Consideration of pathogen risks associated with uncovered finished water reservoirs

Nicholas J. Ashbolt (Ashbolt.Nick@epa.gov) U S EPA/ORD/Cincinnati

Disclaimer: This presentation does not necessarily reflect official U.S. EPA policy

LT2-ESWTR Uncovered Finished Water Reservoirs Public Meeting U.S. EPA Washington DC, April 24th, 2012

Pathogen testing of waters

- No ideal indicator
- Not all about Cryptosporidium
- Target < 0.075 oocysts /1000L or < 1 in 10,000 L need to take >>200 50-L samples (noting method recovery generally < 50% and non-normal input/distribution of oocysts in water)
- Key issue: what is the change in relative risk due to an uncovered finished water (UCFWR)

Risk = probability x consequence

- Therefore pathogen risk is based on likelihood of occurrence & consequence of disease endpoint(s); So for LT2 & in UCFWR
 - Interested in gastrointestinal (GI) disease
 - But other endpoints & sequelae possible, e.g.
 - E. coli O157:H7 but may also cause HUS
 - Campylobacter jejuni causes reactive arthritis & Guillain Barré syndrome

Models provide supporting info

- Quantitative Microbial Risk Assessment (QMRA) to inform change in risk from UCFWR:
 - Need to ID potential sources/routes of concern of pathogen contamination to UCFW reservoirs
 - Model/measure fate & transport to provide relative risk by pathogen that an uncovered reservoir may introduce

Animals identified in UCFWR

Photos: Staff of the California Drinking Water Program

Why Model?

- Models help us explore questions that we might not be able to address in the laboratory or field; for example:
 - What is the waterfowl risk to reservoir waters under condition X?
 - What is the impact of reservoir turn-over?
 - When may it be safe to restart service after an event for an UCFWR?

Pathogen hazards: mostly zoonotic

Portland reservoir urination raises a few concerns (Oregon *Live.com*, 6/15/11)

- ≥ 21 year-old's event let to draining 7.8 MG Mt. Tabor R
- Risk was human access 'thought it was a sewer plant'

Zoonosis – pathogen from animal-to-human

- A few are viral (HEV wild pigs, H5N1 virus in birds), range of pathogenic bacterial & parasitic protozoa
- Which animal groups of concern:

7

Birds (e.g. H1N1, Cryptosporidium meleagridis, Giardia lamblia, Salmonella enterica, Campylobacter jejuni), rodents (most as above) rabbits (C. cuniculus)

Understanding (fecal) sources

- Animal surveys / by season / risk periods
- qPCR for various pathogens / indicators
- Microbial Source Tracking (MST)
 - Bacteroidales targets, yet poorly developed for non-ruminants & birds
 - Emerging use whole genome sequencing
- Chemical biomarkers to ID sources
 - Fecal sterols, biomass assays

	Source (g feces/d)	Pathogens	Counts/ gram	D-R
	Birds, e.g. ducks (30-360)	H5N1, Cryptosporidium meleagridis, Giardia lamblia, microsporidia*, Salmonella, Campylobacter & Mycobacterium spp.	P/A, ranges 10 ² -10 ⁴ /g	H5N1 Sal Campy
	Rodents (2-30)	Cryptosporidium parvum, Salmonella, E. coli O157:H7	10²-10⁴/g P/A	?
	Rabbits (20-80)	Cryptosporidium cuniculus, Staphylococcus aureus (+ARG), Francisella tularensis	3000/g P/A	illness
	Feral cats	Toxoplasma gondii,	P/A	-
	Environ-mental	Schistosoma spp., Mycobacterium avium (†virulent strains from animals)	P/A	-

Increasing risk?

P/A presence/absent data only, ARG – antibiotic-resistant genes

⁹ *Encephalitozoon hellem, E. intestinalis, & Enterocytozoon bieneusi

Model/measure fate & transport

- Various model components can be estimated with surrogates:
 - Fecal loadings (E. coli, enterococci, MST) & HRT
 - Environmental inactivation (light intensity + temp)
 - Algae-association, reservoir turn-over (resuspension) of sediment-bound pathogens
- Role of algae?
 - May lead to growth of some bacterial pathogens & indicators
 - Toxins?

Water Goal: estimate the relative risk increase (for water in vs out of the UC reservoir) Model Hazard identification & pathways Describe physical system, selection of reference

Reservoir

SETTING

pathogens & identification of hazardous events

Parasitic protozoa

Hazard identification & its setting Describe physical system, selection of reference pathogens and identification of hazardous events

Conclusions

- Uncovered finish water reservoirs are vulnerable to fecal inputs, in decreasing order of likely pathogen risks as follows:
 - Birds
 - Rodent
 - Feral cats (& dogs)
- Additional treatment could negate risks
- Very large numbers of samples required to measure pathogen risk impacts due to UCFWR