Colleen Mouw¹ Audrey Barnett¹ John Trochta² Brice Grunert¹ Angela Yu¹

¹Dept. Geological & Mining Engineering & Sciences, Michigan Tech

²School of Aquatic & Fishery Sciences, Univ. Washington

Optical Observations and Visible Remote Sensing of Lake Superior

lean Tach

NASA Ocean Color Image Gallery http://oceancolor.gsfc.nasa.gov

Constituents - Water

Dutkiewicz et al., 2014

Constituents – NAP & CDOM

Constituents - Phytoplankton

- Pigment composition
- Taxonomic composition
- Physiological status
- Cell size

Fundamental Elements of Satellite Remote Sensing

Components of Aquatic Color Remote Sensing

Lake Superior – Optics

- High CDOM absorption (>75%)
- Oligotrophic, small chlorophyll dynamic range in the open lake (0.4 – 0.8 mg m⁻³)

a_{CDOM} is 10x greater

Mouw et al., 2013 Effler et al. 2010

Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior's optical properties

Colleen B. Mouw,^{1,4} Haidi Chen,² Galen A. McKinley,² Steven Effler,³ David O'Donnell,³ — Mary Gail Perkins,³ and Chris Strait³

Retrieval of chlorophyll concentration from an inversion algorithm approach was unsuccessful. The very large contribution of absorption due to CDOM to total absorption and the error in derived CDOM absorption being greater than phytoplankton absorption values make the deconvolution of absorption due to phytoplankton and consequently chlorophyll concentration from $R_{rs}(\lambda)$ difficult.

CDOM Absorption Imagery

Spatial / temporal understanding of a_{CDOM} lends insight into carbon inputs and cycling within the lake as well as optical limitations for satellite retrievals of other biogeochemical parameters.

Buffer zones based on the distance from shore: <10 km, 10 to 25 km, and >25 km Mouw et al., 2013

Imagery Example

CDOM Corrected [Chl]

SeaWiFS, August 31, 2006

Mouw et al., in prep

a_{CDOM} & [Chl] Time Series

- **a**_{CDOM} bimodal annual distribution: Greatest peak in fall smaller peak in spring
- Mixing deep CDOM reservoirs back into the surface
- Summer: Photochemical degradation and microbial utilization.
- [Chl] bimodal annual distribution: Greatest peak in spring smaller peak in fall
- Looking into drivers of interannual bloom variability.

Mouw et al., 2013; Mouw et al., in prep

Optical Water Types

Trochta, Mouw & Moore, submitted

Highest to lowest constituent composition HEAVIEST HEAVIER MODERATE CLEARER CLEAREST

Temporal Evolution

Trochta, Mouw & Moore, submitted

Deep Chlorophyll Layer

Comparison of [Chl] profiles between a very cold high ice year (1979, dotted line; Fahnenstiel and Glime, 1983) and a warm year (2013, solid line)

Optical Observations

Full characterization of optical properties needed for algorithm development and validation

- $E_{d}(\lambda), L_{u}(\lambda) \rightarrow R_{rs}(\lambda)$
- $a(\lambda), a_g(\lambda), c(\lambda)$
- b_b(λ)
- Chl, CDOM, PC fluor.
- CTD

Optical Sampling Locations

solid symbols - stations sampled more than once in a given year **open symbols** - stations sampled once in a given year

e.

Acknowledgements

- Gary Fahnenstiel (Michigan Tech U.)
- Tim Moore (U. New Hampshire)
- Mike Twardowski, Jim Sullivan (WET Labs)
- Galen McKinley, Haidi Chen (U. Wisconsin-Madison)
- Steve Effler, David O'Donnell, MaryGail Perkins, Chris Strait (Upstate Freshwater Inst.)
- SeaWiFS, MODIS: NASA Ocean Biology Processing Group
- Ice: National Snow and Ice Data Center

Photo credit: Chris Strait

Mouw Optics and Remote Sensing Laboratory

<u>cbmouw@mtu.edu</u> http://www.geo.mtu.edu/~cbmouw