

The importance of unusual *Cryptosporidium* species and genotypes in human cryptosporidiosis

> Dr Rachel Chalmers Director, UK Cryptosporidium Reference Unit Public Health Wales Microbiology Swansea

What is cryptosporidiosis?

"An illness caused by Cryptosporidium and characterized by diarrhoea, abdominal cramps, loss of appetite, lowgrade fever, nausea, and vomiting".

2002 – FDA approved nitazoxanide in children 2005 – FDA approved nitazoxanide in adults No licensed treatment in UK

The disease can be prolonged, invasive and lifethreatening in severely immunocompromised persons.

Cryptosporidium and the immunocompromised patient

- 1996 HAART introduced: controls problems of cryptosporidiosis in AIDS patients in developed world
- Cryptosporidiosis is now increasingly recognised in other Tcell immunodeficiencies (esp. haematological and T-cell primary)
- Has a devastating effect where treatment is not available (lack of HAART, fake drugs)
- Undefined treatment modalities (nitazoxanide trials still underway)

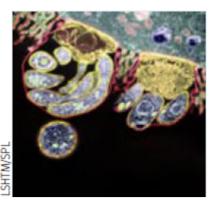
Long term sequelae

Infection developing countries:

children exhibit poor growth, depressed cognitive function

Generally:

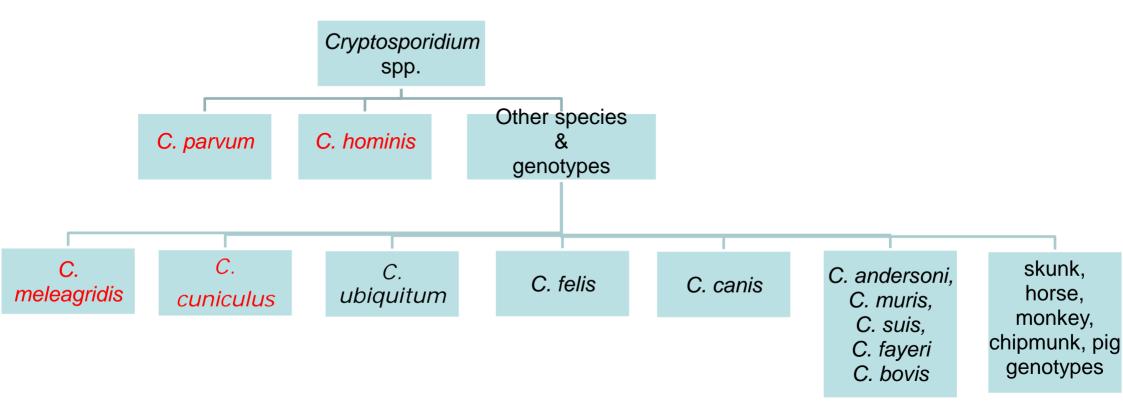
possible links to reactive arthritis and irritable bowel syndrome


suggested relapse in inflammatory bowel disease e.g. Crohn's

A patient's experience

For the full versions of these articles see bmj.com *BMJ* 2009;339:b4168

CLINICAL REVIEW



Cryptosporidiosis

A P Davies,¹ R M Chalmers²

Worldwide diversity of *Cryptosporidium* spp. in human infection

Evidence for human pathogenicity of *Cryptosporidium* species.

Species	Outbreaks of disease	Human experimental infectivity	Epide	emiologic evidence
C. parvum	\checkmark	\checkmark	\checkmark	Multiple studies
C. hominis	\checkmark	\checkmark	\checkmark	Multiple studies
C. cuniculus	\checkmark	Х	\checkmark	Dose response in waterborne outbreak
C. meleagridis	Х	\checkmark	\checkmark	In a birth cohort in -Lima, Peru, these species were associated
C. felis	Х	Х	\checkmark	
C. canis	Х	Х	\checkmark	with diarrhoea.
C. ubiquitum	Х	Х	Х	

| Iechyd Cyhoeddus | Cymru | Public Health | Wales

Clinical typing assay requirement

- Ideally, be able to detect all *Cryptosporidium* spp. or at least detect and differentiate all species that infect humans
- Must be suitable for the population served and the resources available

UK strategy for understanding *Cryptosporidium* epidemiology, sources and risks

Create a national				
collection of clinical				
isolates				

- Started in January 2000
- Diagnostic labs asked to send in *Cryptosporidium* positive stools
- In UK, stools are unpreserved

Use conventional PCR-RFLP to generate baseline data

- Efficient DNA extraction from semi-purified oocysts
- Supported by sequencing the SSU rRNA gene

Develop rapid tests based on gathered information

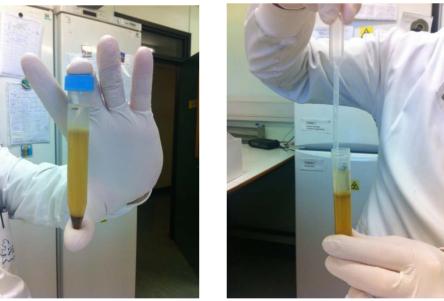
- 10 years of data
- Seasonal, geographic, temporal trends and changes understood

| Iechyd Cyhoeddus | Cymru | Public Health | Wales

Methods for typing from clinical samples

Challenge •

Getting the sporozoite DNA out of the oocysts


Challenge 2

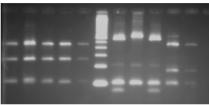
 Amplifying the DNA from faeces which contains inhibitors

The CRU approach for typing clinical samples

1. Semi-purify the oocysts

- 2. Use heat and lysis buffer to open the oocysts
- 3. Use spin-columns to extract the DNA: highly stable, good quality

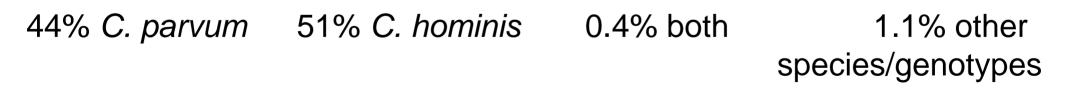
Chalmers *et al.*, Eurosurveillance 2009 14(2) 15 January

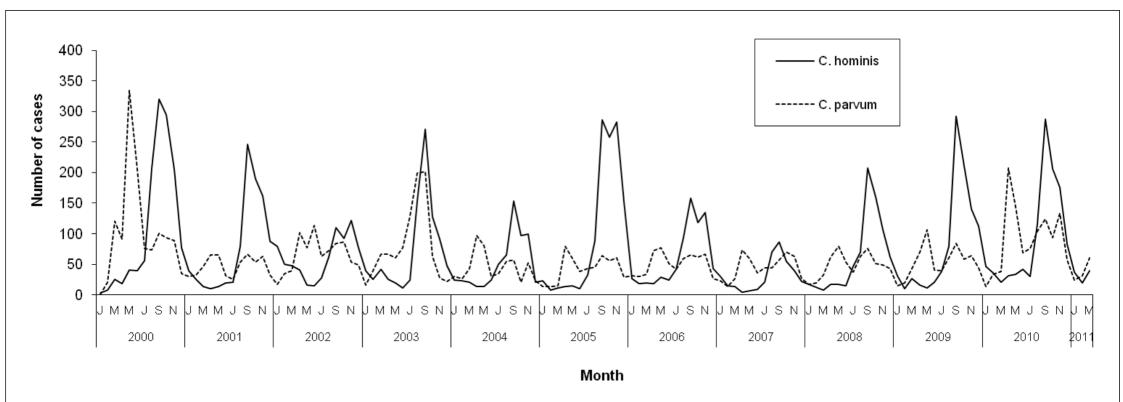


Workflow 2000-2010

- 1. Separate oocysts from faecal debris
- 2. Disrupt oocysts
- 3. Extract DNA
- 4. Amplify DNA by PCR
- 5. Identify species by:
 - Benchmark method DNA sequence analysis ssu rRNA gene

• Tools to look for markers of sequence variation e.g. Restriction fragment length polymorphisms (RFLP)





2000-2010 trends; 14469 samples

• 97% samples typable:

Chalmers et al., 2009, 2010; Elwin et al., 2011

Baseline data used for method improvement in 2010

Same semi-purification and DNA extraction process

Real-time PCR	 Automated set-up, reduced handling and contamination risk No downstream processing Improved PCR performance monitoring Semi-quantitative Same-day result
Specific targets	 <i>C. parvum</i> <i>C. hominis</i> <i>Cryptosporidium</i> spp. Internal (amplification/inhibition) control

Hadfield *et al.*, Journal of Clinical Microbiology 2011; 49(3): 918-924

More streamlined workflow

- 1. Salt float
- 2. Oocyst disruption
- 3. DNA extraction
- 4. Conventional PCR real-time PCR = simultaneous amplification and detection
- 5. Restriction digest
- 6. Gel electrophoresis
- 7. Gel inspection, recording and reporting

Comparative performance (CRU unpublished data)

Conventional PCR 14 469 samples

- 97% typed
- 3% untyped
- ~10% samples require repeat tests to achieve this
- 44% C. parvum
- 51% C. hominis
- 0.4% both
- 1.1% Other

Real-time PCR first year of use 2 321 samples

- 99.5% typed
- 0.5% untyped
- No repeat testing
- 49% C. parvum
- 47% C. hominis
- 0.6% both
- 3% Other

Improved performance and efficiency, reduced turnaround time and costs.

Unusual *Cryptosporidium* spp. in clinical samples, E&W, 2000-2010

Species	Num	ber (in 18 488 samples)
C. meleagridis	149	
C. felis	53	
C. ubiquitum	30	
C. canis	3	
Horse genotype	2	
Skunk genotype	2	
Novel genotypes	10	
C. cuniculus (rabbit gt)	48	(2007 and 2008 only)

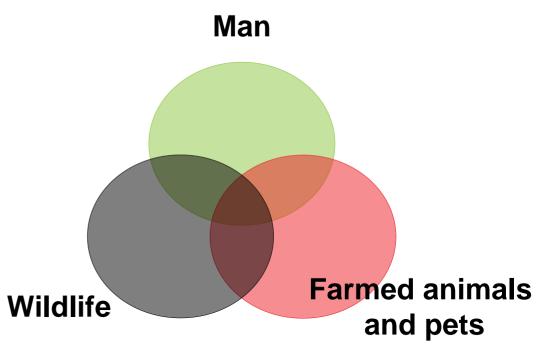
Elwin et al., 2011; Chalmers et al., EID 2010; CRU unpublisjed data)

| Iechyd Cyhoeddus | Cymru | Public Health | Wales

The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales, 2000–2008

K. ELWIN, S. J. HADFIELD, G. ROBINSON AND R. M. CHALMERS*

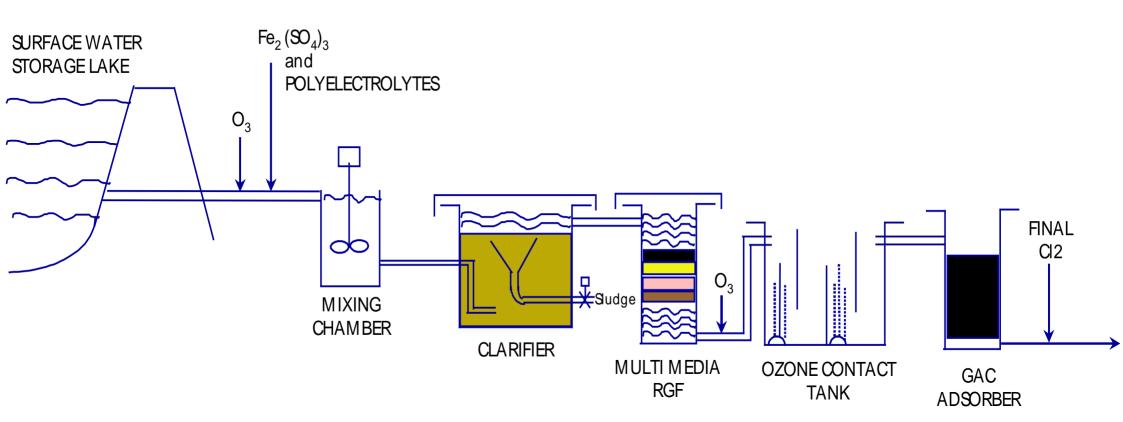
UK Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK


Significant (p<0.05) risk factors among "unusuals" were:

- Travel abroad *C. meleagridis*
- Being immunocompromised all, most especially C. felis
- Contact with cats C. felis

Typing and incident / outbreak management

- Identify clusters of cases
- Help identify source of infection or contamination
- Avoid inappropriate control measures
- With higher-resolution typing, link cases and suspected sources



Pitsford Reservoir:

the drinking water source and supply to 250 000 people

JI THEREALLY ALL PLATE

Pitsford WTW process schematic 2008 (Bob Markell, Anglian Water)

Large distribution system

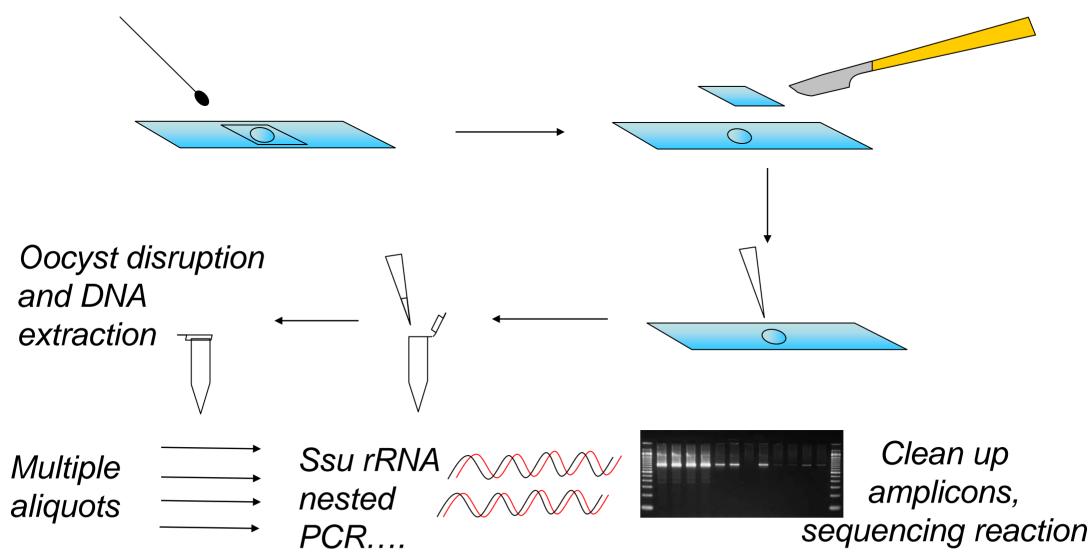
7 to 10 day transit time

Water Quality Incident 25th June 2008

- *Cryptosporidium* oocysts detected in the treated water continuously sampled between 19-23rd June (0.05/10L)
- Oocysts again detected in 24 hr sample on 24th June (0.8/10 L)
- Previously no detections
- Wed 25th June 2008 at 6.00 am
- Precautionary notice to boil drinking water

Investigating the source of contamination

- All source water samples were negative for *Cryptosporidium*
- Faecal indicators satisfactory
- All water treatment processes working optimally
- Yet oocysts in final water.....and throughout distribution system
- WHY?

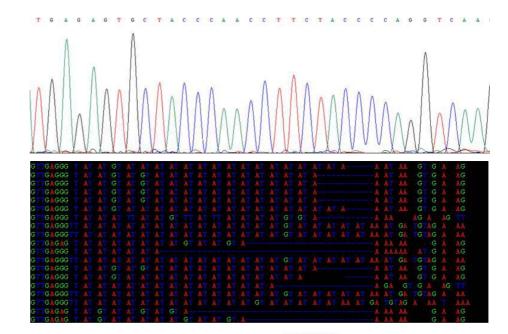


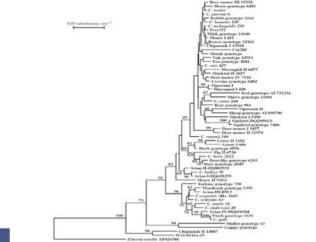
Source of contamination

- 26th June: oocysts and a dead rabbit found in a contact tank
- Extensive monitoring and flushing of distribution system (storage tanks and towers)

Genotyping from water samples by benchmark method

Based on Xiao *et al.*, Appl Environ Microbiol 2001; 67: 1097–1101.




Sequence analysis :

edit

analyse

compare

GIG YMRU

lechyd Cyhoeddus Cymru Public Health Wales

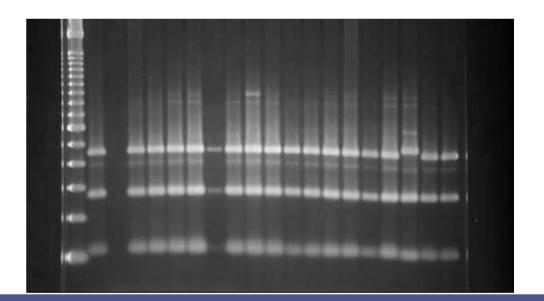
S

Issue report

What was known about rabbit genotype?

- Uncertain taxonomic status: closely related to C. hominis; indistinguishable by <u>routine</u> typing tools
- GenBank

4 x 18s sequences*, 2 x HSP70*, 1 x Actin, 1 x COWP* *from world's <u>only</u> previously reported human isolate Rest from 3 rabbits China, NZ, Czech Republic

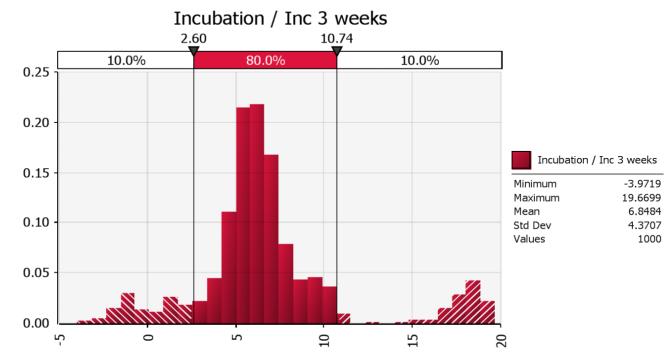

- Distribution and prevalence in rabbits: not known
- Risk to public health: not known
- Requires enhanced clinical testing to differentiate from *C. hominis*

Robinson G and Chalmers RM. Zoonoses and Public Health. 2010; 57:e1–e13

Differentiation of *C. cuniculus* in routine diagnosis

- Identical to C. hominis at COWP, Lib13
- HSP70 99.7% similarity
- Actin 99.9% similarity
- SSU rRNA gene
 99.5% similarity
 Sspl RFLP (L18)

Chalmers *et al.*, Emerging Infectious Diseases 2009; 15(5) 829-830.

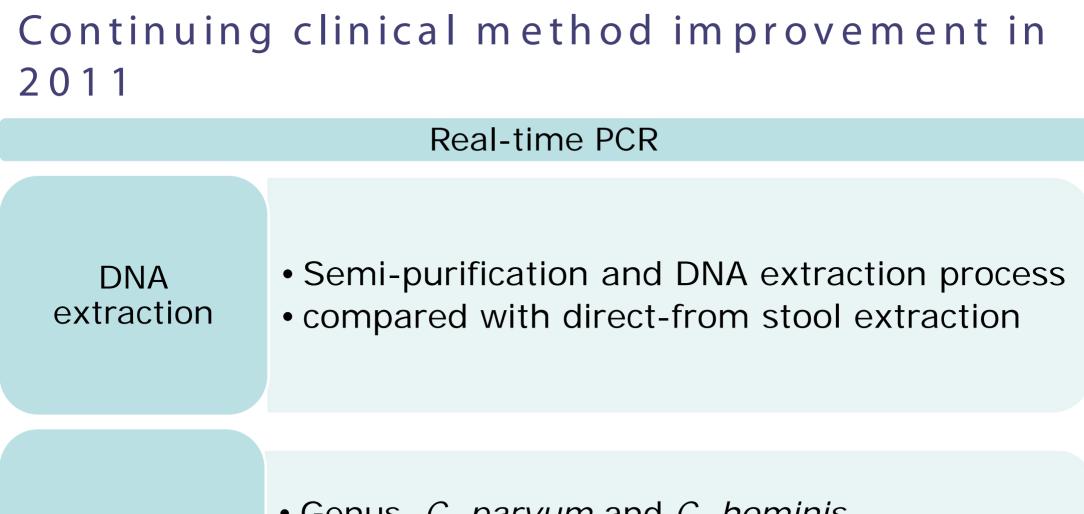

Outbreak rabbit genotype cases and isolates

- Age range 10 to 60 years (median 29 years)
- 70% female
- Many reported drinking large volumes water (median 1.8 litres/day; national median is 0.8 L)
- Cryptosporidium isolates from the rabbit, the water and the patients were indistinguishable at multiple loci (18s, Actin, HSP70, GP60)

Anon. Health Protection Report 2008; 2:29

Distribution of incubation periods based on MonteCarlo modelling of drinking water

The estimated mean incubation period is 6.8 days, median 6.2 d and mode 5.5 d.


Taking the 80% credible interval, the range = 2 to 11 days.

exposure

Probability / risk of infection – similar to C. parvum outbreak

Chalmers *et al.* Final Report to Defra. Drinking Water Inspectorate, 2010.

Specific targets

Genus, C. parvum and C. hominis
specific unusual Cryptosporidium spp.: C. cuniculus, C. meleagridis, (C. felis, C. ubiquitum)

Bridge *et al.*, Bull. WHO 2010;88:873-875

"Monitoring this complex environmental system is technologically and practically challenging.

Agencies need detailed understanding of the behaviour of pathogens in the environment so that they can apply the risk assessments intrinsic to these approaches......

Detailed molecular epidemiology strongly coupled to environmental monitoring is required to systematically connect pathogen strains with environmental sources and pathways to exposure and disease."

