Nebraska Department of Environmental Quality Public Inspection Draft 2015 Ambient Air Monitoring Network Plan and 5-Year Assessment

NDEQ Document #15-012

Public Inspection Draft-120715

This document is written to fulfill the requirements of 40 CFR Part 58.10 for an annual monitoring network plan and periodic network assessment as it pertains to the ambient monitoring conducted by the Nebraska Department of Environmental Quality (NDEQ), the Lincoln-Lancaster County Department (LLCHD) and the Douglas County Health Department (DCHD).

Contents Page 100 and 10	age
Table of Contents	2
List of Figures and Tables	3
Acronyms and Abbreviations	8
Definitions	9
I. Introduction and Purpose	10
II. Public Participation	
III. Overview of Current Ambient Air Monitoring Network	
IV. The Nebraska Ambient Air Monitoring Network: January 1, 2014 thru July 31, 2015 1	
V. Considerations for Network Planning 1	
A. Compliance with 40 CFR Part 58 Requirements	
B. Attainment with the National Ambient Air Quality Standards (NAAQS)	
C. Other EPA Regulations: Existing and Proposed	
D. Other Air Quality Issues	
E. Population Trends and Network Design2	23
F. Funding2	
VI. Network Assessment	
A Carbon Monoxide	
B. Nitrogen Dioxide (NO ₂)	
C. Ozone	
E. Particulate Matter: PM_{10} , $PM_{2.5}$ and $PM_{10-2.5}$	
E. 1 articulate Matter: 1.141_{10} , $1.142_{.5}$ and $1.141_{0.2.5}$.	
E-2: PM _{2.5}	
F. Lead	
G. Total Reduced Sulfur (TRS)4	40
VII. Anticipated Nebraska Air Monitoring Network Modifications 4	40
Attachment A – Ambient Air Monitoring Sites in Nebraska	
Attachment B – Comparison of Ambient Air Monitoring Data to NAAQS	
Attachment C – Population Dynamics	
Attachment D – Compliance Verification with 40 CFR Part 58	
Attachment E - Ambient Air Monitoring in Nebraska: 1957 to Present	
Attachment G - Douglas County Health Department's Near-Road NO ₂ Siting Proposal15	
Attachment H - NDEQ Review and Concurrence: DCHD Near-Road NO ₂ Site Proposal15	

List of Figures and Tables	
Sections Pa	age #
I – Introduction and Purpose (No figures or tables)	-
II – Public Participation (No figures or tables)	
III - Overview of Current Ambient Air Monitoring Network	
Table III-1: Number of Monitoring Sites in the Nebraska Air Monitoring Network	11
IV: Nebraska Ambient Air Monitoring Network: 1/1/14 thru 9/30/15 (No figures or tak	
V. Considerations for Network Planning	<i>(</i> (3))
Table V-1: 8-Hour Ozone: Annual 4 th High Values and 3-Year Design Value (DV)	
Projections: 2013-2015	16
Table V-2: Largest SO ₂ Emission Sources in Nebraska and 2012-14 1-Hour SO ₂ DVs	
Figure V-1: Flint Hills Area of Kansas and Oklahoma	
Figure V-2: Fire Map and Pollutant Levels: April 9 th , 2015	
Figure V-3: Fire Map and Pollutant Levels: April 10 th , 2015	
Figure V-4: Fire Map and Pollutant Levels: April 10 th , 2015	
Figure V-5: Fire Map and Pollutant Levels: April 12 th , 2015	
Figure V-6: Fire Map and Pollutant Levels: April 13 th , 2015	
Figure V-7: Fire Map and Pollutant Levels: July 6 th , 2015	
Table V-3: Primary Funding Sources used to Support Air Monitoring in Nebraska	
VI. Network Assessment	21
Figure VI-1: Location of Ozone Monitoring Sites in Omaha, NE	29
Figure VI-2: Location of Ozone Monitoring Sites in the Omaha and Lincoln MSAs	
Figure VI-3: Annual Maximum 24-Hour PM ₁₀ values: January 1993 - June 2015	
Figure VI-4: Location of PM ₁₀ Monitoring Sites in Omaha & Council Bluffs	34
Figure VI-5: PM _{2.5} Monitoring Sites in the Omaha MSA	37
Figure VI-6: Annual Average & 24-Hour PM _{2.5} Design Values & Extrapolated Design	
Values for Historical Sites	38
VII. Anticipated Nebraska Air Monitoring Network Modifications	
Attachment A: Ambient Air Monitoring Sites in Nebraska	5 4
All information in Attachment A is presented in a table format	- 54
Attachment B: Comparison of Ambient Air Monitoring Data to NAAQS	<i></i>
Table B-1: Ozone Data	
Table B-2: Carbon Monoxide Data	
Table B-3: Sulfur Dioxide Data	
Table B-4a: Nitrogen Dioxide Data	
Table B-4b: Nitrogen Oxide Data from the Omaha NCore Site Table D-5	
Table B-5a: PM ₁₀ - Maximum 24-Hour Data Table D-5a: PM	
Table B-5b: PM_{10} – Annual Average Data	
Table B-6a: $PM_{2.5}$ - 98 th Percentile, 24-Hour Data	
Table B-6b: PM2.5 – Annual Average Data	63

List of Figures and Tables - continued	
Sections	age #
Attachment B: - continued	
Table B-7: Lead in Total Suspended Particulate (TSP-Pb)	64
Table B-8: Total Reduced Sulfur (TRS) Data	64
Attachment C – Population Dynamics	
Figure C-1: Nebraska Metropolitan Statistical Areas (MSA's) and	
Micropolitan Statistical Areas (MiSA's)	66
Table C-1: Population within Nebraska's MSAs and MiSAsTable C-2: Top Ten Nebraska Counties for Population and Population Growth:	66
2010 to 2014	68
Table C-3: Sixteen Most Populated Nebraska Counties: 2000, 2010 & 2014	
Figure C-2: Omaha MSA Population Distribution Chart & Table	70
Figure C-3: Lincoln MSA Population Distribution Chart & Table	71
Figure C-4: Sioux City MSA Population Distribution Chart & Table	
Figure C-5: Grand Island MSA Population Distribution Chart & Table	
Table C-4:Micropolitan Statistical Area (MiSA) Population Data: 2010 thru 2014Table C-5:Nebraska Counties Outside of MSAs and MiSAs that have Populations	74
Greater Than 10,000	75
Table C-6: Population and Population Growth Data for Nebraska & Nebraska Counties	
Sorted by 2010 to 2014 Population Growth	76
Attachment D – Verification of Compliance with 40 CFR Part 58	
Table D-1: Compliance Summary: Collocation Requirements of Appendix A	80
Table D-2.a: 40 CFR Part 58 Appendix D Review: Omaha MSA	86
Table D-2.b: 40 CFR Part 58 Appendix D Review: Lincoln MSA	87
Table D-2.c: 40 CFR Part 58 Appendix D Review: Sioux City MSA	88
Table D-2.d: 40 CFR Part 58 Appendix D Review: Grand Island MSA	89
Table D-3: Population Weighted Emissions Index (PWEI) Data for Nebraska Core Base Areas (CBSAs)	
Attachment E – Ambient Air Monitoring in Nebraska: 1957 to Present	
Table E-1: Initial Monitoring Start-up Dates and Locations	93
Figure E-1: Historical Ambient Air 1-Hour Carbon Monoxide (CO) Concentrations in Lincoln & Omaha	94
Figure E-2: Historical Ambient Air 8-Hour Carbon Monoxide (CO) Concentrations in Lincoln & Omaha	95
Figure E-3: Location of Current and Historical CO Monitoring sites in Nebraska	95
Figure E-4: Location of Current CO Monitoring sites in Omaha	96
Table E-2: History of Ozone NAAQS	97
Figure E-5: Summary of Ozone Monitoring Activities in Nebraska	
Figure E-6: Maximum 4 th High 8-Hour Ozone Levels in the Omaha MSA: 1972 - 2014	
Figure E-7: Trend Analysis of Maximum 8-Hour Ozone Levels in the Omaha MSA (Harrison County, IA site) from 1997 thru 2014	
Figure E-8: Maximum 4 th High 8-Hour Ozone Levels in the Omaha MSA: 1979 - 2014	
-	

Figure and Table List - continued

Attachment E – continued

Figure E-9: Ozone Levels at Monitoring Locations in or near Nebraska: 2009 – 2014	103
Figure E-10: Ozone Levels at Sites in and near Nebraska: 2007 - 2009	104
Figure E-11: Ozone Levels at Sites in and near Nebraska: 2010-2012	105
Figure E-12: Ozone Levels in Nebraska 1979 & 1980	105
Figure E-13: Ozone 2012-14 Design Values for Areas in and Around Nebraska	.106
Figure E-14: Annual Average NO ₂ Levels in Thomas County, Omaha and Lincoln 1973-1977	108
Figure E-15: NO ₂ Levels at Rural and Urban Sites in & near Nebraska: 1979-1981	
Figure E-16: Annual Average NO ₂ Concentrations in Omaha MSA: 1972–1981 & 2011-2014.	
Figure E-17: Annual Average NO ₂ Concentrations in Lincoln MSA: 1973–1984	
Figure E-18: One-Hour 98 th Percentile Levels for NO ₂ & NOy-NO in the Omaha MSA: NO ₂ in the Early 1970's and NOy-NO from 2011 thru 2014	.112
Table E-3: One-Hour NOx Levels at Monitoring Sites in Nebraska and at Selected Sites in Near-By States for Comparison to the Primary NAAQS	
Figure E-19: Location of Current and Historical NO ₂ /NOx Monitoring Sites in Nebraska and within Adjacent Counties in MSA's	114
Figure E-20: Annual Average SO ₂ Values at Different Locations and Time Frame	116
Figure E-21: Maximum Annual Average SO ₂ in Omaha, Lincoln & Sioux City MSAs: 1967 to 2014	117
Figure E-22: Maximum Annual 99 th Percentile 1-Hour SO ₂ Levels in the Omaha MSA: 1974 to 2014	118
Figure E-23: Maximum Annual 99 th Percentile1-Hour SO ₂ Levels in the Sioux City MSA 1974 to 2014.	
Figure E-24: Location of Current and Historical SO ₂ Monitoring Sites in Nebraska and within Adjacent State Areas of the Omaha & Sioux City in MSAs	119
Table E-4: Summary History of Particualte Matter NAAQS and Monitoring in Nebraska.	120
Figure E-25: Historical and Current Particulate Monitoring Site Locations: 1957 – 2014	121
Figure E-26: Current Particulate Monitoring Site Locations	121
Table E-5: Particulate Monitoring Sites Operated In Nebraska from 1957 thru 2015	122
Figure E-27: Pre-1988 Total Suspended Particulate Matter (TSP): 4 th High 24-Hour Values Over 3-Years	124
Figure E-28: Pre-1988 Total Suspended Particulate Matter (TSP): 3–Year Average of Annual Average Values	125
Table E-6: Historical TSP Values: Summary Table	126
Table E- 7: PM ₁₀ Monitoring Result Summary: 1987 to 1999	129
Figure E-29: Annual Average PM ₁₀ Levels in Omaha, NE (All sites): 1985 - 2014	129
Figure E-30: Annual Average PM_{10} Levels at Weeping Water Area Sites: 1988 - 2014	130
Figure E-31: Annual Average PM ₁₀ Levels at Cozad: 1994 - 2014	130
Figure and Table List - continued	

Attachment E – continued

Figure E-32: Annual Average PM ₁₀ Levels in Gothenburg: 1991 - 2014	131
Figure E-33: Annual Average & 24-Hour PM _{2.5} Design Values & Extrapolated	
Design Values for Historical Sites	
Figure E-34: PM _{2.5} Levels in Omaha MSA: 1999 to 2014	
Figure E-35: PM _{2.5} Levels in Lincoln: 1999 to 2014	135
Figure E-36: PM _{2.5} Levels in the Sioux City MSA: 1999 to 2014	136
Figure E-37: PM _{2.5} Levels in the Grand Island: 1999 to 2014	137
Figure E-38: PM _{2.5} Levels in the Scottsbluff: 1999 to 2014	138
Table E-8: History of the Lead NAAQS	139
Table E-9: Historical Lead Monitoring Summary	140
Figure E-39: Ambient Lead Concentrations in Omaha: 1958-2002 & 2012-2014	141
Figure E-40: Ambient Lead Concentrations in Bellevue, Lincoln, Louisville & Halsey National Forest: 1962 to 1986	142
Figure E-41: Ambient Lead Concentrations in Fremont: 1990-1995 & 2010-2014	
Figure E-42: Maximum Annual 3-Month Average Lead Concentrations at Auburn,	145
Fremont and Omaha: 2010 to Present	144
Figure E-43: Annual Maximum 30-Minute Average TRS Levels in South Sioux City and Dakota City: 1997 to Present	146
Figure E-44: Annual Maximum 30-Minute Average TRS Levels in Lexington (1998-20 and Broken Bow (2000-2002)	11)
Attachment F: Justification of Closing the Auburn Lead (Pb) Monitoring Site	
Table F-1: Lead (Pb) Emissions from Magnolia Metals in Auburn as Reported on State	
and National Emission Inventory (EI) Submittals	150
Figure F-1: Ambient Lead (Pb) Concentrations in Auburn, NE near the Magnolia Meta	
Facility and the Time-Table for Emission reduction Activities	
Table F-2: Ambient Lead (Pb) Concentrations in Auburn NE Before and After Emissio	
Control Upgrades at Magnolia Metals	
Attachment G: Douglas County Health Department's Near-Road NO ₂ Siting Propos	al
The photos and table in this attachment are not numbered	
Picture: Current CO ₂ Monitoring Site at 7747 Dodge Street	
Table: Estimated Average Daily Traffic Data	
Aerial View: Current CO Site and Proposed Near-Road NO ₂ Site at 7747 Dodge St	
Aerial View: Current CO Site and Proposed Near-Road NO ₂ Site at 7747 Dodge St	155
Attachment H: NDEQ Review and Concurrence: DCHD Near-Road NO ₂ Site Propo	sal
Table H-1: Inter-Section Traffic Count Estimates: Omaha's Top 11 Inter-Sections	159
Table H-2: Through-Traffic Count Estimates: Omaha's Top 11 Road Segments	159
Table H-3: Vehicle Density Analysis	160
Figure H-1: High Traffic Count Areas in Omaha, NE	160
Figure H-2: Aerial view of West Dodge Street from 69 th to 90 th Street	161
Figure H-3: Aerial view of 78 th & Dodge CO Monitoring Site	161
	101

Figure and Table List - continued

Attachment H – continued

Figure H-4:	East-Bound on West Dodge Street at78 th Street	162
Figure H-5:	West-Bound on West Dodge Street at 76 th Street	162
Figure H-6:	Aerial view of West Dodge Road: 90 th t0 96 th Street	163
Figure H-7:	West-Bound on West Dodge Road between 90 th & 93 rd Streets	163
Figure H-8:	L Street in Omaha from I-80 to 132 nd Street	164
Figure H-9:	West-Bound on L Street at the 120 th Street Entrance Ramp	164
Figure H-10	: I-80 in Omaha from I-480 to 42 nd Street	165
Figure H-11	Eastbound I-80 at 42 nd Street Entrance Ramp	165

Acronyms and Abbreviations

Agencies/Organizations

- CASAC Clean Air Scientific Advisory Committee^(a)
- DCHD Douglas County Health Department
- EPA United States Environmental Protection Agency
- EPA R7 United States Environmental Protection Agency Region VII
- LLCHD Lincoln/Lancaster County Health Department
- NDEQ Nebraska Department of Environmental Quality

(a) CASAC was established by the Clean Air Act (CAA) Amendments of 1977, and provides independent advice to the EPA Administrator on the technical bases for EPA's national ambient air quality standards.

Regulations

- CFR Code of Federal Regulations
- NAAQS National Ambient Air Quality Standards
- Title 129 Nebraska Air Quality Regulations

Site Types

- IMPROVE Interagency Monitoring of Protected Visual Environments (monitoring performed to evaluate regional haze)
- MDN Mercury Deposition Network (a type of NADP site)
- NADP National Atmospheric Deposition Program (analysis of deposition components in precipitation. May include NTN and MDN sites)
- NCore National Core multi-pollutant monitoring stations. Monitors at these sites are required to measure particles (PM_{2.5}, speciated PM_{2.5}, PM_{10-2.5}), O₃, SO₂, CO, nitrogen oxides (NO/NO_y), Pb, and basic meteorology.
- NTN National Trends Network (a type of NADP site that analyzes for acidity, sulfate, nitrate, ammonium, chloride, and base cations (e.g., CA, Mg, K and Na))
- SLAMS State and Local Air Monitoring Stations

Monitor Terminology

- AQS Air Quality System, the name for EPA's air monitoring data base
- FRM Federal Reference Method used for determining compliance with the NAAQS
- FEM Federal Equivalent Method used for determining compliance with the NAAQS
- PWEI Population Weighted Emissions Index (a term defined in 40 CFR Part 58 Appendix D that relates to SO₂ monitoring requirements)
- 2014 Network Plan Nebraska's 2014 Ambient Air Monitoring Network Plan
- 2015 Network Plan & 5-Yr Assessment Nebraska's 2015 Ambient Air Monitoring Network Plan & 5-Year Assessment (i.e., this document)

Census Terminology

- MSA Metropolitan Statistical Area
- MiSA Micropolitan Statistical Area

Acronyms and Abbreviations (Continued)

Pollutants

СО	-	Carbon Monoxide
H_2S	-	Hydrogen sulfide (typically a major component of TRS)
O ₃	-	Ozone
Pb	-	Lead
TSP-Pb	-	Lead sampled using a TSP sampler
PM _{2.5}	-	Particulate matter with a diameter equal to or less than 2.5 micrometers or microns (reported as μ g/m ³ with air volumes measures at local conditions)
PM ₁₀	-	Particulate matter with a diameter equal to or less than 10 micrometers or microns (reported as μ g/m ³ with air volumes measures at standard conditions (25° C, 1 atm))
PM _{10-2.5}	-	The difference between PM_{10} and $PM_{2.5}$ (Both being calculated at local conditions)
SO_2	-	Sulfur Dioxide
TRS	-	Total Reduced Sulfur (H ₂ S + other reduced sulfur-containing compounds)
TSP	-	Total Suspended Particulates

Concentration Units

ppb	-	Parts per billion (a volume/volume concentration unit)
ppm	-	Parts per million (a volume/volume concentration unit)
mg/m ³	-	Milligrams per cubic meter (a mass/volume concentration unit)
$\mu g/m^3$	-	Micrograms per cubic meter (a mass/volume concentration unit)

Definitions

- *in situ* A Latin phrase meaning *in the place*. As used in this report it refers to the formation of pollutants in the atmosphere. For example, ozone is formed *in situ* from the photochemical reaction of pollutant precursors. Ozone is not emitted directly from sources. PM_{2.5} and haze are also formed *in situ*, although they are also emitted by sources. PM₁₀ and CO, on the other hand, are largely emitted from sources; *in situ* formation being of minimal importance. NOx and SOx are emitted and then undergo transformations to NO₂ and SO₂; they also can play a role in the *in situ* formation of ozone and PM_{2.5}.
- Criteria Pollutants The six pollutants for which National Ambient Air Quality Standards (NAAQS) have been established: carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide, particulates and lead.

I. Introduction and Purpose

This 2015 Ambient Air Monitoring Network Plan and 5-Year Assessment (hereafter referred to as the "2015 Network Plan & Assessment") was prepared to meet the federal requirements set forth in 40 CFR Part 58.10. It serves several purposes.

- Describes the current ambient air monitoring network in Nebraska including:
 - The purpose of each monitoring site, and
 - Changes made since January 1, 2014.
- Discusses ambient air quality issues as they relate to the monitoring network.
- Reviews the ambient air monitoring network to determine that the requirements of 40 CFR Part 58 Appendixes A, C, D and E are met.
- Describes planned and possible changes to the ambient air monitoring network through 2016, as best they can be determined at the time this review was conducted.

II. Public Participation

Federal regulations require annual network plans to be made available for public inspection. The NDEQ meets this requirement by posting it on the NDEQ web site (<u>http://deq. ne.gov/</u>) for 30 days. During the 30 day public inspection period, written comments regarding this Network Plan may be submitted to the Nebraska Department of Environmental Quality (NDEQ). Contact information is provided below.

Mail:

Nebraska Department of Environmental Quality Attn: Jim Yeggy - Air Quality Compliance Section PO Box 98922 1200 N Street, The Atrium Suite 400 Lincoln, NE 68509

Email:

NDEQ.airquality@nebraska.gov

Informal inquiries may also be directed to Jim Yeggy at 402/471-2142. Non-written comments are not necessarily included or addressed as review comments.

The deadline for written comment submittal can be found on the NDEQ web site.

III. Overview of Current Ambient Air Monitoring Network

Nebraska's current air monitoring network is summarized in Table III-1 below. The network description tables in Attachment A provide more detailed information on the network, including site locations and monitoring objectives.

The network includes monitoring sites for ozone, carbon monoxide, nitrogen oxides, sulfur dioxide, total reduced sulfur, lead, PM_{10} , $PM_{2.5}$, $PM_{10-2.5}$ and regional haze (i.e., IMPROVE monitors). The network is operated by the Nebraska Department of Environmental Quality and two local agencies: the Douglas County Health Department and the Lincoln Lancaster County Health Department.

Table III-1: Number o	Table III-1: Number of Monitoring Sites in the Nebraska Air Monitoring Network ⁽¹⁾					
Pollutant	Omaha MSA ⁽²⁾	Lincoln MSA ⁽⁵⁾	Sioux City MSA ⁽⁶⁾	Other Areas of NE ⁽⁶⁾	Total Sites	
Ozone	3 (3)	1 ⁽⁵⁾	0	0	4	
Carbon Monoxide	2 ⁽³⁾	0	0	0	2	
Nitrogen Oxides	1 (3)	0	0	0	1	
Sulfur Dioxide	2 ⁽³⁾	0	0	0	2	
Total Reduced Sulfur	0	0	1	0	1	
PM ₁₀	6 ⁽³⁾⁽⁴⁾	0	0	2	8	
PM _{2.5}	4 ⁽³⁾	1	0	2	7	
PM _{10-2.5}	1 (3)	0	0	0	1	
PM _{2.5} Speciation	1 (3)	0	0	0	1	
Lead	1 (3)	0	0	2	3	
NCore ⁽⁷⁾	1	0	0	0	1	
IMPROVE ⁽⁸⁾	0	0	0	2	2	
Totals	11 (2)(4)(7)	2 (5)	1	8	22 ⁽⁹⁾	

Footnotes:

(1) This table summarizes the number of operating sites in the NE SLAMS network as of 9/30/15.

(2) There are 3 multi-pollutant monitoring sites in the Omaha MSA in 2015:

• 1616 Whitmore – SO_2 & Ozone

• 24^{th} & O Sts (South Omaha) : Ozone and a PM₁₀

NCore (42nd & Woolworth) - CO, NO/NOy, O₃, SO₂, PM, lead and meteorological

Thus there are 11 monitoring sites within the Omaha MSA, but if the pollutants are counted separately there are 19 analytical sites.

(3) This footnote means that one (1) monitor in this category is located at the NCore site.

(4) PM₁₀ sites in the Omaha MSA include 4 sites operated by DCHD that are located in Douglas County; and 2 sites operated by NDEQ. The NDEQ operated sites are located in the Weeping Water area of Cass County.

- (5) LLCHD operates the 2 monitoring sites in the Lincoln MSA: the Davey ozone site and the N Street PM_{2.5} site. In addition, a temporary investigative site for ozone was established at Waverly in May 2015. As a temporary, investigative site, it was not counted as part of the Nebraska SLAMS network.
- (6) The NDEQ operates 11 sites: 2 at Weeping Water in the Omaha MSA, 1 in the Sioux City MSA, and 8 in "Other Areas of NE".
- (7) The 12 Omaha MSA sites include 10 sites operated by DCHD: 30th & Fort (O₃), 24th & O St (O₃ & PM₁₀), 78th & Dodge (CO), 16th & Whitmore (SO₂), 19th & Burt (PM₁₀), 46th & Farnam (PM₁₀), 92nd & Berry (PM_{2.5}), Bellevue (PM_{2.5}), Blair (PM_{2.5}) & 42nd & Woolworth (NCore); and 2 sites operated by NDEQ: Weeping Water City (PM₁₀) & Weeping Water Farm (PM₁₀).
- (8) IMPROVE Interagency Monitoring of Protected Visual Environments. These are fine particulate and particulate speciation monitors intended to provide information for studying regional haze that may impact Class I National Park and Wilderness Areas.
- (9) The sum total number of individual pollutant sites in the *Total Sites* column exceeds the bottom total sites value because the multi-pollutant NCore site and the ozone/PM₁₀ site at 24th & O Sts. were counted as one site each.

IV. Nebraska Ambient Air Monitoring Network: January 1, 2014 thru September 30, 2015

This section describes Nebraska's Ambient Air Monitoring Network in place from January 1, 2014 thru September 30, 2015, and changes made during that time period. Detailed information on individual monitoring sites, including purpose, scale, monitor details and start dates, is contained in Attachment A.

For the most part, this section is organized around the MSAs and MiSAs in which monitoring is conducted. For population and statistical information about the MSAs and MiSAs see Attachment C.

A. Omaha MSA Sites Operated by the DCHD

DCHD operates an ambient air network of 9 sites in Douglas, Sarpy and Washington Counties. Multi-pollutant monitoring is currently conducted at three of the sites:

- The NCore site monitors for 9 pollutant parameters (CO, NOy/NOx, O₃, SO₂, PM_{2.5}, PM₁₀, PM_{10-2.5}, PM_{2.5} speciation & TSP-Pb), meteorological parameters, and atmospheric radiation (RADNET*);
- The South Omaha site has both an ozone and a PM_{10} monitor; and
- The 1616 Whitmore site has both SO₂ and ozone monitors.

Thus the Omaha area monitoring network is more extensive than the 9 site total might indicate; if the pollutants are counted separately, there are 19 pollutant monitoring sites.

There were two changes in the Omaha-DCHD monitoring network since January 1, 2014.

- 1) Starting in October 2014, a collocated 2025 sequential sampler was located at the 9225 Berry Street site to fulfill the collocation requirements of 40 CFR Part 58, Appendix A.
- 2) The 30th & Fort ozone monitoring site in Omaha was closed due to construction at the site, and relocated to 1616 Whitmore (the existing SO₂ site) for the 2015 ozone monitoring season. At this time DCHD anticipates maintaining the 1616 Whitmore monitoring site and not re-establishing the 30th & Fort Street site through 2016. The availability of the former 30th & Fort location is questionable. Also, the Whitmore site recorded the highest ozone levels of all the sites in the Omaha MSA during 2015. See Attachment A for detailed information on sites operated by DCHD.

* Note: RadNet is a nationwide system that monitors the nation's air, drinking water, precipitation, and pasteurized milk to determine levels of radiation in the environment. RadNet sample analyses and monitoring results provide baseline data on background levels of radiation in the environment and can detect increased radiation from radiological incidents. The RadNet monitor is not subject to the network planning process set forth in 40 CFR Part 58.10. It is recognized above for informational purposes only.

B. Omaha MSA Sites Operated by the NDEQ

The NDEQ operates 2 PM_{10} monitoring sites in the Weeping Water area. One at the city waste water treatment plant (abbr. WW City site) and one approximately 1/3 mile northwest of the Weeping Water spur (State Spur 13K) and Highway 50 intersection (abbr. WW Farm site). There were no network changes in the Weeping Water area from January 1, 2014 to September 30, 2015.

C. Lincoln MSA Sites Operated by the LLCHD

LLCHD operates two SLAMS monitoring sites:

- A PM_{2.5} site at 3140 N Street in Lincoln, and
- An ozone site in Davey, NE.

The PM_{2.5}, N Street site has three monitors: a primary filter-based FRM sampler, a collocated filter-based FRM sampler, and a continuous MetOne BAM monitor. Data from the continuous monitor is reported to AirNow, but not AQS.

LLCHD deployed new ozone monitoring equipment (i.e., analyzer, transfer standards and local primary standard) at the start of the 2014 ozone monitoring season.

In 2015, Lincoln established a temporary, investigative site for ozone in Waverly. At the end of the 2015 ozone monitoring season the data from both the Davey and Waverly site will be compared to determine if Waverly might be a higher concentration site, and thus if changes in the ozone network might be needed.

D. Sioux City Metropolitan Statistical Area in Dakota and Dixon Counties

The NDEQ operates one TRS monitoring at 501 Pine Street in Dakota City. There were no changes to the Nebraska air monitoring network in the Sioux City MSA from January 1, 2014 thru September 30, 2015.

E. Grand Island Metropolitan Statistical Area

The NDEQ operates a $PM_{2.5}$ filter-based FRM sampler at Grand Island Senior High. There were no changes to the monitoring network in Grand Island MSA from January 1, 2014 thru September 30, 2015.

F. Scottsbluff Micropolitan Statistical Area

The NDEQ operates a $PM_{2.5}$ filter-based FRM sampler at the Scottsbluff High School. There were no changes to the monitoring network in the Scottsbluff MiSA from January 1, 2014 thru September 30, 2015.

G. Fremont Micropolitan Statistical Area

The NDEQ operates a TSP-Pb (lead) monitoring site at 1255 Front Street in Fremont. This site is source-oriented with respect to Magnus-Farley, a brass/bronze foundry. There are two TSP samplers at this site: a primary sampler and a collocated sampler. There were no monitoring network changes in the Fremont MiSA from January 1, 2014 thru September 30, 2015.

H. Lexington Micropolitan Statistical Area

The NDEQ operates PM_{10} sites in Cozad and Gothenburg. These are source-oriented sites with respect to alfalfa processing and grain handling facilities in these communities. There were no changes to the monitoring network in the Lexington MiSA from January 1, 2014 thru September 30, 2015.

I. City of Auburn

The NDEQ operates a TSP-Pb (lead) monitoring site in Auburn that is source-oriented with respect to Magnolia Metals, a bronze-casting foundry. The site has a single TSP primary sampler. There were no changes to the monitoring network in Auburn and Nemaha County from January 1, 2014 thru September 30, 2015.

J. IMPROVE Sites

IMPROVE is the acronym for Interagency Monitoring of Protected Visual Environments. These sites contain fine particulate and particulate speciation monitors intended to provide information for studying regional haze that may impact Class I National Park and Wilderness Areas. There are no Class I National Park and Wilderness Areas in Nebraska; the nearest sites are in Colorado and South Dakota. Data collected at the Nebraska sites facilitate regional haze and pollution transport studies.

The NDEQ provides administrative oversight of the operation of two IMPROVE sites: one at Halsey National Forest in Thomas County and one at Crescent Lake National Wildlife Refuge in Garden County. These sites began operation in 2002. No changes were made at these sites from January 1, 2014 thru September 30, 2015.

K. National Atmospheric Deposition Program (NADP): National Trends Network (NTN) & Mercury Deposition Network (MDN)

There are two NADP/NTN sites in Nebraska: one near Mead that has operated since 1978 and one near North Platte that has operated since 1985. These sites are operated by the University of Nebraska, with analytical and data development support from the NADP. There were no changes to the NADP/NTN network from January 1, 2014 thru September 30, 2015.

National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of sites that monitor for deposition constituents in precipitation. The deposition parameters examined include acidity, sulfate, nitrate, ammonium, chloride, and base cations (e.g., calcium, magnesium, potassium and sodium).

Mercury Deposition Network (MDN) monitoring was initiated at the Mead site on June 26, 2007, and is continuing. At the North Platte site, MDN monitoring was conducted from October 2008 thru October 2010.

The operation of NADP sites is not subject to the provisions of 40 CFR Part 58.10. Their inclusion in this Network Plan is for informational purposes only. More information on the NADP/NTN and the NADP/MDN can be found in Attachment A and at the following web addresses: <u>http://nadp.sws.uiuc.edu/</u> or <u>http://nadp.sws.uiuc.edu/mdn/</u>

V. Considerations for Network Planning

A. Compliance with 40 CFR Part 58 Requirements

The Nebraska Ambient Air Quality Network must comply with the requirements set forth in 40 CFR Part 58, including Appendices A, C, D and E. Attachment D of this Network Plan contains a review of the Nebraska ambient air monitoring network with respect to these requirements.

As the review in Attachment D verifies, the Nebraska ambient air monitoring network, operated by the NDEQ, DCHD and LLCHD, is meeting all applicable network requirements set forth in 40 CFR Part 58. Three issues related to Part 58 network monitoring site requirements are discussed below.

- 1) **PM_{2.5} Collocation**: A collocated PM_{2.5} 2025 sampler was installed at the 9225 Berry Street site at the start of October 2014. This fulfilled the collocation requirements set forth in 40 CFR Part 58 Appendix A as applied to 2025 samplers in the DCHD PM_{2.5} network..
- 2) **Source-Oriented Lead Monitoring in Norfolk:** On December 14, 2010 EPA promulgated modifications to 40 CFR Part 58 Appendix D Sec 4.5, which lowered the emission threshold for requiring source-oriented lead monitoring to 0.5 tons per year (previously it had been 1 ton of lead emitted per year). This change required lead monitoring near the Nucor Steel-Norfolk facility (a 0.5 tpy source in the 2011 NEI), unless it could be demonstrated that lead levels would not exceed 50% of the NAAQS.

Nucor Steel provided modeling in 2011 that demonstrated the 50% criteria would be met, and the NDEQ submitted a waiver request in June 2011. EPA approved the model demonstration in April 16, 2014. The waiver is effective for 5 years (i.e., expires April 2019).

3) Near-Road NOx Monitoring in the Omaha MSA

On March 14, 2013, EPA promulgated changes to the near-road NOx monitoring requirements (see 40 CFR Part 58 Appendix D Sec. 4.3.2) that were consistent with the previously-recommended, phased-implementation strategy. The revised regulations require a near-road monitoring site in the Omaha MSA by January 1, 2017.

Attachment G contains the siting review conducted by the DCHD, in which they propose putting the near-road NO_2 site at the current 78th & Dodge CO site. Attachment H contains NDEQ's review of, and concurrence with, the DCHD siting proposal.

Initiation of near-road NO₂ monitoring at 78^{th} & Dodge will be contingent upon EPA approval of the site and commitment of EPA funding to support development of the site (see Section VI.B below).

B. Attainment with the National Ambient Air Quality Standards (NAAQS)

The monitoring results from all Nebraska monitoring sites, and adjacent state monitoring sites in the Omaha and Sioux City MSAs, for 2012 thru 2014 are in attainment with the NAAQS. See the monitoring data tables in Attachment B for more information on 2012 thru 2014 monitoring results.

Nebraska has never had a declared non-attainment determination. See Attachment E for a historical perspective on pollutant levels in Nebraska.

NO₂ and SO₂: The NAAQS for these two pollutants were revised in 2010 to establish 1-hour standards. EPA has not rendered a final attainment determination with respect to these revised

NAAQS.

- The 1-hour NO₂ NAAQS was set at 100 ppb and an "unclassifiable/attainment" classification currently applies. The unclassifiable issue applies to near-road NO₂ levels in Omaha. See Sections V.A.3 and VI.B for discussion of near-road NO₂ monitoring plans.
- The 1-hour SO₂ NAAQS was set at 75 ppb and an "unclassifiable" classification currently applies. The unclassifiable issue relates to additional information requirements in 40 CFR Part 51 Subpart BB that apply to SO₂ sources of 2000 tpy or more. See Sections V.C and VI.D for information on how this is being addressed.

Ozone: On October 1, 2015, EPA strengthened (lowered) the ozone NAAQS from 0.075 ppm to 0.070 ppm. As shown in Attachment B Table B-1, the 2012-14 Design Values for monitoring sites in Nebraska and adjacent state areas in the Omaha and Sioux City MSAs are less than 70 ppb (i.e., indicate attainment). Ozone levels thru September 2015 are lower than the 2014 levels as shown Table V-1 below. Thus, it is anticipated that 2013-15 DVs will also find attainment with the revised 70 ppb NAAQS. It is noted that Table V-1 contains April thru September 2015 ozone data from the EPA AirNow database, which has not undergone data validation reviews like AQS data, and thus may be subject to changes.

	Table V-1: 8-Hour Ozone: Annual 4th High Values and 3-Year Design Value (DV)Projections: 2013-2015 (1)					
MSA	Site	2013	2014	2015 ⁽¹⁾	Projected 2013-15 DV ⁽²⁾	% NAAQS (3)
Omaha	NCore Omaha	0.066	0.063	0.062	0.063	84%
	2411 O St., Omaha	0.058	0.059	0.055	0.057	76%
	30th & Fort, Omaha	0.061	0.060	nd	na	na
	16th & Whitmore	nd	nd	0.064	na	na
	Harrison Co, IA	0.065	0.062	0.061	0.062	83%
	Pisgah, IA	0.065	0.063	0.061	0.063	84%
Lincoln	First & Maple, Davey	0.055	0.061	0.061	0.059	79%
Sioux City	Union Co SD	0.063	0.062	0.061	0.062	83%
na	Santee Indian Reservation	0.067	0.063	0.063	0.064	85%
Footnotes:						

(1) The 2015 4th high values were obtained using April thru September 2015 data. October data was not yet available. The 2015 data was obtained from the EPA AirNow database. This is not validated data. The 2013 and 2014 validated data were obtained from the EPA AQS data.

(2) The DV is the truncated 3-year average of the annual 4th high values.

(3) The 8-hour ozone NAAQS is 0.070 ppm effective 10/1/15.

C. Other EPA Regulations: Existing and Proposed

Data Requirements for Demonstrating SO₂ Attainment: On August 21, 2015 EPA finalized changes to 40 CFR Part 51 Subpart BB, $\S51.1200 - \S51.1205$ that set forth additional data requirements with respect to demonstrating attainment with the 1-hour SO₂ NAAQ promulgated in 2010. These regulations defined the requirements for air quality agencies... *in whose jurisdiction is located one or more applicable sources of SO₂ emissions that have annual actual SO₂ emissions of 2,000 tons or more; or in whose jurisdiction is located one or more sources of SO₂ emissions that have been identified by the air agency or by the EPA Regional Administrator as requiring further air quality characterization. The discussion below is not part of the submittal required to comply with these requirements, but rather a preliminary review of how this might impact Nebraska's monitoring network.*

Table V-2 below contains 2014 Nebraska Emission Inventory data for SO_2 for the 7 largest coalfired power plants in Nebraska, and where available air monitoring data. Table V-2 is not the list of facilities required to be submitted under \$51-1203(a); it is included here to facilitate discussion.

Table V-2 indicates that Nebraska has 6 facilities with SO_2 emissions of 2000 tpy or more. Monitoring has been conducted in the vicinity of one of these: North Omaha Station and that monitoring found SO_2 levels to be in compliance with the NAAQS.

Table V-2: Largest SO2 Emission Sources in Nebraska and 2012-141-Hour SO2 DVs $^{(1)}$					
Source	Location	SO ₂ Emissions ⁽²⁾ (tpy)	2012-14 DV ⁽³⁾⁽⁴⁾ (ppm)		
NPPD Gerald Gentleman Station	Lincoln County	24,482	No data		
OPPD Nebraska City Station	Otoe County	16,134	No data		
OPPD North Omaha Station	Douglas County (Omaha)	11,250	0.061		
NPPD Sheldon Station	Lancaster County	3,243	No data		
Gerald Whelan Energy Center	Adams County (Hastings)	2,899	No data		
Lon D Wright Power Plant	Dodge County (Fremont)	2,232	No data		
Platte Generating Station	Hall County	1,452	No data		

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Footnotes:

(1) This table is <u>not</u> the list of facilities to be submitted pursuant to 40 CFR Part 51.1203(a).

(2) SO₂ emission data was obtained from the 2014 Nebraska Emission Inventory.

(3) The 1-hour SO₂ DV is the 3-year average of the annual 99^{th} percentile values.

(4) The 1-hour SO₂ NAAQS = 0.075 ppm.

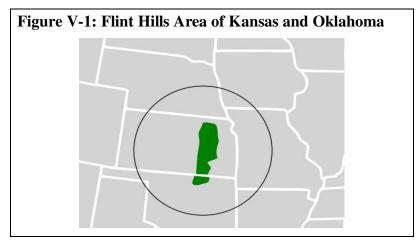
Agencies can meet data requirements for demonstrating attainment in 3 ways:

- 1) Establish ambient monitoring in the vicinity of applicable sources by January 1, 2017;
- 2) Submit air quality monitoring analyses by January 13, 2017; or
- 3) Establish enforceable emission limits to hold SO₂ emissions below 2000 tpy.

If the monitoring option is pursued and the January 1, 2017 deadline is missed, then a modeling analysis or enforceable limits are required. There are also interim submittal requirements not discussed herein.

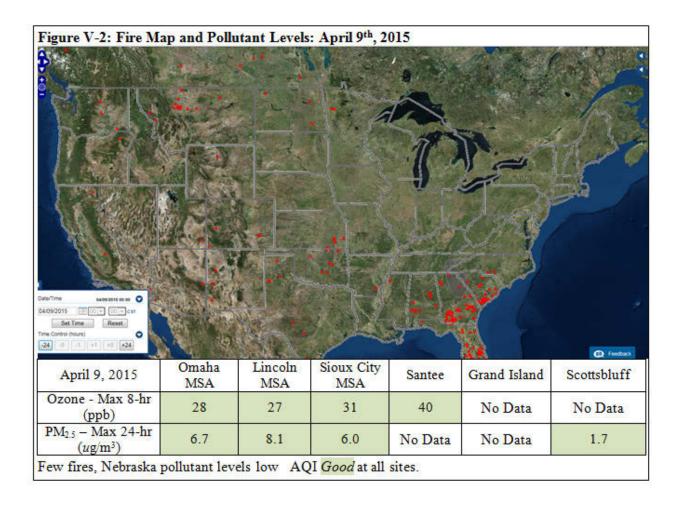
The NDEQ is evaluating how to best proceed to comply with the Part 51, Subpart BB requirements. At this time, the agency is not ready to commit to additional SO₂ monitoring to meet these requirements, in part due to the uncertainty of what monitoring will be required. Rather, it is anticipated that modeling and/or the establishment of enforceable limits will be used to meet the requirements of Part 51 Subpart BB.

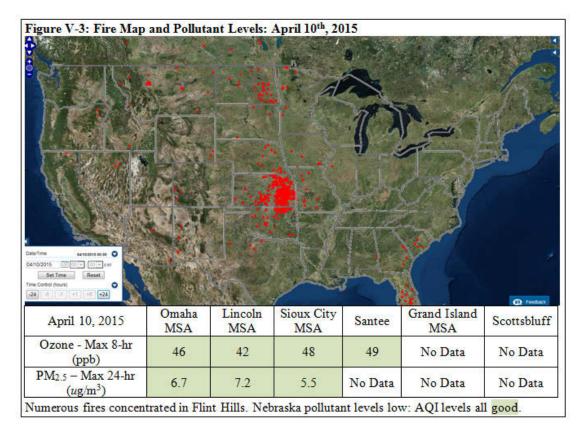
D. Other Air Quality Issues:

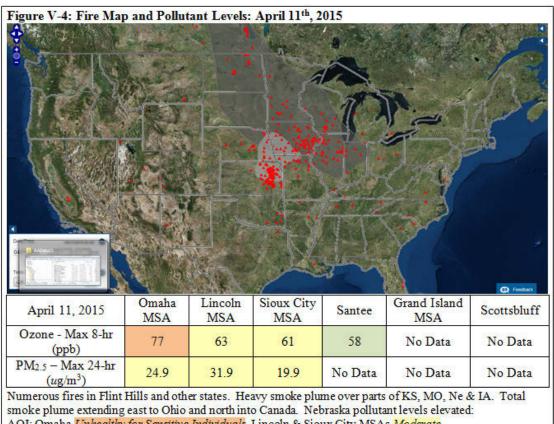

Wild Fires and Prescribed Burning: Nebraska's air quality is periodically impacted by smoke from wildfires and prescribed burning. In 2015, Nebraska's air quality was impacted by prescribed burns in the spring and western wildfires from the Pacific Northwest and Canada in the summer. See Figures V-2 thru V-7.

Prescribed burning is a common range and grassland management practice conducted to promote native prairie species, suppress tree growth, and release nutrients back into the soil. It is a conservation/grassland management tool recognized by state and federal agencies, as described at the following web addresses:

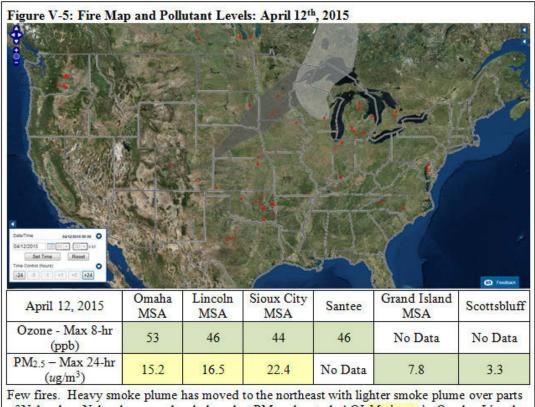
- <u>http://www.npwrc.usgs.gov/resource/habitat/burning/</u>
- <u>http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ia/newsroom/features/?cid=stelprdb1077081</u>
- <u>http://outdoornebraska.ne.gov/wildlife/programs/wildnebraska/options.asp</u>

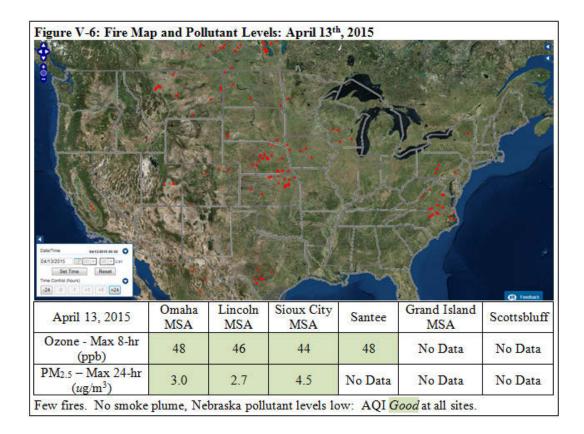

A negative aspect of prescribed burning is that smoke from fires can travel great distances and contribute to air pollution hundreds of miles from the site of the fires.


The Flint Hills of eastern Kansas and northeast Oklahoma (see Figure V-1) contain the densest coverage of intact tall-grass prairie in North America. It is roughly 200 miles N-to-S and 80 miles E-to-W. The northern end of the Flint Hills extends into the southern areas of Washington County and Marshall County KS; approximately 20 miles south of the Nebraska/Kansas boundary. The cattle ranchers within the Flint Hills conduct spring burning to maintain the prairie. Smoke from these burning activities impacts Nebraska.



Impacts from Flint Hills burning were particularly significant in the spring of 2014. Drought conditions in 2012 and wet conditions in 2013 reduced the feasibility of burning in those years. There were also impacts in the spring of 2015, but they were not as severe as in 2014. Figures V-2 thru V-6 show the impact of Flint Hills burning on April 10^{th} - 11^{th} 2015. Typically, ozone and PM_{2.5} levels peak in Nebraska the day after there is burning in the Flint Hills area, and this was true in April 2015 as shown in Figures V-2 thru V-6.


Nebraska's air quality was also impacted in 2015 by wild fires in the Pacific Northwest, Canada and Alaska. Figure V-7 shows the impact on July 7th, 2015, but this is not the only day when western forest fires impacted air quality in Nebraska.



AQI: Omaha <u>Unhealthy for Sensitive Individuals</u>, Lincoln & Sioux City MSAs <u>Moderate</u> Ozone (Apr-Sep 2015): Omaha MSA max value, Lincoln & Sioux City MSAs 2nd high, and Santee 9th high PM_{2.5} (Jan-Sep 2015): Omaha MSA 6th high, Lincoln MSA 3rd high and Sioux City MSA 7th high

Few fires. Heavy smoke plume has moved to the northeast with lighter smoke plume over parts of Nebraska. Nebraska ozone levels low, but PM_{2.5} elevated: AQI <u>Moderate</u> in Omaha, Lincoln & Sioux City MSAs. PM_{2.5} levels in Sioux City MSA higher than previous day (5th high PM_{2.5} Jan-Sep 2015).

E. Population Trends and Network Design

Population related data is reviewed as part of the network planning process because:

- Population growth may be associated with pollution source growth;
- High population density generally correlates with high air pollution potential; and
- Some 40 CFR Part 58 requirements are based on population and/or federally defined metropolitan statistical definitions.

Attachment C contains a review of population growth and growth trends in Nebraska. The data in Attachment C is based on 2010 census and 2014 survey estimate data.

Overall growth trends in Nebraska appear basically unchanged from those described in previous annual Network Plans. Most of the population growth is occurring in Nebraska's 3 most populous and densely populated counties: Douglas, Lancaster and Sarpy (i.e., the Omaha and Lincoln MSAs).

The basic design of the Nebraska ambient air monitoring network is consistent with these population trends: 61% of the monitoring sites and 73% of the pollutant monitors are located within the Omaha and Lincoln MSAs. The Omaha MSA network contains 52% of the monitoring sites in Nebraska and 67% of the monitors.

F. Funding

Air monitoring is supported by a combination of federal, cash, state and local funding sources. Table V-4 below provides a summary of the primary funding sources used for air monitoring.

Federal CAA §103 grant funding for April 2015 through March 2016 was reduced by \$10,000. §103 funding is used to operate $PM_{2.5}$ and IMPROVE monitors. This cut was absorbed without reductions in the $PM_{2.5}$ and IMPROVE monitoring network.

EPA is considering site priorities within the IMPROVE monitoring network. There are currently 2 IMPROVE sites managed by NDEQ with §103 funding: one near Halsey in the Nebraska National Forest and one in the Crescent Lake National Wildlife Refuge. If EPA does cut funding for one of these sites, then the NDEQ anticipates that EPA will identify the lower priority site. NDEQ will work with EPA to facilitate closure of either or both IMPROVE sites, if EPA does not fund their continued operation.

Initial indications are that Federal CCA §105 funding for October 2015 thru September 2016 will be maintained at current levels.

Current funding levels are adequate to continue the operation of the existing Nebraska air monitoring network, provided major new equipment purchases are not required. However, equipment used for TRS monitoring and some of the $PM_{2.5}/PM_{10}$ sampling equipment is nearing the end of its useful life and is need of replacement. The need to expand the ozone monitoring network within Nebraska is also under review. Opportunities for network adjustments are discussed in the Network Assessment section below.

Table V-3: Primary	Funding Sources used to Support Air Monitoring in Nebraska				
Nebraska Departme	Nebraska Department of Environmental Quality (NDEQ)				
Funding Source Comments					
State General Funds	At a minimum must be sufficient to meet minimum federal match requirements				
State Title V Funds	Fees paid by major sources based on the quantity of air pollutants they emit. NDEQ collects Title V fees for sources through-out Nebraska, except those regulated by LLCHD and Omaha Air Quality Control. Title V funds cannot be used for state/local match.				
CAA §105 Funds	Federal grant funds used for air monitoring activities set forth in a bi-annually negotiated EPQA-NDEQ work plan. Requires a 40% state/local match. A portion of this grant funding is passed on to DCHD and LLCHD.				
CAA §103 Funds	Federal grant funds used for air monitoring activities set forth in a bi-annually negotiated EPQA-NDEQ work plan. This money is currently limited to funding PM _{2.5} and IMPROVE monitoring, and sometimes for specified equipment purchases and/or special monitoring studies. Requires no state/local match. A portion of this grant funding is passed on to DCHD and LLCHD.				
Douglas County Healt	h Department (DCHD)				
Local County Funds	At a minimum must be sufficient to meet minimum federal match requirements				
City of Omaha Title V funds	See <i>State Title V Funds</i> comments above. The Omaha Air Quality Control regulates air emission sources in the City of Omaha, including the collection of Title V fees from major sources. A portion of the Omaha Title V funds are directed to DCHD to support air monitoring. Title V funds can not be used for state/local match.				
CAA §105 Funds	NDEQ passes-through a portion of the Federal §105 funds to DCHD for activitie described in an NDEQ/DCHD work plan. DCHD is required to meet the 40% state/local match requirement.				
CAA §103	NDEQ passes-through a portion of the federal 103 funds to DCHD for activities described in an NDEQ/DCHD work plan, primarily $PM_{2.5}$ related monitoring activities. There is no state/local match requirement.				
Metropolitan Area Planning Assoc. (MAPA) Funds	Typically federal grant funds obtained by MAPA are for specific purposes such as transportation or homeland security related activities. Historically they have been used for equipment purchases and site set-up, not network operating costs.				
Lincoln Lancaster Cou	unty Health Department (LLCHD)				
Local County Funds	At a minimum must be sufficient to meet minimum federal match requirements				
Lancaster County Title V funds					
CAA §105 Funds	NDEQ passes-through a portion of the Federal §105 funds to LLCHD for activities described in an NDEQ/LLCHD work plan. LLCHD is required to meet the 40% state/local match requirement.				
CAA §103	NDEQ passes-through a portion of the federal $\$103$ funds to LLCHD for activities described in an NDEQ/LLCHD work plan, primarily PM _{2.5} related monitoring activities. There is no state/local match requirement.				

VI. Network Assessment

This network assessment was undertaken to comply with 40 CFR Part 58.10 requirements for a 5year network assessment. In that regard it relies on documentation contained in Section V above and Attachments A thru G. Also Attachment A provides detailed information on each site in the Nebraska SLAMS including: location, monitoring purpose and scale, monitoring initiation dates, and analytical methods.

General observations related to this network assessment are bulleted below. The pollutantspecific subsections that follow contain more detailed analysis and discussion

- Existing monitoring is finding attainment with the NAAQS, including the recently revised 70 ppb 8-hour ozone NAAQS. See Attachment B for annual and design value data. An attainment designation of "unclassified" currently exists with respect to the 1-hour SO₂ NAAQS, and an attainment designation of "unclassified/attainment" currently exists with respect to the 1-hour NO₂ NAAQS. See SO₂ and NO₂ related bullets below, and Sections VI-B and VI-D below for more information on these issues.
- Population trends have not changed. The Omaha and Lincoln MSAs continue to be the fastest growing areas of Nebraska. More than half of the monitoring sites (i.e., 13 of 22 or 59%, see Table III-1) in Nebraska's SLAMS are located in these MSAs.
- All the minimum monitoring requirements of 40 CFR Part 58 Appendix D are being met. See Attachment D for the detailed review of these requirements.
- The NDEQ permitting and compliance programs ensure that new sources and facility expansions are installing and utilizing adequate emission controls. A temporal examination of pollutant levels demonstrates long-term declines and improved air quality. See Attachment E for details. Also see Attachment B for current pollutant levels.
- CO levels are well below the NAAQS as a result of mobile and stationary source emission controls. The need for CO monitoring is currently limited. The 2 sites in Omaha are sufficient.
- Ozone concentrations appear to be more uniform across the state than PM_{2.5} levels as shown in Attachment B Table B-1. The Nebraska SLAMS has 3 ozone monitoring sites in the Omaha MSA and 1 site in the Lincoln MSA. Ozone levels in the Omaha MSA are higher than the Lincoln MSA.

However, the highest concentration site in Nebraska is currently at the EPA CASTNET site near Santee, NE. This CASTNET site is not part of the Nebraska SLAMS, it is not operated by the NDEQ and is not subject to review under this Network Plan.

Ozone concentrations in Nebraska are not surprising when compared to levels in surrounding states as shown in Attachment E Figure E-13.

Ozone levels in Nebraska have declined significantly in the last 3 years (see Attachment B Table B-1) and there has been a long-term decline as well (see Attachment E Section 2). Although, significant cyclic patterns also exist in the historical data and recent declines would be consistent with short-term, multi-year declines seen in the past.

At this point NDEQ does not anticipate deploying additional ozone monitoring sites before 2017. DCHD relocated the 30th & Fort site to 16th & Whitmore in 2015 due to construction activities. This relocation will continue thru 2016 and possibly beyond. See detailed discussions below.

- Current and historical monitoring for SO₂ indicates attainment with possible exceptions of areas impacted by SO₂ sources of 2000 tpy or more. As discussed in Section VI-D below, this is being addressed using modeling not monitoring.
- Current and historical monitoring for NO₂/NOx indicates attainment with the possible exception of near-road locations in Omaha. Attachment G contains DCHD's proposal for a near-road NO₂ site at 78th & Dodge in Omaha (i.e., the current CO monitoring site). Attachment H contains NDEQ's review and concurrence with the DCHD proposal. However, the NDEQ also notes that near-road monitoring in larger metro areas is finding attainment (see Attachment E Section 3 Table E-3). Thus, a funding commitment from EPA is expected if the Omaha near-road NO₂ site is to be developed.
- PM_{2.5} monitoring is finding all areas of Nebraska in attainment with the both the 12 ug/m3 annual average and the 35 ug/m3 24-hour average NAAQS. The highest PM_{2.5} concentrations are found in the Omaha MSA (see Attachment B Tables B-6a & B-6b), and 4 of the 7 PM_{2.5} monitoring sites in the Nebraska's SLAMS are located in the Omaha MSA. The second highest PM_{2.5} levels are found in Lincoln, and there is one site there. The other 2 PM_{2.5} sites in the Nebraska SLAMS are the background site at Scottsbluff and the transport site at Grand Island. PM_{2.5} concentrations are significantly lower here than in the Lincoln or Omaha sites.
- PM₁₀ is primarily a source-oriented pollutant concerns at this time. Based on monitoring results, NDEQ is proposing to shut-down the PM₁₀ sites at Cozad and Gothenburg. The replacement of old monitoring equipment at the Weeping Water City site is anticipated. No additional sites or site relocations are planned
- Lead (Pb) is a source-oriented pollutant at this time. The NDEQ operates to source-oriented TSP-Pb monitoring sites: one in Auburn and one in Fremont. DCHD operates a non-source oriented TSP-Pb sampler at the Omaha NCore site pursuant to 40 CFR Part 58 Appendix D requirements. Based on monitoring results and lead emission reductions from Magnolia Metals, the NDEQ is proposing to shut-down the TSP-Pb site at Auburn. No additional sites or site relocations are planned.
- NDEQ currently operates one TRS site in Dakota City. Based on monitoring results, NDEQ is proposing to shut-down this site.

The pollutant-specific subsections below provide detailed analysis and discussion of the subjects summarized above.

A) Carbon Monoxide (CO):

Carbon monoxide is formed when carbon in fuels is not burned completely. It is a byproduct of highway vehicle exhaust, which contributes about 60 percent of all CO emissions nationwide. In cities, automobile exhaust can cause as much as 95 percent of all CO emissions. These emissions can result in high concentrations of CO, particularly in local areas with heavy traffic congestion. Other sources of CO emissions include industrial processes and fuel combustion in sources such as boilers and incinerators.

See Attachment E for a complete historical review of CO monitoring in Nebraska. Historically CO monitoring in Nebraska has been conducted primarily in Lincoln and Omaha. These are the largest urban areas in Nebraska, and will have the highest ambient CO levels in high traffic, traffic congested, street-canyon areas.

Vehicle and stationary source emission standards have reduced CO emissions to levels well below the NAAQS. Figures E-1 and E-2 (see Attachment E) show 1-hour and 8-hour CO levels in Omaha and Lincoln starting as far back as 1971. Ambient CO levels have decreased significantly since the 1970s, and have been at levels well below 50% of the NAAQS since 2000. This decrease in CO levels resulted from the effectiveness of emission controls installed on mobile and stationary sources.

The last CO monitoring site in Lincoln was shut-down in 2011. It was located at 26th and O Street, a high traffic, traffic congested, street canyon location. The 2009-11 DVs (i.e., the last 3 years the site operated) from the Lincoln site were at 11% and 31% of the 1-hour and 8-hour NAAQS.

Currently there are 2 CO monitoring sites remaining in Nebraska. One is at 78th and Dodge, a high traffic, traffic congested, valley location. The other is at the NCore site at 4102 Woolworth Ave. The NCore site is an urban-scale site designed to provide ambient air quality data typical of the urban core. CO monitoring at this site is required pursuant to 40 CFR Part 58 Appendix D.

Higher CO levels are seen at the 78th & Dodge site than at the NCore site, as anticipated. See Table B-2 in Attachment B for 2012 thru 2014 data including the 2012-14 DV. The CO levels in the Omaha MSA are in attainment with the NAAQS with maximum 2012-14 DVs at 7% of the 1-hour NAAQS and 26% of the 8-hour NAAQS.

South Dakota also ran a background site in Union County prior to 2014, which is in the Sioux City MSA. Maximum CO levels found at this site were below 5% of the 1-hour and 8-hour NAAQS. Table B-2 in Attachment B contains 2012 and 2013 data from this site.

Attachments G & H contain justifications for siting of the near-road NO₂ monitor at 78th & West Dodge. The same criteria that make this the optimum near-road site for NO₂, also apply to CO.

Thus the current CO monitoring network of two sites in Omaha is adequate, and there are no reasons to seek additional or alternative sites within Nebraska.

B) Nitrogen Dioxide (NO₂):

Nitrogen Oxides (NOx), which includes NO₂, are a family of poisonous, highly reactive gases. These gases form when fuel is burned at high temperatures. NOx pollution is emitted by automobiles, trucks and various non-road vehicles (e.g., construction equipment, boats, etc.) as well as industrial sources such as power plants, industrial boilers, cement kilns, and turbines. NOx often appears as a brownish gas. It is a strong oxidizing agent and plays a major role in the atmospheric reactions with volatile organic compounds (VOC) that produce ground-level ozone (smog) on hot summer days.

Historical NO_2 and NOx monitoring results are discussed in Attachment E. Monitoring conducted in the 1970s and 1980s demonstrated attainment with the NO_2 NAAQS in place at that time (see Figures E-14 thru E-17 in Attachment E). With attainment for NO_2 demonstrated, monitoring for NO_2 was discontinued in Nebraska after 1984.

In 2010, EPA promulgated a new 1-hour NO_2 NAAQS of 100 ppb. EPA has provided an attainment designation of "unclassified/attainment" with respect to this NAAQS. EPA feels more monitoring information is needed to address the "unclassified" areas at near-road locations in Omaha.

A near-road monitoring site in Omaha is required by January 1, 2017 pursuant to 40 CFR part 58 Appendix D Section 4.3.2. Attachment G is DCHD's proposal to use the existing 78th and Dodge

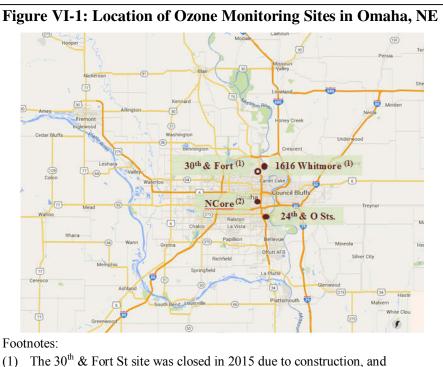
CO site as the near-road NO₂ monitoring. Attachment H is NDEQ's review and concurrence with the DCHD proposal. However, the evidence available indicates that near-road locations in Omaha will be in attainment with the 100 ppb 1-hour NO₂ NAAQS.

- The NOy-NO concentrations at the Omaha NCore site are 35% to 43% of the NAAQS. The NOy-NO component of NOx is comprised of NO₂ and possibly other NOx components, thus is at least equal to NO₂. However, the NCore site is not a near-road location.
- More compelling are the near-road monitoring results from Minneapolis and St. Louis, both larger urban areas than Omaha, that show near-road NO₂ levels at 43% and 50% of the NAAQS (see Table E-3 in Attachment E). This is consistent with information gleaned from inter-agency teleconferences; that the near-road sites operating in larger metro areas are finding 1-hour NO₂ levels below the 100 ppb NAAQS (i.e., attainment).

Thus although the 78th and West Dodge location is proposed as the best near-road site in Omaha, NE, the actual deployment of said site is dependent upon additional funding from EPA to establish said site. This is also discussed in Section VII below.

C) Ozone:

Ground level ozone is not emitted directly into the air, but is created by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOC) in the presence of sunlight. Emissions from industrial facilities and electric utilities, motor vehicle exhaust, gasoline vapors, and chemical solvents are some of the major sources of NOx and VOC. It is an air pollutant typically associated with larger urban areas.


Attachment E contains a review of historical ozone monitoring data from the 1970s thru 2014. The most extensive monitoring has been conducted in Lincoln and Omaha. Ozone concentrations have trended downward in both of these MSAs. See Figures E-6 thru E-9.

Currently there are ozone monitoring sites in the Omaha MSA (3sites in NE and 2 in IA), the Lincoln MSA (1 site in Davey), the Sioux City MSA (1 site in Union County, SD) and near Santee, NE (an EPA CASTNET site). Figure E-9 shows how the ozone concentrations from these four locations compare from 2009 thru 2014.

The National Park Service also operated a site at the Scotts Bluff National Monument from 2010 thru 2012, and at the Agate Fossil Beds National Monument from 2007 thru 2009. Figures E-10 and E-11 show how ozone concentrations from these 2 sites compared to the other 4 locations (i.e., Omaha, Lincoln & Sioux City MSAs and Santee).

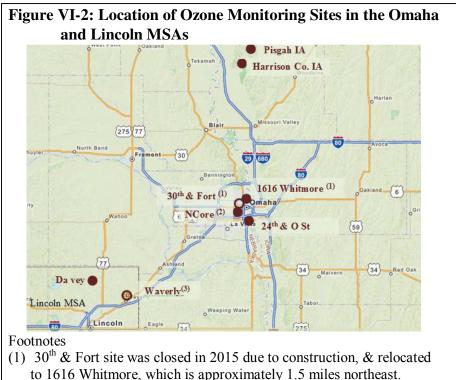

In recent years, ozone levels at all but one Nebraska location are surprisingly close with DVs in the 60 to 70 ppb range. The Davey site (Lincoln MSA) was the exception with annual 4th high values in the 50's (ppb) until 2014, when ozone levels increased to be very near those found at the other sites.

Figure VI-1 below shows the locations of the ozone monitoring sites in Omaha, NE, while Figure VI-2 shows the location of ozone monitoring sites in the Omaha MSA, as well as those in the adjacent Lincoln MSA. Figure E-5 shows the location of current and historical ozone monitoring sites in Nebraska and neighboring state areas of the Omaha and Sioux City MSAs.

relocated to 1616 Whitmore, which is approximately 1.5 miles northeast.

(2) The NCore site is located at 4201 Woolworth Ave.

- (2) The NCore site is located at 4102 Woolworth Ave.
- (3) Waverly site is a temporary investigative site operated in 2015.
- (4) The boundaries of the Omaha MSA are not shown.

The 2012-14 DVs for the ozone monitoring sites in Nebraska and in neighboring state areas of the Omaha and Sioux City MSAs are in attainment with the revised ozone NAAQS of 70 ppm (finalized 10/1/15). See Attachment B Table B-1 for detailed information. The highest 2012-14 DV among these sites was 68 ppb at Santee. The Harrison County, IA and Pisgah, IA sites had the highest DV of the Omaha MSA sites, with both having 2012-14 DVs of 67 ppb.

Uncertified 2015 data from the EPA AirNow database, as shown in Table V-1 above, indicates that 2015 ozone levels through 9/30/15 are lower than 2014 levels. Thus it is anticipated that 2013-15 DVs will also be in attainment with the ozone NAAQS.

Figure E-13 in Attachment E shows ozone levels in Nebraska and surrounding states. The ozone concentrations being found in Nebraska are consistent with those being found in surrounding states, with the higher levels found in northeastern Colorado (Denver-Fort Collins), throughout Kansas, and in the Kansas City area likely impacting Nebraska.

Table E-6 in Attachment E provides a long term depiction of maximum ozone values in the Omaha MSA. Overall the data shows a downward trend, but also an irregular cyclic pattern. The last DV in the Omaha MSA above 70 ppb was in 2007, but if the cyclic pattern holds, a future DV above 70 ppb appears possible.

At this time DCHD anticipates maintaining the 1616 Whitmore monitoring site through 2016, and not re-establishing the 30th & Fort Street site. The Whitmore site recorded the highest ozone levels of all the sites in the Omaha MSA during 2015. Also the availability of the former 30th & Fort location is questionable.

NDEQ and LLCHD established an investigative ozone site in Waverly during 2015. The data from the Davey and Waverly site will be compared following the 2015 monitoring year. If the data indicates that ozone concentrations are higher in Waverly than Davey, then monitoring in Waverly may be continued, or the Davey site may be re-located to Waverly.

The NDEQ has been contemplating establishing an ozone site in Grand Island and possibly at other locations within Nebraska. At this time, any such deployment is not anticipated prior to 2017, except possibly a temporary investigative or special purpose site.

D) Sulfur Dioxide (SO₂):

Sulfur dioxide (SO₂) is one of a group of highly reactive gases known as "oxides of sulfur." The largest sources of SO₂ emissions are from fossil fuel combustion at power plants (73%) and other industrial facilities (20%). Smaller sources of SO₂ emissions include industrial processes such as extracting metal from ore, and the burning of high sulfur containing fuels by locomotives, large ships, and non-road equipment. Low sulfur fuel requirements for cars and trucks have greatly reduced SO₂ emissions from mobile sources. SO₂ is linked with a number of adverse effects on the respiratory system.

Currently there are two SO₂ monitoring sites in Nebraska, both are in Omaha

- The NCore site at 4102 Woolworth Ave, and
- The source-oriented site at1616 Whitmore St (i.e, source-oriented with respect to OPPD's North Omaha Station).

Both sites are demonstrating attainment with the NAAQS at 38% and 81% of the 1-hour NAAQS, respectively.

Attachment E Section 4 is a historical review of SO_2 monitoring results in Nebraska. Maximum annual average SO_2 levels were seen prior to the mid-1980s (see Figures E-20 and E-21). The

source-oriented monitoring site at1616 Whitmore Street in Omaha last recorded an annual 1-hr 99th percentile value above 75 ppb in 2007 (see Figures E-22 and E-23).

EPA promulgated a 1-hour SO₂ standard of 75 ppb in 2010. Currently EPA has given Nebraska an attainment designation of "unclassifiable" pending the gathering of additional information. On August 21, 2015, EPA promulgated new requirements in 40 CFR Subpart BB, §51.1200 -§51.1205 that detailed the additional information needed. These requirements apply to state, local and tribal (SLT) air quality authorities that have sources emitting 2000 tons or more per year of SO₂. There are 6 Nebraska coal-fired power plants that meet this criteria as shown in Table V-2: NPPD Gerald Gentleman Station (24,500 tpy), OPPD Nebraska City Station (16,100 tpy), OPPD North Omaha Station (11,200 tpy), NPPD Sheldon Station (3,200 tpy), Gerald Whelan Energy Center (2,900 tpy) and Lon D Wright Power Plant (2,200 tpy).

There are three alternatives that SLT authorities may pursue to meet the Part 51 requirements:

- 1) Install a monitoring network in the vicinity of the sources;
- 2) Conduct modeling that demonstrates attainment; or

3) Provide enforceable limits for the source that hold SO₂ emissions below 2000 tpy. Nebraska state and local agencies will use modeling and/or enforceable limits to meet the Part 51 requirements. SO₂ monitoring will not be used to meet these requirements. The monitoring option would be costly, and there are too many uncertainties associated with the monitoring option to justify pursuing it.

One uncertainty is the January 1, 2017 deadline for having the monitoring network in place. If this deadline is missed then Part 51 requires that one of the other two options must be pursued. Other uncertainties include the number and location of monitors that EPA would deem sufficient, especially if modeling indicated a non-attainment situation might occur.

Summary: Current monitoring sites are indicated attainment with the SO₂ NAAQS. Modeling, not monitoring, will be used to evaluate attainment with respect to emission impacts from SO₂ sources of 2000 tpy or more. Thus, additional SO₂ monitoring sites are neither needed nor planned.

E) Particulate Matter: PM₁₀, PM_{2.5} and PM_{10-2.5}

Particulate matter or PM, is a complex mixture of extremely small particles and liquid droplets. Particle pollution is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles.

The size of particles is directly linked to their potential for causing health problems. EPA is concerned about particles that are 10 micrometers in diameter or smaller because those are the particles that generally pass through the throat and nose and enter the lungs. Once inhaled, these particles can affect the heart and lungs and cause serious health effects.

From a monitoring perspective particulates currently fall in one of three groups:

- PM₁₀: Comprised of particulate matter that has an aerodynamic diameter of 10 microns or less. The coarse particulate fraction of PM₁₀ (i.e., particulate matter with an aerodynamic diameter between 2.5 and 10 microns) originates from industrial, mining, materials handling facilities as well as dust from natural and anthropogenic origins. In most instances, the coarse fraction typically remains localized to its source of origin. Thus PM₁₀ monitoring is typically source-oriented.
- PM_{2.5}: Comprised of particulate matter that has an aerodynamic diameter of 2.5 microns or less. PM_{2.5} is a significant component of smoke and haze. It can be directly emitted from

sources such as forest fires, or it can form in situ from other pollutants (e.g., ammonia, sulfur oxides and nitrogen oxides) in the atmosphere. $PM_{2.5}$ monitoring sites are typically located at neighborhood, urban or regional scale sites.

• PM_{10-2.5}: Comprised of particulate matter that has an aerodynamic diameter between10 and 2.5 microns. PM_{10-2.5} is not measured directly, but is calculated as the difference between PM₁₀ and PM_{2.5} levels. There is currently a single PM_{10-2.5} monitoring site in Nebraska; it is at the Omaha NCore site. PM_{10-2.5} monitoring is required at NCore sites.

Monitoring activities and NAAQS revisions are summarized below.

- PM monitoring was initiated in Nebraska using total suspended particulate (TSP) samplers beginning in 1959.
- EPA promulgated TSP NAAQS in 1971 and rescinded them in 1987.
- TSP monitoring in Nebraska was discontinued in 2000.
- The PM₁₀ NAAQS were promulgated in 1987 to replace the TSP NAAQS, and was modified in 2006.
- PM₁₀ monitoring was initiated in 1987 and continues to the present time.
- PM_{2.5} NAAQS were promulgated in 1997, and strengthened in 2006 and 2012.
- PM_{2.5} monitoring was initiated in 1999 and continues to the present time.

See Attachment E Table E-4 for a historical summary of the PM NAAQS and Table E-5 for the history of PM monitoring sites. Attachment E also contains a review of historical and current PM levels in Nebraska.

E-1) PM₁₀

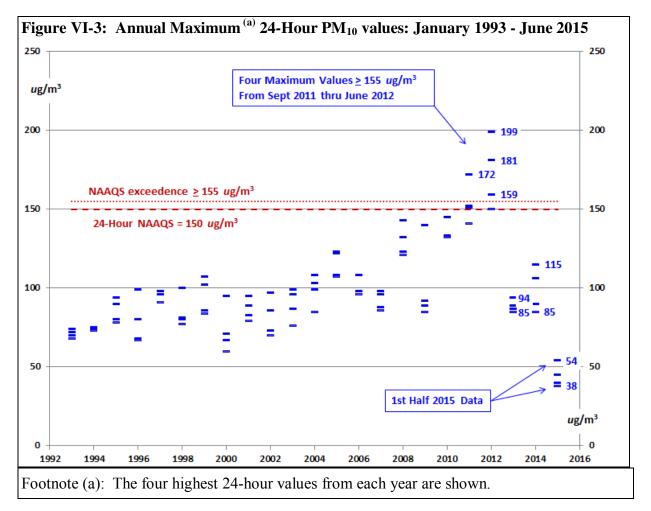
Currently PM_{10} monitoring is conducted at 8 sites in or near 4 Nebraska communities: Omaha, Weeping Water, Cozad & Gothenburg. PM_{10} monitoring is also being conducted in the Iowa portion of the Omaha MSA, the Iowa and South Dakota portions of the Sioux City MSA. All of these sites are demonstrating attainment with the PM_{10} NAAQS as shown in Attachment B Table B-5a.

Historically, PM_{10} monitoring has been conducted in 14 Nebraska communities as shown in Attachment E Table E-8. The number of PM_{10} monitoring locations was ultimately reduced to 4 as attainment was demonstrated in the other areas. See Attachment E Section 5 for a more detailed review of PM_{10} monitoring and ambient levels.

a) Omaha MSA Sites excluding Cass County (Weeping Water area)

There are four sites in Omaha, NE and 1 site in Council Bluffs, IA. The location of these 5 sites is shown in Figure VI-4 below.

Average annual PM_{10} levels in Omaha have been generally decreasing since monitoring was initiated in 1987 as shown in Table E-29.


The four sites in Omaha are operated by DCHD and are discussed in more detail below.

1) **46th & Farnam Site:** Monitoring was initiated at this site in 1993. Initially a hi-vol sampler that sampled once every 6 days was used at this site, then in 2008 a continuous Thermo FH 62 C14 sampler was installed.

This is a source-oriented site with respect Omaha Steel Casting Company. Beginning in 2012, Omaha Steel began a staged relocation to a new facility in Wahoo, NE. The Omaha Steel facility at 46th & Farnam ceased production in 2014. Demolition of the site was started in the second-half 2015.

Figure VI-3 shows the 4 highest 24-hour PM_{10} values detected from January 1993 thru June 2015. Maximum 24-hour PM_{10} levels generally increased from 1993 thru 2012. From September 2011 thru June 2012, the 46th & Farnam site recorded four (4) 24-hour average PM_{10} values greater than the 150 μ g/m³ standard. From 2013 to present, PM_{10} values dropped dramatically as Omaha Steel undertook and completed its relocation.

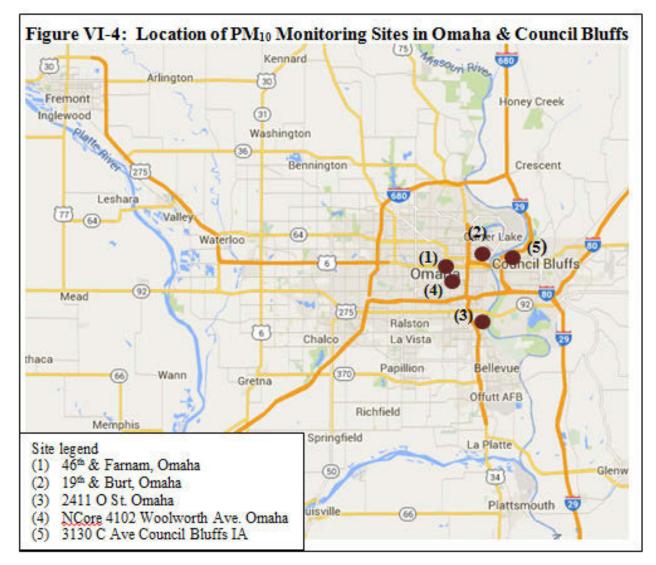
DCHD has no immediate plans to close this monitoring site. Monitoring results and redevelopment activities will be considered as to when and whether to close this site.

2) 19 & Burt Site: Monitoring was initiated at this site in 2001. It is a middle scale site located near downtown Omaha. Hi-vol primary and collocated samplers are located at this site. It is a middle scale site located near downtown Omaha.

Monitoring at this site has always demonstrated attainment with maximum annual 24-hour PM_{10} values ranging from 114 ug/m^3 in 2003 to 44 ug/m^3 in 2011. The maximum 24 hour value detected in 2012 thru 2014 was 56 ug/m^3 (see Table B-5a). DCHD intends to keep operating this site for the foreseeable future.

3) 2411 O Street Site: Monitoring was initiated at this site in 1989 and continued thru 1992. In this 4 year period the highest annual 24-hour values found ranged from 105 *ug*/m³ in 1990 to 61 *ug*/m³ in 1991. Monitoring was discontinued after 1992.

Monitoring was re-initiated in 2007 in response to citizen air quality concerns. From


2007 thru 2014, maximum annual 24-hour PM_{10} values ranged from 83 ug/m^3 in 2008 to 47 ug/m^3 in 2009. The maximum 24-hour value detected in 2012 thru 2014 was 74 ug/m^3 (see Table B-5a).

This is a neighborhood scale site. A hi-vol sampler is used on a once every 6 days schedule. There is a seasonally-operated ozone sampler also located at this site, too. DCHD intends to keep operating the PM_{10} sampler (and ozone monitor) at this site for the foreseeable future.

4) NCore Site At 4102 Woolworth Ave: PM_{10-2.5} monitoring is required at all NCore sites pursuant to 40 CFR Part 58 Appendix D. To accomplish this DCHD operates two continuous Met One BAM samplers, one configured to sample for PM_{2.5} and the other configured to sample for PM₁₀. The NCore site is a neighborhood-scale site.

 PM_{10} monitoring was initiated in 2011. The annual maximum 24-hour PM_{10} values found at the NCore site are: 86 *ug*/m³ in 2011, 74 *ug*/m³ in 2012, 62 *ug*/m³ in 2013 and 75 *ug*/m³ in 2014 (also see Table B-5a).

DCHD has no plans to change the current PM_{10} or $PM_{2.5}$ sampler-types or configurations at the NCore site.

b) Cass County - Weeping Water Area Sites

The NDEQ began PM_{10} monitoring in the Weeping Water area in 1988, and currently operates 2 sites.

- The WW City site located at the city wastewater treatment facility. This is a neighborhood scale, population and source-oriented site located in the city of Weeping Water. The Potash Corporation fertilizer and feed additive processing facility is located ¹/₄ mile east of this site. Filter based primary and collocated sequential 2025 samplers are used at this site and operate on once every 3 day and once every 6 day schedules, respectively.
- The WW Farm site is located 2 miles west of the city in an agricultural setting. This is a neighborhood scale, source-oriented site. The Kerford Limestone Company mining and Iowa Limestone Company aggregate processing facilities are located 0.3 miles west of this site. A continuous TEOM sampler is used at this site

Annual average concentrations in the Weeping Water area have generally declined from 1988 to 2014 as shown in Figure E-30. In 2008, Martin Marietta moved their mining and processing facility located on the west edge of Weeping Water to a new location approximately 2 miles SW of the city. The new facility has better emission controls than the previous one. PM_{10} concentrations at the city site have dropped dramatically since this move.

As shown in Attachment B Table B-5a, 24-hour PM_{10} levels at both sites are in attainment with the 150 ug/m^3 NAAQS over the 2012-14 time frame. There was one 24-hour value at the WW Farm site that was over 150 ug/m^3 : a 179 ug/m^3 value on 1/5/12. Attainment with the NAAQS is evaluated over a 3-year time-frame, such that no more than 3 exceedences are allowed in the 3-year time-frame.

There was such an event in 2010 when four 24-hour PM_{10} values exceeded 150 ug/m^3 between October 20th and November 26th at the Weeping Water Farm site (10/20 @ 176, 10/26 @ 249, 10/27 @ 306 & 11/26 @ 209). Sources were notified and a similar episode has not re-occurred.

The NDEQ intends to continue to operate both the WW City and WW Farm sites for the foreseeable future. The NDEQ is anticipating upgrading the WW City site with a continuous MetOne BAM sampler to replace the primary and collocated filter-based samplers currently deplored there. The current samplers are more than 10 years old and in need of replacement.

c) Dawson County – Cozad and Gothenburg Sites

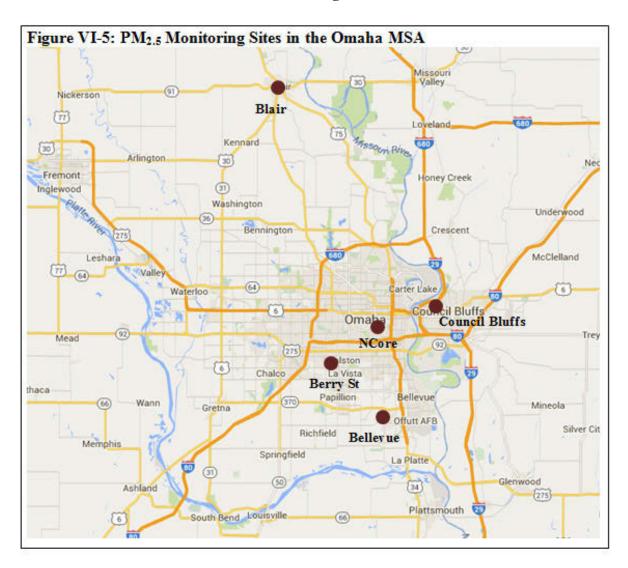
Monitoring in Gothenburg was initiated in 1991 and in Cozad in 1994. Monitoring in both communities was initiated in response to citizen concerns over dust or particulate levels. The primary sources in both communities were alfalfa dehy facilities (i.e., facilities that grind, dry and pelletize hay into feed). Both communities also have other grain and feed handling facilities. Both the Cozad and Gothenburg sites are neighborhood scale, population and source-oriented sites (see Attachment A).

The 2012-14 monitoring results are indicating that PM_{10} levels are less than 50% of the NAAQS (see Attachment B Table B-5a) in both communities. Annual average PM_{10} concentrations have generally declined over-time since monitoring was initiated. Both sites saw significant declines beginning in 2006/2007 (see Attachment E Tables E-31 & E-32). Since 2007 the annual 24-hour maximum exceeded 100 ug/m^3 (67% of the NAAQS) two

times at Cozad ($119 ug/m^3$ in 2007 & $120 ug/m^3$ in 2011), and one time at Gothenburg (139 ug/m^3 in 2011. The 24-hour maximums thru the first half of 2015 were 46 ug/m^3 at Cozad and 45 ug/m^3 at Gothenburg.

The R&P 2025 samplers deployed at this site are over 10 years old and in need of replacement. Based on monitoring results from the last several years, and barring some unexpected increase in PM_{10} levels in the 2nd half of 2015, the NDEQ does not feel it is justified to upgrade and maintain these sites. Thus it is proposed that the Cozad and Gothenburg PM_{10} sites be closed at the end of 2015.

E-2) PM_{2.5}


Attachment E Section V.C provides a thorough review of the current and historical $PM_{2.5}$ network in Nebraska. Currently there are 7 $PM_{2.5}$ monitoring sites in the Nebraska SLAMS. Four sites in the Omaha MSA operated by DCHD (Berry St in Omaha, NCore in Omaha, Bellevue and Blair); one site in Lincoln operated by LLCHD, and one site each in Grand Island and Scottsbluff operated by the NDEQ.

In the Omaha MSA there is also a site in Council Bluffs, IA operated by the IA DNR. Figure VI-5 below shows the location of the five $PM_{2.5}$ monitoring sites currently operating the Omaha MSA.

Similarly in the Sioux City MSA, there is one site in Iowa operated by the IA DNR and one site in South Dakota operated by the SD DENR.

The results from all of these sites (i.e., sites in Nebraska and adjacent state areas of the Omaha & Sioux City MSAs) are indicating attainment with the NAAQS. The 2012-14 DVs were less than 70% of the 35 ug/m^3 24-hour NAAQS and less than 85% of the 12 ug/m^3 annual average NAAQS. See Attachment B Tables B-6a and B-6b.

As $PM_{2.5}$ forms in situ, and is a component of smoke and haze. As such it is subject to considerable more transport than PM_{10} . $PM_{2.5}$ sites are generally not closely source-oriented.

- (a) The site letter designations are explained in Attachment E, Figure E-33. The first number is the 2012-14 annual average design value (DV), which is the 3 year average of the 2012-14 annual averages. The second number is the 2012-14 99th percentile DV, which is the 3 year average of the 2012-14 99th percentile values.
- (b) Sites marked with a * were not operating in 2014. The 2014 DV for these sites were estimated using the data trends from nearby sites. See Attachment E Section V.C and Figure E-33 for details.
- (c) Annual Average NAAQS = $12 \text{ ug/m}^3 \& 99^{\text{th}}$ Percentile NAAQS = 35 ug/m^3

Figure VI-6 shows the locations of current and historical $PM_{2.5}$ monitoring sites (also see Figure E-33 in Attachment E). Figure VI-6 (Figure E-33) shows the 2012-14 DVs for the current sites and extrapolated 2012-14 DVs for four historical sites. Figures VI-6 and E-33 indicate that $PM_{2.5}$ levels are highest in the Omaha, Lincoln and Sioux City MSAs, and decrease as one travels westward through the state.

This is in contrast to ozone, which is also formed in situ, whose concentrations are more ubiquitously similar through-out the state and in surrounding state areas. See the ozone concentration map in Attachment E Figure E-13.

Also, the Nebraska panhandle appears to be less impacted by transport from Denver/Fort Collins with respect to $PM_{2.5}$ than it is for ozone. Although $PM_{2.5}$ levels in Colorado are also not as high as ozone when expressed as a percent of the NAAQS; i.e., the maximum 2012-14 ozone DV in Denver is 117% of the 70 ppb NAAQS, while the maximum $PM_{2.5}$ DVs are at 83% of the NAAQS.

As shown in Attachment E, Figures E-34 to E-38 ozone levels are decreasing at all 4 of the current monitoring locations in Nebraska: Omaha, Lincoln, Grand Island and Scottsbluff.

As shown in Figures VI-5 and VI-6, the current and historical $PM_{2.5}$ network provides good state-wide coverage. At this time the NDEQ feels the current $PM_{2.5}$ monitoring network is providing adequate coverage of the state. There are no plans to add, close or relocate $PM_{2.5}$ sites at this time.

F) Lead:

Lead (Pb) is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been from fuels in on-road motor vehicles (i.e., cars and trucks using leaded gasoline), lead mining and processing facilities, and industrial sources. It exists as particulate matter in the atmosphere. It is monitored using total suspended particulate (TSP) samplers, although in certain cases PM₁₀ samplers can also be used. All lead sampling in Nebraska is conducted with TSP samplers. Attachment E, Section VI discusses historical lead levels in Nebraska from 1959 thru 2014.

Today in the USA, the highest levels of lead in air are usually found near lead smelters and lead mining areas. Historically, the ASARCO lead refinery in Omaha was Nebraska's largest stationary-source, lead emitter. The ASARCO facility closed in 1997, and Nebraska does not have any lead smelting or mining facilities at this time. Today, Nebraska's largest lead emitters are foundries, as discussed below.

EPA regulations phased-out the use of leaded gasoline from 1975 thru 1986. Lead emissions from the transportation sector dramatically declined by 95 percent between 1980 and 1999, and nation-wide levels of lead in the air decreased by 94 percent between 1980 and 1999. By 1998 all areas o Nebraska were in attainment with the NAAQS that applied at that time. See Figures E-39 and E-40 in Attachment E.

EPA promulgated the first lead NAAQS in 1978. It was set at $1.5 ug/m^3$ based on a calendar quarter average that was not to be exceeded. All areas of Nebraska were in attainment with this NAAQS by 1998 after the closure of the ASARCO facility. Lead monitoring was discontinued after 2002. See Figures E-39 and E-40.

In 2008, EPA strengthened the lead NAAQS to 0.15 ug/m^3 based on running 3-month averages that were not to be exceeded. Monitoring was required by 2010 near sources that emitted 1 ton per year or more of lead, and by 2012 near sources emitting 0.5 tpy or more. Also in 2012, lead monitoring was required at the Omaha NCore site.

As explained in Attachment E Section VI, Nebraska had two sites that met the 1 tpy threshold: Magnolia Metals in Auburn and Magnus In Fremont. Monitoring was initiated in 2010 near these facilities. Lead monitoring was initiated in 2012 at the Omaha NCore site.

There is one additional site, Nucor Steel in Norfolk, that met the 0.5 tpy threshold. Nucor Steel submitted modeling showing lead levels around the facility would not exceed 50% of the NAAQS. NDEQ and EPA concurred with the modeling results. In accordance with 40 CFR Part 58 Appendix D, the requirement for monitoring near Nucor was waived. See Attachment E Section VI for additional details.

Lead monitoring is currently conducted at 3 locations in Nebraska: Auburn, Fremont and Omaha. The monitoring is showing attainment at all 3 sites; see Figures E-42.

As described in Attachment F, Magnolia Metals in Auburn has installed emission controls since 2010. Lead emissions from this facility have been reduced to 0.1 tpy (20% of the monitoring requirement threshold) and ambient lead levels monitored at the site have dropped to less than 5% of the NAAQS. Thus, the NDEQ is proposing to close this site as described and justified in Attachment F.

No other changes or additions to the lead monitoring network are planned or anticipated.

G) Total Reduced Sulfur (TRS)

The NDEQ operates a TRS site to monitor compliance with the Nebraska TRS standard set forth in Chapter 4 of NDEQ Title 129: Nebraska Air Quality Regulations. The 30-minute average TRS standard is 0.1 ppm.

As discussed in Attachment E Section 7, this site, along with other sites in South Sioux City and Lexington were established to monitor TRS levels in the vicinity of anaerobic lagoons operated by IBP in those communities. Those lagoons were covered in 2000 and ambient TRS levels dropped precipitously thereafter. See Figures E-43 and E-44.

The last excursion of the NE TRS standard was in May 2010, an excursion of 40 minutes with a maximum 30-minute average of 0.137 ppm. The maximum 30-minute average recorded in the 1st half of 2015 was 0.035 ppm.

The analyzer and calibration available for TRS is more than 10 years old and in need of replacement. With the standard being met continuously for the last 5 years, the NDEQ feels it prudent to close this site at the end of 2015, unless there are significant increases in the TRS levels in the 2^{nd} half of 2015.

VII. Anticipated Nebraska Air Monitoring Network Modifications

This section contains a bulleted summary of the Nebraska SLAMS and TRS monitoring network modifications discussed in Section VI. Discussion of the impact of the changes on the NDEQ monitoring program are also included.

A) Omaha MSA: Sites Operated by DCHD

- NCore site: No changes.
- Carbon monoxide (CO): Two sites operating: 78th & Dodge and NCore sites. No changes anticipated.
- Ozone: Three sites operating: 1616 Whitmore, 2411 O St. and NCore sites.
 - The 30th & Fort site was relocated to 1616 Whitmore St (an existing SO₂ site) in 2015 due to construction activity. The 1616 Whitmore site will be retained thru 2016 and possibly beyond. The 30th & Fort site will not be re-established in 2016, and possibly never.
 - No other changes in the DCHD ozone network are anticipated.
- Nitrogen Dioxide (NO₂): No sites currently operating.
 - Near-road NO₂ monitoring is currently required by January 1, 2017 as set forth in 40 CFR Part 58 Appendix D. Attachments G & H identify 78th & West Dodge as the best site for the near-road NO₂ site. NDEQ notes that monitoring results from larger metropolitan areas are demonstrating attainment at their near-road sites. Thus the commitment to establish this site is contingent upon EPA committing funding to establish this site.
 - The NCore site monitors for NO and NOy. The NO-NOy parameter will be equal to or greater than NO₂. Attainment is indicated by the NO-NOy results.
- Sulfur Dioxide (SO₂): Two sites operating: 1616 Whitmore and NCore sites. No changes anticipated.
- NDEQ will utilize modeling to evaluate attainment in areas potentially impacted by sources emitting 2000 tons per year or more of SO₂.

- PM₁₀: Four sites operating: 2411 O St, 46th & Farnam, 19th & Burt and NCore sites. One possible change, a closure.
 - The 46th & Farnam site is source oriented with respect to Omaha Steel, which discontinued operations at this site at the end of 2014. Site demolition is ongoing in the second half of 2015. DCHD will evaluate the need for this site after demolition is completed, taking into consideration redevelopment plans and PM₁₀ levels. DCHD anticipates operating the site through 2016 and possibly beyond at this time, but closure in 2016 is not precluded.
- PM_{2.5}: Four sites operating: Berry St, Bellevue, Blair and NCore sites. No changes anticipated.
- TSP-Pb: One site operating: NCore site. No changes anticipated.

B) Omaha MSA- Cass County: Weeping Water Sites operated by NDEQ

• PM₁₀: Two sites operating: Weeping Water City and Weeping Water Farm sites. No site changes. Replacement of older R&P 2025 primary and collocated samplers with a continuous MetOne BAM sampler is anticipated in 2016.

C) Lincoln MSA: Sites Operated by LLCHD

- Ozone: One SLAMS site operated at Davey and one temporary investigative site operated at Waverly during 2015. Ozone levels from both sites will be reviewed at the end of the 2015 monitoring year to determine which has higher ozone levels. If ozone levels in Waverly are higher, then re-location of the ozone monitor could be undertaken.
- PM_{2.5}: One site operating: 3140 N Street site. No changes anticipated.

D) Sioux City MSA: One TRS Site Operated by NDEQ

Propose closing th Pine Stree site at the end of 2015. Consistent compliance has been demonstrated for the last 5 years. Equipment will need to be replaced if this site is not closed.

E) Grand Island MSA: One PM_{2.5} Site Operated by NDEQ

- PM_{2.5}: The Nebraska transport site is located at the Grand Island Senior High. No changes.
- Ozone: No sites operating or required. NDEQ was considering opening an ozone site in the Grand Island MSA in 2016. Based on the low ozone levels found in the current 2012-14 design period, a deployment determination is being deferred at this time.

F) Scottsbluff MiSA: One PM_{2.5} Site Operated by NDEQ

This is Nebraska's background $PM_{2.5}$ site. it is located at the Scottsbluff High School. No changes are anticipated.

G) Dawson County: Cozad and Gothenburg PM₁₀ Site Operated by NDEQ

NDEQ is proposing closing both of these sites at the end of 2015. PM_{10} levels at both sites are in attainment with the NAAQS by a significant margin, and have been for several years. Annual average PM10 values are decreasing at both sites.

H) Closure of the NDEQ PM₁₀ Lab

After the closure of the Cozad and Gothenburg sites, and deployment of a continuous sampler at the Weeping Water city site, the NDEQ will no longer need to operate the PM_{10} lab for processing and weighing filters. This will provide a significant savings in FTE resources that can be deployed elsewhere.

I) IMPROVE Network:

EPA is evaluating siting priorities within the IMPROVE network. If EPA determines that either or both of Nebraska's IMPROVE sites are low priority such that §103 funding for their continued operation is cut, then NDEQ will work with EPA to facilitate their closure.

J) Other Considerations

The NDEQ is proposing 3 site closures and one site upgrade. Both site closures and upgrades require resources and time (i.e., FTEs) to complete.

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & 5-Year Assessment Attachment A: Ambient Air Monitoring Sites in Nebraska

Omaha NCore Site Operated by DCHD		
Site Name: Omaha NCore ⁽¹⁾ AIRS ID: 31-055-0019 ⁽¹⁾		
Location: 4102 Woolworth St., Omaha	Latitude: 41.246792° Longitude: -95.973964°	
Operating Agency: Douglas County Health Depa	rtment	
Purpose: NCore	Scale: Neighborhood	
Monitor/Pollutant: Carbon Monoxide (CO) - '	Trace Level	
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 48i-TLE	EPA Method: RFCA-0981-054 (AQS 554)	
Start-Up Date: 1/20/11	Closure Date: Currently operating	
Monitor/Pollutant: Ozone (O ₃)	· · ·	
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 49i	EPA Method: EQOA-0880-047	
Start-Up Date: 4/1/11	Closure Date: Currently operating	
Monitor/Pollutant: Nitrogen Oxides (NO/NOv		
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 42i NO/NO2/NOx	EPA Method: RFNA-1289-074	
Start-Up Date: 1/20/11	Closure Date: Currently operating	
Monitor/Pollutant: Sulfur Dioxide (SO ₂) – Tra	ace Level	
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 43i-TLE	EPA Method: EQSA-0486-060 (AQS 560)	
Start-Up Date: 1/20/11	Closure Date: Currently operating	
Monitor/Pollutant: PM _{2.5}		
Type/POC: Primary Continuous / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Met One BAM-1020 ⁽³⁾⁽⁴⁾	EPA Method: EQPM-0308-170	
Start-Up Date: 2/1/04 ⁽³⁾	Closure Date: Currently operating	
Monitor/Pollutant: PM _{2.5}		
Type/POC: Collocated ⁽²⁾ / POC 002	Monitoring Frequency: Once every 6 days ⁽²⁾	
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118	
Start-Up Date: 1/1/99	Closure Date: Currently operating	
Monitor/Pollutant: PM _{2.5} Speciation		
Type/POC: Speciation / POC 005 ⁽⁶⁾	Monitoring Frequency: Once every 3 days	
Analyzer/Sampler: PM _{2.5} Speciation	Sampler Type: SASS and a 3000 URG	
Start-Up Date: 5/25/01	Closure Date: Currently operating	
Monitor/Pollutant: PM ₁₀ – STP & Local Conditions		
Type/POC: Continuous ⁽³⁾ / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Met One BAM-1020 ⁽⁴⁾	EPA Method: EQPM-0798-122	
Start-Up Date: 1/1/11 ⁽⁴⁾	Closure Date: Currently operating	
Monitor/Pollutant: PM _{10-2.5} – Local Conditions		
Type/POC: Continuous ⁽³⁾ / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Met One BAM-1020 ⁽⁴⁾	EPA Method: EQPM-0709-185	
Start-Up Date: 1/1/11 ⁽⁴⁾	Closure Date: Currently operating	
Continued on next page		

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & 5-Year Assessment Attachment A: Ambient Air Monitoring Sites in Nebraska

Omaha NCore Site Operated by DCHD		
Site Name: Omaha NCore AIRS ID: 31-055-0019 (See Comment 1)		
Location: 4102 Woolworth St., Omaha Latitude: 41.246792° Longitude: -95.973964°		
Operating Agency: Douglas Count		(continued from previous page)
Monitor Information – Lead (Pb)		
Type/POC: Primary / POC 1	Monitorin	ng Frequency: Once every 6 days
Analyzer/Sampler: Hi-Vol TSP-Pb	ICP-MS) EPA Meth	hod: EQL-0310-189
Start-Up Date: 12/1/12	Closure Da	ate: Currently operating
Meteorological Parameters – Manuf	acturer & Model – Start I	Date
Wind Direction & Velocity – MetOne	50.5 Sonic - 5/13/11	
Temperature - MetOne Model 083D -	4/12/11	
Barometric Pressure – MetOne Model	090D - 4/12/11	
Relative Humidity – MetOne 083D – 4	/12/11	
Solar Radiation – MetOne Model 096-		
Closure Date: Currently operating		
Atmospheric Radiation – RadNet Ai	r Monitor	
RadNet is a nationwide system that monitors the nation's air, drinking water, precipitation, and pasteurized milk to determine levels of radiation in the environment. RadNet sample analyses and monitoring results provide baseline data on background levels of radiation in the environment and can detect increased radiation from radiological incidents. The RadNet monitor is not subject to the network planning process set forth in 40 CFR Part 58.10. It is recognized in this Network Plan for informational purposes only. The RadNet monitor began operating at the Woolworth site in June 2006.		
Comments:		
1. Site History: Site 31-055-0019 was referred to as the "Woolworth site" through 12/31/10. The Woolworth site was a PM monitoring site with PM _{2.5} filter-based, continuous and speciation monitors located on the roof of Douglas County Hospital. To accommodate NCore monitoring more space was required and the site was moved approximately 550 ft north to the roof of an adjacent/attached building. The move was initiated in December 2010 with the moving of the PM _{2.5} monitors.		
2. The POC 1 filter-based sequential monitor was used as the primary site monitor for NAAQS attainment evaluation through September 2009. At that point, it was converted to the collocated sampler with the POC 3 continuous monitor becoming the primary monitor. The POC 2 collocated sampler was shut down after taking the 9/22/09 sample.		
3. The POC 3 continuous PM _{2.5} monitor operated from 2/1/04 thru 1/5/09 using an R&P TEOM continuous PM _{2.5} monitor. The TEOM monitor is not an FRM/FEM. On 1/6/09 a Met One BAM monitor was brought on line. The Met One BAM monitor is an FEM. Through September 2009 the BAM unit was run as an auxiliary monitor for AirNow and AQI reporting purposes. A review found good correlation between the POC 1 and POC 3 data. On October 1, 2009 the POC 3 monitor was designated the primary monitor for evaluating NAAQS attainment status. On January 1, 2011 the continuous monitor was re-designated as POC 1, to facilitate AQS data analysis issues.		
4. Between 10/28/10 and 1/3/11, the PM _{2.5} Met One BAM-1020 was temporarily removed from service so that it could be reconfigured to operate as the PM _{2.5} portion of a dichotomous PM _{10-2.5} monitoring system. The other part of the dichotomous PM _{10-2.5} monitoring system is a PM ₁₀ Met One BAM-1020, which is configured to report PM ₁₀ data in local and STP conditions. The dichotomously-configured PM _{2.5} and PM ₁₀ BAM units, which comprise the PM _{10-2.5} monitoring system, were put on-line on 1/1/11.		n of a dichotomous $PM_{10-2.5}$ monitoring ng system is a PM_{10} Met One BAM-1020, ditions. The dichotomously-configured
5. The POC 5 speciation monitor is c speciation data derived from both s		amplers: a SASS and a 3000 URG. The DC 005 results.

Attachment A: Ambient Air Monitoring Sites in Nebraska

Carbon Monoxide Sites in the Omaha MSA that are Operated by DCHD		
Site Name: 78 th & Dodge – Omaha Location: 78 th St and W Dodge Rd, Omaha	AIRS ID: 31-055-0056 Latitude: 41.259175° Longitude: -96.028628°	
Operating Agency: Douglas County Health Department		
Monitor Information	Pollutant: Carbon Monoxide (CO)	
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 48c	EPA Method:	
Purpose: Highest Concentration	Scale: Microscale	
Start-Up Date: 10/01/07	Closure Date: Currently operating	
Comments: None		
Sulfur Dioxide Sites in the Omaha MSA that are Operated by DCHD		
Site Name: Whitmore – Omaha	AIRS ID: 31-055-0053	
Location: 1616 Whitmore St, Omaha	Latitude: 41.297778° Longitude: -95.937500°	
Operating Agency: Douglas County Health Department		
Monitor Information	Pollutant: Sulfur Dioxide (SO ₂)	
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo 43c-tle	EPA Method: EQSA-0486-060	
Purpose: High Conc. & Population Oriented	Scale: Neighborhood	
Start-Up Date: 7/1/99	Closure Date: Currently operating*	
Commente: In 2015 on evene meniter use also located at this site		

Comments: In 2015, an ozone monitor was also located at this site.

Attachment A: Ambient Air Monitoring Sites in Nebraska

Ozone Sites in the Omaha MSA that are Operated by DCHD		
Site Name: South Omaha – Ozone AIRS ID: 31-055-0028		8
Location: 2411 O Street, Omaha	Latitude: 41.207500°	Longitude: -95.947500°
Operating Agency: Douglas County Health Department		
Monitor Information	Pollutant: Ozone (O3	
Type/POC: Primary / POC 001	Monitoring Frequency:	: Continuous
Analyzer/Sampler: Thermo 49C	EPA Method: EQOA-0	0880-047
Purpose: Population Oriented	Scale: Neighborhood	
Start-Up Date: 7/1/78	Closure Date: Currently operating	
Comments: There is also a PM_{10} monitor located at this site.		

Site Name: Whitmore – Omaha Location: 1616 Whitmore St, Omaha	AIRS ID: 31-055-0053 Latitude: 41.297778° Longitude: -95.937500°
Operating Agency: Douglas County Health Department	
Monitor Information	Pollutant: Ozone (O ₃)
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: Thermo 49C	EPA Method: EQOA-0880-047
Purpose: Population Oriented	Scale: Neighborhood
Start-Up Date: 5/1/81	Closure Date: Currently operating
Comment: The ozone monitor from the 30 th & Fort St. site was re-located to this site in 2015, due	
to construction activities.	

Site Name: 30 th & Fort - Omaha Location: 30 th & Fort Sts., Omaha	AIRS ID: 31-055-0035 Latitude: 41.306111° Longitude: -95.960278°
Operating Agency: Douglas County Health Department	
Monitor Information	Pollutant: Ozone (O ₃)
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: Thermo 49C	EPA Method: EQOA-0880-047
Purpose: Population Oriented	Scale: Neighborhood
Start-Up Date: 5/1/81 Closure Date: 11/1/14 (may be temporary)	
Comments: Re-located to 1616 Whitmore St at the end of the 2014 monitoring season due to construction activity.	

Attachment A: Ambient Air Monitoring Sites in Nebraska

PM_{2.5} Sites in the Omaha MSA that are Operated by DCHD (Continued)

Site Name: Berry Street Omaha	AIRS ID: 31-055-0052	
Location: 9225 Berry Street, Omaha	Latitude: 41.333056° Longitude: -96.099722°	
Operating Agency: Douglas County Health De	epartment	
Monitor Information	Pollutant: PM _{2.5}	
Type/POC: Primary / POC 001	Monitoring Frequency: Once every 3 days	
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118	
Purpose: Population & Source Oriented	Scale: Neighborhood	
Start-Up Date: 1/1/99	Closure Date: Currently operating	
Monitor Information	Pollutant: PM _{2.5}	
Type/POC: Collocated / POC 002	Monitoring Frequency: Once every 6 days	
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118	
Purpose: Population & Source Oriented	Scale: Neighborhood	
Start-Up Date: 10/1/14	Closure Date: Currently operating	
Comments: None		

Site Name: Bellevue Location: 2912 Coffey Ave., Bellevue	AIRS ID: 31-153-0007 Latitude: 41.166944° Longitude: -95.923889°
Operating Agency: Douglas County Health De	partment
Monitor Information	Pollutant: PM _{2.5}
Type/POC: Primary Continuous / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: Met One BAM-1020 ⁽¹⁾	EPA Method: EQPM-0308-170
Purpose: Population & Source Oriented	Scale: Neighborhood
Start-Up Date: 3/1/99	Closure Date: Currently operating
Comments:	
 This site was operated with a 2025 sequential sampler from 3/1/99 thru 6/30/10 (RFPS-0498-118). On 7/1/10 a Met One BAM monitor began operating. 	

Site Name: Blair Location: 2242 Wright St., Blair	AIRS ID: 31-177-0002 Latitude: 41.551136° Longitude: -96.146753
Operating Agency: Douglas County Health Department	
Monitor Information	Pollutant: PM _{2.5}
Type/POC: Primary / POC 001	Monitoring Frequency: Once every 3 days
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118
Purpose: Population & Source Oriented	Scale: Neighborhood
Start-Up Date: 4/6/09	Closure Date: Currently operating
Comments: None	

Attachment A: Ambient Air Monitoring Sites in Nebraska

PM₁₀ Sites in the Omaha MSA that are Operated by DCHD

Site Name: 19 th & Burt, Omaha	AIRS ID: 31-055-0054
Location: 19 th & Burt Sts., Omaha	Latitude: 41.267770° Longitude: -95.940830°
Operating Agency: Douglas County Health Department	
Monitor Information Pollutant: PM ₁₀	
Type/POC: Primary / POC 001	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: Hi-Vol Filter	EPA Method: RFPS 1287-063
Purpose: Population & Source Oriented	Scale: Middle
Start-Up Date: 6/1/01	Closure Date: Currently operating
Monitor Information	Pollutant: PM ₁₀
Type/POC: Collocated / POC 002	Monitoring Frequency: Once every 6 days ⁽¹⁾
Analyzer/Sampler: Hi-Vol Filter	EPA Method: RFPS 1287-063
Purpose: Population & Source Oriented	Scale: Middle
Start-Up Date: 6/1/01	Closure Date: Currently operating
Comments: None	

Site Name: 46 th & Farnam, Omaha	AIRS ID: 31-055-0045	
Location: 46 th & Farnam Sts, Omaha	Latitude: 41.257500° Longitude: -95.976111°	
Operating Agency: Douglas County Health Department		
Monitor Information	Pollutant: PM ₁₀	
Type/POC: Primary Continuous / POC 001	Monitoring Frequency: Continuous	
Analyzer/Sampler: Thermo FH 62 C14	EPA Method: EQPM-1102-150	
Purpose: Source Oriented	Scale: Middle	
Start-Up Date: 1/1/93 (See Comments)	Closure Date: Currently operating	
Comments: This site utilized a Hi-Vol sampler on a once every 6 day sampling schedule until 1/1/08, when a continuous sampler was installed.		

Site Name: South Omaha - PM ₁₀ Location: 2411 O Street, Omaha	AIRS ID: 31-055-0028 Latitude: 41.207500° Longitude: -95.947500°	
Operating Agency: Douglas County Health Department		
Monitor Information	Pollutant: PM ₁₀	
Type/POC: Primary / POC 001	Monitoring Frequency: Once every 6 days	
Analyzer/Sampler: Hi-Vol Filter	EPA Method: RFPS 1287-063	
Purpose: Population & Source Oriented	Scale: Neighborhood	
Start-Up Date: 6/1/06 (See Comments)	Closure Date: Currently operating	
Comments:		
• This site was originally established for ozone monitoring on 2/1/78.		
• The PM ₁₀ sampler was initially set-up at 25 th & L Sts and then moved to 2411 O St on 8/22/07.		

Attachment A: Ambient Air Monitoring Sites in Nebraska

PM₁₀ Sites in the Weeping Water Area* that are Operated by NDEQ

	· · ·
Site Name: Weeping Water City (at WWTF)	AIRS ID: 31-025-0002
Location: 102 P Street, Weeping Water	Latitude: 40.866228 Longitude: -96.137678
Operating Agency: Nebraska Department of Environmental Quality	
Monitor Information	Pollutant: PM ₁₀
Type/POC: Primary / POC 001	Monitoring Frequency: Once per 3 days
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-1298-127
Purpose: Population & Source Oriented	Scale: Neighborhood
Start-Up Date: 1/1/85	Closure Date: Currently operating
Monitor Information	Pollutant: PM ₁₀
Type/POC: Collocated / POC 001	Monitoring Frequency: Once per 6 days
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-1298-127
Purpose: Population & Source Oriented	Scale: Neighborhood
Start-Up Date: 1/1/85	Closure Date: Currently operating
Comments: Located at the city waste water treatment facility.	

Site Name: Weeping Water Farm Location: 5102 Hwy 50, Cass Co.	AIRS ID: 31-025-0009 Latitude: 40.873309° Longitude: -96.183359°
Operating Agency: Nebraska Department of E	nvironmental Quality
Monitor Information	Pollutant: PM ₁₀
Type/POC: Primary Continuous / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: R&P TEOM	EPA Method: RFPS 1090-079
Purpose: Source Oriented	Scale: Neighborhood
Start-Up Date: 4/8/05	Closure Date: Currently operating
Comments: None	

* The Weeping Water Area is in Cass County, which is part of the Omaha MSA. This is a relatively non-urbanized area of the county with limestone mining and processing activities. The PM₁₀ monitoring conducted here is for evaluation of air quality in the vicinity of Weeping Water, and not the Omaha MSA as a whole.

Attachment A: Ambient Air Monitoring Sites in Nebraska

Sites in the Lincoln MSA that are Operated by LLCHD

Site Name: Davey	AIRS ID: 31-109-0016
Location: 1 st & Maple Sts., Davey	Latitude: 40.984722° Longitude: -96.677222°
Operating Agency: Lincoln Lancaster County Health Department	
Monitor Information	Pollutant: Ozone
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: Teledyne API 400E	EPA Method: EQOA-0992-087
Purpose: Population Oriented	Scale: Urban
Start-Up Date: 1/1/85	Closure Date: Currently operating
Comments: This site was upgraded at the beginning of the 2014 ozone season with the Teledyne API 400E analyzer replacing the Dasibi 1003 AH analyzer.	
Site Name: LLCHD Building	AIRS ID: 31-109-0022
Location: 3140 N St., Lincoln	Latitude: 40.812590° Longitude: -96.683020°
Operating Agency: Lincoln Lancaster County Health Department	
Monitor Information	Pollutant: PM _{2.5}
Type/POC: Primary / POC 001	Monitoring Frequency: Once every 3 days
Analyzer/Sampler: R&P 2025 Seq. Filter	EPA Method: RFPS 0498-118
Purpose: Population Oriented	Scale: Neighborhood
Start-Up Date: 1/1/99	Closure Date: Currently operating
Monitor Information	Pollutant: PM _{2.5}
Type/POC: Collocated / POC 002	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: R&P 2025 Seq. Filter	EPA Method: RFPS 0498-118
Purpose: Population Oriented	Scale: Neighborhood
Start-Up Date: 1/1/99	Closure Date: Currently operating
Monitor Information	Pollutant: PM _{2.5}
Type/POC: Continuous / POC 003 ⁽¹⁾	Monitoring Frequency: Continuous
Analyzer/Sampler: Met One BAM-1020	EPA Method: EQPM-0308-170
Purpose: Population Oriented	Scale: Neighborhood
Start-Up Date: 7/1/06	Closure Date: Currently operating
Comment:	
(1) The MetOne BAM monitor reports to AirNow, but not AQS.	

(1) The MetOne BAM monitor reports to AirNow, but not AQS.

Site Name: Waverly Location: 141 st & Oldfield Sts. Waverly	AIRS ID: Temporary InvestigativeLatitude: 40.92181°Longitude: -96.53011°
Operating Agency: Lincoln Lancaster County Health Department	
Monitor Information	Pollutant: Ozone
Type/POC: Primary / POC 001	Monitoring Frequency: Continuous
Analyzer/Sampler: Thermo 49c	EPA Method: EQOA-0880-047
Purpose: Investigative	Scale: Urban
Start-Up Date: on or about 6/1/15	Closure Date: On or before 11/1/15
Comments: Results from this site to be compared to those from the Davey site.	

Attachment A: Ambient Air Monitoring Sites in Nebraska

PM _{2.5} Sites Operated by NDEQ		
Site Name: Grand Island Senior High	AIRS ID: 31-079-0004	
Location: 2124 N Lafayette Ave, Grand Isla	Latitude: 40.942099° Longitude: -98.364967°	
Operating Agency: Nebraska Department of Environmental Quality		
Monitor Information Pollutant: PM _{2.5}		
Type/POC: Primary FRM/ POC 1	Monitoring Frequency: Once every 3 days	
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118	
Purpose: Transport & Population Oriented	Scale: Regional & Neighborhood	
Start-Up Date: 5/7/04	Closure Date: Currently operating	
Comments: None		
Site Name: Scottsbluff Senior High School AIRS ID: 31-157-0004		
Location: Hwy 26 & 5 th Ave, Scottsbluff	Latitude: 41.876853° Longitude: -103.656561°	
Operating Agency: Nebraska Department of Environmental Quality		
Monitor Information	Pollutant: PM _{2.5}	
Type/POC: Primary FRM/ POC 1	Monitoring Frequency: Once every 3 days	
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-0498-118	
Purpose: Background & Population Oriented	Scale: Regional & Neighborhood	
Start-Up Date: 5/13/09	Closure Date: Currently operating	

Comments: Electric power is supplied to this site by wind and solar generating units.

PM₁₀ Sites Operated by NDEQ (Outside of the Omaha MSA/Weeping Water Area)

Site Name: Cozad	AIRS ID: 31-047-0001
Location: 215 W 8 th Street, Cozad	Latitude: 40.859444° Longitude: -99.987778°
Operating Agency: Nebraska Department of Environmental Quality	
Monitor Information	Pollutant: PM ₁₀
Type/POC: Primary FRM/ POC 1	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: 2025 Sequential	EPA Method: RFPS-1298-127
Purpose: Source and Population Oriented	Scale: Neighborhood
Start-Up Date: 10/1/94	Closure Date: Currently operating
Comments: None	

AIRS ID: 31-047-0003 Site Name: Gothenburg Location: 409 9th Street, Gothenburg Latitude: 40.927500° Longitude: 100.162778° Operating Agency: Nebraska Department of Environmental Quality **Monitor Information Pollutant: PM**₁₀ Monitoring Frequency: Once every 6 days Type/POC: Primary FRM/ POC 1 Analyzer/Sampler: 2025 Sequential EPA Method: RFPS-1298-127 Purpose: Source and Population Oriented Scale: Neighborhood Closure Date: Currently operating Start-Up Date: 9/1/91 Comments: None

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & 5-Year Assessment Attachment A: Ambient Air Monitoring Sites in Nebraska

Lead (Pb) Sites Operated by NDEQ	
Site Name: Fremont	AIRS ID: 31-053-0005
Location: 1255 Front St., Fremont, NE	Latitude: 41.90583° Longitude: -97.31583°
Operating Agency: Nebraska Department of Environmental Quality	
Monitor Information	Pollutant: Lead (Pb)
Type/POC: Primary / POC 1	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: Hi-Vol TSP-Pb (ICP-MS)	EPA Method: EQL-0310-189
Purpose: Source Oriented	Scale: Micro-scale
Start-Up Date: 3/9/10	Closure Date: Currently operating
Monitor Information	Pollutant: Lead (Pb)
Type/POC: Collocated / POC 2	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: Hi-Vol TSP-Pb (ICP-MS)	EPA Method: EQL-0310-189
Purpose: Source Oriented	Scale: Micro-scale
Start-Up Date: 3/9/10	Closure Date: Currently operating
Comments: Highest concentration site	

Site Name: Auburn	AIRS ID: 31-127-0002
Location: RR2, Auburn, NE	Latitude: 40.40254° Longitude: -95.84164°
Operating Agency: Nebraska Department of Environmental Quality	
Monitor Information	Pollutant: Lead (Pb)
Type/POC: Primary / POC 1	Monitoring Frequency: Once every 6 days
Analyzer/Sampler: Hi-Vol TSP-Pb (ICP-MS)	EPA Method: EQL-0310-189
Purpose: Source Oriented	Scale: Micro-scale
Start-Up Date: 5/8/10	Closure Date: Currently operating
Comments: Highest concentration site	

Attachment A: Ambient Air Monitoring Sites in Nebraska

Total Reduced Sulfur (TRS) Sites operated by NDEQ

Site Name: Pine Street – Dakota City Location: 501 Pine St, Dakota City	AIRS ID: State SPM, AIRS ID not assignedLatitude: 42.421867°Longitude: -96.403031°
Operating Agency: Nebraska Department of Environmental Quality	
Monitor Information	Pollutant: Total Reduced Sulfur (TRS)
Type/POC: State TRS monitor	Monitoring Frequency: Continuous
Analyzer/Sampler: API 102A w TOX	Method: NDEQ T129 Chap 4.007
Purpose: Source Oriented	Scale: Neighborhood
Start-Up Date: 9/15/97	Closure Date: Currently operating
Comments: None	

Interagency Monitoring of Protected Visual Environments (IMPROVE) Sites *

Site Name: Crescent Lake IMPROVE Location: Crescent Lake WRA, Gosper Co.	AIRS ID: Not applicable, See Comments Latitude: 41.7627° Longitude: -102.4336°
	wironmental Quality / US Fish & Wildlife Service
Monitor Information	Pollutant: IMPROVE (See Comments)
Type/POC: IMPROVE	Monitoring Frequency: Continuous
Method Description: : IMPROVE	EPA Method: Not applicable
Purpose: Background & Transport	Scale: Regional
Start-Up Date: 2002	Closure Date: Currently operating
Comments: None	

Site Name: NE National Forest IMPROVE Location: Nebraska National Forest, Thomas	AIRS ID: Not applicable, See CommentsCo.Latitude: 41.8888°Longitude: -100.3387°
Operating Agency: Nebraska Department of Env	vironmental Quality / US Forest Service
Monitor Information	Pollutant: IMPROVE (See Comments)
Type/POC: IMPROVE	Monitoring Frequency: Continuous
Method Description: : IMPROVE	EPA Method: Not applicable
Purpose: Background & Transport	Scale: Regional
Start-Up Date: 2002	Closure Date: Currently operating
Comments: None	

* Interagency Monitoring of Protected Visual Environments (IMPROVE) monitors are operated to evaluate regional haze that may impact Federal Class I areas in National Parks and Wilderness Areas. Fine particulate and particulate speciation monitoring is conducted at these sites. They do not have an AIRS ID.

Attachment A: Ambient Air Monitoring Sites in Nebraska

Monitoring Sites not subject to the Network Plan Review Process**

** The NADP site information below is included in the Network Plan for informational purposes only.

Site Name: Mead NADP	AIRS ID: Not applicable, See Comments				
Location: U of Ne Field Lab, Saunders Co.	Latitude: 41.1528° Longitude: -96.4912				
Operating Agency: University of Nebraska					
Monitor Information	Pollutant: TNT/MDN				
Type/POC: NTN/MDN	Monitoring Frequency: Continuous				
Method Description: NTN/MDN	EPA Method: Not applicable				
Purpose: Background & Transport	Scale: Regional				
Start-Up Date: 7/25/78	Closure Date: Currently operating				

Comments: The Mead and North Platte National Atmospheric Deposition Program (NADP) sites are operated by the University of Nebraska with analytical and data processing support from the NADP. NADP sites are not subject to review under the provisions of 40 CFR Part 58.10, and thus are not subject to review under this Network Plan. They are included herein for informational purposes only.

- Monitoring methods are specific to this program and are not Federal Reference or Equivalent Methods (FRM/FEM).
- The National Trends Network (NTN) sites collect deposition data on acidity, sulfate, nitrate, ammonium, chloride, and base cations (e.g., calcium, magnesium, potassium and sodium).
- Mercury Deposition Network (MDN) sites collect mercury deposition data.
- The NADP oversees both NTN and MDN sites, and provides analytical and data processing support.
- The Mead site initiated operation as an NTN site in 1978 and began MDN operations in June 2007.

Site Name: North Platte NADP Location: U of Ne Ag Station, Lincoln, Co.	AIRS ID: Not applicable, See CommentsLatitude: 41.0592°Longitude: -100.7464°
Operating Agency: University of Nebraska	
Monitor Information	Pollutant: NTN
Type/POC: NTN	Monitoring Frequency: Continuous
Method Description: NTN	EPA Method: Not applicable
Purpose: Background & Transport	Scale: Regional
Start-Up Date: 9/24/85	Closure Date: Currently operating

Comments: The Mead and North Platte National Atmospheric Deposition Program (NADP) sites are operated by the University of Nebraska with analytical and data processing support from the NADP. NADP sites are not subject to review under the provisions of 40 CFR Part 58.10, and thus are not subject to review under this Network Plan. They are included herein for informational purposes only.

- Monitoring methods are specific to this program and are not Federal Reference or Equivalent Methods (FRM/FEM).
- The National Trends Network (NTN) sites collect deposition data on acidity, sulfate, nitrate, ammonium, chloride, and base cations (e.g., calcium, magnesium, potassium and sodium).
- Mercury Deposition Network (MDN) data was collected at this site from October 2009 thru October 2011 using Nebraska Environmental Trust funding.
- The NADP oversees both NTN and MDN sites, and provides analytical and data processing support.

This attachment compares ambient air quality data from 2012 thru 2014 to the NAAQS, or in the case of Total Reduced Sulfur to Nebraska's state standard. The annual data presented below was retrieved from the EPA AQS data-base. The 2013 data was not yet certified and could be subject to change. The values compared to the NAAQS were calculated as set forth in 40 CFR Part 58.

The NDEQ operates an ambient air monitoring program in Nebraska, and provides oversight for the DCHD and LLCHD monitoring programs. Data from sites outside Nebraska and from sites within Nebraska not operated by the NDEQ, DCHD and LLCHD (collectively abbreviated "non-NDEQ sites") are included below. The NAAQS comparisons for these non-NDEQ sites are not official, and are included for comparison purposes only.

Comparison of 3-Year Design Val	ues for 8-ho	ur Ozone to	NAAQS ⁽¹⁾		
Site	2012	2013	2014	$\mathbf{DV}^{(1)}$	% NAAQS
Omaha MSA	A and Near-	By Montgon	nery Co., IA	(4)	
Omaha NCore ⁽²⁾	0.071	0.066	0.063	0.066	88%
2411 O St., Omaha	0.066	0.058	0.059	0.061	81%
30 th & Fort, Omaha	0.077	0.061	0.060	0.066	88%
Harrison Co, IA (orig. Pisgah site) ⁽³⁾	0.076	0.065	0.062	0.067	89%
Pisgah, IA (new in 2009) ⁽³⁾	0.075	0.065	0.063	0.067	89%
Montgomery County, IA ⁽³⁾⁽⁴⁾	0.071	0.060	0.059	0.063	84%
	Linco	ln MSA			
First & Maple, Davey	0.058	0.055	0.061	0.058	77%
Sioux C	ity MSA and	d Surroundi	ng Area ⁽⁶⁾		·
31102 471 st Ave, Union Co, SD ⁽⁵⁾	0.068	nd	0.062	0.064	0.50/
31986 475 th Ave, Union Co, SD ⁽⁵⁾	nd	0.063	nd	Combined	85%
Emmetsburg, IA ⁽⁶⁾	0.070	0.064	0.063	0.065	87%
Sioux Falls, SD ⁽⁶⁾	0.072	0.072	0.066	0.070	93%
	Nebraska	a Non-MSA			
Santee Indian Reservation ⁽⁷⁾	0.075	0.067	0.063	0.068	91%
Scotts Bluff National Monument ⁽⁸⁾	0.067	nd	nd	0.065	87%
Notes and Euplanetions: (EDA AOS data re	tui	``````````````````````````````````````			•

Table B-1: Ozone Data

Notes and Explanations: (EPA AQS data retrieval 5/20/15)

(1) Concentrations are in units of ppm.. The Design Value (DV) is the truncated 3-year average of the 4th highest max for each year. The NAAQS = 0.075 ppm (promulgated 3/27/2008).

(2) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(3) The following sites are operated by the IA DNR: Harrison Co, IA, Pisgah, IA, Montgomery Co, IA and Emmetsburg, IA.

(4) The Montgomery County, IA site is located outside the Omaha MSA at Viking Lake State Park;~18 miles east of the Mills-Montgomery County line and ~ 45 miles SE of the I-29/I-80 intersection.

(5) The Union Co., SD site is in the Sioux City MSA & operated by the SD Dept. of Environment & Natural Resources

(6) The Emmetsburg, IA and Sioux Falls, SD sites are located outside the Sioux City MSA.

(7) Santee Indian Reservation site is 76 mi WNW of Sioux City & is operated by EPA as part of CASTNET.

(8) The Scotts Bluff NM site was operated by the National Park Service; using a method that is not an EPA reference or equivalent method (FRM/FEM). It was not operated in 2011 & 2012, but not in 2013

Comparison of 3-Year Maximum	Value for 1-	Hour Carbo	on Monoxid	e to NAAQS ⁽	1)(2)
Site	2012	2013	2014	Design Value ⁽²⁾	% NAAQS
	Oma	ha MSA	-	-	•
78 th & Dodge Sts, Omaha	2.6	2.4	1.8	2.6	7%
Omaha NCore ⁽⁴⁾	1.3	0.9	2.2	2.2	6%
	Sioux	City MSA		• •	•
31986 475 th Ave, Union Co, SD ⁽⁵⁾	0.6	0.5	nd	0.6	2%
Comparison of 3-Year Maximum	Value for 8	Hour Carbo	on Monoxida	e to NAAOS (1) (3)
Comparison of 5- Fear Wraxinium	value for o			1	
Site	2012	2013	2014	Design Value ⁽³⁾	% NAAQS
	Oma	ha MSA			
78 th & Dodge Sts., Omaha	2.3	1.9	1.5	2.3	26%
Omaha NCore ⁽⁴⁾	0.8	0.6	1.0	1.0	11%
	Sioux	City MSA		-	
31986 475 th Ave, Union Co, SD ⁽⁵⁾	0.3	0.3	nd	0.3	3%
 Notes and Explanations: (1) The CO NAAQS were last revised determined no changes in the CO NAA (2) The 1-hour NAAQS = 35 ppm. The D years. The annual values shown are th (3) The 8-hour NAAQS = 9 ppm. The D years. The annual values shown are th (4) Omaha NCore is a multi-pollutant more 	AQS were warra Design Value is e annual 2 nd hig esign Value is e 2 nd highest 8-	anted. the highest ann ghest maximum the highest annu hour maximum	ual 2 nd highest values. Conce ual 2 nd highest values. Conce	maximum value ntrations are in u maximum value ntrations are in u	over the last inits of ppm. over the last

Table B-2: Carbon Monoxide Data

(5) The Union Co., SD site is operated by the South Dakota Department of Environment & Natural Resources. CO data was not collected in 2014.

Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS				
Omaha MSA									
1616 Whitmore St., Omaha	0.073	0.056	0.054	0.061	81%				
Omaha NCore ⁽³⁾	0.038	0.027	0.021	0.028	38%				
	Sioux Cit	y MSA Sites							
1221 260 th St. Sergeant Bluff, IA ⁽⁴⁾	0.039	0.021	0.010	0.023	31%				
31986 475 th Ave, Union Co, SD ⁽⁵⁾	0.009	0.006	0.005	0.006	8%				
31307 473 rd Ave, Union Co, SD ⁽⁵⁾	0.007	0.005	nd	0.006	8%				
Comparison of 3-Hour Sulfur Diox	xide Levels	to the Secon	dary NAAQ	S ⁽²⁾					
Site	2012	2013	2014	Design	%				

Table B-3: Sulfur Dioxide Data

Site	2012	2013	2014	Design Value ⁽²⁾	% NAAQS			
Omaha MSA								
1616 Whitmore St., Omaha	0.076	0.052	0.047	0.076	15%			
Omaha NCore ⁽³⁾	0.026	0.027	0.018	0.027	5%			
Sioux City MSA								
1221 260th St. Sergeant Bluff, IA ⁽⁴⁾	0.015	0.014	0.014	0.015	3%			
31986 475 th Ave, Union Co, SD ⁽⁵⁾	0.007	0.005	0.004	0.007	1%			
31307 473 rd Ave, Union Co, SD ⁽⁵⁾	0.005	0.003	nd	0.006	1%			

Notes and Explanations: (EPA AQS data retrieval 5/21/15)

(1) The 1-hour NAAQS is 75 ppb or 0.075 ppm. The Design Value is the three-year average of the annual 99th percentile values. This NAAQS was promulgated on June 22, 2010. The annual values shown are annual 99th percentile values in ppm units.

(2) The 3-hour NAAQS is 0.5 ppm not to be exceeded more than once per year. It is a secondary standard promulgated in 1971, and retained without change in 1996. The Design Value is the highest annual 2nd highest maximum 3-hour reading over the last three years. The annual values shown are 2nd highest maximum values. All concentrations expressed in units of ppm.

(3) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(4) The Sergeant Bluff IA site began operation 7/1/12 and is operated by the IA DNR.

(5) The Union Co., SD sites are operated by the South Dakota Department of Environment & Natural Resources.

Comparison of 24-Hour Sulfur Dioxide Levels to the Pre-2010 NAAQS ⁽⁶⁾⁽⁷⁾							
Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS		
Omaha MSA							
1616 Whitmore St., Omaha	0.025	0.019	0.016	0.025	18%		
Omaha NCore ⁽³⁾	0.006	0.006	0.006	0.006	4%		
	Sioux City N	ASA					
1221 260 th St. Sergeant Bluff, IA ⁽⁵⁾	0.003	0.003	0.006	0.006	4%		
31986 475 th Ave, Union Co, SD ⁽⁶⁾	0.002	0.002	0.001	0.002	2%		
31307 473 rd Ave, Union Co, SD ⁽⁶⁾	0.002	0.002	nd	0.002	1%		
Comparison of Annual Average Sulfur	Dioxide Lev	vels to the	Pre-2010 N	$\mathbf{AAQS}^{(8)(9)}$			
Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS		
	Omaha M	SA					
1616 Whitmore St., Omaha	0.0023	0.0021	0.0017	0.0023	8%		
Omaha NCore ⁽³⁾	0.0009	0.0007	0.0006	0.0009	3%		
	Sioux City N	ASA					
1221 260 th St. Sergeant Bluff, IA ⁽⁴⁾	0.0003	0.0003	0.0002	0.0003	1%		
31986 475 th Ave, Union Co, SD ⁽⁵⁾	0.0004	0.0003	0.0003	0.0004	1%		
31307 473 rd Ave, Union Co, SD ⁽⁵⁾	0.0003	0.0004	nd	0.0004	1%		
Notes and Explanations: (3) Omaha NCore is a multi-pollutant monitoring							
 (4) The Sergeant Bluff IA site began operation 7/1/2 (5) The Union Co., SD sites are operated by the Society of the 24-hour NAAOS is a primary standard by the Society of the standard standard	uth Dakota Depa	artment of Env	vironment & N				

Table B-3: Sulfur Dioxide Data (continued)

(6) The 24-hour NAAQS is a primary standard promulgated in 1971 and retained without change in 1996. It will no longer apply once the attainment status to the 1-hour NAAQS is determined per regulations changes in 2010.

(7) The 24-hour NAAQS is 0.14 ppm not to be exceeded more than once per year. The Design Value is the highest annual 2nd highest maximum 24-hour reading over the last three years. The annual values shown are 2nd highest maximum values. The 24-hour NAAQS is a primary standard. All concentrations expressed in units of ppm.

(8) The Annual Average NAAQS is a primary standard promulgated in 1971 and retained without change in 1996. It will no longer apply once the attainment status to the 1-hour NAAQS is determined per regulations changes in 2010.

(9) The Annual Average NAAQS is 0.03 ppm not to be exceeded in a calendar year. The Design Value is the highest annual average over the last 3 years. The Annual Average NAAQS is a primary standard. All concentrations expressed in units of ppm.

evels of Nit	rogen Dioxid	le to NAAQ	S					
2012	2013	2014	Design Value ⁽¹⁾	% NAAQS				
Sioux City MSA								
0.016	0.018	0.021	0.018	18%				
0.057	0.040	nd	0.049	49%				
nnual Avera 2012	age Value fo 2013	r Nitrogen I 2014	Dioxide to NA Design Value ⁽²⁾	AQS % NAAQS				
Sioux Ci	ty MSA							
0.003	0.003	0.003	0.003	6%				
0.006	0.004	nd	0.005	9%				
	2012 Sioux Ci 0.016 0.057 nnual Aver: 2012 Sioux Ci 0.003	2012 2013 Sioux City MSA 0.016 0.018 0.057 0.040 nnual Average Value fo 2012 2013 Sioux City MSA 0.003 0.003	2012 2013 2014 Sioux City MSA 0.016 0.018 0.021 0.057 0.040 nd nd nnual Average Value for Nitrogen I 2012 2013 2014 Sioux City MSA 0.003 0.003 0.003	2012 2013 2014 Value Va				

Table B-4a: Nitrogen Dioxide Data

Table B-4b: 2011-2013 Nitrogen Oxide Data from the Omaha NCore Site (1)(2)

Parameter	2012	2013	2014	Approx. DV ⁽³⁾⁽⁴⁾⁽⁸⁾	% NAAQS			
1-Hour Data: Annual Maximum								
NOy ⁽⁶⁾	0.158	0.104	0.110	na	na			
NO ⁽⁷⁾	0.133	0.084	0.076	na	na			
NOy-NO ⁽⁸⁾	0.051	0.040	0.042	na	na			
1-Hour Data: 98 th Percentile ⁽⁵⁾								
NOy ⁽⁶⁾	0.113	0.078	0.087	na	na			
NO ⁽⁷⁾	0.103	0.051	0.056	na	na			
NOy-NO ⁽⁸⁾	0.045	0.035	0.039	0.040	40%			
1-Hour Data: Annual Average								
NOy ⁽⁶⁾	0.010	0.009	0.008	na	na			
NO ⁽⁷⁾	0.002	0.002	0.002	na	na			
NOy-NO ⁽⁸⁾	0.008	0.007	0.007	0.008	16%			

Footnotes:

(1) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(2) All concentrations expressed in ppm units.

(3) The 1-hour NO₂ NAAQS is 0.100 ppm (promulgated Feb. 2010). NAAQS attainment is achieved if the 3-year average of the annual 98th percentile of the daily maximum 1-hour values does not exceed 0.100 ppm.

(4) The Annual Average NO₂ NAAQS is 0.053 ppm not to be exceeded in a calendar year. It was promulgated 1971, and retained in the 1996 and 2010 reviews. The Design Value is the highest annual average over the 3-year comparison period.

(5) Percentile determination: (Days \geq 75% complete data): 2011 331 d => 7th high value, 2012 356 d => 8th high value & 2013 341 d => 7th high value.

(6) NOy – Reactive oxides of nitrogen, which includes NO, NO₂ and other nitrogen oxides, including organic nitrogen oxide compounds.

(7) NO – Nitrogen oxide

(8) NOy-NO provides an approximation of nitrogen dioxide (NO₂), with some possibility of over-estimating the true NO₂ concentration. For this reason, the NOy-NO parameter can be used to demonstrate attainment, but not non-attainment.

Table D-3a: FW_{10} - Waxillulli 24-1100	Dala		-		-
Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS
Omaha MSA & N	Aontgome	ry Co., IA	(6)		
Omaha NCore ⁽³⁾	74	62	75	68	45%
2411 O St, Omaha	71	67	74	62	41%
46th & Farnam Sts, Omaha ⁽⁴⁾	199	94	115	150	100%
19th & Burt Sts, Omaha	51	56	49	49	33%
3130 C Ave, Council Bluffs, IA ⁽⁵⁾	64	65	53	60	40%
Montgomery Co., IA (outside Omaha MSA) ⁽⁵⁾⁽⁶⁾	65	45	50	50	33%
Weeping Water WWTF (7)	75	45	49	49	33%
Weeping Water Lauritzen Farm ⁽⁷⁾⁽⁸⁾	179	108	148	129	86%
Sioux C	ity MSA S	ites			
821 30th St, Sioux City, IA ⁽⁵⁾	78	57	51	58	39%
31986 475th Ave, Union Co, SD ⁽⁹⁾	101	103	77	82	55%
31307 473rd Ave, Union Co, SD ⁽⁹⁾	82	49	nd	67	45%
Other N	ebraska S	ites			
Cozad	99	94	62	74	49%
Gothenburg	73	97	69	69	46%

Table B-5a: PM₁₀ - Maximum 24-Hour Data⁽¹⁾⁽²⁾

Notes and Explanations:

(1) NAAQS = 150 ug/m^3 , not to be exceeded more than once per year on average over 3 years, where exceedence is defined as a value of 155 ug/m^3 or more. The Design Value is the 4th highest 24-hour value found in the 3-year design period. Concentrations are in units of $\mu g/m^3$ at standard temperature (25° C) and pressure (760 mm Hg) conditions.

(2) NAAQS History: The primary 24-hour NAAQS was initially set at 150 *ug*/m³ in 1987, and was retained at this level in the 1997, 2006 and 2012 PM NAAQS reviews.

(3) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(4) The 46th & Farnam site recorded three PM_{10} values above 150 in 2012: 199 *ug*/m³ on 5/14/12, 181 *ug*/m³ on 6/5/12, and 159 *ug*/m³ on 1/5/12. The primary PM source in the area relocated and ceased operations in the area in 2014.

(5) The Council Bluffs, Montgomery Co., Emmetsburg and Sioux City IA sites are operated by the IA DNR

(6) The Montgomery County, IA site is located outside the Omaha MSA at Viking Lake State Park;~18 miles east of the Mills-Montgomery County line and ~ 45 miles SE of the I-29/I-80 intersection.

(7) Weeping Water is a limestone mining and processing area in Cass County, which is located 15 to 20 miles south of the main urbanized area within the Omaha MSA.

(8) The Weeping Water Lauritzen Farm site recorded one 24-hour PM_{10} value above 150 ug/m^3 in 2010: 179 on 1/5/12.

(9) The Union Co., SD sites are operated by the South Dakota Department of Environment & Natural Resources

Table D-50: FW_{10} - Annual Average	Data				
Site	2012	2013	2014	3-Year Average	% Old Std
Omaha MSA and	d Montgo	mery Co.,	IA ⁽⁴⁾		
Omaha NCore ⁽²⁾	24.6	20.8	21.8	22.4	45%
2411 O St, Omaha	30.1	24.0	25.1	26.4	53%
46th & Farnam Sts, Omaha	52.4	32.0	24.4	36.3	73%
19th & Burt Sts, Omaha	25.0	21.4	20.8	22.4	45%
3130 C Ave, Council Bluffs, IA ⁽³⁾	28.4	23.8	22.1	24.8	50%
Montgomery Co., IA (outside Omaha MSA) ^{(3) (4)}	21.7	16.8	17.3	18.6	37%
Weeping Water WWTF ⁽⁵⁾	25.1	19.0	19.6	21.2	42%
Weeping Water Lauritzen Farm ⁽⁵⁾	34.7	27.7	28.3	30.2	60%
Siou	x City MS	SA			
821 30th St, Sioux City, IA ⁽³⁾	22.8	18.3	17.6	19.6	39%
31986 475th Ave, Union Co, SD ⁽⁶⁾	22.4	18.5	18.1	19.7	39%
31307 473rd Ave, Union Co, SD ⁽⁶⁾	19.2	14.1	nd	16.7	33%
Other	Nebraska	Sites	<u> </u>		•
Cozad	29.4	25.4	21.1	25.3	51%
Gothenburg	29.5	27.2	22.7	26.5	53%

Table B-5b: PM₁₀ - Annual Average Data⁽¹⁾

Notes and Explanations:

(1) There is currently no NAAQS for the annual average PM_{10} concentration. An annual average NAAQS of 50 μ g/m³ was established in 1987, and then rescinded on December 18, 2006. Comparison to the rescinded NAAQS is provided for informational purposes only. Concentrations are in units of μ g/m³.

(2) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(3) The Council Bluffs, Montgomery Co., Emmetsburg and Sioux City IA sites are operated by the IA DNR

(4) The Montgomery County, IA site is located outside the Omaha MSA at Viking Lake State Park;~18 miles east of the Mills-Montgomery County line and ~ 45 miles SE of the I-29/I-80 intersection.

(5) Weeping Water is a limestone mining and processing area in Cass County, which is located 15 to 20 miles south of the main urbanized area within the Omaha MSA.

(6) The Union Co., SD sites are operated by the South Dakota Department of Environment & Natural Resources.

Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS
Omaha MSA & M	ontgome	ry Co., L	A ⁽⁵⁾		
Omaha NCore ⁽³⁾	21.3	22.2	23.1	22	63%
9225 Berry St.; Omaha	24.8	21.0	19.5	22	62%
2912 Coffey Ave., Bellevue	23.5	24.0	22.3	23	66%
2242 Wright St., Blair	24.1	20.6	16.9	21	59%
3130 C Ave., Council Bluffs, IA ⁽⁴⁾	28.5	22.4	19.6	24	67%
Montgomery Co., IA (outside Omaha MSA) ⁽⁴⁾⁽⁵⁾	20.5	21.0	18.4	20	57%
Linco	oln MSA	-		-	_
3140 N Street, Lincoln	20.0	19.5	19.9	20	57%
Sioux City MSA &	& Emmet	sburg, IA	(7)		
821 30 th St, Sioux City, IA ⁽⁴⁾	24.9	21.5	24.5	24	68%
31986 475th Ave, Union Co, SD ⁽⁶⁾	19.7	22.8	23.1	22	62%
31307 473rd Ave, Union Co, SD ⁽⁶⁾	20.8	23.5	nd	22	63%
Emmetsburg, IA (outside Sioux City MSA) ⁽⁴⁾⁽⁷⁾	22.4	20.9	20.4	21	61%
Other Ne	braska S	ites		-	
Grand Island Senior High	17.5	21.3	13.9	18	50%
Scottsbluff ⁽⁸⁾	17.9	12.2	20.4	17	48%
Notes and Explanations:					

Table B-6a: PM_{2.5} - 98th Percentile, 24-Hour Data (1) (2)

Notes and Explanations:

(1) The Design Values are the 3-year average of the annual 98th percentile values. To determine attainment status, the Design Values are compared to the 35 μ g/m³ NAAQS. Concentrations are in units of μ g/m³.

(2) NAAQS History: The 24-hour PM_{2.5} NAAQS was initially established at 65μ g/m³ in 1997. It was lowered to 35 mg/m³ in 2006 and retained at the 35 μ g/m³ level in 2012.

(3) Omaha NCore is a multi-pollutant monitoring site located at 4102 Woolworth Street.

(4) The Council Bluffs, Montgomery Co., Emmetsburg and Sioux City IA sites are operated by the IA DNR

(5) The Montgomery County, IA site is located outside the Omaha MSA at Viking Lake State Park;~18 miles east of the Mills-Montgomery County line and ~ 45 miles SE of the I-29/I-80 intersection.

(6) The Union Co., SD sites are operated by the South Dakota Department of Environment & Natural Resources

(7) Emmetsburg is located outside the Sioux City located approximately 97 miles northeast of Sioux City. Data from this site is included here for comparison purposes only.

(8) Data completeness fell to 71% in the 4th quarter of 2014 and was 80% for the entire year. Data loss issues were associated with power losses and monitor malfunctions.

Site	2012	2013	2014	Design Value ⁽¹⁾	% NAAQS
Omaha MSA & M	ontgomer	y Co., IA	(4)		、
Omaha NCore ⁽³⁾	8.4	9.2	8.8	8.8	74%
9225 Berry St.; Omaha	11.7	8.6	8.1	9.4	79%
2912 Coffey Ave., Bellevue	10.4	11.0	8.7	10.0	83%
2242 Wright St., Blair	9.2	8.3	7.4	8.3	69%
3130 C Ave., Council Bluffs, IA ⁽³⁾	10.8	9.6	9.0	9.8	82%
Montgomery Co., IA (outside Omaha MSA) ^{(3) (4)}	8.8	8.3	7.7	8.3	69%
Lincoln	MSA Site	e			
3140 N Street, Lincoln	8.7	8.2	7.7	8.2	68%
Sioux City MSA 8	k Emmets	burg, IA ⁽	6)		
821 30 th St, Sioux City, IA ⁽³⁾	9.7	9.3	8.4	9.1	76%
31986 475th Ave, Union Co, SD ⁽⁵⁾	9.9	8.9	8.6	9.1	76%
31307 473rd Ave, Union Co, SD ⁽⁵⁾	7.5	10.5	nd	9.0	75%
Emmetsburg, IA (outside Sioux City MSA) ⁽⁶⁾	8.7	8.1	7.8	8.2	68%
Other Ne	braska Sit	tes			
Grand Island Senior High	7.6	7.6	6.5	7.2	60%
Scottsbluff ⁽⁸⁾	5.6	5.1	5.2	5.3	44%
Notes and Explanations:		•	•	•	•

Table B-6b: PM_{2.5} - Annual Average Data

Notes and Explanations:

(1) The Design Values are the 3 year average of the annual average values. To determine attainment status, the Design Values compared to the $12 \,\mu g/m^3$ NAAQS. Concentrations are in units of $\mu g/m^3$.

(2) NAAQS History: The annual average PM_{2.5} NAAQS was initially established in 1997 at 15 μ g/m³. It was retained at this level in the 2006 review and then lowered to 12 μ g/m³ in December 2012.

(2) The Omaha NCore site is located at 4102 Woolworth Street. It is a multi-pollutant monitoring site.

(3) The Council Bluffs, Montgomery Co., Emmetsburg and Sioux City IA sites are operated by the IA DNR

(4) The Montgomery County, IA site is located outside the Omaha MSA at Viking Lake State Park;~18 miles east of the Mills-Montgomery County line and ~45 miles SE of the I-29/I-80 intersection.

(5) The Union Co., SD sites are operated by the South Dakota Department of Environment & Natural Resources

(6) Emmetsburg is located well outside the Sioux City located approximately 97 miles northeast of Sioux City. Data from this site is included here for comparison purposes only.

Comparison of 3-Year Maximum Values of 3-Month Average Values ^{(1) (2)}									
Site	2012	2013	2014	$\mathbf{DV}^{(1)}$	% NAAQS				
Sioux City MSA									
Auburn	0.05	0.03	0.008	0.05	35%				
Fremont	0.14	0.11	0.09	0.14	93%				
Omaha NCore	0.006	0.006	0.01	0.01	7%				

Table B-7: Lead in Total Suspended Particulate (TSP-Pb)

Notes and Explanations:

(1) Concentrations are in units of $\mu g/m^3$. The 3-month average NAAQS = 0.15 $\mu g/m^3$. The DV or Design Value is the highest 3 month average in the last 3 years.

(2) NAAQS History: The initial NAAQS was promulgated in 1978 and was set at 1.5 μ g/m³ calendart quarter average. In 2008, it was modified to 0.15 μ g/m³ 3-month running average.

Abbreviation: nd – no data, site not operating

Table B-8: Total Reduced Sulfur (TRS) Data

Comparison of 3-Year Maximum Value	for 1-Min	ite TRS to	the State S	Standard ⁽¹⁾⁽²	2)
Site	2012	2013	2014	Maximum Value	% NE Std
S	ioux City N	MSA		·	
501 Pine St. Dakota City	0.180	0.058	0.163	0.180	1.8%
Comparison of 3-Year Maximum Value	for 30-Mi	nute TRS t	o the State	e Standard ⁽¹⁾	(3)
Site	2012	2013	Maximum Value	% NE Std	
S	ioux City N	MSA		·	
501 Pine St. Dakota City	0.086	0.042	0.088	0.088	88.0%
Notes and Explanations: (1) Concentrations are in units of ppm. (2) The 1-minute Nebraska Air Quality Standard is (3) The 30-minute Nebraska Air Quality Standard			1		L

(3) The 30-minute Nebraska Air Quality Standard is 0.10 ppm.

Population related data is reviewed as part of the network planning process because:

- Population growth may be associated with pollution source growth;
- High population density generally correlates with high air pollution potential; and
- Some 40 CFR Part 58 requirements are based on population and/or Federally defined metropolitan statistical definitions.

US Census Bureau & US Office of Management and Budget Basics:

The US Census Bureau conducts a comprehensive population census every 10 years referred to as a decennial census. The last decennial census was completed in 2010. In addition, the US Census Bureau conducts annual surveys to provide annual population estimates for each interim year.

The U.S. Office of Management and Budget (OMB) uses the decennial census data to categorize urbanized areas by population and business inter-connections. These urban categories are used to define some Federal program applications, including, in some instances, air monitoring requirements. Four such categories are:

- Metropolitan Statistical Areas (MSAs), which contain an *urbanized area*, where an *urbanized area* is a densely settled territory delineated by the US Census Bureau that contains 50,000 or more people;
- Micropolitan Statistical Areas (MiSAs), which contain an *urban cluster* with a population of 10,000 to 49,999, where an *urban cluster* is a densely settled territory delineated by the US Census Bureau that contains at least 2,500 people, but fewer than 50,000 people.
- Combined Statistical Areas (CSAs), which are adjacent MSAs and MiSAs with social and economic ties.
- Core-Based Statistical Areas (CBSA) is a geographic area defined by the Office of Management and Budget (OMB) that centers on an urban center of at least 10,000 people and adjacent areas that are socioeconomically tied to the urban center by commuting. Both MSAs and MiSAs are CBSAs.

These designations are important from an ambient monitoring perspective because:

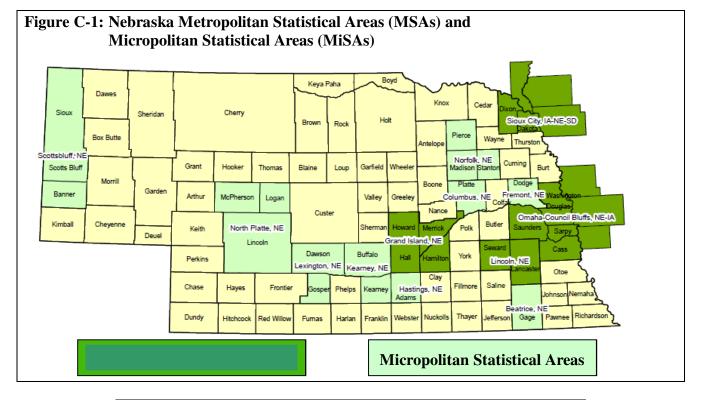

- They are sometimes used in defining minimum monitoring requirements, and
- They are often used as the default boundary when defining non-attainment areas.

Figure C-1 (above) shows the location and boundaries of MSAs and MiSAs in Nebraska as delineated following the 2010 decennial census. There are also two CSAs within NE:

- Omaha-Council Bluffs-Fremont NE-IA CSA, which is the Omaha MSA plus Dodge County, NE; and
- Sioux City-Vermillion IA-NE-SD CSA, which is the Sioux City MSA plus Clay County, SD.

Population Demographics and Growth Trends:

Most of the area of Nebraska is rural and used for agricultural production (farming and ranching). Conversely, most of the population of Nebraska (59%) resides in the Omaha and Lincoln MSAs, and 82% of the population resides within the boundaries of designated MSAs and MiSAs (see Table C-1). Even within the MSAs and MiSAs, agricultural usage is the predominant land use except for the two most densely populated counties of Douglas and Sarpy.

Table C-1: Population within Nebraska's MSAs and MiSAs									
Area	Population	% NE (b)	$\operatorname{Cum} \% \operatorname{NE}^{(c)}$						
Nebraska	1,881,503	100%	na						
Omaha MSA ^(a)	782,138	42%	42%						
Lincoln MSA	318,945	17%	59%						
Grand Island MSA	84,755	5%	63%						
Sioux City MSA ^(a)	26,632	1%	64%						
Kearney MiSA	54,868	3%	67%						
Norfolk MiSA	48,445	3%	70%						
Hastings MiSA	37,772	2%	72%						
Scottsbluff MiSA	37,229	2%	74%						
North Platte MiSA	37,063	2%	76%						
Fremont MiSA	36,744	2%	78%						
Columbus MiSA	32,666	2%	80%						
Lexington MiSA	26,066	1%	81%						
Beatrice MiSA	21,663	1%	82%						
 (a) Only Nebraska residents within the Omaha and Sioux City MSAs were used in the population counts shown in this table. (b) <u>% NE</u> refers to the percent of Nebraska residents residing in each MSA or MiSA. 									
(c) <u>Cum % NE</u> refers to the cumulative sum of the <u>% NE</u> column. Thus 59% of									

(c) <u>Cum % NE</u> refers to the cumulative sum of the <u>% NE</u> column. Thus 59% of Nebraska's residents live in the Omaha and Lincoln MSAs, while 82% live in an MSA or MiSA.

Table C-2 lists the top 10 Nebraska counties with respect to 2014 population, 2010 to 2014 population growth, and 2010 to 2014 percent population growth rate. As shown in Table C-2, the 5 most populated counties (Douglas, Lancaster, Sarpy, Hall and Buffalo counties) also have the fastest growth rate, and they are also among the top 8 counties for percent population growth. The population of these 5 counties accounts for 60% of Nebraska's population and their 2010 to 2014 population growth exceeds the population growth of the entire state by 1,466 people (because 62 of Nebraska's 93 counties lost population, see Table C-6).

Also shown in Table C-2, the 3 most populated and fastest growing counties (Douglas, Lancaster and Sarpy Counties) dominate within these categories with 54% of Nebraska's residents living in these 3 counties and a combined annual population growth rate of 13,209. The 2010-14 population growth in these 3 counties exceeds the population growth of the entire state by 1192 people (because 62 of Nebraska's 93 counties lost population, see Table C-6).

Douglas and Sarpy Counties are in the Omaha MSA and have a combined population of approximately 715,400. This is 79% of the population in the entire MSA (including the IA counties) and 91% of the population within the Nebraska portion of the Omaha MSA. Both of these counties are highly urbanized, and along with Council Bluffs, IA form the urban core of the Omaha MSA. See Figure C-2 for additional information on the Omaha MSA.

Lancaster County is in the Lincoln MSA and 95% of the Lincoln MSA population lives in it. The City of Lincoln is the urbanized core of the Lincoln MSA with a population of approximately 273,000 or 86% of the MSA population. See Figure C-3 for additional information on the Lincoln MSA.

Table C-3 contains population and growth data pertaining to Nebraska's 16 most populated counties in 2000, 2010 and 2014. The counties listed for 2000, 2010 & 2014 did not change and there were only minor ranking changes during the 2000 thru 2014 time frame. These 16 counties include the highest populated counties from each of the 4 MSAs and the 9 MiSAs. This illustrates that the population of Nebraska is located predominantly in the urbanized cores and this has not changed since 2000.

Additional population and population growth data on the Omaha, Lincoln, Sioux City and Grand Island MSA's can be found in Figures C-2 thru C-5.

Table C-4 provides population and population growth information on Nebraska's MiSAs.

Table C-5 provides population and population growth information on 9 additional counties that are outside of the designated MSAs and MiSAs with populations greater than 10,000.

Table C-6 provides 2010 thru 2014 population and population growth data on all 93 Nebraska counties. The counties are ranked using their 2010 thru 2014 population growth with the fastest growing counties at the top of the table.

Table C-6 also has a column for population density which ranges from a high of 1641 persons per square mile in Douglas County to ≤ 1 person per square mile in 11 counties. There are also 49 counties (53% of Nebraska's 93 counties) with a population density of ≤ 10 persons per square mile. This is indicative of the rural nature of most of Nebraska.

Attachment	C:	Population	Dynamics
------------	----	------------	----------

Table	Table C-2: Top Ten Nebraska Counties for Population and Population Growth: 2010 to 2014													
2014 Population					Population Growth: 2010 - 2014					Annualized Percent Population Growth				
Rank	County or State	2014 Population	% State Pop.	Rank	County	2014 Population	Pop. Growth per Year	Annual % Pop. Growth	Rank	County	2014 Population	Annual % Pop. Growth	Pop. Growth per Year	
1	Douglas	543,244	29%	1	Douglas	543,244	6163	1.2%	1	Banner	764	2.3%	17	
2	Lancaster	301,795	16%	2	Lancaster	301,795	3915	1.3%	2	Sarpy	172,193	1.9%	3111	
3	Sarpy	172,193	9%	3	Sarpy	172,193	3111	1.9%	3	Blaine	504	1.6%	8	
4	Hall	61,492	3%	4	Hall	61,492	674	1.1%	4	Thomas	687	1.4%	9	
5	Buffalo	48,224	3%	5	Buffalo	48,224	513	1.1%	5	Lancaster	301,795	1.3%	3915	
6	Dodge	36,744	2%	6	Platte	32,666	100	0.3%	6	Douglas	543,244	1.2%	6163	
7	Scotts Bluff	36,465	2%	7	Seward	17,150	91	0.5%	7	Hall	61,492	1.1%	674	
8	Lincoln	35,815	2%	8	York	13,917	68	0.5%	8	Buffalo	48,224	1.1%	513	
9	Madison	35,174	2%	9	Cass	25,524	68	0.3%	9	Kearney	6,644	0.6%	37	
10	Platte	32,666	2%	10	Madison	35,174	56	0.2%	10	Seward	17,150	0.5%	91	
na	Nebraska	1,881,503	100%	na	Nebraska	1,881,503	12,910	0.7%	na	Nebraska	1,881,503	0.7%	12,910	

Observations from data above and from additional data in Table C-3:

(1) The five counties identified with **Bold-Font** & green highlight appeared in all 3 lists: top 10 for population, population growth and % annualized growth. They are **Buffalo**, **Douglas**, **Hall**, **Lancaster**, and **Sarpy** Counties.

(2) The five counties with the highest populations are **Buffalo**, **Douglas**, **Hall**, **Lancaster**, and **Sarpy** Counties and 60% of Nebraska's population lives within these counties.

(3) The five counties with the highest population growth are also **Buffalo**, **Douglas**, **Hall**, **Lancaster**, and **Sarpy** Counties. The total population growth in these 5 counties was 57,501 or 111% of Nebraska's total population gain from 2010 thru 2014 (more than 100% because 62 of Nebraska's 93 counties lost population, a total of 1945 people). These 5 counties also accounted for nearly 96% of the population growth in the 31 counties that had population gains.

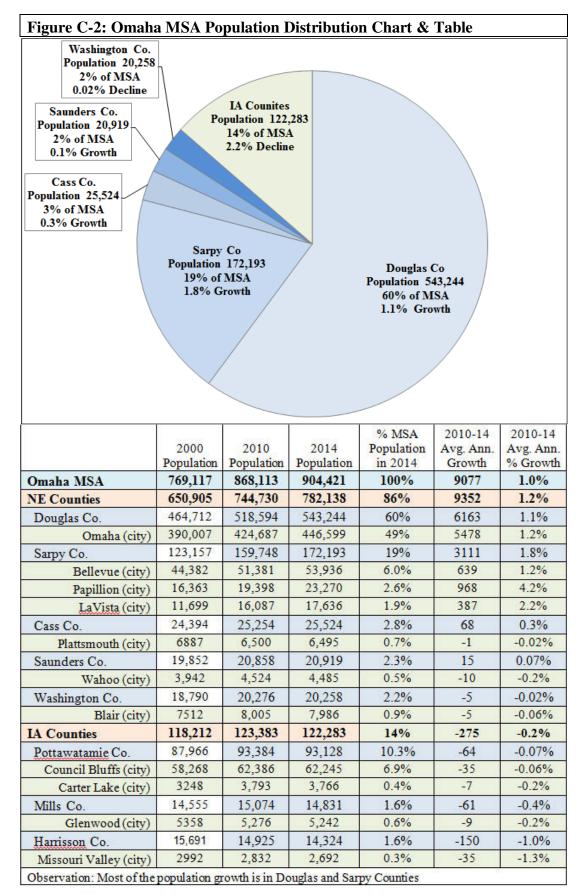
(4) The population gain in Nebraska's 3 most populated counties, Douglas, Lancaster & Sarpy, 54% of the state's population and 102 % of the state's population growth. Also 89% of the population growth in Nebraska's 10 fastest growing counties.

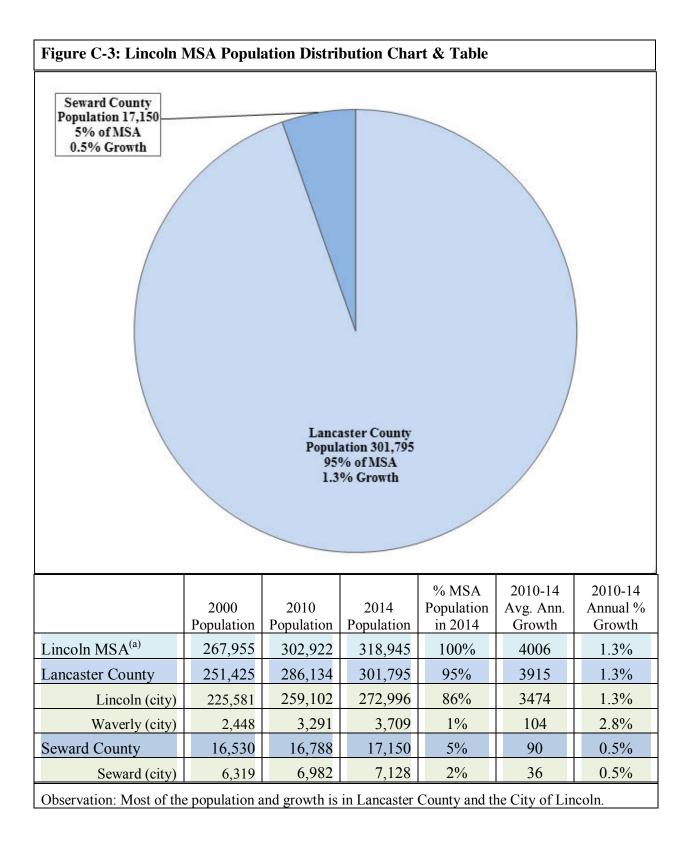
(5) Seward County, which is in the Lincoln MSA with Lancaster County, is Nebraska's 18th most populated county, and exhibited the 7th highest population growth from 2010 thru 2014.

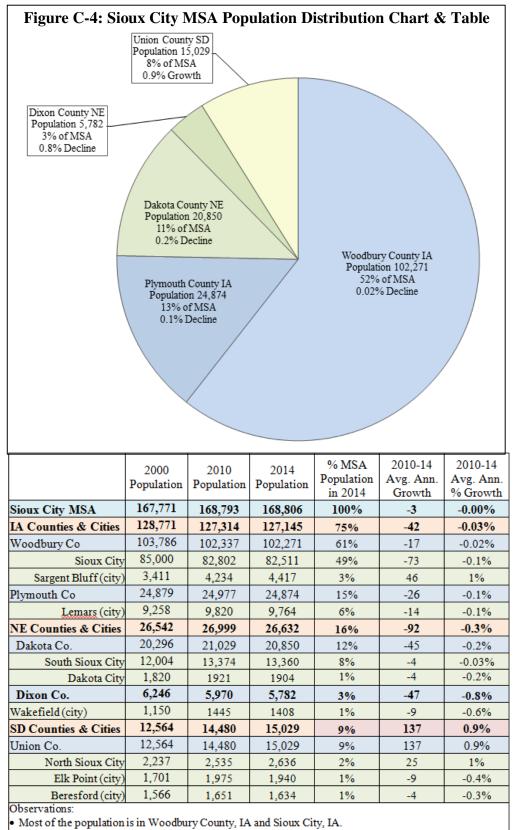
(6) Banner, Blaine and Thomas Counties had the high percent growth rate between 2010 and 2014. These are very rural counties with low populations and low population densities (i.e., 0.7 to 1 person/square mile). The population gains in these counties does not appear to be of importance from an air quality perspective (i.e., does not relate to a significant increase in air pollution emissions).

The population data used in this table was obtained from the US Census Bureau. Population estimate data was used for both 2010 and 2014.

Table C-3: Sixteen Most Populated Nebraska Counties: 2000, 2010 & 2014 (a) (b) (c)												
	2000		2010				2014					
Rank	County	Population Estimate 7/1/00	Rank	County	Population Estimate 7/1/10	Rank	County	Population Estimate 7/1/14	% State Pop.	Cum. % State Pop.	MSA or <i>MiSA</i>	
1	Douglas	464,829	1	Douglas	518,594	1	Douglas	543,244	29%	29%	Omaha	
2	Lancaster	251,549	2	Lancaster	286,134	2	Lancaster	301,795	16%	45%	L:incoln	
3	Sarpy	123,248	3	Sarpy	159,748	3	Sarpy	172,193	9%	54%	Omaha	
4	Hall	53,559	4	Hall	58,797	4	Hall	61,492	3%	57%	Grand Island	
5	Buffalo	42,336	5	Buffalo	46,174	5	Buffalo	48,224	3%	60%	Kearney	
6	Scotts Bluff	37,021	6	Scotts Bluff	37,060	6	Dodge	36,744	2%	62%	Fremont	
7	Dodge	36,214	7	Dodge	36,701	7	Scotts Bluff	36,465	2%	64%	Scottsbluff	
8	Madison	35,233	8	Lincoln	36,267	8	Lincoln	35,815	2%	66%	North Platte	
9	Lincoln	34,649	9	Madison	34,950	9	Madison	35,174	2%	68%	Norfolk	
10	Platte	31,547	10	Platte	32,268	10	Platte	32,666	2%	69%	Columbus	
11	Adams	31,180	11	Adams	31,333	11	Adams	31,457	2%	71%	Hastings	
12	Dawson	24,439	12	Cass	25,254	12	Cass	25,524	1%	72%	Omaha	
13	Cass	24,374	13	Dawson	24,354	13	Dawson	24,096	1%	74%	Lexington	
14	Gage	22,945	14	Gage	22,286	14	Gage	21,663	1%	75%	Beatrice	
15	Dakota	20,313	15	Dakota	21,029	15	Saunders	20,919	1%	76%	Omaha	
16	Saunders	19,811	16	Saunders	20,858	16	Dakota	20,850	1%	77%	Sioux City, IA	
NA	Nebraska	1,713,279	NA	Nebraska	1,829,865	NA	Nebraska	1,881,503	100 %	NA	NA	
Footnot (a) Th		ed counties show	wn in this	s table are within M	Ietropolitan and Mi	cropolita	n Statistical Areas	(MSAs/MiSAs) th	nat exist par	tially or who	lly within	

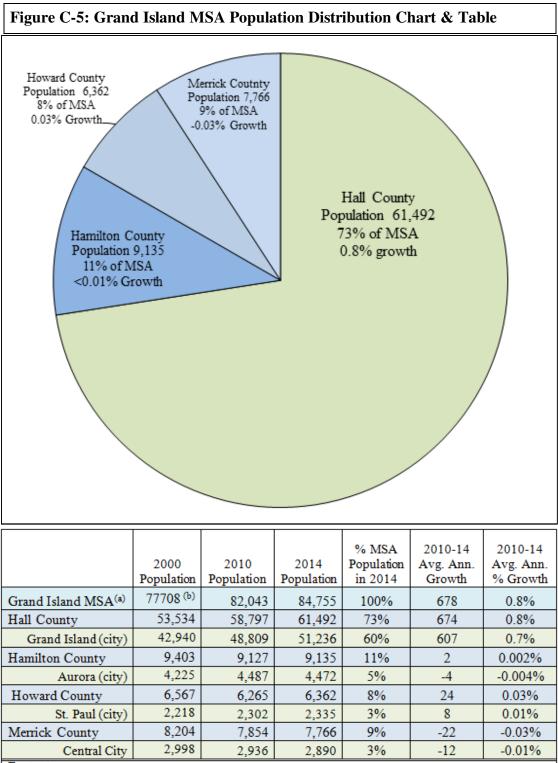

(a) The 16 most populated counties shown in this table are within Metropolitan and Micropolitan Statistical Areas (MSAs/MiSAs) that exist partially or wholly within Nebraska. Counties within all 13 of Nebraska's MSAs/MiSAs are represented in this table, although not all of the counties within the MSAs/MiSAs are in this table.
 (b) The **absence of green highlight** indicates a ranking switch in the subsequent time period.


Observations:


• Over half (54%) of the people in Nebraska live in its 3 most populated counties, 60% live in the 5 most populated counties, and over 75% live in the 16 most populated counties.

• The 16 most populated counties were the same in 2014 as they were in 2010 and 2000.

• There have been only minor ranking changes within this group of 16 counties from 2000 thru 2014.



• There was minimal overall population growth in the Sioux City MSA in the 2010-2014 time frame.

Growth did occur in Union County, SD, North Sioux City, SD & Sargent Bluff, IA.

Footnotes:

(a) In 2000, Grand Island was a micropolitan statistical area (MiSA) encompassing 3 counties: Hall Howard & Merrick.

(b) The 2000 population of the "Grand Island MSA" includes Hamilton County, although it was not part of the Grand Island MiSA in 2000

Observations: Most of the population of the Grand Island MSA is in Hall County and the City of Grand Island. Population growth is also fastest within these areas.

		2010	2014	Avg. Ann.	Annual	Percent
MiSA	Counties & Cities	Population	Population	Population	Percent	of
		ropulation	ropulation	Growth	Growth	MiSA
Kearney Mi	SA	52,671	54,868	549	1.0%	100%
	Buffalo County	46,174	48,224	513	1.1%	88%
	Kearney (city)	30,858	32,469	403	1.3%	59%
	Kearney County	6,497	6,644	37	0.6%	12%
Norfolk MS	A	48,339	48,445	27	0.1%	100%
	Madison County	34,950	35,174	56	0.2%	73%
	Norfolk (city)	24,263	24,444	45	0.2%	50%
	Pierce County	7,261	7,202	-15	-0.2%	15%
	Stanton County	6,128	6,069	-15	-0.2%	13%
Hastings Mi	ý	37,875	37,772	-26	-0.1%	100%
1145011155 1911	Adams County	31,333	31,457	31	0.1%	83%
	Hastings (city)	25,182	24,915	-67	-0.3%	66%
	Clay County	6,542	6,315	-57	-0.9%	17%
Scottsbluff]	j	37,758	37,229	-132	-0.4%	100%
50000501011	Scotts Bluff County	37,060	36,465	-149	-0.4%	98%
	Scottsbluff (city)	15,077	14,875	-14)	-0.4%	40%
	Gering (city)	8,520	8,372	-37	-0.4%	22%
	Banner County	698	764	17	2.3%	2%
North Platte	, , , , , , , , , , , , , , , , , , ,	37,573	37,063	-128	-0.3%	100%
i toi tii i lutte	Lincoln County	36,267	35,815	-113	-0.3%	97%
	North Platte (city)	24,715	24,327	-113	-0.4%	66%
	Logan County	768	750	-5	-0.6%	2%
	McPherson County	538	498	-10	-1.9%	1%
Fremont Mi	· · · ·	36,701	36,744	11	0.0%	100%
Part of	Dodge County	36,701	36,744	11	0.0%	100%
Omaha CSA	Fremont (city)	26,419	26,500	20	0.076	72%
Columbus N		32,268	32,666	100	0.3%	100%
	Platte County	32,268	32,666	100	0.3%	100%
	Columbus (city)	22,216	22,630	104	0.5%	69%
Lexington N	Aisa	26,402	26,066	-84	-0.3%	100%
U	Dawson County	24,354	24,096	-65	-0.3%	92%
	Lexington (city)	10,241	10,146	-24	-0.2%	39%
	Cozad (city)	3,993	3,912	-20	-0.5%	15%
	Gothenburg (city)	3,574	3,542	-8	-0.2%	14%
	Gosper County	2,048	1,970	-20	-1.0%	8%
Beatrice Mi	· · ·	22,286	21,663	-156	-0.7%	100%
	Gage County	22,286	21,663	-156	-0.7%	100%
	Beatrice (city)	12,421	12,055	-92	-0.7%	56%

Populations Gre	ater Than 10),000			
	2010	2014	Avg. Ann.	Annual	Percent
Counties & Cities	Population	Population	Population	Percent	of
	•	1	Growth	Growth	MiSA
Otoe Co	15,758	15,797	10	0.1%	100%
Nebraska City	7,299	7,265	-9	-0.1%	46%
Otoe County is adjacer					
Saline Co	14,231	14,252	5	0.0%	100%
Crete (city)	6,992	7,034	11	0.1%	49%
Saline County lies SW	and is adjacen	t to the Lincol	n MSA		
York Co	13,645	13,917	68	0.5%	100%
York (city)	7,758	7,957	50	0.6%	57%
York County. lies betw	reen and abuts	the Lincoln ar	d Grand Islan	d MSAs	
Box Butte Co	11,293	11,340	12	0.1%	100%
Alliance (city)	8,480	8,519	10	0.1%	75%
Alliance is the largest 1					
Box Butte County is ac					
Red Willow Co	11,052	10,867	-46	-0.4%	100%
McCook (city)	7,695	7,611	-21	-0.3%	70%
Custer Co	10,913	10,728	-46	-0.4%	100%
Broken Bow (city)	3,553	3,482	-18	-0.5%	32%
Custer County is adjace	ent to the North	n Platte, Lexin	gton & Kearn	ey MiSAs.	
Colfax Co	10,539	10,504	-9	-0.1%	100%
Schuyler (city)	6,228	6,169	-15	-0.2%	59%
Colfax County lies betw	ween and abuts	s the Columbu	s, Fremont &	Norfolk Mi	SAs.
Holt Co	10,451	10,403	-12	-0.1%	100%
O'Neill (city)	3,710	3,663	-12	-0.3%	35%
Atkinson (city)	1,247	1,257	3	0.2%	12%
Cheyenne Co	9,961	10,148	47	0.5%	100%
Sidney (city)	6,732	6,914	46	0.7%	68%
Cheyenne Co. is adjace	,	,	the Scottsbluf		
Observations:		-			
• Five of these 9 counties	s experienced	population gro	wth between 2	2010 and 20	014:
Otoe, Saline, York, Bo	x Butte & Che	venne Popul	ation growth r	ates were <	< 1% per

• Micropolitan Statistical Areas (MiSAs) have a core urban area with a population of 10,000 to 49,999. None of these counties appear to be approaching this threshold.

• Colfax, Otoe, Saline and York Counties are adjacent to other MSAs and or MiSAs.

Tab	le C-6: Popu					aska & Ne	braska Cou	nties
	Sorted by	2010 to 201	4 Populatio	n Growth	(a)			Page 1 of 3
	Nebraska	1,829,865	1,881,503	24.5	51,638	0.69%	12,534	0.67%
Rank		Population	Population	Pop.	2010-14	2010-14	2013-14	2013-14
	County	Estimate	Estimate	Density	Population	Ann. %	Population	Percent
		7/1/10	7/1/10	(b)	Growth	Growth	Growth	Growth
1	Douglas	518,594	543,244	1641.3	24,650	1.13%	5,715	1.05%
2	Lancaster	286,134	301,795	359.8	15,661	1.30%	4,510	1.49%
3	Sarpy	159,748	172,193	715.9	12,445	1.81%	2,835	1.65%
4	Hall	58,797	61,492	112.5	2,695	1.10%	569	0.93%
5	Buffalo	46,174	48,224	49.8	2,050	1.06%	166	0.34%
6	Platte	32,268	32,666	48.2	398	0.30%	153	0.47%
7	Seward	16,788	17,150	29.8	362	0.53%	86	0.50%
8	York	13,645	13,917	24.2	272	0.49%	54	0.39%
9	Cass	25,254	25,524	45.6	270	0.26%	143	0.56%
10	Madison	34,950	35,174	40.9	224	0.16%	-77	-0.22%
11	Cheyenne	9,961	10,148	8.5	187	0.46%	69	0.68%
12	Kearney	6,497	6,644	12.9	147	0.55%	91	1.37%
13	Adams	31,333	31,457	55.8	124	0.10%	-124	-0.39%
14	Howard	6,265	6,362	11.2	97	0.38%	21	0.33%
15	Banner	698	764	1.0	66	2.16%	-13	-1.70%
16	Harlan	3,427	3,492	6.3	65	0.47%	-21	-0.60%
17	Saunders	20,858	20,919	27.7	61	0.07%	38	0.18%
18	Box Butte	11,293	11,340	10.5	47	0.10%	30	0.26%
19	Cherry	5,715	5,762	1.0	47	0.20%	-17	-0.30%
20	Dodge	36,701	36,744	68.8	43	0.03%	127	0.35%
21	Otoe	15,758	15,797	25.7	39	0.06%	80	0.51%
22	Thomas	650	687	1.0	37	1.35%	-9	-1.31%
23	Blaine	472	504	0.7	32	1.59%	23	4.56%
24	Saline	14,231	14,252	24.8	21	0.04%	-46	-0.32%
25	Chase	3,963	3,978	4.4	15	0.09%	1	0.03%
26	Thayer	5,218	5,230	9.1	12	0.06%	34	0.65%
27	Hamilton	9,127	9,135	16.8	8	0.02%	13	0.14%
28	Hitchcock	2,893	2,901	4.1	8	0.07%	28	0.97%
29	Grant	612	619	0.8	7	0.28%	-6	-0.97%
30	Deuel	1,937	1,940	4.4	3	0.04%	6	0.31%
31	Phelps	9,185	9,187	17.0	2	0.01%	-10	-0.11%
Footr	note:							

(a) This table contains population estimates for 7/1/10 and 7/1/14 published by the US Census Bureau.
(b) *Pop. Density* is the population of the county divided by its surface area in square miles (people/sq. mile).

Tab	le C-6: Popu					ebraska &	. Nebraska	Counties
	Sorted by	2010 to 201	4 Populatio	n Growth	(a)			Page 2 of 3
Rank	County	Population Estimate 7/1/10	Population Estimate 7/1/10	Pop. Density (b)	2010-14 Population Growth	2010-14 Annual Percent Growth	2013-14 Population Growth	2013-14 Percent Growth
32	Thurston	6,973	6,969	17.7	-4	-0.01%	72	1.03%
33	Hooker	734	728	1.0	-6	-0.21%	-4	-0.55%
34	Sioux	1,312	1,303	0.6	-9	-0.17%	-16	-1.23%
35	Arthur	464	453	0.6	-11	-0.61%	2	0.44%
36	Keya Paha	821	810	1.0	-11	-0.34%	13	1.60%
37	Logan	768	750	1.3	-18	-0.60%	-14	-1.87%
38	Washington	20,276	20,258	51.9	-18	-0.02%	27	0.13%
39	Hayes	960	933	1.3	-27	-0.72%	-40	-4.29%
40	Johnson	5,216	5,185	13.8	-31	-0.15%	56	1.08%
41	Colfax	10,539	10,504	25.4	-35	-0.08%	98	0.93%
42	Garfield	2,041	2,003	3.5	-38	-0.47%	-30	-1.50%
43	Loup	626	588	1.0	-38	-1.62%	7	1.19%
44	McPherson	538	498	0.9	-40	-2.01%	-25	-5.02%
45	Frontier	2,753	2,705	2.8	-48	-0.44%	-7	-0.26%
46	Holt	10,451	10,403	4.3	-48	-0.12%	-35	-0.34%
47	Valley	4,258	4,204	7.4	-54	-0.32%	7	0.17%
48	Wheeler	821	766	1.3	-55	-1.80%	8	1.04%
49	Pierce	7,261	7,202	12.5	-59	-0.20%	38	0.53%
50	Stanton	6,128	6,069	14.1	-59	-0.24%	-15	-0.25%
51	Greeley	2,544	2,482	4.4	-62	-0.62%	-1	-0.04%
52	Furnas	4,954	4,888	6.8	-66	-0.34%	32	0.65%
53	Boyd	2,100	2,033	3.8	-67	-0.82%	14	0.69%
54	Nemaha	7,247	7,175	17.5	-72	-0.25%	-3	-0.04%
55	Pawnee	2,775	2,702	6.3	-73	-0.68%	-24	-0.89%
56	Sherman	3,149	3,074	5.4	-75	-0.61%	-36	-1.17%
57	Gosper	2,048	1,970	4.3	-78	-0.99%	-4	-0.20%
58	Rock	1,524	1,443	1.4	-81	-1.40%	26	1.80%
59	Merrick	7,854	7,766	16.0	-88	-0.28%	-35	-0.45%
60	Perkins	2,987	2,891	3.3	-96	-0.83%	-19	-0.66%
61	Kimball	3,827	3,713	3.9	-114	-0.77%	26	0.70%
62	Cuming	9,144	9,027	15.8	-117	-0.32%	22	0.24%
63	Polk	5,389	5,271	12.0	-118	-0.56%	21	0.40%
Footr	note:			- /4 /4 0 1 -	1/1/1/ multiple	11 1 10	<i>a</i>	

(a) This table contains population estimates for 7/1/10 and 7/1/14 published by the US Census Bureau.
(b) *Pop. Density* is the population of the county divided by its surface area in square miles (people/sq. mile).

Tab	le C-6: Popu Sorted by	ılation and 2010 to 201				ebraska &		Counties Page 3 of 3
Rank	County	Populatio n Estimate 7/1/10	Population Estimate 7/1/14	Pop. Density (b)	2010-14 Population Growth	2010-14 Annual Percent Growth	2013-14 Populatio n Growth	2013-14 Percent Growth
64	Butler	8,370	8,249	14.1	-121	-0.37%	-75	-0.91%
65	Dundy	2,008	1,886	2.1	-122	-1.62%	-83	-4.40%
66	Dawes	9,172	9,042	6.5	-130	-0.36%	-51	-0.56%
67	Nuckolls	4,507	4,369	7.6	-138	-0.79%	-26	-0.60%
68	Boone	5,496	5,353	7.8	-143	-0.67%	-22	-0.41%
69	Franklin	3,231	3,076	5.3	-155	-1.26%	-15	-0.49%
70	Webster	3,814	3,658	6.4	-156	-1.07%	-17	-0.46%
71	Nance	3,729	3,570	8.1	-159	-1.11%	-30	-0.84%
72	Garden	2,078	1,911	1.1	-167	-2.18%	7	0.37%
73	Wayne	9,600	9,431	21.3	-169	-0.45%	-6	-0.06%
74	Morrill	5,040	4,862	3.4	-178	-0.92%	-20	-0.41%
75	Dakota	21,029	20,850	79.0	-179	-0.21%	-94	-0.45%
76	Custer	10,913	10,728	4.2	-185	-0.43%	-68	-0.63%
77	Red Willow	11,052	10,867	15.2	-185	-0.43%	-156	-1.44%
78	Knox	8,668	8,482	7.7	-186	-0.55%	-75	-0.88%
79	Dixon	5,970	5,782	12.1	-188	-0.81%	-53	-0.92%
80	Sheridan	5,457	5,259	2.2	-198	-0.94%	7	0.13%
81	Jefferson	7,534	7,335	12.8	-199	-0.68%	-212	-2.89%
82	Brown	3,144	2,941	2.4	-203	-1.73%	17	0.58%
83	Richardson	8,343	8,128	14.7	-215	-0.66%	3	0.04%
84	Cedar	8,829	8,610	11.6	-219	-0.64%	-76	-0.88%
85	Clay	6,542	6,315	11.0	-227	-0.90%	-68	-1.08%
86	Fillmore	5,889	5,661	9.8	-228	-1.01%	-24	-0.42%
87	Keith	8,359	8,121	7.7	-238	-0.73%	0	0.00%
88	Dawson	24,354	24,096	23.8	-258	-0.27%	-56	-0.23%
89	Antelope	6,658	6,398	7.5	-260	-1.02%	-58	-0.91%
90	Burt	6,838	6,573	13.3	-265	-1.01%	-10	-0.15%
91	Lincoln	36,267	35,815	14.0	-452	-0.32%	-277	-0.77%
92	Scotts Bluff	37,060	36,465	49.3	-595	-0.41%	-405	-1.11%
93	Gage	22,286	21,663	25.3	-623	-0.72%	-153	-0.71%
Footr	note:							

(a) This table contains population estimates for 7/1/10 and 7/1/14 published by the US Census Bureau.

(b) **<u>Pop. Density</u>** is the population of the county divided by its surface area in square miles (people/sq. mile).

This attachment reviews compliance with 40 CFR Part 58 Appendixes A, C, D and F as set forth on July 1, 2015. The review found the Nebraska Ambient Monitoring Network to be in compliance with these requirements.

I. Appendix A Review

40 CFR Part 58 Appendix A sets forth quality assurance requirements for the collection, calculation and reporting of air monitoring data. To ensure compliance with these requirements, the NDEQ has a *Quality Assurance Project Plan (QAPP) for the Nebraska Ambient Air Monitoring Program for Criteria Pollutants, NCore Parameters, PM2.5 Speciation, and Total reduced Sulfur.* EPA Region 7 reviewed and approved this QAPP in November 2014. Actual procedures for operating monitors, as well as for collecting, reviewing and submitting data are set forth in Standard Operating Procedures (SOPs). The SOPs ensures that support the Measurement Quality Objectives set forth in the QAPP.

40 CFR Part 58 Appendix A also sets forth requirements specifying the number of collocated monitors required for $PM_{2.5}$, PM_{10} , $PM_{10-2.5}$ and Lead (Pb) monitors. Table D-1 summarizes the collocated sites in Nebraska. Nebraska is meeting collocation requirements.

II. Appendix C Review

Appendix C contains requirements for approved ambient air monitoring methodologies. Any monitor that is used to evaluate NAAQS compliance must be a Federal Reference Method (FRM) or a Federal Equivalent Method (FEM) or an alternatively approved method as defined in Appendix C. The network description tables in Attachment A of the network plan identify the monitoring method used by each monitor in the Nebraska ambient air monitoring network. All monitors used to evaluate compliance with the NAAQS are FRM or FEM certified. The only monitors that are not FRM/FEM certified are the TRS monitors used to evaluate compliance with Nebraska's TRS standard.

		Percent	N	DEQ/LLCHD	(2)		DCHD ⁽²⁾	$(\mathbb{D}^{(2)})$	
Parameter	Method	Collocation Required	# of Sites	# Collocated	% Collocated	# of Sites	# Collocated	% Collocated	
PM ₁₀	Hi-Vol Sampler	15%	0	0	na	2	1	50%	
PM10	Sequential 2025 Sampler	15%	3	1	33%	0	0	na	
PM ₁₀	Continuous Monitor	None	1	0	(3)	1	0	(3)	
PM _{2.5}	Sequential 2025 Sampler	15%	3	1	33%	2	1	50%	
PM _{2.5}	Met One BAM Method ⁽⁵⁾	15%	1	1	100% ⁽⁴⁾	2	1	50%	
PM _{10-2.5}	Met One BAM Method	None	0	0	na	1	0	(5)	
TSP-Lead	Hi-Vol Sampler	15% except NCore	2	1	50%	1	0	(6)	
requirement 2) Collocatio 3) Collocated 4) LLCHD op 5) DCHD ope	Requirements: Appendix A requires 15 nts. n requirements apply to each Primary Q monitors are not required for continuous perates a MetOne BAM PM _{2.5} sampler for trates 2 MetOne BAM samplers at the N nplers. There is a sequential PM _{2.5} colle A for continuous PM ₁₀ samplers. EPA	uality Assurance C as PM ₁₀ monitors. For AirNow and AC ICore site. One is s pocated sampler at th	Drganization (PQ. I reporting. It is et-up to sample I ne NCore site, bu	AO) separately. The separately with the $PM_{2.5}$ and the other than the collocated by the separate	There are two PQ he primary and c r samples PM_{10} . PM_{10} sampler.	AO's in Nebrask ollocated sequen PM _{10-2.5} is calcu Collocated PM ₁₀	a: DCHD and NI tial samplers at tl lated using the re samplers are not	DEQ/LLCHD ne site. sults from	
Appendix	· •	-			-			one of them.	
Appendix 5) Collocated	TSP-Lead monitoring is not required TSP-Lead sampler.	-		required by EPA	-	not designated th	ne Omaha NCoro	one of them.	

III. Appendix D Review

Appendix D sets forth monitoring objectives and minimum monitoring site requirements that must be met. The review that follows demonstrates that the Nebraska ambient air monitoring network meets the Appendix D requirements in effect on February 28, 2013.

EPA periodically re-evaluates the NAAQS and monitoring requirements. Regulatory modifications may impact the minimum monitoring requirements in one of two ways:

- Appendix D minimum monitoring requirements may be changed (i.e., more or less monitoring could be required); or
- Monitoring needs may change as a result of a NAAQS modification (e.g., when the annual average $PM_{2.5}$ NAAQS was lowered from 15 $\Box g/m^3$ to 12 $\Box g/m^3$, the 85% of NAAQS threshold set forth in 40 CFR Part 58 Appendix D Sec. 4.7 Table D.5 was crossed, and the minimum number of $PM_{2.5}$ monitoring sites for the Omaha MSA increased from 1 to 2).

III.A: Appendix D - Objectives Review

Appendix D Section 1.1 sets forth 3 objectives that ambient air monitoring networks must be designed to meet:

- Provide air pollution data to the general public in a timely manner.
- Support compliance with ambient air quality standards and emissions strategy development.
- Support for air pollution research studies.

Each of these objectives is discussed below.

1. Timely Dissemination of Data - Met

Air monitoring data is made available to the public and other parties in several ways.

- a. Ambient air monitoring data is reviewed quarterly and entered into the national EPAoperated AQS database. The AQS database is available to federal, state and local monitoring agency personnel, as well as some other public agencies and researchers. AQS data cannot be directly accessed by the general public, but the NDEQ does respond to data requests.
- b. Air Quality Index reporting is performed by DCHD and LLCHD for their respective jurisdictions. The AQI information is made available on their respective city websites.
- c. Monitoring data from continuous particulate, ozone and CO monitors in the Omaha and Lincoln MSAs report directly to the EPA AirNow system. The general public can access air quality index information on-line at <u>www.airnow.gov</u>
- d. Daily maximum TRS monitoring data is available to the public on the NDEQ web site. This data is typically entered on a monthly basis. The NDEQ also responds to telephone or email requests for more timely or detailed information.
- e. The NDEQ publishes an annual Air Quality Report. This report is available on-line and upon request. Similarly the annual Network Plan reports are also available to the public on-line or upon request.

2. Support compliance with ambient air quality standards and emissions strategy development – Met

In the first quarter of each year, the NDEQ reviews all of the data collected by DCHD, LLCHD and NDEQ during the previous year as part of the data certification process. At this time design values are calculated and compared with the NAAQS. This design value information is then incorporated into the annual Network Plan. The annual Network Plans discuss attainment/non-attainment status and monitoring strategies that may be related.

The NDEQ, DCHD and LLCHD also perform data validation reviews at least once each quarter and in many instances monthly. Any potential non-attainment or near non-attainment circumstances will be recognized during these reviews. If such conditions are identified, efforts are made to ascertain the cause and to the extent possible bring about corrective action through regulatory and/or voluntary mechanisms.

An Air Now summary report for ozone is emailed daily to an NDEQ staffer and, starting in 2015, a similar email report is being established for $PM_{2.5}$. When elevated ozone or $PM_{2.5}$ levels are reported, this information is passed on to air quality managers at DCHD, LLCHD and NDEQ.

The examples below illustrate how state and local air quality programs have recognized air quality issues and reacted to them.

a. In the fall of 2011, the 3-month average lead concentration at the Fremont site exceeded the NAAQS. EPA and the one known source were notified. The data was discussed and presented to EPA for review. NDEQ and the source conducted an on-site review of the facility and potential emission sources (see Section V.B.2 in this network plan for additional information).

In 2012, NDEQ continued to calculate daily and 3-month average lead monitoring data as the data became available; and to disseminate this information to the primary known source. High daily lead levels in May thru early July brought the 3-month average within 93% of the NAAQS, and these lead levels were discussed with the primary known source. Lower lead levels were seen beginning in July and continuing thereafter. The impact of this information exchange with the source is difficult to evaluate, but it may have played an important role in facilitating the source in remaining diligent with their control efforts.

b. From September 2011 thru June 2012, the 46^{th} & Farnam site recorded four (4) 24-hour average PM₁₀ values greater than the 150 ug/m^3 standard. The 46^{th} & Farnam site is source-oriented with respect to Omaha Steel Castings Company, and the company had initiated a move to a new location in Wahoo, NE.

Douglas County Health Department made Omaha Air Quality and Omaha Steel aware of the high values in a timely manner. Omaha Air Quality met with Omaha Steel to discuss potential PM_{10} sources and controls. Omaha Steel proceeded with process-handling and housekeeping changes intended to reduce PM_{10} emissions. These efforts were effective in reducing PM_{10} levels. Omaha Steel completed their move to their new facility in 2014 and closed the 46th & Farnam site.

- c. In the summer of 2012, Nebraska monitoring sites began reporting ozone levels above those seen in recent years. The NDEQ began using Air Now data to track the current 4^{th} highest values for sites in and around Nebraska as the ozone season progressed. Although the 4^{th} high values at 2 sites in the Omaha MSA exceeded 0.075 ppm 8-hour ozone NAAQS, the 3-year average design values did not exceed the NAAQS (i.e., the maximum unofficial 2010-2012 DVs = 0.069 ppm).
- **d.** In the spring of 2014, smoke from controlled grassland fires in the Flint Hills area of Kansas was impacting Nebraska. AirNow data was used to track the degree and extent of the impact on ambient ozone and $PM_{2.5}$. At times, the impact from these controlled burns raised ozone and $PM_{2.5}$ levels in Nebraska. Both DCHD and LLCHD issued air quality alerts related to these burns.

3. Support for air pollution research studies – Met

The NDEQ, DCHD and LLCHD operate the Nebraska SLAMS network in accordance with the monitor specifications, site placement and QA requirements set forth in 40 CFR Part 50 and 58. EPA R7 provides oversight to ensure that regulatory requirements are met with respect to methodology and QA.

Data is reviewed quarterly before being submitted to EPA's AQS database. Once in AQS, the data is available for pollution research studies.

Near real-time data is also reported to the EPA AirNow data from the continuous PM, CO and ozone monitors operating in the Omaha and Lincoln MSA. This data is also available for research purposes.

III.B: Appendix D – Minimum Monitoring Site Requirements

Nebraska has the minimum number of monitoring sites required by Appendix D. The minimum monitoring site requirements for each of the four MSAs are examined separately and documented in Tables D-2.a thru D-2.d below.

The review for non-MSA areas of the state was performed on a pollutant specific basis. This review is documented in narrative form in Section III.C below.

It should be noted that the number of monitoring sites required in a network generally needs to be greater than the minimum number required by Appendix D. This is stated in Appendix D Section 1.1.2: "... total number of monitoring sites that will serve the variety of data needs will be substantially higher than these minimum requirements provide..."

III.C: Appendix D Minimum Monitoring Requirements for non-MSAs

NCore – (40 CFR Part 58 App. D Sec. 3) None required or operated.

At this time there is no requirement or plan to develop an NCore site in Nebraska, other than the current site in Omaha.

Ozone $(O_3) - (40 \text{ CFR Part 58 App. D Sec. 4.1})$ No sites required or operated.

At this time there is no requirement to deploy ozone monitoring sites outside of the MSAs.

In 2010, EPA proposed regulations requiring 1 to 3 rural ozone monitoring sites in Nebraska. These regulations were withdrawn pending further review of the ozone NAAQS. In November 2014, EPA proposed a revision to the ozone NAAQS, which is scheduled to be finalized in November 2015. The current proposal does not require rural ozone monitoring. However, although not required, ozone monitoring in some rural areas of Nebraska may need to be conducted to evaluate attainment with the new NAAQS, as well as transport issues.

Carbon Monoxide (CO) – (40 CFR Part 58 App. D Sec. 4.2) No sites required or operated.

At this time there is no requirement or plan to conduct CO monitoring outside the MSAs. Elevated CO levels are primarily associated with vehicle emissions and congested traffic areas. Highest levels would be anticipated in the Omaha and Lincoln MSAs. Highest concentration site monitoring in Lincoln and Omaha has consistently found CO levels well below the NAAQS. Thus, there is not a need for additional monitoring sites in less populated communities.

Nitrogen Dioxide (NO₂) – (40 CFR Part 58 App. D Sec. 4.3) No sites required or operated.

At this time there is no requirement or plan to conduct NO₂ monitoring outside the MSAs.

Sulfur Dioxide (SO₂) – (40 CFR Part 58 App. D Sec. 4.4) No sites required or operated.

At this time there is no requirement or plan to conduct SO₂ monitoring outside the Omaha MSA. However, source-oriented monitoring near one or more power plants may be required in the future. In 2010, EPA established a new 1-hour SO₂ NAAQS at 75 ppb. In 2013, EPA deferred making an attainment determination relative to this NAAQS due to lack of monitoring and/or modeling data to support an attainment determination. EPA is still considering this issue and has not proposed any additional monitoring requirements (i.e., changes in Appendix D monitoring requirements for SO₂ have not been proposed or finalized; no has the Regional Administrator required any additional monitoring in NE).

Lead (Pb) – (40 CFR Part 58 App. D Sec. 4.5) Two required and 2 sites operated.

In 2008, EPA finalized changes to Appendix D that required source-oriented monitoring near sources with lead emissions of 1 tpy or more. This included two sources: Magnus Farley in Fremont and Magnolia Metals in Auburn. These sites were established in 2010.

Since monitoring was initiated in 2010, Magnolia Metals in Auburn, NE has installed air emission control technology such that their 2014 emission inventory now indicates their lead emissions to be 0.1 tpy. The 2015 Network Plan is proposing that the Auburn lead monitoring site be closed.

In 2010, EPA finalized additional monitoring requirements that lowered the threshold for source-oriented monitoring to ≥ 0.5 tpy. Emission estimates for Nucor Steel in Norfolk exceeded the 0.5 tpy threshold. In Appendix D Section 4.5(a)(ii) there is an allowance for not conducting monitoring if it can be shown that ambient lead concentrations will not exceed 50% of the NAAQS. Nucor Steel submitted a modeling study showing that ambient lead concentrations would not exceed 50% of the NAAQS. This waiver was approved in 2014 and must be renewed every 5 years (i.e., in 2019).

PM₁₀ Particulate Matter (40 CFR Part 58 App. D Sec. 4.6) No sites required. Two sites operated.

There are no minimum PM_{10} monitoring requirements for areas outside of MSAs. Both of the Nebraska PM_{10} sites located outside of the Omaha MSA are source and population oriented. One is deployed in downtown Cozad; the other one is in downtown Gothenburg. These sites were established to monitor for possible impacts from agricultural processing facilities, primarily alfalfa processing facilities in these two communities. The PM10 levels in these communities are currently well below the NAAQS. The 2015 Network Plan is proposing that the PM₁₀ monitoring sites in Cozad and Gothenburg be closed.

Fine Particulate Matter: PM_{2.5} (40 CFR Part 58 Appendix D Section 4.7 & 4.7.3) Two (2) sites required and 2 operated.

States are required to operate a background site and a transport site for $PM_{2.5}$. Nebraska's background site is in Scottsbluff, and the transport site is in Grand Island.

Coarse Particulate Matter: PM_{10-2.5} (40 CFR Part 58 App D Sec 4.8) No sites required or operated.

Photochemical Assessment Monitoring Stations (PAMS) (40 CFR Part 58 Appendix D Section 5) No sites required or deployed.

PAMS are only required in areas classified as serious, severe, or extreme non-attainment for O_3 . No such areas exist in Nebraska at this time.

IV: Appendix E Review

This appendix sets forth requirements for probe and monitoring path placement, including: horizontal and vertical placement, spacing from minor sources, spacing from obstructions, spacing from trees, spacing from roadways, cumulative interferences on a monitoring path, maximum monitoring path length, and probe material and sample residence time. Compliance with these criteria is verified when the site is set-up and periodically thereafter. Compliance is evaluated using review sheets developed for that purpose.

Pollutant	App. D Citation	Review Criteria & Comments	Sites Required	Sites Operated	Criteria Met?
Ozone	Sec. 4.1 Table D-2	The Omaha MSA population is between 350K to 4M and O ₃ levels are \geq 85% of NAAQS (<i>See Design Values in Attachment B</i>).	2	3 Includes NCore	Y
CO	Sec. 4.2	The population threshold for requiring a near-road CO monitoring site in a CBSA is 1 million. The population of the Omaha MSA is below this threshold.	0	2 Includes NCore	Y
No	Sec. 4.3.2	The Omaha MSA has a populations of 500K to 1M and is currently required to have a near-road NOx site by $1/1/2017$, as set forth in 40 CFR Part 58.10.	0	0	Y
NO_2	Sec.4.3.3	Area-Wide monitoring only required if $CBSA \ge 1M$ (Omaha MSA population < 1 M)	0	1 @ NCore	Y
	Sec. 4.3.4	Regional Administrator required monitoring: None at this time.	0	0	Y
SO ₂	Sec. 4.4	The need for SO ₂ sites is based on the <i>Population Weighted Emissions Index</i> (PWEI). Omaha's PWEI = $27,747$, which falls within the 5000 to 100000 range requiring 1 site. The current network of one highest concentration site and one NCore site exceeds the minimum requirements. No changes are proposed.	1	2 Includes NCore	Y
		Regional Administrator required monitoring: None at this time.	0	0	Y
	Sec. 4.5 (a)	There are no sources emitting ≥ 0.5 tpy of lead in the Nebraska portion of the Omaha MSA.	0	0	Y
Lead	Sec. 4.5 (b)	One community-based site required at NCore site. EPA has been considering rescinding this requirement, but has not proposed or promulgated regulations.	1	1	Y
	Sec. 4.5 (c)	Regional Administrator required monitoring: None at this time.	0	0	Y
PM ₁₀	Sec. 4.6 Table D-4	The Omaha MSA has a population between $500K - 1M$. and a high PM_{10} concentration range with 1 max value > 120% of NAAQS at 46 th & Farnam St Site in 2012. With the closing of the Omaha Steel		6 Includes NCore & 2 sites @ Weeping Water	Y
	Sec 4.7 Table D-5	The Omaha MSA has a population between 500K – 1M. and $PM_{2.5}$ levels $\geq 85\%$ of NAAQS range (<i>See Design Values in Attachment B</i>).	2	4 Includes NCore	Y
$PM_{2.5}$	Sec 4.7.2	Continuous monitor required.	1	1 @ NCore	Y
	Sec. 4.7.4	PM _{2.5} Speciation Trends Network monitoring required (included SASS and URG samplers as one)	1	1 @ NCore	Y
PAMS	Sec. 5	Only required for areas classified as serious, severe, or extreme non-attainment for O _{3.}	0	0	NA
NCore	Sec. 3	Omaha has been designated to operate an NCore site with lead and NOx/NOy monitoring.	1	1	Y

Table D-2	b: 40 CFR I	Part 58 Appendix D Review: Lincoln MSA (Population ~ 319,000)			
Pollutant	App. D Citation	Review Criteria & Comments	Sites Required	Sites Operated	Criteria Met?
Ozone	Sec. 4.1 Table D-2	The Lincoln MSA population is between 50K to 350K and O_3 levels < 85% of NAAQS (<i>See Design Values in Attachment B</i>).	0	1	Y
CO	Sec. 4.2 No minimum requirement				Y
	Sec. 4.3.2	Near-road monitoring: No requirement for CBSA < 500K.	0	0	Y
NO ₂	Sec.4.3.3	Area-Wide monitoring only required if $CBSA \ge 1M$ (Lincoln MSA population < 1 M).	0	0	Y
Sec	Sec. 4.3.4	Regional Administrator required monitoring: none.	0	0	Y
SO ₂	Sec. 4.4	The number of SO_2 sites required is based on the <i>Population Weighted Emissions Index</i> (PWEI). Lincoln's PWEI = 1,371, which falls below 5000. Thus no sites are required.	0	0	Y
502	500. 4.4	Regional Administrator required monitoring: none.	0	0	Y
	Sec. 4.5 (a)	There are no sources emitting ≥ 0.5 tpy of lead.	0	0	Y
Lead	Sec. 4.5 (b)	Community-based monitor only required if CBSA population \geq 500K.	0	0	Y
	Sec. 4.5 (c)	Regional Administrator required monitoring: none.	0	0	Y
PM ₁₀	Sec. 4.6 Table D-4	The Lincoln MSA population is between 250K – 500K. Monitoring is only required if current monitoring indicates $PM_{10} \ge 85\%$ of NAAQS. Also the highest 24-hr value found from 1988-98 was 102 $\mu g/m^3$ or 68% of the NAAQS.	0-1	0	Y
	Sec 4.7 Table D-5	The Lincoln MSA population is between 50K – 500K and $PM_{2.5}$ levels < 85% of NAAQS (<i>See Design Values in Attachment B</i>).	0	1	Y
PM _{2.5}	Sec 4.7.2	Continuous monitor not required.	0	1	Y
	Sec. 4.7.4	PM _{2.5} Speciation Trends Network monitoring not required.	0	0	Y
PAMS	Sec. 5	Only required for areas classified as serious, severe, or extreme non-attainment for O ₃ .	0	0	Y
NCore	Sec. 3	Lincoln has not been designated to operate an NCore site.	0	0	Y

Pollutant	App. D Citation	Review Criteria & Comments	Sites Required	Sites Operated	Criteria Met?
Ozone	Sec. 4.1 Table D-2	Sioux City MSA population is between 50K -350K. There is one ozone monitor in the MSA and it is located in a rural area of Union County, SD. It operated at 471 st Ave in 2012 & 2014 and at 475st Ave in 2013. The 3-year average from these sites was 64 ppb or 85% of the NAAQS, but this is not a Design Value (DV), since it uses data from 2 different sites. Appendix D Sec. 4.1, Table D-2 says that for MSAs of this size 1 ozone site is required if the DV \geq 85% of the NAAQS, but an ozone site is not required in the absence of a DV. Thus an ozone site in Nebraska is not required, and SD operates an ozone site in union County.	0	0	Y
CO	Sec. 4.2	No minimum requirement.	0	0	Y
	Sec. 4.3.2	Near-road monitoring: No requirement for CBSA < 500K.	0	0	Y
NO_2	Sec.4.3.3	Area-Wide monitoring only required if $CBSA \ge 1M$ (Sioux City MSA population < 1 M)	0	0	Y
	Sec. 4.3.4	Regional Administrator required monitoring; none.	0	0	Y
SO ₂	Sec. 4.4	The number of SO ₂ sites required is based on the <i>Population Weighted Emissions Index</i> (PWEI). Sioux City MSA's PWEI = 5033, which falls within the 5000 to 100000 range requiring 1 site. <i>Two sites exist in the MSA: one in Union County, SD & one near Sergeant Bluff, IA.</i>	1	0	Y See comment
		Regional Administrator required monitoring: none	0	0	Y
	Sec. 4.5 (a)	There are no sources emitting \geq 0.5 tpy of lead in the Nebraska portion of the Sioux City MSA.	0	0	Y
Lead	Sec. 4.5 (b)	Community-based lead monitoring is only required when CBSA population \geq 500K.	0	0	Y
	Sec. 4.5 (c)	Regional Administrator required monitoring: none.	0	0	Y
PM ₁₀	Sec. 4.6 Table D-4	The Sioux City MSA population is between $100K - 250K$ and PM_{10} levels are $< 80\%$ of NAAQS (<i>See Design Values in Attachment B</i>).	0	0	Y
D) (Sec 4.7 Table D-5	The Sioux City MSA population is between 50K – 500K and $PM_{2.5}$ levels are < 85% of NAAQS (<i>See Design Values in Attachment B</i>).	0	0	Y
PM _{2.5}	Sec 4.7.2	Continuous monitor not required	0	0	Y
	Sec. 4.7.4	PM _{2.5} Speciation Trends Network monitoring not required	0	0	Y
PAMS	Sec. 5	Only required for areas classified as serious, severe, or extreme non-attainment for O ₃	0	0	Y
NCore	Sec. 3	The Nebraska portion of the Sioux City MSA has not been designated to operate an NCore site.	0	0	Y

Table D-2	.d: 40 CFR I	Part 58 Appendix D Review: Grand Island MSA (Population ~ 84,800) **			
Pollutant	App. D Citation	Review Criteria & Comments	Sites Required	Sites Operated	Criteria Met?
Ozone	Sec. 4.1 Table D-2	Grand Island MSA population is between 50K -350K. Monitoring is only required if current monitoring indicates $O_3 > 85\%$ of NAAQS as set forth in Table D-2. See Section V.F.2 in this Network Plan for further discussion.	0	0	Y
СО	Sec. 4.2	No minimum requirement.	0	0	Y
	Sec. 4.3.2	Near-road monitoring: No requirement for CBSA < 500K.	0	0	Y
NO_2	Sec.4.3.3	Area-Wide monitoring only required if $CBSA \ge 1M$ (Grand Island MSA population < 1 M)	0	0	Y
Sec. 4.3	Sec. 4.3.4	Regional Administrator required monitoring: none	0	0	Y
SO ₂	Sec. 4.4	<i>Population Weighted Emissions Index</i> (PWEI) = 210, which falls below 5000. No minimum number of sites required. See Table D-3 below for PWEI calculation data.	0	0	Y
502	500. 1.1	Regional Administrator required monitoring	0	0 0 0 0	Y
	Sec. 4.5 (a)	There are no sources emitting ≥ 0.5 tpy of lead	0	0	Y
Lead	Sec. 4.5 (b)	Community-based lead monitoring is only required when CBSA population \geq 500K.	0	0	Y
	Sec. 4.5 (c)	Regional Administrator required monitoring: none	0	0	Y
PM ₁₀	Sec. 4.6 Table D-4	PM_{10} monitoring is not required if MSA population < 100,000	0	0	Y
	Sec 4.7 Table D-5	Grand Islands's CBSA population is between $50K - 500K$ and $PM_{2.5}$ levels are $< 85\%$ of NAAQS (See Design Values in Attachment B)	0	0	Y
PM _{2.5}	Sec 4.7.2	Continuous monitoring is not required	0	0	Y
	Sec. 4.7.4	PM _{2.5} Speciation Trends Network monitoring is not required	0	0	Y
PAMS	Sec. 5	Only required for areas classified as serious, severe, or extreme non-attainment for O ₃	0	0	Y
NCore	Sec. 3	The Grand Island MSA has not been designated to operate a NCore site	0	0	Y

CBSA	County	Population	SO ₂ En (tons/	nissions (year)	SO ₂	PWE	[^{(a) (b)}
CBSA	County	7/1/14 ^(c)	2008 EI	2011 EI	Emissions (% Change)	2008 EI	2011 EI
Omaha	Douglas Co., NE	543,244	15,288	14,311	-6%	37,159	27,74
MSA	Sarpy Co., NE	172,193	58	29	-50%		
	Cass Co., NE	25,524	1,226	1,094	-11%		
	Saunders Co. NE	20,919	179	20	-89%		
	Washington Co., NE	20,258	25	60	140%		
	Pottawattamie Co., IA	93,128	22,243	15,101	-32%		
	Mills Co., IA	14,831	27	22	-19%		
	Harrison Co., IA	14,324	41	43	5%		
	Totals	904,421	41,086	30,679	-25%		
Lincoln	Lancaster Co., NE	301,795	5,027	4,254	-15%	1,616	1,37
MSA	Seward Co., NE	17,150	40	43	8%		
	Totals	318,945	5,067	4,297	-15%		
Sioux City MSA	Woodbury Co., IA	102,271	35698	29,693	-17%	6,045	5,03.
	Plymouth Co., IA	24,874	35	18	-49%		
	Dakota Co., NE	20,850	17	14	-18%		
	Dixon Co., NE	5,782	25	13	-48%		
	Union Co., SD	15,029	17	74	335%		
	Totals	168,806	35,808	29,813	-17%		

CBSA	County	Population 7/1/14 ^(c)	SO ₂ Emissions (tons/year)		SO ₂	PWEI ^{(a) (b)}	
			2008 EI	2011 EI	Emissions (% Change)	2008 EI	2011 EI
Grand Island MSA	Hall Co.	61,492	3,146	2,378	-24%	275	210
	Hamilton Co.	9,135	33	29	-12%	-	
	Howard Co.	6,362	18	40	122%		
	Merrick Co.	7,766	44	33	-25%		
	Total	84,755	3,241	2480	-23%		
Kearney	Buffalo Co.	48,224	87	89	2%	6	6
MiSA	Kearney Co.	6,644	17	15	-12%		
	Totals	54,868	104	104	0%		
Norfolk MiSA	Madison Co.	35,174	25	24	-4%	16	13
	Pierce Co.	7,202	35	30	-14%		
	Stanton Co.	6,069	264	206	-22%		
	Totals	48,445	325	260	-20%		
Hastings MiSA	Adams Co.	31457	2547	3324	31%	97	126
	Clay Co.	6315	25	17	-32%		
	Totals	37772	2572	3341	30%		
Scottsbluff MiSA	Banner Co.	764	3	1	-67%	8	8
	Scotts Bluff Co.	36465	205	203	-1%		
	Totals	37229	208	204	-2%		

Table D-3: PoStatistical Are	pulation Weighted as (CBSAs) ^{(a) (b) (c)}	I Emissions Page 3 of 3	Index (PV	WEI) Data	a for Nebras	ka Core	Based
CDSA	County	Population 7/1/14 ⁰	SO ₂ Emissions (tons/year)		SO ₂	PWEI ^{(a) (b) (d)}	
CBSA	County		2008 EI	2011 EI	Emissions (% Change)	2008 EI	2011 EI
North Platte MiSA	Lincoln Co.	35,815	31,470	29,246	-7%	1166	1085
	Logan Co.	750	2	37	1750%		
	McPherson Co.	498	1	2	100%		
	Totals	37,063	31,473	29,285	-7%		
Fremont MiSA	Dodge Co.	36,744	1,999	1426	-29%	73	52
Columbus MiSA	Platte Co.	32,666	42	330	686%	1	11
Lexington MiSA	Dawson Co.	24,096	78	64	-18%	2	2
	Gosper Co.	1970	5	14	180%		
	Totals	26,066	83	78	-6%		
Beatrice MiSA	Gage Co.	21,663	49	87	78%	1	2

Footnotes:

(a) Population Weighted Emission Index (PWEI) = (CBSA Population) x (SO2 Emissions (tpy))/1,000,000

(b) SO2 Emission data was obtained from the EPA Emission Inventory database for 2008 and 2011. The 2011 EI data is the most recent data available from EPA at the time this table was created (July 2015).

(c) US Census population estimate data for 7/1/2014 was used in this table and the PWEI calculations.

(d) The PWEI was calculated using 2008 and 2011 Emission Inventory (EI) data. The PWEI calculated with 2011 EI data is currently applicable. The PWEI was also calculated with 2008 EI data to document any change that might have occurred.

This attachment contains information on historical ambient monitoring activities in Nebraska and temporal & geographic criteria pollutant concentration variation.

The earliest monitoring in Nebraska was initiated in 1957 for total suspended particulate matter (TSP). Monitoring for other pollutants followed. Table E-1 contains the ambient air monitoring start date for various particulate and gaseous pollutant parameters.

Table E-1:			
Pollutant	Location of Initial Monitoring	Year	
Particulate – TSP	Lincoln and Omaha	1957	
Lead	Halsey National Forest	1965	
Sulfur Dioxide	Omaha	1967	
Carbon Monoxide	Omaha	1971	
Nitrogen Dioxide	Omaha	1972	
Ozone	Omaha	1972	
Particulate – PM ₁₀	Hastings, Louisville, Omaha, Weeping Water	1987	
Total Reduced Sulfur Dakota City, South Sioux City and Lexington		1997	
Particulate – PM _{2.5}	Bellevue, Blair, Chappell, Grand Island, Hartington, Lincoln, Merriman, North Platte, Omaha, Scottsbluff & Weeping Water		

The Federal Clean Air Act (CAA) of 1970 and subsequent modifications in 1977 and 1990, set forth:

- National Ambient Air Pollutant Standards for 6 criteria pollutants;
- Requirements for ambient air monitoring;
- Requirements for air emission permits;
- Requirements for air emission standards for mobile and stationary sources; and
- Requirements for an air emission source compliance and enforcement system.

These CAA mandated emission control and compliance programs have been generally effective in reducing ambient air pollutant concentrations of the 6 criteria pollutants as can be seen in the pollutant-specific subsections of this attachment.

The EPA web site below provides summary information on the history of the CAA and its implementation: <u>www2.epa.gov/laws-regulations/summary-clean-air-act</u>

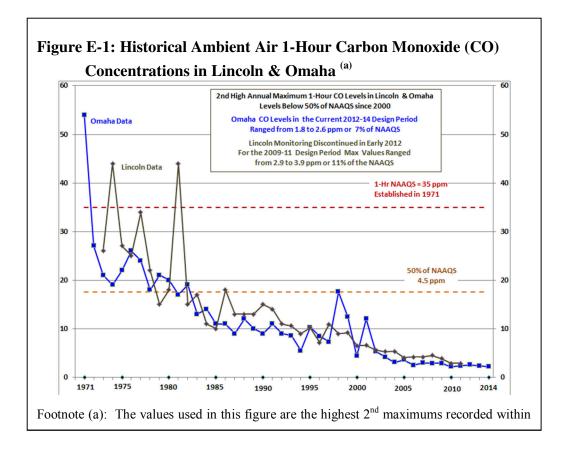
1) Carbon Monoxide (CO)

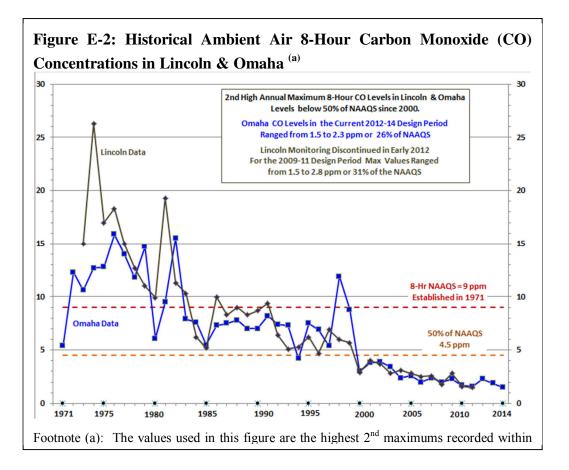
Carbon monoxide pollution is associated primarily with mobile sources. CAA mandated vehicle tailpipe emissions were initiated in 1975 and have been strengthened periodically since then. The EPA website below contains a brief history of mobile source emission standards: www.epa.gov/otag/consumer/milestones.htm

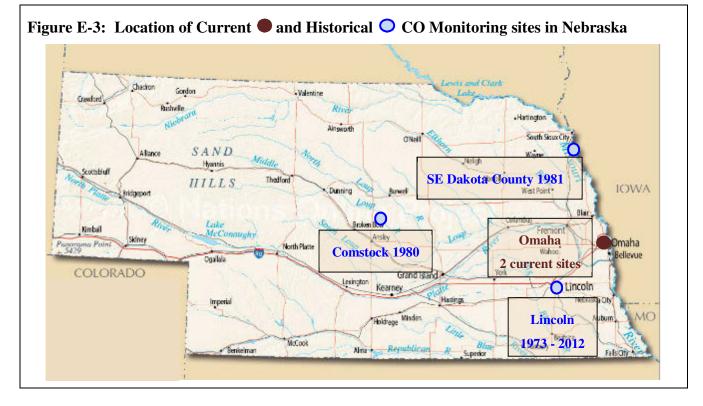
Highest concentration CO areas are typically located in high-traffic, traffic-congestion, street canyon areas. Historically CO monitoring in Nebraska has been conducted in Omaha and Lincoln at the following sites.

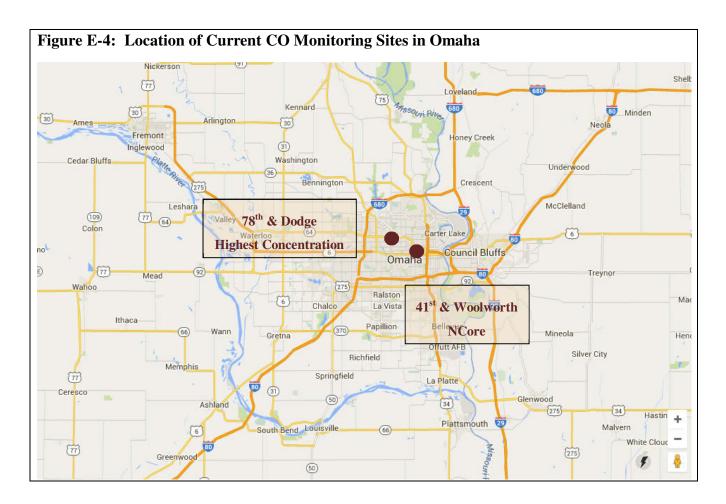
Lincoln Sites

- 27th & O St. area: 1973 to Feb 2012
- 51st & Colby Sts.: 1975 to 1985
- 20th & P Sts.: 1984 to 1986
- 28th & C Sts.: 1986 to 1988
- 3040 Arlington St: 1988 to 1997


Omaha Sites


- 11th & Douglas: 1971 to 1980
- North 30th St.: 1975 to 2007
- 74th & Dodge: 1981 to 2006
- 78th & Dodge (current highest concentration site): 2007 to present
- 41st & Woolworth (NCore site): 2011 to present


Figures E-1 and E-2 show the annual 2nd maximums found in Lincoln and Omaha since monitoring was initiated to present. As the figures demonstrate, ambient CO levels have been reduced significantly since the 1970s, with CO levels below 50% of the NAAQS since 2000. This is largely contributable to the Federal tailpipe emission standards for automobiles and trucks.


CO monitoring was also conducted in the Comstock in 1980, and Homer in 1981. Second high maximum 1-hour and 8-hour concentrations were less than 25% of the NAAQS.

Figures E-3 and E-4 show the approximate location of the current and historical CO monitoring sites in Nebraska.

2) Ozone

2.A. Ozone Formation and Monitoring Season

Ground-level ozone (O3) is formed in the atmosphere (*in situ*) as a result of the reaction of sunlight and other pollutants; primarily volatile organic chemicals (VOCs) and nitrogen oxides (NOx). Maximum ground-level concentrations are typically found downwind from pollutant source areas, such as larger metropolitan areas, oil & gas wells and processing facilities, industrial parks, etc.

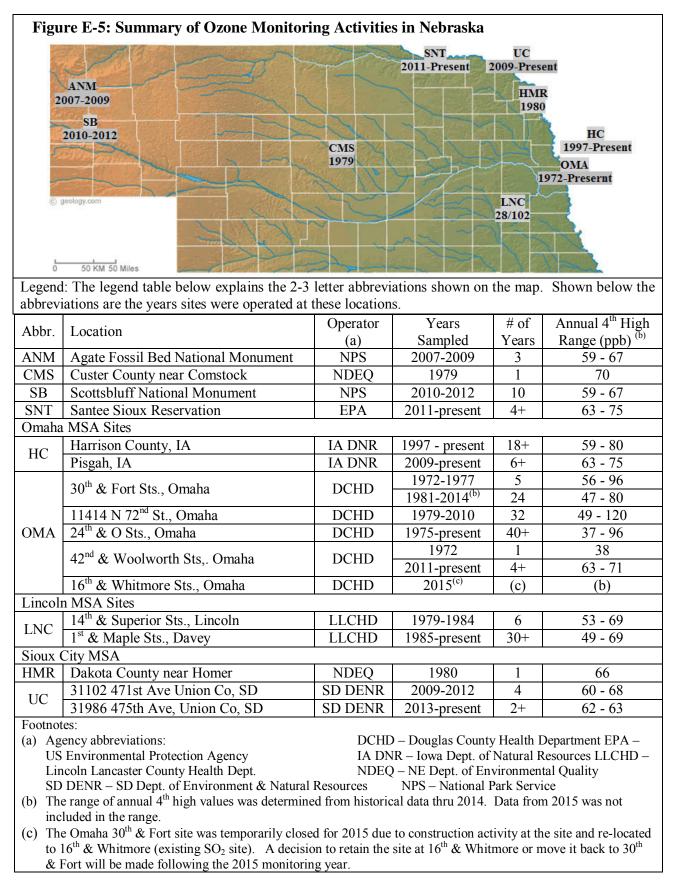
For example, the highest ozone concentrations measured within the Omaha MSA are often in Harrison County, IA near or in the town of Pisgah, population ~250 people.

Ground-level ozone concentrations peak in the summer months. Thus ozone monitoring is conducted in Nebraska from April thru October. The proposed ozone NAAQS public noticed by EPA on November 25, 2014 would extend the ozone monitoring "season" in Nebraska to be march thru October.

2.B. Ozone NAAQS

Table E-2 below summarizes history of the ozone NAAQS. Note that there were significant changes in the form of the standards established 1971 and 1979; and the averaging time for the NAAQS went from 1-hour in the 1979 NAAQS to 8-hours in the 1997 NAAQS.

The current NAAQS for 8-hour ozone is 0.075 ppm. Attainment with this NAAQS is determined using a Design Value (DV) that is not to be exceeded. The DV is the truncated average of the annual 4th high values monitored at any given site.


For example, if the 4th high values from the Example Site were 0.074 ppm for 2012, 0.075 ppm for 2013 and 0.078 ppm for 2014, the 3-year average would be 0.0757 ppm, which truncates to 0.075 ppm. Thus, the Example Site would be in attainment with the NAAOS.

USEPA has proposed lowering the ozone NAAQS to be in the range of 0.065 ppm to 0.070 ppm, and also solicited comments about lower levels down to 0.060 ppm. EPA is under court order to finalize the ozone NAAQS regulation by October 1, 2015.

٦

Table E-2: History of Ozone NAAQS					
Status / Date	Pollutant Indicator	Averaging Time	NAAQS Level	NAAQS Evaluation Criteria	
Final Apr 30, 1971	Total Photochemical Oxidants	1-hour	0.08 ppm	Not to be exceeded more than 1 hour per year	
Final Feb 8, 1979	Ozone	1-hour	0.12 ppm	Expected number of days when 1- hr ozone exceeds $0.12 \text{ ppm} \le 1$	
Final Jul 18, 1997	Ozone	8-hour	0.08 ppm	Truncated 3-year average of annual 4^{th} high values ≤ 0.08 ppm	
Final Mar 27, 2008	Ozone	8-hour	0.075 ppm	Truncated 3-year average of annual 4^{th} high values ≤ 0.075 ppm	
Final Oct 1, 2015	Ozone	8-hour	0.070 ppm	Truncated 3-year average of annual 4^{th} high values ≤ 0.070 ppm	

Γ

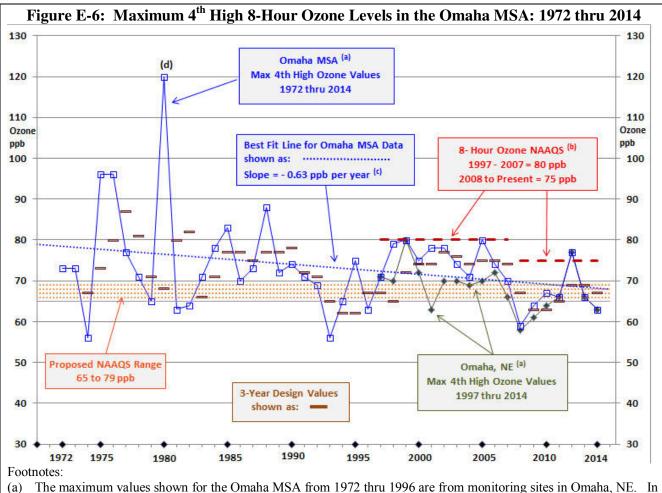
2.C. Ozone Monitoring in Nebraska

Figure E-5 and its accompanying legend table (above) provide an overview of ozone monitoring in Nebraska, and in adjacent state areas within the Omaha and Sioux City MSAs. Currently ozone monitoring is being conducted at 3 locations in Nebraska:

- the Omaha MSA (3 sites in Nebraska and two sites in Iowa),
- the Lincoln MSA (SLAMS site in Davey and temporary investigative site in Waverly), and
- the Santee Sioux Reservation (a CASTNET site operated by EPA).

Also there is a site within the Sioux City MSA. It is in Union County, SD and is operated by South Dakota.

The subsections below provide more detail about ozone levels and trends in and around Nebraska


Omaha MSA: Ozone monitoring was initiated in Nebraska in Omaha in 1972 and continues through the current time. The sites have changed over the years. Currently there are 3 sites operated by DCHD in Omaha, NE.

- A year-round site at the NCore site at 4201 Woolworth Ave., which began operation in April 2010.
- A seasonal site at 24th and O St that has operated in 1975, 1978 thru 1982, and 1985 to present day.
- A seasonal site at 19th & Whitmore that began operation in April 2015 as a temporary replacement for the 30th and Fort site due to construction activity. The 30th & Fort Street site operated from 1981 thru 2014. A decision as to whether to move back to 30th & Fort or remain at 19th & Whitmore will be made after the completion of the 2015 monitoring season.

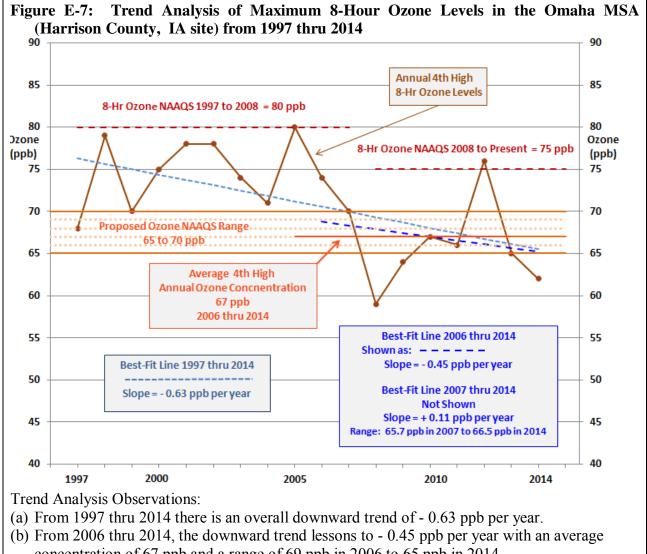
There are also 2 sites in Harrison County, IA, which is in the Omaha MSA:

- The Hwy 183 site approximately 4 miles S-SW of Pisgah, IA (~30 north of the urbanized edge of the Omaha-Council Bluffs urbanized area), which began operation in 1997; and
- The Forest Service Office site in Pisgah, IA, which began operation in 2009.

Figure E-6 (below) provides a historical view of the maximum ozone levels found in Omaha, NE and the Omaha MSA. The trend line for the complete data set shows ozone levels to be decreasing from 1972 thru 2014 at a rate of 0.25 ppb per year. However, visual examination of the plot appears to indicate that this downward trend may have ended in the 1990's. This is in part related to the initiation of monitoring in Harrison County, IA in 1997, as this site has been the highest concentration site for the Omaha MSA.

(a) The maximum values shown for the Omaha MSA from 1972 thru 1996 are from monitoring sites in Omaha, NE. Ir 1997, was initiated in Harrison County, IA. The maximum values recorded by Harrison County sites have at or above the maximum values recorded at Omaha, NE sites.

(b) The first ozone NAAQS was established in 1971 as a 1-hour standard of 80 ppb for *Total Photochemical Oxidants*. This was changed in 1979 to be a 1-hour standard of 120 ppb for ozone. These earlier NAAQS are not shown in the plot because they were based on a different averaging time and cannot be compared to the 8-hour values in this figure.


(c) Historical trend line influenced by high values in 1970s and 1980s. See Figure E-6 for trend analysis of more recent 2006 thru 2014 data.

(d) The highest 4th high ozone value ever detected in Nebraska was 120 ppb at the North 72nd St. site in 1980. There was not a 1978-80 DV for this site because monitoring was initiated in 1979.

Figure E-7 (below) contains trend analyses of Harrison, IA ozone levels from 1997 to 2014 (i.e., data from the highest reporting site in the Omaha MSA). The 1997 thru 2014 data indicates a downward trend of -0.63 ppb year. However, visual examination indicates that this downward trend may not have continued after 2006 or 2007. The 2006 thru 2014 data shows a downward trend of -0.45 ppb per year with an average of 67 ppb and a range of 69 ppb in 2006 to 65 ppb in 2014. While the 2007 thru 2014 data shows a slight upward trend of +0.11 ppb per year with an average of 66 ppb and a range of 65.7 ppb in 2007 to 66.5 ppb in 2014.

Although the 2015 ozone monitoring season is not complete, the results through August are finding 4^{th} high values in the low 60s with only one day above 65 ppb. Thus, there is a good possibility that:

- the 4th high value within the Omaha MSA will be near or possibly below the levels seen in 2013 and 2014, and
- 2) the 2013-2015 DV will not exceed 65 ppb.

- concentration of 67 ppb and a range of 69 ppb in 2006 to 65 ppb in 2014.
- (c) From 2007 thru 2014, the data indicates a slight upward trend of + 0.11 ppb per year with an average concentration of 66 ppb and a range of 65.7 ppb in 2007 to 66.5 ppb in 2014.
- (d) The 2006 thru 2014 and the 2007 thru 2014 average 4th high ozone values are very similar; 67 ppb and 66 ppb, respectively.

Regardless, due to the variability of 4th high ozone data, the uncertainty of any continued downward trend, and the 8 year and 9 year average ozone concentrations of 66 to 67 ppb, there is significant uncertainty as to whether ozone DVs will remain in attainment with a lower ozone NAAQS in the proposed 65 to 70 ppb range. The uncertainty obviously increases if the NAAQS is set at the lower end of this range.

Lincoln MSA: Monitoring was initiated at 14th & Superior in Lincoln in 1979. After the 1984 ozone monitoring season, the 14th & Superior site was closed. Monitoring at Davey, NE was initiated in 1985 and conducted there to the present. Davey is approximately 7 miles north of the urbanized edge of Lincoln. It is in Lancaster County and within the Lincoln MSA.

In 2015 a temporary investigative site was established in Waverly to compare with the results from Davey. Following the 2015 monitoring season, the results from the 2 sites will be compared to determine which site has the higher ozone concentrations.

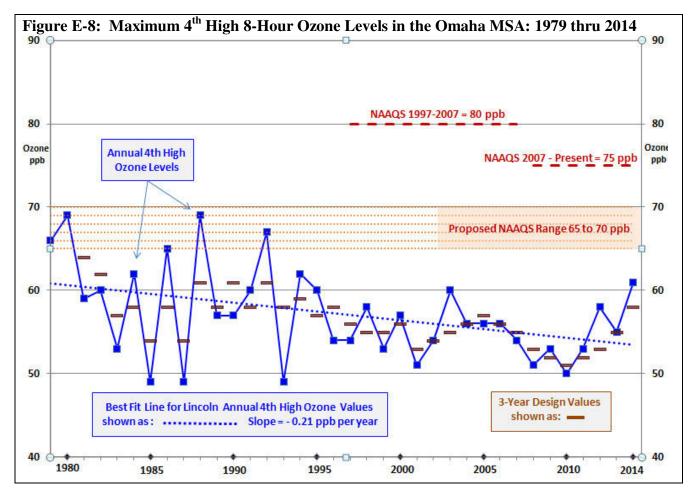
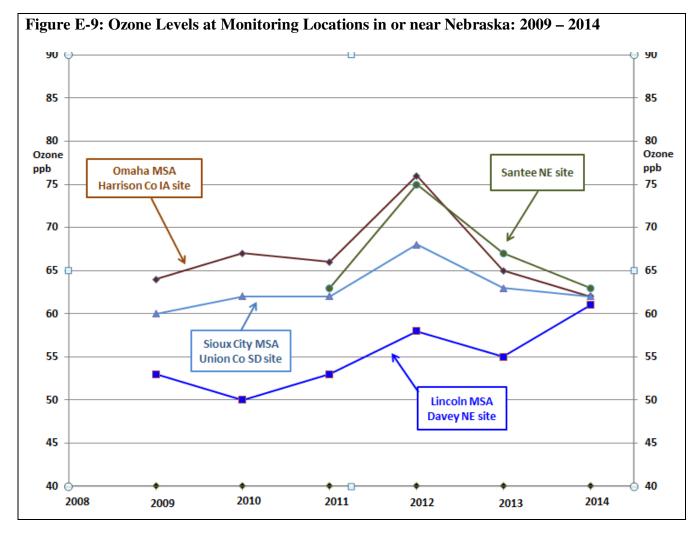


Figure E-8 (above) is a plot of historical 4^{th} high ozone levels in the Lincoln MSA. Overall, the data demonstrates a downward of -0.21 ppb per year. On the other hand, since 2010 the data indicates an upward trend of + 2.4 ppb per year.


Figure E-9 (below) is a plot of 4th high ozone levels from 2009 thru 2014 at four locations: Omaha MSA, Lincoln MSA, Sioux City MSA and Santee Sioux Reservation. Note four things in this figure with respect to ozone in the Lincoln MSA.

- 1) Ozone levels at Davey (Lincoln MSA) are lower than the other 3 sites;
- 2) The basic pattern or trend in year-to-year ozone concentrations is the same for all 4 sites, except the 2010 and 2014 ozone levels at the Lincoln MSA, Davey NE site;
- 3) Ozone concentrations increased from 2013 to 2014 at Lincoln, but decreased at the other 3 sites; and
- 4) All four sites had very similar 4th high values in 2014.

NP PID-120715

At this time, it is not apparent whether the 2014 4th high value found at Davey is related to an upward trend in ozone levels at that site, or some other factor. There are no known significant new sources of NOx or VOCs that might account for the increase. New monitoring equipment was installed at the Davey site (i.e., analyzer and transfer standards). However, biweekly zero/span checks and audits indicated proper operation in the years preceding 2014.

A review of the historical data shown in Figure E-7 shows that the last time the DV at Davey exceeded 60 ppb was in 1992. The 2015 maximum and 4th high values thru July were 64 ppb and 61 ppb, respectively. At this point, it does not appear that a DV above 65 ppb is likely thru 2015.

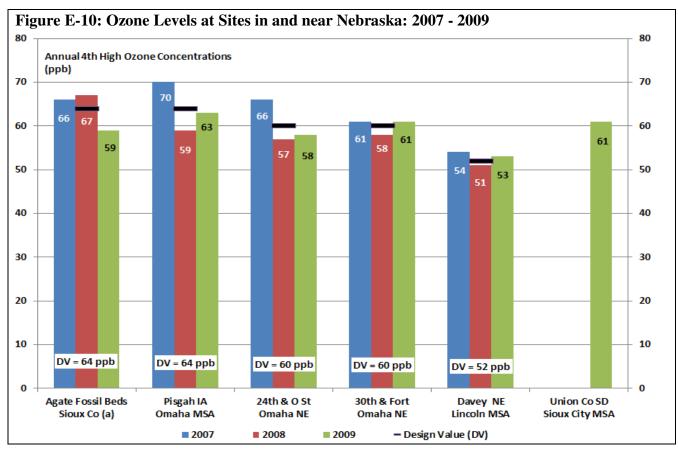
Sioux City MSA (Union County SD sites)

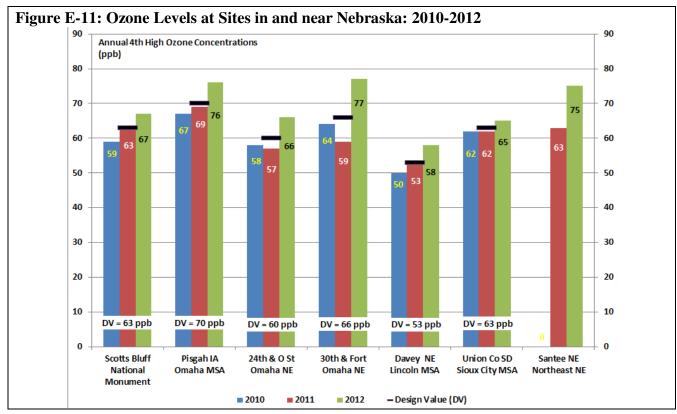
The South Dakota Department of Environment and Natural Resources began operating monitoring sites in rural Union County, SD in 2009. Union County is in the Sioux City MSA. Ozone monitoring was conducted at 31102 471st Avenue (~26 mi NW of North Sioux City)from 2009 thru 2012, and at 31986 475th Avenue (~17 mi NW of North Sioux City) from 2013 thru present. The data from these sites is shown in Figure E-9 (above). Ozone concentrations at the Union County site were lower than those found in the Omaha MSA and at Santee, but followed a similar year-to-year pattern.

Santee, NE:

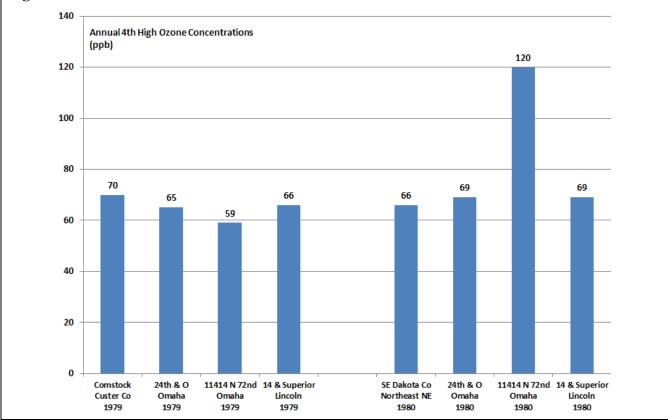
EPA operates a Clean Air Status and Trends Network (CASTNET) site near Santee, NE. The site is located in the Santee Sioux Reservation in Knox County. It is not part of the monitoring network operated or overseen by the State of Nebraska.

In 2011, EPA began operating an ozone monitor at this site. The annual 4th high values found at the Santee site ranged from 63 to 75 ppb from 2011 thru 2014, as shown in Figure E-9. The ozone levels found at the Santee site were very similar to those found in the highest sites in the Omaha MSA. The 2012-14 Design Value (DV) was 68 ppb, which was the highest ozone DV found in Nebraska. The levels of ozone detected at Santee were somewhat surprising, although as discussed in the next 2 subsections they may not be that unique.


Nebraska Panhandle

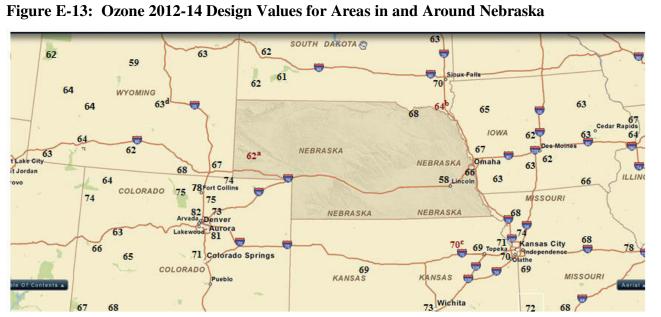

The National Park Service (NPS) conducted monitoring in the Nebraska panhandle:

- From 2007 thru 2009, at the Agate Fossil Beds in Sioux County, NE; and
- From 2010 thru 2012, at the Scotts Bluff National Monument in Scotts Bluff County, NE.


In response to NDEQ inquiry in 2008, the NPS communicated that the monitoring was being conducted to follow-up on modeling conducted by the NPS that indicated possible elevated ozone concentrations originating from metropolitan areas in Colorado. Also the NPS was not using an EPA FRM/FEM monitor, although they had conducted studies to verify its accuracy.

Figures E-10 and E-11 show how ozone levels at these 2 sites compare with other sites in Nebraska from 2007 to 2012. As can be seen, ozone levels in the panhandle were similar to those in the Omaha MSA.

Figure E-12: Ozone Levels in Nebraska 1979 & 1980


Other Areas of the Nebraska:

Background monitoring was conducted for 1 year at a rural site near Comstock, NE in Custer County in 1979, and at another rural site in southeast Dakota County in 1980. Dakota County is part of the Sioux City MSA, but the site location was in a rural location and upwind (SW) of the urbanized area of the MSA.

Figure E-12 shows the 4th high ozone levels found at these sites and Omaha and Lincoln sites for the same year. As can be seen, ozone levels at these two sites were similar to the ozone levels in Lincoln and Omaha, with the exception of the North 72^{nd} St site in Omaha in 1980.

The 120 ppb 4th high value at the North 72nd Street site was the all-time highest ozone value ever detected in Nebraska.

A review of the Omaha data in Figure E-6 and Lincoln data in Figure E-8, shows that ozone levels detected at the Comstock and Dakota County sites were similar to those found in Lincoln at the time. They were also similar to the lower values found in Omaha at the time, although Omaha also had higher values. However, basing comparisons on 1-year of data from the rural sites does not provide for a definitive analysis or conclusion.

Footnotes

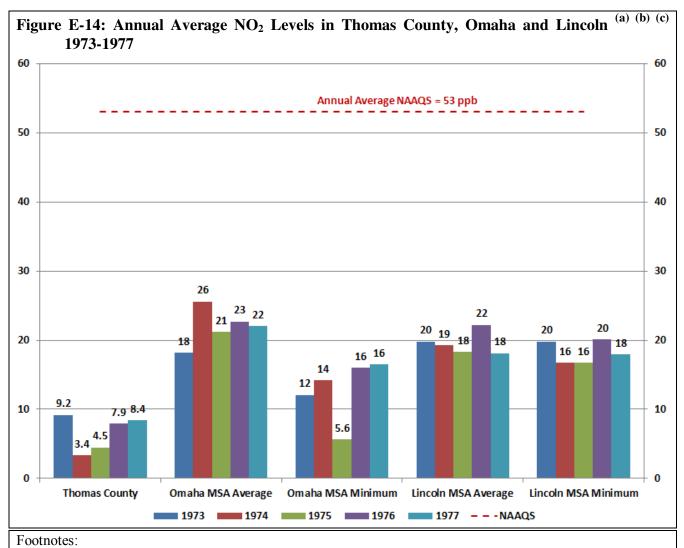
- a Scottsbluff, NE: Only 2012 data available. 2012-2014 DV estimated by extrapolation using 2012 annual 4th high from Scottsbluff & Greeley, CO, and the 2012-14 DV from Greeley, CO ($eDV_{SB} = DV_{GR} \times Oz12_{SB} / Oz12_{Gr}$, where DV_{SB} is the estimated 2012-14 DV for Scottsbluff, DV_{GR} is the 2012-14 DV for Greeley CO, $Oz12_{SB}$ is the 2012 4th high ozone concentration at Scottsbluff, and $OZ12_{GR}$ is the 2012 4th high ozone concentration at Greeley CO)
- b Union Co SD (Sioux City MSA): The DV was calculated using the combined data from 2 rural sites in Union Co SD: 2012 & 13 data from 31986 475th Ave and 2014 data from 31102 471st Ave. These 2 sites are ~ 10 miles apart near Junction City, SD.
- c Konza Prairie south of Manhattan, KS: Only 2012 data available. 2012-2014 DV estimated by extrapolation using 2012 annual 4th-high from Konza Prairie & Peck, KS (Max. Conc. Wichita MSA site), and the 2012-14 DV from Peck ($eDV_{KP} = DV_W \times Oz12_{KP} / Oz12_W$, where eDV_{KP} is the estimated 2012-14 DV for Konza Prairie, DV_W is the 2012-14 DV for Peck, $Oz12_{KP}$ is the 2012 4th High ozone concentration at Konza Prairie, and $OZ12_W$ is the 2012 4th high ozone concentration at Peck)
- d Casper, WY: DV based on 2013 & 2014 data only from the 2800 Pleasant Drive site.

2.D. Geographical Distribution of Ozone in and around Nebraska: 2012- 2014 Design Values

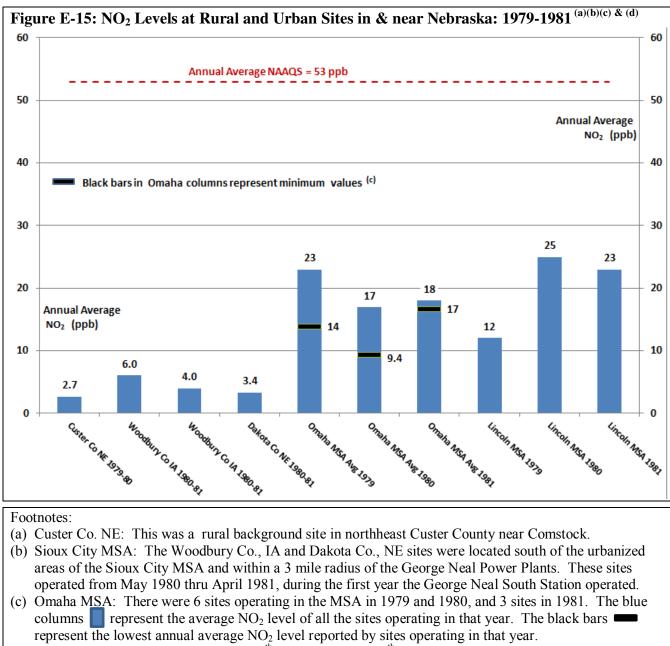
Figure E-13 above shows the 2012-2014 Design Values for areas in Nebraska and in near-by states. The figure shows that areas with DVs in the 65 to 70 ppb range are ubiquitously distributed in and around Nebraska.

3) Nitrogen Dioxide (NO₂)

Nitrogen dioxide (NO₂) and other nitrogen oxide gases (NOx) are formed when fuel is burned at high temperatures, and come principally from motor vehicle exhaust and stationary sources such as electric utilities and industrial boilers. Vehicle emission standards and stationary source controls have resulted in significant reductions in the emission of NO2/NOx gases since air monitoring was initiated in the 1970's.


Monitoring for NO_2 was initially conducted in Nebraska from 1972 thru 1984. This early monitoring primarily generated 24-hour average data, but 1-hour data was collected from some sites. In 2011 monitoring for NOy and NO was initiated at the Omaha NCore site and continues to the current time with 1-hour data being collected.

The NOy-NO parameter provides a good approximation of NO_2 concentrations, although NOx compounds other than NO_2 can contribute to NOy-NO. Thus, the NOy-NO parameter may overestimate the NO2 concentration. Therefore, if the NOy-NO parameter is below the NAAQS, then NO_2 should be too.


Figures E-14 and E-15 contain summaries of annual average NO_2 data collected in the 1970s and early 1980s from sites located in the Omaha, Lincoln and Sioux City MSA's as well as 2 rural sites in central Nebraska. The results indicate two things:

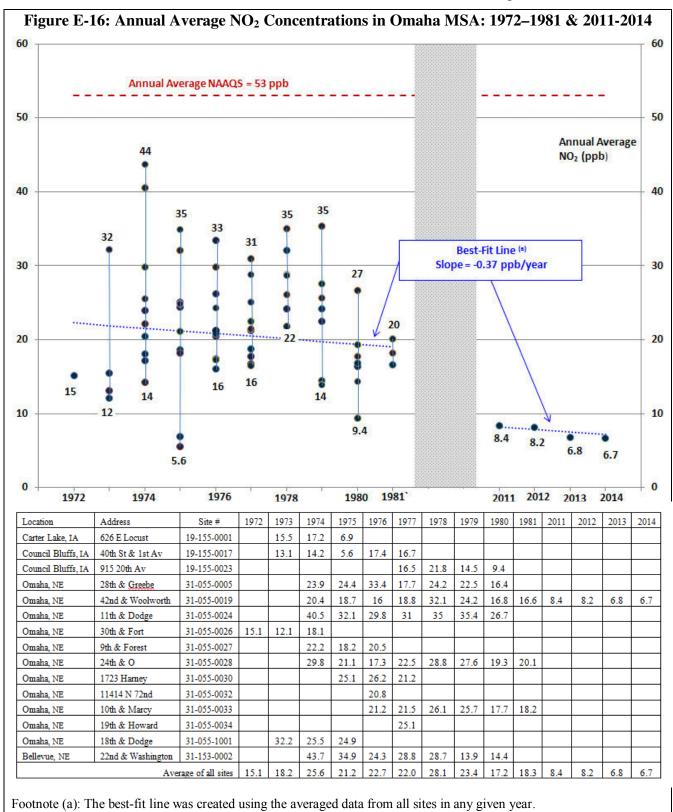
- 1) NO₂ levels were well below the annual average NAAQS of 53 ppb that was promulgated in 1971 and remains in effect today; and
- 2) NO_2 levels were higher in the Omaha and Lincoln MSAs than at the other sites.

It is noteworthy that the sites in the Sioux City MSA were in rural locations surrounding the George Neal power Stations at least 6 miles south of the main urbanized areas of the MSA. This may explain why the NO_2 levels in the Sioux City MSA more closely approximated those in Custer and Thomas Counties (rural central Nebraska), than those in the Omaha and Lincoln MSAs.

- (a) Thomas County: A background site operated in the Nebraska National Forest from 1973 thru 1977.
- (b) Omaha MSA: Average and minimum statistical values from varying sites each year: 4 sites in 1973 and 10 sites in 1975 thru 1977.
- (c) Lincoln MSA: Average and minimum statistical values from varying sites each year: 1 site in 1973 and 2 sites in 1975 thru 1977.

(d) Lincoln MSA: NO₂ was monitored at $9^{\text{th}} \& \text{ J in 1979}$ and $10^{\text{th}} \& \text{ M in 1980} \& 1981$.

Observation: Monitoring sites in the Lincoln and Omaha MSA's recorded significantly higher NO₂ levels than the sites in the Sioux City MSA or Custer County.


Figure E-16 below is a plot of annual average NO₂ concentrations in the Omaha MSA in two time periods: 1972 thru 1981 and 2011 thru 2014. The results indicate two things:

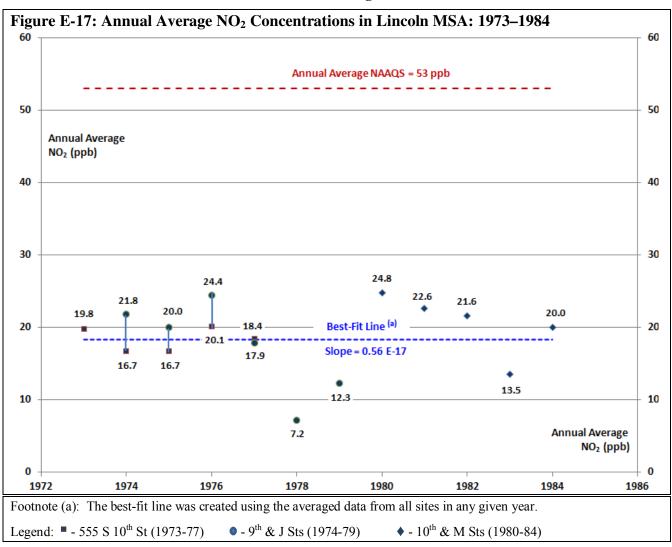
1) Historical and current NO₂ levels are well below the annual NAAQS; and

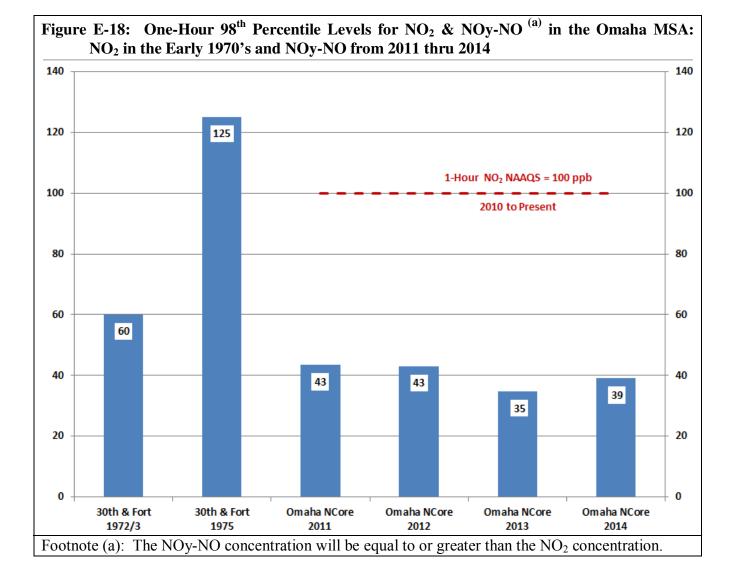
2) NO₂ levels are lower now than they were in the 1972 thru 1981 time frame.

Although the figure contains a trend–line for the declining NO_2 concentrations, the data is not sufficient to indicate whether there was a gradual and continuing decline; or whether there was a more step-like decline between 1981 and 2011.

The Lincoln data in Figure E-17 indicates that NO_2 levels demonstrated neither an upward nor a downward trend from 1973 thru 1984, and were well below the annual average NAAQS.

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present




Figure E-18 below shows Omaha 1-hour NO₂ data from 30^{th} and Fort in 1972-1973 and again in 1975; and 1-hour NOy-NO data from the the Omaha NCore site (42^{nd} & Woolworth) from 2011 thru 2014. The 98th percentile levels from the 1970's were 60% to 125% of the current 1-hour NAAQS (promulgated in 2010), while the 2011-2014 98th percentiles were 35% to 43% of the NAAQS. Although the data is limited, it is consistent with the annual average data discussed above, in that 1-hour NO₂ levels are lower now than in the 1970's and 1980's.

To summarize, monitoring in the 1970s and early 1980s demonstrated attainment with the 53 ppb annual average NAAQS with a significant safety factor. Monitoring at the Omaha NCore site conducted from 2011 to present is demonstrating attainment with the 2010 100 ppb 1-hour NAAQS with a significant safety factor.

However, the NCore site is not a highest concentration site. Near-road, high-traffic areas are highest concentration sites for 1-hour NO₂. Current EPA regulations require a near-road, high-traffic area monitor to be operational in the Omaha MSA by January 1, 2017.

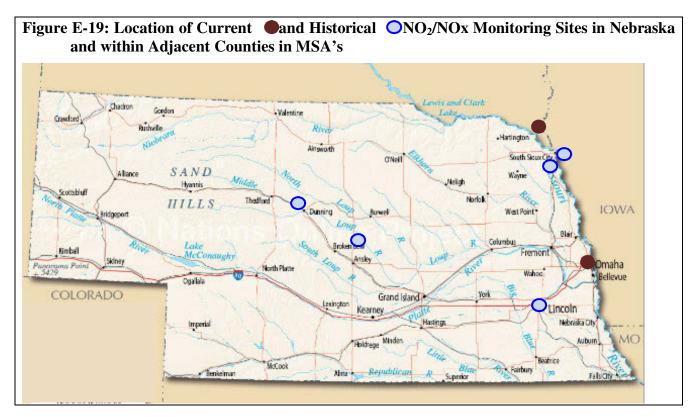
DCHD has proposed the current CO site at 78th and Dodge as the site for monitoring near-road NO₂. The DCHD proposal and the NDEQ review comments on it are included in Attachment G of this network review; while attachment H is NDEQ's review and concurrence with the DCHD proposal.

In the past, EPA has indicated that they may delay or rescind the need for near-road monitoring in metropolitan areas, like Omaha, with populations less than 1 million. This is because near-road monitoring in the larger metro-areas is finding attainment. This can be seen from the data in Table E-3: NO₂ levels at near-road sites in Denver, Minneapolis and St. Louis are at 72%, 47% and 50% of the NAAQS, respectively. These metro areas have 3 to 4 times the population of the Omaha MSA.

Table E-3: One-Hour NOx Levels at Monitoring Sites in Nebraska and at Selected Sites in Near-By States for Comparison to the Primary NAAQS ⁽¹⁾⁽²⁾⁽³⁾							
		98 th Percentiles (ppb)		DV	%		
Site	Site #	2012	2013	2014	(ppb)	NAAQS	Pollutant
Omaha NE NCore	31-055-0019	45.0	35.3	39.0	39.8	40%	NOy-NO
Des Moines IA	19-153-0030	39.6	36.8	35.3	37.2	37%	NO ₂
Davenport IA	19-163-0015	34.1	38.8	35.0	36.0	36%	NO ₂
Blaine MN Minneapolis MSA	27-003-1002	41.0	43.0	50.0	44.7	45%	NO ₂
Rosemount MN Minneapolis MSA	27-037-0020	36.0	38.0	35.0	36.3	36%	NO ₂
Minneapolis MN Near-road site	27-053-0962	nd	45.0	48.0	46.5	47%	NO ₂
Sioux Falls SD	46-099-0008	36.6	33.8	33.3	34.6	35%	NO_2
Union Co. SD Sioux City MSA	46-127-0001	15.9	17.6	20.7	18.1	18%	NO ₂
Rapid City SD	46-103-0020	42.2	38.6	33.8	38.2	38%	NO_2
Campbell Co WY	56-005-0011	46.0 ⁽⁴⁾	52.0	55.0	53.5	54%	NO ₂
Brookhurst WY Casper MSA	56-025-2601	27.3	35.9	33.6	32.3	32%	NO ₂
Cheyenne WY	56-021-0100	35.8	37.1	33.6	35.5	36%	NO ₂
Wamsutter WY	56-037-0200	36.3	37.7	31.9	35.3	35%	NO ₂
Denver CO	08-031-0002	72.0	67.6	76.6	72.1	72%	NO ₂
Wichita KS	20-173-0010	85.1	39.6	40.1	54.9	55%	NO ₂
Kansas City KS	20-209-0021	51.5	47.4	51.1	50.0	50%	NO ₂
Kansas City MO	29-095-0034	52.8	48.1	52.7	51.2	51%	NO ₂
St. Louis MO	29-510-0086	52.4	50.5	43.3	48.7	49%	NO ₂
St. Louis MO Near-road site	29-510-0094	nd	50.4	50.1	50.3	50%	NO ₂

Footnotes:

(1) The Omaha NCore site is the only NOx monitoring site in Nebraska. This site monitors for NO and NOy. The NOy-NO parameter includes NO₂ as well as other reactive forms of NOx. The NOy-NO parameter can be used demonstrate attainment with the NOx NAAQS, but not non-attainment.


(2) Sites from the near-by states of IA, MN, SD, WY, CO, KS and MO were selected in part on their proximity to NE. Urban sites and highest concentration sites also received priority. In areas where there was more than one NOx monitoring site, data from the site that had the highest NOx values is shown. The levels shown in this table include the highest found in each state.

(3) The NOx 1-hour primary NAAQS is 100 ppb. Attainment with the NAAQS is evaluated using the 3-year average of the annual 98th percentile values for NO₂. The NOy-NO value is equal to or greater than the NO2 value.

(4) There were only 3 quarters of 2012 data from the Campbell Co WY site.

Current and Historical NO₂/NOx Monitoring Sites in Nebraska

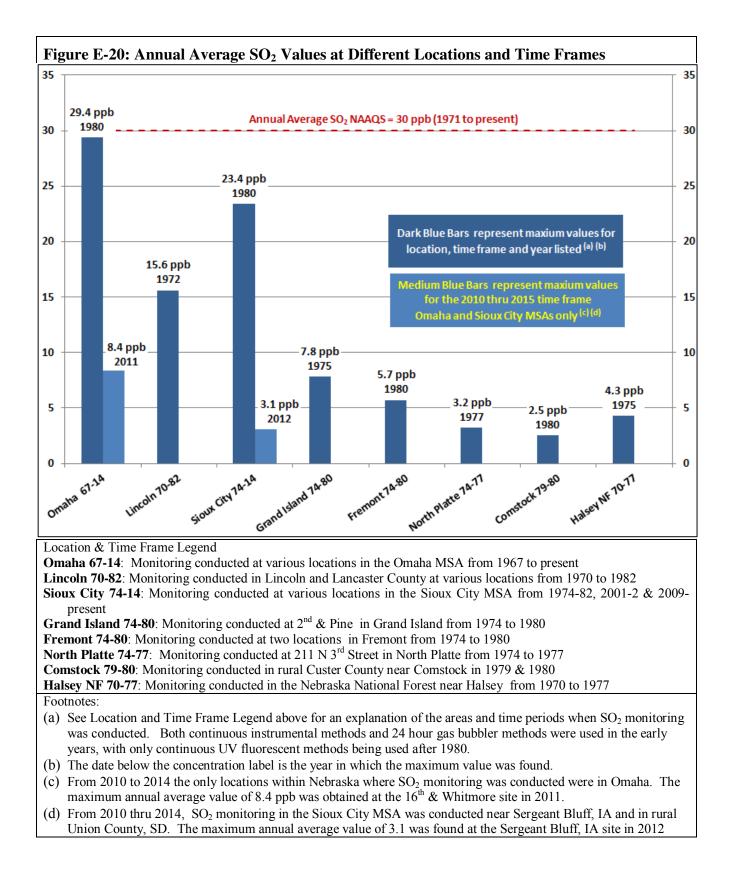
Figure E-19 shows the locations of historical and current NO_2 monitoring sites in Nebraska. As discussed above, historical NO_2 monitoring conducted in Nebraska found NO_2 levels well below the NAAQS applicable at the time and the current NAAQS.

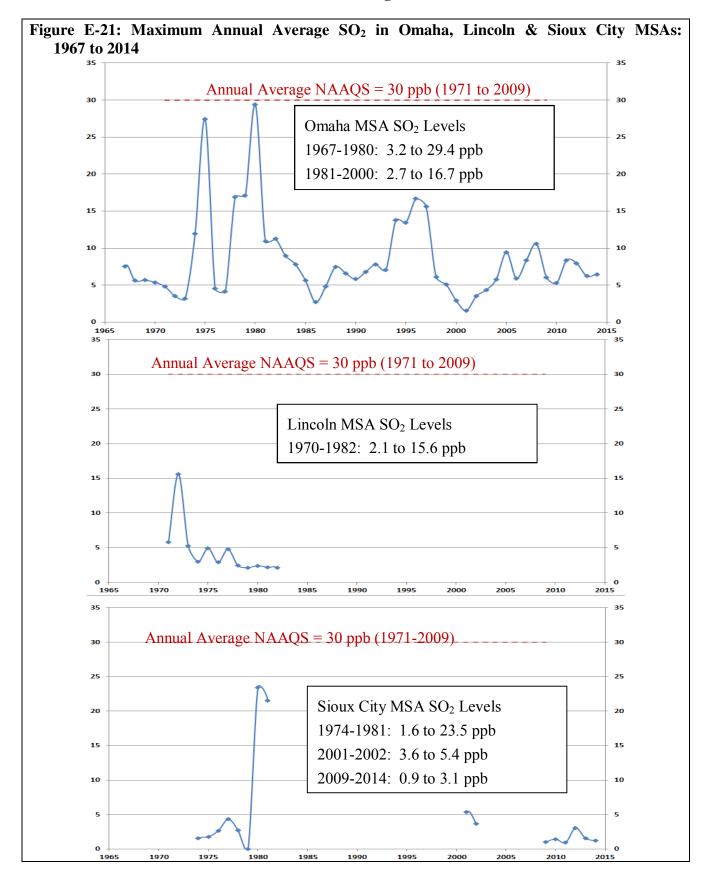
4) Sulfur Dioxide

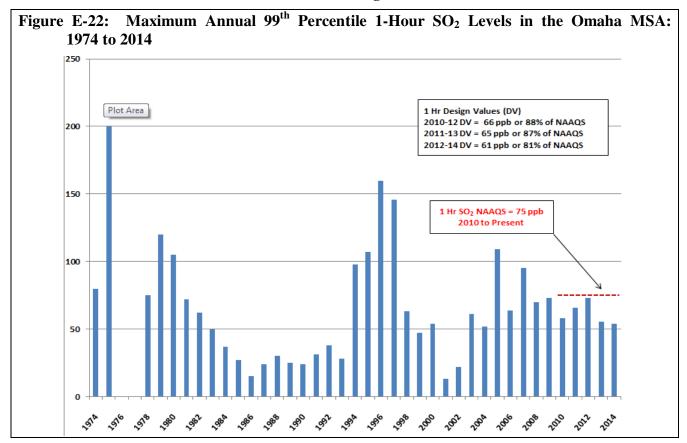
Sulfur dioxide (SO₂) is emitted as a pollutant from combustion sources burning fossil fuels containing sulfur. Historically coal-fired boilers and diesel engines were significant sources of SO₂. Diesel fuel contained significant amounts of sulfur prior to 2007, but low sulfur diesel fuel requirements implemented in a phased manner beginning in 2007 have greatly reduced this source of SO₂. Emission control requirements associated with the implementation of the 2010 1-hour SO₂ NAAQS of 75 ppb are anticipated to lead to further reductions in SO₂ emissions from coal-fired boilers over the next few years.

SO₂ monitoring was initiated in Omaha in 1967 and continues today. In other areas of Nebraska, monitoring was initiated in 1970 and discontinued by 1982, although monitoring in Iowa and South Dakota is being conducted within the Sioux City MSA. SO₂ monitoring conducted within Nebraska has consistently demonstrated attainment with the NAAQS.

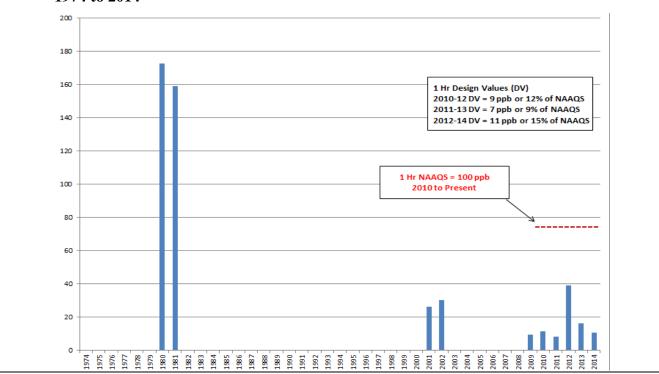
The initial SO₂ NAAQS were implemented in 1971: primary 24 hour NAAQS = 0.14 ppm and primary annual average NAAQS = 0.03 ppm. These were revoked in 2010 when the 1-hour primary NAAQS of 75 ppb was established. SO₂ monitoring conducted within Nebraska has consistently demonstrated attainment with the primary NAAQS.

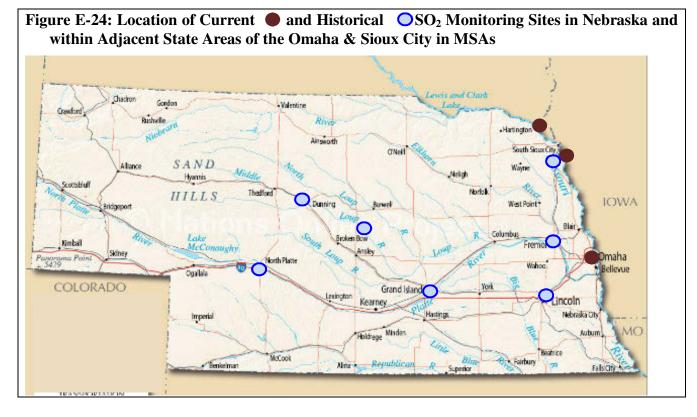

Figure E-20 provides a summary of maximum annual average SO_2 levels in Nebraska from 1967 thru 2014. Note that in the initial monitoring period, 1967 thru 1982, SO2 levels were higher in the


Omaha, Lincoln and Sioux City MSAs than other monitoring locations. Also note that the SO_2 levels in the Omaha and Sioux City MSAs are much lower now than in the initial monitoring period; the two areas in Nebraska where both historical and contemporary monitoring has been conducted.


Figure E-21 provides a historical view of maximum annual average SO_2 levels in the Omaha, Lincoln and Sioux City MSAs. This provides a better picture of SO_2 levels over time, especially in the Omaha MSA. The maximum levels found in the Omaha MSA were in the north Omaha at source-oriented sites located south of the OPPD North Omaha Power Station.

The earliest monitoring utilized bubbler-scrubber methods that yielded 24-hour average data, but not 1-hour average data. Beginning in 1974 continuous monitoring systems came into use at some sites in the Omaha and Sioux City MSAs. Figures E-22 and E-23 contain the maximum annual 99th percentile 1-hour SO₂ values for the Omaha and Sioux City MSAs from 1974 thru 2014. As can be seen from the figures, there has been continuous monitoring within the Omaha MSA for hourly SO₂ since 1974, but only periodic monitoring within the Sioux City MSA except for more recently with continuous monitoring from 2009 thru 2014.


Note that since the 2010 1-hour NAAQS of 75 ppb was implemented, maximum SO_2 levels in Omaha MSA have ranged from 81% to 88% of the NAAQS, while in the Sioux City MSA have been in the range of 9% to 15% of the NAAQS.



Current and Historical SO₂ Monitoring Sites in Nebraska

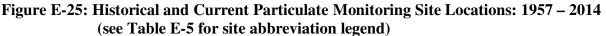
Figure E-24 shows the locations of historical and current SO₂ monitoring sites in Nebraska.

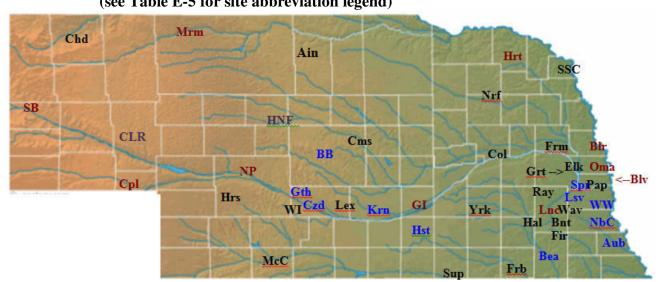
5) Particulate Matter: TSP, PM₁₀ and PM_{2.5}

Particilate matter regulations, monitoring and environmental/public health concerns have evuolved over time. Initially monitoring efforts concentrated on total suspended particulate matter (TSP), then moved to PM_{10} in the late 1980s, and then $PM_{2.5}$ was added in the late 1990's. The driving force being that finer particulates more easily penetrate into the lungs and thus present more potential for health impacts.

Defintions:

PM - refers collectively to TSP, PM_{10} & $PM_{2.5}$

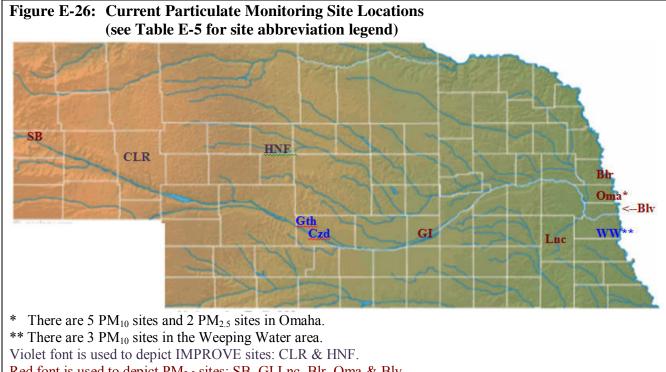

TSP - total suspended atmospheric particulate matter


 PM_{10} - particulate matter with an aerodynamic diameter of 10 microns or less.

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less.

Table E-4 below shows the history of the particulate NAAQS. It also lists the years monitoring was initiated for TSP, PM_{10} and $PM_{2.5}$, and ended for TSP. Table E-5 lists the locations in Nebraska where TSP, PM_{10} and $PM_{2.5}$ has been and is being conducted, and the time periods when the monitoring was conducted. Figure E-25 is a Nebraska map showing the location of all of the PM monitoring sites; both current and historical. Figure E-26 is a Nebraska map showing the location of all of the current PM_{10} ansd $PM_{2.5}$ monitoring sites.

Table E-4: Summary History of Particualte Matter NAAQS and Monitoring in Nebraska							
Particulate	NAAQS	NAAQS History	Monitoring	Monitoring			
Туре	Implementation		Started	Ended			
TSP	1971	Primary 24-hour of 260 ug/m ³ Annual Average of 75 ug/m ³ Secondary 24-hour of 150 ug/m ³ Annual Average of 75 ug/m ³	1957	1987			
	1987	TSP NAAQS rescinded					
PM_{10}	1987	Primary & Secondary 24-hour of 150 ug/m ³ Annual Average of 75 ug/m ³					
	2006	Annual Average NAAQS rescinded 24-hour NAAQS retained at 150 <i>ug</i> /m ³					
	1997	Primary & Secondary 24-hour of 65 ug/m ³ Annual Average of 15 ug/m ³					
DM	2006	Primary & Secondary 24-hour of 35 ug/m ³ Annual Average of 15 ug/m ³	1987	Present			
PM _{2.5}		Primary & Secondary 24-hour of 35 ug/m ³ Primary Annual Average of 12 ug/m ³ Secondary Annual Average of 15 ug/m ³					



Black font depicts locations that had TSP monitoring, and no PM_{10} or $PM_{2.5}$ monitoring. Blue font depicts locations that have had PM_{10} monitoring. Seven (7) of these have also had TSP monitoring Aub, Bea,

Czd, Gth, Hst, Krn & NbC.

Red font depicts locations that have had PM_{2.5} monitoring, except that WW was listed only as a PM₁₀ location because PM_{2.5} monitoring was discontinued in 2005. TSP monitoring was also conducted at the Blv (Bellevue) & NP (North Platte) locations. TSP, PM₁₀ and PM_{2.5} monitoring: GI (Grand Island), Lnc (Lincoln), Oma (Omaha), SB (Scottsbluff) and WW (Weeping Water).

Violet font is used to show IMPROVE sites at HNF (Halsey National Forest) and CLR (Crescent Lake Wildlife Refuge). IMPROVE sites monitor PM_{2.5} constituents as part of a regional haze study.

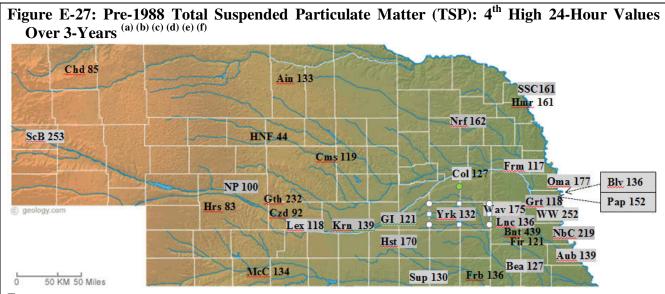
Red font is used to depict PM_{2.5} sites: SB, GI Lnc, Blr, Oma & Blv.

Blue font is used to depict PM₁₀ sites: Gth, Czd & WW. Note that Oma has both PM_{2.5} and PM₁₀ sites.

Table E-5: Particulate Mon	Site Abbr. TSP PM ₁₀ PM ₂								
Ainsworth	Ain	1974-1977	1 1 1 1 0	1112.5					
Auburn	Aub	1976-1992	1994-1995						
Beatrice	Bea	1971–1995	1994-1995						
Bellevue	Bly	1971-1992	1771 1775	1999-Present					
Bennett	Bnt	1973-1977							
Blair	Blr	1775 1777		1999-Present					
Broken Bow	BB		1999-2002						
Chadron	Chd	1971-1977	1777 2002						
Chappell	Cpl	17/1 17/1		1999-2002					
Columbus	Col	1972-1993		1777 2002					
Comstock	Cms	1979-1980							
Cozad	Czd	1974-81 & 94	1994-Present						
Crescent Lake NWR*	CLR	1)/10100/1	17711105011	2002-Present*					
Elkhorn	Elk	1982-1989							
Fairbury	Frb	1971-1978							
Firth	Fir	1972-1982							
Fremont	Frm	1972-1995							
Gothenburg	Gth	1990-1992	1991-Present						
Grand Island	GI	1971-1995	1994-1995	1999-Present					
Gretna	Grt	1985-1992							
Hallam	Hal	1973-1979							
Halsey National Forest *	HNF	1958 – 1977		2002-Present*					
Hartington	Hrt			1999-2002					
Hastings	Hst	1972-1992	1987-1996						
Hershey (17 mi south)	Hrs	1973-1985							
Kearney	Krn	1972-1992	1988-1998						
Lexington	Lex	1971-1993							
Lincoln	Lnc	1957,60,62,69-87	1988-1998	1999-present					
Louisville	Lsv	1971-1984	1987-1999						
Merriman	Mrm			1999-2002					
McCook	MCk	1971-1973							
Nebraska City	NbC	1975-1992	1987-1998						
Norfolk	Nrf	1971-1992							
North Platte	NP	1971-1993		1999-2005					
Omaha	Oma	1957-2000	1987-Present	1999-Present					
Papillion	Pap	1971-1992							
Raymond	Ray	1973-1977							

Table continued on next page

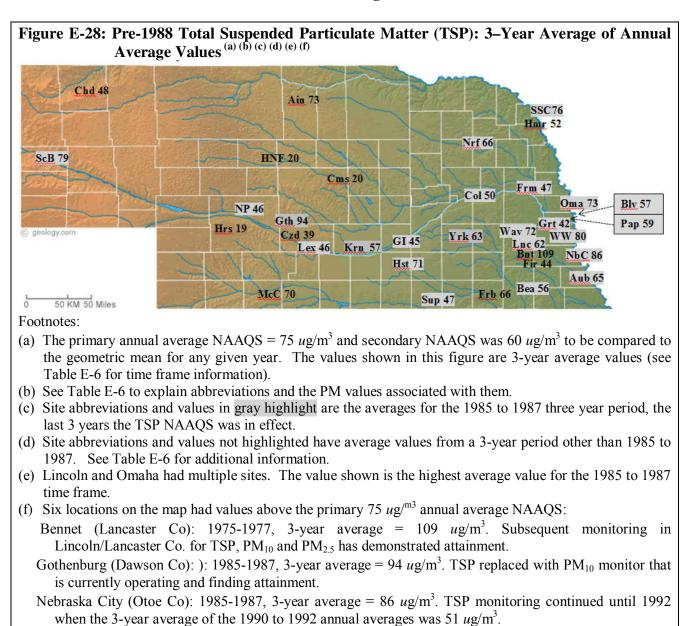
Table E-5: Particulate Monitoring Sites Operated Between 1957 and 2015 - continued						
Site	Abbr.	TSP	PM ₁₀	PM _{2.5}		
Scottsbluff	ScB	1971-1992	1988-1998	1999-Present		
South Sioux City	SSC	1977-1994				
Springfield (4 mi SSW)	Spr		1995			
Superior	Sup	1973-1993				
Waverly	Wav	1973-1987				
Weeping Water	WW	1972-1992	1987-Present	1999-2005		
Willow Island	WI	1972-1973				
York Yrk 1976-1992						
* The Halsey National Forest and Crescent Lake National Wildlife Refuge have Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring sites. For more information on these sites see Appendix A or the US EPA website: <u>http://www.epa.gov/ttnamti1/visdata.html</u> .						


V.A. Total Suspended Particulates (TSP)

Monitoring for Total Suspended Particulates (TSP) was initiated in Lincoln and Omaha in 1957. TSP NAAQS were established in 1971 and then rescinded in 1987, when they were replaced by the PM_{10} NAAQS (see Table E-4 above).

At various times between 1971 and 1987, TSP monitoring was performed at 90 sites in 35 Nebraska communities and four rural sites. Some of these sites continued operating into the 1990s, and one Omaha TSP site (at the Public Works building at 11th and Nicholas Sts) operated until 2000. A list of the communities where TSP monitoring was performed can be found in Table E-5. Figure E-25 shows the location of historical and current particulate monitoring sites in Nebraska, including the historical TSP sites.

See TSP data in Figure E-27, Figures E-28 and Table E-6 below. These provide a reasonable picture of TSP levels in Nebraska in the latter part of the 1980's. From 1971, when the TSP NAAQS was first promulgated, thru 1987 when the TSP NAAQS was first promulgated, significant particulate emission controls were implemented including restrictions on stack opacity, fugitive dust and open burning, as well as other source-specific limits. An examination of ambient monitoring data prior to 1988 demonstrates that these control measures were effective in reducing ambient TSP levels.


There were 3 areas where TSP levels exceeded the primary TSP NAAQS: Omaha, Louisville and Weeping Water. Particulate emission control measures were established in the Title 129 Nebraska Air Pollution Rules and Regulations in 1975, and many additional controls have been added in the years and decades since. TSP levels in these 3 sites dropped below the primary TSP NAAQS by 1984. TSP levels at all 3 sites remained above the secondary NAAQS until it was rescinded in 1987 and replaced with the PM₁₀ NAAQS.

Footnotes:

- (a) The primary 24-Hour NAAQS was 260 ug/m³ and secondary NAAQS was 150 ug/m³. Neither value was to be exceeded more than once per year. The values shown in this figure are the 4th high value over a 3 year time frame, or if only 2 years of data was available, the 3rd high value. See Table E-6 for time frame information.
- (b) See Table E-6 to explain the abbreviations and the PM values shown.
- (c) Site abbreviations and values in gray highlight are for the 1985 to 1987 three year period, the last 3 years the TSP NAAQS was in effect.
- (d) Site abbreviations and values not highlighted have average values from a 3-year period other than 1985 to 1987. See Table E-6 for additional information.
- (e) Lincoln and Omaha had multiple sites. The value shown is the highest average value for the 1985 to 1987 time frame.
- (f) One location on the map had values above the primary 260 ug/m3 annual average NAAQS:

Bennett (Lancaster Co): 1975-1977, 3-year average = $439 \text{ } ug/m^3$. Subsequent monitoring in Lincoln/Lancaster Co. for TSP, PM₁₀ and PM_{2.5} has demonstrated attainment.

- Scottsbluff (Scottsbluff Co): 1985-1987, 3-year average = 79 ug/m^3 . TSP monitoring continued until 1994 when the 3-year average of the 1992 to 1994 annual averages was 56 ug/m^3 .
- South Souix City (Dakota Co): 1985-1987, 3-yr average = 76 ug/m^3 . TSP monitoring continued until 1992 when the 3-year average of the 1990 to 1992 annual averages was 72 ug/m^3 .

Weeping Water (Cass Co): 1985-1987, 3-year average = 80 ug/m^3 . TSP monitoring continued until 1994 when the 3-year average of the 1992 to 1994 annual averages was 56 ug/m³. The TSP sampler was replaced with PM₁₀ monitor that is currently operating and finding attainment.

Table E-6: Historical TSP Values: Summary Table ^{(a) (b) (c) & (d)} Page 1 of 3							
Site	Abbr.	County	Service Years	Design Years	3-Year Annual Average (ug/m ³)	3-Year 4 th High (ug/m ³)	
Ainsworth	Ain	Brown	1974-1977	1975-77	73	133	
Auburn	Aub	Nemaha	1976-1992	1985-87	65	139	
Beatrice	Bea	Gage	1971–1995	1985-87	56	127	
Bellevue	Blv	Sarpy	1971-1992	1985-87	57	136	
Bennett	Btn	Lancaster	1972-1977	1975-77	109	439	
Chadron	Chd	Dawes	1971-1977	1975-77	48	85	
Columbus	Col	Platte	1972-1993	1985-87	50	127	
Comstock	Cms	Custer	1979-1980	1979-80	20	119	
Cozad	Czd	Dawson	1974-1994	1979-81	39	92	
Elkhorn	not shown	Douglas	1982-1989	1985-87	35	86	
Fairbury	Frb	Jefferson	1971-1978	1976-78	66	136	
Firth	Fir	Lancaster	1972-1982	1980-82	44	121	
Fremont	Frm	Dodge	1972-1995	1985-87	47	117	
Gothenburg	Gth	Dawson	1990-1992	1990-92	94	232	
Grand Island	GI	Hall	1971-1995	1985-87	52	121	
Gretna	not shown	Sarpy	1985-1992	1985-87	42	118	
Hallam	Hal	Lancaster	1973-1979	1977-79	49	133	
Halsey National Forest	HNF	Thomas	1958-1977	1975-77	20	44	
Hastings	Hst	Adams	1972-1992	1985-87	71	170	
Hershey (17 mi south)	Hrs	Lincoln	1973-1985	1983-85	28	83	
Homer	Hmr	Dakota	1980-1981	1980-81	52	161	
Kearney	Krn	Kearney	1972-1992	1985-87	57	139	
Lexington	Lex	Dawson	1971-1993	1985-87	46	118	
Lincoln ^(e)	Lnc	Lancaster	1957-1987	1985-87	64	136	
Louisville	not shown	Cass	1971-1984	1982-84	73	166	
McCook	McC	Red Willow	1971-1973	1971-73	70	134	
Nebraska City	NbC	Otoe	1975-1992	1985-87	86	219	
Norfolk	Nrf	Madison	1971-1993	1985-87	66	162	
North Platte	NP	Cass	1971-1993	1985-87	46	100	
Omaha – Eppley Airport	not shown	Douglas	1971-1983	1981-83	60	143	
Omaha – 11 th & Nicholas	Oma	Douglas	1971-2000	1985-87	73	177	
Omaha – 15 th & Read	not shown	Douglas	1990-1992	1990-92	50	120	
Omaha – 17 th & Harney	not shown	Douglas	1975-1977	1975-77	72	125	
Omaha – 18 th & Dodge	not shown	Douglas	1957-1975	1973-75	92	163	
Omaha – 19 th & Howard	not shown	Douglas	1978-1992	1985-87	63	149	
Omaha – 2211 Paul St	not shown	Douglas	1983-1990	1985-87	58	141	
Omaha – 24 th & O	not shown	Douglas	1976-1988	1985-87	58	126	
Omaha – 25 th & L	not shown	Douglas	1971-1976	1974-76	119	268	
Omaha – 30 th & Hanover	not shown	Douglas	1971-1981	1979-81	68	149	
Table continued on next page	ge						

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment
Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present

Table E-6: Historical TSP Values: Summary Table (a) (b) (c) & (d)Page 2 of 3						
Site	Abbr.	County	Service Years	Design Years	3-Year Annual Average (ug/m ³)	3-Year 4 th High (<i>ug</i> /m ³)
Omaha – 4105 Woolworth	not shown	Douglas	1971-1993	1985-87	45	97
Omaha – 46 th & Farnam	not shown	Douglas	1990-1992	1990-92	69	180
Omaha – 63 rd & Frederick	not shown	Douglas	1971-1989	1985-87	60	135
Omaha – 72 nd & Hartman	not shown	Douglas	1971-1972	1971-72	59	103
$Omaha - 72^{nd}$ & Hwy 36	not shown	Douglas	1971-1976	1974-76	49	126
Omaha – 11414 N 72nd	not shown	Douglas	1976-1989	1985-87	33	89
Omaha – 77 th & Dodge	not shown	Douglas	1982-1997	1985-87	70	147
Omaha 8801 Fort St	not shown	Douglas	1975-1987	1985-87	42	97
Omaha – 140 th & Dodge	not shown	Douglas	1971-1981	1979-81	55	125
Papillion	Pap	Douglas	1971-1992	1985-87	59	152
Scottsbluff	ScB	Scotts Bluff	1971-1992	1985-87	79	253
South Sioux City	SSC	Dakota	1971-1994	1985-87	76	161
Superior	Sup	Nuchols	1973-1993	1985-87	55	130
Waverly	Wav	Lancaster	1973-1987	1985-87	72	175
Weeping Water	WW	Cass	1972-1992	1985-87	80	252
Willow Island	not shown	Dawson	1972-1973	1972-73	113	342
York	Yrk	York	1976-1992	1975-77	63	132

Footnotes:

(a) The primary annual average NAAQS = 75 ug/m^3 and secondary NAAQS was 60 ug/m^3 to be compared to the geometric mean for any given year. The values shown in this figure are 3-year average values for the time frame shown in the "Design Years" column.

(b) The primary 24-Hour NAAQS was 260 ug/m3 and secondary NAAQS was 150 ug/m3. Neither value was to be exceeded more than once per year. The values shown in this figure are the 4th high value over a 3 year time frame, or if only 2 years of data was available, the 3rd high value.

(c) Data from 1985 to 1987, when available, was preferentially used because this was the last 3 years when the TSP NAAQS was in effect. Gray highlight in the "Design Value" column was used to identify sites where 1985-87 data was used.

(d) Yellow highlight was used to identify values above the NAAQS.

(e) There were 14 different TSP monitoring sites at various times in Lincoln. The data shown for Lincoln was from the 10th & M Street site, which operated from 1980 to 1987. It was the only site operated after 1985 and was the highest concentration site in the 1980's.

V.B. PM₁₀

NAAQS for PM_{10} were established in 1987 with identical primary and secondary standards set at150 ug/m^3 averaged over 24 hours (i.e., a daily average concentration) not to be exceeded more than once per year, and a 50 ug/m^3 annual average. These NAAQS were evaluated over a three-year period such that the 150 ug/m^3 level cannot be exceeded more than three times in any 3 consecutive calendar years, and the three-year average of the annual averages cannot exceed 50 ug/m^3 . In 2006, the 50 ug/m^3 annual standard was rescinded. The subsequent review completed in 2012 left the PM_{10} NAAQS unchanged. See Table E-4 above.

Monitoring for PM₁₀ was initiated in Nebraska in 1987 and 1988 in eight (8) communities (Hastings, Kearney, Lincoln, Louisville, Nebraska City, Omaha, Scottsbluff, and Weeping Water) and continues today in four (4) communities (Cozad, Gothenburg, Omaha and Weeping Water). Over the last 23 years, PM₁₀ monitoring has been conducted in or near 15 Nebraska communities (Auburn, Beatrice, Broken Bow, Cozad, Gothenburg, Grand Island, Springfield, Hastings, Kearney, Lincoln, Louisville, Nebraska City, Omaha, Scottsbluff, and Weeping Water). Table E-6 summarizes PM₁₀ monitoring results from 1987 to 1999, which demonstrate attainment with the NAAQS (after 1999 there were only 4 monitoring sites and their monitoring history is examined in detail below).

There have been two areas in Nebraska where PM_{10} levels have exceeded the NAAQS as defined in 40 CFR Part 58 Appendix K: Weeping Water and the 46th & Farnam site in Omaha. Appendix K allows 3 24-hr PM_{10} values to exceed 150 ug/m^3 in any 3-year time frame, with the 4th excursion indicating the NAAQS is not being met.

<u>Weeping Water</u>: This area has several limestone mining and processing areas. NDEQ Title 129 Chapter 21 has Cass County specific controls for rock processing activities that were promulgated in 1975 to reduce particulate emissions in the Weeping Water and Louisville areas.

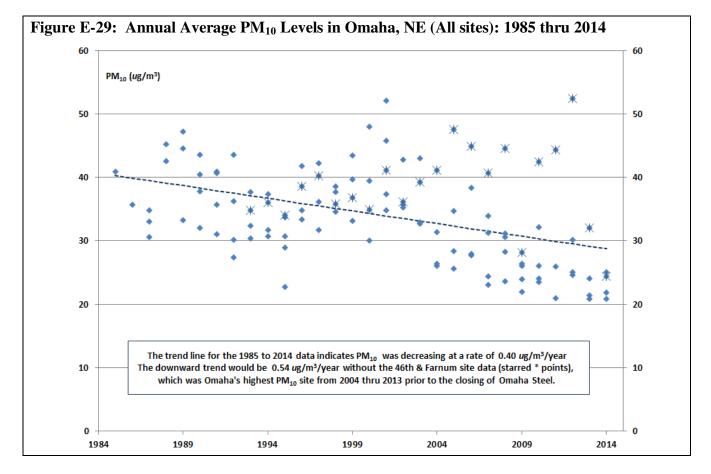
The sampler that found the high PM_{10} values is located 2 miles west of the Weeping Water and within a $\frac{1}{2}$ mile of limestone processing facilities. In October thru November 2010 there were four 24-hour values that exceeded 150 ug/m^3 : 176 on 10/20, 249 on 10/26, 306 on 10/27 & 209 on 11/26. There was also one 24-hour exceedence in 2012: 179 on 1/5. There were no other exceedences in the 2008 to 2014 time frame.

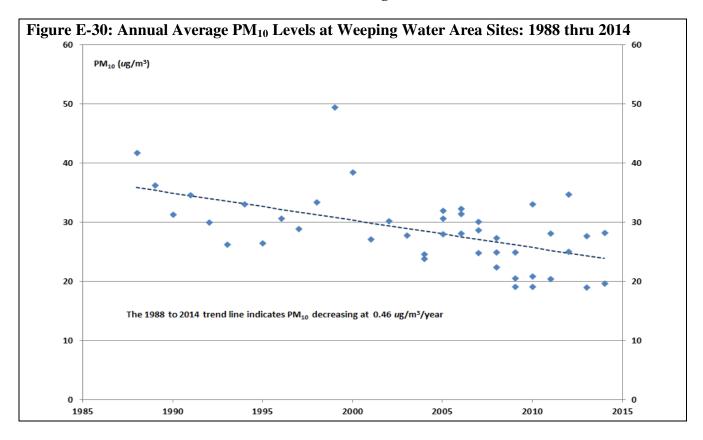
After the sources in the area were made aware of the 2010 exceedences, PM_{10} levels dropped, such that the highest 24-hour value for 2011 was 108 ug/m^3 , and other than the 179 ug/m^3 value found on January 5th, the 2nd high value for 2012 was 129 ug/m^3 . Thus increased awareness on the part of the sources was effective in reducing PM_{10} levels and no further action was needed.

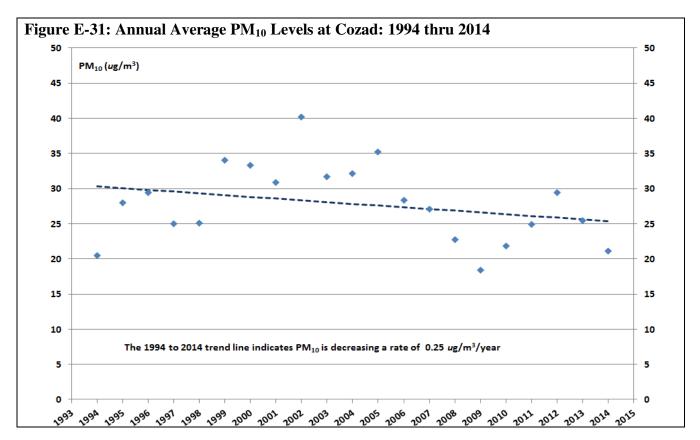
<u>46th & Farnam Omaha</u>: This site was source-oriented with respect to the Omaha Steel Company foundry. Between September 2011 and June 2012, there were 4 excursions above 150 ug/m³: 172 on 9/28/11, 159 on 1/5/12, 199 on 5/14/12 and 181 on 6/5/12. The Omaha Steel facility was in the process of moving to a new location. Their move was completed in 2014. The highest values since 2012 have been 94 ug/m³ in 2013 and 115 ug/m³ in 2014.

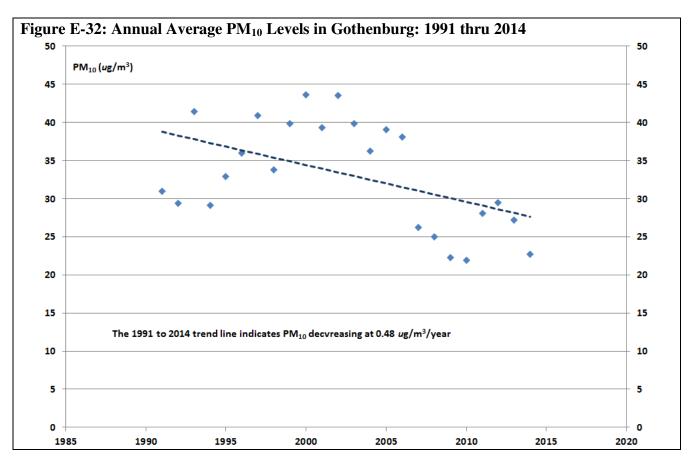
<u>Dawson County</u>: The maximum 24-hr values at Cozad and Gothenburg have been below 150 ug/m^3 as detailed below:

- Cozad: The highest maximum value = $146 \text{ }ug/\text{m}^3$ and the 2^{nd} high maximum = $106 \text{ }ug/\text{m}^3$; both occurred in 2002 (monitoring conducted from 1994 to 2014).
- Gothenburg: The highest maximum value = 143 ug/m^3 in 2004 and 2^{nd} high maximum = 125 ug/m^3 in 2000 (monitoring conducted from 1991 to 2014).


Figures E-29 thru E-32 show the annual average PM_{10} monitoring results from 4 locations: Omaha (all sites), Weeping Water (all sites), Cozad, and Gothenburg. The annual average values have decreased in all 4 areas: 0.040 $ug/m^3/year$ in Omaha, 0.046 $ug/m^3/year$ in Weeping Water, 0.25 $ug/m^3/year$ at Cozad and 0.48 $ug/m^3/year$ at Gothenburg. Annual average values were plotted because it was felt they would better represent trends than annual highest values.


Table E- 7: PM ₁₀ Monitoring Result Summary: 1987 to 1999 (a)(b)						
City	Years Sampled	# of Years	Annual Average Range (ug/m^3)	Annual Maximum Range (ug/m ³)		
Auburn	1994 - 1995	2	25 - 28	63 - 133		
Beatrice	1994 - 1995	2	16 - 33	25 - 109		
Cozad ^{(a)(b)}	1994 – 1999	6	21 - 34	51 - 99		
Grand Island	1994 – 1995	2	19 - 26	24 - 48		
Gothenburg ^{(a)(b)}	1991 – 1999	9	29 - 41	78 - 141		
Hastings	1987 - 1996	10	19 - 39	48 - 138		
Kearney	1988 – 1998	11	17 - 40	28 - 127		
Lincoln	1988 – 1998	11	24 - 34	48 - 102		
Louisville (not shown)	1985 - 1999	15	25 - 46	55 - 137		
Nebraska City	1985 – 1998	14	22 - 58	31 - 114		
Omaha (7 sites) ^{(a)(b)}	1985 – 1999	15	27 - 47	55 - 290		
Scotts Bluff	1988 – 1998	11	21 - 58	32 - 131		
Springfield (not shown)	1995	1	23	78		
Weeping Water ^{(a)(b)}	1985 – 1999	15	26 - 49	88 - 187		
	City Auburn Beatrice Cozad ^{(a)(b)} Grand Island Gothenburg ^{(a)(b)} Hastings Kearney Lincoln Louisville (not shown) Nebraska City Omaha (7 sites) ^{(a)(b)} Scotts Bluff Springfield (not shown)	CityYears SampledAuburn1994 – 1995Beatrice1994 – 1995Cozad (a)(b)1994 – 1999Grand Island1994 – 1995Gothenburg (a)(b)1991 – 1999Hastings1987 - 1996Kearney1988 – 1998Lincoln1988 – 1998Louisville (not shown)1985 - 1999Nebraska City1985 – 1998Omaha (7 sites) ^{(a)(b)} 1985 – 1999Scotts Bluff1988 – 1998Springfield (not shown)1995Weeping Water ^{(a)(b)} 1985 – 1999	$\begin{array}{c} \mbox{City} & Years Sampled & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	CityYears Sampled# of YearsAnnual Average Range (ug/m^3) Auburn1994 – 19952 $25 - 28$ Beatrice1994 – 19952 $16 - 33$ Cozad ^{(a)(b)} 1994 – 19996 $21 - 34$ Grand Island1994 – 19952 $19 - 26$ Gothenburg ^{(a)(b)} 1991 – 19999 $29 - 41$ Hastings1987 - 199610 $19 - 39$ Kearney1988 – 199811 $17 - 40$ Lincoln1985 – 199811 $24 - 34$ Louisville (not shown)1985 – 199915 $25 - 46$ Nebraska City1985 – 199814 $22 - 58$ Omaha (7 sites) ^{(a)(b)} 1985 – 199915 $27 - 47$ Scotts Bluff1988 – 199811 $21 - 58$ Springfield (not shown)19951 23 Weeping Water ^{(a)(b)} 1985 – 199915 $26 - 49$		


Footnotes:


(a) The 1987 to 1999 time frame was chosen because from 2000 to present PM_{10} was conducted at 4 locations: Cozad, Gothenburg, Omaha and Weeping Water. Thus this table compares the early year monitoring results from all 14 locations where PM_{10} monitoring was conducted.

(b) A more detailed analysis of PM10 trends at Cozad, Gothenburg, Omaha and Weeping Water can be found below.

V.C. PM_{2.5}

 $PM_{2.5}$ forms in situ (in the atmosphere) from pollutant precursors such as ammonia in combination with NO₂ or SO₂, and it can also be an emission pollutant from stationary and mobile sources. Thus, $PM_{2.5}$ is not nearly as source-oriented as TSP and PM_{10} .

As stated at the start of this PM subsection, the finer $PM_{2.5}$ can more easily penetrate the lungs than larger diameter PM_{10} and TSP particles. For this reason, the $PM_{2.5}$ NAAQS are set lower than the PM_{10} NAAQS.

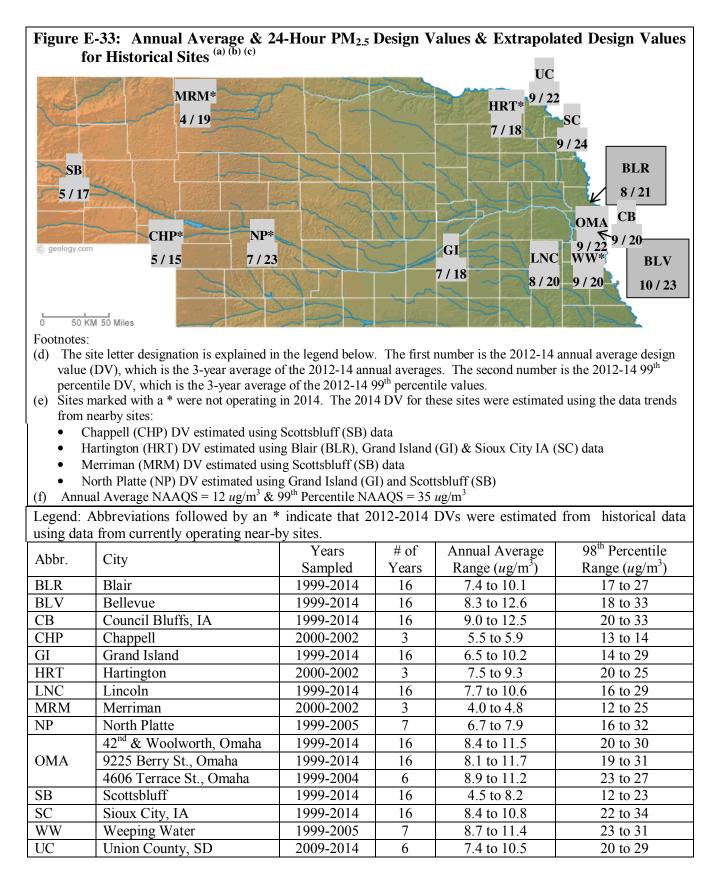
 $PM_{2.5}$ NAAQS were established in 1997. A 65 ug/m^3 24-hour standard and a 15 ug/m^3 annual average were established. In 2006, the 24-hour standard was lowered to 35 ug/m^3 . The $PM_{2.5}$ standard is currently under review, and EPA is expected to propose revisions in early 2011. The Clean Air Scientific Advisory Committee (CASAC) has recommended that the annual standard be lowered to be within the range of 11 to 13 ug/m^3 , and has requested EPA consider lowering the 24-hour standard to 30 ug/m^3 .

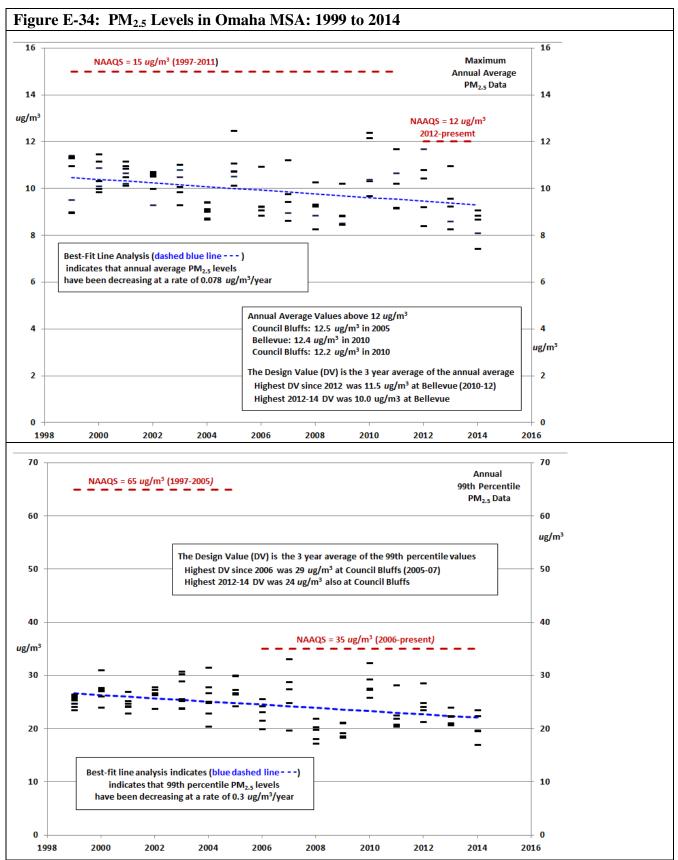
In 1999, PM_{2.5} monitoring was initiated at 13 sites at or near 11 Nebraska communities (Bellevue, Blair, Chappell, Grand Island, Hartington, Lincoln, Merriman, North Platte, Omaha (3 sites), Scottsbluff and Weeping Water). Three sites were shutdown in 2002 after attainment had been demonstrated: Chappell, Hartington and Merriman. Three more sites were shut-down in 2004 thru 2005: North Platte, Weeping Water, and one site in Omaha. Currently there are 7 sites running in 6 communities: Bellevue, Blair, Grand Island, Lincoln, Omaha (2 sites) and Scottsbluff.

40 CFR Part 58 Appendix D Section 4.7.3 requires each state to operate a regional transport and background site. The Grand Island site is Nebraska's transport site and the Scottsbluff site is the background site.

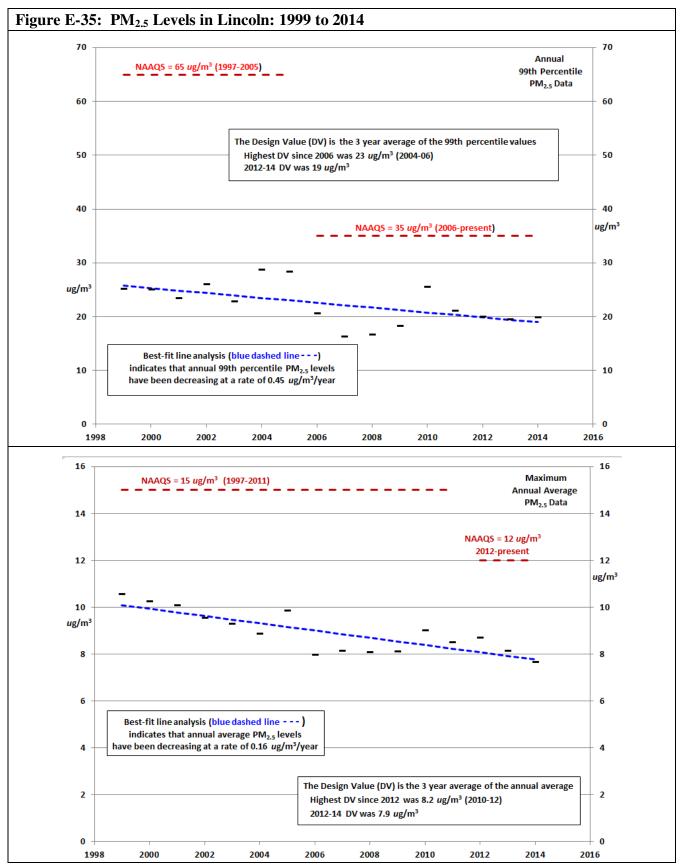
There were also 2 sites established by Iowa in 1999 in the Omaha and Sioux City MSAs; both of these sites continue to operate. In 2009, South Dakota established 2 sites in Union County, which is in the Sioux City MSA; one was closed after 2013, the other remains operating.

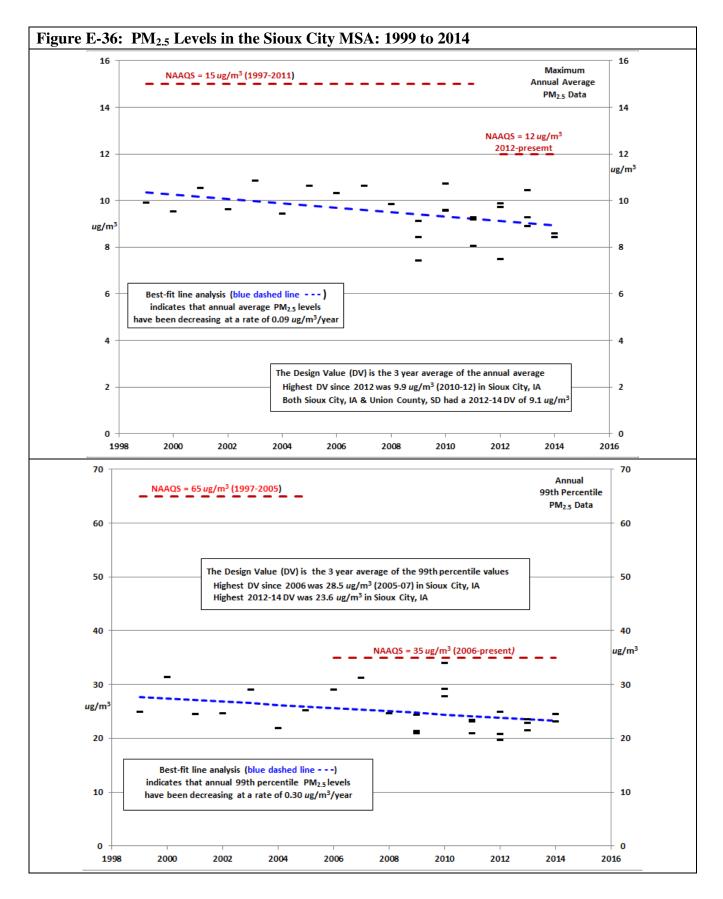
Figure E-33 shows actual and estimated 2012 thru 2014 $PM_{2.5}$ design values (3-year average values) for all of the current and historical $PM_{2.5}$ monitoring sites in Nebraska and in the Omaha and Sioux City MSAs. As can be seen in Figure E-33, the 2012 thru 2014 design values (DVs) are in attainment with the NAAQS.

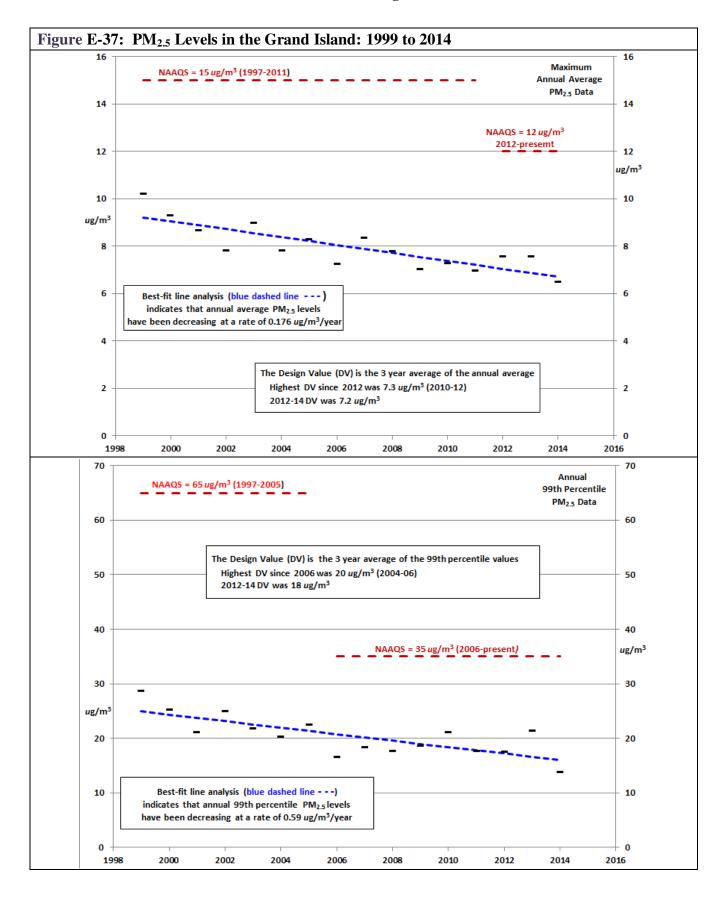

Figures E-34 thru E-38 show the complete history of $PM_{2.5}$ monitoring results in the following 5 locations: Omaha MSA (NE & IA sites, includes Bellevue and Blair), Lincoln, Sioux City MSA (IA & SD sites), Grand Island and Scottsbluff. Two significant things the $PM_{2.5}$ monitoring results from these 5 locations have in common:

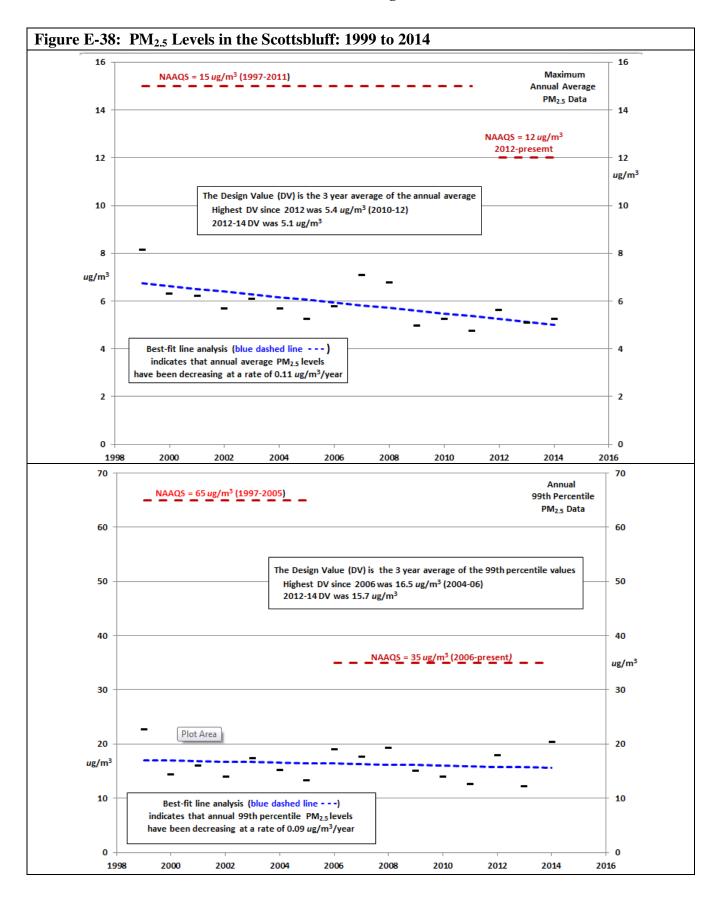

• All the results indicate attainment with the NAAQS since monitoring was initiated in 1999; and

• Both annual average and 99th percentile values have trended downward from 1999 to 2014.


The downward trend in 99th percentile values at Scottsbluff is minimal, but the 2012-14 DV is slightly less than 50% of the NAAQS.


It is also noted that the Bellevue and Council Bluffs sites in the Omaha MSA had annual average values above 12 ug/m^3 in 2010. NAAQS attainment is evaluated using a 3-year average, and the 2010-12 DVs at these sites were 11.5 ug/m^3 and 11.1 ug/m^3 respectively. These sites remain the two highest concentration sites at 82% to 83% of the NAAQS.





Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present

VI. Lead

Lead sources in Nebraska include certain process industries (e.g., foundries, lead smelters, battery recyclers), coal-fired boilers, leaded gasoline (currently only available for aircraft), and natural sources (minimal). Control measures have significantly decreased lead emissions and atmospheric lead levels. Significance sources of lead emissions include:

- 1) Particulate emission controls placed on coal-fired boilers, foundries, and other process industry sources;
- 2) The phasing out of leaded gasoline from 1975 thru 1986, with the complete elimination of leaded gasoline for on-road vehicles in 1996; and
- 3) In Omaha, the closing of the ASARCO lead factory in 1997.

The lead NAAQS was first promulgated in 1978 and modified in 2008. See Table E-8 below.

Table E-8: History of the Lead NAAQS						
Effective Date	Primary and Secondary NAAQS	Compliance Evaluation				
October 5, 1978	1.5 ug/m3 STP ^(a)	Quarterly averages are not to exceed NAAQS				
November 12, 2008	November 12, 2008 0.15 ug/m3 LC ^(b) Rolling 3-month averages are not to exceed NAAQS					
Footnote: (a) STP - Sampling volume expressed in standard conditions of 20° C and 760 mm Hg. (b) LC - Sampling volume approximately and at least atmospheric conditions without adjustment for temperature and						

(b) LC - Sampling volume expressed at local atmospheric conditions without adjustment for temperature and pressure.

Monitoring was first conducted for lead in Omaha in 1959, and in Lincoln and Louisville in 1962. Table E-9 provides a summary of lead monitoring locations, time frames and levels. Figures E-39 thru E-41 are plots of lead monitoring results from various times and locations in Nebraska. These figures show both historical monitoring conducted to evaluate attainment with the 1.5 ug/m^3 NAAQS, which was in place from 1978 thru 2008; and newer data from 2010 thru 2014 that conducted to evaluate attainment with the current 0.15 ug/m^3 NAAQS, which became effective in 2008. These figures contain explanatory narratives relative to trends and factors the trends.

Figure E-42 specifically shows 3-month average data from the 3 lead monitoring sites currently operating in Nebraska: Auburn, Fremont and Omaha. As can be seen in the figure, the current monitoring is demonstrating attainment, although 2010 thru 2012 data completeness was an issue, as explained in the footnotes of the figure.

The three current monitoring sites are sited in accordance with regulations that require sourceoriented lead monitoring around sources with lead emissions of 0.5 tons per year (tpy) or more (i.e., the Auburn and Fremont sites); and a non-source-oriented site at the Omaha NCore site.

With respect to source-oriented sites, the 2011 National Emission Inventory lists three facilities in Nebraska with lead emissions of 0.5 tpy or more:

- Magnolia Metal Corp, a bronze casting foundry in Auburn, at 2.17 tpy,
- Magnus Division of LV Ventures, a brass/bronze casting and lead babbitt bearing manufacturer in Fremont, at 0.72 tpy, and
- Nucor Steel a steel foundry in Norfolk, at 0.5 tpy.

Nucor Steel submitted modeling demonstrating ambient lead concentrations will not exceed 50% of the NAAQS. This modeling was reviewed and accepted by NDEQ and EPA. Thus monitoring near Nucor was not required (see 40 CFR Part 58 Appendix D Section 4.5.a.ii).

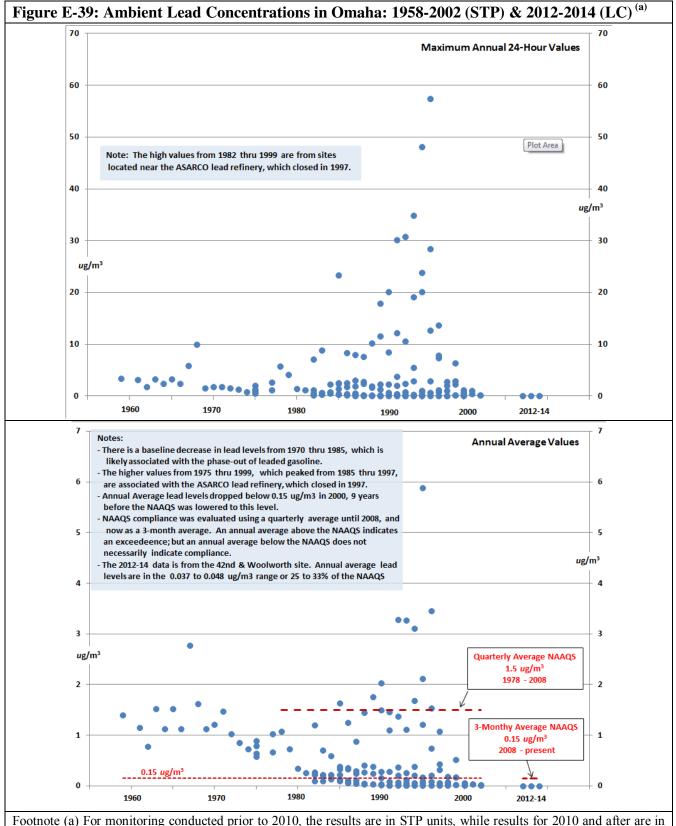
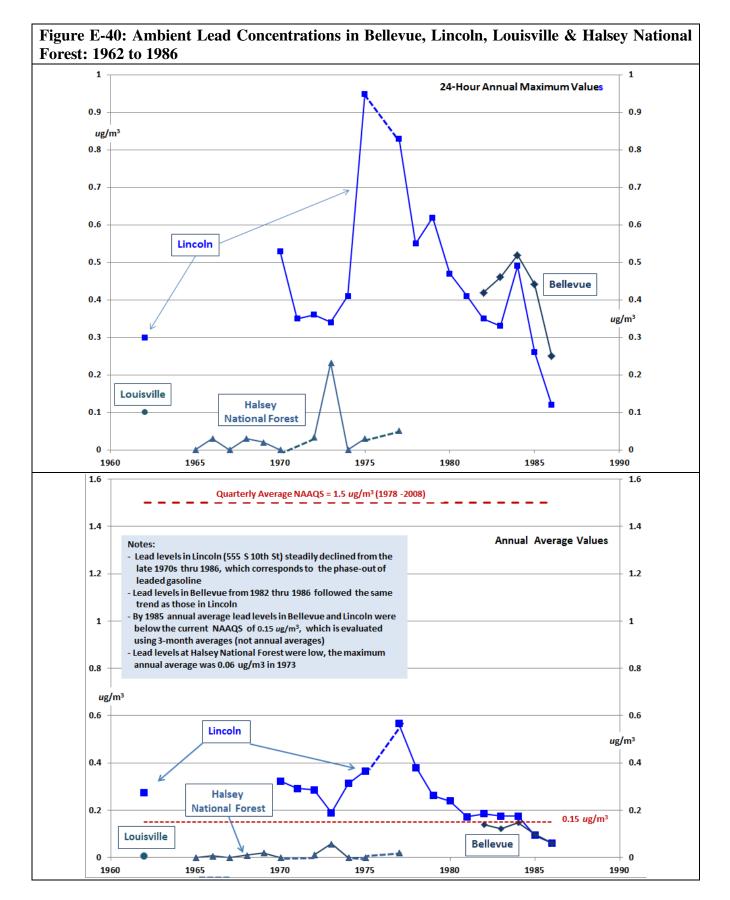
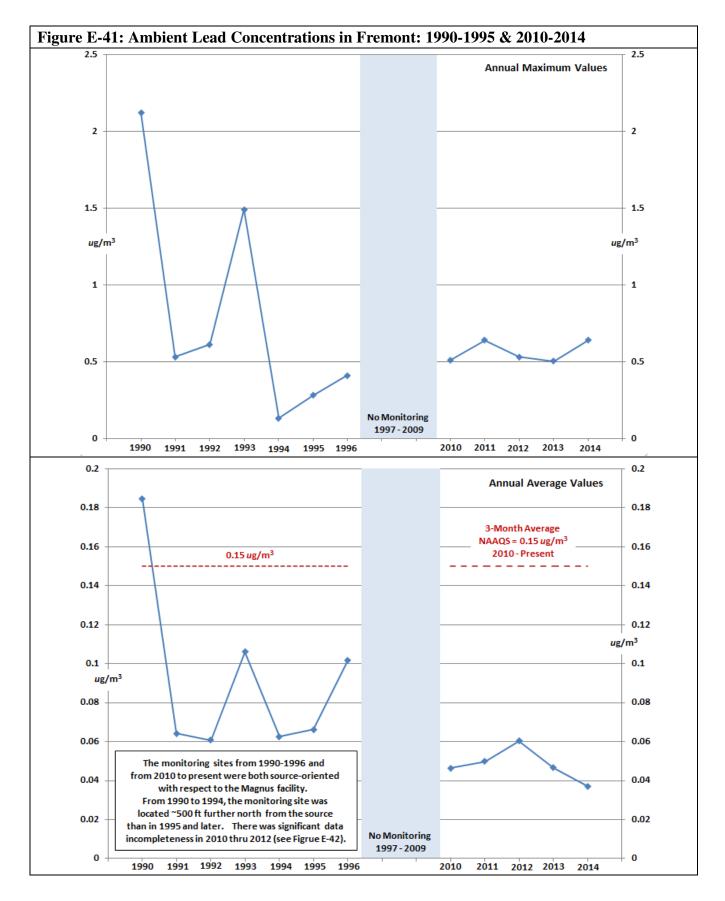
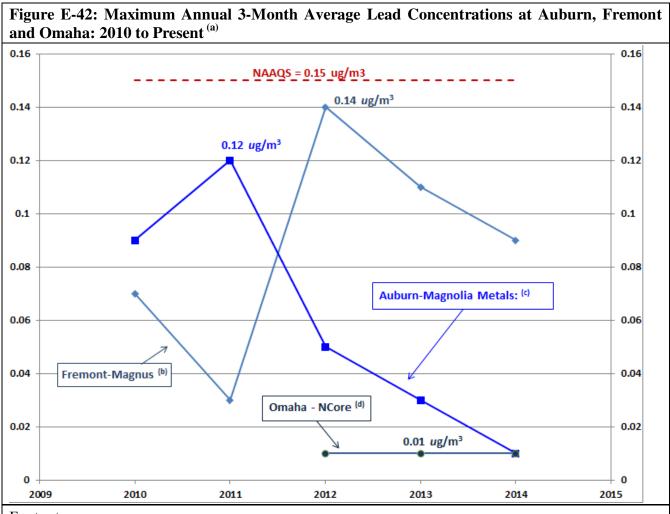

Magnolia Metals in Auburn has installed additional monitoring equipment such that lead emissions are now below the 0.5 tpy threshold for requiring monitoring. Attachment F contains a detailed analysis of monitoring results at Auburn to support a request to discontinue monitoring near Magnolia Metals.

Table E-9: Historical Lead Monitoring Summary ^(a)						
Location	Years	24-Hour Annual	Annual Average			
	Monitored	Maximum Range	Range			
		(ug/m^3)	(ug/m^3)			
Omaha	1959 - 2002	0.03 to 57.5	0.01 to 5.9			
	2012 - 2014	0.013 to 0.021	0.0037 to 0.0048			
Lincoln	1962	0.3	0.1			
	1970 - 1975	0.34 to 0.95	0.19 to 0.37			
	1977 - 1986	0.12 to 0.95	0.06 to 0.57			
Louisville	1962	0.006	0.275			
Halsey National Forest (b)	1965 – 1977	0.00 to 0.23	0.00 to 0.058			
Bellevue	1982 – 1986	0.25 to 0.52	0.06 to 0.15			
Fremont	1990 - 1995	0.13 to 2.1	0.06 to 0.18			
	2010 - 2014	0.56 to 0.64	0.037 to 0.06			
Auburn	2010 - 2014	0.04 to 0.57	0.005 to 0.040			


Footnotes:


(a) For Monitoring conducted prior to 2010, the results are in STP units, while results for 2010 and after are in LC units. STP units are adjusted for standard conditions of 20° C and 760 mm Hg. LC units are expressed at local atmospheric conditions.


(b) Halsey National Forest was not sampled in 1971 and 1976. Also sampling was less than 1/6 days: 2 events in 1974, 4 events in 1965-67, 1969-70 & 1973, 8 events in 1977, 20 events in 1975 & 24 events in 1968.

Footnote (a) For monitoring conducted prior to 2010, the results are in STP units, while results for 2010 and after are in LC units. STP units are adjusted for standard conditions of 20° C and 760 mm Hg. LC units are expressed at local atmospheric conditions.

Footnotes:

(a) Incomplete data from the Auburn and Fremont sites, due to sampler problems, was an issue in 2010 and 2011 as shown below.

(b) The Fremont site is source-oriented with respect to the Magnus Division of LV Ventures, a brass/bronze casting and lead babbitt bearing manufacturing facility. Data incompleteness was high in 2011.

(c) The Auburn site is source-oriented with respect the Magnolia Metals Corp., a/bronze casting facility.

(d) The Omaha site is at the NCore site. It is not source-oriented. It began operation in 2012.

Months with 75% complete data

1			
Year	Auburn	Fremont	Omaha
i cai	Magnolia Metals	Magnus	NCore
2010	7	6	Not Applicable
2011	2	9	Not Applicable
2012	11	8	10
2013	12	12	12
2014	9	12	12

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present

VII. Total Reduced Sulfur (TRS)

Nebraska promulgated ambient air quality standards for Total Reduced Sulfur (TRS) in 1997 with a 1-hour standard of 10 ppm and a 30-minute standard of 0.1 ppm. Compliance with the 30-minute average standard ensures compliance with the 1 minute standard (i.e., 10/30 =0.33).

The TRS standards were developed in response to hydrogen-sulfur-like odors (rotten egg odor) in the South Sioux City/Dakota City and Lexington areas. Also, preliminary monitoring with portable devices in these two areas indicated that hydrogen sulfur (H_2S)levels were such that a public health concern could exist.

Each of these communities had anaerobic lagoons associated with and operated by IBP beef processing facilities. In the Sioux City MSA there were other potential sources including the Sioux City wastewater treatment facility and a rending facility, both in Iowa. IBP's anaerobic lagoons were somewhat unique from other packing plant lagoons in that they had little or no grease cover, a consequence of their efficiency in capturing non-edible by-products.

The Dakota City facility had two additional features which contributed to H₂S production.

- There is a tannery at the facility that uses acidic sulfate salts and produces H₂S emissions. The sulfate salts used in tanning are converted to H₂S during the process and the acidic environment facilitates the release of H₂S to the atmosphere.
- 2) Water supplies in the South Sioux City/Dakota City area have a high sulfate concentration, and in anaerobic lagoons the sulfate is converted to H₂S.

In the late 1990's IBP agreed to cover their Dakota City and Lexington lagoons with the captured offgas being scrubbed to remove hydrogen sulfide and then flared. The lagoon cover and gas capture systems were completed in 2000. Air emission controls were also applied to the tannery in the form of scrubbers on the building and on certain process units. Process pH controls were also implemented in some tannery processes to reduce H_2S emissions (i.e., acidic conditions increase H2S release).

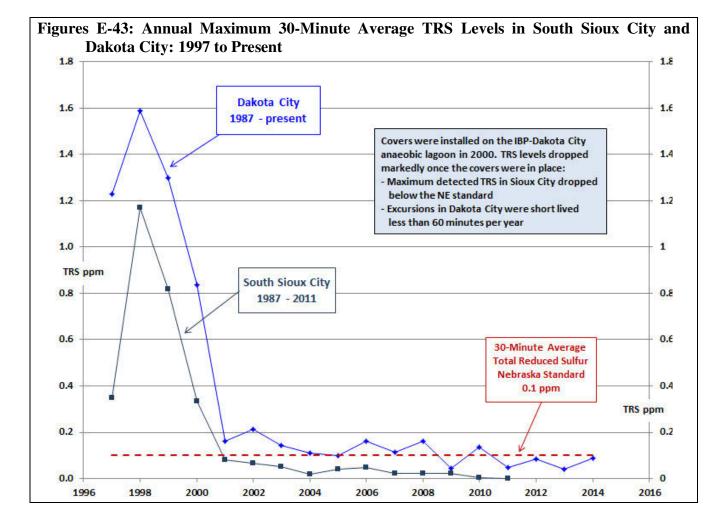
The off-gas is a combination of methane, carbon dioxide and H_2S . The mixture is flammable and H_2S scrubbing was required to reduce SO_2 emissions.

The Dakota City and Lexington facilities are now owned and operated by Tyson Foods. Further upgrades in the lagoon gas handling procedures have been made and both facilities now have the capability of using lagoon off-gas in production boilers.

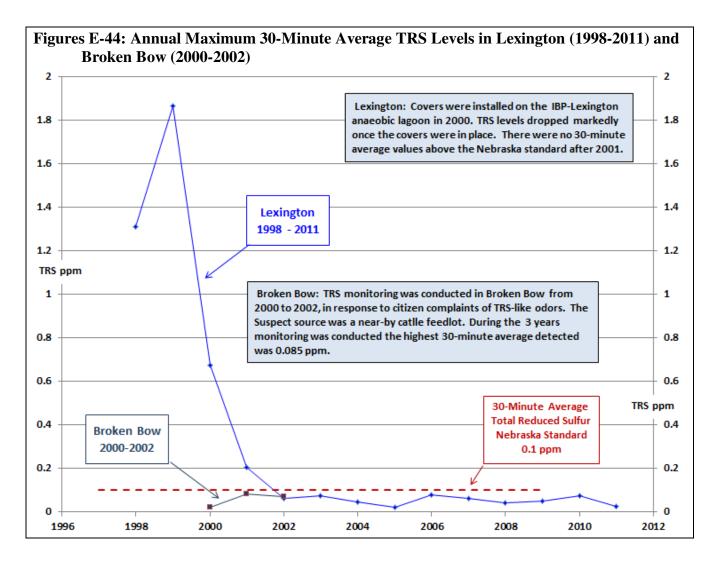
From 2000-2002 TRS monitoring was also conducted in Broken Bow in response to hydrogensulfide-like odors. The primary potential source being a cattle feedlot approximately 2 miles S-SE of Broken Bow. The monitoring did not find H_2S levels above the Nebraska standards, with the highest 30-minute value found being 0.085 ppm in 2001.

Figures E-43 and E-44 are plots of annual maximum 30-minute values. Figure E-43 contains summarized data from South Sioux City and Dakota City. Figure E-44 shows summarized data from Lexington and Broken Bow. The data is summarized in that it only shows annual maximum values (i.e., worst case) for the communities listed (i.e., the data is not site-specific). There were 2 sites in South Sioux City thru 2002, and 2 sites in Lexington from 1999-2002.

The figures conclusively show the positive air quality impacts that occurred following the covering of the IBP lagoons in 2000 at Dakota City and Lexington. Since 2002, all of the sites, but one, the Pine Street site in Dakota City, have been in continuous compliance with the H_2S standard, and the


Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present

excursions at the Dakota City site have been brief and intermittent (i.e., since 2004 annual excursions have never exceeded 1 hour per year, and they occurred in the spring from March thru May).


Only 30-minute data is plotted in Figures E-43 and E-44 because compliance with the 30-minute standard ensures compliance with the 1-minute standard. The highest 1-minute H_2S level ever detected was 4.6 ppm at Lexington in 1998.

The federal NAAQS are associated with regulatory procedures for evaluating attainment (e.g., attainment with the 1-hour 0.075 ppm SO₂ NAAQS is evaluated using the 3-year average of the annual 99th percentile values from the most recent 3 years). The Nebraska standard does not include such criteria for evaluating attainment. The NDEQ response to the short-term excursions that have occurred at the Dakota City since the lagoon was covered, has been to contact IBP/Tyson to inform them of the excursion and to investigate potential causes at their facility. This approach improves source awareness and encourages voluntary action.

There are other TRS sources in the Sioux City MSA. Local efforts to identify and mitigate odor issues in the MSA pre-date NDEQ TRS monitoring efforts and continue to this day. Sioux City IA and South Sioux City, NE have odor response programs. Sioux City. IA strengthened their odor ordinances in 2013 with an emphasis to reduce odors from their wastewater treatment facility. Lance Hedquist, the South Sioux City Administrator, said that they had not " received any odor complaints in years."

Draft Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment E: Ambient Air Monitoring in Nebraska: 1957 to Present

This Page Intentionally Left Blank

Background:

In October 2008, the 24-hour average NAAQS for lead (abbr. Pb) was lowered from 1.5 ug/m^3 to 0.15 ug/m^3 . Concurrent with the NAAQS revision was a requirement in 40 CFR Part 58 Appendix D Section 4.5 to perform monitoring near Pb sources with emissions of 1 ton per year or more of Pb. There were 2 facilities in Nebraska that met this emission threshold: Magnolia Metals in Auburn and Magnus Farley in Fremont. Monitoring was initiated near both of these facilities in 2010. The 1 tpy threshold was lowered to 0.5 tpy beginning in 2011.

There is a waiver provision in 40 CFR Part 58 Appendix D Section 4.5.a (ii): *The Regional* Administrator may waive the requirement in paragraph 4.5(a) for monitoring near Pb sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50 percent of the NAAQS (based on historical monitoring data, modeling, or other means). The waiver must be renewed once every 5 years as part of the network assessment required under §58.10(d).

Lead (Pb) Emission Reductions at Magnolia Metals in Auburn

Beginning in 2012, Magnolia Metals began a series of upgrades to production and pollution control facilities that significantly reduced Pb emissions. The continuous casting line (CCL) in the secondary bronze casting facility was upgraded to allow larger parts to be produced, and two high performance dust collectors were installed. Enforceable limits related to these modifications were included in a construction permit issued in August 2012. The permit review indicated that the upgrades would reduce potential lead emissions nearly 5 fold.

The Pb emission reduction activities undertaken in 2012 and 2013 are summarized below.

- March 2012: Installation of new dust collection technology was initiated on the continuous casting line (CCL).
- December 2012: Modifications to CCL dust collection system were completed.
- May 2013: An on-site soil remediation project was completed.
- December 2013: A new bag-house was installed on the permanent mold exhaust and the CCL bag-house was further upgraded with the installation of an additional filter bank.

Emission testing conducted in May 2014 confirmed that Pb emission limits set forth in the construction permit issued in August 2012 were being met.

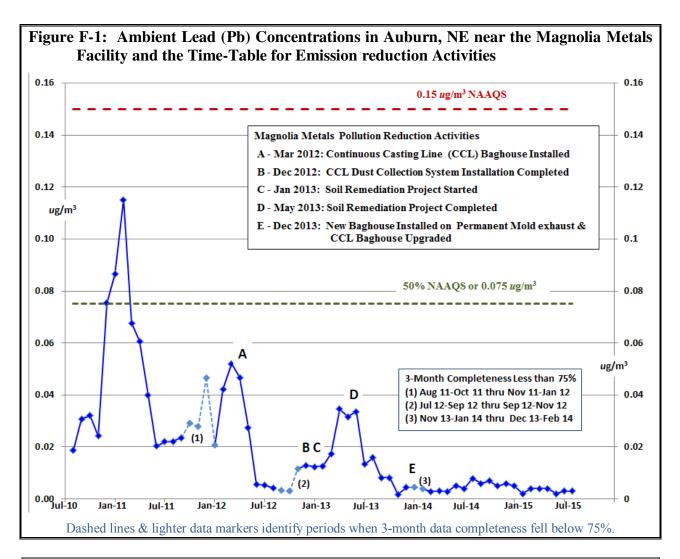
Emission inventory (EI) data from 2008 thru 2014 is shown in the Table Pb-1 below. The EI data shows Pb emissions falling below 0.5 tpy in 2013 and a further reduction to 0.1 tpy in 2014. The EI data is based in part on the emission testing data (i.e., stack test data) from May 2014. Overall, the EI data shows more than a 20-fold reduction in Pb emissions from 2011 to 2014.

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment F: Justification of Closing the Auburn Lead (Pb) Monitoring Site

Table F-1: Lead (Pb) Emissions from Magnolia Metals in Auburn as Reported on State and National Emission Inventory (EI) Submittals					
Source ^(a)	Year	Lead (tpy)			
National EI	2008	1.98			
National EI	2011	2.17			
Nebraska EI	2012	0.93			
Nebraska EI	2013	0.45			
Nebraska EI	2014	0.1			
Footnotes					
(a) Nebraska sources submit Emission Inventory data to the NDEQ annually. Once every three years this data is also submitted to USEPA to be included in the National Emission Inventory.					

Ambient monitoring data also indicates that Pb emissions from this facility have been dramatically decreased as shown in Figure Pb-1 and Table Pb-2 below. Average ambient Pb concentrations have decreased 90% and the maximum 3-month average values have decreased 93%.

From January 1, 2014 thru July 31, 2015, the maximum 3-month average value was 0.008 ug/m3 or 5% of the NAAQS; and the average 3-month value was 0.005 ug/m3 or 3% of the NAAQS. Thus the NAAQS is being attained with a very significant safety factor. Magnolia Metals emission control efforts had dramatic and commendable results.


Request to Discontinue Lead (Pb) Monitoring at Auburn, NE

The NDEQ requests that EPA approve the closure of the Auburn Pb monitoring site on the basis that the emissions from this facility are now well below the 0.5 tpy threshold for requiring monitoring. The reduction in Pb emissions was the result of pollution controls installed at the Magnolia Metals facility and enforceable controls in the construction permit issued in August 2012 require those controls to operated and maintained. Emission testing (stack testing) in May 2014 verified that the emissions were meeting permit requirements.

In addition, ambient monitoring indicates that Pb levels have been at or below 5% of the NAAQS since the completion of the Pb emission reduction projects at the facility.

This is not a request for a waiver under 40 CFR Part 58 Appendix D Section 4.5.a (ii), but rather a permanent closure request. If future emission inventory submittals or on-site testing indicate that the 0.5 tpy threshold is being exceeded, then the NDEQ would re-initiate Pb monitoring in the vicinity of the facility.

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment F: Justification of Closing the Auburn Lead (Pb) Monitoring Site

Table F-2: Ambient Lead (Pb) Concentrations in Auburn NE Before and After Emission Control Upgrades at Magnolia Metals ^{(a)(b)}

Average Ambient Pb	Maximum 3-Month		
Concentration	Average Value		
0.043 <i>u</i> g/m ³	0.115 ug/m ³		
(29% of NAAQS)	(73 % of NAAQS)		
0.005 <i>u</i> g/m ³	0.008 ug/m ³		
(3% of NAAQS)	(5% of NAAQS)		
90%	93%		
	Concentration 0.043 ug/m ³ (29% of NAAQS) 0.005 ug/m ³ (3% of NAAQS)		

Footnotes:

(a) Magnolia Metals undertook a series of emission control upgrades between March 2012 and December 2013. See Figure Pb-1 for summary and time-table of improvements.

(b) The Pb NAAQS is a 3-month average value of 0.15 ug/m^3 not to be exceeded within the last 3 years..

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment F: Justification of Closing the Auburn Lead (Pb) Monitoring Site

This Page

Intentionally

Left Blank

NP PID-120715

Page 152 of 165

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment G: Douglas County Health Department's Near-Road NO₂ Siting Proposal

The U.S. Environmental Protection Agency (U.S. EPA) requires the establishment of a near-road NO2 monitoring site. Federal regulations specify that there must be one microscale near-road NO2 monitoring station in each CBSA with a population of 500,000 or more. The CBSA of Omaha would fall into the range requiring a NO2 site location.

According to the 2010 Census, the CBSAs in Nebraska with population of at least 500,000 are:

Omaha–Council Bluffs, NE–IA 865,000 and the 59th largest CBSA

Douglas County Health Department (DCHD) will provide and submit performance reports to the EPA and NDEQ with monitoring data, siting criteria, and equipment inventory needed for the proposed NO2 site.

Proposed Parameter Monitored at DCHD site:

DCHD has one proposed site at 7747 Dodge Street with an AIRS ID of 31-055-0056

Proposed site will measure both Near Road CO (currently in operation) and NO/NO2/NOx as the Primary pollutants of concern.

Proposed Site Location:

NDEQ and DCHD have a site currently located at 7747 Dodge Street which is 15 feet off of the Dodge street traffic roadway. Currently DCHD monitors the air quality for Near-road CO at this location. DCHD is looking for the approval of this site at this location to satisfy the requirement of a Near-road NO monitoring site per EPA regulations.

Current CO Site at 7747 Dodge Street

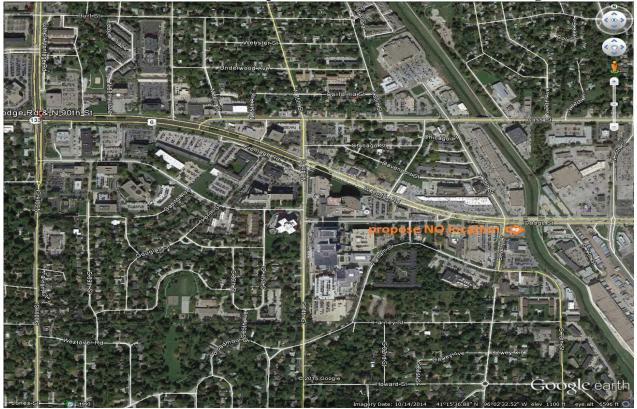
Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment G: Douglas County Health Department's Near-Road NO₂ Siting Proposal

Site Selection Procedure:

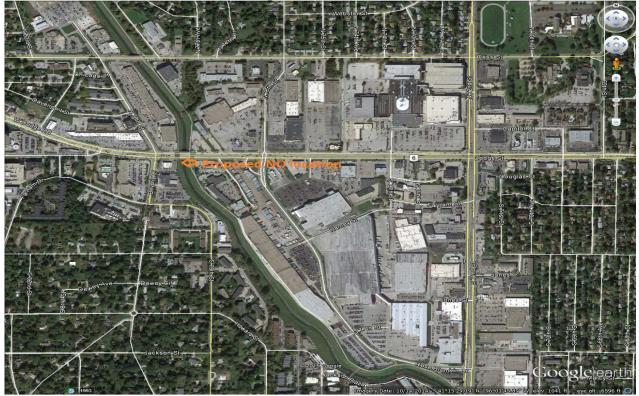
DCHD used TAD guidance in determining if the current CO near-road site would meet criteria for the NO near-road guidance requirements. Traffic data was collected and analyzed to determine the best possible road segments for the site location. DCHD also wanted a safe environment for the field operators with eliminated many of the interstate systems in the Omaha CBSA.

Annual Average Daily Traffic Counts (AADT)

DCHD used City of Omaha Traffic Counts to determine if this location would meet or satisfy the TAD requirements for NO near-road monitoring. The stretches of Dodge Street from 90th and Dodge to 72nd and Dodge Street have the most traffic per segment. Even though there are areas in the Omaha CBSA with slightly higher traffic counts, Dodge Street has a much higher congestion rate due to the number of traffic lights from 90th and Dodge to 72nd and Dodge. Federal guidance recommends that, to evaluate traffic volume AADT needs to account for higher pollution emissions. DCHD considers Dodge Street to possess such higher emissions due to vehicle idling and congestion patterns along this stretch of roadway.


Estimated Average Daily Traffic Data

Location	EADT
90 th and Dodge	107,596
78 th /Beverly Dr. & Dodge	71,968
76 th /Rose Blumkin & Dodge	73,768
72 nd and Dodge	93,524


DCHD Near-Road NO₂ Site Proposal

DCHD recommends based on cost for building structure (structure already built and sited), EADT traffic counts, technician safety, and traffic congestion/higher emissions, the site proposed for NO Near-road monitoring should be located at 7747 Dodge Street (EPA site id 31-055-0056).

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment G: Douglas County Health Department's Near-Road NO₂ Siting Proposal Aerial View: Current CO Site and Proposed Near-Road NO₂ Site at 7747 Dodge Street

Aerial View: Current CO Site and Proposed Near-Road NO₂ Site at 7747 Dodge Street

Nebraska 2015 Ambient Air Monitoring Network Plan & Assessment Attachment G: Douglas County Health Department's Near-Road NO₂ Siting Proposal

This Page

Intentionally

Left Blank

NP PID-120715

Page 156 of 165

DCHD Proposal

The Douglas County Health Department has proposed using the current CO monitoring site at 78th Street and West Dodge Street. as the near-road NOx monitoring site. The DCHC analysis cited:

- High traffic counts on Dodge St from 72nd St. to 90th St.;
- Significant traffic congestion at 78th & Dodge St;
- The site is immediately adjacent to Little Papillion Creek in a valley area; and

Also there is an existing highest-concentration, microscale CO site at this location. The criteria for siting the CO site are essentially the same as the near-road NO_2 site: high traffic, traffic congestion and road-canyon areas being highest concentration areas for both CO and NO_2 .

NDEQ Review

Non-interstate traffic count data from the City of Omaha for 9/30/15 was reviewed. The top 11 intersections and through-traffic road sections with respect to traffic counts are shown in Tables G-1 thru G-2, respectively. An examination of this data shows that the highest traffic count road segments, in order of highest to lowest, are:

1). West Dodge Road from 90th. to 96th Streets;

- 2). L Street from I-80 to 132nd; and
- 3). West Dodge Street from 69th to 90th Streets.

The location of these 3 road segments along with the highest EADT segment of I-80 are shown in Figure H-1.

DCHD proposed the 78th & Dodge site because it was a high traffic area with significant traffic congestion. The NDEQ concurs. Dodge Street from 69th to 90th has 3 lanes in both directions a 35 mph speed limit from 69th to 80th and a 40 mph speed limit from 80th to 90th. There are stop lights at 72nd, 74th, 76th, 78th and 84th (5 in a 1 mile segment). This is a bottle-neck, stop and go traffic area, in which auto emissions per vehicle will be high. Little Papillion Creek runs perpendicular to West Dodge Street and crosses it immediately east of 78th Street. Thus this is a traffic-congestion area in the bottom of the creek valley. The 78th & Dodge monitoring site is immediately adjacent to West Dodge Street and Little Papillion Creek. See aerial and street level views of the 78th and Dodge Street site area in Figures H-2 thru H-5.

In contrast, West Dodge Road from 90th to 96th has 4 lanes in each direction and a 45 mph speed limit. This is a hill-top location; not a valley or street canyon location. There are 3 stop lights in this 0.5 mile segment at 90th, 93rd (a business/commercial park entrance, north side only) and 96th Streets. These lights are timed to keep through-traffic on Dodge Road moving, with the lower-traffic, N-S Streets getting less through-time. See Figures H-6 and H-7.

Similarly, L Street from I-80 to 132nd Street has 3 lanes in both directions and a 45 mph speed limit. This is a hill-top location; not a valley or street canyon location. There are 3 stop lights at 120th, 126th (shopping mall entrance north side only) and 132nd Streets. These lights are timed to keep through- traffic on L Street moving, with the lower-traffic, N-S Streets getting less through-time. See Figures H-8 and H-9.

The Nebraska Department of Roads (NDOR) and the Metropolitan Area Planning Agency (MAPA) produce traffic count estimates for the inter-state highways in the Omaha MSA. The NDOR and MAPA data indicate that maximum traffic counts are found on I-80 between the I-380 and 42nd Street exchanges:

- NDOR: 2012 traffic count data identified I-80 at 42nd St. to be the heaviest traveled segment with ~170,000 AADT.
- MAPA: The 2010 Traffic Flow Map identified the heaviest traveled road segment as I-80 between I-480 and 42nd St interchanges with an estimated 183,500 annual average weekday traffic (AAWT) count. The AAWT should be slightly higher than the AADT.

I-80 between I-480 and 42nd Street has a 60 mph speed limit. There are 4 west-bound lanes and 6 east-bound lanes. The inter-state right-of-way is wide, at least 275 feet, and open. This is not a street-canyon or valley location. The width and openness of the right-of-way, coupled with the speed of the mobile sources will greatly facilitate the dispersion of the pollutants emitted. See Figures H-10 and H-11.

Vehicle Residence Comparison

The NDEQ undertook an analysis to compare vehicle density on these four road segments. First rush hour traffic speeds were estimated. Then the time a vehicle would reside in a 1 mile segment was calculated:

Vehicle Residence Time (VRT) = (60 min/hr) / x mph = y min/mile

A Vehicle Density Factor (VDF) was then calculated as follows:

VDF = AADT * VRT

where AADT = Annual Average Daily Traffic

The results are shown in Table G-3. West Dodge Street @ 76th Street had the highest VDF.

This is not an exact analysis. Limitations include the lack of information on:

- Rush hour traffic counts, and
- Actual vehicle speeds during rush hour.

Also vehicle emission rates were not considered. However, it does provide a means of comparing vehicle density. The VDF analysis results are consistent with the earlier conclusion that vehicle emissions can be expected to be higher at the 78th & West Dodge location than on the other 3, higher-traffic, segments examined.

NDEQ Conclusion:

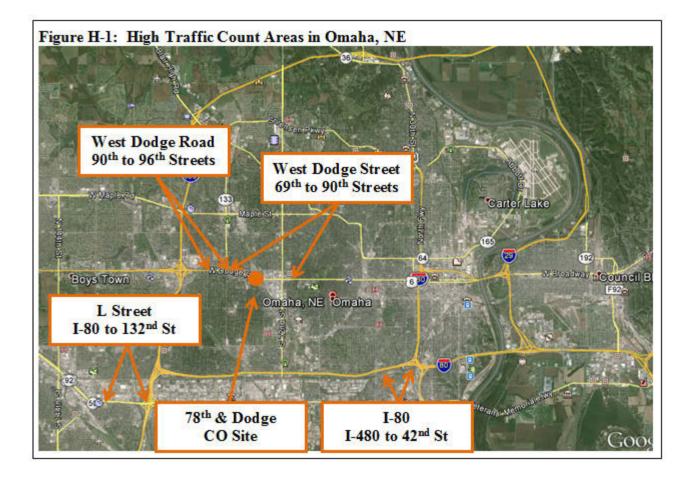
The NDEQ concurs with DCHD that the current CO site at 78^{th} and Dodge is the best location for siting a near-road NO₂. This site should produce highest concentration data for near-road CO and NO₂ in the Nebraska portion of the Omaha MSA.

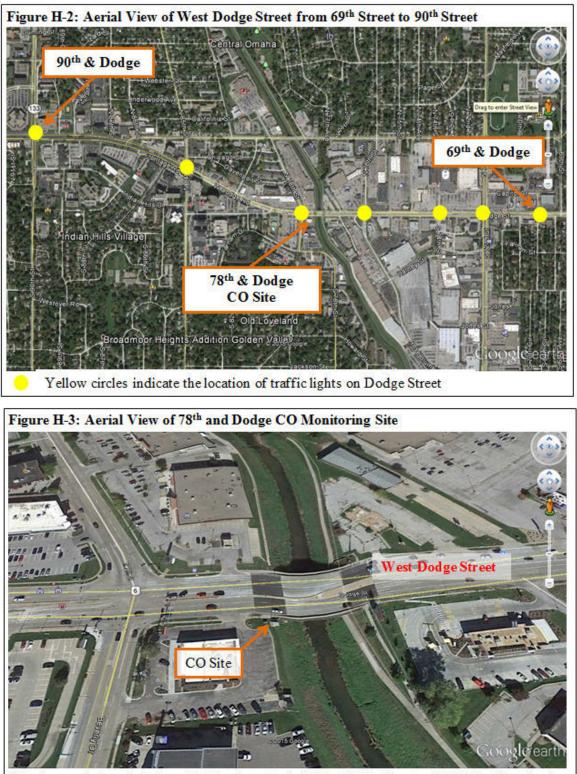
Table H-1: Inter-Section Traffic Count Estimates: Omaha's Top 11 Inter-Sections (1)(2)							
	Location	EADT	North	South	East	West	Date
1	West Dodge Rd & 90 th St	102,686	27,194	26,824	71,626	79,728	03/15
2	93rd & West Dodge Rd	98,630	8,826	0	90,534	97,900	08/15
3	L St/Industrial Rd & 132 nd St	97,098	33,716	47,088	68,824	44,568	10/12
4	L St & 120 th St	94,724	21,396	27,674	73,664	66,714	08/15
5	West Dodge St & 72 nd St	93,524	37,380	39,860	<mark>56,986</mark>	52,822	04/14
6	L St & 126th Plz	81,162	12,670	0	75,220	74,434	08/15
7	72nd & Pacific	76,716	51,156	49,508	26,130	26,638	06/14
8	W Dodge & 76th/Rose/Blumkin	73,768	8,862	12,208	<mark>58,954</mark>	67,512	03/12
9	108th & West Maple Rd	72,184	25,738	22,506	55,390	40,734	08/14
10	I 680 & West Maple Rd SB Rp	71,358	14,512	12,058	55,346	60,800	09/14
11	West Dodge Rd and Cass (86 th)	71,094	14,056	0	57,038	71,094	05/14
Footnotes:							

(1) Estimated Annual Daily Traffic (EADT) data from the City of Omaha, released 9/30/15.

(2) Three road segments were recognized from the data in this table and Table G-2:

West Dodge from 90th to 96th (green highlight) L Street from I-480 to 132nd St. (blue highlight) West Dodge from 69th to 90th (orange highlight)

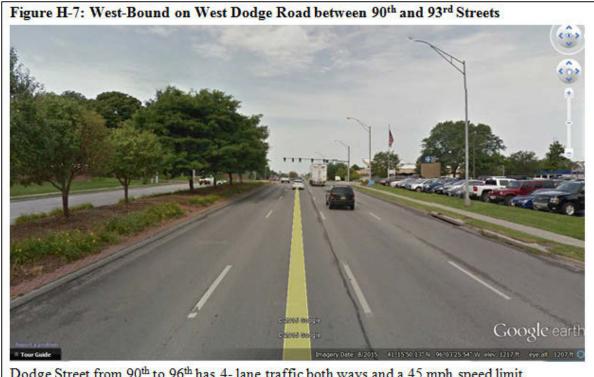

Table H-2: Through-Traffic Count Estimates: Omaha's Top 11 Road Segments ⁽¹⁾⁽²⁾					
Rank	Location	EADT	Traffic-Flow Direction		
1	West Dodge Road @ 93rd Street	188,434	East-West		
2	West Dodge Road @ 90th Street	151,354	East-West		
3	L Street @ 126th Plaza	149,654	East-West		
4	L Street @ 120th Street	140,378	East-West		
5	West Dodge Road @ Cass Street (86 th Street)	128,132	East-West		
6	West Dodge Street @ Rose/Blumkin/76 th Streets	126,466	East-West		
7	Dodge Street @ 69th Street	117,322	East-West		
8	72nd Street @ Pine Street	15,584	North-South		
9	I-680 & West Maple Road SB Ramps	116,146	East-West		
10	L Street /Industrial Road @ 132nd Street	113,392	East-West		
11	West Dodge Road @ 84th Street	110,374	East-West		


Footnotes:

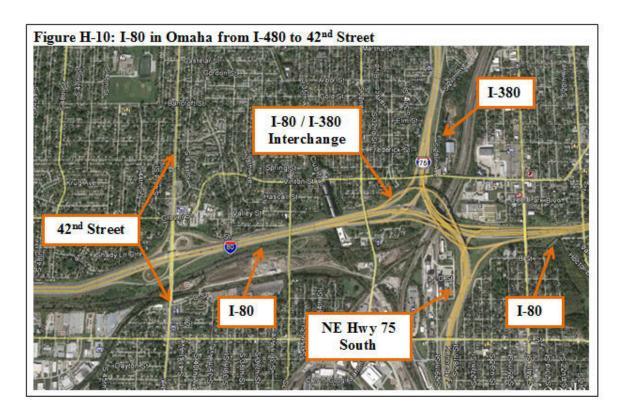
(1) Estimated Annual Daily Traffic (EADT) data from the City of Omaha traffic counts released 9/30/15.

(2) Three road segments were recognized from the data in this table and Table G-1: West Dodge from 90th to 96th (green highlight) L Street from I-480 to 132nd St. (blue highlight) West Dodge from 69th to 90th (orange highlight)

Table H-3: Vehicle Density Analysis ⁽¹⁾							
	Location	Estimated	Vehicle		Vehicle		
VDF		Rush-Hour	Residence	EADT	Density		
Rank		Vehicle Speed	Time	EADI	Factor		
		(mph)	(VRT)		(VDF)		
1	West Dodge Street @ 76th Street	20	3.0	126,466	379,398		
2	West Dodge Road @ 93rd Street	35	1.7	188,434	323,030		
3	L Street @ 126th Plaza	35	1.7	149,654	256,550		
4	I-80 from I-480 to 42nd Street	50	1.2	183,400	220,080		
Footnotes:							
(1) The use of this table and the calculations performed in making it are explained in the text above.							


Note the monitoring site is immediately adjacent to both West Dodge Street and Little Papillion Creek.

West Dodge Street from 69th to 90th Street has 3-lane traffic both directions and a 35 mph speed limit.



Dodge Street from 90th to 96th has 4- lane traffic both ways and a 45 mph speed limit.

L Street from the I-80 Interchange to 132nd Street has 3-lanes both directions and a 45 mph speed limit.

