Boldt. 1995. Earthworm and food interactions on bioaccumulation and disappearace in soil of polycyclic aromatic hydrocarbons: Studies on phenanthrene and fluoranthene. Ecotoxicol. Environ. Safety 32:226-232.

MacKay, D., S. Patterson, W.H. Schroeder. 1986. Environmental Science and Technology. 20(8): 810-816.

MacKay, D., W.Y. Shiu, and K.C. Ma. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Volume II, Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Chelsea, MI: Lewis Publishers. (as cited in EPA 2000b).

Mackay, D., W.Y. Shiu, and K.C. Ma. 2000. Physical-Chemical Properties and Environmental Fate Handbook. Boca Raton, FL: CRC Press LLC.

Mackay, D., W.Y. Shiu, K.C. Ma, and S.C. Lee. (2006). Physical-Chemical Properties and Environmental Fate for Organic Compounds (2nd Edition). Boca Raton, FL: CRC Press.

Maine, M, Duarte MV, and Sune NL. 2001. Cadmium Uptake by floating macrophytes. Wat. Res. 35(11): 2629-2634.

Mason, R.P., F.M.M. Morel, and H.F. Hemond. 1995a. The role of microorganisms in elemental mercury formation in natural waters. Water, Air, and Soil Pollution. 80:775-787.

Mason, R.P., J.R. Reinfelder, and F.M.M. Morel. 1995b. Bioaccumulation of mercury and methylmercury. Water Air and Soil Pollution. 80(1-4):915-921.

Mason, R.P., J.R. Reinfelder, and F.M.M. Morel. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology. 30(6):1835-1845.

Mautz, W.W., H. Silver, J.B. Hayes, and W.E. Urban. 1976. Digestibility and related nutritional data for seven northern deer browse species. J. Wildl. Mgmt. 40:630-638.

McCrady, J.K., and S.P. Maggard. 1993. Update and photodegradation of 2,3,7,8-tetrachloro-p-dioxin sorbed to grass foliage. Environ. Sci. Tech. 27: 343-350.

McGeer, JC, KV Brix, JM Skeaff, DK DeForest, SI Brigham, WJ Adams, and A Green. 2003. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environmental Toxicology and Chemistry, $(22)5:1017\sqrt{1037}$.

McKone, T.E. 1997. Unpublished.

McKone, T.E., A. Bodnar, and E. Hertwich. 2001. Development and evaluation of state- specific landscape data sets for multimedia source-to-dose models. University of California at Berkeley. Supported by U.S. Environmental Protection Agency (Sustainable Techonology Division, National Risk Management Research Laboratory) and Environmental Defense Fund. July. LBNL-43722.

Millard, E.S., D.D. Myles, O.E. Johannsson, and K.M. Ralph. 1996. Phytoplankton photosynthesis at two index stations in Lake Ontario 1987-1992: assessment of the long-term response to phosphorus control. Canadian Journal of Fisheries and Aquatic Sciences 53: 1092-1111, as cited in ICF 2005.

Moermond, C. T. A., Traas, T. P., Roessink, I., Veltman, K., Hendriks, A. J., & Koelmans, A. A. (2007).

Modeling Decreased Food Chain Accumulation of PAHs Due to Strong Sorption to Carbonaceous Materials and Metabolic Transformation. Environmental Science & Technology, 41(17), 6185-6191. doi: 10.1021/es0702364.

Montgomery, J. 2000. Groundwater chemicals desk reference. Boca Raton, FL: CRC Press LLC, p. 1701. Morrison, H.A., D.M. Whittle, C.D. Metcalfe, and A.J. Niimi. 1999. Application of a food web bioaccumulation model for the prediction of polychlorinated biphenyl, dioxin, and furan congener concentrations in Lake Ontario aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences 56(8):1389-1400.

Morrison, H. A., Whittle, D. M., Metcalfe, C. D., & Niimi, A. J. (1999). Application of a food web bioaccumulation model for the prediction of polychlorinated biphenyl, dioxin, and furan congener concentrations in Lake Ontario aquatic biota. Canadian journal of fisheries and aquatic sciences, 56(8), 1389-1400.

Muhlbaier, J., and G.T. Tissue. 1980. Cadmium ion the southern basin of Lake Michigan. Water, Air and Soil Pollution (15):45-49.

Muir, D.C.G., Marshall, W.K., and Webster, G.R.B. 1985. Bioconcentration of PCDDs by fish: effects of molecular structure and water chemistry. Chemosphere. 14, 829-833.

Muir, D.C.G., Yarechewski, A.L., Knoll, A, and Webster, G.R.B. 1986. Bioconcentration and disposition of 1,3,6,8-tetrachlorodibenzo-p-dioxin and octachlorodibenzo-p-dioxin by rainbow trout and fathead minnows. Environ. Toxicol. Chem. 5: 261-272.

Muller, H. and G. Prohl. 1993. Ecosys-87: A dynamic model for assessing radiological consequences of nuclear accidents. Health Phys. 64:232-252.

Mumford, R.E. and J.O. Whitaker, Jr. 1982. Mammals of Indiana. Bloomington, IN: Indiana University Press.

Nagy, K.A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57: 111-128.

Nagy, K.A., I.A. Girard, and T.K. Brown. 1999. Energetics of free-ranging mammals, reptiles, and birds. Ann. Rev. Nutr. 19:247-277.

Nelson, A.L. and A.C. Martin. 1953. Gamebird weights. J. Wildl. Manage. 17:36-42.

Nessel, C.S., M.A. Amoruso, T.H. Umbreit, et al. 1990. Hepatic aryl hydrocarbon hydroxylase and cytochrome P450 induction following the transpulmonary absorption of TCDD from intratracheally instilled particles. Fundam. Appl. Toxicol. 15: 500-509. (as cited in EPA 2000c).

Nessel, C.S., M.A. Amoruso, T.H. Umbreit, et al. 1992. Pulmonary bioavailability and fine particle enrichment of 2,3,7,8-tetrachlorodibenzo-p-dioxin in respirable soil particles. Fundam. Appl. Toxicol. 19: 279-285. (as cited in EPA 2000c).

Niimi, A. J., & Dookhran, G. P. 1989. Dietary absorption efficiencies and elimination rates of polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (salmo gairdneri). Environmental Toxicology and Chemistry, 8(8), 719-722. doi: 10.1002/etc.5620080809.

Niimi, A. J. and Oliver, B. G. 1986. Biological half-Biological half-lives of chlorinated dibenzo-pdioxins and dibenzofurans in rainbow trout (Salmo gairdneri). Envir. Tox. and Chem. 5(1). Doi: 10.1002/etc.5620050107.

Niimi, A.J., and V. Palazzo. 1986. Biological half-lives of eight polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Water Research 20(4):503-507.

Nosek, J.A., S.R. Craven, J.R. Sullivan, et al. 1992. Metabolism and disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin in ring-necked pheasant hens, chicks and eggs. J. Toxicol. Environ. Health. 35(3): 153-164.

Nriagu, J.O. 1980. Cadmium in the environment. Part I: Ecological cycling. New York: John Wiley & Sons. Chapter 15: Uptake and effects of cadmium in higher plants. pp. 608-609.

Nuorteva, P. and S.L. Nuorteva. 1982. The fate of mercury in Sarcosaprophagous flies and in insects eating them. Ambio. 11:34-37.

Passivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., Wania, F. (1999). Estimation of vapor pressures, solubilities and Henry's law constants of selected persistent organic pollutants as functions of temperature. Chemosphere 39: 811–832, as cited by Mackay et al. 2006.

Paterson, S., D. Mackay, and A. Gladman. 1991. A fugacity model of chemical uptake by plants from soil and air. Chemosphere. 23:539-565.

Petersen, G., A. Iverfeldt, and J. Munthe. 1995. Atmospheric mercury species over Central and Northern Europe. Model calculations and comparison with observations from the Nordic Air and Precipitation Network for 1987 and 1988. Atmospheric Environment. 29:47-68.

Piper, W.N., Rose, J.Q., and Gehring, P.J. 1973. Excretion and tissue distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Environ. Health. Perspect. 5: 241-244.

Porter, E.E., R.A. Redak, and H.E. Baker. 1996. Density, biomass, and diversity of grasshoppers (Orthoptera: Acrididae) in a California native grassland. Great Basin Nat. 56:172-176.

Porvari, P. and M. Verta. 1995. Methylmercury production in flooded soils: A laboratory study. Water, Air, and Soil Pollution. 80:765-773.

Preston, C.R. and R.D. Beane. 1993. Red-tailed Hawk. (Buteo jamaicensis). In: Poole, A. and F. Gill,

eds. The birds of North America, No. 52. The Academy of Natural Sciences, Philadelphia, and the American Ornithologists' Union, Washington, D.C.

Opperhuizen, A., W.J. Wagenaar, F.W.M. van der Wielen, M. van den Berg, K. Olie, and F.A.P.C. Gobas.1986. Uptake and elimination of PCDD/PCDF congeners by fish after aqueous exposure to a fly-ash extract from a municipal incinerator. Chemosphere 15(9–12):2049-2053. doi: 10.1016/0045-6535(86)90511-4.

Quinney, T.E. and C.D. Ankney. 1985. Prey size selection by tree swallows. Auk 102: 245-250.

Reich, L.M. 1981. Microtus pennsylvanicus. Mamm. Species. 159:1-8.

Reinecke, A.J., and Nash, G. 1984. Toxicity of 2,3,7,8-TCDD and short term bioaccumulation by earthworms Oligochaeta. Soil Biology and Biochemistry. 1: 39-44.

Ribeyre, F. and A. Boudou. 1994. Experimental-study of inorganic and methylmercury bioaccumulation by 4 species of fresh-water rooted macrophytes from water and sediment contamination sources. Ecotoxicology and Environmental Safety. 28(3):270-286.

Riederer, M. 1995. Partitioning and transport of organic chemicals between the atmospheric environment and leaves. In: Trapp, S. and J. C. McFarlane, eds. Plant contamination: Modeling and simulation of organic chemical processes. Boca Raton, FL: Lewis Publishers. pp. 153-190.

Rubinstein, N.I., Pruell, R.J., Taplin, B.K., LiVolsi, J.A., and Norwood, C.B. 1990. Bioavailability of 2,3,7,8-TCDD, 2,3,7,8-TCDF and PCBs to marine benthos from Passaic river sediments. Chemosphere. 20: 1097-1102.

Rust, A.K. 1978. Activity rhythms in the shrews, Sorex sinuosus Grinnell and Sorex trowbridgii Baird. Am. Midl. Nat. 99:369-382.

Sangster, J. (1993). LOGKOW, A Databank of Evaluated Octanol-Water Partition Coefficients. 1st Edition, Montreal, Quebec, Canada, as cited by Mackay et al. 2006.

Saouter, E., F. Ribeyre, A. Boudou, and R. Maurybrachet. 1991. Hexagenia-rigida (Ephemeroptera) as a biological model in aquatic ecotoxicology - Experimental studies on mercury transfers from sediment. Environ. Pollut. 69:51-67.

Sijm, D.T.H.M., H. Wever, P.J. de Vries, and A. Opperhuizen. 1989. Octan-1-ol/water partition coefficients of polychlorinated dibenzo-p-dioxins and dibenzofurans: experimental values determined with a stirring method. Chemosphere. 19(1-6): 263-266. (as cited in U.S. EPA 2000b)

Sijm, D.T.H.M., A.L. Yarechewski, D.C.G. Muir, G.R.B. Webster, W. Seinen, and A. Opperhuizen. 1990. Biotransformation and tissue distribution of 1,2,3,7-tetrachlorodibenzo-p-dioxin, 1,2,3,7- pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran in rainbow trout. Chemosphere. 21: 845-866.

Silva, M. and J.A. Downing. 1995. CRC handbook of mammalian body masses. Boca Raton, FL: CRC Press. pp. 359.

Simonich, S.L. and R.A. Hites. 1994. Importance of vegetation in removing polycyclic aromatic

hydrocarbons from the atmosphere. Nature. 370:49-51.

Smith, S.M. 1993. Back-capped Chickadee. (Parus atricapillus). In: Poole, A. and F. Gill, eds. The Birds of North America, No. 39. Philadelphia, PA: The Academy of Natural Sciences, and Washington, D.C.: The American Ornithologists' Union.

Smolen, M.J., and B.L. Keller. 1987. Microtus longicaudus. Mammalian Species No. 271. pp 1-7.

Spero, J., Devito, B., Theodore, L. 2000. Regulatory Chemical Handbook. CRC Press.

Syracuse Research Corporation (SRC). 2005. PhysProp Database. Web site at http://www.syrres.com/esc/physdemo.htm. In: U.S. EPA 2005.

Stahl, W.R. 1967. Scaling of respiratory variables in mammals. J. Appl. Physiol. 22(3):453-460.

Stalmaster, M.V. and Gessaman, J.A. 1984. Ecological energetics and foraging behavior of overwintering bald eagles. Ecol. Monogr. 54: 407-428.

Stehly, G.R., P.F. Landrum, M.G. Henry, C. Klemm. 1990. Toxicolkinetics of PAHs in Hexagenia Environmental Toxicology and Chemistry 9: 167-174.

Takeda, Y. and T. Ukita. 1970. Metabolism of ethylmercuric chloride-203Hg in rats. Toxicol. Applied Pharm. 17:181-188.

Talmage, S.S. and B.T. Walton. 1993. Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site. Ecotoxicology. 2:243-256.

Teisinger, J. and V. Fiserova-Bergerova. 1965. Pulmonary retention and excretion of mercury vapors in man. Indust. Med. Surgery. July:581-584.

Thibodeaux, L.J. 1996. Environmental chemodynamics: Movement of chemicals in air, water, and soil. New York, NY: John Wiley and Sons, Inc.

Thomann, R.V. 1989. Bioaccumulation model of organic-chemical distribution in aquatic food- chains. Environmental Science & Technology. 23(6):699-707.

Trapp, S. 1995. Model for uptake of xenobiotics into plants. In: Trapp, S. and J. C. McFarlane, eds. Plant contamination: Modeling and simulation of organic chemical processes. Boca Raton, FL: Lewis Publishers. pp. 107-151.

Trudel, M. and J.B. Rasmussen. 1997. Modeling the elimination of mercury by fish. Environmental Science and Technology. 31:1716-1722.

Tsiros, I.X.; R.B. Ambrose, and A. Chronopoulou-Sereli. 1999. Air-vegetation partitioning of toxic chemicals in environmental simulation modeling. Global NEST: The International Journal 1(3):177-184.

ToxNet HSDB: http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~PUEiej:2

United States Department of Health and Human Services (USDHHS), Toxicological Profile for Mercury: Update: Draft Report. October 1992: In CARB. 1994.

U.S. Environmental Protection Agency (U.S. EPA). 1992. Draft Report: A Cross-Species Scaling Factor for Carcinogen Risk. Assessment Based on Equivalence of mg/kg3/4/day; Notice. U.S. Environmental Protection Agency. Federal Register.

U.S. EPA. 1993. U. S. Environmental Protection Agency. Wildlife Exposure Factors Handbook. Volume I. DC.EPA/600/R-93/187a. Washington: Office of Research and Development.

U.S. EPA. 1995a. Hazardous Waste Treatment, Storage, and Disposal Facilities (TSF) Wastewater Treatment Air Emission Models, WATER8. Office of Air Quality Planning and Standards, Research Triangle Park, N.C. February.

U.S. EPA. 1995b. Review Draft Development of Human Health-Based and Ecologically-Based Exit Criteria for the Hazardous Waste Identification Project. Volumes I and II. Office of Solid Waste. March 3. In U.S. EPA 2005.

U. S. EPA. 1997. U.S. Environmental Protection Agency. Mercury study report to congress. Volume III: Fate and transport of mercury in the environment. Office of Air Quality Planning and Standards and Office of Research and Development.

USEPA. 1998. Chemical fate half-lives for Toxics Release Inventory (TRI) chemicals. July. SRC TR 98-008.

U.S. EPA. 1999. Screening level ecological risk assessment protocol for hazardous waste combustion facilities. Office of Solid Waste and Emergency Response. EPA530-D-99-001B. Peer review draft. http://www.epa.gov/epaoswer/hazwaste/combust/ecorisk.htm.

U.S. EPA. 2000a. Estimation Program Interface (EPI) suite. Office of Pollution Prevention and Toxics (OPPT). http://www.epa.gov/oppt/exposure/docs/episuitedl.htm.

U.S. EPA. 2000b. Draft exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD) and related compounds, Volume 3: Properties, environmental levels, and background exposures, Chapter 2: Physical and chemical properties and fate and Appendix A. EPA/600/P-00/001Bc. Available at: http://www.epa.gov/ncea/pdfs/dioxin/part1/volume3/chap-2.pdf.

U.S. EPA. 2000c. Draft exposure and human health reassessment of

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, Part II: Health assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Chapters 1 through 7. EPA/600/P-00/001Be. http://www.epa.gov/ncea/pdfs/dioxin/part2/dritoc.pdf.

U.S. EPA. 2004. WATER9—Air Emissions Models Wastewater Treatment. Version 2.0.0. OAQPS. Research Triangle Park. North Carolina. July 1. In: U.S. EPA 2005.

U.S. EPA. 2005a. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Companion Database. Available at: http://www.epa.gov/region6/6pd/rcra_c/protocol/protocol.htm.

U.S. EPA. 2005b. Water9. As cited in CPF Associates, Inc. 2007. Draft Risk Assessment for the Siemens Water Technologies Corp. Carbon Reactivation Facility, Paker, Arizona. Appendix F. Available online at: http://www.epa.gov/region9/waste/siemens/pdf/RiskAssessment/siemens-riskassessAppxF.pdf

U.S. EPA. 2005c. Empirical Models of Pb and Cd Partitioning Using Data from 13 Soils, Sediments, and Aquifer Materials. Available at: http://www.epa.gov/athens/publications/reports/LouxEmpiricalModels600R05077.pdf.

van Brummelen, T.C. and N.M. van Straalen. 1996. Uptake and elimination of benzo(a)pyrene in the terrestrial isopod Porcellio scaber. Arch. Environ. Contam. Toxicol. 31:277-285.

Vandal, G.M., W.F. Fitzgerald, K.R. Rolfhus, and C.H.Lamborg. 1995. Modeling the elemental mercury cycle in Pallette Lake, Wisconsin, USA. Water, Air, and Soil Pollution. 80:789-798.

Van den Berg, M., De Jongh, J., Poiger, H., & Olson, J. R. 1994. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. CRC Critical Reviews in Toxicology, 24(1), 1-74.

Vickers, D. and Slinn, W.G.N. 1979. Estimates for Wet and Dry Removals' Contribution to the Residence Time for Atmospheric Pollutants in the Eastern United States. Department of Energy Report SR-980-6. Contract EY-77-S-09-0980.

Vulykh, N. and V. Shatalov. 2001. Meteorological Sythesizing Centre - East. Investigation of Dioxin/Furan Composition in Emissions and in Environmental Media: Selection of Congeners for Modeling. MSC-E.Technical Note 6/2001.

Wang, X., & Wang, W. X. (2006). Bioaccumulation and transfer of benzo (a) pyrene in a simplified marine food chain. Marine ecology.

Wania, F., J. Axelman, D. Broman. 1998. "A review of processes involved in the exchange of persistent organic pollutants across the air-sea interface." Environmental Pollution. 102: 3-23.

Weyand, E.H., and D.R. Bevan. 1986. Benzo(a)pyrene disposition and metabolism in rats following intratracheal installation. Cancer Res. 46: 5655-5661.

Williams, J.B. 1988. Field Metabolism of tree swallows during the breeding season. Auk 105: 706-714.

Williams, J.J., J. Dutton, C.Y. Chen, and N.S. Fisher. 2010. Metal (As, Cd, Hg, and CH3Hg) bioaccumulation from water and food by the benthic amphipod Leptocherius plumulosus. Environmental Toxicology and Chemistry 29(8):1755-1761.

Wilmer, C. and M. Fricker. 1996. Stomata. Second ed. New York, NY: Chapman and Hall. p. 121.

Xiao, Z.F., D. Stromberg, and O. Lindqvist. 1995. Influence of humic substances on photolysis of divalent mercury in aqueous solution. Water, Air, and Soil Pollution. 80:789-798.

Yan, X; and Wang, WX. 2002. Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus. Marine Ecology Progress Series 238: 173-186.

Zhao, F.J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2008. Arsenic uptake and metabolism in plants. New Phytologist. 181: 777-794.

Attachment 1 Documentation of Food Ingestion Rate Values for Terrestrial and Semiaquatic Animals

(1) Black-capped chickadee

Food ingestion rate: 0.74 kg[food wet wt]/kg[body weight (BW) wet]-day

Smith (1993) reports that while no data on nutrition and food ingestion by black-capped chickadees are available, parids of comparable size require 10 kcal/day (41.8 kJ/day). Assuming that the chickadee diet consists 100 percent of insects, the chickadee wet body weight (BW) is 0.0108 kg (Dunning 1993), and energy and water content of insects are 22.1 kJ/g dry weight (5.28 kcal/g dry wt) and 76.3 percent, respectively (Bell 1990), daily food ingestion by chickadees would be 0.74 kg[food wet wt]/kg[BW wet]-day.

(2) Short-tailed shrew

Food ingestion rate: 0.47 kg[food wet wt]/kg[BW wet]-day

The mean daily ingestion rate of shrews in Barrett and Stueck (1976) was 0.49 kg[food wet wt]/kg[BW wet]-day. The value of 0.47 that was included in the mercury test simulations is close to the value from Barrett and Stueck (1976). Caged shrews were fed mealworms, which have essentially the same water content as the natural prey of shrews.

(3) Meadow vole, Long-tailed vole

Food ingestion rate: 0.097 kg[food wet wt]/kg[BW wet]-day

Food intake by meadow voles when exposed to 14-h days was 0.095 ± 0.002 (mean \pm SE) kg[food wet wt]/kg[BW wet]-day; intake by individuals exposed to 10-h days was 0.085 ± 0.005 kg/kg-day (wet wt) (Dark et al. 1983). Mean food consumption by prairie voles (assumed to weigh 35 g; Burt and Grossenheider 1976) was 0.088 kg/kg-day (wet wt) and 0.12 kg/kg-day (wet wt) when ambient temperatures were 21 degrees and 28 degrees Celsius, respectively (Dice 1922).

(4) White-tailed deer

Food ingestion rate: 0.05 kg[food wet wt]/kg[BW wet]-day

Mautz et al. (1976) reported a 1.74 kg/day diet for a 35 kg deer, which represents maintenance of the deer through the winter. There is no value adjustment for summer, because the energy required by females to thermoregulate and gestate in the winter might be roughly equivalent to the energy for late gestation and lactation.

(5) Tree swallow

Food ingestion rate: 0.198 kg[food wet wt]/kg[BW wet]-day

Female tree swallows in New Brunswick, Canada in the summer were observed to require $5.73 \pm 1.40 \text{ kJ/g-day}$ (mean \pm SD; n=10; Williams 1988). Using body weights reported in Williams (1988, 22.6 g), assuming that the diet consists exclusively of insects (Quinney and Ankney 1985), and that the energy and water content of insects are 22.09 kJ/g dry weight (5.28 kcal/g dry wt) and 76.3 percent, respectively (Bell 1990), daily food consumption by tree swallows is estimated to be 0.198 \pm 0.048 kg[food wet wt]/kg[BW wet]-day. [Note: the calculation for food ingestion rate is incorrect; it should have been 0.34 kg/kg-day (wet wt).]

(6) White-footed mouse

Food ingestion rate: 0.20 kg[food wet wt]/kg[BW wet]-day

Green and Millar (1987) observed an ingestion rate of 3.4 g/day, for laboratory mice fed Purina rat chow of an average weight of 21 g eating standard food, or a food ingestion rate of 0.16 kg[food dry wt]/kg[BW wet]-day. Body weight and gut dimensions of male and female mice did not differ, so data from both sexes were pooled (reported as g food consumed/individual-day). Food ingestion rate was normalized to body weight using body weights reported in study. The water content of Purina rat chow is approximately 0.10 (or 10 percent). The water content (WC) of the natural diet of white-footed mice is higher. Their diet includes seeds (WC of 0.09), vegetation (WC of 0.10 for mature dry grass, 0.7 to 0.88 for growing grasses), and soil arthropods (WC of 0.60 to 0.70) (U.S. EPA 1993). We assumed that the diet consists primarily of seeds and dry grasses (80 percent), but includes also soil arthropods (20 percent), for an overall moisture content of approximately 0.20. The wet food ingestion rate = the dry food ingestion rate divided by (1-WC), or in this case, the wet food ingestion rate = $0.20 \text{ kg[food wet wt]/kg[BW]-day (i.e., 0.16 \text{ kg[food dry wt]/kg[BW]-day/(1-0.20)).}$

(7) Long-tailed weasel

Food ingestion rate: 0.0735 kg[food wet wt]/kg[BW wet]-day

Brown and Lasiewski (1972) reported the mean metabolism of male and female longtailed weasels to be 1.36 ± 0.2 and 0.84 ± 0.12 (SE) kcal/hr, respectively. Assuming that male and female weasels weigh 0.297 kg and 0.153 kg (Brown and Lasiewski 1972), respectively, that the diet consists exclusively of small mammals with an energy content of 5163 kcal/kg (or 5.163 kcal/g) dry weight (Golley 1961), and that the water content of small mammals is 68 percent (U.S. EPA 1993), male and female weasels consume 0.067 and 0.080 kg[food wet wt]/kg[BW wet]-day, respectively.

(8) Red-tailed hawk

Food ingestion rate: 0.12 kg[food wet wt]/kg[BW wet]-day

Preston and Beane (1993) cite a study (Craighead and Craighead 1956) in which males ate an average of 147 g/day (13 percent of body weight) and females an average of 136 g/day (11 percent of body weight) during fall-winter. Males ingested 82 g/day (7 percent of body weight), and females only 85 g/day (7 percent), during spring-summer. To be conservative, the fall-winter food ingestion rate (average of 12 percent) was used.

(9) Mallard

Food ingestion rate: 0.1 kg[food wet wt]/kg[BW wet]-day

Heinz et al. (1987) report that mallards maintained in the laboratory consumed 0.1 kg[food dry wt]/kg[BW wet]-day. The water content of this diet (mostly seeds) ranged from 7-10 percent. Because the plant material consumed by mallards consists largely of seeds, and the mean water content of seeds is 9.3 percent (U.S. EPA 1993), the food ingestion rate used by Heinz may be used to represent the wet weight food ingestion rate without adjusting for water content.

(10) Mink

Food ingestion rate: 0.14 kg[food wet wt]/kg[BW wet]-day

Bleavins and Aulerich (1981) reported a food ingestion rate of 0.14 kg[food wet wt]/kg[BW wet]-day for male and female mink in captivity. The diet consisted of chicken (20 percent), commercial mink cereal (17 percent), fish scraps (13 percent), beef parts, cooked eggs, powdered milk, and added water. The water content of that diet as fed to the mink was 66.2 percent, which is roughly equivalent to the water content of a natural mink diet.

(11) Raccoon

Food ingestion rate: 0.11 kg[food wet wt]/kg[BW wet]-day

Using a body weight of 6.35 kg for an adult raccoon from U.S. EPA (1993) and the allometric equation for omnivorous mammals from Nagy et al. (1999), it is estimated that a raccoon would need 548 kcal daily or 86 kcal/kg-day. Assuming 0.95 kcal/g as an average gross energy content of the diet (wet wt), and an assimilation efficiency of 0.85, a raccoon would need 678 g of the diet daily, or 0.11 kg[food wet wt]/kg[BW wet]-day.

(12) Common loon

Food ingestion rate: 0.23 kg[food wet wt]/kg[BW wet]-day

Assuming a diet of 100 percent fish, a gross energy content of 1.2 kcal/g[fish wet wt], and an energy assimilation efficiency of 79 percent for seabirds eating fish and using Nagy et al.'s (1999) allometric equation for seabirds consuming fish, we calculated a food ingestion rate for loons of 0.23 kg[food wet wt]/kg[BW wet]-day.

(13) Bald eagle

Food ingestion rate: 0.12 kg[food wet wt]/kg[BW wet]-day

The value of 0.12 kg[food wet wt]/kg[BW wet] is for adults with an assumed body weight of 4.5 kg eating 100 percent fish. It is based on a field study conducted in the winter by Stalmaster and Gessaman (1984) where the eagles were provisioned with fish of known weights.

(14) Trowbridge shrew

Food ingestion rate: 1.17 kg[food wet wt]/kg[BW wet]-day

The value is the mean of the values reported by Rust (1978) for captive shrews during their breeding (i.e., 0.91 ± 0.03 (mean \pm SE) kg/kg-day) and non-breeding (i.e., 1.43 ± 0.10 (mean \pm SE) kg/kg-day) seasons. The animals were fed a diet of beef brains and Purina cat chow.

(15) Mule deer/black-tailed deer

Food ingestion rate: 0.11 kg[food wet wt]/kg[BW wet]-day

A food ingestion rate of 0.0219 ± 0.0011 (mean \pm SE) kg[food dry wt]/kg[BW wet]-day was estimated by Alldredge et al. (1974) for 87 mule deer based on known Cs-137 concentrations in deer and forage. Given that the value represents ingestion of air-dried food, the ingestion rate should be adjusted for water content for use in TRIM.FaTE, in which food ingestion rate units are on a wet-weight basis. The moisture content of grasses and leaves of dichotomous plants (e.g., shrubs, deciduous trees) is highly variable, depending on the level of hydration of the plant. Young fresh grasses and leaves of hydrated dichotomous plants are approximately 80 percent water (professional judgment based on moisture content of fresh grasses of 70 percent, Davis and Golley 1963; fresh grasses 88 percent, Drozdz 1968; and dicot leaves 85 percent (\pm 3.5 percent SD, N = 3), Golley 1961). Thus, the food ingestion rate of 0.0219 kg[food *dry* wt]/kg[BW wet]-day is roughly equivalent to 0.11 kg[food *wet* wt]/kg[BW wet]-day for deer consuming fresh young grasses and leaves of deciduous trees.

(16) Kingfisher

Food ingestion rate: 0.35 kg[food wet wt]/kg[BW wet]-day

Alexander (1977) estimated a food ingestion rate for belted kingfishers of 0.50 kg/kg-day in north central lower Michigan, but did not specify how he determined that value. Estimating the food ingestion rate based on Nagy's (1987) allometric equation for non-passerine birds (U.S. EPA's 1993 *Wildlife Exposure Factors Handbook*, Equation 3-5) results in an intake estimate of 0.0867 kg[food dry wt]/kg[BW wet]-day. Assuming that their food (fish) is 75 percent water, the estimated wet food ingestion rate would be 0.35 kg[food wet wt]/kg[BW wet]-day. Without further information on how Alexander (1977) estimated the 0.50 kg/kg-day value, we have selected the 0.35 kg/kg-day value for the food ingestion rate value for the belted kingfisher compartment in the TRIM.FaTE library.

References for Attachment 1

Alldredge, A.W., J.F., Lipscomb, and F.W. Whicker. 1974. Forage intake rates of mule deer estimated with fallout cesium-137. J. Wildl. Manage. 38(3): 508-516.

Alexander, G.R. 1977. Food of vertebrate predators on trout waters in north central lower Michigan. Michigan Academician 10: 181-195.

Barrett, G.W. and K.L. Stueck. 1976. Caloric ingestion rate and assimilation efficiency of the short-tailed shrew, <u>Blarina brevicauda</u>. Ohio J. Sci. 76:25-26.

Bell, G.P. 1990. Birds and mammals on an insect diet: a primer on diet composition analysis in relation to ecological energetics. Stud. Avian Biol. 13: 416-422.

Bleavins, M.R. and R.J. Aulerich. 1981. Feed consumption and food passage time in mink (<u>Mustela vison</u>) and European ferrets (<u>Mustela putorius furo</u>). Lab. Anim. Sci. 31:268-269.

Brown, J.H. and R.C. Lasiewski. 1972. Metabolism of weasels: the cost of being long and thin. Ecology. 53:939-943.

Burt, W.H. and R.P. Grossenheider. 1980. A Field Guide to the Mammals of North America North of Mexico. Boston, MA: Houghton Mifflin Co.

Craighead, J.J. and F.C. Craighead. 1956. Hawks, Owls and Wildlife. Harrisburg, PA: The Stackpole Co. and Washington, DC: Wildl. Manage. Inst.

Dark, J., I. Zucker, and G.N. Wade. 1983. Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles. Am. J. Physiol. 245:R334.

Davis, D.W. and F.B. Golley. 1963. Principles in Mammology. New York, NY: Van Nostrand Rheinhold.

Dice, L.R. 1922. Some factors affecting the distribution of the prairie vole, forest deer mouse, and prairie deer mouse. Ecology 3: 29-47.

Drozdz, A. 1968. Digestibility and assimilation of natural foods in small rodents. Acta Theriol. 13: 367-389.

Dunning, J.B. 1993. CRC Handbook of Avian Body Masses. Boca Raton, FL: CRC Press. pp. 371.

Golley, F.B. 1961. Energy values of ecological materials. Ecology. 42:581-584.

Green, D.A. and J.S. Millar. 1987. Changes in gut dimensions and capacity of <u>Peromyscus</u> <u>maniculatus</u> relative to diet quality and energy needs. Can. J. Zool. 65:2159-2162.

Heinz, G.H., D.J. Hoffman, A.J. Krynitsky, and D.M.G. Weller. 1987. Reproduction in mallards fed selenium. Environ. Toxicol. Chem. 6:423-433.

Mautz, W.W., H. Silver, J.B. Hayes, and W.E. Urban. 1976. Digestibility and related nutritional data for seven northern deer browse species. J. Wildl. Mgmt. 40:630-638.

Nagy, K.A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57: 111-128.

Nagy, K.A., I.A. Girard, and T.K. Brown. 1999. Energetics of free-ranging mammals, reptiles, and birds. Ann. Rev. Nutr. 19:247-277.

Preston, C.R. and R.D. Beane. 1993. Red-tailed Hawk. (<u>Buteo jamaicensis</u>). In: Poole, A. and F. Gill, eds. The Birds of North America, No. 52. Philadelphia, PA: The Academy of Natural Sciences, and Washington, D.C.: The American Ornithologists' Union.

Quinney, T.E. and C.D. Ankney. Prey size selection by tree swallows. Auk 102: 245-250.

Rust, A.K. 1978. Activity rhythms in the shrews, *Sorex sinuosus* Grinnell and *Sorex trowbridgii* Baird. Am. Midl. Nat. 99: 369-382.

Smith, S.M. 1993. Back-capped Chickadee. (<u>Parus atricapillus</u>). In: Poole, A. and F. Gill, eds. The Birds of North America, No. 39. Philadelphia, PA: The Academy of Natural Sciences, and Washington, D.C.: The American Ornithologists' Union.

Stalmaster, M.V. and J.A. Gessaman. 1984. Ecological energetics and foraging behavior of overwintering bald eagles. Ecol. Monogr. 54: 407-428.

U.S. Environmental Protection Agency (U.S. EPA). 1993. Wildlife Exposure Factors Handbook, Volume I. Washington, D.C.: Office of Research and Development. EPA/600/R-93/187a.

Williams, J.B. 1988. Field Metabolism of tree swallows during the breeding season. Auk 105: 706-714.

Attachment 2 Documentation of Total Elimination Rate Values for Mercury for Terrestrial and Semi-aquatic Animals

First-order rate constants used to derive the mercury elimination rate constants for wildlife in the current TRIM.FaTE library are summarized in Table 1. Supporting information is presented in the subsections that follow.

		_			
	Chemical Species	Urine and Feces (<i>E_{ut}</i>)	Lactation (<i>E_{lact}</i>)	Eggs (<i>E_{egg}</i>)	Fur, Feathers, or Hair (<i>E_{ff}</i>)
mammals	Hg(2)	0.48 ^a	0.00001	NA	0.00001
	Hg(0) 0.0502 ^b		0 ^b	NA	0 ^b
	organic Hg	0.26 ^a	0.00001°	NA	0.00014 ^d
	Hg(2)	0.48 ^e	NA	O ^f	0.00011 ^g
birds	Hg(0)	0.0502 ^b	NA	0 ^b	0 ^b
	organic Hg	0.0282ª	NA	0.0244	0.0559

Table 1 Mean First-order Rate Constants (day⁻¹) for Elimination of Mercury from Birds and Mammals

^a Averages of elimination rate constants for oral and dietary doses.

^bRate constant based on inhalation study for mammals; same value assumed for birds.

^cAssume same as lactation rate constant for Hg(2).

^dAverages of elimination rate constants for oral dose and injection.

^eAssume same as elimination rate constant to mammalian urine and feces.

^f No information available.

^g Assume same as elimination rate constant to mammal fur.

For each mercury species, the total elimination rate constant for birds or mammals is equal to the sum of the excretion rate constants in Table 1 for urine and feces; lactation (mammals), and fur, hair (mammals), or feathers (birds). In the current TRIM.FaTE library, chemical excretion to eggs is assumed to remain within the bird population compartment, hence it is not included in the total bird elimination rate constant for organic mercury.

Elemental Mercury

Elemental mercury vapor is rapidly absorbed in the lungs (75 to 85 percent in humans), and to a much lesser extent (three percent), it can be absorbed dermally (ATSDR 1997, U.S. EPA 1997). Five human subjects inhaled from 107 to 202 :g[Hg]/m³[air] and retained an average of 74 percent of the dose (Teisinger and Fiserova-Bergerova 1965). The inhaled vapor readily distributes throughout the body and can cross the blood-brain and placental barriers.

Rats exposed for 5 hours to 1.4 mg/m³ radio-labeled mercury vapor retained an average body burden of 0.256 mg/kg BW (37 :g[Hg]/rat) and had excreted (urine and feces) 8.5 percent of the initial body burden in 1 day, 24.8 percent in 5 days, and 42.9 percent in 15 days (Hayes and Rothstein 1962). Cherian et al. (1978) exposed 5 human volunteers to approximately 1 :Ci

of radio-labeled Hg vapor for approximately 19 minutes. Mean cumulative excretion over the first 7 days after exposure was 2.4 percent of the retained dose in urine and 9.2 percent in feces for a total excretion of 11.6 percent of the retained dose (Cherian et al. 1978).

Rates of excretion of elemental mercury by mammals (rats and humans) are summarized in Table 2 (mean value presented in Table 1). No information on excretion by avian species is available.

Test Species	Dose	Elimination Route	Percent of Dose	Days	Rate Constant (Day ⁻¹)	Source		
Rat	0.256 mg/kg	urine + feces	8.5	1	0.08883	Hayes & Rothstein 1962		
Rat	0.256 mg/kg	urine + feces	24.8	5	0.05700	Hayes & Rothstein 1962		
Rat	0.256 mg/kg	urine + feces	42.9	15	0.03736	Hayes & Rothstein 1962		
Human	1 :Ci	urine + feces	11.6	7	0.01761	Cherian et al. 1978		
			0 <u>+</u> S	E	0.05020 <u>+</u> 0.01518			

 Table 2

 Excretion of Inhaled Elemental Mercury (Hg°) in Mammals

Divalent Mercury

Divalent mercury can be absorbed through oral, dermal, and inhalation routes; however, absorption is lower than for elemental mercury by all routes. In mice, only 20 percent of the administered dose is absorbed from the GI tract, 2-3 percent of the dose was absorbed dermally in exposed guinea pigs, and limited information on inhalation exposure indicates that 40 percent of the dose was absorbed in the lungs of dogs (U.S. EPA 1997). Additionally, the absorption of mercuric salts varies with the solubility of the specific salt. For example, the less soluble sulfide salt is more poorly absorbed as mercuric sulfide than the more soluble chloride salt as mercuric chloride (U.S. EPA 1997). Divalent mercury distributes widely throughout the body; however, it cannot cross the blood-brain or placental barriers.

The metabolism and distribution of mercuric chloride (HgCl₂) has been described in dairy cows and rats. Potter et al. (1972) orally administered 344 :Ci of radio-labeled mercuric chloride by gelatin capsule using balling gum to 2 Holstein cows. After 6 days, 94.87 percent of the dose was excreted in feces, 0.044 percent in urine, and 0.0097 percent in milk, for a total excretion of 94.92 percent of the dose. The biological half-life was calculated as 28.5 hours. Rats dosed by intravenous injection with 1 mg[Hg]/kg[body weight] mercuric chloride excreted 15.2 percent of the dose in feces and 16.3 percent in urine over 4 days for a total excretion (fecal and urinary) of 31.5 percent of the administered dose in 4 days (Gregus and Klaassen 1986).

The metabolism and distribution of mercuric nitrate $[Hg(NO_3)_2]$ have also been described for dairy cows and rats. Four Holstein dairy cows were given an oral dose of 1.7 mCi radiolabeled $Hg(NO_3)_2$ in a gelatin capsule via balling gum. Urine, feces, and milk were collected for 10 days and analyzed. Results indicated that 74.91 percent of the administered dose was excreted in feces, 0.08 percent in urine, and 0.01 percent in milk with a total excretion of 75 percent of the dose in 10 days (Mullen et al. 1975). Mullen et al. (1975) also reported a biological half-life for the transfer of orally ingested mercury to milk of 5 days. Transfer of mercury to feces was slightly more complicated with an initial half-life of 15 hr (probably reflecting the unabsorbed dose), then a decrease in elimination time which resulted in a 3 day half-life (probably representing excretion of the absorbed dose) (Mullen et al. 1975). Rothstein and Hayes (1960) dosed 7 Wistar rats with 50 :g (0.2 mg[Hg]/kg[body wt]) radio-labeled mercury as Hg(NO₃)₂ via intravenous injection. After 52 days the cumulative percent excretion was 25 percent of the administered dose in urine and 37 percent in feces for a total excretion of 62 percent of the injected dose over 52 days (Rothstein and Hayes 1960). In another study, 6 Holtzman rats were dosed by subcutaneous injection with 20 :Ci of radio-labeled Hg(NO₃)₂, and 0.018 percent of the dose was recovered in the hair 20 days after administration (Mansour et al. 1973). For pregnant female rats, a clearance half-time of 16.2 days was also reported (18 measurements over a 3-week period).

Fitzhugh et al. (1950) exposed rats (20/dose group) to mercuric acetate in the diet at concentrations of 0.5, 2.5, 10, 40, and 160 ppm Hg. The average intake of Hg in a 24-hour period was 7.5, 37.5, 150, 600, and 2,400 :g per rat, and the 24-hour excretion was 52, 40, 43, 47, and 43 percent of those doses, respectively, in feces and 4.8, 1.0, 0.5, 0.37, and 1.7 percent, respectively, in urine (Fitzhugh et al. 1950).

Divalent mercury is poorly absorbed from the GI tract (20 percent, see above), therefore, elimination rates obtained from oral or dietary exposure may be misleading. Hayes and Rothstein (1962) reported an initial half-life for fecal elimination of inorganic mercury of 0.6 days in Holstein cows. Later, the half-life increased to 3 days, as in the study by Mullen et al. (1975). This indicates that a large proportion of the dose is initially excreted via the feces due to lack of absorption. In the current TRIM.FaTE library, the elimination rate constant for terrestrial wildlife represents the elimination of both absorbed and unabsorbed mercury in feces (and urine). As long as the concentration of mercury in the tissues of the wildlife (birds and mammals) is not needed for the risk assessment, these elimination rates can be used for purposes of estimating the transfer of ingested mercury from wildlife to surface soil and water by setting the assimilation efficiency property in the wildlife compartment to 1.0. However, if the concentration of Hg in the animals tissues is needed for the risk assessment (e.g., to track risks to humans that consume meat from deer or cows in the modeling region), it would be necessary to determine a true assimilation efficiency to estimate the proportion of the ingested mercury that is absorbed by the animal. Then, separate rate constants and algorithms would be needed to track separately the elimination of the absorbed mercury and unabsorbed mercury.

Rates of excretion of divalent mercury by mammals (rats and cows) are summarized in Table 3 (mean values for excretion to urine and feces, lactation, and excretion to hair presented in Table 1). No information on excretion by avian species is available.

Test Speciesª	Form	Dose	Dose [⊳] Route	Elimination Route	Percent of Dose	Days	Rate (Day⁻¹)	Dose Vehi- cle	Source
Cow- Holstein	HgCl ₂	344 :Ci	oral	urine + feces	94.91	6	0.4963 2	gel cap	Potter et al. 1972
Cow- Holstein	Hg(NO ₃) ₂	1.7 mCi	oral	urine + feces	74.99	10	0.1385 9	gel cap	Mullen et al. 1975
		0 <u>+</u> S	E		0.31745	<u>+</u> 0.17886			
Rat-SD	HgCl ₂	1 mg/kg	iv	urine + feces	31.5	4	0.0945 8	saline sol	Gregus & Klaassen 1986
Rat-Wistar	Hg(NO ₃) ₂	50 :g	iv	urine + feces	62	52	0.0186 1	sodium chlorid e	Rothstein & Hayes 1960
					0 <u>+ </u> S	E		0.05660	<u>+</u> 0.03798
Rat	mercuric acetate	7.5:g	diet	urine + feces	56.8	1	0.8393 3	food	Fitzhugh et al. 1950
Rat	mercuric acetate	37.5:g	diet	urine + feces	41.0	1	0.5276 3	food	Fitzhugh et al. 1950
Rat	mercuric acetate	150 :g	diet	urine + feces	43.5	1	0.5709 3	food	Fitzhugh et al. 1950
Rat	mercuric acetate	600 :g	diet	urine + feces	47.37	1	0.6418 8	food	Fitzhugh et al. 1950
Rat	mercuric acetate	2400:g	diet	urine + feces	44.7	1	0.5924 0	food	Fitzhugh et al. 1950
				•	0 <u>+</u> S	E		0.63443	<u>+</u> 0.05443
Cow- Holstein	HgCl ₂	344 :Ci	oral	milk	0.0097	6	0.0000 2	gel cap	Potter et al. 1972
Cow- Holstein	Hg(NO ₃) ₂	1.7 mCi	oral	milk	0.01	10	0.0000 1	gel cap	Mullen et al. 1975
		-		•	0 <u>+</u> SE 0.00001 <u>+</u> 0.000003			+ 0.000003	
Rat-Holtz- man	Hg(NO ₃) ₂	20:g	sc inj	hair	0.018	20	0.0000 1	injec- tion	Mansour et al. 1973

Table 3 **Excretion of Divalent Mercury in Mammals**

^a Rat-SD = Sprague Dawley rat ^b iv = Intravenous injection and sc inj = subcutaneous injection.

Organic Mercury

Organic mercury is by far the most studied species of mercury. It is rapidly and extensively absorbed through the GI tract (95 percent of the dose in humans) and is distributed throughout the body via carrier-mediated transport (U.S. EPA 1997). Like elemental mercury, organic mercury can cross the blood-brain and placental barriers.

Radio-labeled methylmercuric chloride was intravenously injected into 6 pregnant Holtzman rats at a dose of 10 :Ci; after 20 days, 0.21 percent of the administered dose was transferred to hair. The whole-body clearance half-life was reported to be 8.4 days (Mansour et al. 1973). Gregus and Klaassen (1986) also administered radio-labeled methylmercuric chloride via intravenous injection to Sprague-Dawley rats at a dose of 1 mg[Hg]/kg[body wt]. Within 4 days, 5.6 percent of the injected dose was excreted in feces and 0.5 percent in urine for a total excretion of 6.1 percent of the administered dose. Additionally, 2-hr biliary excretion was 0.7, 0.9, 0.7, and 0.5 percent of doses at 0.1, 0.3, 1.0, and 3.0 mg[Hg]/kg[body wt], respectively (Gregus and Klaassen 1986). Syrian Golden hamsters (N = 9) were given an oral dose of 0.32 mg[Hg]/kg[body wt] as radio-labeled methylmercury chloride, and the elimination rate was found to follow a first-order rate equation with a half-life of 6.9 days (Nordenhäll et al. 1995). Nordenhäll et al. (1995) estimated that approximately 5 percent of the oral dose administered to the dams was transferred to pups via milk over 21 days. Four days after oral administration of methylmercury chloride, 20 percent of the mercury in milk was inorganic (Nordenhäll et al. 1995). Sell and Davison (1975) dosed via intraruminal injection, 1 Nubian goat and 1 Guernsey cow with 100 and 500 :Ci radio-labeled methylmercury chloride, respectively. After 13 days, 0.28, 31.18, and 1.45 percent of the dose administered to the goat were excreted in milk, feces, and urine, respectively. Conversely, none of the dose was excreted in cow milk, 25.32 percent was excreted in cow feces, and 1.28 percent was excreted in cow urine after 7 days.

Takeda and Ukita (1970) exposed Donryu rats to 20 :g[Hg]/kg[body wt] as radio-labeled ethyl-mercuric chloride dissolved in olive oil by subcutaneous injection. Cumulative excretion during 8 days post-exposure was 10.52 percent of dose in urine and 6.01 percent of dose in feces. In urine, 41.9 percent and 58.1 percent of the total mercury was organic and inorganic, respectively, on day 8. In contrast, 65 percent of fecal mercury was organic and 35 percent was inorganic on day 8 (Takeda and Ukita 1970). Fang and Fallin (1973) orally dosed 14 rats with 3 :mol radio-labeled ethyl-mercuric chloride in corn oil. Mercury content was measured in 1-2 rats on days 0.25, 1, 2, 3, 4, 5, 7, 10, and 14 after dosing. Fourteen days after dosing, 32.5 nmole/g hair had accumulated in the fur. Wistar rats have an estimated 3 g of fur (Talmage 1999), therefore, approximately 3.25 percent of the original dose was excreted in fur.

Fitzhugh et al. (1950) exposed rats (20/dose group) to phenyl mercuric acetate in the diet at doses of 0.5, 2.5, 10, 40, and 160 ppm [Hg]. The average intake of Hg in a 24-hour period was 7.5, 37.5, 150, 600, and 2,400 :g and the 24-hour excretion was 44, 35, 27, 35, and 30 percent of those doses, respectively, in feces and 9.2, 4.5, 6.2, 4.3, and 2.4 percent, respectively, in urine (Fitzhugh et al. 1950).

Humans also have been used as subjects for studying the metabolism of methylmercury. Three subjects were given an oral dose of 2.6 :Ci radio-labeled methylmercuric nitrate (Aberg et al. 1969). Mean cumulative mercury excretion values 10 days post-exposure were 13.6 percent , 13, and 14.2 percent) of the dose in feces and 0.24 percent (0.18, 0.26, and 0.27 percent) in urine. After 49 days, 34.1 percent (33.4 and 34.7 percent) of the initial dose was excreted via feces and 3.31 percent (3.29 and 3.33 percent) via urine (Aberg et al. 1969). Aberg et al. (1969) also reported the biological half-life of methylmercuric chloride to be 70.4, 74.2, and 73.7days (0 = 72.8 days) for the three subjects and measured approximately 0.12 percent of the initial dose in hair approximately 45 days (range 40-50 days) after exposure.

Two papers contained data suitable for use in determining excretion rates for avian species. In the first study, Lewis and Furness (1991) orally dosed black-headed gulls with 200, 100, or 20 :L methylmercuric chloride using gelatin capsules. The cumulative excretion of mercury for the 200 :L group was 26.4 percent of the dose in urine/feces and 51.2 percent in feathers for a total of 77.5 percent eliminated from the body over 13 days. At the 100 :L dose, a total of 80.3 percent of the dose was eliminated (37.8 and 44.2 percent in urine/feces and feathers, respectively) in 13 days. Finally, only 56.3 percent of the low dose was measured in urine/feces and feathers, with 11 percent of the dose in urine/feces and 52.6 percent in feathers after 13 days (Lewis and Furness 1991).

In the second study, 4 white-leghorn chickens and 4 Japanese quail were administered 20 ppm Hg as methylmercuric chloride in the diet for 21 days (Sell 1977). During the first 7 days of this dosing period, chickens and quail were also given an oral dose of 2 :Ci of radio-labeled methylmercuric chloride (Sell 1977). The rate calculations reported in Table A-18 assume that the author accounted for the total intake of radio-labeled mercury from both sources when reporting percent of dose excreted in feces and eggs. Chickens excreted 64 percent of the dose in urine/feces and 22 percent of the dose in eggs produced during the 21 days post-exposure, while quail excreted 41 and 54 percent of the dose in urine/feces and eggs, respective, during the same 21 day post-exposure period (Sell 1977).

Rates of excretion of organic mercury by mammals (humans, goats, cows, and rats) are summarized in Table 4, and rates of excretion by birds are summarized in Table 5 (mean values for excretion to urine and feces, fur, feathers, and eggs presented in Table 1). No information on excretion by avian species is available.

Test Species ¹	Form	Dose	Dose ² Route	Elimination Route	Percent of Dose	Days	Rate (Day ⁻¹)	Dose Vehicle	Source
Human	methylmercuric nitrate	2.6:Ci	oral	urine + feces	13.84	10	0.01490	aq sol	Aberg et al. 1969
Human	methylmercuric nitrate	2.6:Ci	oral	urine + feces	37.41	49	0.00956	aq sol	Aberg et al. 1969
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	urine + feces	0.67	1	0.00672	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	urine + feces	17.19	3	0.06287	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	urine + feces	22.62	5	0.05129	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	urine + feces	25.72	7	0.04248	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	urine + feces	31.63	13	0.02925	ethanol	Sell & Davison 1975
Cow- Guernsey	CH₃-HgCl	500 :Ci	ir inj	urine + feces	4.80	1	0.04919	ethanol	Sell & Davison 1975
Cow- Guernsey	CH₃-HgCl	500 :Ci	ir inj	urine + feces	18.86	3	0.06966	ethanol	Sell & Davison 1975
Cow- Guernsey	CH₃-HgCl	500 :Ci	ir inj	urine + feces	23.05	5	0.05240	ethanol	Sell & Davison 1975
Cow- Guernsey	CH₃-HgCl	500 :Ci	ir inj	urine + feces	26.60	7	0.04418	ethanol	Sell & Davison 1975
					0 <u>+</u> S	E		0.03932 <u>+</u>	0.00644
Rat-SD	CH₃-HgCl	1 mg/kg	iv	urine + feces	6.1	4	0.01573	saline sol	Gregus & Klaassen 1986
Rat-Donryu	ethyl-HgCl ₂	20 :g/kg	sc inj	urine + feces	16.53	8	0.02259	olive oil	Takeda & Ukita 1970
					0 <u>+</u> S	E		0.01916 <u>+</u>	0.00343
Rat	phenyl mercuric acetate	7.5 :g	diet	urine + feces	53.2	1	0.75929	food	Fitzhugh et al. 1950
Rat	phenyl mercuric acetate	37.5:g	diet	urine + feces	39.5	1	0.50253	food	Fitzhugh et al. 1950
Rat	phenyl mercuric acetate	150:g	diet	urine + feces	33.2	1	0.40347	food	Fitzhugh et al. 1950
Rat	phenyl mercuric acetate	600 :g	diet	urine + feces	39.3	1	0.49923	food	Fitzhugh et al. 1950
Rat	phenyl mercuric acetate	2400 :g	diet	urine + feces	32.4	1	0.39156	food	Fitzhugh et al. 1950
					0 <u>+</u> S	E		0.51121 +	0.06621

Table 4Excretion of Organic Mercury in Mammals

Test Species ¹	Form	Dose	Dose ² Route	Elimination Route	Percent of Dose	Days	Rate (Day ⁻¹)	Dose Vehicle	Source
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	milk	0.08	3	0.00027	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	milk	0.14	5	0.00028	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	milk	0.19	7	0.00027	ethanol	Sell & Davison 1975
Goat-Nubian	CH₃-HgCl	100 :Ci	ir inj	milk	0.28	13	0.00022	ethanol	Sell & Davison 1975
					0 <u>+</u> S	E		0.00026 <u>+</u>	0.00001
Human	methylmercuric nitrate	2.6:Ci	oral	hair	0.12	45	0.00003	aq sol	Aberg et al. 1969
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.05	0.25	0.00200	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.14	1	0.00140	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.18	2	0.00090	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.52	3	0.00174	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.59	4	0.00148	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	0.67	5	0.00134	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	1.08	7	0.00155	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	2.25	10	0.00228	corn oil	Fang & Fallin 1973
Rat-Wistar	ethyl-HgCl ₂	3 :mole	oral	hair	5.50	14	0.00404	corn oil	Fang & Fallin 1973
	· · ·							0.00168 <u>+</u>	0.00033
Rat- Holtzman	CH₃-HgCl	10 :Ci	iv	hair	0.21	20	0.00011		Mansour et al. 1973

 Table 4 (continued)
 Excretion of Organic Mercury in Mammals

¹Rat-SD = Sprague Dawley rat ² ir = Intraruminal injection, iv = intravenous injection and sc inj = subcutaneous injection.

Test Speciesª	Form	Dose	Dose Route	Eliminatio n Route	Percent of Dose	Days	Rate (Day⁻¹)	Dose Vehi- cle	Source	
Gull-BH	methyl- HgCl	200 :L	oral	feces	26.4	13	0.0235 8	gel cap	Lewis & Furness 1991	
Gull-BH	methyl- HgCl	100 :L	oral	feces	37.7	13	0.0364 0	gel cap	Lewis & Furness 1991	
Gull-BH	methyl- HgCl	20 :L	oral	feces	11	13	0.0089 6	gel cap	Lewis & Furness 1991	
					0 <u>+ </u> S	ε		0.02298 <u>+</u>	0.00793	
Chicken- WL	methyl- HgCl	20 ppm + 2 :Ci	diet/orl	feces	64	21	0.0486 5	food	Sell 1977	
Quail- Japanese	methyl- HgCl	20 ppm + 2 :Ci	diet/orl	feces	32	21	0.0183 6	food	Sell 1977	
					0 <u>+ </u> S	ε	0.03351 <u>+</u> 0.01514			
Gull-BH	methyl- HgCl	200 :L	oral	feathers	51.2	13	0.0551 9	gel cap	Lewis & Furness 1991	
Gull-BH	methyl- HgCl	100 :L	oral	feathers	44.2	13	0.0448 8	gel cap	Lewis & Furness 1991	
Gull-BH	methyl- HgCl	20 :L	oral	feathers	52.6	13	0.0574 3	gel cap	Lewis & Furness 1991	
					0 <u>+ </u> SE			0.05593 <u>+</u>	0.00075	
Chicken- WL	methyl- HgCl	20 ppm + 2 :Ci	diet/orl	eggs	21.88	21	0.0117 6	food	Sell 1977	
Quail- Japanese	methyl- HgCl	20 ppm + 2 :Ci	diet/orl	eggs	54.08	21	0.0370 6	food	Sell 1977	
					0 + S	E		0.02441 +	0.01265	

Table 5Excretion of Organic Mercury in Birds

^a Gull-BH = Black-headed gull, Chicken-WL = White- leghorn chicken.

References for Attachment 2

Aberg, B., L. Ekman, R. Falk, U. Greitz, G. Persson, and J. Snihs. 1969. Metabolism of methyl mercury (²⁰³Hg) compounds in man. Arch. Environ. Health 19:478-484.

ATSDR. 1997. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Mercury. Draft for public comment (Update). ATSDR-7P-97-7 (Draft). U.S. Department of Health and Human Services.

Cherian, M.G., J.B. Hursh, T.W. Clarkson, and J. Allen. 1978. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Arch. Environ. Health. 33(May/June):109-114.

Fang, S.C. and E. Fallin. 1973. Uptake, distribution, and metabolism of inhaled ethylmercuric chloride in the rat. Arch. Environ. Contam. Toxicol. 1:347-361.

Fitzhugh, O.G., A.A. Nelson, E.P. Laug, and F.M. Kunze. 1950. Chronic oral toxicities of mercuri-phenyl and mercuric salts. Arch. Indust. Hyg. Occup. Med. 2:433-442.

Gregus, Z, and C.D. Klaassen. 1986. Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol. Applied Pharm. 85:24-38.

Hayes, A.D, and A. Rothstein. 1962. The metabolism of inhaled mercury vapor in the rat studied by isotope techniques. J. Pharm. Exper. Therap. 138:1-10.

Lewis, S.A. and R.W. Furness. 1991. Mercury accumulation and excretion in laboratory reared black-headed gull <u>Larus ridibundus</u> chicks. Arch. Environ. Contam. Toxicol. 21:316-320.

Mansour, M.M., N.C. Dyer, L.H. Hoffman, A.R. Schulert, and A.B. Brill. 1973. Maternal-fetal transfer of organic and inorganic mercury via placenta and milk. Environ. Res. 6:479-484.

Mullen, A.L., R.E. Stanley, S.R. Lloyd, and A.A. Moghissi. 1975. Absorption, distribution and milk secretion of radionuclides by the dairy cow IV. Inorganic radiomercury. Health Physics. 28:685-691.

Nordenhäll, K., L. Dock and M. Vahter. 1995. Lactational exposure to methylmercury in the hamster. Arch Toxicol. 69:235-241.

Potter, G.D., D.R. McIntyre, and G.M. Vattuone. 1972. Metabolism of 203 Hg administered as HgCl₂ in the dairy cow and calf. Health Physics. 22:103-106.

Rothstein, A. and A.D. Hayes. 1960. The metabolism of mercury in the rat studied by isotope techniques. J. Pharm. Exper. Therap. 130:166-176.

Sell, J.L. 1977. Comparative effects of selenium on metabolism of methylmercury by chickens and quail: tissue distribution and transfer into eggs. Poultry Sci. 56:939-948.

Sell, J.L. and K.L. Davison. 1975. Metabolism of mercury, administered as methylmercuric chloride or mercuric chloride, by lactating ruminants. J. Agric. Food Chem. 23:803-808.

Takeda, Y. and T. Ukita. 1970. Metabolism of ethylmercuric chloride-203Hg in rats. Toxicol. Applied Pharm. 17:181-188.

Talmage, S. 1999. Personal communication. Oak Ridge National Laboratory. February.

Teisinger, J. and V. Fiserova-Bergerova. 1965. Pulmonary retention and excretion of mercury vapors in man. Indust. Med. Surgery. July:581-584.

U.S. Environmental Protection Agency (U.S. EPA). 1997. U.S. Environmental Protection Agency. Mercury study report to congress. Volume V: Health effects of mercury and mercury compounds. Office of Air Quality Planning and Standards and Office of Research and Development.