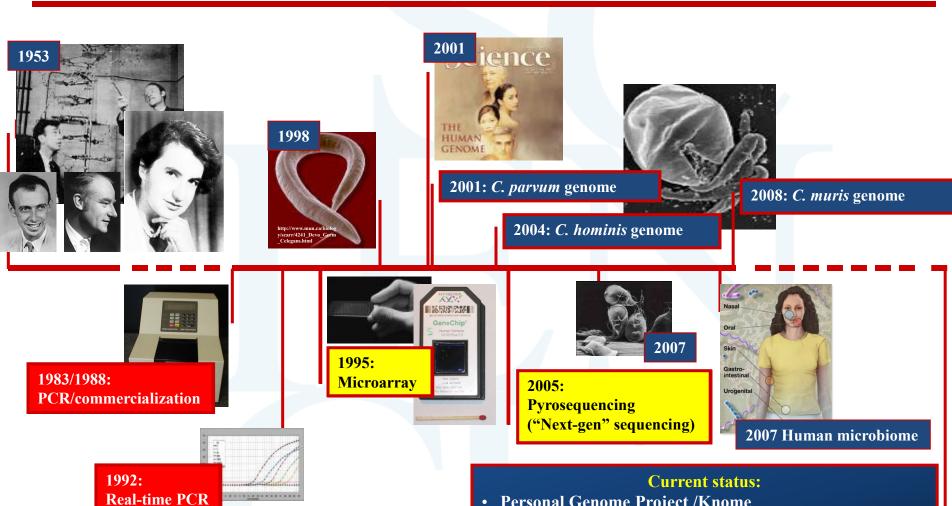


The Molecular Detection Toolbox: Applications and Implications on Current and Future National Monitoring Efforts

Eric N. Villegas, Ph.D.

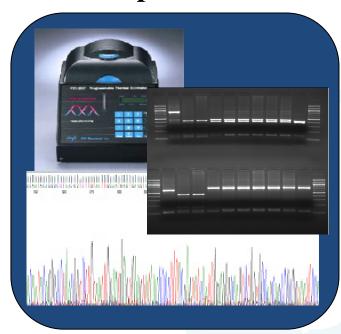
LT2 Rule: Cryptosporidium Analytical Method Improvements and Update on
Source Water Monitoring
7 December 2011


Overview

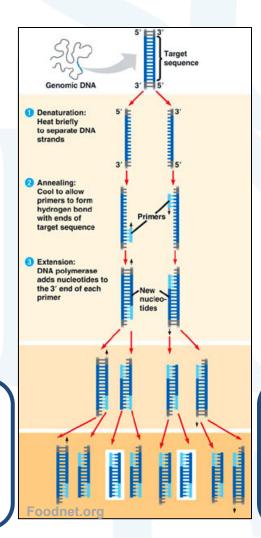
- I. Protozoan molecular detection toolbox
 - Molecular genotyping: then and now
 - Application of molecular methods for detecting Cryptosporidium
 - Strategies to integrate molecular assays with USEPA Method 1623
- II. Advantages, limitations, and future considerations

$DNA \rightarrow PCR \rightarrow Genes \rightarrow Genomes$

Can we use these breakthroughs for compliance monitoring?



- Personal Genome Project /Knome
- Personal genome service ("know your DNA" \$100)
- >10,000 Genomes submitted to NCBI
- >300 Metagenome projects (>70% Environmental)



End-point vs. real-time PCR

End-point PCR

- Semi-quantitative (densitometry)
- Can amplify longer sequences
- Very specific
- Sequencing compatible

Real-time PCR

- Quantitative/standard curve
- Fluorescent probe
- Short PCR product (amplicon)
- Very specific

Molecular diagnostic tools ("genotyping") are widely used

Food and waterborne disease outbreak investigations

• Drinking water (C. hominis)

• Sprouts (*E. coli 0104:H4*)

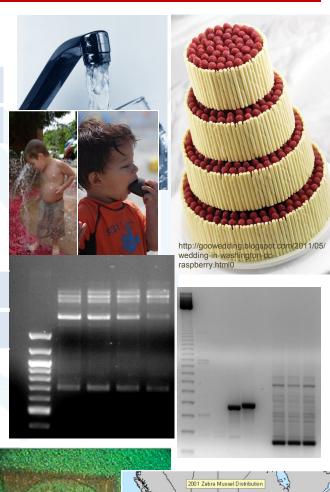
• Raspberries (C. cayetanensis)

• Waterparks (C. hominis)

Clinical diagnostics

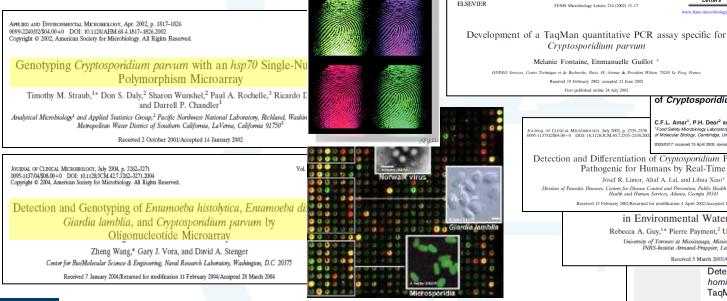
• HIV

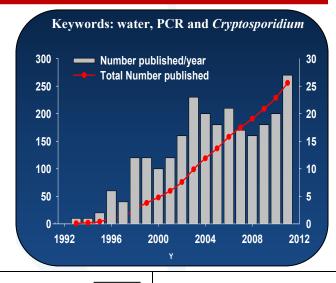
• Breast cancer (BRCA 1/2)


Tuberculosis

• MRSA

• Zebra/Quagga mussels


• Other invasive species



Molecular detection of Cryptosporidium

- PCR-based detection tools are increasing
- PCR for detection and genotyping
 - Real-time quantitative PCR for detection
 - Microarrays for multi-pathogen detection
- Identifying sources of contamination
 - Adult cattle vs. calves
 - Zoonoses vs. anthroponoses

FEMS Letters FEMS Microbiology Letters 214 (2002) 13-17

Cryptosporidium parvum

Melanie Fontaine, Emmanuelle Guillot *

Received 18 February 2002; accepted 23 June 2002 First published online 24 July 2003

SCIENCE DIRECT.

Journal of Microbiological Methods

netic separation-real-time PCR method for Cryptosporidium parvum in water samples

lanie Fontaine, Emmanuelle Guillot

of Cryptosporidium species from human faeces

C.F.L. Amar¹, P.H. Dear² and J. McLauchlin . Food Safety Microbiology Laboratory, Health Protection Agency, London, United Kingdom, and ²Medical Research Council, Labor

Detection and Differentiation of Cryptosporidium Parasites That Are Pathogenic for Humans by Real-Time PCR

Josef R. Limor, Altaf A. Lal, and Lihua Xiao

Division of Parasitic Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30341

ptosporidium

Vol. 69, No. 9

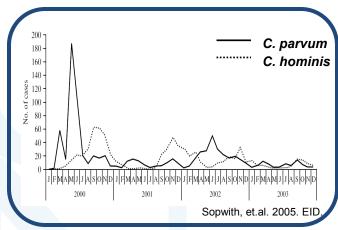
in Environmental Water Samples and Sewage

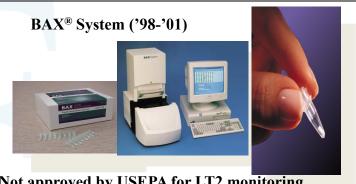
Rebecca A. Guy,1* Pierre Payment,2 Ulrich J. Krull,1 and Paul A. Horgen1 University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6,1 and INRS-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7

Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TagMan assays

N. Jothikumar, A. J. da Silva, I. Moura, 1,2 Y. Ovarnstrom and V. R. Hill

N. Jothikumar


¹Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, GA 30341, USA ²Atlanta Research and Education Foundation, Decatur, GA, USA


Molecular detection of Cryptosporidium

- Impact of drinking water regulations on cryptosporidiosis outbreaks
- Specific *C. parvum* subtypes correlates with Method 1623 performances (Using PCR for Q/C issues)
- First Cryptosporidium qPCR kits available in ~1998

Not approved by USEPA for LT2 monitoring

Not quantitative; not equivalent to microscopy

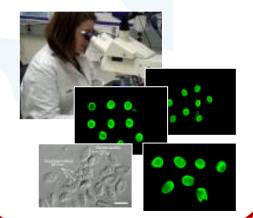
Molecular-based assays, does it fit into USEPA Method 1623?

I. Collection/Filtration

II. Secondary Concentration

Disinfection Profiling and Benchmarking

After completing the initial round of source water monitoring any system that plans on making a significant change to their disinfection practices must:

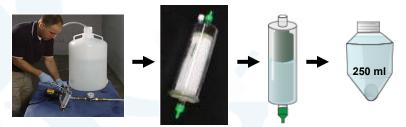

- Create disinfection profiles for Giardia lamblia and viruses;
- Calculate a disinfection benchmark: and.
- Consult with the state prior to making a significant change in disinfection practice.

Bin Classification For Filtered Systems

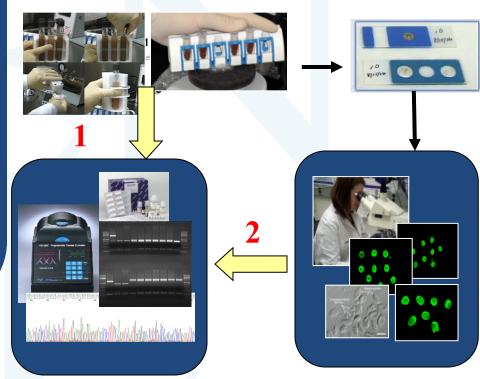
Cruntaenaridium		Additional <i>Cryptosporidium</i> Treatment Requi					/
Cryptosporidium Concentration (oocysts/L)	Bin Classification	Conventional Filtration	Direct Filtration	D	ow Sand or iatomaceous rth Filtration	Alternative Filtration	
< 0.075	Bin 1††		No additional tre	nt required			
0.075 to < 1.0	Bin 2	1 log	1.5 log		1 log	(1)	Z
1.0 to < 3.0	Bin 3	2 log	2.5 log		2 log	(2)	
≥ 3.0	Bin 4	2.5 log	3 log		2.5 log	(3)	

III. Detection

Microscopic enumeration



Molecular-based Cryptosporidium monitoring?


Approaches to integrate Molecular typing with "Method 1623"

- 1- Off-the-bead typing and quantitation
 - Real-time PCR
 - Genus or species specific
- 2- Off-the-slide genotyping
 - Also quantitative (microscopic)
 - Identifies genus/species/genotype

Sample Collection

Concentration

Detection of *Cryptosporidium* spp. oocysts using Taqman-based qPCR

	Prime	r sets									
	Crypto	sporidium sp	pp.	C. hom	inis			C. parv	um		
Species	JVA	CRU18S	Pan18S	Ch001	Ch003	JVAG1	CRULib13 Ch	Cp001	Cp003	JVAG2	CRULib13 Cp
Protozoa								•	•	_	•
C. parvum	+	+	+	-	-	-	-	+	+	+	+
C. hominis	+	+	+	+	+	+	+	-	-	-	-
C. meleagridis	+	+	+	+	-	-	-	-	-	-	-
C. felis	+	+	+	-	-	-	-	-	-	-	-
C.canis	-	+	+	-	-	-	-	-	-	-	-
C. muris	_	+	+	-	-	-	-	-	_	-	-
G. muris	-	-	-	-	-	-	-	-	-	-	-
G. duodenalis	-	-	-	-	-	-	-	-	-	-	-
T. gondii	-	+	+	-	-	-	-	-	-	-	-
Bacteria											
B. thuringiensis	-	-	-	-	-	-	-	-	-	-	-
B. cereus	-	-	-	-	-	-	-	-	-	-	-
E. coli	-	-	-	-	-	-	-	-	-	-	-
S. flexneri	-	-	-	-	-	-	-	-	-	-	-
Fungi											
E. hellem	-	-	-	-	-	-	-	-	-	-	-
E. intestinalis	-	-	-	-	-	-	-	=	-	-	-
E. cuniculi	-	-	-	-	-	-	-	=	=	-	-
Helminth											
S. mansoni	-	ND	-	-	-	-	ND	-	-	-	ND

Detection of spiked Cryptosporidium spp. oocysts in environmental samples

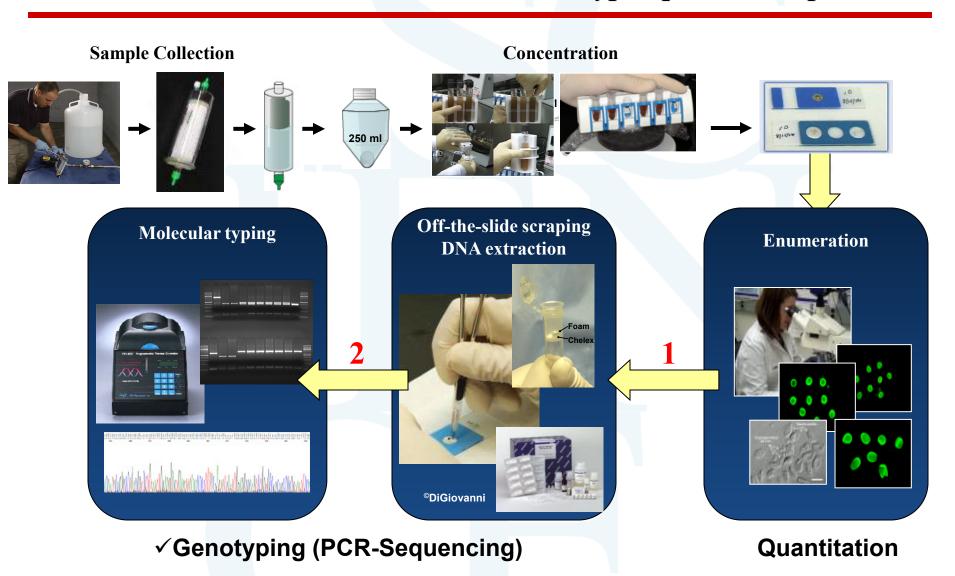
C. parvum specific qPCR

Primer/Probe set							
Cryptosporidium spp	o. specific	C. parvum specific					
JVA	CRU18S	Cp003	JVAG2	CRULib13 Cp			
$37.41 \pm 1.03 (9/9)$	$37.66 \pm 1.47 (7/9)$	$38.01 \pm 0.99 (3/9)$	$37.02 \pm 0.72 (9/9)$	$37.96 \pm 1.16 (4/9)$			
$38.45 \pm 0.82 (7/9)$	$37.14 \pm 0.68 (7/9)$	*	$37.34 \pm 1.08 (4/9)$	$38.27 \pm 0.23 (2/9)$			
$38.98 \pm 0.59 (4/9)$	$37.26 \pm 1.14 (9/9)$	*	*	38.04 (1/9)			
$38.14 \pm 0.48 (2/9)$	36.61 ± 1.10 (9/9)	*	38.02 (1/9)	*			
*	$36.94 \pm 1.06 (9/9)$	*	*	*			
	Cryptosporidium spp JVA 37.41 ± 1.03 (9/9) 38.45 ± 0.82 (7/9) 38.98 ± 0.59 (4/9) 38.14 ± 0.48 (2/9)	Cryptosporidium spp. specific JVA CRU18S 37.41 ± 1.03 (9/9) 37.66 ± 1.47 (7/9) 38.45 ± 0.82 (7/9) 37.14 ± 0.68 (7/9) 38.98 ± 0.59 (4/9) 37.26 ± 1.14 (9/9) 38.14 ± 0.48 (2/9) 36.61 ± 1.10 (9/9)	Cryptosporidium spp. specific C. parvum specific JVA CRU18S Cp003 37.41 ± 1.03 (9/9) 37.66 ± 1.47 (7/9) 38.01 ± 0.99 (3/9) 38.45 ± 0.82 (7/9) 37.14 ± 0.68 (7/9) * 38.98 ± 0.59 (4/9) 37.26 ± 1.14 (9/9) * 38.14 ± 0.48 (2/9) 36.61 ± 1.10 (9/9) *	Cryptosporidium spp. specific C. parvum specific JVA CRU18S Cp003 JVAG2 37.41 ± 1.03 (9/9) 37.66 ± 1.47 (7/9) 38.01 ± 0.99 (3/9) 37.02 ± 0.72 (9/9) 38.45 ± 0.82 (7/9) 37.14 ± 0.68 (7/9) * 37.34 ± 1.08 (4/9) 38.98 ± 0.59 (4/9) 37.26 ± 1.14 (9/9) * * 38.14 ± 0.48 (2/9) 36.61 ± 1.10 (9/9) * 38.02 (1/9)			

Dinoflagellate cross-reactive

C. hominis specific qPCR

	Primer/Probe set						
	Cryptosporidium spp	o. specific	C. hominis specific				
Oocysts	JVA	CRU18S	Ch003	JVAG1	CRULib13 Ch		
10	39.58 (1/9)	31.57 ± 1.09 (9/9)	$38.29 \pm 0.72 (5/9)$	$38.91 \pm 0.29 (2/9)$	$37.51 \pm 0.42 (4/9)$		
5	$32.56 \pm 0.22 (3/9)$	$31.81 \pm 0.74 (9/9)$	$38.88 \pm 0.64 (4/9)$	*	38.36 (1/9)		
2	*	$32.91 \pm 0.93 (9/9)$	$37.71 \pm 0.17 (3/9)$	38.41 (1/9)	*		
1	*	$32.99 \pm 0.91 (9/9)$	39.24 (1/9)	*	*		
0	*	$33.41 \pm 0.87 (9/9)$	*	*	*		


Summary and limitations

- C. hominis/parvum specific qPCR assay
 - Specific to *C. hominis/parvum* species
 - Limit of detection 1-10 oocysts
 - Poor resolution at low oocyst concentration
 - Cannot distinguish between 1, 2, or 5 oocysts
- Does not identify exotic/emerging pathogenic genotypes
 - e.g., skunk, horse or *C. cuniculus*
 - No Cryptosporidium genus specific qPCR (to date)

How useful is it for Method 1623?

Off-the-slide molecular detection of Cryptosporidium species

Off-the-slide genotyping reliability, sensitivity, and genotypes detected

· C. andersoni

• C. ubiquitum

C. ryanae

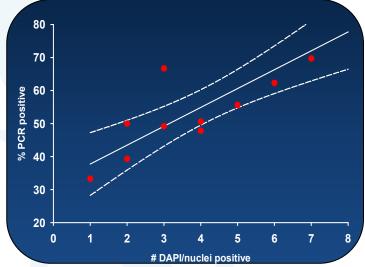
• C. xiaoi

• C. baileyi

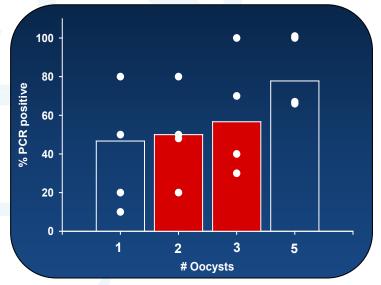
• fox genotype

• C. bovis

• Genotype W1/12


• C. parvum

• Muskrat I/II


• C. hominis

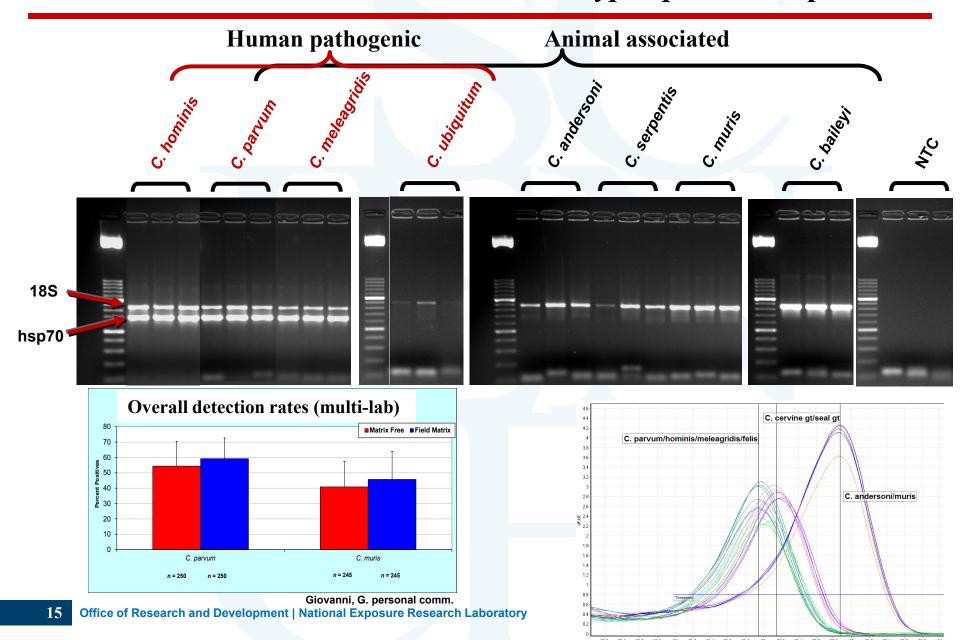
- C. muris
- *C. spp.* SW 1-5
- Average *Cryptosporidium* oocyst levels detected:
 - 0.09-0.26 oocysts/L (Bin 1-2)
- Does not identify the source(s) of contamination

Reucker, et.al. 2007 Nichols, et.al. 2010

Nichols, et.al. 2010

Water Research Foundation: Off-the-slide genotyping method (4099)

Cryptosporidium Genotyping Method for Regulatory Microscope Slides


Web Report #4099

- "A technique that builds on Method
 1622/1623, which can identify Cryptosporidium
 species based on unique sequences in their
 genetic code."
- Low cost capital and reagents for conducting molecular genotyping assays

Off-the-slide molecular detection of Cryptosporidium species

Summary

Cryptosporidium Genotyping Method for Regulatory Microscope Slides

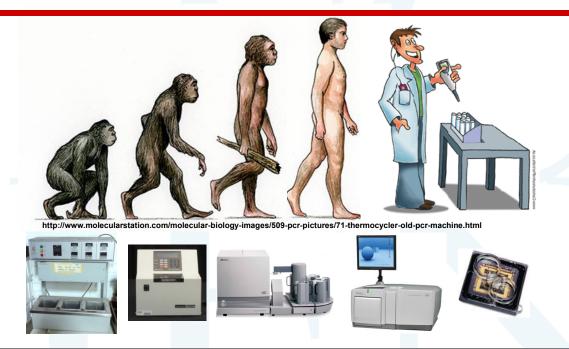
Web Report #4099

- Provides <u>additional information</u> on species/genotypes detected via Method 1623
 - Nucleic acid vs. oocyst?
- "The slide genotyping method has not been approved by the USEPA... And does not currently have regulatory significance."

Cryptosporidium monitoring efforts: Must be question (NOT assay) driven

- 1. How do we assess *Cryptosporidium* spp. diversity• Molecular based approaches
- What are the total levels of *Cryptosporidium*Method 1623, or qPCR? (resolution dependent)
- What are the total levels of pathogenic *Cryptosporidium*Molecular based approaches
- 4. Are the *Cryptosporidium* oocysts viable/infectious• Cell culture, vital dyes, or mouse bioassay
- 5. What are the levels of viable/infectious CryptosporidiumCell culture or vital dye + qPCR
- 6. Other questions...Custom built using the "Cryptosporidium detection toolbox"

Factors to consider for a Cryptosporidium molecular method


- Molecular vs. Microscopy
 - Performance comparison, capital equipment, lab capacity, and cost
 - Nucleic acid vs. oocyst detection
- Sensitivity, specificity, and precision
 - 1-4 oocysts/L, 5-10 oocysts/L
 - Target gene(s) (copy numbers and multiple loci)
 - Internal controls
 - Genus vs. species specific
- Confounding factors:
 - Indigenous naked DNA/PCR inhibitors
 - qPCR platform
 - Reagent cross reactivity
- Standardization and validation of protocol
 - Commercialization of reagents/equipment
 - Quality assurance/control guidelines

USEPA approval
Adoption of the method

Repository for genetic information: environmental and clinical isolates

The evolution of molecular detection technologies

- 1. Molecular-based detection of waterborne pathogens continues to evolve
 - Already at the point where the entire genome can be sequenced in 1 week
- 2. Provides the means to better understand the prevalence, source(s), and genotypes of microbial pathogens in water

Is it only only a matter of time?..

Acknowledgements

US EPA

NERL

Mike Ware Sarah Staggs Cristin Brescia MJ See

Scott Keely Shannon Griffin David Erisman Alan Moyer

US Region 2/3

Marie O'Shea Ron Landy

Jiim Ferretti

Office of Water

Carrie Miller

NCEA

Andrey Egorov

CDC

Lihua Xiao Wenli Yang Vitaliano Cama Theresa Dearen

Shaw E&I

Leah Villegas


Dynamac, Corp.

Erin Beckman Abu Sayed Reena Mackwan

Questions?

Eric N. Villegas, Ph.D. (513) 569-7017 villegas.eric@epa.gov

