

INVESTIGATION DATA REPORT SUPPLEMENTAL VAPOR INTRUSION ASSESSMENT

Former IBM Manassas Facility Manassas, Virginia

Prepared for IBM Corporate Environmental Affairs File No. 2732.05

8976 Wellington Road Manassas, JA 20109

December 13, 2012

Barbara Smith US EPA Region III (3LC20) 1650 Arch Street Philadelphia, PA 19103-2029

Re: Investigation Data Report - Final

Supplemental Vapor Intrusion Assessment

IBM Corporation, Manassas, VA

Dear Ms. Smith:

Enclosed please find two (2) copies of the final *Investigation Data Report*, dated December 13, 2012. The report includes data and observations from the drilling, installation, and initial sampling of subsurface gas and groundwater monitoring implants and wells at the former IBM Manassas facility which was conducted during June and July 2012. The enclosed report addresses EPA's comments on the draft report which were provided to IBM in a letter, dated December 3, 2012.

If you have any questions or need additional information, please contact me at (703) 257-2583.

Sincerely yours,

Dean W. Chartrand

Groundwater Project Coordinator

Sean of Cravand

Enclosure

Cc: Jutta Schneider VDEQ (w/ enclosure)

Richard Doucette VDEQ (w/ enclosure)
Lisa Jacob Sanborn Head and Associates, Inc (w/o enclosure)

Mr. Dean Chartrand IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, VA 20109 December 13, 2012 File No. 2732.05

Re: Investigation Data Report

Supplemental Vapor Intrusion Assessment

Former IBM Manassas Facility

Manassas, Virginia

Dear Mr. Chartrand:

The attached document presents data and observations recorded during the drilling, installation, and initial sampling of subsurface gas and groundwater monitoring devices at the referenced site, conducted in June and July 2012. This work was completed as part of the Supplemental Vapor Intrusion Assessment associated with the former IBM Manassas facility.

This report addresses comments provided by USEPA on the draft report dated October 30, 2012. We understand that this report will be placed in the public information repository, following receipt of a letter from USEPA granting approval.

Thank you for the opportunity to serve you on this project. Please contact us with any questions.

Very truly yours,

SANBORN, HEAD & ASSOCIATES, INC.

Lisa J. Jacob, P.G.

Senior Project Manager

Daniel B. Carr, P.E., P.G.

Principal and Vice President

EMB/LJJ/DBC: emb

Encl. Investigation Data Report

\\porserv1\datashare\DATA\PORDATA\2700s\2732.05\Source Files\20121213 Investigation Data Report\ 20121213 MVA Invest Data Rpt Cover Ltr.docx

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	DAT 2.1 2.2 2.3	A AND OBSERVATIONSSubsurface ConditionsGroundwater Levels and Flow DirectionsSubsurface Vacuum Conditions	2 3
3.0	SAM 3.1 3.2	PLING AND ANALYSIS OF GROUNDWATER AND SUBSURFACE GAS Data Quality and Validation Summary of PCE Data and Observations	4
4.0	SUM	MARY AND CLOSING	5
TABLI	ES		
Table Table Table	2	Water Level and Differential Pressure Data Summary of PCE in Subsurface Gas and Groundwater Samples Summary of VOCs Detected in Groundwater Samples	
FIGUR	RES		
Figure Figure		Exploration Location Plan Summary by Monitoring Depth (Figures 2A through 2E)	
APPE	NDICI	ES	
Appen	dix A	Limitations	
Appen	B.1 - B.2 - B.3 -	Overview of Field Program Summary of Field Methods Boring and Monitoring Completion Logs Fracture Log Plots Field Sampling Documentation B.4.1 – June 2012 Routine Sampling B.4.2 – July 2012 Characterization Sampling	
Appen	dix C	Analytical Laboratory Reports C.1 - June 2012 Routine Sampling C.2 - July 2012 Characterization Sampling	
Appen	dix D	Quality Assurance/Quality Control & Data Validation D.1 - June 2012 Routine Sampling D.2 - July 2012 Characterization Sampling	

1.0 INTRODUCTION

This report transmits data, observations, and findings from the installation and initial sampling of additional monitoring devices in June and July 2012. This work was conducted by Sanborn, Head & Associates, Inc. (Sanborn Head) as a part of the Supplemental Vapor Intrusion Assessment associated with the former IBM Manassas facility in Manassas, Virginia. The work was completed in accordance with the project Work Plan¹ and April 2012 addendum² with approval from the United States Environmental Protection Agency (USEPA). We understand that this report will be submitted to USEPA for review.

The supplemental vapor intrusion assessment is focused on an area of the Bristoe Station neighborhood across the northerly facility property boundary adjacent to the Building 101 (B101) area of the former IBM Manassas Facility. The objective of the work is to assess the presence or absence of volatile organic compounds (VOCs), principally tetrachloroethene (PCE) in the subsurface gas and groundwater, and to evaluate the potential for subsurface vapor migration that could lead to intrusion into occupied structures in the vicinity. The investigation area is shown on Figure 1. Sanborn Head's work and this report are subject to the limitations presented in Appendix A.

The findings of prior drilling and monitoring point installation work were reported in a July 29, 2011 Interim Report³ and in a progress data report prepared after 12 months of periodic monitoring of these installations⁴. The additional subsurface investigations, monitoring point installation and testing work conducted in June and July 2012 were intended to increase the spatial resolution of the monitoring network. The locations were selected to support development of a possible structure sampling program to be conducted during the 2012/2013 heating season, and for monitoring the performance of new groundwater and subsurface vapor extraction capacity. The work included coordination, observation, and logging of:

- Drilling and installation of four foundation depth implants (SG-114, -116, -119, and -122, shown on Figure 1) in soil, nominally 5 to 6 feet below ground surface (ft bgs);
- Drilling and installation of multi-depth vapor, groundwater, and vacuum monitoring devices at seven locations (SG-115, -117, -118, -120, -121, and -123 off-site, and SG-31/D-86 on the B101 property, shown on Figure 1);

¹ Sanborn, Head & Associates, Inc., October 15, 2010, "Updated Work Plan for Supplemental Vapor Intrusion Assessment, Former IBM Manassas Facility, Manassas, Virginia."

² Sanborn, Head & Associates, Inc. April 16, 2012, "Work Plan Addendum, Supplemental Vapor Intrusion Assessment, Former IBM Manassas Facility, Manassas, Virginia"

Sanborn, Head & Associates, Inc., July 29, 2011, "Interim Report of Findings, Supplemental Vapor Intrusion Assessment, Former IBM Manassas Facility, Manassas, Virginia."

⁴ Sanborn, Head & Associates, Inc. October 17, 2012, "12-Month Monitoring Data Report, Supplemental Vapor Intrusion Assessment, Former IBM Manassas Facility, Manassas, Virginia."

- An initial sampling of the newly-installed monitoring points;
- Water level and differential pressure monitoring of new and selected existing points;
 and
- Review of analytical laboratory data collected in accordance with the Work Plan by a third party to validate the data usability against data quality objectives.

This work was completed prior to beginning enhanced extraction of groundwater and subsurface vapor from four on-site wells near the property boundary on July 15, 2012. Continued monitoring of enhanced groundwater and vapor extraction effects, including expansion of vacuum conditions and enhanced hydraulic capture, will be assessed and reported separately.

An overview of the investigations and testing field program is provided in Appendix B. Work was conducted and locations installed and constructed in general accordance with the Work Plan Addendum and the July 2011 Interim Report. In addition to the proposed monitoring depths, two additional screened intervals were added (SG-117-23 and SG-118-22), to provide the capability to monitor fractured intervals observed during drilling and rock core logging. Further description is provided in Appendix B. Analytical laboratory data and the findings of data validation and usability review are complied in Appendices C and D, respectively.

2.0 DATA AND OBSERVATIONS

This section summarizes data and observations recorded during drilling, installation, and sampling of monitoring points installed in June and July 2012. Water levels and differential pressure conditions recorded from the newly installed monitoring locations are also discussed. Figures 2A through 2E provide summaries of analytical laboratory data, inferred groundwater elevation contours and flow directions, and inferred vacuum contours for each of five depth zones.

2.1 Subsurface Conditions

The new explorations encountered soils and bedrock conditions generally similar to those described in previous reports. Bedrock was typically encountered underlying 5 to 6 feet of residual silty clay soil derived from in place weathering of the rock. The rock was primarily reddish siltstone interbedded with lesser amounts of sandstone and shale. The detailed logs of each boring and monitoring point installation detailing these observations are provided in Appendix B.

Histograms of fracture data are also provided in Appendix B. As with prior drilling work, in most cases, the majority of fractures were observed to be near-horizontal, bedding-plane-parallel features, and the density of fracturing generally decreased with depth. Extremely fractured zones (EFZs), which are defined as intervals where individual fractured cannot be distinguished, were observed generally above a depth of about 25 ft bgs, consistent with prior drilling. As a generality, boreholes at locations SG-115, -117, and -118 exhibited fewer fractures than prior drilling with mean fracture spacing (MFS) greater than 0.8 feet,

above the upper-end MFS found in prior work. Locations SG-120 and -121 exhibited a greater fracture density, greater proportion of steeply dipping joints, and the presence of EFZs at depths greater than 25 ft bgs. In borehole SG-121, the majority of fracturing was observed to be moderately dipping with a greater proportion of steeply dipping joints and EFZs in the depth intervals from 20 to 35 ft bgs.

Intervals of intact unfractured rock or rock exhibiting only sparse near horizontal fracturing were encountered in all of the boreholes, which are inferred to represent "aquitard" intervals limiting vertical transport of water and gas. Notably, only four horizontal fractures were encountered in the bottom ten feet of SG-117 in the courtyard area of McRae Court.

2.2 Groundwater Levels and Flow Directions

Table 1 provides a summary of groundwater elevations recorded during a comprehensive monitoring event after the new monitoring points were installed. Figures 2C through 2E depict inferred potentiometric surface elevation contours and groundwater flow directions based on water levels recorded on July 13, 2012. Groundwater extraction from wells D-39 and D-80 continued during this characterization sampling as did operation of the B101 vapor extraction (VES) system. Enhanced extraction of vapor and groundwater near the B101 property line had not yet started by the time data and observations discussed here were recorded.

In general, groundwater flow patterns are similar to those observed under similar seasonal dry conditions in August 2011 and reported in the 12-Month Monitoring Data Report but with greater spatial resolution. SG-120 and -121 were found to be dry to the bottom of the screened intervals at depths of 32.5 and 33 ft bgs, respectively.

2.3 Subsurface Vacuum Conditions

Differential pressure measurements (i.e., measurements of the gauge pressure difference between the open atmosphere and subsurface) recorded during the monitoring period are summarized in Table 1. Positive values indicate subsurface pressures greater than ambient atmospheric pressure, and negative values indicate subsurface pressures below atmospheric pressure (i.e., vacuum conditions). The differential pressure measurements reflect the superimposed influences of barometric pressures and VES operations. Contours of inferred vacuum conditions are shown in purple on Figures 2A through 2E.

Vacuum conditions continue to be observed at all monitoring depths, with a higher frequency and magnitude of vacuum generally recorded for monitoring intervals greater than 25 ft bgs and for shallower monitoring points close to the original extraction points near B101. As a generality, a greater magnitude and consistency of vacuum conditions are observed east-southeast of McRae Court where SG-120 and -121 have been found to be dry and a higher proportion of fracturing has been observed. The overall pattern of vacuum distribution continues to be consistent with downward airflow, and flow back towards the VES. In general, the areal extent of the vacuum field believed attributable to VES operations also generally increases with depth as shown on Figures 2B through 2E.

3.0 SAMPLING AND ANALYSIS OF GROUNDWATER AND SUBSURFACE GAS

During the July 2012 characterization sampling of newly installed monitoring points, gas and groundwater samples were collected using methods described in previous reports. Consistent with the Work Plan, vapor samples were collected in 1-liter Summa®-type evacuated canisters with 1-hour flow controllers, from locations with sufficient air-filled porosity. Where there was insufficient air-filled porosity to allow sampling via 1-liter canisters, grab samples of gas were collected via a disposable syringe and placed into evacuated glass vials. Grab water samples were also collected via peristaltic pump or syringe from water-filled implant locations. Results of subsurface gas and groundwater grab sampling are considered screening-level data.

Due to ongoing monitoring of differential pressure and water levels associated with the expanded VES network, use of passive diffusion bag sampling technology was not possible. As an alternative, bailer samples were collected from well points with sufficient water volume. PCE concentrations in gas and groundwater samples are presented in Table 2, along with data collected from existing monitoring points in June 2012. The analytical laboratory reports from July characterization sampling are included in Appendix C.

Groundwater samples were analyzed for 60 VOCs included on the USEPA Method #8021 analyte list. As shown in Table 3, 15 compounds including PCE were detected above laboratory reporting limits in one or more groundwater samples. Several of the compounds are indicative of chlorination of municipal drinking water and may represent the continued presence of potable water used during drilling in the vicinity of the monitoring points. These compounds were generally detected at low concentrations in the presence of higher concentrations of chlorinated ethenes. As such, the discussion in Section 3.2 focuses on PCE.

3.1 Data Quality and Validation

Data derived from Summa® canister samples and groundwater analytical data were subject to independent usability review and validation by New Environmental Horizons, Inc. All of the data were found to be usable for the project objectives, subject to certain qualifications. In total, less than 1% of the data recorded for all analyzed compounds were subject to qualifiers. PCE was detected in a single trip blank at 1.8 micrograms per liter (µg/L) which is comparable to concentrations in some of the groundwater samples, indicating the potential for a high bias. A vinyl chloride concentration detected in a single groundwater sample also was qualified due to high recovery in a laboratory control sample. There were no field duplicate pairs analyzed for this sampling round. Data validation and usability reports are included in Appendix D.

3.2 Summary of PCE Data and Observations

Representations of PCE data recorded for subsurface gas and groundwater samples are depicted in Figures 2A through 2E. The values and graphical bubble size posted on the figures reflect PCE concentrations recorded during June 2012 routine monitoring of existing locations and July 2012 characterization sampling of newly-installed monitoring points. Inferred subsurface vacuum conditions and groundwater elevation contours and

flow directions are included on the figures to provide context for the June and July 2012 sampling results.

The following notable observations are highlighted from this initial sampling:

- PCE and other associated chlorinated ethenes were not detected in sampling of the new foundation depth (5 to 6 foot depth) implants SG-116 and -114 located in and northwest of McRae Court. PCE and associated compounds either were not detected or only found at trace concentrations (e.g., less than 1 μ g/L in groundwater) at greater depth at these locations. The trace detections are in the range of historically observed concentrations in trip blanks.
- Elsewhere, the data from new monitoring locations screening the first water bearing zone nominally from 25 to 30 feet bgs indicate conditions consistent with relatively low aqueous concentrations of PCE ranging from 1.7 to 20 μg/L.
- The data continue to support the presence of a diving plume and cleaner water lens above the historical monitoring depth.

Additional repeat sampling of these newly installed points was incorporated into the routine quarterly monitoring program starting in August 2012.

4.0 SUMMARY AND CLOSING

In accordance with the Work Plan, we have successfully installed and completed an initial sampling of monitoring points both on and off B101 property in a manner consistent with the goals of the Work Plan addendum. The locations are being used in part for performance monitoring of enhanced extraction of groundwater and gas, and the findings will be considered in the possible development of a program of confirmatory structure sampling during 2012/2013 heating season.

Other objectives of the work were to establish a wider spatial network for monitoring subsurface conditions, and to more fully define the area of interest with respect to the potential for vapor intrusion. We have met these objectives, and continue to conclude that the focus of vapor intrusion is outside the southeast corner of McRae Court.

\porserv1\datashare\DATA\PORDATA\2700s\2732.05\Source Files\20121213 Investigation Data Report\20121213 Final Investigation Data Rept.docx

TABLES

Table 1 Water Level and Differential Pressure Data

Investigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas
Manassas, Virginia

Monitoring Depth	Location	Ref. Point	Reference Elevation (ft AMSL)	DTW (ft)	WLE (ft AMSL)	Differential Pressure (in.H ₂ 0)
	SG-06-8	-	-	_	-	0
	SG-07	-	-	-	-	-0.03
	SG-08	-	-	-	-	0.34
	SG-09	-	-	-	-	-1.5
	SG-10 SG-11	-	-	<u>-</u>	-	4.6 -0.21
	SG-12	-	-	-	-	0.43
	SG-13	-	-	-	-	0.2
	SG-14	-	-	-	-	-2.7
	SG-15 SG-16	-	-	-	-	-0.04 -1.7
	SG-17	-	-	_	-	-0.01
	SG-18	-	-	-	-	-0.004
	SG-19	-	-	-	-	0
	SG-20 SG-21	-	-	-	-	0
	SG-22	-	-	-	-	-0.03
	SG-23	-	-	-	-	0
5 to 8 ft Depth	SG-24	-	-	-	-	0.54
	SG-25	-	-	-	-	-0.37
	SG-26 SG-27	-	-	-	-	-0.03
	SG-28	-	-	-	-	0
	SG-29	-	-	-	-	0.01
	SG-30	-	-	-	-	-0.9
	SG-101 SG-103	-	-	-	-	0
	SG-103	-	-	-	-	0.04
	SG-105	-	-	-	-	0.02
	SG-107	-	-	-	-	-0.35
	SG-109	-	-	-	-	-0.01
	SG-110 SG-112	-	-	-	-	-0.02 -0.01
	SG-114	-	-	-	-	0
	SG-116	-	-	-	-	-0.01
	SG-119	-	-	-	-	-4.7
	SG-122 SG-04-10	-	-	-	-	-0.32
	SG-05-10	-	-	-	-	-23
	SG-102S	-	-	-	-	-4.8
	SG-106S	-	-	-	-	0.003
	SG-108S SG-111S	-	-	-	-	0.01
10 to 12 ft Donth	SG-113S	-	-	-	-	4.7
10 to 12 ft Depth	SG-115S	-	-	-	-	2.4
	SG-117S	-	-	-	-	0
	SG-118S SG-120S	-	-	-	-	0.02 -19
	SG-121S	-	-	-	-	-8.2
	SG-123S	_	-	-	-	-0.01
	SG-31S	- WI MD	240.70	16.16	222.62	0
	D-74 D-75	WLMP WLMP	248.78 248.91	16.16 14.25	232.62 234.66	-50 0.01
	D-75	TOC	250.25	-	-	-
	D-77	TOC	250.54	-	-	-
	D-78	TOC	250.16	-	-	0.10
	SG-04-25 SG-05-25	-	-	-	-	0.13 -22
	SG-06-25	-	-	-		0.38
	SG-102I	TOR	245.75	20.79	224.96	-1.8
	SG-106I	TOR	249.78	24.07	225.71	0.004
25 to 30 ft Depth	SG-108I SG-111I	TOR TOR	251.38 252.31	26.59 29.89	224.79 222.42	-0.01 -7.6
l l l l l l l l l l l l l l l l l l l	SG-113I	TOR	247.00	14.88	232.12	8.4
	SG-115I	TOR	246.77	31.26	215.51	-5.2
	SG-117I	TOR	253.23	28.47	224.76	0.08
	SG-118I SG-120I	TOR TOR	248.73 250.89	20.64 >31.56	228.09 <219.33	0.06
	SG-121I	TOR	252.64	>32.56	<220.08	-11
	SG-123I	TOR	253.65	27.05	226.60	0
	SG-31I	TOR	245.76	22.64	223.12	0.2
	SG-04-45 SG-05-45	-	-	-	-	-0.41 -26
	SG-06-44					-16

Table 1 Water Level and Differential Pressure Data

Investigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas
Manassas, Virginia

Monitoring Depth	Location	Ref. Point	Reference Elevation (ft AMSL)	DTW (ft)	WLE (ft AMSL)	Differential Pressure (in.H ₂ 0)
	SG-102D	-	-	-	-	-4.9
	SG-106D	TOR	249.81	42.89	206.92	-11
15 to 50 ft Donth	SG-108D	TOR	251.40	45.44	205.96	-11
45 to 50 ft Depth	SG-111D	TOR	252.31	41.20	211.11	0.01
	SG-113D	TOR	246.98	41.67	205.31	-6.8
	SG-31D	TOR	245.79	45.65	200.14	0.07
	D-68	WLMP	249.58	77.68	171.90	-28
	D-69	WLMP	250.05	83.30	166.75	-18
	D-70	WLMP	248.23	71.56	176.67	-13
	D-71	WLMP	248.20	77.26	170.94	-0.16
	D-72	WLMP	247.61	71.13	176.48	-9
	D-73	WLMP	247.41	69.70	177.71	-14
70 to 80 ft Depth	D-81	TOC	243.03	60.78	182.25	-0.05
70 to 00 it Deptil	D-82	TOC	244.94	62.43	182.51	-0.64
	D-83	TOC	246.10	67.30	178.80	-0.48
	D-84	TOC	245.72	73.49	172.23	-4.4
	D-85	TOC	246.49	61.25	185.24	-0.11
	D-86	TOR	245.68	67.08	178.60	-1.1
	OF-54	TOR	252.18	72.49	179.69	-12
	OF-55	TOR	247.31	68.65	178.66	-0.6
	SG-04	TOR	246.68	41.77	204.91	-
	SG-05	TOR	246.83	>45.3	<201.53	-
	SG-06	TOR	247.32	>45.5	<201.82	-
	S-38	TOC	250.48	13.80	236.68	-
Miscellaneous	S-41	TOC	250.39	>47.2	<203.19	-
	S-42	TOC	250.04	>62.7	<187.34	-
	MW-08	TOC	248.98	71.61	177.37	-
	SG-118-22	TOR	248.73	13.70	235.03	0.08
	SG-117-23	TOR	253.22	18.09	235.13	-0.01

- 1. This table is intended to summarize water levels and differential pressure measurements recorded during characterization sampling of newly installed monitoring points in the Building 101 area at the former IBM facility in Manassas, Virginia.
- 2. Measurements were recorded by Sanborn Head personnel on July 13, 2012. Water levels are recorded as feet below the reference point as marked on the monitoring well or multi-depth implant. Differential pressures were recorded using a Dwyer Serice 475 hand held digital micromanometer measuring ranges of 0-1 and 0-40 inches of water column (in.H2O). The rated accuracy at near foom temperature is \pm 0.5% of full scale or about 0.005 inches of water for the 0-1" micromanometer.
- 3. Refer to the report text for additional details.
- 4. WLMP = Water level measurement point TOR = Top of riser

Table 2

Summary of PCE in Subsurface Gas and Groundwater Samples

Investigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas Facility
Manassas, Virginia

Subsurface Gas (µg/m³)

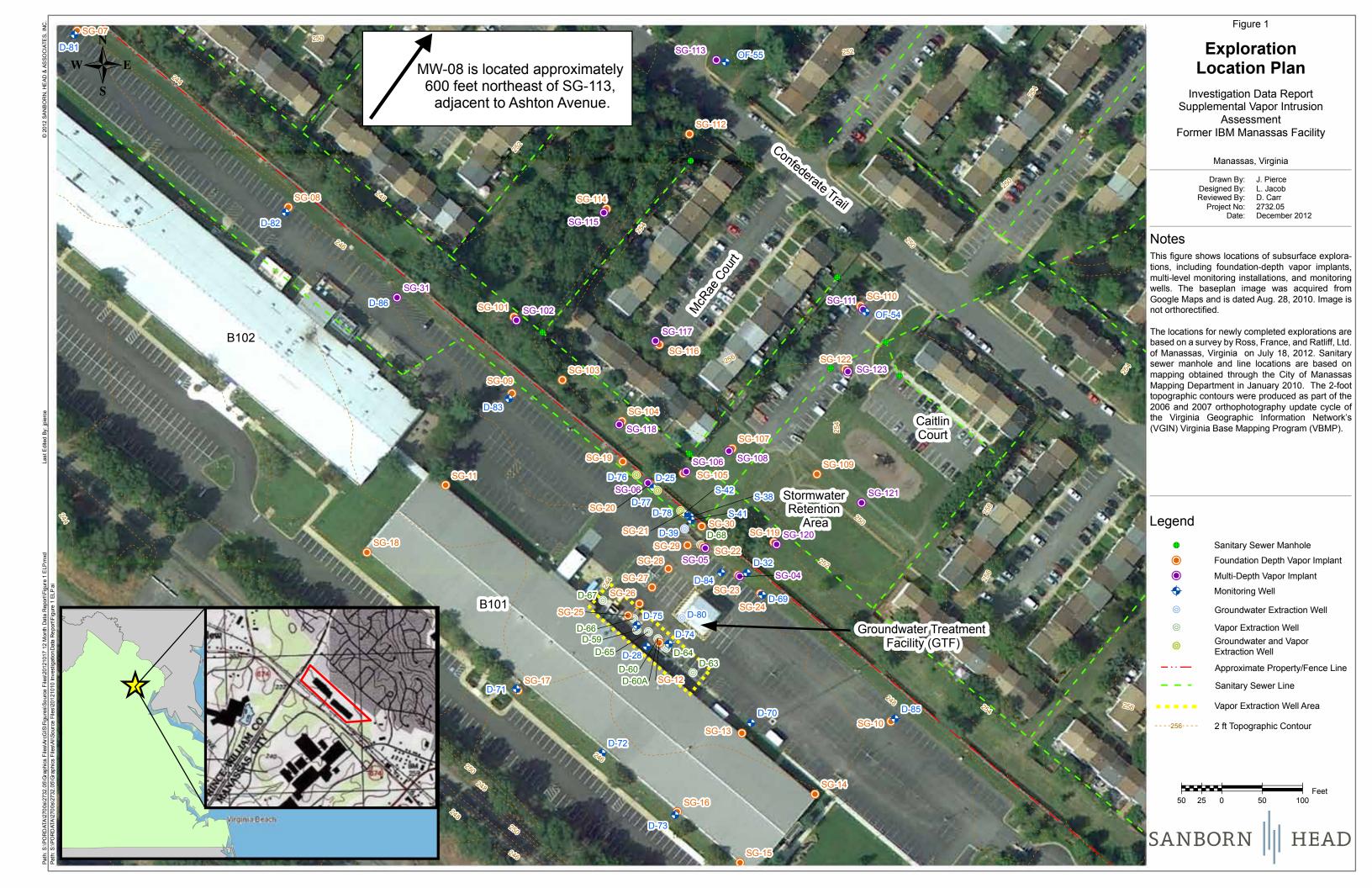
Monitoring	Logation	June 201	12	July 2012			
Depth	Location	Result	Method	Result	Method		
	SG-07	16	С				
	SG-10	10	С				
	SG-12	630,000	С				
	SG-18	·					
	SG-19	42	С				
	SG-20	32	С				
	SG-21	39	C				
	SG-24	37					
	SG-26	95	С				
	SG-27						
	SG-28	3,500	С				
	SG-29	-,					
5 to 6'	SG-30	52	С				
Depth	SG-101	<5.4 U / <5.6 U	C				
	SG-103	14	C				
	SG-104	160	S				
	SG-105	56	C				
	SG-107	1,700	C				
	SG-109	<5.8 U	С				
	SG-107	58 J	S				
	SG-110	7.6	C				
	SG-112 SG-114	7.0	U	<5.7 U / 5.7 U	С		
	SG-116			<6.3 U	C		
	SG-119			<8.9 U	C		
	SG-112			64	C		
	SG-04-10	<5.7 U	С	01	C		
	SG-05-10	19	C				
	SG-06-8	35 / 35	C				
	SG-102S	260	S				
	SG-106S	3,100 J	C				
	SG-108S	95	C				
	SG-111S	200 / 190	C				
10 to 12'	SG-113S	33 J	S				
Depth	SG-115S	55)	- U				
	SG-117S						
	SG-118S			9.8	С		
	SG-120S			56	C		
	SG-121S			<6.1 U	C		
	SG-123S			130	С		
	SG-31S			1,400	C		
	SG-05-25	25,000	С	•			
	SG-111I	9.3	С				
	SG-115I						
25 to 30'	SG-117I						
Depth	SG-118I						
	SG-120I			30,000	С		
	SG-121I			<5.7 U	С		
	SG-123I						
	SG-31I						
	SG-05-45	1,500	С				
	SG-06-44	220,000	С				
45 to 50'	SG-102D	26,000	С				
Depth	SG-106D	600,000	С				
Depui	SG-108D	200,000	С				
	SG-113D	620	С				
	SG-31D			46	С		

Groundwater (µg/L)

		June 2	July 2012		
Monitoring Depth	Location	Result	Method	Result	Method
	SG-103				
	SG-104				
5 to 6' Depth	SG-107				
	SG-109				
	SG-112				
	SG-102S				
10 to 12' Depth	SG-113S				
	SG-115S			<0.5 U	S
	SG-102I	0.1 J	D		
	SG-106I	240	D		
	SG-108I	100	D		
	SG-111I	5.4	D		
25 to 30' Depth	SG-113I	<0.5 U	D		
25 to 50 Depth	SG-115I			0.6	В
	SG-117I			0.2 J <mark>B</mark>	В
	SG-118I			20	В
	SG-123I			6.2	В
	SG-31I			7.0	В
	SG-106D	1,900	D		
	SG-108D				
45 to 50' Depth	SG-111D	0.2 J	D		
	SG-113D	0.7	D		
	SG-31D			0.8	В
	OF-54	340	D		
	OF-55	180 / 1,500	D		
	D-68				
	D-69				
	D-70				
	D-71				
	D-72				
70 to 80' Depth	D-73				
70 to oo Beptii	D-74				
	D-75				
	D-81				
	D-82				
	D-83				
	D-84				
	D-85			45.5	
	D-86			450	В
Other Depths	SG-117-23			<0.5 U	В
omer bepuis	SG-118-22			1.7	В
Equipment/Field Blank		0.1 J		<0.5 U	
Trip Blank		<0.5 U		1.8	_

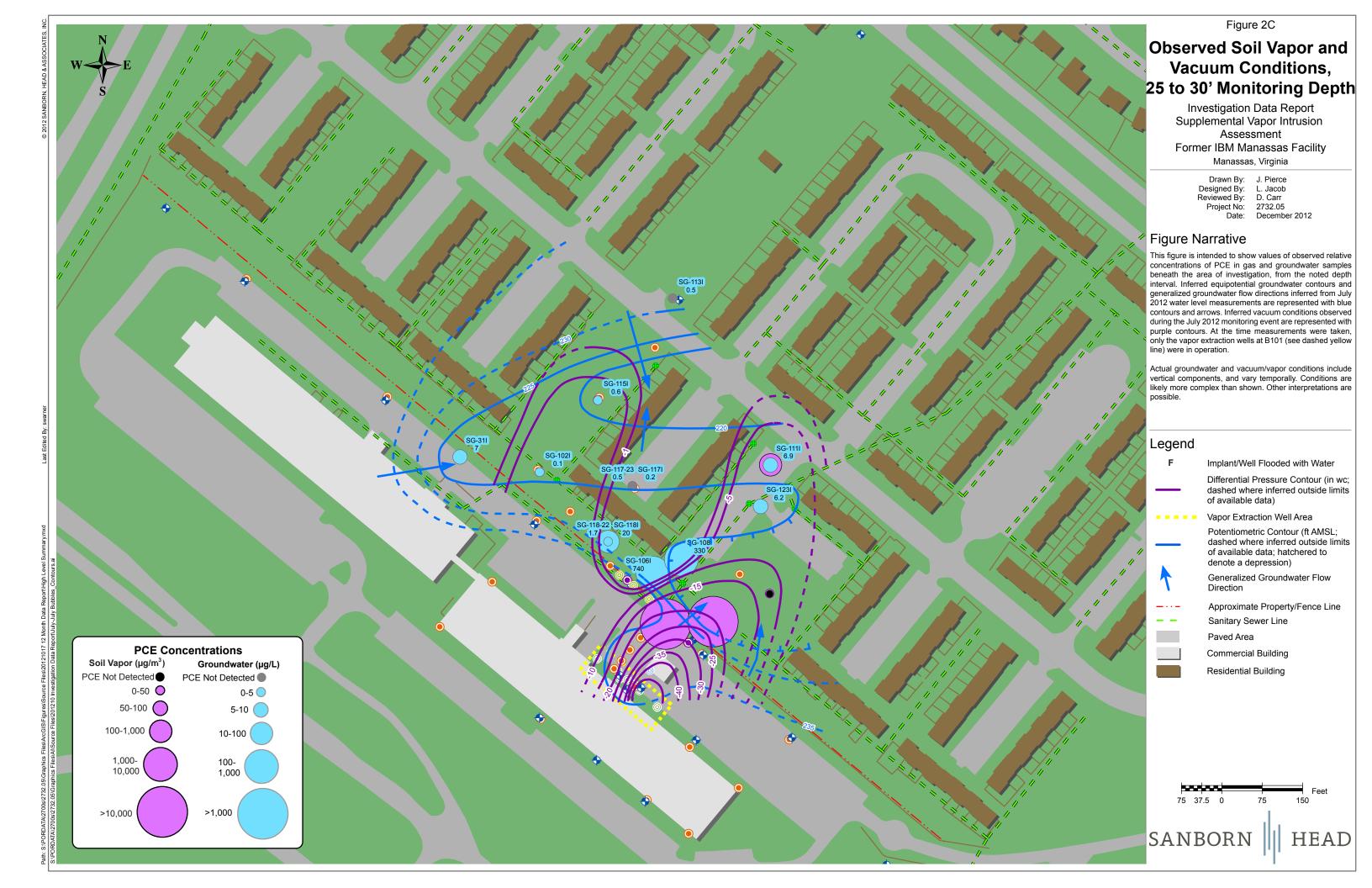
- 1. Soil vapor and groundwater quality monitoring was performed in the months noted by Sanborn Head. Previously-existing monitoring points were sampled in June; newly-installed locations were sampled in July. All previously-existing monitoring points from which subsurface gas or groundwater samples have historically been collected are listed, as well as new monitoring points. Where no laboratory analytical results are shown, no sample could be collected. Refer to field documentation in Appendix B.4 and the report text for additional details.
- 2. Subsurface gas samples collected into Summa®-type canisters were sent to Air Toxics, Ltd. of Folsom, CA and analyzed for the project-specific list of volatile organic compounds (VOCs) including tetrachloroethene (PCE) by method TO-15. Subsurface gas samples collected into evacuated glass vials were sent to Microseeps, Inc. of Pittsburgh, PA and analyzed for the project-specific list of VOCs by proprietary method AM4.02. Groundwater samples were sent to Lancaster Laboratories, Inc. of Lancaster, PA and analyzed for VOCs including PCE by USEPA method 8260B, 25 ml purge. Laboratory detections are emboldened.
- 3. Please refer to the letter report text and figure for additional details.
- 4. < and U = Result is below the limit of quantitation.
 - J = Result is estimated.
 - B = Analyte was also detected in an associated blank.
- 5. Vapor Samples were collected using evacuated Summa®-type canisters (C). Where there was not sufficient air available to fill a one-liter canister, gas was collected in evacuated glass vials via syringe (S). Groundwater samples were collected into 40 ml VOA vials, using several either a bailer (B) or syringe (S).
- 6. Duplicates are shown after the sample and "/", i.e. 24 / 19. $\,$
- $7. \ \ Red\ text\ indicates\ data\ validation\ action.$

Table 3


Summary of VOCs Detected in Groundwater Samples

Investigation Data Report Supplemental Vapor Intrusion Investigation Manassas, Virginia

		SG-115S	SG-115I	SG-117-23	SG-117I	SG-118-22	SG-118I	SG-123I	SG-31I	SG-31D	D-86	Field Blank
Name	CAS No.	7/10/2012	7/10/2012	7/12/2012	7/12/2012	7/10/2012	7/10/2012	7/10/2012	7/11/2012	7/11/2012	7/11/2012	7/11/2012
Benzene	71-43-2	0.2 J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5
Bromodichloromethane	75-27-4	0.1 J	0.2 J	1.2	1.8	<0.5	0.5 J	<0.5	0.3 J	3.0	0.4 J	<0.5
Chloroform (Trichloromethane)	67-66-3	1.9	2.9	7.5	11	4.4	5.4	0.5	5.2	17	2.4	<0.5
Dibromochloromethane	124-48-1	< 0.5	<0.5	0.2 J	0.3 J	< 0.5	<0.5	<0.5	<0.5	0.6	<1.0	<0.5
Dichloroethene (cis-1,2-)	156-59-2	< 0.5	0.2 J	<0.5	<0.5	< 0.5	0.6	0.1 J	65	8.8	1.6	<0.5
Ethylbenzene	100-41-4	0.2 J	<0.5	0.2 J	<0.5	< 0.5	0.1 J	0.1 J	0.1 J	<0.5	<1.0	<0.5
Isopropyltoluene (4-)	99-87-6	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	0.3 J	0.2 J	<1.0	<0.5
Methylene Chloride (Dichloromethane)	75-09-2	< 0.5	<0.5	<0.5	6.9	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	<0.5
Naphthalene	91-20-3	< 0.5	<0.5	0.6	0.5	< 0.5	<0.5	< 0.5	0.5	0.5	<1.0	<0.5
Tetrachloroethene (PCE)	127-18-4	< 0.5	0.6	<0.5	0.2 J <mark>B</mark>	1.7	20	6.2	7.0	0.8	450	<0.5
Toluene	108-88-3	1.4	0.5 J	1.0	0.5	0.4 J	0.7	0.8	0.5 J	2.4	0.3 J	<0.5
Trichloroethene (TCE)	79-01-6	< 0.5	0.5 J	<0.5	<0.5	< 0.5	0.5 J	0.3 J	9.4	0.8	5.6	<0.5
Trichlorofluoromethane	75-69-4	< 0.5	0.1 J	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	<0.5
Trimethylbenzene (1,2,4-)	95-63-6	0.2 J	<0.5	0.3 J	0.1 J	< 0.5	<0.5	<0.5	0.1 J	<0.5	<1.0	<0.5
Vinyl chloride	75-01-4	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6 J	<0.5	<1.0	<0.5
Xylenes	1330-20-7	1.2	0.2 J	1.4	0.4 J	0.4 J	0.7	0.6	0.6	0.3 J	<1.0	< 0.5


- 1. Groundwater quality monitoring was performed on the dates noted by Sanborn Head. Samples were sent to Lancaster Laboratories, Inc. of Lancaster, PA and analyzed for VOCs including PCE by USEPA method 8260B, 25 ml purge. Laboratory detections are emboldened. Only those compounds with one or more detections are shown.
- 2. Please refer to the progress data report text and figures for additional details.
- 3. All values are in micrograms per liter (μ g/L).
- 4. < and U = Result is below the limit of quantitation.
 - J = Result is estimated.
 - B = Analyte was also detected in an associated blank.
- 5. All samples were collected in 40 ml VOA vials, either by passive diffusion bag, bailer, or syringe methods.
- 6. Red text indicates data validation action.

FIGURES

APPENDIX A LIMITATIONS

APPENDIX A LIMITATIONS

- 1. The conclusions described in this report are based in part on the data obtained from a finite number of soil gas and groundwater samples from widely spaced subsurface explorations. The figures are intended to depict inferred conditions during a given period of time, consistent with available information. The actual conditions will vary from that shown, both spatially and temporally. Other interpretations are possible. The nature and extent of variations between explorations may not become evident until further investigation is initiated. If variations or other latent conditions then appear evident, it may be necessary to re-evaluate the conclusions of this report.
- 2. Water levels were measured at times and under conditions stated in the report. Note that fluctuations in the level of the groundwater may occur due to variations in rainfall and other factors not evident at the time measurements were made.
- 3. The conclusions contained in this report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed by previous investigators. While Sanborn Head has reviewed that data available to us at the time the report was prepared and information as stated in this report, any of Sanborn Head's interpretations and conclusions that have relied on that information will be contingent on its validity. Sanborn Head has not performed an independent assessment of the reliability of the data; should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by Sanborn Head and the interpretations and conclusions presented herein may be modified accordingly.
- 4. Sampling and quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, Sanborn Head has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their distribution within groundwater and gas may occur due to the passage of time, seasonal water table fluctuations, recharge events, and other factors.
- 5. This report has been prepared for the exclusive use of the IBM Corporation for specific application to the former IBM Manassas facility in accordance with generally accepted hydrogeologic practices. No warranty, expressed or implied, is made. The contents of this report should not be relied on by any other party without the express written consent of Sanborn Head.
- 6. In preparing this report, Sanborn Head has endeavored to conform to generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area. Sanborn Head has attempted to observe a degree of care and skill generally exercised by the technical community under similar circumstances and conditions.

7. The analyses and recommendations contained in this report are based on the data obtained from the referenced subsurface explorations. The explorations indicate subsurface conditions only at the specific locations and times, and only to the depths penetrated. They do not necessarily reflect strata variations that may exist between such locations. The validity of the recommendations is based in part on assumptions and inference Sanborn Head has made about conditions at the site. Such assumptions may be confirmed only during further investigation or remediation. If subsurface conditions different from those described become evident, the recommendations in this report must be re-evaluated.

\porserv1\datashare\DATA\PORDATA\2700s\2732.05\Source Files\20121213 Investigation Data Report\Appendices\Appendix A\20121213 App A Limitations.docx

APPENDIX B OVERVIEW OF FIELD PROGRAM

APPENDIX B.1 SUMMARY OF FIELD METHODS

APPENDIX B.1

OVERVIEW OF FIELD EXPLORATION AND TESTING PROGRAM

B.1.1 INTRODUCTION

This appendix describes the field exploration and testing program conducted by Sanborn, Head & Associates, Inc. (Sanborn Head). In accordance with the project Work Plan¹, the work included drilling and installation of foundation-depth vapor implants and multi-depth vapor/groundwater sampling installations. Work was initiated in mid June 2012 and completed in mid July 2012 as summarized in Exhibit B.1 below.

Exhibit B.1 – Summary of Field Investigation and Testing Activities

Component	Dates
Drilling, Logging, Construction/Installation of Monitoring Equipment	June 18 to July 12, 2012
Performance Testing	June 21 to July 13, 2012
Monitoring and Sampling of Subsurface Gas and Groundwater – Characterization Round	July 9 to July 13, 2012

The work was conducted in general accordance with the project goals and objectives as described in the project Work Plan, with few material deviations that are described in the sections to follow.

B.1.2 DRILLING PROGRAM

Sanborn Head contracted with Parratt Wolff, Inc. of East Syracuse, New York for drilling services at the site. Boreholes were advanced into subsurface soil and rock using the following techniques:

- Foundation-Depth Vapor Implants: Direct-push Geoprobe® drilling methods to 6 feet below ground surface (ft bgs);
- Multi-Depth Installations: Split-spoon soil sampling from the surface to refusal, followed by rock core drilling methods to depths ranging from 31 to 35.5 ft bgs; and
- Groundwater Monitoring Well: Split-spoon soil sampling from the surface to refusal, followed by rock core drilling methods to 80 ft bgs.

Rock core drilling was conducted using HQ triple-tube wireline coring methods, resulting in 5-foot sections of continuous, minimally-disturbed rock core. The drilling was coordinated, observed, and logged by Sanborn Head personnel to describe and characterize soil and rock types encountered during drilling. A representative of the United States

¹ Sanborn, Head & Associates, Inc., Work Plan for Supplemental Vapor Intrusion Assessment, Former IBM Manassas Facility, Manassas, Virginia, May 29, 2009 – updated October 15, 2010 and April 16, 2012.

Environmental Protection Agency (USEPA) was present during one day of the drilling program.

The soil and rock core samples were logged in accordance with the field logging forms presented in the Standard Operating Procedures (SOPs) in the Work Plan, to document lithology and fracture morphology, including location (depth), angle, and spacing of observed fractures and jointing. Fracture data were entered into spreadsheets in the field and used to create graphical fracture logs. Boring and monitoring point completion logs are presented in Appendix B.2. Graphical fracture logs and histograms are provided in Appendix B.3.

Soil and rock cuttings created during drilling were contained in 55-gallon drums and staged in the B101 area. Water associated with rock coring and development of monitoring wells was piped to and stored in a 21,000 gallon fractionalization tank on the B101 property. Drill cuttings, water, and solids suspended in drilling water were sampled prior to disposal by IBM. After receiving sample results, water was decanted from the fractionalization tank to the sanitary sewer with permission from the local sanitary district. Remaining solids in the bottom of the tank were disposed of and the tank cleaned by FCC Environmental of Alexandria, Virginia.

B.1.3 INSTALLATION OF MONITORING EQUIPMENT

Monitoring equipment was installed in the completed boreholes at depths consistent with the generalized depth targets outlined in the Work Plan, targeting specific fractured intervals at depth. Monitoring point construction is documented in the completion diagrams as part of the boring logs in Appendix B.2. Foundation-depth implants and monitoring wells were constructed in general accordance with the Work Plan, while construction of the multi-depth installations varied somewhat from the Work Plan as described in more detail below.

Foundation-depth implants, constructed with stainless steel screen and riser, and multidepth installations were installed immediately after each borehole was drilled. As noted above, fracture depth and frequency were reviewed to inform the selection of monitoring intervals in the deeper boreholes. Graphical logs of fracturing are included on the borehole logs in Appendix B.2.

Similar to the installation of monitoring equipment at the site in February and March 2011, ¾-inch PVC piezometers were constructed and installed to screen the intermediate depths, allowing the capability to sample both water and gas from those monitoring intervals.

The completed installations were surveyed to document the location and elevation by Ross, France & Ratliff, Ltd. of Manassas, Virginia. The survey data are attached to this appendix.

B.1.4 OPERATIONS & PERFORMANCE TESTING

After constructing the foundation-depth and shallow vapor implants, the functionality of the installations was confirmed prior to the drill rig demobilizing from the drill site.

Operations testing was conducted by withdrawing gas from the device into a Tedlar bag while recording in-line vacuum. The Tedlar bag samples were screened in the field for oxygen, carbon dioxide, and methane as a baseline measurement proximate to the installation time.

Foundation-depth and shallow vapor implants within the multi-depth installations were also subjected to a more rigorous program of performance testing that included the use of helium tracer gas. The performance testing was conducted at least 24 hours after installation and at least a week before the sampling event. Performance and operations testing records are provided in Appendix B.4.

B.1.5 MONITORING OF SUBSURFACE GAS AND WATER

One characterization sampling and monitoring round followed the completion of the monitoring point installation. A tabular summary documenting the monitoring program is presented in Table B.1. Field sampling records are provided in Appendix B.4.

As documented by Table B.1, in addition to sampling using Summa®-type evacuated canisters as per the Work Plan, where canisters could not be filled due to insufficient air-filled pore space presumably due to water saturation local to the device screen, subsurface gas samples were collected via single-use disposable syringes and injected into laboratory-cleaned 22 ml vials equipped with a septum seal. A syringe was used to collect a grab groundwater sample into VOA vials where the monitoring point was observed to produce water during purging or sampling.

The results for the evacuated vial samples and groundwater samples collected via syringe under partially saturated conditions are considered screening level data. In both cases, the samples are small volume samples collected under nearly saturated conditions and under vacuums that were substantially greater than when sampling with canisters. Vial sampling of subsurface gas was particularly useful at implants where a mixture of water and gas could be drawn through the implant. The evacuated vial samples required up to approximately 80 milliliters (ml) of gas per location, compared to 800 ml for a canister sample. Grab water samples were collected from both foundation depth implants screened well above the water table in soil and the implants installed at 10 to 12 feet below ground. The presence of water in these installations is believed to reflect conditions that may be local to the sampling device resulting from precipitation infiltration.

The validated data from canister sampling are to be used as the primary data for assessing vapor intrusion potential while data from the vial sampling is considered screening level data under conditions in which sampling might otherwise not have been possible.

The canister sampling procedures were modified slightly from Work Plan SOPs for the multi-depth monitoring installations constructed using ¾-inch PVC:

 After a water level measurement was recorded to establish the position of the water level in the screened interval and the screen was found not to be fully submerged, the center point of the screen exposed to subsurface gas was calculated;

- A 6-inch ¼-inch outer diameter (0.D) stainless steel mesh screen attached to an appropriate length of ¼-inch 0.D Teflon tubing was lowered to the mid-point of the exposed screen;
- The tubing was threaded through a rubber stopper fitted into the top of the PVC well point;
- The rubber stopper was sealed to the PVC riser with Teflon tape; and
- A gas volume equivalent to one volume of the riser and open screen interval was removed using a peristaltic pump at a low flow rate. The capped piezometer was allowed to sit for up to 24 hours prior to collection of a canister sample.
- Groundwater samples were collected via syringe as described above from vapor implants, and via bailers from monitoring wells and ¾-inch PVC piezometers.

Canister samples were submitted to Air Toxics, Ltd. (ATL), of Folsom, California for analysis for the project-specific list of six VOCs². Vapor samples collected into vials via syringe were submitted to Microseeps® of Pittsburgh, Pennsylvania for VOC analysis by proprietary method AM4.02. Groundwater samples were submitted for USEPA Method 8260B VOC analysis to Lancaster Laboratories of Lancaster, Pennsylvania. Analytical laboratory reports are compiled in Appendix C. Groundwater data and canister data were submitted to New Environmental Horizons, Inc., for independent data validation and review of data usability. Data validation reports are compiled in Appendix D.

Quality assurance/quality control (QA/QC) measures such as field duplicates, field blanks, and analytical laboratory blanks were collected in accordance with the schedule outlined in the QA/QC project plan in the Supplemental Work Plan. QA/QC measures implemented during field sampling activities included:

- confirmation of sample container and flow metering valve integrity before and after sample collection;
- sample collection pursuant to the methods outlined in the Work Plan;
- collection of field duplicate samples; and
- collection of field/trip blanks for Summa[®]-type canister and groundwater samples.

Encl:

Survey Data Table B.1 – Sampling Program Summary

\\porserv1\datashare\DATA\PORDATA\2700s\2732.05\Source Files\20121213 Investigation Data Report\Appendices\Appendix B - Field Documentation\20121213 App B.1.docx

² PCE, Trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), vinyl chloride (VC), and 1,1,2-trichloroethane (112TCA).

Table B.1 Sampling Program Summary

Investigation Data Report Former IBM Manassas Facility Manassas, Virginia

Exploration I.D.	Depth Designation	Sample Type	June 2012 Routine	July 2012 Characterization
SG-04	10	Vapor	X	
	10	Vapor	X	
SG-05	25	Vapor	X	
	45	Vapor	X	
SG-06	8	Vapor	X	
66.07	44	Vapor	X	
SG-07 SG-10		Vapor	X X	
SG-10 SG-12		Vapor Vapor	X	
SG-12 SG-17		Vapor	Λ	
SG-18		Vapor		
SG-19		Vapor	X	
SG-20		Vapor	X	
SG-21		Vapor	X	
SG-24		Vapor		
SG-25		Vapor		
SG-26		Vapor	X	
SG-27		Vapor		
SG-28		Vapor	X	
SG-29		Vapor		
SG-30		Vapor	X	
	S	Vapor		X
SG-31	I	GW		X
	D	Vapor	Not Installed	X
D 06		GW		X
D-86		GW	V	X
SG-101		Vapor Vapor	X X (VIAL)	
	S	GW	A (VIAL)	
SG-102	I	GW	X	
	D	Vapor	X	
SG-103		Vapor	X	
		Vapor	X (VIAL)	
SG-104		GW		
SG-105		Vapor	X	
	S	Vapor	X	
SG-106	I	GW	X	
30-100	D	Vapor	X	
	Ь	GW	X	
SG-107		Vapor	X	
	S	Vapor	X	
00.400	I	Vapor		
SG-108		GW	X	
	D	Vapor	X	
		GW Vapor	X	
SG-109		GW	A	
SG-110		Vapor	X (VIAL)	
50 110	S	Vapor	X	
		Vapor	X	
SG-111	I	GW	X	
	D	GW	X	
CC 112		Vapor	X	
SG-112		GW		
	S	Vapor	X (VIAL)	
	S	GW		
SG-113	I	GW	X	
	D	Vapor	X	
	<i>ر</i> ا	GW	X	

Exploration I.D.	Depth Designation	Sample Type	June 2012 Routine	July 2012 Characterization
SG-114		Vapor		X
	S	Vapor		
SG-115	3	GW		X (Y)
3G-113	T	Vapor		
	I	GW		X
SG-116		Vapor		X
	S	Vapor		
CC 117	3	GW		
SG-117	I	GW		X
	23	GW		X
	S	Vapor	Not Installed	X
SG-118	I	GW		X
	22	GW		X
SG-119		Vapor		X
CC 120	S	Vapor		X
SG-120	I	Vapor		X
SG-121	S	Vapor		X
SG-121	I	Vapor		X
SG-122		Vapor		X
CC 122	S	Vapor		X
SG-123	I	GW		X
OF-54		GW	X	
0F-55		GW	X	

- 1. This table is intended to summarize sampling completed during routine and characterization sampling in June and July 2012 at the former IBM facility in Manassas, Virginia. The sampling was conducted by Sanborn Head & Associates, Inc. (Sanborn Head) personnel in the months noted. Unless otherwise noted, soil vapor and groundwater samples were collected using Summa® canisters or bailers, respectively.
- 2. Please refer to the report text for additional details.
- 3. Abbreviations:
 - S Shallow vapor implant installed as part of a multi-depth implant, nominally 10 to 12 feet below ground
 - I Intermediate depth piezometer installed as a part of a multidepth implant, nominally $\,25$ to $\,30$ feet below ground
 - D Deep piezometer installed as part of a multi-depth implant, nominally 45 to 50 feet below ground
 - GW Groundwater
- 4. Collection Methods:
- Vial Vapor sample collected into evacuated vial via syringe Y Water sample collected via syringe

IBM Well Log

	Northing(NAD83)	Easting(NAD83)	Northing(NAD27)	Easting(NAD27)	Elevation	Comment
SG-31	6960920.82	11768228.45	399202.83	2285237.30	246.04	elev @ tag
SG-31i					245.76	top - pvc
SG-31D					245.79	top - pvc
D86					245.68	top - pvc
SG-114	6961030.01	11768487.93	399312.02	2285496.78	247.08	elev @ tag
SG-115	6961026.09	11768484.60	399308.11	2285493.45	247.11	elev @ tag
SG-115i					246.77	top - pvc
SG-116	6960862.50	11768553.03	399144.52	2285561.88	253.60	elev @ tag
SG-117	6960866.72	11768548.66	399148.73	2285557.51	253.57	elev @ tag
SG-117i					253.23	top - pvc
SG-117-23					253.39	top - pvc tee
						coupler
SG-118	6960763.48	11768503.38	399045.49	2285512.23	249.13	elev @ tag
SG-119	6960617.46	11768695.14	398899.48	2285703.99	251.14	elev @ tag
SG-120	6960614.95	11768698.59	398896.97	2285707.44	251.19	elev @ tag
SG-120i					250.89	top - pvc
SG-121	6960666.42	11768803.71	398948.43	2285812.56	252.91	elev @ tag
SG-121i					252.64	top - pvc
SG-122	6960832.10	11768784.00	399114.11	2285792.86	254.00	elev @ tag
SG-123	6960828.96	11768787.03	399110.97	2285795.89	253.95	elev @ tag

APPENDIX B.2 BORING AND MONITORING COMPLETION LOGS

Project: Former IBM Manassas Location: Manassas, VA

Stratum

Location: Manassas, VA Project No.: 2732.05

Log of Soil Vapor Implant SG-114

TOC Elevation: 247.08 feet

Datum: NAD27

Sanborn, Head & Associates, Inc. Drilling Method: 2" O.D. Split Spoon

Sampling Method: 2" O.D. Split Spoon

Sample Information

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/27/12 Logged By: EMB

Date Finished: 06/27/12 Checked By: LJJ Groundwater Readings
Depth
Date Time to Water

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Donth		Sample	intorma				Stratum		Wall	
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
2010 SANBORN HEAD V1.GDT 10/19/12 O	S-1	0 - 2	2 5 7 13	24/15	PID: 4.8 ppmv		0'	S-1 (0 to 2'): Stiff, brown, tan, and red, CLAY & SILT, trace Roots, trace gravel-sized rock fragments, trace black mineralization. Color change from brown to tan at 0.7' and from tan to red at 1.0'. Moist.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') Fine Sand (0.5 to 1') Bentonite Chip Seal (1 to -4.5')
) SANBORN HEAD V1.GLB 2010 7	S-2	2-4	12 24 32 40	24/21	PID: 3.8 ppmv		CLAY & SILT	S-2 (2 to 3.9'): Hard, red, CLAY & SILT. Moist. Drier than above.		1/4" Stainless Steel Tubing - Riser (0.5 to 5.5')
_BORING_CORING LOGS.GPJ 2010	S-3	4 - 6	32 50 47 60	24/24	PID: 4.7 ppmv		4'	S-3 (4 to 6'): Soft, very severely weathered, red, fine-grained Sandy SILTSTONE. Moist.		— Fine Sand (4.5 to 6')
s:WORK/GINT LOGS/2732.05_0 9 							SANDY SILTSTONE	Boring terminated at 6', no refusal encountered.		6" x 1/4" Stainless Steel Mesh Screen (5.5 to 6')
BORING LOG WPORSERV1UbATASHAREDATA/PORDATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOG WPORSERV1UbATASHAREDATA/PORDATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOG WPORSERV1UbATASHAREDATA/PORDATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOG WPORSERV11DATASHAREDATA/PORDATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOG WPORSERV11DATASHAREDATA/PORDATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOGS WPORSERV11DATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOGS WPORSERV11DATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS.GPJ_2010 SANBORN HEAD VJ.GLB BORING LOGS WPORSERV11DATA/2700S/2732_05/WORK/GINT LOGS/2732_05_BORING_CORING LOGS/2732_05_BORI								NOTES: 1. Boring terminated at 6', split-spoon refusal not encountered. 2. The borehole was completed as a soil vapor implant as shown in the well diagram immediately after the completion of drilling. 3. The Field Testing column represents headspace of bagged samples, which were screened for the presence of volatile organic compounds (VOCs) using a RAE System MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 4. No soil samples were submitted for analysis.		_
BORING LOG POR										

Project: Former IBM Manassas Location: Manassas, VA

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/26/12 Logged By: EMB, JAP

Date Finished: 06/27/12 Checked By: LJJ

Log of Monitoring Well SG-115

TOC Elevation: 247.11 feet PVC Elevation: 246.77 feet (I)

Datum: NAD27

Groundwater Readings

Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/27/12	11:25	9.7'	Ground Surface		33.5'	0 min. (pre-purge)
06/27/12	12:00	31.91'	Ground Surface	10.5'	33.5'	35 mins.
06/27/12	13:00	24.05'	Ground Surface	10.5'	32.0'	Well mat. installed

	Drill Rate (min/ft)		Sample Information					Stratum				
Depth (ft)		Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description	
0 —		S-1	0 - 2	4 7 7 10	24/21	PID: 0.7 ppmv		0'	S-1A (0 to 1.1'): Stiff, reddish tan, CLAY & SILT, trace Gravel, trace Roots. Dry.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') 4" Steel Casing (0.5 to 10.5') Coarse Sand (0.5 to 1')	
									S-1B (1.2 to 2'): Very stiff, red, CLAY & SILT, little, gravel-sized Bedrock fragments, trace Roots. Dry.			
2 —		S-2	2 - 4	12 22 30 43	24/24	PID: 19.5 ppmv			S-2 (2 to 4'): Hard, red, CLAY & SILT, becoming more weathered Rock with depth. Weathered Siltstone 3.8 - 4' with black staining along bedding planes. Moist to Dry.			
_								CLAY & SILT				
4 —		S-3	4 - 6	26 34 47 54	24/18	PID: 17.4 ppmv			S-3 (4 to 6'): Hard, red, CLAY & SILT, trace coarse Sand. Dry.			
6 —		S-4	6 - 6.5	83/0.5	6/6	PID: 24.5			S-4A (6 to 6 2'): Hard red CLAY & SILT			
_			0 0.0	00,0.0	G/G	ppmv		6.2' WEATHERED SILTSTONE 6.5'	S-4A (6 to 6.2'): Hard, red, CLAY & SILT, trace coarse Sand, trace black mineralization. Moist. S-4B (6.2 to 6.5'): Very soft, completely weathered, red, fine-grained SANDY SILTSTONE. Dry.		'/' Stainless Steel Riser (0.5 to 12') Bentonite Chip Seal (1 to 11.5')	
8 —												
								No Recovery				
10-											Sheet: 1 of 5	

Project: Former IBM Manassas Location: Manassas, VA

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/26/12 Logged By: EMB, JAP

Date Finished: 06/27/12 Checked By: LJJ

Log of Monitoring Well SG-115

TOC Elevation: 247.11 feet PVC Elevation: 246.77 feet (I)

Datum: NAD27

Groundwater Readings Depth

Depth of Hole 33.5' 33.5' 32.0' Depth of Casing Stab. Time to Water Ref. Pt. Time Date 9.7' 31.91' 10.5' 10.5' 10.5' 06/27/12 11:25 **Ground Surface** 0 min. (pre-purge) 06/27/12 12:00 **Ground Surface** 35 mins. 06/27/12 13:00 Well mat. installed 24.05' **Ground Surface**

- 55	Date		Sample Information					Stratum		T -	
Depth (ft)	Drill Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
10-								No Recovery	Split-spoon refusal encountered at 6.5'. Drillers advanced 8.25" OD hollow-stem augers to 10.5' without sampling, no refusal encountered. A permanent 4" steel casing was installed to 10.5' and grouted into place. The log continues on page 3.		
12-											
14											
_											
16											
18											
_											
20—											Sheet: 2 of 5

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/26/12 Logged By: EMB, JAP

Date Finished: 06/27/12 Checked By: LJJ

Log of Monitoring Well SG-115

TOC Elevation: 247.11 feet PVC Elevation: 246.77 feet (I)

Datum: NAD27

Groundwater Readings

	Deptri		Depth	Depth	อเลม.	
Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
11:25	9.7'	Ground Surface	10.5'	33.5'	0 min. (pre-purge)	
12:00	31.91'	Ground Surface	10.5'	33.5'	35 mins.	
13:00	24.05'	Ground Surface	10.5'	32.0'	Well mat. installed	
	11:25 12:00	Time to Water 11:25 9.7' 12:00 31.91'	Time to Water Ref. Pt. 11:25 9.7' Ground Surface 12:00 31.91' Ground Surface	Time to Water Ref. Pt. of Casing 11:25 9.7' Ground Surface 10.5' 12:00 31.91' Ground Surface 10.5'	Time to Water Ref. Pt. of Casing of Hole 11:25 9.7' Ground Surface 10.5' 33.5' 12:00 31.91' Ground Surface 10.5' 33.5'	Time to Water Ref. Pt. of Casing of Hole Time 11:25 9.7' Ground Surface 10.5' 33.5' 0 min. (pre-purge) 12:00 31.91' Ground Surface 10.5' 33.5' 35 mins.

		Drill		Sample I	nforma	tion	Str	atum			
epth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Frac- tures	scription	Geologic Description	Well Diagram	Well Description
- 12	C-1	4	10.5 - 13.5	3.0/3.0 100%	48	PID: 1.4 ppmv		10.5'	C-1 (10.5 to 13.5'): Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal and vertical jointing. Hardness increases and weathering decreases with depth. Minor Calcite-filled vugs and veins throughout.		
_		4						SANDY TSTONE			6" x 1/4" Stainless Steel Mesh Scree (12 to 12.5')
14	C-2	3	13.5 - 18.5	5.0/5.2 104%	83	PID: 0.8 ppmv			C-2 (13.5 to 18.5'): Moderately hard, slightly weathered, red, fine-grained, interbedded SANDSTONE & SILTSTONE and SANDY SILTSTONE. Very thin horizontal and crossbedding, very close to close horizontal to shallow dipping joints.		Fine Sand (11.5 t 15.5') 3/4" Dia. Sch. 40 PVC (0.5 to 27')
_		3						15.2'	Sandstone portions crossbedded. Calcite-filled veins and vugs at 14.4 - 15.9'.		
16—		3					SILT	Int. "STONE & IDSTONE "15.9"			
_		3						.16.5'			
18—		3						STONE & IDSTONE 17.9' SANDY TSTONE 18.2'			
_	C-3	3	18.5 - 23.5	5.0/4.9 98%	97	PID: 5.0 ppmv		18.4'	C-3 (18.5 to 23.5'): Moderately hard, fresh, red, fine-grained, interbedded SANDSTONE & SILTSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal to shallow dipping joints.		
20 —		3						19.8' SANDY TSTONE	Sandstone portions crossbedded. Calcite-filled veins at 21.2' and 22.6'.		
	Fracture Symbol			l Crack		J	oint		Extremely Fractured Z Zone		Sheet: 3 of 5

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/26/12 Logged By: EMB, JAP

Date Finished: 06/27/12 Checked By: LJJ

Log of Monitoring Well SG-115

TOC Elevation: 247.11 feet PVC Elevation: 246.77 feet (I)

Datum: NAD27

Groundwater Readings Depth

Groundwa	atei nec	aumys					
		Depth		Depth	Depth	Stab.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/27/12	11:25	9.7'	Ground Surface	10.5'	33.5'	0 min. (pre-purge	:)
06/27/12	12:00	31.91'	Ground Surface	10.5'	33.5'	35 mins.	•
06/27/12	13:00	24.05'	Ground Surface	10.5'	32.0'	Well mat. installe	d

		Deili	9	Sample I	nforma	tion		Stratum			
Depth (ft)	Sample No.	Drill Rate (min/ft)	Depth	Pen/ Rec (ft) (%)	DOD	Field Testing Data	Log Frac- tures		Geologic Description	Well Diagram	Well Description
_		3		V 27				20.7' Int. SILTSTONE & SANDSTONE 21.1'			Bentonite Chip Seal (15.5 to 26.5
22—		3						Sandy SILTSTONE			
_	C-4	2.5	23.5 - 28.5	5.0/5.0 100%	96	PID: ND		Int. SILTSTONE & SANDSTONE	C-4 (23.5 to 28.5'): Moderately hard, fresh, red, fine-grained, interbedded SANDSTONE & SILTSTONE and SANDY SILTSTONE. Very		
24 —		2.5						Int. SILTSTONE & SANDSTONE24.7' SANDY SILTSTONE	thin horizontal and cross bedding, very close to moderately close horizontal to moderately dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Sandstone component is coarse from 27 - 27.4'. Calcite-filled veins and vugs throughout.		
26—		2.5						SANDSTONE25.6'			
_		2.5									Fine Sand (26.5 27')
28-		2.5						Int. SILTSTONE & SANDSTONE			
-	C-5	2.5	28.5 - 33.5	5.0/5.0 100%	66	PID: 1.7 ppmv		-	C-5 (28.5 to 33.5'): Moderately hard, slightly weathered to fresh, red, fine to coarse-grained, interbedded SANDSTONE & SILTSTONE, SANDY SILTSTONE and SANDSTONE. Very thin horizontal and cross		
30 —		2.5						SANDSTONE29.9' Int. SILTSTONE & SANDSTONE	bedding, very close to close horizontal to vertical joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Sandstone is coarse from 29.9 - 31' and 31 - 31.4'. Coarse Sandstone lenses at 30.5' and 32.3'.		Coarse Sand (27 to 32') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (27 to 32')
	Fracture Symbol			rack			Joint		Extremely Fractured Zone	p	Sheet: 4 of 5

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/26/12 Logged By: EMB, JAP

Date Finished: 06/27/12 Checked By: LJJ

Log of Monitoring Well SG-115

TOC Elevation: 247.11 feet PVC Elevation: 246.77 feet (I)

Datum: NAD27

Groundwater Readings

		Depth		Depth	Depth	อเลม.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/27/12	11:25	9.7'	Ground Surface	10.5'	33.5'	0 min. (pre-purge)
06/27/12	12:00	31.91'	Ground Surface	10.5'	33.5'	35 mins.	
06/27/12	13:00	24.05'	Ground Surface	10.5'	32.0'	Well mat. installed	d

	a By: EIVII			Cnec Sample I					Stratum			
Depth (ft)	Sample No.	Drill _ Rate	Depth	Pen/	RQD	Field	50	င္ မ		Geologic Description	Well Diagram	Well Description
(11)	INO.	(min/ft)	(ft)	Rec (ft) (%)	(%)	Testing Data	Log	Frac- tures	Description		Diagraffi	
		2.5					-1-1-h					
		2.5							Int. SILTSTONE &			
								$\overline{}$	SANDSTONE			
									SANDSTONE			
							11111		31.4'			
		2.5						$\overline{}$				
32—									Int			
									Int. SILTSTONE & SANDSTONE			Fine Sand (32 to 32.5')
		2.5										32.3)
4								П				Bentonite Chip
							1		33.1' SANDY			Seal (32.5 to 33.5
									SILTSTONE33.5'			
									30.0	Boring terminated at 33.5'.		
34 —										NOTES:		
34 -										1. The borehole was completed as a		
										multi-depth monitoring installation as shown in the well diagram.		
										Exterior surfaces and natural and		
										mechanical breaks in soil and rock samples and the headspace of bagged samples were		
-										screened for the presence of volatile organic compounds (VOCs) using a RAE Systems		
										MiniRae Model 2000 Photoionization Detector		
										(PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor		
										of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv)		
36—										isobutylene standard.		
										Values recorded in the Field Testing Data column represent headspace screening		
										results.		
										 No soil samples were submitted for laboratory analysis. 		
										, ,		
38 —												
_												
40												
40 —												
		9		Crack			⊥⊥ Joint			Extremely Fractured Z Zone		Sheet: 5 of 5

Project No.: 2732.05

Date Finished: 07/12/12

Checked By: LJJ

Log of Soil Vapor Implant SG-116

Ground Elevation: 253.60 feet

Datum: NAD27

Sanborn, Head & Associates, Inc. Drilling Method: 2" O.D. Split Spoon

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice

Date Started: 07/12/12 Logged By: EMB, JAP Groundwater Readings Depth Date

Time to Water

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

		Sample	Informa	ation			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		4.2		12/4	DID: 2.4		0' ASPHALT 0.5'	C 4 /4 to 20), Coft, and CLAV 9 CHT trace Cround		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') Fine Sand (0.5 to 1')
	S-1	1 - 2	1 1	12/4	PID: 2.1 ppmv			S-1 (1 to 2'): Soft, red, CLAY & SILT, trace Gravel. Moist.		4.5')
2 —	S-2	2 - 4	2 2 2 3	24/5	PID: 2.5 ppmv			S-2 (2 to 4'): Soft, red, CLAY & SILT, little Gravel. Moist.		1/4" Stainless Steel Tubing
4 —	0.2	4.0		04/44	DID: 4.5		CLAY & SILT	O O (A A S CIV) Coff and CI AV 9 CIV T through Control		Riser (0.5 to 5.5')
_	S-3	4-6	1 1 2 1	24/11	PID: 1.5 ppmv			S-3 (4 to 6'): Soft, red, CLAY & SILT, trace Gravel, trace Roots. Moist.		Fine Sand (4.5 to 6')
6 —							6'	Boring terminated at 6', no refusal encountered.		6" x 1/4" Stainless Steel Mesh Screen (5.5 to 6')
_								NOTES: 1. Boring terminated at 6', split-spoon refusal not encountered. 2. The borehole was completed as a soil vapor implant as shown in the well diagram immediately		
8 —								after the completion of drilling. 3. The Field Testing column represents headspace of bagged samples, which were screened for the presence of volatile organic compounds (VOCs) using a RAE System MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 4. No soil samples were submitted for analysis.		
-										

Project No.: 2732.05

Log of Monitoring Well SG-117

Ground Elevation: 253.57 feet

PVC Elevation: 253.23 feet (I) / 253.22 feet (23)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 07/11/12 Logged By: EMB, JAP Date Finished: 07/12/12 Checked By: LJJ

Groundwa	Groundwater Readings														
		Depth		Depth	Depth	Stab.									
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time									
07/11/12	15:45	1.61'	Ground Surface	14'	35.5'	5 min.									
07/11/12	16:11	32.75'	Ground Surface	14'	35.5'										
07/11/12	16:17	30.35'	Ground Surface	14'	35.5'	37 min.									

	Drill		Sample	Informa				Stratum			
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		S-1	0.5 - 2	3 6 4	18/14	PID: 7.1 ppmv		ASPHALT0.5'	Asphalt. S-1 (0.5 to 2'): Stiff, red, Silty CLAY, trace Gravel, trace Roots. Moist.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') Coarse Sand (0.5 to 1')
2 —		S-2	2 - 4	3 4 4 4	24/12	PID: 3.2 ppmv		2'	S-2 (2 to 4'): Medium stiff, red, CLAY & SILT, trace Sand. Moist.		_
2 — 4 — 8 —		S-3	4 - 6	1 1 1 1	24/22	PID: 0.5 ppmv			S-3 (4 to 6'): Soft, red, CLAY & SILT, trace Sand. Wet.		-
6 —	_	S-4	6 - 8	2 3 4 6	24/24	PID: 1.9 ppmv		CLAY & SILT	S-4 (6 to 8'): Medium stiff, red, CLAY & SILT, trace Wood, Root fragments. Moist.		_
8 —		S-5	8 - 10	4 9 26 55	24/24	PID: 4.7 ppmv			S-5A (8 to 9.4'): Hard, red, CLAY & SILT. Tan and white Clay mineralization at 9.1'. Moist.		1/4" Stainless Steel Riser (0.5 to 14.5') Bentonite Chip Seal (1 to 14')
10-						PID: 0.9 ppmv		9.4' SANDY SILTSTONE	S-5B (9.4 to 10'): Soft, very severely weathered, red, fine-grained SILTSTONE, very thin horizontal bedding. Black staining on fracture surface. Moist.		%" Dia. Sch. 40 PVC Riser (0.5 to 19') Sheet: 1 of 5

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 07/11/12 Logged By: EMB, JAP

Date Finished: 07/12/12 Checked By: LJJ

Log of Monitoring Well SG-117

Ground Elevation: 253.57 feet

PVC Elevation: 253.23 feet (I) / 253.22 feet (23)

Groundwa	ater Rea	idings Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
07/11/12	15:45	1.61'	Ground Surface	14'	35.5'	5 min.
07/11/12	16:11	32.75'	Ground Surface	14'	35.5'	
07/11/12	16:17	30.35'	Ground Surface	14'	35.5'	37 min.

Depth (ft)	Drill		Sample								
	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
10- 12- 14- 16-		S-6	10 - 11.9	23 51 55 75/0.4	23/23				S-6 (10 to 11.9'): Soft, severely weathered, red, fine-grained SILTSTONE, very thin horizontal bedding. Black staining on fracture surface. Moist.		_
-										П	-
										П	
12-								SANDY SILTSTONE		П	-
-										П	
										П	
14-							-		Split-spoon refusal encountered at 11.9'. Drillers advanced 8.25" O.D. hollow-stem augers to 14' without sampling, no refusal		_
									encountered. A temporary 6" steel casing was installed to 14' and coring continued through the temporary casing. The log continues on page 2.		
16-	_										_
-											
18-											_
-											
20-											

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 07/11/12 Logged By: EMB, JAP

Date Finished: 07/12/12 Checked By: LJJ

Log of Monitoring Well **SG-117**

Ground Elevation: 253.57 feet

PVC Elevation: 253.23 feet (I) / 253.22 feet (23)

Groundwa	Groundwater Readings														
		Depth		Depth	Depth	Stab.									
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time									
07/11/12	15:45	1.61'	Ground Surface	14'	35.5'	5 min.									
07/11/12	16:11	32.75'	Ground Surface	14'	35.5'										
07/11/12	16:17	30.35	Ground Surface	14'	35.5'	37 min									

		D.:III		Sample I	nforma	tion		Stratum			
Depth (ft)	Sample No.	Drill Rate (min/ft)	Depth	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac- tures		Geologic Description	Well Diagram	Well Description
14 —	C-1	3.8	14 - 18.5	4.5/4.0 89%	10	PID: 2.8 ppmv		14'	C-1 (14 to 18.5'): Soft to medium hard, severely to moderately weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints. Black staining on fracture surfaces		Fine Sand (14 to 15.5') 6" x 1/4" Stainless Steel Mesh Scree (14.5 to 15')
16—		3.8						Int. SILTSTONE & SANDSTONE			³⁄₄" Dia. Sch. 40
_		3.8									PVC Riser (0.5 to 33') Bentonite Chip Seal (15.5 to 18.9
18—		2								П	
_	C-2	2.9	18.5 - 23.5	5.0/4.9 98%	46	PID: 25.7 ppmv		19'	C-2 (18.5 to 23.5'): Medium to moderately hard, severely to slightly weathered, red, fine to coarse-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to		Fine Sand (18.5 19') 3/4" Dia. Sch. 40 PVC Well Screet (0.010" Slots) (19
20 —		2.9						SANDSTONE19,8' SILTSTONE & SANDS JONE	steeply dipping joints. Severely weathered zones from 18.5 - 19.2' and 21.4 - 22.2'.		to 23')
_		2.9						SANDSTONE			Coarse Sand (19 to 23')
22—		2.9						Int. SILTSTONE & SANDSTONE			·
		2.9						22.3' SANDSTONE 22.7'			
	C-3	2.1	23.5 - 28.5	5.0/5.0 100%	90	PID: 6.2 ppmv		SANDY SILTSTONE	C-3 (23.5 to 28.5'): Moderately hard to hard, fresh to slightly weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal		Fine Sand (23 to 24.5')
24—	Fracture	9		Crack			Joint				Sheet: 3 of 5

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 07/11/12 Logged By: EMB, JAP

Date Finished: 07/12/12 Checked By: LJJ

Log of Monitoring Well **SG-117**

Ground Elevation: 253.57 feet

PVC Elevation: 253.23 feet (I) / 253.22 feet (23)

Datum: NAD27

Groundwater Readings

		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
07/11/12	15:45	1.61'	Ground Surface	14'	35.5'	5 min.
07/11/12	16:11	32.75'	Ground Surface	14'	35.5'	
07/11/12	16:17	30.35'	Ground Surface	14'	35.5'	37 min.

Depth (ft)	Sample	Drill				tion	1	Stratum			
	NI-	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	DOD	Field Testing Data	Log Frac-		Geologic Description	Well Diagram	Well Description
24-		2.1		V -2/					bedding, very close to moderately close horizontal to steeply dipping joints. Large steeply dipping calcite-filled vein from 24.1 - 25.1'.		
26-		2.1									
_		2.1						SANDY SILTSTONE			
28-		2.1									
-	C-4	2.9	28.5 - 33.5	5 5.0/5.3 106%	100	PID: 2.3 ppmv		28.5'	C-4 (28.5 to 33.5'): Very hard, fresh, red, fine-grained, SILTY SANSDSTONE, Very thin horizontal bedding, no joints. Green staining from 33.1 - 33.5'.		Bentonite Chip Seal (24.5 to 32.5
30 —		2.9									
_		2.9						SANDSTONE			
32-		2.9									
_		2.9									Fine Sand (32.5 33') 34" Dia. Sch. 40
	C-5	3.8	33.5 - 35.5	2.0/2.0 100%	71	PID: 2.6 ppmv		33.5' SANDY SILTSTONE	C-5 (33.5 to 35.5'): Very hard, fresh, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close joints.		PVC Well Screer (0.010" Slots) (33 to 35.5')

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 07/11/12 Logged By: EMB, JAP

Date Finished: 07/12/12 Checked By: LJJ

Log of Monitoring Well **SG-117**

Ground Elevation: 253.57 feet

PVC Elevation: 253.23 feet (I) / 253.22 feet (23)

Groundwa	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
07/11/12	15:45	1.61'	Ground Surface	14'	35.5'	5 min.
07/11/12	16:11	32.75'	Ground Surface	14'	35.5'	
07/11/12	16:17	30.35'	Ground Surface	14'	35.5'	37 min.

Jones-	Samela	Drill		Sample I			_		Stratum		Moll	
Jepth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log	Frac- tures	Description	Geologic Description	Well Diagram	Well Description
34-				(79)		Dutu				Green staining from 33.5 - 34.4'.		Coarse Sand (33 to 35.5')
_		3.8							SANDY SILTSTONE			
							_		35.5'	Daily toward to top 51		
										Boring terminated at 35.5'.		
36—										NOTES: 1. The borehole was completed as a multi-depth monitoring installation as shown in the well diagram.		
_	-									2. Exterior surfaces and natural and mechanical breaks in soil and rock samples and the headspace of bagged samples were screened for the presence of volatile organic compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor		
38—										of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 3. Values recorded in the Field Testing Data column represent headspace screening		
										results. 4. No soil samples were submitted for laboratory analysis.		
-												
40-												
_												
42-												
-												
44 —	Fracture		- (Crack			oint		1/1	Extremely Fractured Zone	1	Sheet: 5 of 5

Project No.: 2732.05

Log of Monitoring Well SG-118

Ground Elevation: 249.13 feet

PVC Elevation: 249.73 feet (I) / 248.73 feet (22)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/25/12 Logged By: EMB, JAP

Date Finished: 06/26/12 Checked By: LJJ

Groundwater Readings Depth Time Date to Water 06/26/12 12:02 06/26/12

06/26/12

06/26/12 06/26/12

8.86' 28.55' 25.89' 12:15 12:22 20.15' 13.77' 13:06 13:07

Ground Surface 8.5' 8.5' 8.5' 8.5' Ground Surface Ground Surface **Ground Surface** Ground Surface

Ref. Pt.

Depth of Hole 31' 31' 31' 31' \ Depth of Casing Time 0 min. (pre-purge) 13 mins. (purged) 31' 20 mins. 31' Well mat. installed (I) 22.5' Well mat. installed (22)

Stab.

	Drill		Sample	e Informa				Stratum			
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		S-1	0 - 2	2 6 6 6	24/16	PID: ND		0'	S-1 (0 to 2'): Stiff, red, CLAY & SILT, trace Gravel, trace Roots. Moist.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') 4" Steel Casing (0.5 to 8.5') Coarse Sand (0.5 to 1')
2	-	S-2	2 - 4	4 4 8 7	24/17	PID: ND		CLAY & SILT	S-2 (2 to 4'): Stiff, red, CLAY & SILT, trace Gravel. Moist.		
4 —		S-3	4 - 6	2 3 17 14	24/18	PID: ND			S-3 (4 to 6'): Very stiff, red, CLAY & SILT, trace Gravel. Moist.		1/4" Stainless Steel Riser (0.5 to 9.5')
6 —		\$-4	6-7	9 64	12/12	PID: ND		6.5' WEATHERED SILTSTONE 7'	S-4A (6 to 6.5'): Hard, red, CLAY & SILT, trace Gravel. Moist. S-4B (6.5 to 7'): Very soft, very severely weathered, red, fine-grained SANDY SILTSTONE. Black staining on fracture surfaces. Moist.		Bentonite Chip Seal (1 to 9')
8	_							No Recovery	Split-spoon refusal encountered at 7'. Drillers advanced 8.25" OD hollow-stem augers to refusal at 8.5' without sampling. A permanent 4" steel casing was installed to 8.5' and grouted into place. The log continues on page 2.		

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/25/12 Logged By: EMB, JAP

Date Finished: 06/26/12 Checked By: LJJ

Log of Monitoring Well SG-118

Ground Elevation: 249.13 feet

PVC Elevation: 249.73 feet (I) / 248.73 feet (22)

Groundwa	ater Rea			B	5	01.1	
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time	
06/26/12	12:02	8.86'	Ground Surface	8.5'	31'	0 min. (pre-purg	e)
06/26/12	12:15	28.55'	Ground Surface	8.5'	31'	13 mins. (purged	d)
06/26/12	12:22	25.89'	Ground Surface	8.5'	31'	20 mins.	
06/26/12	13:06	20.15'	Ground Surface	8.5'	31' \	Well mat. installed	(I)
06/26/12	13:07	13.77'	Ground Surface	8.5'	22.5' V	Vell mat. installed	(<u>22</u>)

		Drill		Sample	Informa	ation		Stratum			
Depth (ft)	Sample No.	Rate (min/ft)	Depth	Pen/ Rec (ft) (%)	BOD	Field Testing Data	Log Frac-		Geologic Description	Well Diagram	Well Description
10—	C-1	4.5	8.5 - 9.5 9.5 - 14.5	1.0/0.9 90% 5.0/5.0 100%		PID: 2.6 ppmv		8.5'	C-1 (8.5 to 9.5'): Moderately hard, fresh, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal to shallow dipping joints. Tan mineral-filled vugs throughout. C-2 (9.5 to 14.5'): Moderately hard, slightly weathered to fresh, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal to shallow dipping joints. Calcite-filled veins and vugs throughout, especially 9.5 - 11.4' and 12.9 - 13.2'.		%" Dia. Sch. 40 PVC (0.5 to 19') 6" x %" Stainless Steel Mesh Scree (9.5 to 10')
12—		3.5									Fine Sand (9 to 13')
_		3.5						SANDY SILTSTONE			%" Dia. Sch. 40 PVC (0.5 to 26')
14	C-3		14.5 - 19.5	5 5.0/4.9 98%	60	PID: 3.0 ppmv		SILIOIVE	C-3 (14.5 to 19.5'): Moderately hard, slightly weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close horizontal to shallow dipping joints. Calcite-filled veins and vugs from 14.5- 18.0'.		
16—		3							Calcite-filled veins and vugs from 14.5-16.0.		Bentonite Chip Seal (13 to 18.5')
18—		3									
I		1	1	1	I	l .		1 1			

Stratum

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/25/12 Logged By: EMB, JAP

Date Finished: 06/26/12 Checked By: LJJ

Sample Information

Log of Monitoring Well **SG-118**

Ground Elevation: 249.13 feet

PVC Elevation: 249.73 feet (I) / 248.73 feet (22)

Groundwa	ater Rea	adings					
		Depth		Depth	Depth	Stab.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/26/12	12:02	8.86'	Ground Surface	8.5'	31'	omin. (pre-purge)
06/26/12	12:15	28.55'	Ground Surface	8.5'	31'	13 mins. (purged))
06/26/12	12:22	25.89'	Ground Surface	8.5'	31'	20 mins.	•
06/26/12	13:06	20.15'	Ground Surface	8.5'	31' W	ell mat. installed	(I)
06/26/12	13:07	13.77'	Ground Surface	8.5'	22.5' We	ell mat. installed (<u>2</u> 2)

C-4 4 19.5 - 24.5 5.0/5.0 23 PID-3.4 ppmv 4 19.5 - 24.5 5.0/5.0 23 PID-3.4 ppmv 4 22 - 4 4 19.5 - 24.5 5.0/5.0 98 PID-400 ppmv 4 24 - 4 3 24.5 - 29.5 5.0/5.0 98 PID-400 ppmv 3 24.5 - 29.5 5.0/5.0 98 PID-400 ppmv 3 24.5 - 29.5 5.0/5.0 98 PID-400 ppmv 3 24.5 - 20.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1)enth	Sample	Drill		Sample			_		Stratum		l w	/ell	
C-4 4 19.5 - 24.5 5.05.0 23 PID- 3.4 pprinv 20— 4 19.5 - 24.5 5.05.0 23 PID- 3.4 pprinv 4 24— 4 25— 4 25— 4 25— 4 25— 4 26— 4 26— 4 27— 4 26— 4 27— 4 28— 5 3 24.5 - 29.5 5.05.0 98 PID- 400 pprinv 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)		Log	Frac- tures	Description	Geologic Description			Well Description
22 — 4 24 — 4 25 — 4 26 — 4 27 — 4 28 — 5.015.0 98 PID: 400 ppmv 29 — 100% 20 — 23.8"— SILTSTONE SILTSTONE SILTSTONE SANDY	20—	C-4	4	19.5 - 24.5		23					weathered, red, fine-grained, SANDY SILTSTONE and interbedded SANDSTONE & SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Odor noted. Open-air PID			Fine Sand (18.5 to 19')
Fine Sand (22 23) 4 C-5 3 24.5 - 29.5 5.0/5.0 98 PID: 400 ppmv PiD: 400 ppmv SANDY SILTSTONE 4 SANDSTONE 4 SANDSTONE 4 SILTSTONE 5 SILTSTONE 4 SANDSTONE 4 SANDSTONE 4 SANDSTONE 4 SANDSTONE 5 SILTSTONE 5 SANDY SILTSTONE 5 SANDSTONE 5 SILTSTONE 6 SANDSTONE	22—		4								along core length = 400 ppmv at 21'.			3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (19
24— C-5 3 24.5 - 29.5 5.0/5.0 98 PID: 400 ppmv PID: 400 ppmv 3 24.5 - 29.5 5.0/5.0 100% PID: 400 ppmv C-5 (24.5 to 29.5'): Moderately hard, slightly weathered, red, fine-grained, SANDY SILTSTONE & SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to shallow dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Fine Sand (25 26') 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_	-	4											Fine Sand (22.5 to 23')
3 3 SANDY SILTSTONE SANDY SILTSTONE SILTSTONE AS SILTSTONE AS SILTSTONE & SANDSTONE &	24—	C-5		24.5 - 29.5		98				Int. SILTSTONE & SANDSTONE	C-5 (24.5 to 29.5'): Moderately hard, slightly			Bentonite Chip Seal (23 to 25.5')
3	_	-	3		10070		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				SILTSTONE and interbedded SANDSTONE & SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to shallow dipping joints. Portions of interbedded Siltstone & Sandstone			Fine Sand (25.5 to 26')
SILTSTONE 27,6 int. SILTSTONE & SANDSTONE SANDSTONE SANDSTONE SANDY	_		3						-	Int. SILTSTONE & SANDSTONE26.8'				
	28—		3							SILTSTONE27.6' Int. SILTSTONE & SANDSTONE28 SANDY SILTSTONE				

Location: Manassas, VA

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/25/12 Logged By: EMB, JAP

Date Finished: 06/26/12 Checked By: LJJ

Log of Monitoring Well SG-118

Ground Elevation: 249.13 feet

PVC Elevation: 249.73 feet (I) / 248.73 feet (22)

Datum: NAD27

Groundwa	ater Rea	dings					
		Depth		Depth	Depth	Stab.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/26/12	12:02	8.86'	Ground Surface	8.5'	31'	0 min. (pre-purge)
06/26/12	12:15	28.55'	Ground Surface	8.5'	31'	13 mins. (purged))
06/26/12	12:22	25.89'	Ground Surface	8.5'	31'	20 mins.	
06/26/12	13:06	20.15'	Ground Surface	8.5'	31' \	Well mat. installed	(l)
06/26/12	13:07	13.77'	Ground Surface	8.5'	22.5' W	/ell mat. installed (<u>2</u> 2)

Jonth	Sample	Drill		Sample I				Stratum		Well	
(ft)	No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log	Description	Geologic Description	Diagram	Well Description
30—	C-6	3 3	29.5 - 31		50	PID: 27 ppmv		Int. SANDSTONE & SILTSTONE	C-6 (29.5 to 31'): Moderately hard, slightly weathered, red, fine-grained, interbedded SANDSTONE & SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints. Sandstone portions are crossbedded.		Coarse Sand (26 to 31') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (26 to 31')
-								31'	Boring terminated at 31'.		
									NOTES: 1. The borehole was completed as a multi-depth monitoring installation as shown in the well diagram.		
32-									Exterior surfaces and natural and mechanical breaks in soil and rock samples and the headspace of bagged samples were screened for the presence of volatile organic compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 3. Values recorded in the Field Testing Data column represent headspace screening results.		
34									No soil samples were submitted for laboratory analysis.		
36—											
38—											
	Fractur	<u> </u>		Crack			l l Joint	[Id	Extremely Fractured Z Zone		Sheet: 4 of 4

Stratum

Project No.: 2732.05

Log of Monitoring Well SG-119

Ground Elevation: 251.14 feet

Datum: NAD27

Sanborn, Head & Associates, Inc. Drilling Method: 2" O.D. Split Spoon

Sampling Method: 2" O.D. Split Spoon

Sample Information

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/20/12 Logged By: EMB

Date Finished: 06/20/12 Checked By: LJJ

Groundwater Readings Depth Depth of Casing Depth of Hole Date Time to Water Ref. Pt.

Stab. Time

Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 -	S-1	0 - 2	4 8 8 6	24/15	PID: ND		0'	S-1 (0 to 2'): Very stiff, red, CLAY & SILT, trace Gravel, trace Roots. Dry.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') Fine Sand (0.5 to 1')
	S-2	2-4	4 5 8 9	24/14	PID: ND		CLAY & SILT	S-2 (2 to 3.9'): Stiff, red, CLAY & SILT, trace coarse Sand. Moist.		Bentonite Chip Seal (1 to 4.5') ''' Stainless Steel Tubing Riser (0.5 to 5')
4 -		4 - 6	10 12 20 45	24/22	PID: ND			S-3A (4 to 5.3'): Very stiff, red, CLAY & SILT, trace fine Sand. Moist.		Fine Sand (4.5 to 6')
	_				PID: ND		5.3' WEATHERED SILTSTONE	S-3B (5.3 to 6'): Very soft, completely weathered, red, fine-grained SANDY SILTSTONE. Very thin horizontal bedding. Moist.		6" x 1/4" Stainless Steel Mesh Screen (5 to 5.5')
6 -							6'	Boring terminated at 6', no refusal encountered.		-
								NOTES: 1. Boring terminated at 6', split-spoon refusal not encountered.		
	-							The borehole was completed as a soil vapor implant as shown in the well diagram immediately after the completion of drilling.		-
	_							 The Field Testing column represents headspace of bagged samples, which were screened for the presence of volatile organic compounds (VOCs) using a RAE System MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. No soil samples were submitted for analysis. 		_
10-	_	<u> </u>	1	1		1	1		1	Sheet: 1 of 1

Project No.: 2732.05

Log of Monitoring Well SG-120 Ground Elevation: 251.19 feet

PVC Elevation: 250.89 feet (I)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/19/12 Logged By: EMB, JAP Date Finished: 06/20/12 Checked By: LJJ

Groundwater Readings

	Depth		Depth	Deptri	อเลม.	
Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
13:50	15.68'	Ground Surface	11'	34'	45 min. (pre-purge	9)
13:58	32.25'	Ground Surface	11'	34'	53 min. (purged)	
09:27	31.63'	Ground Surface	11'	34'	20 hrs.	
11:30	31.97'	Ground Surface	11'	34'	2 days	
	13:50 13:58 09:27	Time to Water 13:50 15.68' 13:58 32.25' 09:27 31.63'	Time to Water Ref. Pt. 13:50 15.68' Ground Surface 13:58 32.25' Ground Surface 09:27 31.63' Ground Surface	Time to Water Ref. Pt. of Casing 13:50 15.68' Ground Surface 11' 13:58 32.25' Ground Surface 11' 09:27 31.63' Ground Surface 11'	Time to Water Ref. Pt. of Casing of Hole 13:50 15.68' Ground Surface 11' 34' 13:58 32.25' Ground Surface 11' 34' 09:27 31.63' Ground Surface 11' 34'	Time to Water Ref. Pt. of Casing of Hole Time 13:50 15.68' Ground Surface 11' 34' 45 min. (pre-purged) 13:58 32.25' Ground Surface 11' 34' 53 min. (purged) 09:27 31.63' Ground Surface 11' 34' 20 hrs.

2— S-2 2-4 3 24/13 PID: 8.5 ppmv 4— S-3 4-6 3 24/18 PID: 6.8 ppmv 6— S-4 6-8 33 47 37 50 24/24 PID: 11.2 ppmv		
9 - S-1 0-2 - 24/24 PID: 20.3 ppmv 20' 3 3 3 3 3 3 3 3 3 3 3 3 4-6 3 8 8 13 36 24/18 PID: 6.8 ppmv 2 CLAY & SILT 5 9 pmv 2 1 1.2 ppmv 3 1 1.2 ppmv 4 1 1.2 ppmv 5 1 1.2		Vell gram Well Description
4 — S-3 4-6 3 24/18 PID: 6.8 ppmv 6 — S-4 6-8 33 4/73 ppmv 6 — S-4 6-8 33 4/74 PID: 11.2 ppmv	S-1 (0 to 2'): Red, CLAY & SILT, trace gravel-sized angular Rock fragments. Moist. Hand dug.	9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8") Coarse Sand (0.5 to 1") 4" Steel Casing (0.8 to 11")
6 — S-4 6-8 33 24/24 PID: 11.2 ppmv	S-2 (2 to 4'): Medium stiff, red, CLAY & SILT, trace gravel-sized angular Rock fragments. Moist.	
5-4 6-8 43 47 37 50	S-3 (4 to 6'): Very stiff, red, CLAY & SILT, tan mineralization in break at 5.6'. Moist.	
	S-4 (6 to 8'): Hard, red, CLAY & SILT, Rock fabric more evident with depth. Moist.	1/4" Stainless Steel Riser (0 to 12') Bentonite Chip Seal (1 to 11.5')
94 ppmv SANDY SILTSTONE	S-5 (8 to 9'): Very soft, very severely weathered red fine-grained SANDY SILTSTONE. Very thin bedding. Tan mineralization along bedding planes. Split-spoon refusal encountered at 9'. Drillers advanced 8.25" OD hollow-stem augers to 9.5' without sampling, at which	

Sanborn, Head & Associates, Inc.

Project: Former IBM Manassas

Location: Manassas, VA

Project No.: 2732.05

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/19/12 Logged By: EMB, JAP

Date Finished: 06/20/12 Checked By: LJJ

Log of Monitoring Well SG-120

Ground Elevation: 251.19 feet PVC Elevation: 250.89 feet (I)

Datum: NAD27

Ground	water Readings			
	Depth		Depth	
Date	Time to Water	Ref Pt	of Casing	

Depth of Hole 34' 34' 34' 34' Stab. Time 45 min. (pre-purge) 53 min. (purged) 20 hrs. 2 days 06/20/12 Ground Surface 13:50 15.68' 11' 32.25' 06/20/12 13:58 Ground Surface 06/21/12 09:27 31.63' **Ground Surface** 11' 06/22/12 11:30 31.97' Ground Surface 11'

		Drill	;	Sample I	nforma				Stratum	tum		
Depth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log	Frac- tures	Description	Geologic Description	Well Diagram	Well Description
10-	C-1	7	9.8 - 11	1.2/0.9 75%	0	PID: NM				C-1 (9.8 to 11'): Soft, moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close horizontal to steeply dipping jointing. Extremely fractured above 10.5'.		
_	C-2	1 5.5	11 - 14	3.0/2.7 90%	42	PID: ND				C-2 (11 to 14'): Very soft to soft, slightly weathered, red, aphanitic, SANDY SILTSTONE and SHALE. Very thin horizontal bedding, very close to close horizontal to steeply dipping joints.		
12		5.5							SANDY SILTSTONE	Shale zone from 13.2 - 13.6'. Green staining at diagonal fracture from 11.7 - 12' and within rock matrix from 13 - 13.5'.		6" x 1/4" Stainless Steel Mesh Screer (12 to 12.5')
_		5										3/4" Dia. Sch. 40
14	C-3	4.5	14 - 19	5.0/3.5 70%	83	PID: ND			14'	C-3 (14 to 19'): Soft, slightly weathered, red, fine-grained, interbedded SILTSTONE & SHALE. Very thin horizontal bedding, very close to close horizontal to steeply dipping		PVC (0 to 27') Coarse Sand (11.9 to 15.5')
_		4.5								joints. Shalier zone 17.8 - 18.0'. White mineral filled vugs and veins with green mineralization halos throughout.		
16—		4.5							Int. SILTSTONE &		Ш	
_		4.5							SHALE		Ш	
18—		5						-				
_	C-4	5	19 - 24	5.0/4.8 96%	71	PID: ND			19' SANDY SILTSTONE	C-4 (19 to 24'): Medium to moderately hard, slightly weathered, red, fine-grained, SANDY SILTSTONE and interbedded SANDSTONE & SILTSTONE. Very thin horizontal and cross-bedding bedding, very close to close horizontal to shallow dipping joints.		
	Fracture Symbol			Crack			Joint	:		Extremely Fractured Zone		Sheet: 2 of 4

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/19/12 Logged By: EMB, JAP

Date Finished: 06/20/12 Checked By: LJJ

Sample Information

Log of Monitoring Well **SG-120**

Ground Elevation: 251.19 feet PVC Elevation: 250.89 feet (I)

Datum: NAD27

Stratum

		Depth		Depth	Depth	Stab.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/20/12	13:50	15.68'	Ground Surface	11'	34'	45 min. (pre-purge	e)
06/20/12	13:58	32.25'	Ground Surface	11'	34'	53 min. (purged))
06/21/12	09:27	31.63'	Ground Surface	11'	34'	20 hrs.	
06/22/12	11:30	31.97'	Ground Surface	11'	34'	2 days	
06/21/12	09:27	31.63'	Ground Surface	11'	34'	20 hrs.	∌a,

Oepth Sample (ft) No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD	Field Testing	Log	င္မွ နွ	D	Geologic Description	Well Diagram	Well Description
			(%)	(%)	Data	בן	Frac- tures	Description		Diagram	
20—	5							SANDY SILTSTONE 20.3' Int. SILTSTONE & SANDSTONE	Portions of interbedded Siltstone & Sandstone are crossbedded.		Bentonite Chip Seal (15.5 to 26.5'
22—	5							SANDY SILTSTONE			
_	5						+				
24— C-5	5	24 - 29	5.0/4.9 98%	58	PID: ND			23.8'	C-5 (24 to 29'): Medium to moderately hard, slightly weathered, red, fine-grained, interbedded SANDSTONE & SILTSTONE and SANDSTONE. Very thin horizontal and cross		
-	5							Int. SILTSTONE & SANDSTONE	bedding, very close to close horizontal to vertical joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite filled vertical veins from 24.9 - 26.2' and 26.8 - 27.3'. Sandstone lenses at 27.0 and 27.2.		
26—	5							26.3' SANDSTONE 26.6'			
	5							Int. SILTSTONE & SANDSTONE 27.3' SANDSTONE 27.5'			Fine Sand (26.5 to 27')
28—	5							Int. SILTSTONE & SANDSTONE28.3' SANDSTONE28.5'			
- C-6	5	29 - 34	5.0/4.7 94%	53				Int. SILTSTONE & SANDSTONE	C-6 (29 to 34'): Medium hard to hard, slightly weathered, red, fine-grained, interbedded SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints.		Coarse Sand (27 to 32')

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/19/12 Logged By: EMB, JAP

Date Finished: 06/20/12 Checked By: LJJ

Log of Monitoring Well **SG-120**

Ground Elevation: 251.19 feet PVC Elevation: 250.89 feet (I)

Datum: NAD27

Groundwater	Readings
	Donth

		Deptri		Depth	Depth	อเลม.	Ĺ
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/20/12	13:50	15.68'	Ground Surface	11'	34'	45 min. (pre-purg	je)
06/20/12	13:58	32.25'	Ground Surface	11'	34'	53 min. (purged	()
06/21/12	09:27	31.63'	Ground Surface	11'	34'	20 hrs.	ľ
06/22/12	11:30	31.97'	Ground Surface	11'	34'	2 days	

S4l-	01-	Drill			mple Information		Stratum			\A/-!!		
(ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac-	Description	Geologic Description	Well Diagram	Well Description	
30-		5		(10)				SILTSTONE & SANDSTONE SANDY SILTSTONE SANDY SILTSTONE 30.5'	Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite-filled diagonal veins from 32.6 - 32.8' and 32.9 - 33'. Highly weathered zone from 31.05 - 31.2' and moderately weathered zone from 31.95 - 32'.		3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (27 to 32')	
32—		5									Fine Sand (32 to 32.5')	
_		8						Int. SILTSTONE & SANDSTONE				
34 —											Bentonite Chip Seal (32.5 to 35')	
_								35'	Boring terminated at 35'.			
36—									NOTES: 1. The borehole was completed as a multi-depth monitoring installation as shown in the well diagram immediately after the completion of drilling. 2. Exterior surfaces and natural and mechanical breaks in soil and rock samples and the headspace of bagged samples were screened for the presence of volatile organic compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector			
38—									 (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 3. Values recorded in the Field Testing Data column represent headspace screening results. 			
_												
	Fracture Symbol			 Crack		J	Joint		Extremely Fractured ZZ Zone		Sheet: 4 of 4	

Project No.: 2732.05

Log of Monitoring Well SG-121

Ground Elevation: 252.91 feet PVC Elevation: 256.64 feet (I)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice

Date Started: 06/21/12 Logged By: EMB, JAP, LJJ Date Finished: 06/22/12 Checked By: LJJ

Groundwa	ater Rea	ndings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/22/12	15:20	8.55'	Ground Surface	10.5'	33.5'	0 min.
06/22/12	15:32	32.55'	Ground Surface	10.5'	33.5'	12 min.
06/22/12	15:43	32.65'	Ground Surface	10.5'	33.5'	23 min.
06/22/12	16:38	31.51'	Ground Surface	10.5'	33.5'	1 hr. 18 min.

	Drill		Sample Information					Stratum				
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description	
0 —		S-1	0 - 2	2 6 7 6	24/12	PID: 0.5 ppmv		0'	S-1 (0 to 2'): Stiff, red, CLAY & SILT, trace Roots. Dry.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') 4" Steel Casing (1 to 10.5')	
2 —		S-2	2 - 4	5 5 11 11	24/15	PID: 49.1 ppmv		CLAY & SILT	S-2 (2 to 4'): Very stiff, red, CLAY & SILT, trace coarse Sand, trace Roots, color change to grayish red at 3.7'. Moist.			
4 —		S-3	4 - 6	4 7 12 25	24/24	PID: 4.8 ppmv			S-3A (4 to 5.7'): Very stiff, red, CLAY & SILT, trace coarse Sand. Moist.			
6 —		S-4	6 - 6.9	53 75/0.4	11/11	PID: 3.8 ppmv		SANDY SILTSTONE	S-3B (5.7 to 6'): Soft, very severely weathered, red, fine-grained SANDY SILTSTONE. Very thin horizontal bedding. Dry. S-4 (6 to 6.9'): Hard, red, CLAY & SILT, Soft, very severely weathered, red, fine-grained SANDY SILTSTONE. Very thin horizontal bedding. Gray mineralization in fracture at 6.5'. Dry.		1/4" Stainless Steel Riser (0.5 to 11.5') Bentonite Chip Seal (1 to 11')	
8 —		S-5	8 - 9.4	26 29 75/0.4	17/17	PID: ND		8' SILTSTONE	S-5A (8 to 9.2'): Very soft, very severely weathered, red, fine-grained SANDY SILTSTONE. Black staining on fracture surfaces at 8.1 and 9.2'. Softer and drier from 8.6 - 8.9'.			
_10								SANDY SILTSTONE	S-5B (9.2 to 9.4'): Soft, severely weathered, red, SANDY SILTSTONE. Very thin horizontal bedding, extremely fractured.			

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/21/12 Logged By: EMB, JAP, LJJ Date Finished: 06/22/12 Checked By: LJJ

Log of Monitoring Well SG-121

Ground Elevation: 252.91 feet PVC Elevation: 256.64 feet (I)

Groundwa	Groundwater Readings												
		Depth		Depth	Depth	Stab.							
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time							
06/22/12	15:20	8.55'	Ground Surface	10.5'	33.5'	0 min.							
06/22/12	15:32	32.55'	Ground Surface	10.5'	33.5'	12 min.							
06/22/12	15:43	32.65'	Ground Surface	10.5'	33.5'	23 min.							
06/22/12	16:38	31.51'	Ground Surface	10.5'	33.5'	1 hr. 18 min.							

Depth State Sample Option Private Spoon Pend Option Pend Option Option		pth Drill Sample Information					Stratum					
SULTSTONE SULTSTONE Split-spoon refusal encountered at 9.4*. Drillers advanced 8.25* OD hollow-stem auges to 10.5* without sampling, no refusal encountered at 9.4*. The log continues on page 3. The log continues on page 3.	/£4\	Rate	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
14-	10 —								SANDY SILTSTONE			
16—	12-											
16—	_											
	14											
	_											
18—	16-											
18—	_											
	18—											
	_											
20												

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP, LJJ

Date Finished: 06/22/12 Checked By: LJJ

Log of Monitoring Well SG-121

Ground Elevation: 252.91 feet PVC Elevation: 256.64 feet (I)

Datum: NAD27

Groundwa	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/22/12	15:20	8.55'	Ground Surface	10.5'	33.5'	0 min.
06/22/12	15:32	32.55'	Ground Surface	10.5'	33.5'	12 min.
06/22/12	15:43	32.65'	Ground Surface	10.5'	33.5'	23 min.
06/22/12	16:38	31.51'	Ground Surface	10.5'	33.5'	1 hr. 18 min.

C-1 4.5 10.5 - 13.5 3.0/3.0 10 PID: ND SILTSTONE SILTSTONE SILTSTONE SILTSTONE SILTSTONE SILTSTONE SANDSTONE Close horizontal to steeply dipping joints. SANDSTONE Sometime of the state of the st	Jones	Sample	Drill		Sample I			Stratum		Well	
100% 100% 100% 100% 11.3—	eptn (ft)	No.						Description	Geologic Description		Well Description
C-2 13.5 - 17.3 3.83.5 77 PID- 0.4 ppmv S2% PID- 0.5 ppmv S2% PID-	12—	C-1		10.5 - 13.5		10	PID: ND	SILTSTONE SANDSTONE SILTSTONE SANDSTONE SILTSTONE & SANDSTONE	slightly to moderately weathered, red, fine to coarse-grained, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE, and SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal to steeply dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite-filled veins throughout. Soft, moderately weathered zone		Steel Mesh Scree
C-2 (13.5 to 17.3): Medium hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE SANDY SILTSTONE C-3 (17.3 to 18.5): Medium hard, slightly to moderately close to rooterately close rooterately close to rooterately close to rooterately close rooterately close to rooterately close rooterately close to rooterately close r			4.5								
coss bedding, very close to moderately close horizontal to vertical pintal vertical p	_	C-2	5	13.5 - 17.3		77			moderately weathered, red, fine-grained,		
C-3 5 17.3 - 18.5 1.2/1.2 58 PID: 0.5 ppmv SILTSTONE C-4 2 18.5 - 23.5 5.0/4 6 28 PDD: 39 ppmv C-4 (15.5 16.5) Medium to moderately hard, slightly to moderately olose horizontal to vertical joints. Sandstone lens from 21.7 - 21.8: Green and black staining on fracture surfaces from 20.5 - 23.5: Green staining at fractures at 21.2, 21.9, 22.15, and 23.3:	14—		5						cross bedding, very close to moderately close horizontal to vertical joints. Portions of interbedded Siltstone & Sandstone		
SANDY SILTSTONE C-3 5 17.3 - 18.5 1.2/1.2 58 PID: 0.5 ppmv C-4 2 18.5 - 23.5 5.0/4.6 92% PID: 39 ppmv C-4 2 18.5 - 23.5 5.0/4.6 1 28 PID: 39 ppmv C-4 (18.5 to 23.5) Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal to serious with green halos parallel to bedding at 17.8 and 18.4'. C-4 (18.5 to 23.5') Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to moderately close horizontal to vertical joints. Sandstone lens from 21.7 - 21.8'. Green and black staining on fracture surfaces from 20.5 - 23.5'. Green staining at fractures at 21.2', 21.9', 22.15', and 23.3'.	_		_						perpendicular to bedding from 14.5 - 15.3' and at 17.1'. Calcite-filled veins and vugs		
C-3 5 17.3 - 18.5 1.2/1.2 58 PID: 0.5 ppmv 18 C-4 2 18.5 - 23.5 5.0/4.6 92% 4.5 PID: 39 ppmv C-4 1.5 1.2/1.2 58 PID: 39 ppmv A.5 PID: 35 ppmv C-3 (17.3 to 18.5'): Medium hard, slightly weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal to shallow dipping bedding, close shallow dipping pionts. Calcite-filled veins with green halos parallel to bedding at 17.8 and 18.4'. C-4 (18.5 to 23.5'): Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to moderately close horizontal to vertical joints. Sandstone lens from 21.7 - 21.8'. Green and black staining on fracture surfaces from 20.5 - 23.5'. Green staining at fractures at 21.2', 21.9', 22.15', and 23.3'.	16—		5							П	
18— C-4 2 18.5 - 23.5 5.0/4.6 992% PID: 39 ppmv C-4 4.5 A.5 100% PiD: 39 ppmv PiD: 39 ppmv A.5 A.5 A.5 A.5 A.5 A.5 A.5 A.	_		4					SILTSTONE		П	
C-4 2 18.5 - 23.5 5.0/4.6 92% PID: 39 ppmv C-4 (18.5 to 23.5'): Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to moderately close horizontal to vertical joints. Sandstone lens from 21.7 - 21.8'. Green and black staining on fracture surfaces from 20.5 - 23.5'. Green staining at fractures at 21.2', 21.9', 22.15', and 23.3'.		C-3	5	17.3 - 18.5		58			weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal to shallow		
4.5 10.3 - 23.5 . 0.4.0 28 ppmv 10.3 - 25.5 . 0.4.0 28 ppmv 10.4 (18.5 23.5) . Westurn to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to moderately close horizontal to vertical joints. Sandstone lens from 21.7 - 21.8'. Green and black staining on fracture surfaces from 20.5 - 23.5'. Green staining at fractures at 21.2', 21.9', 22.15', and 23.3'.	18—	C-A		40 =			DID		bedding at 17.8 and 18.4'.		
23.5'. Green staining at fractures at 21.2', 21.9', 22.15', and 23.3'.	-	57	2	18.5 - 23.5		28			hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to moderately close horizontal to vertical joints. Sandstone lens from 21.7 - 21.8'. Green and		
	20—		4.5						23.5'. Green staining at fractures at 21.2',		

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/21/12 Logged By: EMB, JAP, LJJ Date Finished: 06/22/12 Checked By: LJJ

Log of Monitoring Well SG-121

Ground Elevation: 252.91 feet PVC Elevation: 256.64 feet (I)

Groundwater	Readings
-------------	----------

		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/22/12	15:20	8.55'	Ground Surface	10.5'	33.5'	0 min.
06/22/12	15:32	32.55'	Ground Surface	10.5'	33.5'	12 min.
06/22/12	15:43	32.65'	Ground Surface	10.5'	33.5'	23 min.
06/22/12	16:38	31.51'	Ground Surface	10.5'	33.5'	1 hr. 18 min.

		le Drill	Sample Info			tion	Stratum					
epth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac-	Description	Geologic Description	Well Diagram	Well Description	
22—		4.5						SANDY			Bentonite Chip Seal (15 to 27.5')	
_		4.5						SILTSTONE				
24—	C-5	4.5	23.5 - 28.5	5.0/5.0 100%	42	PID: 7.6 ppmv		23.8' Int. SILTSTONE &	C-5 (23.5 to 28.5'): Medium to moderately hard, slightly weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE, and SANDSTONE. Very thin horizontal, shallow dipping and cross bedding, very close to close			
_		4.5						SANDY	Portions of interbedded Slltstone and Sandstone are crossbedded. Tan mineralization in vugs, especially from 26.1 - 27'. Black staining on fracture from 23.5 - 24.4'. Green mineralization in Sandstone from			
26—		4.5						25.7' Int. SILTSTONE & SANDSTONE 26.1'	27.3 - 27.5'.			
_		4.5						SANDY SILTSTONE				
28—		4.5						SANDY SILTSTONE SANDY			Fine Sand (27.5 t 28')	
-	C-6	4.5	28.5 - 33.5	5.0/5.0 100%	56	PID: 1.0 ppmv		28.8'	C-6 (28.5 to 33.5'): Moderately hard, slightly weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to steeply dipping joints.			
30 —		4						Int. SILTSTONE & SANDSTONE	Portions of interbedded Siltstone & Sandstone are crossbedded. Green staining at cracks from 28.5 - 30.2'.			

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP, LJJ

Date Finished: 06/22/12 Checked By: LJJ

Log of Monitoring Well SG-121

Ground Elevation: 252.91 feet PVC Elevation: 256.64 feet (I)

Groundwater Readin	ıgs

		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/22/12	15:20	8.55'	Ground Surface	10.5'	33.5'	0 min.
06/22/12	15:32	32.55'	Ground Surface	10.5'	33.5'	12 min.
06/22/12	15:43	32.65'	Ground Surface	10.5'	33.5'	23 min.
06/22/12	16:38	31.51'	Ground Surface	10.5'	33.5'	1 hr. 18 min.

Samet.	Cam	Drill		Sample I	ample Information				Stratum		\A/=!!	II Well Deceriation
epth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log	Frac- tures	Description	Geologic Description	Well Diagram	Well Description
_		4							30.7' SANDY SILTSTONE			Coarse Sand (28 to 33') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (28 to 33')
32—		4						\pm	32.1'			
-		4						7	Int. SILTSTONE & SANDSTONE32.9' SANDY			Fig. 0 1/00 to
24		4							SILTSTONE33.5'	Boring terminated at 33.5'. NOTES:		Fine Sand (33 to 33.5')
34 —										The borehole was completed as a multi-depth monitoring installation as shown in the well diagram immediately after the completion of drilling. Exterior surfaces and natural and mechanical breaks in soil and rock samples and the headspace of bagged samples were screened for the presence of volatile organic		
36—										compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 3. Values recorded in the Field Testing Data column represent headspace screening		
_										results.		
38—												
-												
40—												
										Extremely Fractured ZZ Zone		Sheet: 5 of 5

Location: Manassas, VA Project No.: 2732.05

Log of Monitoring Well SG-122

Ground Elevation: 254.00 feet

Datum: NAD27

Sanborn, Head & Associates, Inc.
Drilling Method: 2" O.D. Split Spoon

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/27/12 Logged By: EMB Date Finished: 06/27/12 Checked By: LJJ Groundwater Readings Depth Depth Depth Stab. Date Time to Water Ref. Pt. of Casing of Hole Time

Danish	Sample Information			Stratum						
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2	3 12 15 15	24/23	PID: 3.5 ppmv		0'	S-1 (0 to 2'): Very stiff, red, CLAY & SILT, trace Roots, trace Gravel. Tannish red from 0-0.7'. Increasing moisture with depth.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8') Fine Sand (0.5 to 1') Bentonite Chip Seal (1 to 4.5')
2 —	S-2	2 - 4	6 13 15 17	24/16	PID: 0.8 ppmv		CLAY & SILT	S-2 (2 to 4'): Very stiff, red, CLAY & SILT, trace gravel-sized Rock fragments, trace coarse Sand. Dry Cobble fragments from 3.3 - 3.6'		1/4" Stainless Steel Tubing Riser (0.5 to 5.5')
4 —	S-3	4 - 6	15 19 11 9	24/24	PID: 1.6 ppmv			S-3 (4 to 6'): Very stiff, red, CLAY & SILT, some gravel-sized Siltstone fragments. Dry from 4 - 5.2' and moist from 5.2 - 6'		Fine Sand (4.5 to 6')
6 —							6'	Boring terminated at 6', no refusal encountered.		6" x 1/4" Stainless Steel Mesh Screen (5.5 to 6')
_								NOTES: 1. Boring terminated at 6', split-spoon refusal not encountered. 2. The borehole was completed as a soil vapor implant as shown in the well diagram immediately after the completion of drilling. 3. The Field Testing column represents headspace of bagged samples, which were screened for the presence of volatile organic compounds (VOCs) using a RAE System MiniRae Model 2000		
8 —								Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 4. No soil samples were submitted for analysis.		_
10-										Sheet: 1 of 1

Project No.: 2732.05

Log of Monitoring Well SG-123

Ground Elevation: 253.95 feet PVC Elevation: 253.65 feet (I)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP

Date Finished: 06/25/12

Checked By: LJJ

Groundwater Readings Depth Depth St													
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time							
06/25/12	12:43	18'	Ground Surface	10.5'	33.5'	0 min. (prepurge)							
06/25/12	13:15	32.73'	Ground Surface	10.5'	33.5'	32 min. (purged)							
06/25/12	13:30	29.65'	Ground Surface	10.5'	33.5'	47 min.							
06/25/12	17:26	25.59'	Ground Surface	10.5'	33.5'	5 hrs.							

	Drill Sample Information Stratum		Stratum								
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		S-1	0 - 2	3 8 8 8	24/16	PID: ND		0'	S-1 (0 to 2'): Very stiff, red, CLAY & SILT, trace fine to medium Gravel, trace Sand, trace Roots. Dry.		9" Dia. Flushmounted Road Box set in Concrete (0 to 0.8") 4" Steel Casing (0.5 to 10.5') Coarse Sand (0.5 to 1')
2 —		S-2	2 - 4	6 7 9 10	24/20	PID: ND		CLAY & SILT	S-2 (2 to 4'): Very stiff, red, CLAY & SILT, trace fine to medium Gravel, trace Sand, trace Roots. Moist.		_
4 —		S-3	4 - 6	9 7 7 3	24/6	PID: ND			S-3 (4 to 6'): Stiff, red, CLAY & SILT, some gravel-sized Bedrock fragments, trace Sand. Moist, wet at 5.8'.		-
6 —		S-4	6 - 7	10 78	12/0			6'	S-4 (6 to 6.9'): No recovery.		1/4" Stainless Steel Riser (0.5 to 11.5') Bentonite Chip Seal (1 to 11')
8 —		S-5	8 - 8.9	26 75/0.4	11/11	PID: ND		8'	S-5 (8 to 8.9'): Very soft, very severely weathered, red, fine-grained SANDY SILTSTONE. Very thin horizontal bedding, extremely fractured.		_
_10							HH	SANDY SILTSTONE	Split-spoon refusal encountered at 8.9'. Drillers advanced 8.25" OD hollow-stem augers to 10.5' without sampling, no refusal encountered. A permanent 4" steel casing was installed to 10.5' and grouted into place. The log continues on page 2.		Sheet: 1 of 4

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP

Date Finished: 06/25/12 Checked By: LJJ

Log of Monitoring Well

Ground Elevation: 253.95 feet PVC Elevation: 253.65 feet (I)

Datum: NAD27

		Deptn		Deptn	Deptn	Stab.	Ĺ
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/25/12	12:43	18'	Ground Surface	10.5'	33.5'	0 min. (prepurge	Þ)
06/25/12	13:15	32.73'	Ground Surface	10.5'	33.5'	32 min. (purged	1)
06/25/12	13:30	29.65'	Ground Surface	10.5'	33.5'	47 min.	ĺ
06/25/12	17:26	25.59'	Ground Surface	10.5'	33.5'	5 hrs.	

SG-123

		Drill		Sample I	nforma			Stratum			
Jepth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac- tures	Description	Geologic Description	Well Diagram	Well Description
12—	C-1	4	10.5 - 13.5		29	PID: 1.0 ppmv			C-1 (10.5 to 13.5'): Medium hard, slightly weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal to steeply dipping joints. Calcite-filled vugs throughout.		6" x 1/4" Stainless Steel Mesh Scree (11.5 to 12')
14—	C-2	4	13.5 - 18.5	5.0/5.0 100%	35	PID: 0.8 ppmv			C-2 (13.5 to 18.5'): Medium to moderately hard, severely weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal to steeply dipping joints. Calcite-filled veins and vugs from 13.5 to 17'.		Fine Sand (11 to 15')
_		4						SANDY SILTSTONE	Green staining parallel to bedding at 14.6', 15.9', and 16.1'.		¾" Dia. Sch. 40 PVC (0.5 to 28.5')
16—		4									
18—		4									
20—	C-3	4	18.5 - 23.5	5.0/5.0 100%	70	PID: 1.1 ppmv		19.9' SANDY SILTSTONE	C-3 (18.5 to 23.5'): Moderately hard, slightly weathered to fresh, red, fine-grained, interbedded SANDY SILTSTONE &SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal to steeply dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Sandier than C-2. Interbedded Siltstone &Sandstone lenses at 19.9 - 20.1', 20.9 - 21.2', 22.1 - 22.3' and 22.9 - 23.2'.		
	Fracture Symbol			l Crack			Joint		Extremely Fractured ZZ Zone		Sheet: 2 of 4

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP

Date Finished: 06/25/12 Checked By: LJJ

Location: Manassas, VA

Log of Monitoring Well

Ground Elevation: 253.95 feet PVC Elevation: 253.65 feet (I)

Datum: NAD27

Groundwat	er Readings

		Depth		Depth	Depth	Stab.	
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
06/25/12	12:43	18'	Ground Surface	10.5'	33.5'	0 min. (prepurge	(¢
06/25/12	13:15	32.73'	Ground Surface	10.5'	33.5'	32 min. (purged)
06/25/12	13:30	29.65'	Ground Surface	10.5'	33.5'	47 min.	
06/25/12	17:26	25.59'	Ground Surface	10.5'	33.5'	5 hrs.	

SG-123

Santh	Commis	Drill		Sample I	nforma		Stratum		Mall	Vell		
(ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac-	Description	Geologic Description	Well Diagram	Well Description	
22—		4						SANDY SILTSTONE 20.9' SILTSTONE 22.1' SILTSTONE	Green staining parallel to bedding at 21'.		Bentonite Chip Seal (15 to 27.5')	
24—	C-4	4	23.5 - 28.5	5.0/5.0 100%	46	PID: ND		22.9' 23.2' SILTSTONE 23.5'	C-4 (23.5 to 28.5'): Moderately hard, fresh to moderately weathered, red, fine to coarse-grained, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE, and SANDSTONE. Very thin horizontal bedding, very close to moderately close horizontal to steeply dipping joints.			
_		4						SANDSTONE25.2' SANDSTONE25.6'	Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite-filled veins and vugs from 25.4 - 26.6'. Coarse-grained Sandstone lens at 25.9'.			
26 —		4										
28—		4						SANDY SILTSTONE			Fine Sand (28 to	
30-	C-5	3.5	28.5 - 33.5	5.0/5.0 100%	32	PID: ND		SANDY SILTSTONE 29.9' Int. SILTSTONE & SANDSTONE	C-5 (28.5 to 33.5'): Moderately hard, slightly weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical jointing. Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite-filled veins at from 29.2 - 29.4' and at 31.9' and 32.3'.		28.5')	
	Fracture Symbol			Crack			Joint		Extremely Fractured Zone	<u> </u>	Sheet: 3 of 4	

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/21/12 Logged By: EMB, JAP

Date Finished: 06/25/12 Checked By: LJJ

Log of Monitoring Well

Ground Elevation: 253.95 feet PVC Elevation: 253.65 feet (I)

Datum: NAD27

		Deptn		Deptn	Deptn	Stab.	Ĺ
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	ĺ
06/25/12	12:43	18'	Ground Surface	10.5'	33.5'	0 min. (prepurge	Þ
06/25/12	13:15	32.73'	Ground Surface	10.5'	33.5'	32 min. (purged	ľ,
06/25/12	13:30	29.65'	Ground Surface	10.5'	33.5'	47 min.	ľ
06/25/12	17:26	25.59'	Ground Surface	10.5'	33.5'	5 hrs.	

SG-123

	з ву: ЕМ			Sample I	nforma				Stratum			
Depth (ft)	Sample No.	Drill Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	DOD	Field Testing	Log	Frac- tures	Description	Geologic Description	Well Diagram	Well Description
-		3.5		(70)		Data			Int. SILTSTONE & SANDSTONE31'			Coarse Sand (28.5 to 33.5') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (28.5 to 33.5')
32—		3.5							SILTSTONE 32.7' SILTSTONE & SANDSTONE33.1' SANDY SILTSTONE33.5'	Boring terminated at 33.5', split spoon refusal		
34—										is covered on page 1 of this log.		
36—										NOTES: 1. The borehole was completed as a multi-depth monitoring installation as shown in the well diagram immediately after the completion of drilling. 2. Exterior surfaces and natural and mechanical breaks in soil and rock samples and the headspace of bagged samples were screened for the presence of volatile organic compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector (PID). The PID was equipped with a 10.6 eV lamp and programmed with a response factor of 1. Calibration of the PID was performed using a 100 parts per million by volume (ppmv) isobutylene standard. 3. Values recorded in the Field Testing Data column represent headspace screening results.		
38—												
40-												
	Fracture Symbol			Crack			Joint			Extremely Fractured Z Zone		Sheet: 4 of 4

Project No.: 2732.05

Log of Monitoring Well SG-31/D-86

Ground Elevation: 246.04 feet

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc. Foreman: B. Rice

Date Started: 06/28/12 Logged By: EMB, JAP Date Finished: 06/28/12 Checked By: LJJ

Groundwa	ater Rea	ndings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10:38	76.3'	Ground Surface	10.5'	80'	J

	Drill		Sample	Informa				Stratum			
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		S-1	0.5 - 2	9 5 3	18/14	PID: 3.5 ppmv		0' ASPHALT 0.5'	Asphalt. S-1 (0.5 to 2'): Medium stiff, brown, fine to coarse SAND, trace Silt, trace Gravel. Dry. FILL.		9" Dia. Flushmounted Road Box set in Concret (0 to 0.8') Coarse Sand (0.5 to 1') Bentonite Chip Seal (1 to 11.5')
2 —		S-2	2 - 4	3 3 6 8	24/18	PID: 1.3 ppmv		FILL2.7'	S-2A (2 to 2.7'): Medium stiff, brown, fine to coarse SAND, trace Silt, trace Gravel. Dry. FILL. S-2B (2.7 to 4'): Stiff, brownish-red, Silty		
4 —		S-3	4 - 6	3 8 22 37	24/24	PID: 5.7 ppmv		SILTY CLAY	S-3A (4 to 4.4'): Stiff, brownish-red, Silty CLAY, trace Roots. Moist. S-3B (4.4 to 6'): CLAY & SILT, trace gravel-sized Rock fragments. Drier and more weathered Rock-like with depth.		
6 —		S-4	6 - 6.4	75/0.4	5/5	PID: 4.2 ppmv		CLAY & SILT	S-4 (6 to 6.4'): Soft, very severely weathered red, fine-grained SANDY SILTSTONE.		4" Dia. Protective Steel Casing (0.5 to 10.5')
-								WEATHERED SILTSTONE	Moist. Split-spoon refusal encountered at 6.4'. Drillers advanced 8.25" OD hollow-stem augers to 8.0' without sampling.		'/'" Stainless Steel Tubir Riser (0.5 to 12')
8 —		S-5	8 - 8.9	23 100/0.4	11/11	PID: 5.5 ppmv			S-5 (8 to 8.9'): Soft, very severely weathered red, fine-grained SANDY SILTSTONE, more competent with depth. Black staining along fracture surfaces. Moist. Split-spoon refusal encountered at 8.9'. Drillers advanced 8.25" OD hollow-stem augers to 10.5' without sampling, no refusal encountered. A permanent 4" steel casing		
10-									was installed to 10.5' and grouted into place. The log continues on page 2.		Sheet: 1 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Location: Manassas, VA

Ground Elevation: 246.04 feet

Log of Monitoring Well

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Datum: NAD27

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Groundwa	ater Rea					
_		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10:38	76.3'	Ground Surface	10.5'	80'	•

		Drill		Sample I	nforma			Stratum			
Jepth (ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac- tures	Description	Geologic Description	Well Diagram	Well Description
12—	C-1	4	10.5 - 13.5	3.0/2.4 80%	0	PID: 1.1 ppmv		SANDY SILTSTONE	C-1 (10.5 to 13.5'): Soft to medium hard, moderately to severely weathered, red, very fine-grained to aphanitic, interbedded SANDY SILTSTONE & SHALE and SANDY SILTSTONE. Very thin horizontal bedding, very close to close horizontal to vertical jointing. Green mineralization on fracture surfaces from 10.5 - 12'.		Fine Sand (11.5 to 15.5') 6" x 1/4" Stainless Steel Mesh Scree (12 to 12.5')
14—	C-2	4	13.5 - 18.5	5.0/4.9 98%	40	PID: 0.9 ppmv		Int. SILTSTONE & SHALE	C-2 (13.5 to 18.5'): Medium to moderately hard, severe to slightly weathered, red, fine-grained to aphanitic, interbedded SANDY SILTSTONE & SHALE, SANDY SILTSTONE, and interbedded SANDY SILTSTONE & SANDSTONE. Very thin horizontal and crossbeddings, very close to close horizontal to vertical jointing.		
16—		3						SANDY SILTSTONE15.8' Int. SILTSTONE &	Portions of interbedded Siltstone & Sandstone are crossbedded. Sand component increasing with depth. Shale lens at 15.1'. Severely weathered zone from 17.4 - 17.8'. Black staining on fracture surfaces from 13.5 - 15'. Orange and white mineralization 17.4 - 17.8'.		3/4" Dia. PVC Riser (0.5 to 32')
18—		3						16.8'			1.00. (0.0 0.02)
-	C-3	2.2	18.5 - 23.5	5.0/5.2 104%	94	PID: 6.0 ppmv		SANDY SILTSTONE	C-3 (18.5 to 23.5'): Moderately hard, fresh, red, fine-grained, interbedded Siltstone. Very thin horizontal and crossbedding, very close to moderately close horizontal jointing.		
20—	Fracture	e		Crack			loint		☑ Extremely Fractured ☑ Zone		Sheet: 2 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Log of Monitoring Well

Ground Elevation: 246.04 feet

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Groundwa	ater Kea	aaings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10.38	76 3'	Ground Surface	10.5'	80'	. 5

Depth S	NI-	Drill Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing	Log Frac- tures		Geologic Description	Well	Well Description
_						Data	그 토리	Description		Diagram	,
22—		2.2						SANDY SILTSTONE			Bentonite Chip Seal (15.5 to 26.5
24—	C-4	2.2	23.5 - 28.5	5.0/5.0 100%	100	PID: 5.6 ppmv		23.5' Int. SILTSTONE & SANDSTONE24.2'	C-4 (23.5 to 28.5'): Moderately hard to hard, fresh, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal joints.		
26—		2.2						SANDY SILTSTONE25' Int. SILTSTONE &	Portions of interbedded Siltstone & Sandstone are crossbedded. Calcite-filled veins and vugs especially 24.5 - 24.9', and 26.6 - 26.9'.		3/4" Dia. PVC Riser (0.5 to 48.5
_		2.2						27.1'			Fine Sand (26.5 t 27')
28—	C-5	2.2	28.5 - 33.5	5.0/5.1 102%	100	PID: 4.1 ppmv		SANDY SILTSTONE	C-5 (28.5 to 33.5'): Moderately hard, fresh to moderately weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE and SANDSTONE. Very thin horizontal bedding, close to moderately close horizontal joints.		
30-	- -racture	2.2		Crack			oint	29.7' SANDSTONE 30.4'	Portions of interbedded Siltstone & Sandstone are crossbedded Extremely Fractured Zone		Coarse Sand (27 to 32') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (27 to 32') Sheet: 3 of 9

Project No.: 2732.05

Location: Manassas, VA

Ground Elevation: 246.04 feet

Log of Monitoring Well

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Datum: NAD27

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Groundwater Readings Depth Depth of Hole 68.5' 68.5' Depth of Casing Stab. Time Ref. Pt. Time Date to Water 06/29/12 07/09/12 14:10 57.83' **Ground Surface** 10.5' 61.03' Ground Surface 10.5' 10.5' 10.5' 07/10/12 10:05 32.45' Ground Surface 80' Prepurge 07/10/12 07/10/12 77.45' 80' 80' 10:35 Ground Surface Purged 10:38 76.3' Ground Surface

		Drill		Sample I	nforma				Stratum			
(ft)	Sample No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log	Frac- tures	Description	Geologic Description	Well Diagram	Well Description
32—		2.2							SANDY SILTSTONE31.2' IntSILTSTONE & SANDSTONE32.6'			Fine Sand (32 to 32.5')
34—	C-6	2.5	33.5 - 38.5	5 5.0/5.0 100%	72	PID: 1.7 ppmv			SILTSTONE33.6'	C-6 (33.5 to 38.5'): Moderately hard to hard, fresh to slightly weathered, red, fine to coarse-grained, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE and SANDSTONE. Very thin horizontal and cross bedding, very close to		
_		2.5						?	Int. SILTSTONE & SANDSTONE	moderately close horizontal to shallow dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded. Coarse Sand lenses at 38.1, 38.4, 37 and 37.2'.		3/4" Dia. PVC Riser (0.5 to 70')
36—		2.5						~	36.35' Coarse SANDSTONE			
38—		2.5							SANDY SILTSTONE 37.8' Int. SILTSTONE & SANDSTONE			Bentonite Chip Seal (32.5 to 43')
40—	C-7	2.5	38.5 - 43.5	5 5.0/5.2 104%	100	PID: 6.0 ppmv			SANDY SILTSTONE	C-7 (38.5 to 43.5'): Moderately hard to hard, fresh to slightly weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal bedding, very close to thick horizontal joints. Fine to coarse Sandy lens from 39.25 - 39.3'.		
	Fracture Symbol			Crack			 Joint			Extremely Fractured Z Zone		Sheet: 4 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Log of Monitoring Well SG-31/D-86

Ground Elevation: 246.04 feet

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

Datum: NAD27

ater Rea	adings				
	Depth		Depth	Depth	Stab.
Time	to Water	Ref. Pt.	of Casing	of Hole	Time
14:10	57.83'	Ground Surface	10.5'	68.5'	
11:30	61.03'	Ground Surface	10.5'	68.5'	
10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
10:35	77.45'	Ground Surface	10.5'	80'	Purged
10:38	76.3'	Ground Surface	10.5'	80'	•
	Time 14:10 11:30 10:05 10:35	Time 14:10 57.83' 11:30 61.03' 10:05 32.45' 10:35 77.45'	Time Depth to Water Ref. Pt. 14:10 57.83' Ground Surface 11:30 61.03' Ground Surface 10:05 32.45' Ground Surface 10:35 77.45' Ground Surface	Time Depth to Water Ref. Pt. Depth of Casing 14:10 57.83' Ground Surface 10.5' 11:30 61.03' Ground Surface 10.5' 10:05 32.45' Ground Surface 10.5' 10:35 77.45' Ground Surface 10.5'	Time Depth to Water Ref. Pt. Depth of Casing Of Hole 14:10 57.83' Ground Surface 10.5' 68.5' 11:30 61.03' Ground Surface 10.5' 68.5' 10:05 32.45' Ground Surface 10.5' 80' 10:35 77.45' Ground Surface 10.5' 80'

	pth Sample Drill Sample Information			Stratum							
Depth (ft)	No.	Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	RQD (%)	Field Testing Data	Log Frac- tures	Description	Geologic Description	Well Diagram	Well Description
42—		2.5									
_	C-8	2.2	43.5 - 48.5	5.0/4.9 98%	96	PID: 2.3 ppmv			C-8 (43.5 to 48.5'): Hard, fresh to slightly weathered, red, fine to coarse-grained, interheded SADDY COLORS OF		Fine Sand (43 to 43.5')
44 —		2.2						SANDY SILTSTONE	interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal to shallow dipping joints. Portions of interbedded Siltstone & Sandstone are crossbedded.		
46		2.2									Coarse Sand (43
_		2.2									to 48.5') 3/4" Dia. Sch. 40 PVC Well Screer (0.010" Slots) (43.5 to 48.5')
48—		2.2						48.1'			
_	C-9	2.5	48.5 - 53.5	5.0/5.0 100%	64	PID: ND		SILTSTONE & SANDSTONE48.5	C-9 (48.5 to 53.5'): Hard, fresh to slightly weathered, red, fine to coarse-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal to vertical joints.		Fine Sand (48.5 t 49')
50 —		2.5						SANDY SILTSTONE	Portions of interbedded Siltstone & Sandstone are crossbedded.		
	Fracture Symbol			Crack		J	loint		Extremely Fractured Z Zone		Sheet: 5 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

nc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Log of Monitoring Well

Ground Elevation: 246.04 feet

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Groundwa	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10:38	76.3'	Ground Surface	10.5'	80'	· ·

		Deill		Sample I	nforma	tion		Stratum			
Depth (ft)	Sample No.	Drill Rate (min/ft)	Depth (ft)	Pen/ Rec (ft) (%)	DOD	Field Testing Data	Log Frac- tures		Geologic Description	Well Diagram	Well Description
52—		2.5						SANDY SILTSTONE 50.8' SANDY SILTSTONE 52.1' Int. SILTSTONE & SANDSONE			
- 54	C-10		53.5 - 58.5	5.0/5.0 100%	15	PID: 1.0 ppmv		SANDY SILTSTONE	C-10 (53.5 to 58.5'): Medium to moderately hard, slightly to moderately weathered, red, fine-grained, SANDY SILTSTONE. Very thin horizontal and cross bedding, very close to		
_		2.5						55'	moderately close horizontal to vertical joints. Coarse portions of Sandy Siltstone are crossbedded. Calcite-filled veins and vugs at 54 - 54.3', 55.9', and 58.3 - 58.5'.		
56—		2.5						- - - - - -			
58		2.5						Int. SILTSTONE & SANDSTONE			
_	C-11	2.5	58.5 - 63.5	5.0/5.0 100%	100	PID: 0.5 ppmv		58.7'	C-11 (58.5 to 63.5'): Hard, fresh, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE and SANDY SILTSTONE. Very thin horizontal and cross bedding, close to moderately close horizontal joints.		Bentonite Chip
60 —		2.5						SANDY SILTSTONE	Portions of interbedded Siltstone & Sandstone are crossbedded. Sandy lens from 6.5 - 60.6.		Seal (49 to 69.5')
	Fracture Symbol			Crack		J	loint		Extremely Fractured Zone		Sheet: 6 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Log of Monitoring Well

Ground Elevation: 246.04 feet

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Groundw	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10.38	76 31	Ground Surface	10.5'	20'	Ü

		Б, JAP		Sample I	nforma			Stratum			
Depth (ft)	Sample No.	Drill Rate (min/ft)	Depth	Pen/ Rec (ft)	DOD	Field Testing	Log Frac- tures		Geologic Description	Well Diagram	Well Description
62—		2.5		(%)		<u>Data</u>					
-		2.5						SANDY SILTSTONE			
64 —	C-12	2.5	63.5 - 68.5	5.0/5.0 100%	60	PID: ND			C-12 (63.5 to 68.5'): Moderately hard to hard, slightly weathered, red, fine-grained to aphanitic, interbedded SANDY SILTSTONE & SANDSTONE, SANDY SILTSTONE, and interbedded SANDY SILTSTONE & SHALE. Very thin horizontal and cross bedding, very close to moderately close horizontal to vertical joints.		
- 66-		2.5					+	Int. SILTSTONE & SANDSTONE65.3'	Portions of interbedded Siltstone & Sandstone are crossbedded. Green mineralization at 63.7'. Shale lenses at 65.5', 66', and 66.8'. Calcite-filled vugs from 65.7 - 66.2' and 63.8 - 64.2'.		
_		2.5						Int. SILTSTONE & SHALE			
68—		2.5						67.3'			
_	C-13	2.5	68.5 - 73.5	5.0/5.2 104%	90	PID: 2.5 ppmv		Int. SILTSTONE & SANDSTONE	C-13 (68.5 to 73.5'): Moderately hard to hard, fresh to slightly weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE. Very thin horizontal and cross bedding, very close to moderately close horizontal to shallow dipping joints.		
70—		2.5							Coarser portions of interbedded Siltstone & Sandstone are crossbedded. Shale lens at 71.2', Calcite-filled veins especially from 70.6 - 72.4'.		Fine Sand (69.5 t 70')
	Fracture Symbol			crack		J	oint		Extremely Fractured Zone	j. — '	Sheet: 7 of 9

Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Location: Manassas, VA

Stratum

Ground Elevation: 246.04 feet

Log of Monitoring Well

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

SG-31/D-86

Datum: NAD27

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon Drilling Company: Parratt Wolff Inc.

Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

Sample Information

Groundwater Readings											
			Depth		Depth	Depth	Stab.				
	Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time				
	06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'					
	07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'					
	07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge				
	07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged				
	07/10/12	10:38	76.3'	Ground Surface	10.5'	80'	3				

Depth	Sample	Drill	Sample Pen/			tion Field	 	Stratum		Well	W. II B
(ft)	No.	Rate (min/ft)	Depth (ft)	Rec (ft) (%)	RQD (%)	Testing Data	Log Frac-	Description	Geologic Description	Diagram	Well Description
_		2.5									
72—		2.5									
_		2.5									
74 —	C-14	2.5	73.5 - 75	1.5/1.3 87%	27	PID: 2.3 ppmv			C-14 (73.5 to 75'): Moderately hard, slightly weathered, red, fine-grained, interbedded SANDY SILTSTONE & SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal joints.		
		1						Int. SILTSTONE & SANDSTONE	Coarser portions of interbedded Siltstone & Sandstone are cross bedded.		
76-	C-15	2.5	75 - 78.5	3.5/3.5 100%	57	PID: 2.8 ppmv	->		C-15 (75 to 78.5'): Moderately hard to hard, fresh to slightly weathered, red, fine to medium-grained, interbedded SANDY SILTSTONE & SANDSTONE, and SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints.		Coarse Sand (70 to 80') 3/4" Dia. Sch. 40 PVC Well Screen (0.010" Slots) (70 to 80')
70—		2.5						-	Portions of interbedded Siltstone & Sandstone are cross bedded. Shale lens at 76'.		
_		2.5									
78-	C-16	1	78.5 - 80	1.5/1.7 113%	76	PID: 2.4 ppmv		78.45' SANDSTONE	C-16 (78.5 to 80'): Moderately hard to hard, fresh to slightly weathered, red, fine to		
_		2.5						79' Int. SILTSTONE & SANDSTONE	medium-grained, interbedded SANDY SILTSTONE & SANDSTONE, and SANDSTONE. Very thin horizontal and cross bedding, very close to close horizontal to vertical joints. Portions of interbedded Siltstone & Sandstone		
80—		1						80'	are crossbedded. Boring terminated at 80'		
	Fracture Symbol			rack			Joint		Extremely Fractured Zone		Sheet: 8 of 9

Project: Former IBM Manassas

Stratum

Location: Manassas, VA Project No.: 2732.05

Sanborn, Head & Associates, Inc.

Drilling Method: 8.25" O.D. Hollow Stem Auger/HQ Wireline Rock Coring

Sampling Method: 2" O.D. Split Spoon

Drilling Company: Parratt Wolff Inc.

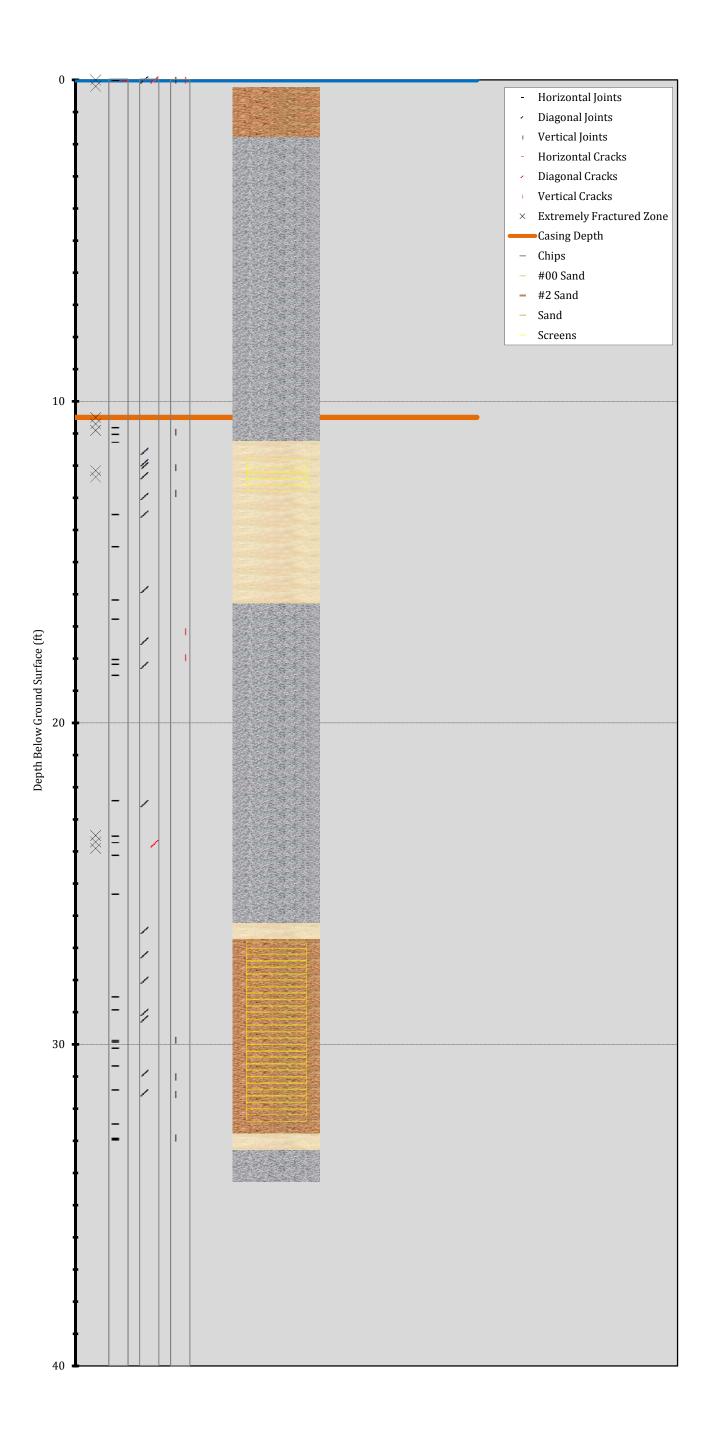
Foreman: B. Rice Date Started: 06/28/12 Logged By: EMB, JAP

Date Finished: 06/28/12 Checked By: LJJ

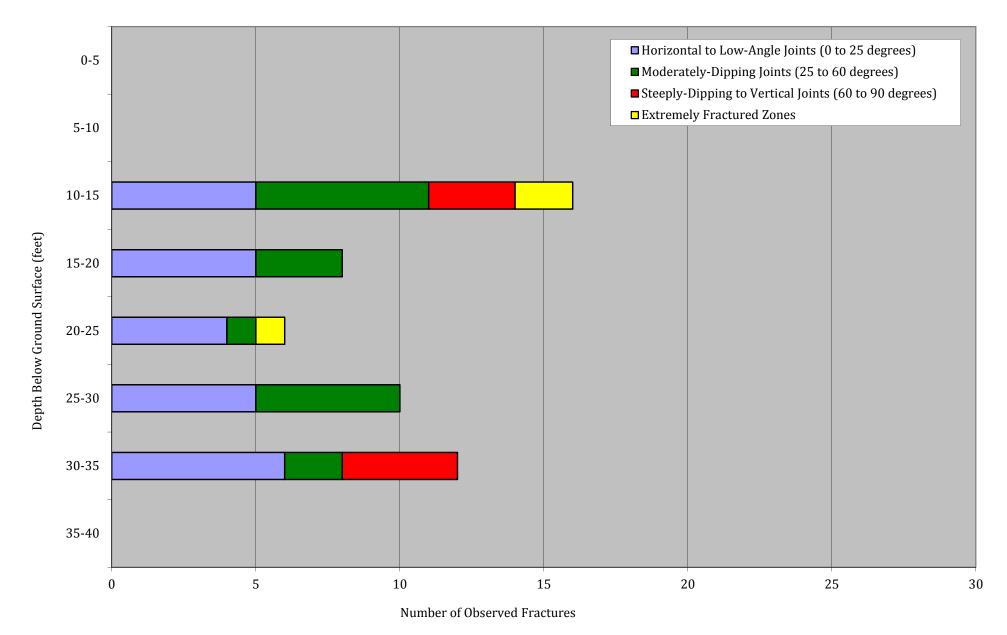
Sample Information

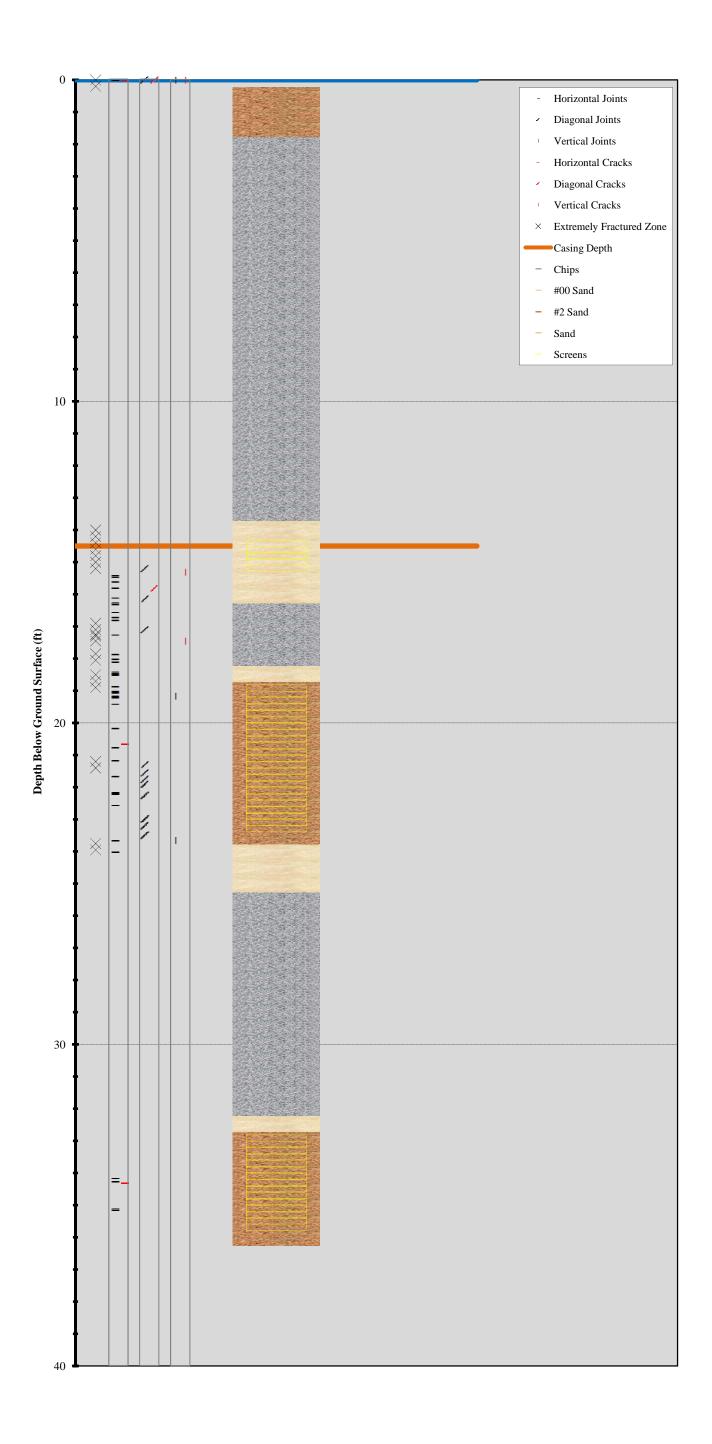
Log of Monitoring Well SG-31/D-86

Ground Elevation: 246.04 feet

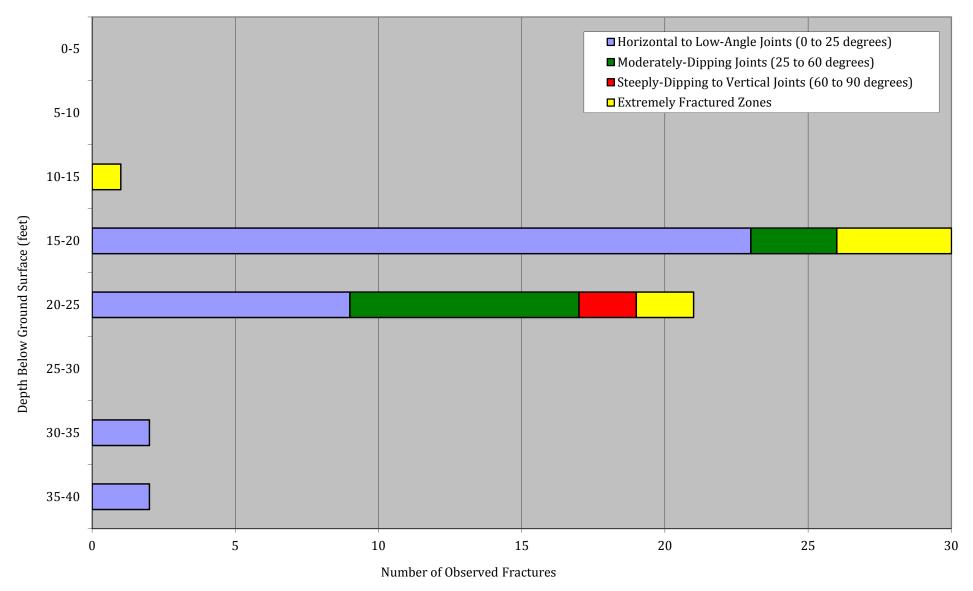

PVC Elevation: 245.76 feet (I) / 245.79 feet (D) / 245.68 feet (D-86)

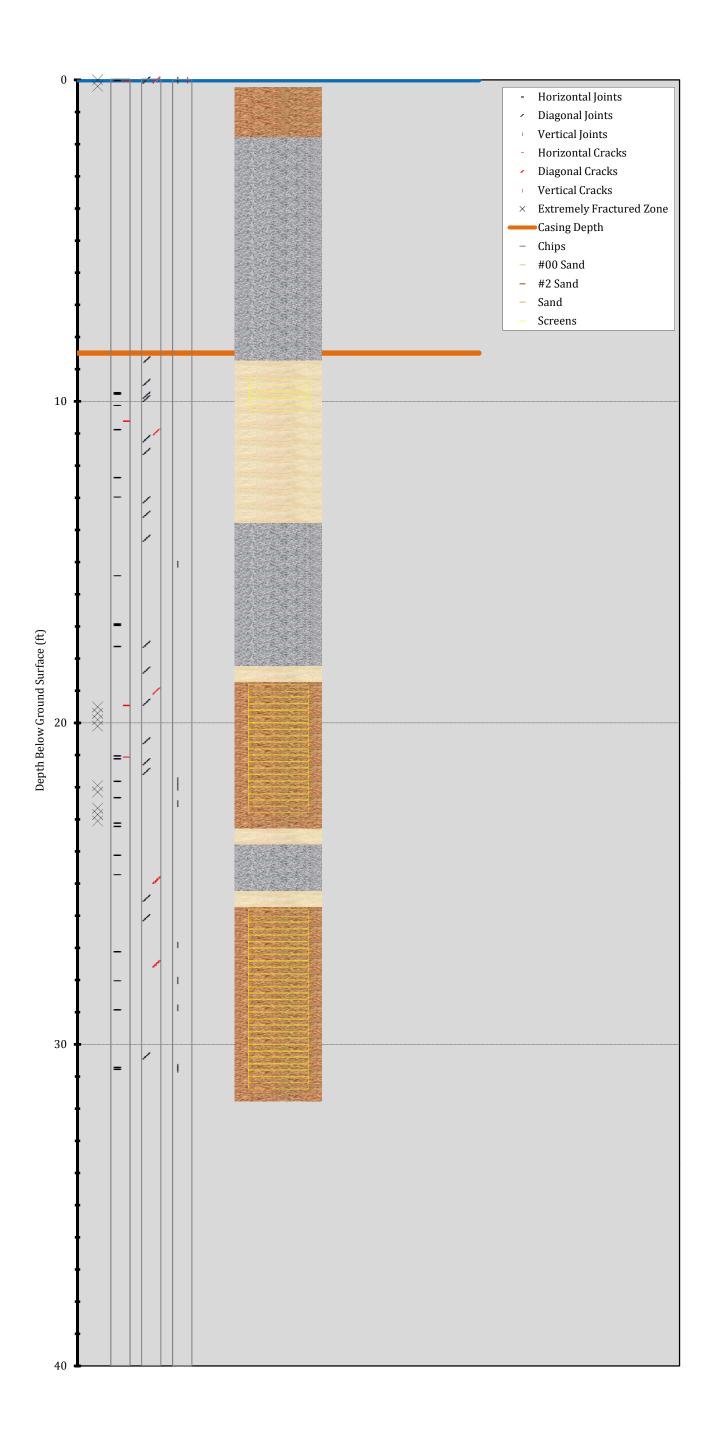
Datum: NAD27

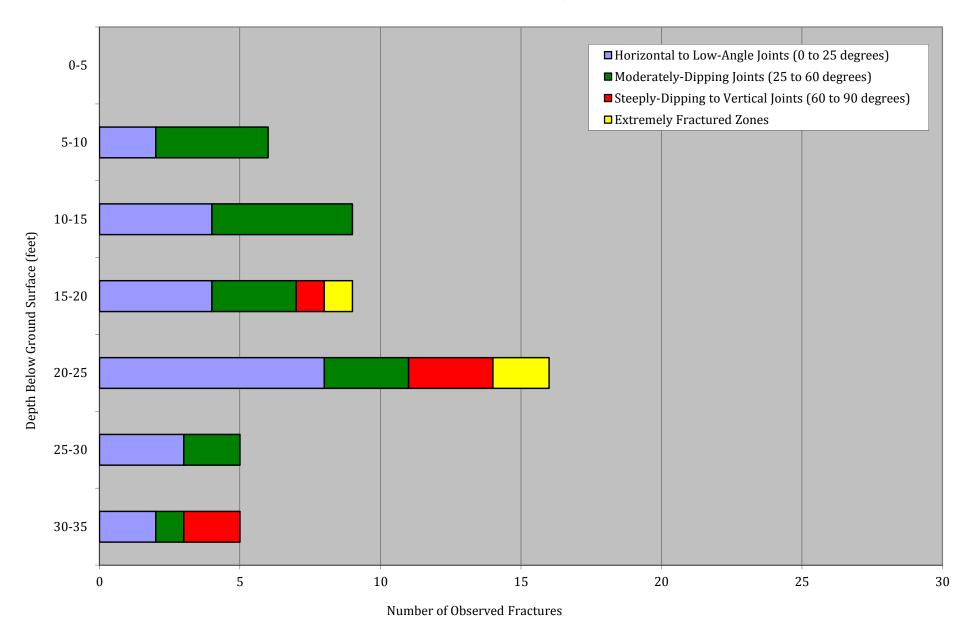

Grounaw	ater Kea	adıngs				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
06/29/12	14:10	57.83'	Ground Surface	10.5'	68.5'	
07/09/12	11:30	61.03'	Ground Surface	10.5'	68.5'	
07/10/12	10:05	32.45'	Ground Surface	10.5'	80'	Prepurge
07/10/12	10:35	77.45'	Ground Surface	10.5'	80'	Purged
07/10/12	10:38	76.3	Ground Surface	10.5'	80'	3

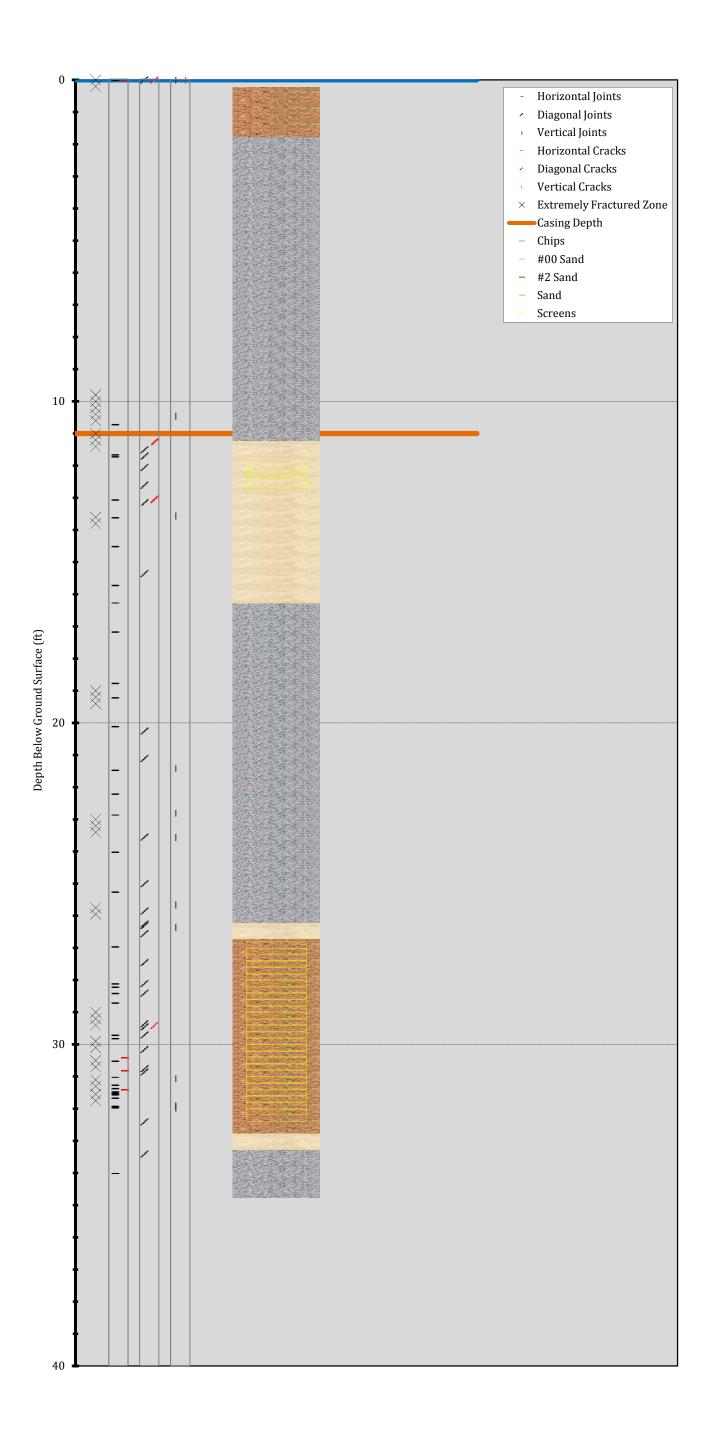

enth	Sample	Drill Sample Information Stratum le Rate Death Pen/ Pop Field Discrete Geologic Description		Well								
(ft)	No	Rate (min/ft)	Depth (ft)	Rec (ft) (%)	RQD (%)	Testing Data	Log	Frac- tures	Description	Geologic Description	Diagram	Well Description
				`						NOTES:		
										1. The borehole was completed as a		
-	-									multi-depth monitoring installation as shown in the well diagram immediately after the		
										completion of drilling.		
										Exterior surfaces and natural and mechanical breaks in soil and rock samples		
										and the headspace of bagged samples were screened for the presence of volatile organic		
82 —										compounds (VOCs) using a RAE Systems MiniRae Model 2000 Photoionization Detector		
										(PID). The PID was equipped with a 10.6 eV		
										lamp and programmed with a response factor of 1. Calibration of the PID was performed		
										using a 100 parts per million by volume (ppmv) isobutylene standard.		
										3. Values recorded in the Field Testing Data		
										column represent headspace screening results.		
										4. Well point D-86 is identified as the		
										screened interval from 70 - 80 feet below ground surface.		
0.4												
84 —	1											
86 —												
00-												
00												
88 —												
_												
90 —												
<i>3</i> 0 —												
	Fractur	e		Crack		<u> </u>	loint	I	I/N	Extremely Fractured ZZ Zone	•	Sheet: 9 of 9

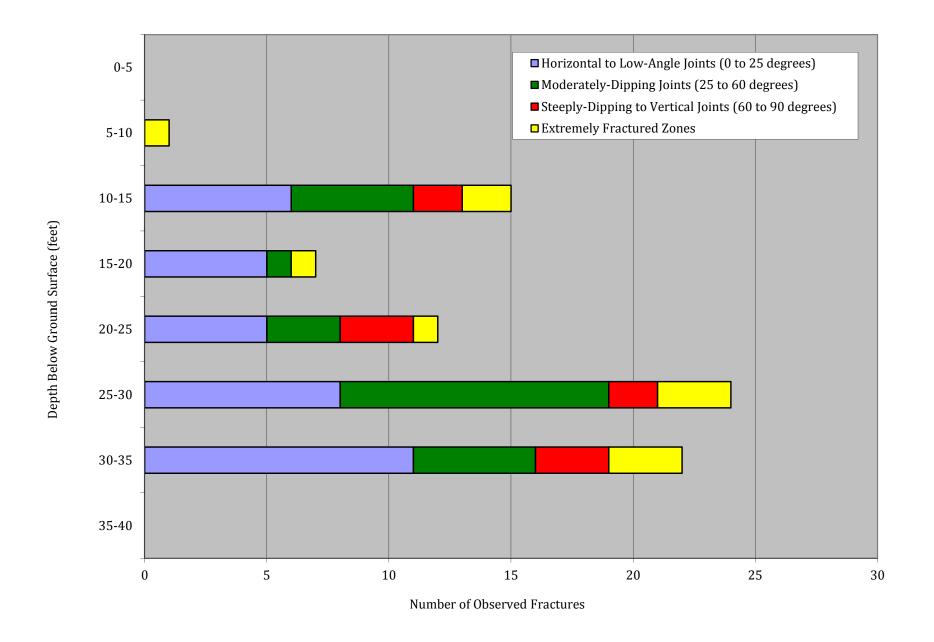
APPENDIX B.3 FRACTURE LOG PLOTS

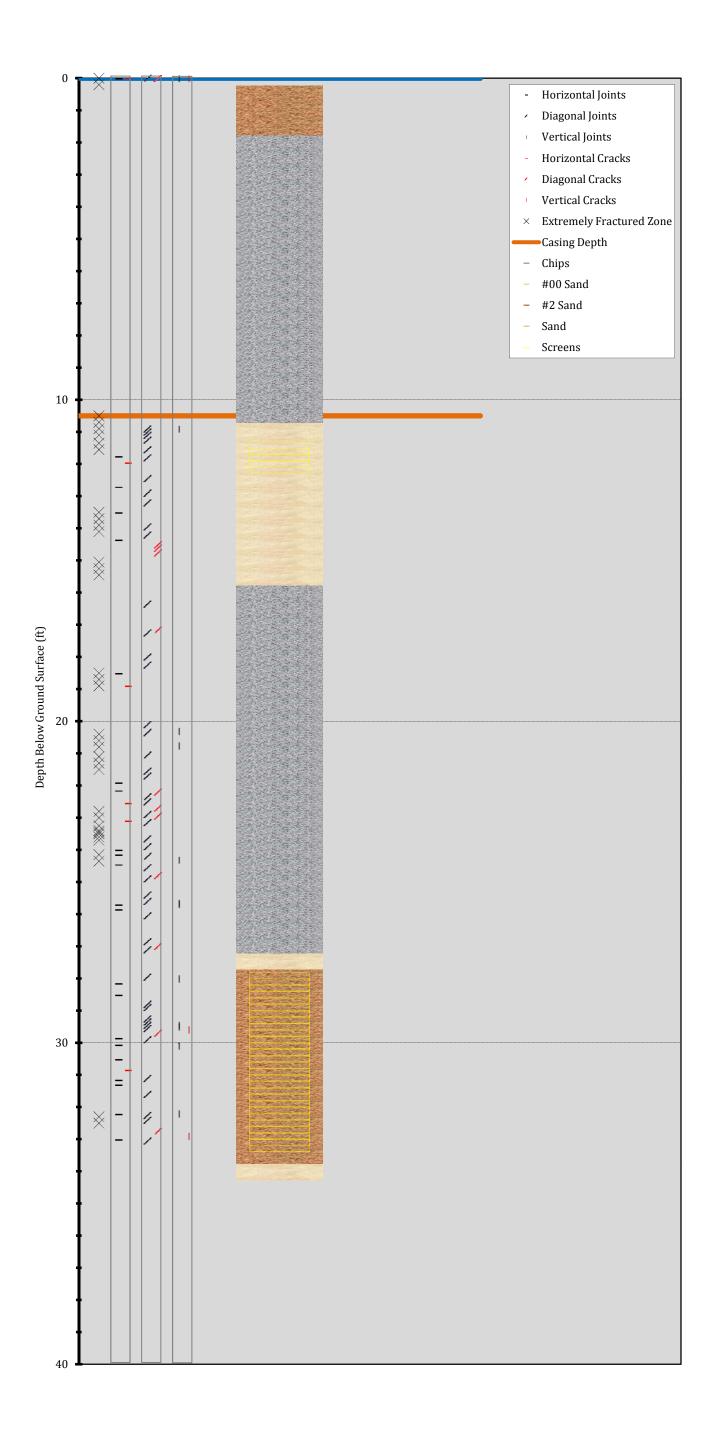


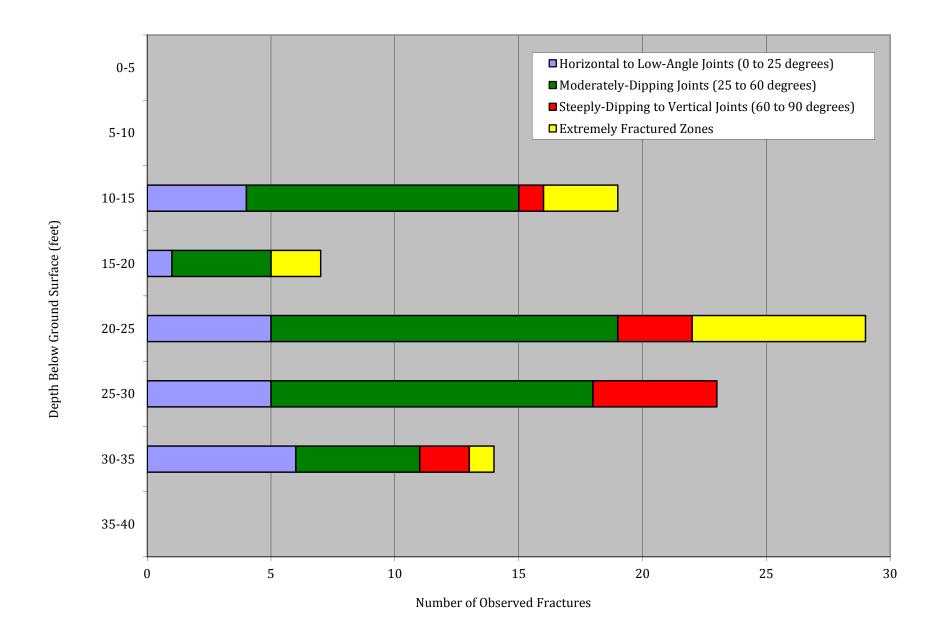

SG-115 Elevation Distribution of Observed Fractures, Combined

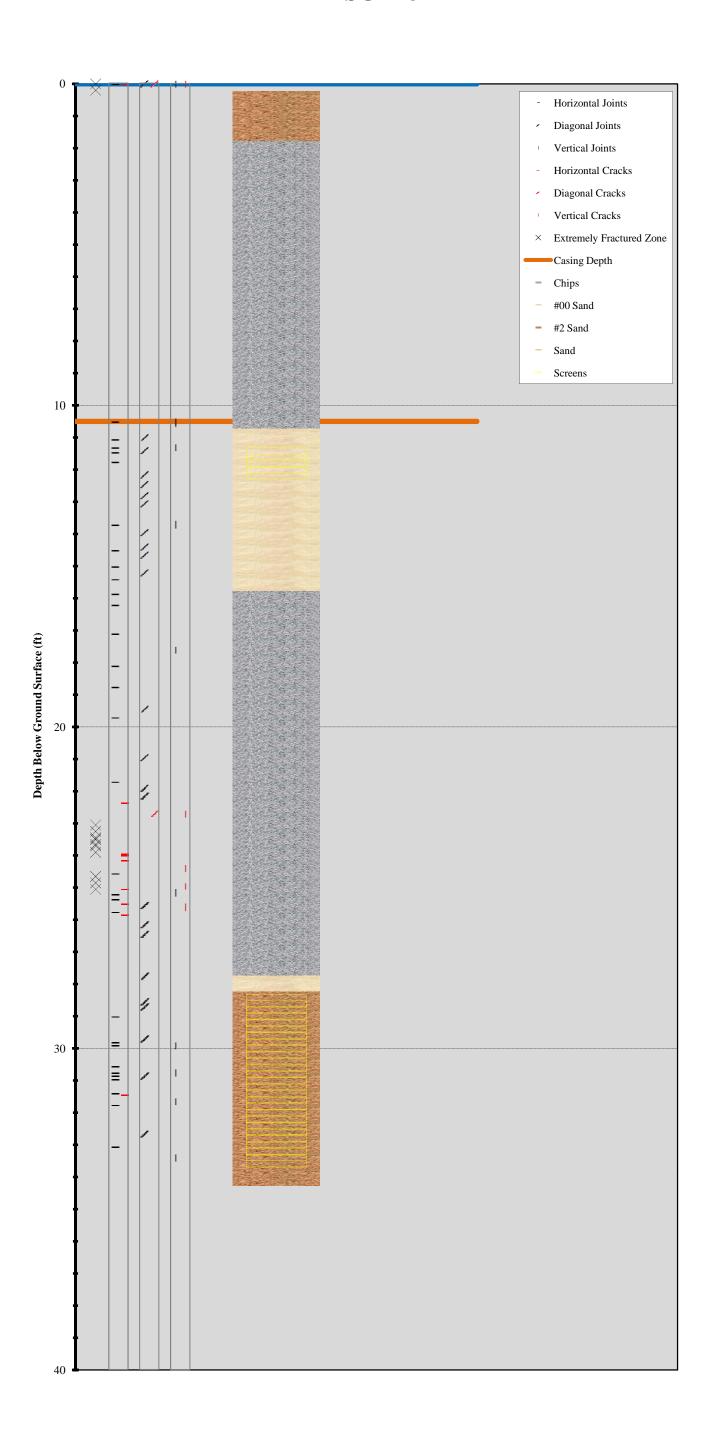


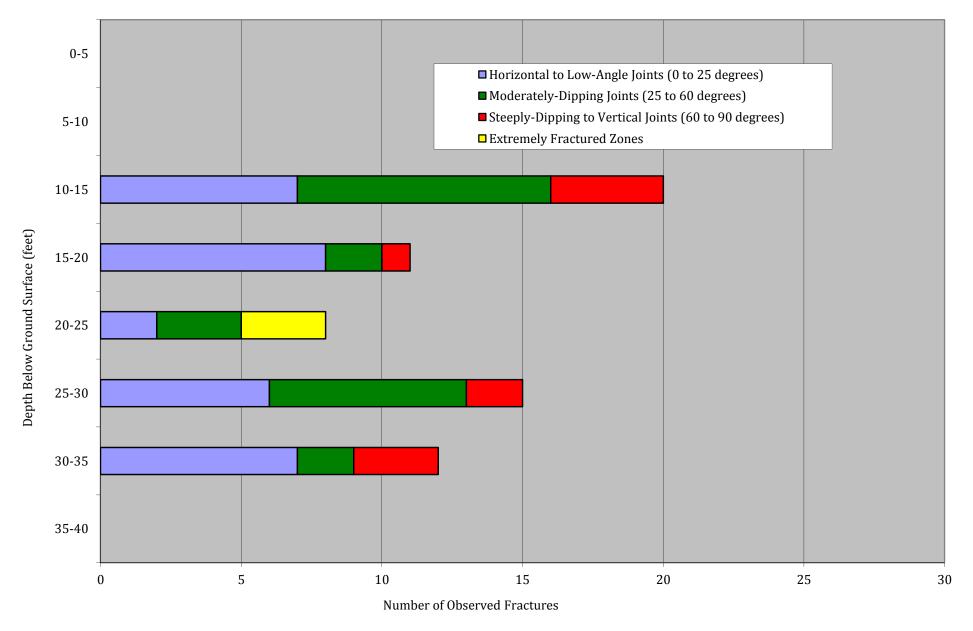

SG-117 Elevation Distribution of Observed Fractures, Combined

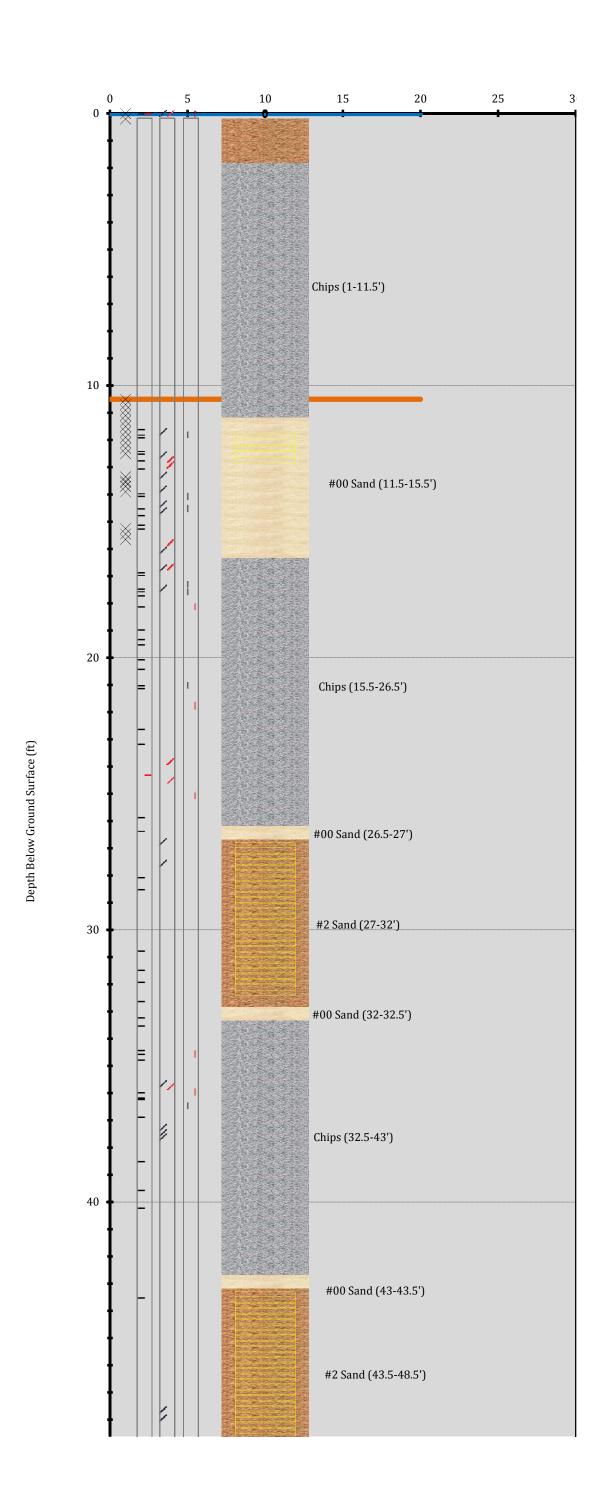


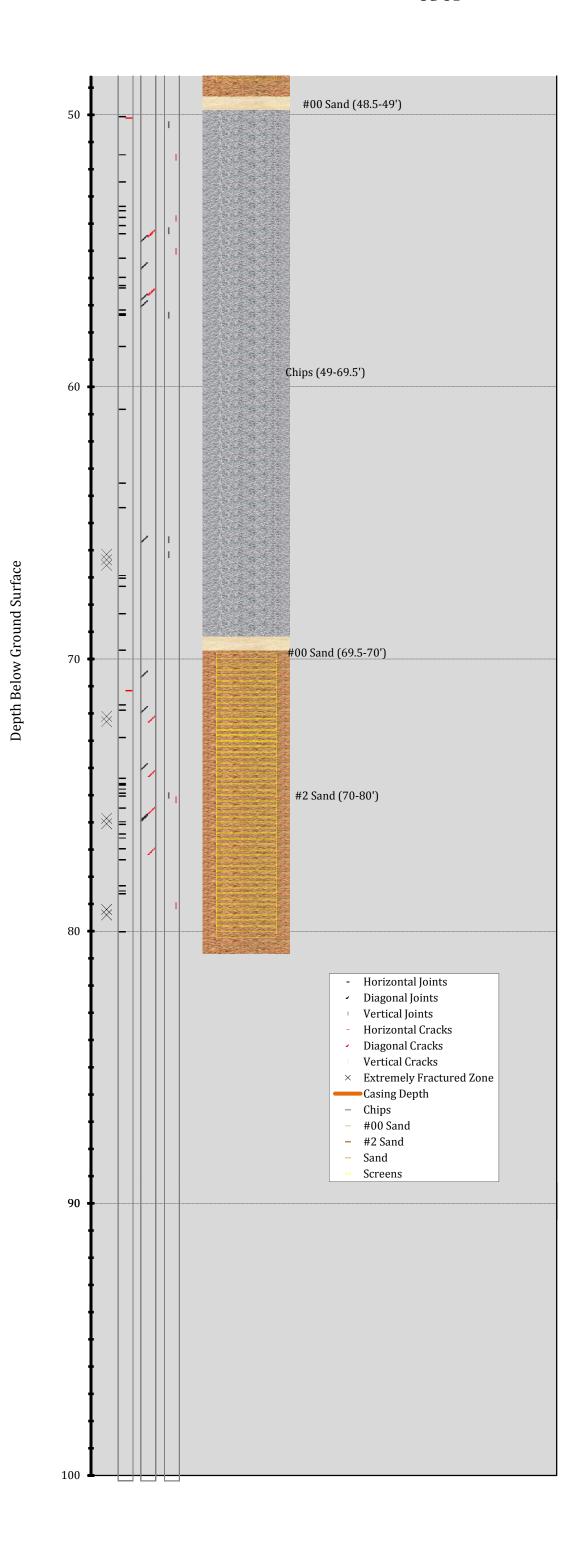

SG-118 Elevation Distribution of Observed Fractures, Combined

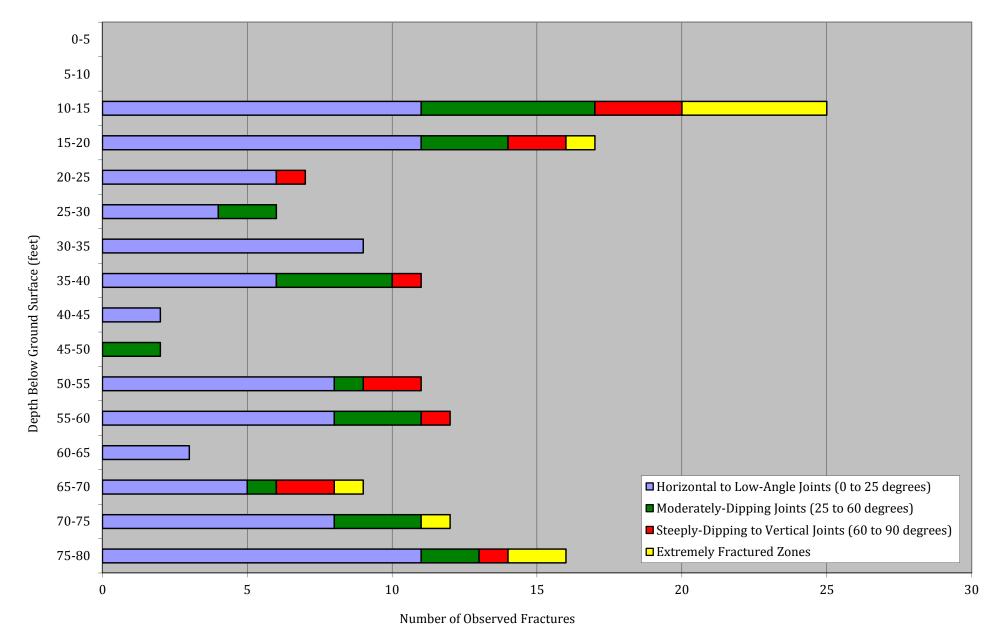



SG-120 Elevation Distribution of Observed Fractures, Combined




SG-121 Elevation Distribution of Observed Fractures, Combined




SG-123 Elevation Distribution of Observed Fractures, Combined

SG-31 Elevation Distribution of Observed Fractures, Combined

APPENDIX B.4 FIELD SAMPLING DOCUMENTATION

JUNE 2012 ROUTINE SAMPLING

1	Project No.: 27	732.08		Date:	June 25, 201
SANBORN HEAD	Project Name:	Supplemental VI	Assessment		
'1'	Location: Man	assas, VA			
O ₂ / CH ₄ / CO ₂ Meter Used: Land	dtec GEM 2000		Project Manag	er: E. Bradstree	t
PID Meter Used: MiniRAE 2000	w/10.6eV bulb, I	RF=1	Collector(s): M	. Stein	
Other: Dwyer Series 475 Mark 140"); Dwyer Magnehelic (0-10, 0	•	neter (0-1, 0-	FID Meter Used	d:	
	SUBSURFA	CE VAPOR SAMP	LE RECORD		
Location No.	SG-07	SG-19	SG-06-8	SG-06-8	SG-06-44
Sample ID	SG07	SG19	SG068	DUP1	SG0644
Sample Date	06/25/12	06/25/12	06/2	25/12	06/25/12
Sample Collection Depth (ft bgs)	10	3.4		8	44
Pre-purge Diff. Press. (in. H ₂ O)	0.11	-0.11	-0	.01	-10
Approx. Purge Volume (ml)	100	35	8	30	440
Purge Vacuum (in.H ₂ O)	2	2	2		>10
Canister Serial No.	3691	36395	9380 94933		3297
Start Time	1234	1252	1325	1325	1312
Start Pressure (inches Hg)	28	30	30	29.5	29.5
Stop Time	1334	1352	1525	1525	1418
Stop Pressure (inches Hg)	6	5.5	7	6.5	7
Ambient Air Temp (°F)	80-85	80-85	80	-85	80-85
Weather Conditions	Cloudy	Rain-sprinkle	Su	nny	P. Sunny
Screening Sample Collection Rate [ml/min]	200	83	2	50	222
Screening Sample Collection Vacuum (in.H ₂ O)	28	>80	C	0.4	25
O ₂ Reading (%)	2.6	18.5	18	8.2	20.3
CH ₄ Reading (%)	0.9	0.1	().1	0.1
CO ₂ Reading (%)	10.6	1.8	1	7	0.1
PID reading (ppmv)	2.2	6.5	1	7	5.6
FID reading (ppmv)	-	-		-	-
Comment No.					
		COMMENTS			

.I	Project No.: 2732.08	Date:	June 25, 2012	
SANBORN HEAD	Project Name: Supplemental VI Assessment			
-1	Location: Manassas, VA			
O_2 / CH_4 / CO_2 Meter Used: Land	Project Manager: E. Bradstreet			
PID Meter Used: MiniRAE 2000	Collector(s): M. Stein			
Other: Dwyer Series 475 Mark I 40"); Dwyer Magnehelic (0-10, 0-	FID Meter Used	l:		

SUBSURFACE VAPOR SAMPLE RECORD									
Location No.	SG-20	SG-21	SG-30	SG-05-10	SG-05-25				
Sample ID	SG20	SG21	SG30	SG0510	SG0525				
Sample Date	06/25/12	06/25/12	06/25/12	06/25/12	06/25/12				
Sample Collection Depth (ft bgs)	4	4	5	10	25				
Pre-purge Diff. Press. (in. H ₂ O)	-0.01	0	0.42	-8.9	-17				
Approx. Purge Volume (ml)	40	40	50	100	250				
Purge Vacuum (in.H ₂ O)	10	2	10	10	20				
Canister Serial No.	3372	36537	20778	3327	36397				
Start Time	1343	1442	1510	1434	1446				
Start Pressure (inches Hg)	30	30	30	30	30				
Stop Time	1450	1548	1628	1545	1608				
Stop Pressure (inches Hg)	7	6.5	7	7	7				
Ambient Air Temp (°F)	80-85	80-85	80-85	80-85	80-85				
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny				
Screening Sample Collection Rate (ml/min)	235	250	-	222	222				
Screening Sample Collection Vacuum (in.H ₂ O)	16	0.6	1	32	24				
O ₂ Reading (%)	19.6	20.1	-	19.9	20.4				
CH ₄ Reading (%)	0.1	0.1	-	0.2	0.1				
CO ₂ Reading (%)	1.2	0.3	-	0.4	0.6				
PID reading (ppmv)	1.9	1.8	-	1.8	2.8				
FID reading (ppmv)	-	-	-	-	-				
Comment No.			1						

 $^{1. \} Water \ entered \ tedlar \ bag \ during \ screening. \ Soil \ Vapor \ quality \ parameters \ not \ collected.$

	Project No.: 2732.08		Date:	June 25, 2012		
SANBORN HEAD	Project Name: Supplemental VI Assessmen		sment			
-1	Location: Manassas, VA	ocation: Manassas, VA				
$\rm O_2$ / $\rm CH_4$ / $\rm CO_2$ Meter Used: Land	Project Manager: E. Bradstreet					
PID Meter Used: MiniRAE 2000	w/10.6eV bulb, RF=1	Collector(s): M. Stein				
Other: Dwyer Series 475 Mark I 0-40"); Dwyer Magnehelic (0-10,	FID Meter	Used:				
	SUBSURFACE VAPOR SAMPLE RECORD					

	SUBSURFACE VAPOR SAMPLE RECORD									
Location No.	SG-05-45	SG-04-10	SG-28	SG-26	SG-12	SG-10				
Sample ID	SG0545	SG0410	SG28	SG26	SG12	SG10				
Sample Date	06/25/12	06/25/12	06/25/12	06/25/12	06/25/12	06/25/12				
Sample Collection Depth (ft bgs)	45	10	5	5	5	5				
Pre-purge Vacuum (in. H ₂ O)	-11	-0.45	0	0	0.20	0.49				
Pre-purge Diff. Press. (in. H ₂ 0)	450	100	50	50	50	50				
Purge Vacuum (in.H ₂ O)	22	2	2	2	10	2				
Canister Serial No.	3356	35604	3325	34098	37730	1040				
Start Time	1448	1505	1520	1533	1543	1606				
Start Pressure (inches Hg)	29	30	30	28	28	30				
Stop Time	1548	1622	1624	1648	1708	1848				
Stop Pressure (inches Hg)	6.5	6	7	6.5	7	6.5				
Ambient Air Temp (°F)	80-85	80-85	80-85	80-85	80-85	80-85				
Weather Conditions	P. Cloudy	P. Cloudy	M. Sunny	M. Sunny	M. Sunny	M. Sunny				
Screening Sample Collection Rate (ml/min)	200	222	250	222	-	211				
Screening Sample Collection Vacuum (in.H ₂ O)	28	1	0.5	2.2	-	25				
O ₂ Reading (%)	20.1	19.9	17.6	20.1	-	5.2				
CH ₄ Reading (%)	0.2	0.2	0.2	0.1	-	0.2				
CO ₂ Reading (%)	0.1	0.3	1.0	0.0	-	7.4				
PID reading (ppmv)	2.0	2.0	2.8	2.3	-	2.9				
FID reading (ppmv)	-	-	-	-	-	-				
Comment No.					1					

 $^{1. \} Water \ entered \ tedlar \ bag \ during \ screening. \ Soil \ Vapor \ quality \ parameters \ not \ collected.$

J	Project No.: 2732.08		Date:	June 26, 2012
SANBORN HEAD	Project Name: Supplemental VI Assessment			
-1	Location: Manassas, VA			
O_2 / CH_4 / CO_2 Meter Used: Land	Project Manager: E. Bradstreet			
PID Meter Used: MiniRAE 2000 v	Collector(s): M. Stein			
Other: Dwyer Series 475 Mark I 0-40"); Dwyer Magnehelic (0-10,	FID Meter Use	:d:		

SUBSURFACE VAPOR SAMPLE RECORD								
Location No.	SG-101	SG-101	SG-102S	SG-102D	SG-103			
Sample ID	SG101	DUP2	Microseeps SG102S	SG102D	SG103			
Sample Date	06/2	6/12	06/26/12	06/26/12	06/26/12			
Sample Collection Depth (ft bgs)	5.	.5	11.5	45	5.5			
Pre-purge Vacuum (in. H ₂ O)	()	0.21	-3.4	0.05			
Pre-purge Diff. Press. (in. H ₂ O)	4	8	100	3,700	48			
Purge Vacuum (in.H ₂ O)	2	2	-	32	10			
Canister Serial No.	34598	3397	-	3345	12392			
Start Time	0930	0930	-	1016	1024			
Start Pressure (inches Hg)	27.5	30	-	30	30			
Stop Time	1156	1156	1201	1120	1207			
Stop Pressure (inches Hg)	5	7.5	-	6	6.5			
Ambient Air Temp (°F)	65-70	65-70	65-70	65-70	70-75			
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny			
Screening Sample Collection Rate (ml/min)	18	32	-	174	60			
Screening Sample Collection Vacuum (in.H ₂ O)	0.	.4	-	24	>80			
O ₂ Reading (%)	12	2.8	-	12.2	4.1			
CH ₄ Reading (%)	0.	.1	-	0.1	0.2			
CO ₂ Reading (%)	7.	.1	-	0.8	10.6			
PID reading (ppmv)	9.	.7	-	12.0	8.8			
FID reading (ppmv)	-	-	-	-	-			
Comment No.			1					

^{1.} Water encountered during Summa canister sampling. Implant purged of standing water and then a Microseeps Vapor sample was collected.

J	Project No.: 2732.08		Date:	June 26, 2012
SANBORN HEAD	Project Name: Supplemental VI Assessment			
1	Location: Manassas, VA			
O_2 / CH_4 / CO_2 Meter Used: Land	Project Manager: E. Bradstreet			
PID Meter Used: MiniRAE 2000	Collector(s): M. Stein			
Other: Dwyer Series 475 Mark I 0-40"); Dwyer Magnehelic (0-10,	FID Meter Use	ed:		

SU	SUBSURFACE VAPOR SAMPLE RECORD									
Location No.	SG-111I	SG-111S	SG-111S	SG-110	SG-112					
Sample ID	SG111I	SG111S	DUP3	Microseeps SG110	SG112					
Sample Date	06/26/12	06/	26/12	06/26/12	06/26/12					
Sample Collection Depth (ft bgs)	28		13	6	5.5					
Pre-purge Diff. Press. (in. H ₂ 0)	-0.01	-(0.01	-0.10	0					
Approx. Purge Volume (ml)	2,500	1	120	48	48					
Purge Vacuum (in.H ₂ 0)	2		2	>10	2					
Canister Serial No.	3824	2085	37746	-	37432					
Start Time	1111	1112	1112	-	1231					
Start Pressure (inches Hg)	30	30	30	-	29.5					
Stop Time	1218	1346	1346	1438	1336					
Stop Pressure (inches Hg)	7	6	7	-	6					
Ambient Air Temp (°F)	75-80	75-80	75-80	75-80	75-80					
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny					
Screening Sample Collection Rate (ml/min)	182	2	200	-	65					
Screening Sample Collection Vacuum (in.H ₂ O)	1.6		0.6	-	2.4					
O ₂ Reading (%)	20.8		2.6	-	18.4					
CH ₄ Reading (%)	0.1		0.2	-	0.0					
CO ₂ Reading (%)	0.0		2.8	-	4.0					
PID reading (ppmv)	12.8	1	.6.4	-	21.9					
FID reading (ppmv)	-		-	-	-					
Comment No.				1						

^{1.} Water encountered during Summa canister sampling. Implant purged of standing water and then a Microseeps Vapor sample was collected.

SANBORN HEAD

Project No.: 2732.08

Date: June 26, 2012

Project Name: Supplemental VI Assessment

Location: Manassas, VA

O₂ / CH₄ / CO₂ Meter Used: Landtec GEM 2000

Project Manager: E. Bradstreet

PID Meter Used: MiniRAE 2000 w/10.6eV bulb, RF=1

Other: Dwyer Series 475 Mark III Digital Manometer (0-1, 0-40"); Dwyer Magnehelic (0-10, 0-80")

FID Meter Used: ----

SUBSURFACE VAPOR SAMPLE RECORD Location No. **SG-113D SG-113S** SG-109 **SG-108D SG-108S** SG-107 Microseeps Sample ID SG113D SG109 SG108D SG108S SG107 SG113S Sample Date 06/26/12 06/26/12 06/26/12 06/26/12 06/26/12 06/26/12 Sample Collection Depth (ft bgs) 40 12 5.5 43 12 5.5 Pre-purge Diff. Press. (in. H₂O) -3.3 0.01 0 -11 -0.06 -0.01 Approx. Purge Volume (ml) 3,400 48 3,700 48 110 110 Purge Vacuum (in.H₂O) 44 >10 >10 18 6 >10 Canister Serial No. 34097 3329 36411 3353 3392 Start Time 1306 1402 1536 1540 1542 Start Pressure (inches Hg) 29 30 30 30 30 Stop Time 1430 1435 1511 1647 1642 1814 Stop Pressure (inches Hg) 6.5 6.5 7 7 15 Ambient Air Temp (°F) 75-80 75-80 75-80 75-80 75-80 75-80 Weather Conditions M. Sunny M. Sunny M. Sunny M. Sunny M. Sunny Sunny Screening Sample Collection Rate 300 175 190 192 (ml/min) **Screening Sample Collection** 30 26 22 42 >80 Vacuum (in.H₂0) O_2 Reading (%) 9.0 18.5 20.0 4.4 CH₄ Reading (%) 0.0 0.0 0.0 0.0 CO₂ Reading (%) 0.2 0.3 4.7 4.1 PID reading (ppmv) 43.8 17.8 20.2 17.2 FID reading (ppmv) Comment No. 1 2

^{1.} Water encountered during Summa canister sampling. Implant purged of standing water and then a Microseeps Vapor sample was collected. Only 1 Microseeps vial collected prior to water re-entering tubing.

^{2.} Water entered Tedlar bag during attempted collection of soil vapor quality parameters.

J	Project No.: 2732.08	Date:	June 27, 2012		
SANBORN HEAD	Project Name: Supplemental VI Assessment				
1	Location: Manassas, VA	ocation: Manassas, VA			
O_2 / CH_4 / CO_2 Meter Used: Land	Project Manager: E. Bradstreet				
PID Meter Used: MiniRAE 2000 v	Collector(s): M. Stein				
Other: Dwyer Series 475 Mark I 0-40"); Dwyer Magnehelic (0-10,	FID Meter Use	d:			

SUBSURFACE VAPOR SAMPLE RECORD									
Location No.	SG-106S	SG-106D	SG-105	SG-104	Equipment Blank				
Sample ID	SG106S	SG106D	SG105	Microseeps SG-104	EB1				
Sample Date	06/27/12	06/27/12	06/27/12	06/27/12	06/27/12				
Sample Collection Depth (ft bgs)	9	40.5	4.7	5.5	-				
Pre-purge Diff. Press. (in. H ₂ O)	-0.01	-7.5	-0.01	0.03	-				
Approx. Purge Volume (ml)	80	3,500	48	48	-				
Purge Vacuum (in.H ₂ 0)	2	44	6	>10	-				
Canister Serial No.	3336	2191	3348	-	35607				
Start Time	1025	1024	1028	-	1340				
Start Pressure (inches Hg)	30	28	30	-	29.5				
Stop Time	1128	1127	1128	1610	1411				
Stop Pressure (inches Hg)	7.0	5	6	-	7				
Ambient Air Temp (°F)	70-75	70-75	70-75	70-75	85-90				
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny				
Screening Sample Collection Rate (ml/min)	211	200	190	-	-				
Screening Sample Collection Vacuum (in.H ₂ O)	1	36	20	-	-				
O ₂ Reading (%)	5.2	10.8	13.5	-	-				
CH ₄ Reading (%)	0.0	0.0	0.0	-	-				
CO ₂ Reading (%)	3.5	1.4	7.3	-	-				
PID reading (ppmv)	53.9	79.2	33.4	-	-				
FID reading (ppmv)	-	-	-	-	-				
Comment No.				1					
		COMMENTS							

 $1. \ \ Water \ encountered \ during \ Summa \ can ister \ sampling. \ Implant \ purged \ of \ standing \ water. \ A \ Microseeps \ sample \ was \ collected \ for \ analysis.$

Groundwater Quality Field Sampling Summary

		ty Tiera	Sampling	<u>Jumman</u>	,			
.I	Project N	umber: 273	32.05		Date:	June 18, 20	12	
SANBORN HEAD	Project N	ame: Suppl	emental VI	Assessment				
יןיי	Project Location: Manassas, VA							
pH, Conductivity, Temperature Meter	: -		Project M	anager: E. I	Bradstreet			
Water Level Meter: Solinst (Pine Rent	al)		Collector	(s): J. Pierce	2			
Other:			Weather:	Sunny				
		Field Meası						
Sampling Location	SG-111I	SG-111D	OF-54	SG-108I	SG-106I	SG-106D		
Sample Name	SG111I	SG111D	OF54	SG108I	SG106I	SG106D		
Reference Point	TOR	TOR	TOR	TOR	TOR	TOR		
Sample Depth (feet)	30.3	44.2	73.4	26.9	25.3	41.8		
Depth to Floating Product (feet)								
Depth to Water (feet)								
Water Table Elevation (feet)								
Depth to Bottom (feet bgs)								
pH (standard units)				\times				
Specific Conductance (µS/cm)								
Temperature (°C)								
Dissolved Oxygen (mg/L)								
Oxidation Reduction Potential (mv)								
Date of Sample	6/18/2012	6/18/2012	6/18/2012	6/18/2012	6/18/2012	6/18/2012		
Sample Time	1615	1620	1630	1645	1705	1710		
Number of Sample VOAs Collected	1	3	3	3	3	1		
Purge/Sample Device	PDB	PDB	PDB	PDB	PDB	PDB		
Comment Reference Number								
			ents					

Groundwater Quality Field Sampling Summary

		-,		Summar	<u> </u>				
.l	Project N	umber: 273	32.05		Date:	June 18, 20	12		
SANBORN HEAD	Project N	ame: Suppl	emental VI	Assessment					
יןיי	Project Location: Manassas, VA								
pH, Conductivity, Temperature Meter:	: -		Project M	anager: E. l	Bradstreet				
Water Level Meter: Solinst (Pine Rent	al)		Collector	(s): J. Pierce	9				
Other:			Weather:	Sunny					
]	Field Meası	ırements						
Sampling Location	Equipment Blank	Field Blank	SG-102I	SG-113I	SG-113D	OF-55	OF-55		
Sample Name	EB1	FB1	SG102I	SG113I	SG113D	OF55	DUP1		
Reference Point	-	_	TOR	TOR	TOR	TOR	TOR		
Sample Depth (feet)	-	-	21.8	24.4	42.2	80.0	80.0		
Depth to Floating Product (feet)									
Depth to Water (feet)									
Water Table Elevation (feet)			/						
Depth to Bottom (feet bgs)									
pH (standard units)									
Specific Conductance (μS/cm)									
Temperature (°C)									
Dissolved Oxygen (mg/L)									
Oxidation Reduction Potential (mv)									
Date of Sample	6/18/2012	6/18/2012	6/18/2012	6/18/2012	6/18/2012	6/18/2012	6/18/2012		
Sample Time	1730	1735	1430	1515	1540	1550	1550		
Number of Sample VOAs Collected	2	2	3	3	1	3	3		
Purge/Sample Device			PDB	PDB	PDB	PDB	PDB		
Comment Reference Number									
Comment Reference Number	Comments								

B101 Passive Diffusion Bag Deployment/Retrieval

Groundwater	Passive I	Diffusion Bag ((PDB) Deploym	ent		PDB Retriev	val		
Monitoring Well or Air Inlet Well	Deployment Depth (ft)	DTW (ft)	Date/Tir	ne	DTW at Equilibrium (ft)	Date/Time	Sample ID	No. Samples Collected	Notes
On-Site Monitoring	Wells								
D-68	73	67.77	6/18/2012	15:31					Duplicate deployed
D-69	76.5	71.58	6/18/2012	15:50					
D-70									No PDB deployed
D-71									No PDB deployed
D-72									No PDB deployed
D-73									No PDB deployed
D-74	18	13.29	6/18/2012	16:42					New TOC = 0.67' above ground surface
D-75	18	12.71	6/18/2012	16:55					
D-81	63.5	58.52	6/18/2012	14:25					
D-82	69	64.16	6/18/2012	15:00					
D-83	70	64.63	6/18/2012	15:15					
D-84	71	66.23	6/18/2012	15:28					
D-85	63	57.62	6/18/2012	16:29					

D 00	00	87.02	0/10/2012 10.29			
Notes:						

JULY 2012 CHARACTERIZATION SAMPLING

.l.	Project No.: 2732.0	05	Date:		
SANBORN HEAD	Project Name: For	Project Name: Former IBM Manassas			
	Location: Manassa	ıs, VA			
Project Manager: L. Jacob		Collector(s):	M. Stein		
PID Meter Used: MiniRAE2000 (Pine Ren	ital)	FID Meter Used:	None		
He Meter: Dielectric MGD-2002	02 / CH4 / CO2 I	Meter Used: Gem2000 (Pine)			

	OPERATIONS TESTING	PERFOR				
Location No.	SG-114		SG-114			
Vacuum (in H ₂ 0)	0.0	0.6	1.2	2.4		
Time to fill 1 liter Bag (min)	1.5	6.3	2.4	1.2		
Approx. Flow Rate (ml/min)	670	160	420	820		
Tracer Gas Applied	N	Y	Y	Y		
Tracer Gas Concentration (ppmv or %)	-	ND	17.750 ppmv	4.9%		
02 (%)	18.5	18.2	19.2	19.0		
CH ₄ (%)	0.1	0.1	0.1	0.1		
CO ₂ (%)	0.9	4.1	2.7	1.9		
PID (ppmv)	30	9.8	28	7.9		
Testing Date and Time	6/27/12 - 1055	7/9/12 - 1210	7/9/12 - 1220	7/9/12 - 1225		
Screen Interval Depth (ft bgs)	5.5 - 6		5.5 - 6			
Ambient Air Temp (°F)	80 - 85		80 - 85			
Weather Conditions	Sunny, Humid		Overcast, humid			
Comment No.**	8.4" H ₂ 0	0.000	" pre-performance test	ing ΔP		

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

SANBORN HEAD	Project No.: 2732.0)5	Date:
	Project Name: For	mer IBM Manassas	
	Location: Manassa	s, VA	
Project Manager: L. Jacob		Collector(s):	M. Stein
PID Meter Used: MiniRAE2000 (Pine Rental)		FID Meter Used: None	
He Meter: Dielectric MGD-2002	O2 / CH4 / CO2 Meter Used: Gem2000 (Pine)		

	OPERATIONS TESTING	PERFORMANCE TESTING RECORD	
Location No.	SG-115S	SG-115S	
Vacuum (in H ₂ 0)	0.0	>80	
Time to fill 1 liter Bag (min)	1.5	6.25	
Approx. Flow Rate (ml/min)	860	160	
Tracer Gas Applied	N		
Tracer Gas Concentration (ppmv or %)	-		
O ₂ (%)	19.2		
CH ₄ (%)	0.0		
CO ₂ (%)	0.4		
PID (ppmv)	19		
Testing Date and Time	6/28/12 - 1044	7/9/12 - 1141	
Screen Interval Depth (ft bgs)	12 - 12.5	12 - 12.5	
Ambient Air Temp (°F)	80 - 85	80 - 85	_
Weather Conditions	Sunny, Humid	overcast - humid	
Comment No.**	2.4" H ₂ 0	0.000 pre-performance testing ΔP ; $1.$ (comment below)	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

^{1.} Water entered tedlar bag during attempted reformance testing. Implant appears to be flooded and groundwater recharge was noted.

SANBORN HEAD	Project No.: 2732.0	5	Date:
111	Location: Manassas	s, VA	
Project Manager: L. Jacob		Collector(s):	E. Bradstreet
PID Meter Used: MiniRAE2000 (Pine Ren	tal)	FID Meter Used:	None
He Meter: Dielectric MGD-2002		O2 / CH4 / CO2 Meter Used: Gem2000 (Pine)	

	OPERATIONS TESTING	PERFOR			
Location No.	SG-116		SG-116		
Vacuum (in H ₂ 0)	>80	20	>80	>80	
Time to fill 1 liter Bag (min)	1.5	6.3	2.4	1.2	
Approx. Flow Rate (ml/min)	670	160	420	830	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	250 ppm	1000 ppm	
O ₂ (%)	19.3	15.9	13.6	15.6	
CH ₄ (%)	0.0	0.0	0.0	0.0	
CO ₂ (%)	0.4	0.5	0.7	0.7	
PID (ppmv)	17	65	8.7	2.5	
Testing Date and Time	7/12/12 1355	7/13/12 1035	7/13/12 1045	7/13/12 1052	
Screen Interval Depth (ft bgs)	5.5 - 6				
Ambient Air Temp (°F)	85				
Weather Conditions	Sunny, breezy		Mostly cloudy, humid	1	
Comment No.**					

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

.1		Project No.: 2732.0)5	Date:			
SANBORN	HEAD	Project Name: For	mer IBM Manassas	•			
וין		Location: Manassa	s, VA				
Project Manager: L. Jaco	b		Collector(s): E. Bradstreet				
PID Meter Used: MiniRA	E2000 (Pine Rent	tal)	FID Meter Used:	None			
He Meter: Dielectric MGI	D-2002		02 / CH4 / CO2	Meter Used: Gem2	2000 (Pine)		
Other: Magnehelic gauges (0-1 and 0-80 inwc)						
	OPERATIONS TESTING	PERFOR	MANCE TESTING	RECORD			
Location No.	SG-117S						
Vacuum (in H ₂ 0)	>80						
Time to fill 1 liter Bag (min)	1.5						
Approx. Flow Rate (ml/min)							
Tracer Gas Applied							
Tracer Gas Concentration (ppmv or %)							
0 ₂ (%)	X						
CH ₄ (%)							
CO ₂ (%)							
PID (ppmv)							
Testing Date and Time	7/12 - 1430						
Screen Interval Depth (ft bgs)	14.5 - 15						
Ambient Air Temp (°F)	85						
Weather Conditions	Sunny, breezy						
Comment No.**	1						
	C	OMMENTS					
** For all performance tests, a speed. 1. Continuous flow of water, o		t pump speed, 2nd is a	t medium pump speed	d, and 3rd is at the high	est pump		

SANBORN HEAD	Project No.: 2732.05		Date:	
	Location: Manassas, VA			
Project Manager: L. Jacob		Collector(s):	M. Stein	
PID Meter Used: MiniRAE2000 (Pine Rental)		FID Meter Used: None		
He Meter: Dielectric MGD-2002		02 / CH4 / CO2 Meter Used: Gem2000 (Pine)		

	OPERATIONS TESTING	PERFORMANCE TESTING RECORD			
Location No.	SG-118S	SG-118S			
Vacuum (in H ₂ 0)	-1.1	18	24	62	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	670	160	390	800	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	6.2%	9.3%	
O ₂ (%)	18.1	18.7	18.1	17.5	
CH ₄ (%)	0.0	0.1	0.0	0.1	
CO ₂ (%)	0.1	0.0	0.0	0.0	
PID (ppmv)	23	16	16	17	
Testing Date and Time	6/28/12 - 1030	6/29/12	6/29/12	6/29/12	
Screen Interval Depth (ft bgs)	9.5 - 10	9.5 - 10			
Ambient Air Temp (°F)	80 - 85	90 - 95			
Weather Conditions	Sunny, Humid	Sunny, Humid			
Comment No.**	58" H ₂ 0	0.000 pre-performance test vac			

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

SANBORN HEAD	Project No.: 2	2732.05	Date:	6/21, 25, 28/12
	Project Name: Former IBM Manassas			
	Location: Manassas, VA			
Project Manager: L. Jacob		Collector(s) J. Pierce, M. Stein		
PID Meter Used: MiniRAE2000 (Pine Rental)		FID Meter Used: None		
He Meter: Dielectric MGD-2002		O2 / CH4 / CO2 Meter Used: Gem2000 (Pine)		

	OPERATIONS TESTING #1	PERFORMANCE TESTING RECORD	OPERATIONS TESTING #2	OPERATIONS TESTING #3
Location No.	SG-119		SG-119	SG-119
Vacuum (in H ₂ 0)	-0.03		+0.40	0.000
Time to fill 1 liter Bag (min)	2		-	-
Approx. Flow Rate (ml/min)	-		-	-
Tracer Gas Applied	N		N	-
Tracer Gas Concentration (ppmv or %)	-		-	-
02 (%)	-		-	-
CH ₄ (%)	-		-	-
CO ₂ (%)	-		-	-
PID (ppmv)	-		-	-
Testing Date and Time	6/21/12 1430		6/25/12 1720	6/28/12 1150
Screen Interval Depth (ft bgs)	5 - 5.5		5 - 5.5	5 - 5.5
Ambient Air Temp (°F)	95° F		80s	85 - 90
Weather Conditions	Sunny, humid, breezy		Sunny, breezy	Sunny
Comment No.**	1		1	2

- $1. \ \ Purged\ 60\ mL.\ Tedlar\ bag\ didn't\ fill\ after\ 3\ mins.\ Sounded\ like\ no\ air\ was\ being\ pulled\ into\ line.\ Max\ vacuum\ was\ >80"\ H_2O.$
- 2. Water entered tubing during attempted operations testing #3.

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

.l	Project No.: 2732.	05	Date:	
SANBORN HEAD	Project Name: For	Project Name: Former IBM Manassas		
1-11	Location: Manassa	as, VA		
Project Manager: L. Jacob		Collector(s):	J. Pierce, M. Stein	
PID Meter Used: MiniRAE2000 (Pine	Rental)	FID Meter Used:	None	
He Meter: Dielectric MGD-2002		02 / CH4 / CO2	Meter Used: Gem2000 (Pine)	

	OPERATIONS TESTING	PERFORMANCE TESTING RECORD			
Location No.	SG-120S				
Vacuum (in H ₂ 0)	-0.39	-28	-48	-68	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	550	160	400	630	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	ND	ND	
O ₂ (%)	11.1	17.6	15.4	14.0	
CH ₄ (%)	0.0	0.1	0.1	0.2	
CO ₂ (%)	0.1	0.0	0.0	0.0	
PID (ppmv)	27	16	17.2	19.6	
Testing Date and Time	6/21/12 1420	6/28/12	6/28/12	6/28/12	
Screen Interval Depth (ft bgs)	12 - 12.5		12 - 12.5		
Ambient Air Temp (°F)	95° F		90 - 95s		
Weather Conditions	Sunny, breezy, humid				
Comment No.**	1	-2.57	78 - pre performance t	esting	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

^{1.} Purged 60 mL. Max vacuum during bag collection was 18" $\rm H_2O.$

, , ,	Project No.: 2732.0	05	Date:	
SANBORN III HEAD	Project Name: For	Project Name: Former IBM Manassas		
1-11	Location: Manassa	s, VA		
Project Manager: L. Jacob		Collector(s):	J. Pierce, M. Stein	
PID Meter Used: MiniRAE2000 (Pine Re	ental)	FID Meter Used:	None	
He Meter: Dielectric MGD-2002		02 / CH4 / CO2	Meter Used: Gem2000 (Pine)	

	OPERATIONS TESTING	PERFOR			
Location No.	SG-121S				
Vacuum (in H ₂ 0)	-1.9	-16	-26	-38	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	250	160	420	830	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	ND	ND	
O ₂ (%)	18.0	19.5	16.6	16.6	
CH ₄ (%)	0.0	0.2	0.2	0.3	
CO ₂ (%)	0	0.0	0.0	0.0	
PID (ppmv)	1.2	15	21	22	
Testing Date and Time	6/25/12 1730	6/28/12	6/28/12	6/28/12	
Screen Interval Depth (ft bgs)	11.5 - 12	11.5 - 12			
Ambient Air Temp (°F)	80s	85 - 90s			
Weather Conditions	Sunny, breezy	Sunny, breezy			
Comment No.**		-1.3	71 pre performance te	est vac	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

.l	Project No.: 2732.05		Date:	
SANBORN HEAD	Project Name: Form	Project Name: Former IBM Manassas		
I-p	Location: Manassa	s, VA		
Project Manager: L. Jacob		Collector(s):	M. Stein	
PID Meter Used: MiniRAE2000 (Pine Ren	ıtal)	FID Meter Used:	None	
He Meter: Dielectric MGD-2002		02 / CH4 / CO2	Meter Used: Gem2000 (Pine)	

	OPERATIONS TESTING	PERFOR	PERFORMANCE TESTING RECORD		
Location No.	SG-122		SG-122		
Vacuum (in H ₂ 0)	0.0	0.3	0.6	1.2	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	860	160	410	830	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	ND	ND	
0 ₂ (%)	16.3	11.2	13.0	13.3	
CH ₄ (%)	0.1	0.1	0.1	0.1	
CO ₂ (%)	4.8	8.9	8.1	8.1	
PID (ppmv)	27.9	1.0	7.1	3.3	
Testing Date and Time	6/28/12 - 1111	7/9/12 - 1024	7/9/12 - 1033	7/9/12 - 1038	
Screen Interval Depth (ft bgs)	5.5 - 6		5.5 - 6		
Ambient Air Temp (°F)	85 - 90	80 - 85			
Weather Conditions	Sunny, Humid	Overcast, humid			_
Comment No.**	1.4" H ₂ 0	-0.005	pre-performance test	ing ΔP	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

.1	Project No.: 2732	2.05 Date:				
SANBORN HEAD	Project Name: Fo	Project Name: Former IBM Manassas				
111	Location: Manass	sas, VA				
Project Manager: L. Jacob		Collector(s): M. Stein				
PID Meter Used: MiniRAE2000 (Pine F	Rental)	FID Meter Used: None				
He Meter: Dielectric MGD-2002		02 / CH4 / CO2 Meter Used: Gem2000 (Pine)				

	OPERATIONS TESTING	PERFOR	PERFORMANCE TESTING RECORD		
Location No.	SG-123S				
Vacuum (in H ₂ 0)	-0.004	25	25	44	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	800	160	330	670	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	ND	ND	
02 (%)	8.9	8.1	12.8	13.0	
CH ₄ (%)	0.1	0.0	0.1	0.0	
CO ₂ (%)	0.1	1.5	4.0	4.8	
PID (ppmv)	34	2.3	1.2	ND	
Testing Date and Time	6/28/12 - 1119	7/9/12 - 1052	7/9/12 - 1102	7/9/12 - 1108	
Screen Interval Depth (ft bgs)	11.5 - 12	11.5 - 12			
Ambient Air Temp (°F)	85 - 90	80 - 85			
Weather Conditions	Sunny, Humid	Overcast, humid			
Comment No.**	3.6" H ₂ 0	0.009	pre-performance test	ing ΔP	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

.1	Project No.: 2732	2.05 Date:				
SANBORN HEAD	Project Name: Fo	Project Name: Former IBM Manassas				
111	Location: Manass	sas, VA				
Project Manager: L. Jacob		Collector(s): M. Stein				
PID Meter Used: MiniRAE2000 (Pine F	Rental)	FID Meter Used: None				
He Meter: Dielectric MGD-2002		02 / CH4 / CO2 Meter Used: Gem2000 (Pine)				

	OPERATIONS TESTING	PERFOR	PERFORMANCE TESTING RECORD		
Location No.	SG-31S		SG-31S		
Vacuum (in H ₂ 0)	0.4	0.3	0.5	0.8	
Time to fill 1 liter Bag (min)	1.5	6.25	2.4	1.2	
Approx. Flow Rate (ml/min)	670	160	420	830	
Tracer Gas Applied	N	Y	Y	Y	
Tracer Gas Concentration (ppmv or %)	-	ND	ND	ND	
0 ₂ (%)	18.1	16.4	17.3	16.9	
CH ₄ (%)	0.1	0.1	0.1	0.1	
CO ₂ (%)	1.6	3.0	1.4	1.1	
PID (ppmv)	3.2	6.3	4.9	3.3	
Testing Date and Time	7/10/12 - 1557	7/11/12 - 0826	7/11/12 - 0836	7/11/12 - 0843	
Screen Interval Depth (ft bgs)	12 - 12.5		12-12.5		
Ambient Air Temp (°F)	85	75			
Weather Conditions	Mostly cloudy		Mostly Sunny		
Comment No.**	ΔP - 0.000" H ₂ O	ΔP - 0.0	000" H ₂ O pre-performa	ance test	

^{**} For all performance tests, 1st reading is at lowest pump speed, 2nd is at medium pump speed, and 3rd is at the highest pump speed.

Field Sampling Summary

	Project No.: 27	32.05		Date:		
SANBORN HEAD	Project Name:	Supplemental VI	Assessment			
	Location: Mana	Location: Manassas, VA				
O ₂ / CH ₄ / CO ₂ Meter Used: Gem	2000		Project Manager: E. Bradstreet			
PID Meter Used: MiniRAE			Collector(s): M.	Stein, J. Pierce		
Other: Dwyer Digital Manometer Magnehilic Gauges		FID Meter Used	l:			
	SUBSURFAC	E VAPOR SAMP	LE RECORD			
Location No.	SG-121S	SG-121I	SG-119	SG-119		
Sample ID	SG121S	SG121I	SG119	SG119		
Sample Date	07/09/12	07/09/12	07/09/12	07/09/12		
Sample Collection Depth (ft bgs)	11.5	30	5	5		
Pre-purge Vacuum (in. H ₂ O)	-2.6	-9.8	+0.14	+0.14		
Approx. Purge Volume (ml)	100	2500	60	160		
Purge Vacuum (in.H ₂ O)	2	18	-	NR		
Canister Serial No.	3036	3322	-	3350		
Start Time	14:12	14:12 14:12		14:32		
Start Pressure (inches Hg)	29.5	30	-	30		
Stop Time	15:17	15:18	-	16:55		
Stop Pressure (inches Hg)	7	7	-	9.5		
Ambient Air Temp (°F)	80 - 85	80 - 85	80 - 85	80 - 85		
Weather Conditions	Overcast, humid	Overcast, Humid	Overcast, Humid	Overcast, Humid		
Screening Sample Collection Rate (ml/min)	240	200	-	Not recorded		
Screening Sample Collection Vacuum (in.H ₂ 0)	22	16	-	>80		
O ₂ Reading (%)	12	19.7	-			
CH ₄ Reading (%)	0.1	0.0	-			
CO ₂ Reading (%)	0.0	0.1	-			
PID reading (ppmv)	1.7	ND	-			
FID reading (ppmv)	-	-	-	-	-	
Comment No.			Microseeps; 1	2		
		COMMENTS				

^{1.} Water entered tubing during post-sampling screening. No screening sample collected.

^{2.} Initial canister #8030 - initial vacuum -24.5 in Hg, replaced with new canister. Purge volume includes vapor used to fill exavuated vials prior to attempting canister sampling. Implant was able to be sampled via canister and vials were not submitted to the analytical laboratory.

Field Sampling Summary

	i icia baii	ipling Summa	y		
	Project No.: 27	32.05		Date:	
SANBORN HEAD	Project Name:	Supplemental VI	Assessment		
	Location: Mana	assas, VA			
O ₂ / CH ₄ / CO ₂ Meter Used: Gem	2000		Project Manager: E. Bradstreet		
PID Meter Used: MiniRAE			Collector(s): M.	Stein, J. Pierce	
Other: Dwyer Digital Manomete	er Magnehilic Gau	iges	FID Meter Used	:	
	SUBSURFAC	CE VAPOR SAMP	LE RECORD		
Location No.	SG-120S	SG-120I	SG-118S	Equipment Blank	
Sample ID	SG120S	SG120I	SG118S	EB1	
Sample Date	07/09/12	07/09/12	07/09/12	07/12/12	
Sample Collection Depth (ft bgs)	12	30	9.5	-	
Pre-purge Vacuum (in. H ₂ 0)	-8.2	-18	-0.01		
Approx. Purge Volume (ml)	100	2500	100	-	
Purge Vacuum (in.H ₂ 0)	-7	-25	-7.5	-	
Canister Serial No.	1364	8010	3460	3321	
Start Time	1440	1440	1504	1140	
Start Pressure (inches Hg)	30	29.5	30	30	
Stop Time	15:57	15:58	16:07	12:15	
Stop Pressure (inches Hg)	7	7	7.00	7.0	
Ambient Air Temp (°F)	80 - 85	80 - 85	80 - 85	80	
Weather Conditions	Overcast, humid	Overcast, Humid	Overcast, Humid	Mostly Sunny	
Screening Sample Collection Rate (ml/min)	240	200	170	-	
Screening Sample Collection Vacuum (in.H ₂ O)	45	25	16	-	
O ₂ Reading (%)	10.3	18.0	18.4	-	
CH ₄ Reading (%)	0.1	0.1	0.1	-	
CO ₂ Reading (%)	0.0	1.5	0.0	-	
PID reading (ppmv)	0.9	1.5	1.6	-	
FID reading (ppmv)	-	-	-	-	
Comment No.					
		COMMENTS			

Field Sampling Summary

	riciu sa	mpiing Sumi	iiai y					
	Project No.: 27	['] 32.05		Date:				
SANBORN HEAD	Project Name:	Supplemental V	I Assessment					
	Location: Man	assas, VA						
O ₂ / CH ₄ / CO ₂ Meter Used: Gem	2000		Project Manage	er: E. Bradstreet				
PID Meter Used: MiniRAE			Collector(s): M	. Stein				
Other: Dwyer Digital Manomete	er Magnehilic Gau	ıges	FID Meter Used:					
	SUBSURF	ACE VAPOR SAN	MPLE RECORD					
Location No.	SG-114	SG-114	SG-122	SG-123S	SG-31S			
Sample ID	SG-114	DUP1	SG122	SG123S	SG31S			
Sample Date	07/11/12	07/11/12	07/11/12	07/11/12	07/12/12			
Sample Collection Depth (ft bgs)	5.5	-	5.5	11.5	12			
Pre-purge Vacuum (in. H ₂ 0)	0.0	-	NM	NM	0.0			
Approx. Purge Volume (ml)	54	-	54	108	113			
Purge Vacuum (in.H ₂ 0)	2	-	2	4	2			
Canister Serial No.	3338	3003	3463	3334	3825			
Start Time	09:34	09:34	09:55	09:56	08:42			
Start Pressure (inches Hg)	30	29.5	30	30	28.5			
Stop Time	11:51	11:51	11:03	11:04	09:42			
Stop Pressure (inches Hg)	7	7	6	6	6.5			
Ambient Air Temp (°F)	75-80	75-80	75-80	75-80	75-80			
Weather Conditions	M. Cloudy	M. Cloudy	M. Cloudy	M. Cloudy	M. Sunny			
Screening Sample Collection Rate (ml/min)	240	200	180	Not recorded	110			
Screening Sample Collection Vacuum (in.H ₂ O)	0.7	-	0.4	9.4	0.4			
O ₂ Reading (%)	19.8	-	13.7	13.3	14.0			
CH ₄ Reading (%)	0.0	-	0.0	0.0	0.0			
CO ₂ Reading (%)	2.3	-	7.9	4.5	2.3			
PID reading (ppmv)	ND	-	3.1	ND	6.0			
FID reading (ppmv)	-	-	-	-	-			
Comment No.								
		COMMENTS	5					

Groundwater Quality Field Sampling Summary

	Project N	Number: 2		ia sain _t	Date:	June 20, 2	2 25 26 2	7 and Iuly	10 to 12										
SANBORN HEAD	-				Date.	June 20, 2		7 dild july	10 to 12										
Project Location: Manassas, VA pH, Conductivity, Temperature Meter: Project Manager: E. Bradstreet Dissolved Oxygen Meter: Solinst (Pine) Collector(s): EMB, JAP Water Level Meter: Weather: June: Sunny, breezy, 90's; July: Sunny, 80's Field Weasurements Sampling Location SG-120 SG-121 SG-123 SG-118 SG-115 SG-31 SG-117 SG-1171 SG-117-23 Frac Tank Sample Name SG120 SG121 SG123 SG118 SG115 SG31 SG117 SG1171 SG11723 Frac Tank Reference Point Ground Grou																			
	Project L	ocation: N	lanassas, V	'A															
pH, Conductivity, Temperatu	re Meter:		Project N	Manager: E	. Bradstree	et													
Dissolved Oxygen Meter: Sol	inst (Pine)	Collector	r(s): EMB,	JAP														
Water Level Meter:			Weather: June: Sunny, breezy, 90's; July: Sunny, 80's																
			Field 1	Measurer	nents														
Sampling Location	SG-120	SG-121	SG-123	SG-118	SG-115	SG-31	SG-117	SG-117I	SG-117-23	Frac Tank									
Sample Name	SG120	SG121	SG123	SG118	SG115	SG31	SG117	SG117I	SG11723	Frac01									
Reference Point	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground										
Sample Depth (feet)	32.10	32.65	29.65	28.55	31.91	75.50	30.35	28.81	18.09										
Depth to Floating Product (feet)		/																	
Depth to Water (feet)			/																
Water Table Elevation (feet)																			
Depth to Bottom (feet bgs)																			
pH (standard units)							/												
Specific Conductance (μS/cm)								/											
Temperature (°C)																			
Dissolved Oxygen (mg/L)																			
Date of Sample	6/20/12	6/22/12	6/25/12	6/26/12	6/27/12	7/10/12	7/11/12	7/12/12	7/12/12	7/12/12									
Sample Time	1410	1550	1330	1215	1205	1050	1620	1445	1540	1630									
Number of Sample VOAs Collected	2	2	2	2	2	2	2	2	2	2									
Purge/Sample Device	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer									
Comment Reference Number	1	1	2	2	2	3	3	4	4										
			C	omment						Comments									

- Shipped to Lancaster on 6/22/12.
 Shipped to Lancaster on 6/27/12 (Week 2).
 Shipped to Lancaster on 7/11/12 (Week 3).
 Recorded water levels represent measurements recorded on July 13, 2012

Groundwater Quality Field Sampling Summary									
.l.	Project N	Number: 2	732.05				Date:	7/10-11/	12
SANBORN HEAD	Project N	lame: Sup	plemental	VI Assessr	nent				
	Project L	ocation: N	Manassas, V	/A					
pH, Conductivity, Temperature Me	eter: -		Project M	/lanager: Li	isa Jacob				
Water Level Meter:			Collector	(s): J. Pier	ce, M. Steir	1			
Other:			Weather:	:					
		Fiel	d Measure	ements					
Sampling Location	SG-118-22	SG-123I	SG-118I	SG-115S	SG-115I	SG-31I	SG-31D	D-86	Field Blank
Sample Name	SG11822	SG123I	SG118I	SG115S	SG115I	SG31I	SG31D	D86	FB1
Reference Point	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground
Sample Depth (feet)	NM	NM	NM	NM	NM	NM	NM	NM	NM
Depth to Floating Product (feet)									
Depth to Water (feet)									
Water Table Elevation (feet)									
Depth to Bottom (feet bgs)									
pH (standard units)									
Specific Conductance (μS/cm)									
Temperature (°C)									
Dissolved Oxygen (mg/L)									
Oxidation Reduction Potential (mv)									
Date of Sample	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/11/2012	7/11/2012	7/11/2012	7/11/2012
Sample Time	1035	0954	1115	1141	1219	1333	1600	1453	1745
Number of Sample VOAs Collected	2	2	2	2	2	2	2	2	2
Purge/Sample Device	Bailer	Bailer	Bailer	Syringe	Bailer	Bailer	Bailer	Bailer	Submerge Analytical Container
Comment Reference Number									
			Commen	ts					

Water Level Elevation Data

Investigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas
Manassas, Virginia

Monitoring	Location	Ref. Point	Reference Elevation	June 2012 June 16		August 20	11 Routine 18, 2011		11 Routine 24, 2011		oer 2011 otine r 12, 2011		ry 2012 tine · 23, 2012	June 2011 June 21	2 Routine 3, 2012		Non-Routine 3, 2012
Depth		Point	(ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)
	D-74	WLMP	248.78	15.82	232.96	16.00	232.78	16.01	232.77	16.01	232.77	15.93	232.85	15.96	232.82	16.16	232.62
	D-75	WLMP	248.91	12.25	236.66	15.18	233.73	15.66	233.25	13.70	235.21	16.20	232.71	14.69	234.22	14.25	234.66
	D-76	TOC	250.25	-	-	-	-	12.75	237.50	12.70	237.55	12.93	237.32	-	-	-	-
	D-77	TOC	250.54	-	-	-	-	13.05	237.49	13.00	237.54	13.15	237.39	-	-	-	-
	D-78	TOC	250.16	-	-	-	-	24.55	225.61	25.76	224.40	27.22	222.94	-	-	-	-
	SG-102I	TOR	245.75	11.41	234.34	12.57	233.18	12.05	233.70	18.20	227.55	18.37	227.38	21.20	224.55	20.79	224.96
	SG-106I	TOR	249.78	23.57	226.21	23.43	226.35	21.10	228.68	21.70	228.08	22.60	227.18	24.23	225.55	24.07	225.71
	SG-108I	TOR	251.38	26.72	224.66	26.71	224.67	24.56	226.82	24.58	226.80	25.35	226.03	26.71	224.67	26.59	224.79
25 to 30' Depth	SG-111I	TOR	252.31	29.39	222.92	30.29	222.02	28.68	223.63	29.18	223.13	29.27	223.04	29.84	222.47	29.89	222.42
	SG-113I	TOR	247.00	12.87	234.13	12.83	234.17	13.71	233.29	15.59	231.41	14.48	232.52	15.83	231.17	14.88	232.12
	SG-115I	TOR	246.77	-	-	-	-	-	-	-	-	-	-	-	-	31.26	215.51
	SG-117I	TOR	253.23	-	-	-	-	-	-	-	-	-	-	-	-	28.47	224.76
	SG-118I	TOR	248.73	-	-	-	-	-	-	-	-	-	-	-	-	20.64	228.09
	SG-120I	TOR	250.89	-	-	-	-	-	-	-	-	-	-	-	-	>31.56	<219.33
	SG-121I	TOR	252.64	-	-	-	-	-	-	-	-	-	-	-	-	>32.56	<220.08
	SG-123I	TOR	253.65	-	-	-	-	-	-	-	-	-	-	-	-	27.05	226.60
	SG-31I	TOR	245.76	-	-	-	-	-	-	-	-	-	-	-	-	22.64	223.12
	SG-102D	TOR	245.78	>48.00	<197.78	>48.00	<197.78	>48.00	<197.78	>48.00	<197.78	>48.00	<197.78	>48.00	<197.78	>48.00	<197.78
	SG-106D	TOR	249.81	42.31	207.50	42.05	207.76	40.25	209.56	40.35	209.46	41.04	208.77	41.72	208.09	42.89	206.92
45 to 50' Donth	SG-108D	TOR	251.40	45.94	205.46	45.58	205.82	45.22	206.18	46.11	205.29	46.17	205.23	46.34	205.06	45.44	205.96
45 to 50' Depth	SG-111D	TOR	252.31	38.27	214.04	40.19	212.12	38.39	213.92	40.80	211.51	37.80	214.51	39.34	212.97	41.20	211.11
	SG-113D	TOR	246.98	41.61	205.37	41.94	205.04	42.21	204.77	42.16	204.82	41.63	205.35	41.59	205.39	41.67	205.31
	SG-31D	TOR	245.79	-	-	-	-	-	-	-	-	-	-	-	-	45.65	200.14
	D-68	WLMP	249.58	84.54	165.04	87.08	162.50	79.69	169.89	79.29	170.29	74.52	175.06	78.85	170.73	77.68	171.90
	D-69	WLMP	250.05	88.09	161.96	90.18	159.87	83.40	166.65	82.72	167.33	76.10	173.95	77.74	172.31	83.30	166.75
	D-70	WLMP	248.23	75.56	172.67	79.17	169.06	72.75	175.48	71.92	176.31	68.47	179.76	69.46	178.77	71.56	176.67
70 to 90' Donth	D-71	WLMP	248.20	74.17	174.03	76.42	171.78	72.63	175.57	71.42	176.78	68.98	179.22	70.34	177.86	77.26	170.94
70 to 80' Depth	D-72	WLMP	247.61	81.92	165.69	84.27	163.34	77.51	170.10	76.28	171.33	73.14	174.47	74.45	173.16	71.13	176.48
	D-73	WLMP	247.41	71.80	175.61	75.55	171.86	70.85	176.56	69.56	177.85	65.90	181.51	66.86	180.55	69.70	177.71
	D-81	WLMP	243.03	60.32	182.71	63.82	179.21	61.12	181.91	60.08	182.95	57.38	185.65	58.76	184.27	60.78	182.25
	D-82	WLMP	244.94	67.29	177.65	70.66	174.28	66.50	178.44	65.42	179.52	63.15	181.79	64.55	180.39	62.43	182.51

Water Level Elevation Data

Investigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas
Manassas, Virginia

Monitoring Depth	Location	Ref. Elevation		ation Ref. Elevation June		-	June 16, 2011 August 18, 2011			October 2011 Routine October 24, 2011		December 2011 Routine December 12, 2011		ry 2012 itine 223, 2012	June 2012 Routine June 23, 2012		July 2012 Non-Routine July 13, 2012	
Deptil		Point	(ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	DTW (ft)	WLE (ft AMSL)	
	D-83	WLMP	246.10	68.31	177.79	71.61	174.49	67.20	178.90	66.03	180.07	63.70	182.40	65.30	180.80	67.30	178.80	
	D-84	WLMP	245.72	79.31	166.41	82.31	163.41	75.70	170.02	74.67	171.05	70.67	175.05	74.01	171.71	73.49	172.23	
70 to 80' Depth	D-85	WLMP	246.49	57.46	189.03	66.04	180.45	62.49	184.00	59.96	186.53	56.29	190.20	58.04	188.45	61.25	185.24	
70 to 80 Depth	D-86	TOR	245.68	-	-	-	-	-	-	-	-	-	-	-	-	67.08	178.60	
	OF-54	TOR	252.18	73.26	178.92	76.24	175.94	72.21	179.97	70.80	181.38	68.72	183.46	70.84	181.34	72.49	179.69	
	OF-55	TOR	247.31	69.48	177.83	72.81	174.50	68.45	178.86	67.37	179.94	65.16	182.15	66.69	180.62	68.65	178.66	
	SG-04	TOR	246.68	-	-	43.72	202.96	34.93	211.75	34.84	211.84	35.00	211.68	40.02	206.66	41.77	204.91	
	SG-05	TOR	246.83	-	-	>45.3	<201.53	>45.35	<201.53	>45.3	<201.53	>45.3	<201.53	>45.3	<201.53	>45.3	<201.53	
	SG-06	TOR	247.32	-	-	>45.5	<201.82	>45.5	<201.82	>45.5	<201.82	>45.5	<201.82	>45.5	<201.82	>45.5	<201.82	
	S-38	TOC	250.48	-	-	13.43	237.05	13.25	237.23	13.15	237.33	13.28	237.20	13.56	236.92	13.80	236.68	
Miscellaneous	S-41	TOC	250.39	-	-	>47.2	<203.19	>47.2	<203.19	>47.2	<203.19	>47.2	<203.19	>47.2	<203.19	>47.2	<203.19	
	S-42	TOC	250.04	-	-	>62.7	<187.34	>62.7	<187.34	>62.7	<187.34	>62.7	<187.34	>62.7	<187.34	>62.7	<187.34	
	MW-08	TOC	248.98	73.25	175.73	76.26	172.72	71.42	177.56	70.41	178.57	68.04	180.94	69.50	179.48	71.61	177.37	
	SG-118-22	TOR	248.73	-	-	-		-	-	-	-	-	-		-	13.70	235.03	
	SG-117-23	TOR	253.22	-	-	-	-	-	-	-	-	-	-	-	-	18.09	235.13	

Notes:

2. Refer to the report text for additional details.

^{1.} This table is intended to summarize water levels recorded during characterization and routine sampling rounds in the Building 101 area at the former IBM facility in Manassas, Virginia. Depth to water measurements were collected by Sanborn Head personnel on the dates noted, and are recorded as feet below the reference point as marked on the monitoring well or multi-depth implant.

Differential Pressure DataInvestigation Data Report
Supplemental Vapor Intrusion Assessment
Former IBM Manassas
Manassas, Virginia

SG SG	\$G-06-8 \$G-06-8 \$G-07 \$G-08 \$G-09 \$G-10 \$G-11 \$G-12 \$G-13 \$G-14 \$G-15 \$G-14 \$G-15 \$G-16 \$G-17 \$G-18 \$G-19 \$G-20 \$G-21 \$G-22 \$G-23 \$G-24 \$G-25 \$G-25 \$G-26 \$G-27 \$G-28 \$G-29 \$G-30 \$G-101 \$G-103 \$G-104 \$G-105 \$G-107 \$G-109 \$G-110 \$G-112 \$G-114 \$G-116 \$G-119	0.0 0.01 0.38 -0.05 0.45 -1.1 0.59 -0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30	0.0 -0.03 0.10 0.0 -1.5 -0.27 -0.14 0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-0.02 0.05 0.16 0.51 -9.3 3.0 -0.15 2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.08 -0.00 -0.01 -0.00 -0.01	-0.01 2.8 0.35 0.28 -1.4 -1.3 0.51 0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03 0.17	-0.07 0.95 0.77 0.06 -0.23 -0.38 0.20 -0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.01 0.13 -0.19 0.01 2.8 -0.44 -0.13 0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0 -0.03 0.34 -1.5 4.6 -0.21 0.43 0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37 0.01 -0.03	6 2 1 2 5 7 3 4 5 3 4 3 2 7 7 4 4 6 0 6 5 5
SG SG	SG-08 SG-09 SG-10 SG-11 SG-12 SG-13 SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.38 -0.05 0.45 -1.1 0.59 -0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.10 0.0 -1.5 -0.27 -0.14 0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.16 0.51 -9.3 3.0 -0.15 2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.35 0.28 -1.4 -1.3 0.51 0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.77 0.06 -0.23 -0.38 0.20 -0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.19 0.01 2.8 -0.44 -0.13 0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0.34 -1.5 4.6 -0.21 0.43 0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 0 -0.03 0 0.54 -0.37 0.01	1 2 5 7 7 3 4 5 5 3 4 4 3 2 7 7 4 4 6 0 0 6 5 5
SG S	SG-09 SG-10 SG-11 SG-12 SG-13 SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.05 0.45 -1.1 0.59 -0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 -1.5 -0.27 -0.14 0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.51 -9.3 3.0 -0.15 2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.28 -1.4 -1.3 0.51 0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.06 -0.23 -0.38 0.20 -0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	0.01 2.8 -0.44 -0.13 0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-1.5 4.6 -0.21 0.43 0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 0 -0.03 0 0.54 -0.37	2 5 7 3 4 5 3 4 3 2 7 7 4 4 6 0 6 5
SG S	SG-11 SG-12 SG-13 SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-1.1 0.59 -0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	-0.27 -0.14 0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	3.0 -0.15 2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	-1.3 0.51 0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-0.38 0.20 -0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.44 -0.13 0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-0.21 0.43 0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37	7 3 4 5 3 4 3 2 7 7 4 4 6 0 6 5
SG S	SG-12 SG-13 SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.59 -0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	-0.14 0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-0.15 2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.51 0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.20 -0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.13 0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0.43 0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 -0.03 0 0.54 -0.37 0.01	3 4 5 3 4 3 2 7 7 4 4 6 0 6 5
SG S	SG-13 SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.09 -2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.13 -1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.1 3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.24 2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-0.33 -0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	0.26 -1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0.2 -2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37 0.01	4 5 3 4 3 2 7 7 4 4 6 0 6 5
SG S	SG-14 SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-2.1 0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	-1.6 -0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	3.2 0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	2.1 0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-0.63 0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-1.8 -0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-2.7 -0.04 -1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37 0.01	5 3 4 3 2 7 7 4 4 6 0 6 5
SG-	SG-15 SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.68 -2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	-0.57 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.50 4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.19 0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.28 -1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.06 1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-0.04 -1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37	3 4 3 2 7 7 4 4 6 0 6 5
SG-	SG-16 SG-17 SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-2.1 0.0 0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 0.02 0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.77 0.09 0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-1.4 -0.01 0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	1.1 0.0 -0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-1.7 -0.01 -0.004 0 0 0 -0.03 0 0.54 -0.37 0.01	4 3 2 7 7 4 4 6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-18 SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.01 -2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.11 1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.19 -0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.04 -3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.01 -1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	-0.004 0 0 0 -0.03 0 0.54 -0.37 0.01	2 7 7 4 4 6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-19 SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-2.9 -4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.5 -0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	-0.15 -1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-3.5 -3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	-1.9 1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0 0 0 -0.03 0 0.54 -0.37	7 7 4 4 6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-20 SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-4.2 0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.0 0.0 0.0 0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.05 -0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	-1.7 -0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-3.4 -0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	1.2 0.0 1.3 -0.32 0.9 0.53 -0.01 -0.02	0 0 -0.03 0 0.54 -0.37	7 4 4 6 0 6 5
5 to 8' Depth 5 G 5 G 5 G 5 G 5 G 5 G 5 G	SG-21 SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.0 -3.6 -19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 -0.0 0.06 0.74 -0.75 -0.08 0.01 -0.19 -0.30 -	0.0 0.0 0.0 0.0 0.0 0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.02 -1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	-0.01 0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-0.01 -0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	0.0 1.3 -0.32 0.9 0.53 -0.01	0 -0.03 0 0.54 -0.37	4 4 6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-22 SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-3.6 -19 0.81 -0.49 -0.01 -0.01 -0.0 -0.08 -0.41 -0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-1.2 -4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.78 0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	-0.14 0.55 0.85 -1.3 -0.02 -0.03 -0.02	1.3 -0.32 0.9 0.53 -0.01 -0.02	-0.03 0 0.54 -0.37 0.01	4 6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-23 SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-111 SG-112	-19 0.81 -0.49 -0.01 -0.01 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	-4.3 0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	0.0 1.1 0.14 0.0 -0.02 -0.01 -0.03	0.55 0.85 -1.3 -0.02 -0.03 -0.02	-0.32 0.9 0.53 -0.01 -0.02	0 0.54 -0.37 0.01	6 0 6 5
5 to 8' Depth SG SG SG SG SG SG SG SG	SG-24 SG-25 SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.49 -0.01 -0.01 -0.08 -0.41 -0.0 -0.06 -0.74 -0.75 -0.08 -0.01 -0.19 -0.30 -	0.43 0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	0.74 0.11 0.0 -0.01 -0.01 -0.01 -0.38 -0.01 0.00	1.1 0.14 0.0 -0.02 -0.01 -0.03	0.85 -1.3 -0.02 -0.03 -0.02	0.53 -0.01 -0.02	-0.37 0.01	6 5
SG S	SG-26 SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.01 -0.01 -0.01 -0.08 -0.41 -0.0 -0.06 -0.74 -0.75 -0.08 -0.01 -0.19 -0.30 -	0.0 -0.05 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	0.0 -0.01 -0.01 -0.01 -0.38 -0.01	0.0 -0.02 -0.01 -0.03	-0.02 -0.03 -0.02	-0.01 -0.02	0.01	5
SG SG SG SG SG SG SG SG	SG-27 SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.01 0.0 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30	-0.05 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	-0.01 -0.01 -0.01 -0.38 -0.01	-0.02 -0.01 -0.03	-0.03 -0.02	-0.02		
SG S	SG-28 SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.0 -0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	-0.01 -0.01 -0.38 -0.01	-0.01 -0.03	-0.02		-0.03	10
SG S	SG-29 SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.08 -0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0	-0.01 -0.38 -0.01 0.00	-0.03		0.01		
SG S	SG-30 SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.41 0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30	0.0 0.0 0.0 0.04 0.0 0.0 0.0	-0.38 -0.01 0.00			-0.01	0	7
SG-	SG-101 SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.0 0.06 0.74 -0.75 0.08 0.01 -0.19 0.30	0.0 0.0 0.04 0.0 0.0 0.0	-0.01 0.00	0.17	-0.02	-0.02	0.01	7
SG-	SG-103 SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.06 0.74 -0.75 0.08 0.01 -0.19 0.30	0.0 0.04 0.0 0.0 0.0	0.00	-0.02	-1.8 0.04	-0.35 0.0	-0.9 0	3
SG-	SG-104 SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.74 -0.75 0.08 0.01 -0.19 0.30	0.04 0.0 0.0 0.0		2.5	0.35	-0.015	0	2
SG-	SG-105 SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	-0.75 0.08 0.01 -0.19 0.30 -	0.0 0.0 0.0	_	-0.04	0.05	-0.013	0.04	5
SG-	SG-107 SG-109 SG-110 SG-112 SG-114 SG-116	0.08 0.01 -0.19 0.30 -	0.0	-0.02	-0.3	0.01	0.0	0.02	5
SG-	SG-110 SG-112 SG-114 SG-116	-0.19 0.30 - -	ł	0.82	0.72	0.07	0.0	-0.35	2
SG-	SG-112 SG-114 SG-116	0.30		0.35	1.2	0.11	-0.008	-0.01	4
SG-	SG-114 SG-116	-	0.36	-0.03	-0.73	-0.04	-0.010	-0.02	6
SG-	SG-116	-	0.0	0.0	2.1	0	-0.005	-0.01	2
SG-			-	-	-	-	-	-0.01	0
SG-	50 117		-	-	-	-	-	-4.7	1
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-122	-	-	_	-	-	-	0	0
25 to 30' Depth 25 to 30' Depth 25 to 50' Depth 26-645 to 50' Depth 26-645 to 50' Depth 26-65 SG-65 SG-	SG-04-10	-1.3	-0.31	-0.41	-0.85	-0.66	-0.52	-0.32	10
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-05-10	-25	-23	-31	-33	-21	-22	-23	10
25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 25 to 50' Depth 36-0	SG-102S	-1.6	-4.5	-0.03	-1.3	-0.79	-1.1	-4.8	9
25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 26 SG-	SG-106S	0.003	0.0	-0.02	-0.01	0.02	-0.015	0.003	4
25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 36-6 36-6 36-6 36-6 36-6 36-6 36-6 36	SG-108S	0.01	0.10	-0.01	0.17	0.07	-0.72	0.01	2
25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 25 to 30' Depth 36-6 36-6 36-6 36-6 36-6 36-6 36-6 36	SG-111S	0.0	0.0	0.02	0.0	0.05	-0.005	0	1
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-113S SG-115S	0.02	9.3	0.29	0.15	0.67	0.0	4.7 2.4	0
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-117S	-	-	-	-	-		0	0
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-118S	_	-	_	-	-	-	0.02	0
SG- SG- SG- DD- DD- SG- SG- SG- SG- SG- SG- SG- SG- SG- SG	SG-120S	-	-	-	-	-	-	-19	1
SG- DD- DD- SG-C SG-C SG-C SG-C SG-C SG-C SG-C SG-	SG-121S	-	-	-	-	-	-	-8.2	1
25 to 30' Depth SG-	SG-123S	-	-	-	-	-	-	-0.01	1
25 to 30' Depth 25 to 30' Depth SG-6 SG	SG-31S	-	-	-	-	-	-	0	0
25 to 30' Depth 25 to 30' Depth SG- SG- SG- SG- SG- SG- SG- SG- SG- SG	D-74	-3.4	-42	-50	-50	-58	-52	-50	8
25 to 30' Depth 25 to 30' Depth SG- SG- SG- SG- SG- SG- SG- SG- SG- SG	D-75 D-76	-0.01	0.10	0.003 -0.01	-0.01 -0.01	-0.02 -0.02	0.01	0.01	3
DD SG-C SG-C SG-C SG-C SG-C SG-C SG-C SG-C	D-70 D-77	-	-	-0.10	0.0	0	-		1
SG-0 SG-0 SG-0 SG-25 to 30' Depth SG- SG-SG- SG- SG- SG- SG- SG- SG- SG- S	D-78	-	-	0.09	-0.01	-0.01	-	_	2
SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0 SG-0	SG-04-25	-0.14	-0.34	-0.66	0.23	0.31	0.13	0.13	6
SG-25 to 30' Depth SG-3G-3G-3G-3G-3G-3G-3G-3G-3G-3G-3G-3G-3G	SG-05-25	-26	-24	-31	-34	-27	-23	-22	10
25 to 30' Depth SG- SG- SG- SG- SG- SG- SG- SG- SG- SG	SG-06-25	0.0	0.02	-0.01	-0.52	-0.38	-0.04	0.38	6
SG- SG- SG- SG- SG- SG- SG- SG- SG- SG-	SG-102I	0.18	0.11	-0.33	-0.14	0.06	0.88	-1.8	5
SG- SG- SG- SG- SG- SG- SG- SG-C SG-C SG	SG-106I	-0.35	-0.35	0.95	0.5	0.18	-0.010	0.004	3
SG- SG- SG- SG- SG- SG- SG-C SG-C SG-C S	SG-1111	-0.67 -0.10	-0.79 -5.1	0.03 -2.8	0.87	0.12	0.0	-0.01 -7.6	3 10
SG- SG- SG- SG- SG- SG-C SG-C SG-C SG-C	SG-111I SG-113I	-0.10 0.25	-5.1 0.09	-2.8 0.02	-3.9 0.2	-0.28 0.62	-0.40 0.44	-7.6 8.4	0
SG- SG- SG- SG- SG-C SG-C SG-C SG-C SG-1	SG-1131 SG-115I	-	-	-	-	-	- 0.44	-5.2	1
SG- SG- SG- SG-C SG-C SG-C SG-1 SG-1 SG-1 SG-1	SG-117I	-	-	-	-	-	-	0.08	0
SG-0 SG-0 SG-0 SG-0 SG-1 45 to 50' Depth	SG-118I	-	-	-	-	-	-	0.06	0
SG-0 SG-0 SG-0 SG-0 SG-1 45 to 50' Depth SG-1	SG-121I	-	-	-	-	-	-	-11	1
SG-0 SG-0 SG-1 SG-1 45 to 50' Depth SG-1	SG-123I	-	-	-	-	-	-	0	0
SG-0 SG-1 45 to 50' Depth SG-1	SG-31I	-	-	- 0.22	-	-	-	0.2	0
SG-0 SG-1 45 to 50' Depth SG-1	SG-04-45	-0.13	-14	0.22	0.19	0.8	0.06	-0.41	4
SG-145 to 50' Depth SG-1	SG-05-45 SG-06-44	-25 -17	-25 -14	-31 0.04	-33 -2.7	-12 -8.3	-23 -19	-26 -16	10 9
45 to 50' Depth SG- 1		-17	-14	-0.88	0.08	-8.3 -5.2	-19	-16 -4.9	9
•	SG-102D	-0.05	-3.6	-0.17	0.08	0.26	-2.5	-4.9	8
Ju-	SG-102D SG-106D	-7.6	-7.6	-0.32	-3.3	-8.2	-13	-11	10
		0.01	0.08	0.04	0.0	0.14	-0.01	0.01	2
SG-1	SG-106D	-2.7	-4.8	-0.03	0.5	0.24	-1.3	-6.8	8
	SG-106D SG-108D	-	-	-	-	-	-	0.07	0
	SG-106D SG-108D SG-111D SG-113D SG-31D	-11	-26	-30	-3.2	-27	-0.39	-28	9
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68	-20	-16	-15	-9.2	-14	-18	-18	9
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69	-18 -0.14	-14 -0.16	-17 -0.11	-23 -0.09	-20 -0.09	-17 -0.31	-13 -0.16	9
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70	-0.14 -16	-0.16 -11	-0.11 -10	-0.09 -17	-0.09 -16	-0.31 -15	-0.16 -9	9
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70	-16	-11	-16	-17	-19	-15	-14	9
D.	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70 D-71 D-72		-1.7	0.0	1.8	2.6	-1.4	-0.05	6
/0 to 80° Deptn ———	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70	-4.8	-0.94	-0.20	0.0	0	-2.2	-0.64	5
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70 D-71 D-72 D-73		-7.7	-5.5	-2.4	0	-7.1	-0.48	7
D-	SG-106D SG-108D SG-111D SG-111D SG-31D D-68 D-69 D-70 D-71 D-72 D-73 D-81	-4.8	-7.2	-0.28	-4.7	-0.2	-1.3	-4.4	9
	SG-106D SG-108D SG-111D SG-111D SG-31D D-68 D-69 D-70 D-71 D-72 D-73 D-81 D-82	-4.8 0.0	-0.03	-0.36	-0.03	-1.2	-0.13	-0.11	9
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70 D-71 D-72 D-73 D-81 D-82 D-83 D-84 D-85	-4.8 0.0 -8.5 -5.6 -0.23	-	-	-	- 0.21	-	-1.1	1
	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70 D-71 D-72 D-73 D-81 D-82 D-83 D-84 D-85 D-86	-4.8 0.0 -8.5 -5.6 -0.23		-0.05 0.0	-0.69 -0.01	-0.21 0.04	-1.3 -0.025	-12 -0.6	10 4
Miscellaneous SG-1	SG-106D SG-108D SG-111D SG-113D SG-31D D-68 D-69 D-70 D-71 D-72 D-73 D-81 D-82 D-83 D-84 D-85	-4.8 0.0 -8.5 -5.6 -0.23	-10 0.02	0.0	0.01	0.01	-0.025	0.08	0

^{1.} This table is intended to summarize differential pressure between the ambient atmosphere and below ground conditions. Differential pressure was recorded in the Building 101 area at the former IBM facility in Manassas, Virginia by Sanborn Head on the dates noted. Measurements were recorded using 0-1 inches water column (in.H₂0) or 0-40 in.H₂0 digital micromanometers.

 $^{2. \ \} Refer to the \, report \, text \, for \, additional \, details.$

APPENDIX C ANALYTICAL LABORATORY REPORTS

APPENDIX C.1

JUNE 2012 ROUTINE SAMPLING

7/13/2012 Ms. Lisa Jacob Sanborn, Head & Associates 1 Technology Park Drive

Westford MA 01886

Project Name: Supplemental VI Assessment

Scott

Project #: 2732.08 Workorder #: 1206667

Dear Ms. Lisa Jacob

The following report includes the data for the above referenced project for sample(s) received on 6/29/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1206667

Work Order Summary

CLIENT: Ms. Lisa Jacob BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

1 Technology Park Drive 20 Foundry Street Westford, MA 01886 Concord, NH 03301

PHONE: 978-392-0900 **P.O.** # 2732.00

FAX: PROJECT # 2732.08 Supplemental VI Assessment

DATE RECEIVED: 06/29/2012 **CONTACT:** Ausha Scott **DATE COMPLETED:** 07/13/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	DUP1	Modified TO-15	6.8 "Hg	5 psi
02A	SG-04-10	Modified TO-15	6.0 "Hg	5 psi
03A	SG-05-10	Modified TO-15	7.4 "Hg	5 psi
04A	SG-05-25	Modified TO-15	6.2 "Hg	5 psi
05A	SG-05-45	Modified TO-15	6.8 "Hg	5 psi
05AA	SG-05-45 Lab Duplicate	Modified TO-15	6.8 "Hg	5 psi
06A	SG-06-44	Modified TO-15	8.0 "Hg	5 psi
07A	SG-06-8	Modified TO-15	7.0 "Hg	5 psi
08A	SG-07	Modified TO-15	6.2 "Hg	5 psi
09A	SG-10	Modified TO-15	6.4 "Hg	5 psi
10A	SG102D	Modified TO-15	5.0 "Hg	5 psi
11A	SG106D	Modified TO-15	4.8 "Hg	5 psi
12A	SG107	Modified TO-15	14.8 "Hg	5 psi
13A	SG112	Modified TO-15	5.2 "Hg	5 psi
14A	SG-12	Modified TO-15	6.4 "Hg	5 psi
15A	SG-19	Modified TO-15	6.4 "Hg	5 psi
16A	SG-20	Modified TO-15	6.4 "Hg	5 psi
17A	SG-21	Modified TO-15	7.0 "Hg	5 psi
18A	SG-26	Modified TO-15	6.4 "Hg	5 psi
19A	SG-28	Modified TO-15	6.8 "Hg	5 psi
20A	SG-30	Modified TO-15	7.4 "Hg	5 psi
20AA	SG-30 Lab Duplicate	Modified TO-15	7.4 "Hg	5 psi
21A	Lab Blank	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1206667

Work Order Summary

CLIENT: Ms. Lisa Jacob BILL TO: Accounts Payable

Sanborn, Head & Associates
1 Technology Park Drive
20 Foundry Street
Westford, MA 01886
Concord, NH 03301

PHONE: 978-392-0900 **P.O.** # 2732.00

FAX: PROJECT # 2732.08 Supplemental VI Assessment

DATE RECEIVED: 06/29/2012 **CONTACT:** Ausha Scott **DATE COMPLETED:** 07/13/2012

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
21B	Lab Blank	Modified TO-15	NA	NA
22A	CCV	Modified TO-15	NA	NA
22B	CCV	Modified TO-15	NA	NA
23A	LCS	Modified TO-15	NA	NA
23AA	LCSD	Modified TO-15	NA	NA
23B	LCS	Modified TO-15	NA	NA
23BB	LCSD	Modified TO-15	NA	NA

	fleide flages	
CERTIFIED BY:		DATE: $\frac{07/13/12}{}$

Technical Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

All Toxics Etd. Certifies that the test results contained in this report fried an requirements of the INELAC star

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1206667

Twenty 1 Liter Summa Canister (100% Certified) samples were received on June 29, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on samples SG-05-25, SG-06-44, SG102D, SG106D, SG-12 and SG-28 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client Sample ID: DUP1 Lab ID#: 1206667-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.86	5.2	5.9	35	

Client Sample ID: SG-04-10

Lab ID#: 1206667-02A
No Detections Were Found.

Client Sample ID: SG-05-10

Lab ID#: 1206667-03A

	Rpt. Limit	Amount	Kpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.89	2.8	6.0	19	

Client Sample ID: SG-05-25

Lab ID#: 1206667-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Trichloroethene	11	21	60	110	
Tetrachloroethene	11	3700	76	25000	

Client Sample ID: SG-05-45

Lab ID#: 1206667-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.86	1.1	4.6	5.9
Tetrachloroethene	0.86	220	5.9	1500

Client Sample ID: SG-05-45 Lab Duplicate

Lab ID#: 1206667-05AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	1.2	1.2	6.3	6.7
Tetrachloroethene	1.2	230	7.9	1500

Client Sample	ID:	SG-06-44
----------------------	-----	----------

Lab ID#: 1206667-06A

Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	180	32000	1200	220000	

Client Sample ID: SG-06-8

Lab ID#: 1206667-07A

	Kpt. Limit	Amount	Kpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.88	5.1	5.9	35	

Client Sample ID: SG-07

Lab ID#: 1206667-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.84	2.3	5.7	16	

Client Sample ID: SG-10

Lab ID#: 1206667-09A

	NDL LIIIIL	Amount	Npt. Lillit	Aillouit	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.85	1.5	5.8	10	

Pnt Limit

Amount

Dot Limit

Client Sample ID: SG102D

Lab ID#: 1206667-10A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	11	11	43	44
Trichloroethene	11	190	58	1000
Tetrachloroethene	11	3800	73	26000

Client Sample ID: SG106D

Lab ID#: 1206667-11A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Client Sample ID: SG106D Lab ID#: 1206667-11A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	320	89000	2200	600000	

Client Sample ID: SG107

Lab ID#: 1206667-12A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	1.3	250	9.0	1700	

Client Sample ID: SG112

Lab ID#: 1206667-13A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.81	1.1	5.5	7.6	

Client Sample ID: SG-12

Lab ID#: 1206667-14A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	340	470	1300	1800
cis-1,2-Dichloroethene	340	12000	1300	48000
Trichloroethene	340	28000	1800	150000
Tetrachloroethene	340	94000	2300	630000

Client Sample ID: SG-19

Lab ID#: 1206667-15A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	0.85	6.2	5.8	42

Client Sample ID: SG-20 Lab ID#: 1206667-16A

Client Sample ID: SG-20 Lab ID#: 1206667-16A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.85	4.7	5.8	32	

Client Sample ID: SG-21

Lab ID#: 1206667-17A

Compound	Kpt. Limit (ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.88	5.7	5.9	39	

Client Sample ID: SG-26

Lab ID#: 1206667-18A

Compound	Rpt. Limit (ppbv)	(ppbv)	(ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.85	0.85	3.4	3.4
Trichloroethene	0.85	0.92	4.6	5.0
Tetrachloroethene	0.85	14	5.8	95

Client Sample ID: SG-28

Lab ID#: 1206667-19A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Trichloroethene	1.7	9.0	9.3	48	
Tetrachloroethene	1.7	520	12	3500	

Client Sample ID: SG-30

Lab ID#: 1206667-20A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	0.89	0.94	3.5	3.7
Tetrachloroethene	0.89	7.6	6.0	52

Client Sample ID: SG-30 Lab Duplicate

Lab ID#: 1206667-20AA

Client Sample ID: SG-30 Lab Duplicate

Lab ID#: 1206667-20AA

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	1.2	7.9	8.0	54	

Client Sample ID: DUP1 Lab ID#: 1206667-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070313	Date of Collection: 6/25/12 3:25:00 PM
Dil. Factor:	1.73	Date of Analysis: 7/3/12 04:59 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	5.2	5.9	35

Surrogates	%Recovery	Limits
Toluene-d8	94	70-130
1,2-Dichloroethane-d4	110	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: SG-04-10 Lab ID#: 1206667-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070314	Date of Collection: 6/25/12 4:22:00 PM
Dil. Factor:	1.68	Date of Analysis: 7/3/12 05:27 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	Not Detected	5.7	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: SG-05-10 Lab ID#: 1206667-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070315	Date of Collection: 6/25/12 3:45:00 PM
Dil. Factor:	1.78	Date of Analysis: 7/3/12 05:53 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.89	Not Detected	2.3	Not Detected
trans-1,2-Dichloroethene	0.89	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.89	Not Detected	3.5	Not Detected
Trichloroethene	0.89	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	0.89	Not Detected	4.8	Not Detected
Tetrachloroethene	0.89	2.8	6.0	19

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SG-05-25 Lab ID#: 1206667-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070513	Date of Collection: 6/25/12 4:08:00 PM
Dil. Factor:	22.5	Date of Analysis: 7/5/12 02:27 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	11	Not Detected	29	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	45	Not Detected
cis-1,2-Dichloroethene	11	Not Detected	45	Not Detected
Trichloroethene	11	21	60	110
1,1,2-Trichloroethane	11	Not Detected	61	Not Detected
Tetrachloroethene	11	3700	76	25000

Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: SG-05-45 Lab ID#: 1206667-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070316	Date of Collection: 6/25/12 3:48:00 PM
Dil. Factor:	1.73	Date of Analysis: 7/3/12 06:19 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	1.1	4.6	5.9
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	220	5.9	1500

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	111	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: SG-05-45 Lab Duplicate

Lab ID#: 1206667-05AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070326	Date of Collection: 6/25/12 3:48:00 PM
Dil. Factor:	2.33	Date of Analysis: 7/3/12 11:28 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Trichloroethene	1.2	1.2	6.3	6.7
1,1,2-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Tetrachloroethene	1.2	230	7.9	1500

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	111	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: SG-06-44 Lab ID#: 1206667-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070510	Date of Collection: 6/25/12 2:18:00 PM
Dil. Factor:	366	Date of Analysis: 7/5/12 12:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	180	Not Detected	470	Not Detected
trans-1,2-Dichloroethene	180	Not Detected	720	Not Detected
cis-1,2-Dichloroethene	180	Not Detected	720	Not Detected
Trichloroethene	180	Not Detected	980	Not Detected
1,1,2-Trichloroethane	180	Not Detected	1000	Not Detected
Tetrachloroethene	180	32000	1200	220000

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	118	70-130	

Client Sample ID: SG-06-8 Lab ID#: 1206667-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070317	Date of Collection: 6/25/12 3:25:00 PM
Dil. Factor:	1.75	Date of Analysis: 7/3/12 06:56 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.88	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
Trichloroethene	0.88	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	0.88	Not Detected	4.8	Not Detected
Tetrachloroethene	0.88	5.1	5.9	35

••	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SG-07 Lab ID#: 1206667-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070318	Date of Collection: 6/25/12 1:34:00 PM
Dil. Factor:	1.69	Date of Analysis: 7/3/12 07:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.4	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	2.3	5.7	16

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	111	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SG-10 Lab ID#: 1206667-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070319	Date of Collection: 6/25/12 6:48:00 PM
Dil. Factor:	1.70	Date of Analysis: 7/3/12 07:51 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.85	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
Trichloroethene	0.85	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.85	Not Detected	4.6	Not Detected
Tetrachloroethene	0.85	1.5	5.8	10

••	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	92	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SG102D Lab ID#: 1206667-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070514	Date of Collection: 6/26/12 11:20:00 AM
Dil. Factor:	21.5	Date of Analysis: 7/5/12 02:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	11	Not Detected	27	Not Detected
trans-1,2-Dichloroethene	11	Not Detected	43	Not Detected
cis-1,2-Dichloroethene	11	11	43	44
Trichloroethene	11	190	58	1000
1,1,2-Trichloroethane	11	Not Detected	59	Not Detected
Tetrachloroethene	11	3800	73	26000

Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: SG106D Lab ID#: 1206667-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070511	Date of Collection: 6/27/12 11:27:00 AM
Dil. Factor:	640	Date of Analysis: 7/5/12 01:13 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	320	Not Detected	820	Not Detected
trans-1,2-Dichloroethene	320	Not Detected	1300	Not Detected
cis-1,2-Dichloroethene	320	Not Detected	1300	Not Detected
Trichloroethene	320	Not Detected	1700	Not Detected
1,1,2-Trichloroethane	320	Not Detected	1700	Not Detected
Tetrachloroethene	320	89000	2200	600000

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	92	70-130	
1,2-Dichloroethane-d4	103	70-130	
4-Bromofluorobenzene	123	70-130	

Client Sample ID: SG107 Lab ID#: 1206667-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070320	Date of Collection: 6/26/12 6:14:00 PM
Dil. Factor:	2.64	Date of Analysis: 7/3/12 08:37 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
Trichloroethene	1.3	Not Detected	7.1	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.2	Not Detected
Tetrachloroethene	1.3	250	9.0	1700

Surrogates	%Recovery	Limits
Toluene-d8	93	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: SG112 Lab ID#: 1206667-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070321	Date of Collection: 6/26/12 1:36:00 PM
Dil. Factor:	1.62	Date of Analysis: 7/3/12 09:07 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.81	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.81	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	0.81	Not Detected	3.2	Not Detected
Trichloroethene	0.81	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.81	Not Detected	4.4	Not Detected
Tetrachloroethene	0.81	1.1	5.5	7.6

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	106	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: SG-12 Lab ID#: 1206667-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070512	Date of Collection: 6/25/12 5:08:00 PM
Dil. Factor:	680	Date of Analysis: 7/5/12 01:52 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	340	Not Detected	870	Not Detected
trans-1,2-Dichloroethene	340	470	1300	1800
cis-1,2-Dichloroethene	340	12000	1300	48000
Trichloroethene	340	28000	1800	150000
1,1,2-Trichloroethane	340	Not Detected	1800	Not Detected
Tetrachloroethene	340	94000	2300	630000

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	107	70-130	
4-Bromofluorobenzene	120	70-130	

Client Sample ID: SG-19 Lab ID#: 1206667-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070322	Date of Collection: 6/25/12 1:52:00 PM
Dil. Factor:	1.70	Date of Analysis: 7/3/12 09:32 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.85	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
Trichloroethene	0.85	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.85	Not Detected	4.6	Not Detected
Tetrachloroethene	0.85	6.2	5.8	42

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SG-20 Lab ID#: 1206667-16A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070323	Date of Collection: 6/25/12 2:50:00 PM
Dil. Factor:	1.70	Date of Analysis: 7/3/12 10:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.85	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
Trichloroethene	0.85	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.85	Not Detected	4.6	Not Detected
Tetrachloroethene	0.85	4.7	5.8	32

••	·	Method Limits	
Surrogates	%Recovery		
Toluene-d8	93	0-130	
1,2-Dichloroethane-d4	108	0-130	
4-Bromofluorobenzene	96	0-130	

Client Sample ID: SG-21 Lab ID#: 1206667-17A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070324	Date of Collection: 6/25/12 3:48:00 PM
Dil. Factor:	1.75	Date of Analysis: 7/3/12 10:34 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.88	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
Trichloroethene	0.88	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	0.88	Not Detected	4.8	Not Detected
Tetrachloroethene	0.88	5.7	5.9	39

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: SG-26 Lab ID#: 1206667-18A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070325	Date of Collection: 6/25/12 4:48:00 PM
Dil. Factor:	1.70	Date of Analysis: 7/3/12 11:03 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.85	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.85	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.85	0.85	3.4	3.4
Trichloroethene	0.85	0.92	4.6	5.0
1,1,2-Trichloroethane	0.85	Not Detected	4.6	Not Detected
Tetrachloroethene	0.85	14	5.8	95

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	91	70-130	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: SG-28 Lab ID#: 1206667-19A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070509	Date of Collection: 6/25/12 4:24:00 PM
Dil. Factor:	3.46	Date of Analysis: 7/5/12 12:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.7	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.7	Not Detected	6.8	Not Detected
cis-1,2-Dichloroethene	1.7	Not Detected	6.8	Not Detected
Trichloroethene	1.7	9.0	9.3	48
1,1,2-Trichloroethane	1.7	Not Detected	9.4	Not Detected
Tetrachloroethene	1 7	520	12	3500

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	92	70-130	
1,2-Dichloroethane-d4	109	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: SG-30 Lab ID#: 1206667-20A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070507	Date of Collection: 6/25/12 4:28:00 PM
Dil. Factor:	1.78	Date of Analysis: 7/5/12 11:10 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.89	Not Detected	2.3	Not Detected
trans-1,2-Dichloroethene	0.89	0.94	3.5	3.7
cis-1,2-Dichloroethene	0.89	Not Detected	3.5	Not Detected
Trichloroethene	0.89	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	0.89	Not Detected	4.8	Not Detected
Tetrachloroethene	0.89	7.6	6.0	52

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: SG-30 Lab Duplicate Lab ID#: 1206667-20AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070508	Date of Collection: 6/25/12 4:28:00 PM
Dil. Factor:	2.35	Date of Analysis: 7/5/12 11:39 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Trichloroethene	1.2	Not Detected	6.3	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.4	Not Detected
Tetrachloroethene	1.2	7.9	8.0	54

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1206667-21A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p070307 1.00	Date of Collection: NA Date of Analysis: 7/3/12 11:21 AM Amount Rpt. Limit Amount (ppbv) (ug/m3) (ug/m3)		2 11.21 AM
Compound	Rpt. Limit (ppbv)			Amount
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

0.50

0.50

Container Type: NA - Not Applicable

 $\frac{\text{1,1,2-Trichloroethane}}{\text{Tetrachloroethene}}$

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	94	70-130	

Not Detected

Not Detected

2.7

3.4

Not Detected

Not Detected

Client Sample ID: Lab Blank Lab ID#: 1206667-21B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p070506 1.00		Date of Collection: NA Date of Analysis: 7/5/12 10:17 AM	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected

cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected Trichloroethene 0.50 Not Detected 2.7 Not Detected 0.50 Not Detected Not Detected 1,1,2-Trichloroethane 2.7 Tetrachloroethene 0.50 Not Detected 3.4 Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: CCV Lab ID#: 1206667-22A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p070302 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/3/12 08:26 AM

Compound	%Recovery
Vinyl Chloride	100
trans-1,2-Dichloroethene	105
cis-1,2-Dichloroethene	92
Trichloroethene	98
1,1,2-Trichloroethane	103
Tetrachloroethene	106

No. of the contract of the con		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: CCV Lab ID#: 1206667-22B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p070502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/12 08:21 AM

Compound	%Recovery
Vinyl Chloride	101
trans-1,2-Dichloroethene	111
cis-1,2-Dichloroethene	96
Trichloroethene	102
1,1,2-Trichloroethane	107
Tetrachloroethene	107

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 1206667-23A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p070303 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/3/12 09:00 AM

Compound	%Recovery
Vinyl Chloride	105
trans-1,2-Dichloroethene	120
cis-1,2-Dichloroethene	94
Trichloroethene	99
1,1,2-Trichloroethane	105
Tetrachloroethene	102

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1206667-23AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p070304	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/3/12 09:19 AM

Compound	%Recovery
Vinyl Chloride	101
trans-1,2-Dichloroethene	116
cis-1,2-Dichloroethene	90
Trichloroethene	95
1,1,2-Trichloroethane	103
Tetrachloroethene	99

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCS Lab ID#: 1206667-23B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p070503 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/12 09:00 AM

Compound	%Recovery
Vinyl Chloride	104
trans-1,2-Dichloroethene	122
cis-1,2-Dichloroethene	92
Trichloroethene	97
1,1,2-Trichloroethane	109
Tetrachloroethene	107

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: LCSD Lab ID#: 1206667-23BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p070504 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/5/12 09:19 AM

Compound	%Recovery
Vinyl Chloride	105
trans-1,2-Dichloroethene	117
cis-1,2-Dichloroethene	96
Trichloroethene	99
1,1,2-Trichloroethane	104
Tetrachloroethene	103

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	100	70-130	

7/15/2012 Ms. Lisa Jacob Sanborn, Head & Associates 1 Technology Park Drive

Westford MA 01886

Project Name: Supplemental VI Assessment

Scott

Project #: 2732.08 Workorder #: 1206668

Dear Ms. Lisa Jacob

The following report includes the data for the above referenced project for sample(s) received on 6/29/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1206668

Work Order Summary

CLIENT: Ms. Lisa Jacob BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

1 Technology Park Drive 20 Foundry Street Westford, MA 01886 Concord, NH 03301

PHONE: 978-392-0900 **P.O.** # 2732.00

FAX: PROJECT # 2732.08 Supplemental VI Assessment

DATE RECEIVED: 06/29/2012 **CONTACT:** Ausha Scott **DATE COMPLETED:** 07/15/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	DUP2	Modified TO-15	5.5 "Hg	5 psi
02A	DUP3	Modified TO-15	6.5 "Hg	5 psi
03A	EB1	Modified TO-15	7.0 "Hg	5 psi
04A	SG101	Modified TO-15	4.5 "Hg	5 psi
05A	SG103	Modified TO-15	6.5 "Hg	5 psi
06A	SG105	Modified TO-15	7.0 "Hg	5 psi
07A	SG106S	Modified TO-15	0.5 "Hg	5 psi
08A	SG108D	Modified TO-15	6.5 "Hg	5 psi
08AA	SG108D Lab Duplicate	Modified TO-15	6.5 "Hg	5 psi
09A	SG108S	Modified TO-15	7.5 "Hg	5 psi
10A	SG109	Modified TO-15	6.5 "Hg	5 psi
11A	SG111I	Modified TO-15	6.0 "Hg	5 psi
12A	SG111S	Modified TO-15	6.5 "Hg	5 psi
13A	SG113D	Modified TO-15	5.5 "Hg	5 psi
14A	Lab Blank	Modified TO-15	NA	NA
15A	CCV	Modified TO-15	NA	NA
16A	LCS	Modified TO-15	NA	NA
16AA	LCSD	Modified TO-15	NA	NA

	Therde player	
CERTIFIED BY:		DATE: $\frac{07/15/12}{}$
CERTIFIED DIT		2112.

Technical Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP - CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1206668

Thirteen 1 Liter Summa Canister (100% Certified) samples were received on June 29, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The canister valve on sample SG106S was received open and a brass plug was used to seal the canister. The reported analyte concentrations are considered to be estimated.

Analytical Notes

Dilution was performed on samples SG106S and SG108D due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: DUP2
Lab ID#: 1206668-01A
No Detections Were Found.

Client Sample ID: DUP3 Lab ID#: 1206668-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Trichloroethene	0.86	3.2	4.6	17	
Tetrachloroethene	0.86	27	5.8	190	

Client Sample ID: EB1

Lab ID#: 1206668-03A

No Detections Were Found.

Client Sample ID: SG101

Lab ID#: 1206668-04A

No Detections Were Found.

Client Sample ID: SG103 Lab ID#: 1206668-05A

CompoundRpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Tetrachloroethene0.862.15.814

Client Sample ID: SG105 Lab ID#: 1206668-06A

Amount Rpt. Limit Amount Rpt. Limit (ppbv) (ug/m3) Compound (ppbv) (ug/m3) Trichloroethene 0.88 1.2 4.7 6.4 Tetrachloroethene 0.88 8.2 5.9 56

Client Sample ID: SG106S Lab ID#: 1206668-07A

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG106S

Lab ID#: 1206668-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Tetrachloroethene	1.5	450	10	3100	

Client Sample ID: SG108D

Lab ID#: 1206668-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	170	30000	1200	200000	

Client Sample ID: SG108D Lab Duplicate

Lab ID#: 1206668-08AA

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	170	31000	1200	210000	

Client Sample ID: SG108S

Lab ID#: 1206668-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.90	14	6.1	95	

Pnt Limit

Dot Limit

Client Sample ID: SG109

Lab ID#: 1206668-10A No Detections Were Found.

Client Sample ID: SG111I

Lab ID#: 1206668-11A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	0.84	1.4	5.7	9.3

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG111S

Lab ID#: 1206668-12A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Trichloroethene	0.86	3.3	4.6	18	
Tetrachloroethene	0.86	30	5.8	200	

Client Sample ID: SG113D

Lab ID#: 1206668-13A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Tetrachloroethene	0.82	91	5.6	620	

Client Sample ID: DUP2 Lab ID#: 1206668-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	0070609	Date of Collection: 6/26/12 11:56:00 AM
Dil. Factor:	1.64	Date of Analysis: 7/6/12 02:21 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.82	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.82	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	0.82	Not Detected	3.2	Not Detected
Trichloroethene	0.82	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.82	Not Detected	4.5	Not Detected
Tetrachloroethene	0.82	Not Detected	5.6	Not Detected

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	83	70-130

Client Sample ID: DUP3 Lab ID#: 1206668-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070610	Date of Collection: 6/26/12 1:46:00 PM
Dil. Factor:	1.71	Date of Analysis: 7/6/12 02:58 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	3.2	4.6	17
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	27	5.8	190

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: EB1 Lab ID#: 1206668-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070611	Date of Collection: 6/25/12 2:11:00 PM
Dil. Factor:	1.75	Date of Analysis: 7/6/12 03:36 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.88	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
Trichloroethene	0.88	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	0.88	Not Detected	4.8	Not Detected
Tetrachloroethene	0.88	Not Detected	5.9	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	87	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: SG101 Lab ID#: 1206668-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070612	Date of Collection: 6/26/12 11:56:00 AM
Dil. Factor:	1.58	Date of Analysis: 7/6/12 04:12 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.79	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.79	Not Detected	3.1	Not Detected
cis-1,2-Dichloroethene	0.79	Not Detected	3.1	Not Detected
Trichloroethene	0.79	Not Detected	4.2	Not Detected
1,1,2-Trichloroethane	0.79	Not Detected	4.3	Not Detected
Tetrachloroethene	0.79	Not Detected	5.4	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	86	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SG103 Lab ID#: 1206668-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070613	Date of Collection: 6/26/12 12:07:00 PM
Dil. Factor:	1.71	Date of Analysis: 7/6/12 04:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	2.1	5.8	14

Surrogates	%Recovery	Method Limits
Surrogates	/olvecovery	Lillits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SG105 Lab ID#: 1206668-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070614	Date of Collection: 6/27/12 11:28:00 AM
Dil. Factor:	1.75	Date of Analysis: 7/6/12 05:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.88	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
Trichloroethene	0.88	1.2	4.7	6.4
1,1,2-Trichloroethane	0.88	Not Detected	4.8	Not Detected
Tetrachloroethene	0.88	8.2	5.9	56

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SG106S Lab ID#: 1206668-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070617	Date of Collection: 6/27/12 11:28:00 AM
Dil. Factor:	2.96	Date of Analysis: 7/6/12 07:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,1,2-Trichloroethane	1.5	Not Detected	8.1	Not Detected
Tetrachloroethene	1.5	450	10	3100

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SG108D Lab ID#: 1206668-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070618	Date of Collection: 6/26/12 4:47:00 PM
Dil. Factor:	342	Date of Analysis: 7/6/12 07:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	170	Not Detected	440	Not Detected
trans-1,2-Dichloroethene	170	Not Detected	680	Not Detected
cis-1,2-Dichloroethene	170	Not Detected	680	Not Detected
Trichloroethene	170	Not Detected	920	Not Detected
1,1,2-Trichloroethane	170	Not Detected	930	Not Detected
Tetrachloroethene	170	30000	1200	200000

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SG108D Lab Duplicate Lab ID#: 1206668-08AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070619	Date of Collection: 6/26/12 4:47:00 PM
Dil. Factor:	342	Date of Analysis: 7/6/12 08:31 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	170	Not Detected	440	Not Detected
trans-1,2-Dichloroethene	170	Not Detected	680	Not Detected
cis-1,2-Dichloroethene	170	Not Detected	680	Not Detected
Trichloroethene	170	Not Detected	920	Not Detected
1,1,2-Trichloroethane	170	Not Detected	930	Not Detected
Tetrachloroethene	170	31000	1200	210000

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	91	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SG108S Lab ID#: 1206668-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070615	Date of Collection: 6/26/12 4:42:00 PM
Dil. Factor:	1.79	Date of Analysis: 7/6/12 06:03 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.90	Not Detected	2.3	Not Detected
trans-1,2-Dichloroethene	0.90	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.90	Not Detected	3.5	Not Detected
Trichloroethene	0.90	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	0.90	Not Detected	4.9	Not Detected
Tetrachloroethene	0.90	14	6.1	95

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	91	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: SG109 Lab ID#: 1206668-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070616	Date of Collection: 6/26/12 3:11:00 PM
Dil. Factor:	1.71	Date of Analysis: 7/6/12 06:40 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	Not Detected	5.8	Not Detected

	· ,	Method
Surrogates	%Recovery	Limits
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG111I Lab ID#: 1206668-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070620	Date of Collection: 6/26/12 12:18:00 PM
Dil. Factor:	1.68	Date of Analysis: 7/6/12 09:07 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	1 4	5.7	9.3

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SG111S Lab ID#: 1206668-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070621	Date of Collection: 6/26/12 1:46:00 PM
Dil. Factor:	1.71	Date of Analysis: 7/6/12 09:45 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	3.3	4.6	18
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	30	5.8	200

Container Type: 1 Liter Summa Canister (100% Certified)

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	91	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SG113D Lab ID#: 1206668-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070622	Date of Collection: 6/26/12 2:30:00 PM
Dil. Factor:	1.64	Date of Analysis: 7/6/12 10:21 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.82	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.82	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	0.82	Not Detected	3.2	Not Detected
Trichloroethene	0.82	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.82	Not Detected	4.5	Not Detected
Tetrachloroethene	0.82	91	5.6	620

Container Type: 1 Liter Summa Canister (100% Certified)

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1206668-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	o070606 1.00	Date of Collection: NA Date of Analysis: 7/6/12 1		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

0.50

0.50

Container Type: NA - Not Applicable

 $\frac{\text{1,1,2-Trichloroethane}}{\text{Tetrachloroethene}}$

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	97	70-130	

Not Detected

Not Detected

2.7

3.4

Not Detected

Not Detected

Client Sample ID: CCV Lab ID#: 1206668-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0070602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/6/12 09:20 AM

Compound	%Recovery
Vinyl Chloride	98
trans-1,2-Dichloroethene	98
cis-1,2-Dichloroethene	100
Trichloroethene	92
1,1,2-Trichloroethane	102
Tetrachloroethene	103

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	87	70-130	
1,2-Dichloroethane-d4	81	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: LCS Lab ID#: 1206668-16A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0070603 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/6/12 10:23 AM

Compound	%Recovery
Vinyl Chloride	103
trans-1,2-Dichloroethene	111
cis-1,2-Dichloroethene	102
Trichloroethene	95
1,1,2-Trichloroethane	101
Tetrachloroethene	101

Container Type: NA - Not Applicable

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	78	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCSD Lab ID#: 1206668-16AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o070604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/6/12 11:00 AM

Compound	%Recovery
Vinyl Chloride	94
trans-1,2-Dichloroethene	108
cis-1,2-Dichloroethene	102
Trichloroethene	97
1,1,2-Trichloroethane	106
Tetrachloroethene	104

Container Type: NA - Not Applicable

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	89	70-130
1,2-Dichloroethane-d4	80	70-130
4-Bromofluorobenzene	100	70-130

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 IBM c/o Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

July 03, 2012

Project: Supplemental VI Assessment

Submittal Date: 06/20/2012 Group Number: 1317054 SDG: MAN25 PO Number: 2732.05 State of Sample Origin: VA

Lancaster Labs (LLI) #
6694166
6694167
6694168
6694169
6694170
6694171
6694172
6694173
6694174
6694175
6694176
6694177
6694178
6694179

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Sanborn Head and Assoc Attn: Erica Bradstreet

COPY TO

1 COPY TO Data Package Group

ELECTRONIC IBM c/o Sanborn Head & Assoc. Attn: Lisa Jacob

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Respectfully Submitted,

Nicole L. Maljovec

Senior Specialist Group Leader

(717) 556-7259

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: DUP1 Ground Water

2732.05

LLI Sample # WW 6694166 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:50

1715 W. 13th Street

IBM c/o Sanborn Head and Assoc

Submitted: 06/20/2012 09:20 Houston TX 77008

Reported: 07/03/2012 19:12

2732D SDG#: MAN25-01FD

GC/MS Volatiles SW-846 8260B 25mL ug/l ug/l ug/l ug/l	
purge	
02898 Benzene 71-43-2 25 U 25 5.0	50
02898 Bromobenzene 108-86-1 25 U 25 5.0	50
02898 Bromochloromethane 74-97-5 25 U 25 5.0	50
02898 Bromodichloromethane 75-27-4 25 U 25 5.0	50
02898 Bromoform 75-25-2 25 U 25 5.0	50
02898 Bromomethane 74-83-9 25 U 25 5.0	50
02898 n-Butylbenzene 104-51-8 25 U 25 5.0	50
02898 sec-Butylbenzene 135-98-8 25 U 25 5.0	50
02898 tert-Butylbenzene 98-06-6 25 U 25 5.0	50
02898 Carbon Tetrachloride 56-23-5 25 U 25 5.0	50
02898 Chlorobenzene 108-90-7 25 U 25 5.0	50
02898 Chloroethane 75-00-3 25 U 25 5.0	50
02898 Chloroform 67-66-3 25 U 25 5.0	50
02898 Chloromethane 74-87-3 25 U 25 10	50
02898 2-Chlorotoluene 95-49-8 25 U 25 5.0	50
02898 4-Chlorotoluene 106-43-4 25 U 25 5.0	50
02898 1,2-Dibromo-3-chloropropane 96-12-8 25 U 25 10	50
02898 Dibromochloromethane 124-48-1 25 U 25 5.0	50
02898 1,2-Dibromoethane 106-93-4 25 U 25 5.0	50
02898 Dibromomethane 74-95-3 25 U 25 5.0	50
02898 1,2-Dichlorobenzene 95-50-1 25 U 25 5.0	50
02898 1,3-Dichlorobenzene 541-73-1 25 U 25 5.0	50
02898 1,4-Dichlorobenzene 106-46-7 25 U 25 5.0	50
02898 Dichlorodifluoromethane 75-71-8 25 U 25 5.0	50
02898 1,1-Dichloroethane 75-34-3 25 U 25 5.0	50
02898 1,2-Dichloroethane 107-06-2 25 U 25 5.0	50
02898 1,1-Dichloroethene 75-35-4 25 U 25 5.0	50
02898 cis-1,2-Dichloroethene 156-59-2 19 J 25 5.0	50
02898 trans-1,2-Dichloroethene 156-60-5 25 U 25 5.0	50
02898 1,2-Dichloropropane 78-87-5 25 U 25 5.0	50
02898 1,3-Dichloropropane 142-28-9 25 U 25 5.0 02898 2,2-Dichloropropane 594-20-7 25 U 25 5.0	50
, , , , , , , , , , , , , , , , , , , ,	50 50
	50
02898 cis-1,3-Dichloropropene 10061-01-5 25 U 25 5.0 02898 trans-1,3-Dichloropropene 10061-02-6 25 U 25 5.0	50
02898 Ethylbenzene 100-41-4 25 U 25 5.0	50
02898 Freon 113 76-13-1 25 U 25 10	50
02898 Hexachlorobutadiene 87-68-3 25 U 25 5.0	50
02898 Isopropylbenzene 98-82-8 25 U 25 5.0	50
02898 p-Isopropyltoluene 99-87-6 25 U 25 5.0	50
02898 Methylene Chloride 75-09-2 25 U 25 10	50
02898 Naphthalene 91-20-3 25 U 25 5.0	50
02898 n-Propylbenzene 103-65-1 25 U 25 5.0	50
02898 Styrene 100-42-5 25 U 25 5.0	50
02898 1,1,1,2-Tetrachloroethane 630-20-6 25 U 25 5.0	50
02898 1,1,2,2-Tetrachloroethane 79-34-5 25 U 25 5.0	50
02898 Tetrachloroethene 127-18-4 1,500 100 20	200
02898 Tetrahydrofuran 109-99-9 250 U 250 100	50
02898 Toluene 108-88-3 25 U 25 5.0	50
02898 1,2,3-Trichlorobenzene 87-61-6 25 U 25 5.0	50

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: DUP1 Ground Water

2732.05

LLI Sample # WW 6694166 LLI Group # 1317054 # 09671 Account

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:50

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

2732D SDG#: MAN25-01FD

Summary.

CAT	Analysis Name		CAS Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor		
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l			
		purge								
02898	1,2,4-Trichloroben	nzene	120-82-1	25	U	25	5.0	50		
02898	1,1,1-Trichloroeth	nane	71-55-6	25	U	25	5.0	50		
02898	1,1,2-Trichloroeth	nane	79-00-5	25	U	25	5.0	50		
02898	Trichloroethene		79-01-6	6.3	J	25	5.0	50		
02898	Trichlorofluoromet	hane	75-69-4	25	U	25	5.0	50		
02898	1,2,3-Trichloropro	pane	96-18-4	50	U	50	15	50		
02898	1,2,4-Trimethylben	nzene	95-63-6	25	U	25	5.0	50		
02898	1,3,5-Trimethylben	nzene	108-67-8	25	U	25	5.0	50		
02898	Vinyl Chloride		75-01-4	25	U	25	5.0	50		
02898	Xylene (Total)		1330-20-7	25	U	25	5.0	50		
	The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the OC acceptance limits as noted on the OC									

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 18:05	Kerri E Legerlotz	50
	VOCs	purge					
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121812AA	06/29/2012 23:13	Kevin A Sposito	200
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 18:05	Kerri E Legerlotz	50
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121812AA	06/29/2012 23:13	Kevin A Sposito	200

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: EB1 Water

2732.05

LLI Sample # WW 6694167 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

2732E SDG#: MAN25-02EB

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
00,110	purge	OZOOD ZSML	٥.		5.	5.	
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	U	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	Ū	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	Ū	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	Ū	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	U	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898 02898	1,1-Dichloropropene	563-58-6	0.5	IJ	0.5 0.5	0.1 0.1	1 1
02898	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10061-01-5 10061-02-6	0.5	IJ	0.5	0.1	1
02898	Ethylbenzene	10061-02-6	0.5	IJ	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	IJ	0.5	0.1	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	Ū	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.2	J	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	J	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	Ū	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.1	J	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	Ū	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
	<u> </u>						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: EB1 Water

2732.05

LLI Sample # WW 6694167 LLI Group # 1317054

Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

2732E SDG#: MAN25-02EB

CAT No.	Analysis Name		CAS	Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenze	ene	120	-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroethan	ne	71-	55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	ne	79-	00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometha	ane	75-	69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-	63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108	-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	0-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121812AA	06/29/2012 23:35	Kevin A Sposito	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C121812AA	06/29/2012 23:35	Kevin A Sposito	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: FB1 Water

2732.05

LLI Sample # WW 6694168 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:35

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

2732F SDG#: MAN25-03FB

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
00,110	purge	OZOOD ZSME	٥.		5.	5.	
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	Ū	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	IJ	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	Ū	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	Ū	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	Ū	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	U	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5 0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4		U U	0.5	0.1	1
02898 02898	Freon 113 Hexachlorobutadiene	76-13-1 87-68-3	0.5 0.5	IJ	0.5 0.5	0.2	1 1
02898		98-82-8	0.5	U	0.5	0.1	1
02898	Isopropylbenzene p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.2	1
02898	n-Propylbenzene	103-65-1	0.5	IJ	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	Ū	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	Ū	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
	, ,						

^{*=}This limit was used in the evaluation of the final result

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: FB1 Water

2732.05

LLI Sample # WW 6694168

LLI Group # 1317054 # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:35

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

2732F SDG#: MAN25-03FB

Summary.

CAT No.	Analysis Name		CAS	Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l		
		purge								
02898	1,2,4-Trichlorobenz	ene	120	-82-1	0.5	U	0.5	0.1	1	
02898	1,1,1-Trichloroetha	ne	71-	55-6	0.5	U	0.5	0.1	1	
02898	1,1,2-Trichloroetha	ne.	79-	00-5	0.5	U	0.5	0.1	1	
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1	
02898	Trichlorofluorometh	ane	75-	69-4	0.5	U	0.5	0.1	1	
02898	1,2,3-Trichloroprop	ane	96-	18-4	1.0	U	1.0	0.3	1	
02898	1,2,4-Trimethylbenz	ene	95-	63-6	0.5	U	0.5	0.1	1	
02898	1,3,5-Trimethylbenz	ene	108	-67-8	0.5	U	0.5	0.1	1	
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1	
02898	Xylene (Total)		133	0-20-7	0.5	U	0.5	0.1	1	
	The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC									

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 19:11	Kerri E Legerlotz	1
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 19:11	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: OF54 Ground Water

2732.05

LLI Sample # WW 6694169 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

-OF54 SDG#: MAN25-04

Second Structure SW-846 8260B 25mL Purge P	CAT No.	Analysis Name	CAS Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
Durge Case Durge Case Case	GC/MS	Volatiles SW-846	8260B 25mI	ug/l		ug/l	ug/l	
D2898 Benzene	00,		02002 232	-			-	
D2898 Bromochloromethane	02898		71-43-2	2 0	TT	2 0	0 4	4
2898 Bromochloromethane								
02898 Bromodichloromethane 75-27-4 2.0 U 2.0 0.4 4								
D2898 Bromomethane 74-83-9 2.0 U 2.0 0.4 4								
02898 n-Butylbenzene 104-51-8 2.0 U 2.0 0.4 4 02898 sec-Butylbenzene 135-98-8 2.0 U 2.0 0.4 4 02898 Carbon Tetrachloride 56-23-5 2.0 U 2.0 0.4 4 02898 Carbon Tetrachloride 56-23-5 2.0 U 2.0 0.4 4 02898 Chlorochane 108-90-7 2.0 U 2.0 0.4 4 02898 Chlorochane 75-00-3 2.0 U 2.0 0.4 4 02898 Chlorochane 76-66-3 2.0 U 2.0 0.4 4 02898 Chlorochane 74-87-3 2.0 U 2.0 0.4 4 02898 Chlorotoluene 95-49-8 2.0 U 2.0 0.4 4 02898 4-Chlorotoluene 106-43-4 2.0 U 2.0 0.4 4 02898 4-Chlorotoluene 95-19-8 2.0 U 2.0 0.4 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.8 4 02898 1,2-Dibromo-3-chloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 1,1-Dichlorobenzene 75-34-3 2.0 U 2.0 0.4 4 02898 1,1-Dichlorochane 75-34-3 2.0 U 2.0 0.4 4 02898 1,1-Dichlorochane 75-35-4 2.0 U 2.0 0.4 4 02898 1,1-Dichlorochane 75-35-4 2.0 U 2.0 0.4 4 02898 1,1-Dichlorochane 75-35-4 2.0 U 2.0 0.4 4 02898 1,1-Dichlorochane 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichlorochane 156-60-5 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 2,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 2,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 2,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 2,5-Dichloropropane 594-20-7 2.0	02898	Bromoform	75-25-2	2.0	U	2.0	0.4	4
02898 sec-Entylbenzene	02898	Bromomethane	74-83-9	2.0	U	2.0	0.4	4
02898 Carbon Tetrachloride 56-23-5 2.0 U 2.0 0.4 4 02898 Chlorobenzene 108-90-7 2.0 U 2.0 0.4 4 02898 Chlorobethane 75-00-3 2.0 U 2.0 0.4 4 02898 Chloroform 67-66-3 2.0 U 2.0 0.4 4 02898 Chlorototluene 74-87-3 2.0 U 2.0 0.8 4 02898 Chlorototluene 95-49-8 2.0 U 2.0 0.4 4 02898 L, 2-bitomo-3-chloropropane 106-43-4 2.0 U 2.0 0.4 4 02898 L, 2-bitomo-3-chloropropane 124-48-1 2.0 U 2.0 0.4 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 1,2-Dibinomochlane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 </td <td>02898</td> <td>n-Butylbenzene</td> <td></td> <td>2.0</td> <td>U</td> <td>2.0</td> <td>0.4</td> <td>4</td>	02898	n-Butylbenzene		2.0	U	2.0	0.4	4
02898 Carbon Tetrachloride 56-23-5 2.0 U 2.0 0.4 4 02898 Chlorobenzene 108-90-7 2.0 U 2.0 0.4 4 02898 Chloroform 67-66-3 2.0 U 2.0 0.4 4 02898 Chlorotoluene 67-66-3 2.0 U 2.0 0.4 4 02898 2-Chlorotoluene 95-49-8 2.0 U 2.0 0.4 4 02898 4-Chlorotoluene 96-49-8 2.0 U 2.0 0.4 4 02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.4 4 02898 1,2-Dibromo-1loromethane 124-48-1 2.0 U 2.0 0.4 4 02898 1,2-Dibromoethane 106-93-4 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorodifaluoromethane 75-71-8 2.0 U 2.0 0.4 <	02898	sec-Butylbenzene	135-98-8	2.0	U	2.0	0.4	4
02898 Chlorobenzene 108-90-7 2.0 U 2.0 0.4 4 02898 Chlorochane 75-00-3 2.0 U 2.0 0.4 4 02898 Chlorochane 67-66-3 2.0 U 2.0 0.8 4 02898 C-Chlorocoluene 95-49-8 2.0 U 2.0 0.4 4 02898 2-Chlorocoluene 106-43-4 2.0 U 2.0 0.4 4 02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.4 4 02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.8 4 02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.4 4 02898 1,2-Dibromochlane 16-6-9-1 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4	02898	tert-Butylbenzene	98-06-6	2.0	U	2.0	0.4	4
Case	02898	Carbon Tetrachloride	56-23-5	2.0	U	2.0	0.4	4
Case	02898	Chlorobenzene	108-90-7	2.0	U	2.0	0.4	4
02898 Chloromethane 74-87-3 2.0 U 2.0 0.8 4 02898 2-Chlorotoluene 95-49-8 2.0 U 2.0 0.4 4 02898 4-Chlorotoluene 106-43-4 2.0 U 2.0 0.4 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 Dibromochloromethane 106-93-4 2.0 U 2.0 0.4 4 02898 Dibromoethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-31-8 2.0 U 2.0 0.4 4 <trr< td=""><td>02898</td><td>Chloroethane</td><td>75-00-3</td><td>2.0</td><td>U</td><td>2.0</td><td>0.4</td><td>4</td></trr<>	02898	Chloroethane	75-00-3	2.0	U	2.0	0.4	4
02898 2-Chlorotoluene 95-49-8 2.0 U 2.0 0.4 4 02898 4-Chlorotoluene 106-43-4 2.0 U 2.0 0.4 4 02898 1/2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.8 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 Dibromochtane 14-48-1 2.0 U 2.0 0.4 4 02898 Dibromochtane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 1,1-Dichlorotethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,2-Dichlorotethane 157-65-2 2.0 U 2.0 0.4 4	02898	Chloroform	67-66-3	2.0	U	2.0	0.4	4
02898 4-Chlorotoluene 106-43-4 2.0 U 2.0 0.4 4 02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.4 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 Dibromomethane 106-93-4 2.0 U 2.0 0.4 4 02898 Dibromomethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 166-46-7 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 166-46-7 2.0 U 2.0 0.4 4 02898 1,1-Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,2-Dichlorocethane 170-66-2 2.0 U 2.0 0.4 4 02898 1,2-Dichlorocethene 156-59-2 7.3 2.0 0 0.4<	02898	Chloromethane	74-87-3	2.0	U	2.0	0.8	4
02898 1,2-Dibromo-3-chloropropane 96-12-8 2.0 U 2.0 0.8 4 02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 Dibromoethane 106-93-4 2.0 U 2.0 0.4 4 02898 Dibromomethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 1,4-Dichloroethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethene 156-59-2 7.3 2.0 U 2.0 0.4	02898	2-Chlorotoluene	95-49-8	2.0	-	2.0	0.4	4
02898 Dibromochloromethane 124-48-1 2.0 U 2.0 0.4 4 02898 1,2-Dibromoethane 106-93-4 2.0 U 2.0 0.4 4 02898 Dibromomethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-74-3 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,2-Dichloroptethane 156-59-2 7.3 2.0 U 2.0 0.4	02898	4-Chlorotoluene	106-43-4	2.0	U	2.0	0.4	4
02898 1,2-Dibromoethane 106-93-4 2.0 U 2.0 0.4 4 02898 Dibromomethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloropropane 156-60-5 2.0 U 2.0 0.4 4	02898		96-12-8	2.0	-	2.0	0.8	4
02898 Dibromomethane 74-95-3 2.0 U 2.0 0.4 4 02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroptopane 156-60-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>					-			
02898 1,2-Dichlorobenzene 95-50-1 2.0 U 2.0 0.4 4 02898 1,3-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 t,2-Dichloroethene 156-69-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4		•			-			
02898 1,3-Dichlorobenzene 541-73-1 2.0 U 2.0 0.4 4 02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethane 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethane 156-60-5 2.0 U 2.0 0.4 4 02898 trans-1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4								
02898 1,4-Dichlorobenzene 106-46-7 2.0 U 2.0 0.4 4 02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 U 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 trans-1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropane 100-61-02-6 2.		•						
02898 Dichlorodifluoromethane 75-71-8 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 trans-1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4					-			
02898 1,1-Dichloroethane 75-34-3 2.0 U 2.0 0.4 4 02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0								
02898 1,2-Dichloroethane 107-06-2 2.0 U 2.0 0.4 4 02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
02898 1,1-Dichloroethene 75-35-4 2.0 U 2.0 0.4 4 02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
02898 cis-1,2-Dichloroethene 156-59-2 7.3 2.0 0.4 4 02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4								
02898 trans-1,2-Dichloroethene 156-60-5 2.0 U 2.0 0.4 4 02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4		•			U			
02898 1,2-Dichloropropane 78-87-5 2.0 U 2.0 0.4 4 02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.4 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0								
02898 1,3-Dichloropropane 142-28-9 2.0 U 2.0 0.4 4 02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4		•						
02898 2,2-Dichloropropane 594-20-7 2.0 U 2.0 0.4 4 02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 1,1-Dichloropropene 563-58-6 2.0 U 2.0 0.4 4 02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 cis-1,3-Dichloropropene 10061-01-5 2.0 U 2.0 0.4 4 02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 trans-1,3-Dichloropropene 10061-02-6 2.0 U 2.0 0.4 4 02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 Ethylbenzene 100-41-4 2.0 U 2.0 0.4 4 02898 Freon 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 Fron 113 76-13-1 2.0 U 2.0 0.8 4 02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 Hexachlorobutadiene 87-68-3 2.0 U 2.0 0.4 4 02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4		-						
02898 Isopropylbenzene 98-82-8 2.0 U 2.0 0.4 4 02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
02898 p-Isopropyltoluene 99-87-6 2.0 U 2.0 0.4 4								
								=
02898 Naphthalene 91-20-3 2.0 U 2.0 0.4 4		-						
02898 n-Propylbenzene 103-65-1 2.0 U 2.0 0.4 4		-						
02898 Styrene 100-42-5 2.0 U 2.0 0.4 4								
02898 1,1,1,2-Tetrachloroethane 630-20-6 2.0 U 2.0 0.4 4		-						
02898 1,1,2,2-Tetrachloroethane 79-34-5 2.0 U 2.0 0.4 4								
02898 Tetrachloroethene 127-18-4 340 10 2.0 20					-			
02898 Tetrahydrofuran 109-99-9 20 U 20 8.0 4					U			
02898 Toluene 108-88-3 2.0 U 2.0 0.4 4		2						
02898 1,2,3-Trichlorobenzene 87-61-6 2.0 U 2.0 0.4 4	02898	1,2,3-Trichlorobenzene		2.0	U	2.0	0.4	4

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: OF54 Ground Water

2732.05

LLI Sample # WW 6694169 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

-OF54 SDG#: MAN25-04

CAT No.	No. Analysis Name CAS Number Result Quantitation* Detection Limit Factor											
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l					
purge												
02898 1,2,4-Trichlorobenzene 120-82-1 2.0 U 2.0 0.4 4												
02898	1,1,1-Trichloroeth	71-55-6	2.0	U	2.0	0.4	4					
02898	1,1,2-Trichloroethane 79-00-5			2.0	U	2.0	0.4	4				
02898	Trichloroethene 79-01-6			8.2		2.0	0.4	4				
02898	Trichlorofluoromet	hane	75-69-4	2.0	U	2.0	0.4	4				
02898	1,2,3-Trichloropro	pane	96-18-4	4.0	U	4.0	1.2	4				
02898	1,2,4-Trimethylben	zene	95-63-6	2.0	U	2.0	0.4	4				
02898 1,3,5-Trimethylbenzene 108-67-8 2.0 U 2.0 0.4 4												
02898	02898 Vinyl Chloride 75-01-4					2.0	0.4	4				
02898	2898 Xylene (Total) 1330-20-7				U	2.0	0.4	4				
The :	recovery for a targe	et analyte((s) in the Laborat	ory Cont	rol							
	recovery for a targe	-		-								

Spike(s) is outside the QC acceptance limits as noted on the QC

Summary.

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 19:33	Kerri E Legerlotz	4
	VOCs	purge					
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 19:55	Kerri E Legerlotz	20
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 19:33	Kerri E Legerlotz	4
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121781AA	06/26/2012 19:55	Kerri E Legerlotz	20

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: OF55 Ground Water

2732.05

LLI Sample # WW 6694170 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:50

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20 Reported: 07/03/2012 19:12

-OF55 SDG#: MAN25-05

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	J	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	U	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	U	0.5	0.1	1
02898	Chloromethane	74-87-3	0.3	J	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.8		0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	190		5.0	1.0	10
02898	trans-1,2-Dichloroethene	156-60-5	0.1	J	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	180		5.0	1.0	10
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: OF55 Ground Water

2732.05

LLI Sample # WW 6694170 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:50

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

-OF55 SDG#: MAN25-05

Summary.

CAT No.	No. Analysis Name CAS Number Result Quantitation* Detection Limit Factor											
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l					
purge												
02898 1,2,4-Trichlorobenzene 120-82-1 0.5 U 0.5 0.1 1												
02898 1,1,1-Trichloroethane 71-55-6 0.5 U 0.5 0.1 1												
02898 1,1,2-Trichloroethane 79-00-5 0.5 U 0.5 0.1 1												
02898	02898 Trichloroethene 79-01-6 23 5.0 1.0 10											
02898	Trichlorofluorometh	nane	75-69-4	0.5	U	0.5	0.1	1				
02898	1,2,3-Trichloroprop	pane	96-18-4	1.0	U	1.0	0.3	1				
02898	1,2,4-Trimethylbenz	zene	95-63-6	0.5	U	0.5	0.1	1				
02898	1,3,5-Trimethylbenz	zene	108-67-8	0.5	U	0.5	0.1	1				
02898 Vinyl Chloride 75-01-4 0.2 J 0.5 0.1 1												
02898 Xylene (Total) 1330-20-7 0.5 U 0.5 0.1 1												
	The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC											

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 20:18	Kerri E Legerlotz	1
	VOCs	purge					
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 20:40	Kerri E Legerlotz	10
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 20:18	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121781AA	06/26/2012 20:40	Kerri E Legerlotz	1.0

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG102I Ground Water

2732.05

LLI Sample # WW 6694171 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 14:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G102I SDG#: MAN25-06

Second	CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
2388 Benzense 71-43-2 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1	GC/MS	Volatiles SW-846	8260B 25mI	ug/l		ug/l	ug/l	
0.2898 Benzene	00,110		0200D 23M1	٠.		5.	5.	
DASSES Bromocherzene	02898		71-43-2	0.5	TT	0.5	0 1	1
C2898 Bromochicomethane								
Case Bromofethane								
Description								
0.2898 Rromomethane								
DAMPS N-Butylbenzene								
Case				0.5	Ū			
D2898 Ext-Sutylenzene	02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
Case Carbon Tetrachloride S6-23-5 0.5 U 0.5 0.1 1	02898		98-06-6	0.5	U	0.5	0.1	1
0.2898 Chloroethane	02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
Case	02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
0.288	02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898 2-Chlorotoluene	02898	Chloroform	67-66-3	1.0		0.5	0.1	1
0.2898 1,2-Dibromo-3-chloropropane 96-12-8 0.5 U 0.5 0.5 0.2 1 1 1 1 1 1 1 1 1	02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
0.288	02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
D2898 1,2-Dibromoethane 124-48-1 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1	02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
D2898 1,2-Dibromoethane	02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898 Dibromomethane	02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898 1,2-Dichlorobenzene 95-50-1 0.5 U 0.5 0.1 1 02898 1,3-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 156-59-2 0.3 J 0.5 0.1 1 02898 1,2-Dichloroethene 156-69-2 0.3 J 0.5 0.1 1 02898 1,2-Dichloropropane 156-60-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1		,					0.1	
02898 1,3-Dichlorobenzene					-			
02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 Dichlorodifiluoromethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 156-59-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloroethene 156-59-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloroptropane 156-60-5 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroptropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloroptropane 563-58-6 0.5 U 0.5 0		•			-			
02898 Dichlorodifluoromethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethane 156-59-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloropthane 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloroptopane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptopane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptopane 54-20-7 0.5 U 0.5 0.1 1 02898 2,2-Dichloroptopane 563-58-6 0.5 U 0.5 0.1 1 02898 1,1-Dichloroptopene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10041-4 0.5 U 0.5 0.1					-			
0.2898		•			-			
02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-69-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloropropane 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 2,1-3-Dichloropropene 1001-01-5 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1<								
02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-59-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 <		•						
02898 cis-1,2-Dichloroethene 156-59-2 0.3 J 0.5 0.1 1 02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 Feon 113 76-13-1 0.5 U 0.5 0.1								
02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10041-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1								
02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 Jespropylbenzene 98-87-6 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.					-			
02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Hsopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1								
02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898<								
02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1					-			
02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 styrene 100-42-5 0.5 U 0.5 0.1 1 02898 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1					-			
02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.2 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898					-			
02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 7etrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					-			
02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					-			
02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		-			-			
02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		-						
02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		2			-			
02898 Tetrachloroethene 127-18-4 0.1 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
	02898	-		0.5	U		0.1	
	02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG102I Ground Water

2732.05

LLI Sample # WW 6694171 LLI Group # 1317054 # 09671 Account

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 14:30

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G102I SDG#: MAN25-06

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,2,4-Trichloroben	zene	120-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroeth	ane	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroeth	ane	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluoromet	75-69-4	0.5	U	0.5	0.1	1	
02898	1,2,3-Trichloropro	pane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylben	zene	95-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylben	zene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		1330-20-7	0.5	U	0.5	0.1	1
The	recovery for a targe	et analyte(s) in the Laborat	ory Con	trol			

Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 22:30	Kerri E Legerlotz	1
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 22:30	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG106D Ground Water

2732.05

LLI Sample # WW 6694172 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:10

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G106D SDG#: MAN25-07

CAT No.	Analysis Name	CAS Number	As Rec Result	eived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	5.0	U	5.0	1.0	10
02898	Bromobenzene	108-86-1	5.0	U	5.0	1.0	10
02898	Bromochloromethane	74-97-5	5.0	U	5.0	1.0	10
02898	Bromodichloromethane	75-27-4	5.0	U	5.0	1.0	10
02898	Bromoform	75-25-2	5.0	U	5.0	1.0	10
02898	Bromomethane	74-83-9	5.0	U	5.0	1.0	10
02898	n-Butylbenzene	104-51-8	5.0	U	5.0	1.0	10
02898	sec-Butylbenzene	135-98-8	5.0	U	5.0	1.0	10
02898	tert-Butylbenzene	98-06-6	5.0	U	5.0	1.0	10
02898	Carbon Tetrachloride	56-23-5	5.0	U	5.0	1.0	10
02898	Chlorobenzene	108-90-7	5.0	U	5.0	1.0	10
02898	Chloroethane	75-00-3	5.0	U	5.0	1.0	10
02898	Chloroform	67-66-3	5.0	U	5.0	1.0	10
02898	Chloromethane	74-87-3	5.0	U	5.0	2.0	10
02898	2-Chlorotoluene	95-49-8	5.0	U	5.0	1.0	10
02898	4-Chlorotoluene	106-43-4	5.0	U	5.0	1.0	10
02898	1,2-Dibromo-3-chloropropane		5.0	U	5.0	2.0	10
02898	Dibromochloromethane	124-48-1	5.0	U	5.0	1.0	10
02898	1,2-Dibromoethane	106-93-4	5.0	U	5.0	1.0	10
02898	Dibromomethane	74-95-3	5.0	U	5.0	1.0	10
02898	1,2-Dichlorobenzene	95-50-1	5.0	U	5.0	1.0	10
02898	1,3-Dichlorobenzene	541-73-1	5.0	U	5.0	1.0	10
02898	1,4-Dichlorobenzene	106-46-7	5.0	U	5.0	1.0	10
02898	Dichlorodifluoromethane	75-71-8	5.0 5.0	U	5.0	1.0	10
02898	1,1-Dichloroethane	75-34-3		IJ	5.0	1.0	10
02898	1,2-Dichloroethane	107-06-2	5.0	IJ	5.0	1.0	10
02898 02898	1,1-Dichloroethene cis-1,2-Dichloroethene	75-35-4 156-59-2	5.0 1.8	J	5.0 5.0	1.0	10 10
02898	•	156-59-2	5.0	U	5.0	1.0	10
02898	trans-1,2-Dichloroethene	78-87-5	5.0	IJ	5.0	1.0	10
02898	1,2-Dichloropropane 1,3-Dichloropropane	142-28-9	5.0	IJ	5.0	1.0	10
02898	2,2-Dichloropropane	594-20-7	5.0	Ū	5.0	1.0	10
02898	1,1-Dichloropropene	563-58-6	5.0	Ū	5.0	1.0	10
02898	cis-1,3-Dichloropropene	10061-01-5	5.0	U	5.0	1.0	10
02898	trans-1,3-Dichloropropene	10061-02-6	5.0	Ū	5.0	1.0	10
02898	Ethylbenzene	100-41-4	5.0	Ū	5.0	1.0	10
02898	Freon 113	76-13-1	5.0	U	5.0	2.0	10
02898	Hexachlorobutadiene	87-68-3	5.0	IJ	5.0	1.0	10
02898	Isopropylbenzene	98-82-8	5.0	U	5.0	1.0	10
02898	p-Isopropyltoluene	99-87-6	5.0	Ū	5.0	1.0	10
02898	Methylene Chloride	75-09-2	5.0	U	5.0	2.0	10
02898	Naphthalene	91-20-3	5.0	U	5.0	1.0	10
02898	n-Propylbenzene	103-65-1	5.0	Ū	5.0	1.0	10
02898	Styrene	100-42-5	5.0	U	5.0	1.0	10
02898	1,1,1,2-Tetrachloroethane	630-20-6	5.0	U	5.0	1.0	10
02898	1,1,2,2-Tetrachloroethane	79-34-5	5.0	Ū	5.0	1.0	10
02898	Tetrachloroethene	127-18-4	1,900		50	10	100
02898	Tetrahydrofuran	109-99-9	50	U	50	20	10
02898	Toluene	108-88-3	5.0	U	5.0	1.0	10
02898	1,2,3-Trichlorobenzene	87-61-6	5.0	U	5.0	1.0	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG106D Ground Water

2732.05

LLI Sample # WW 6694172 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:10

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G106D SDG#: MAN25-07

Summary.

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor				
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l					
purge												
02898 1,2,4-Trichlorobenzene 120-82-1 5.0 U 5.0 1.0 10												
02898 1,1,1-Trichloroethane 71-55-6 5.0 U 5.0 1.0 10												
02898 1,1,2-Trichloroethane 79-00-5 5.0 U 5.0 1.0 10												
02898												
02898	Trichlorofluoromet	hane	75-69-4	5.0	U	5.0	1.0	10				
02898	1,2,3-Trichloropro	pane	96-18-4	10	U	10	3.0	10				
02898	1,2,4-Trimethylben	zene	95-63-6	5.0	U	5.0	1.0	10				
02898	1,3,5-Trimethylben	zene	108-67-8	5.0	U	5.0	1.0	10				
02898 Vinyl Chloride 75-01-4 5.0 U 5.0 1.0 10												
02898 Xylene (Total) 1330-20-7 5.0 U 5.0 1.0 10												
The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC												

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121781AA	06/26/2012 22:52	Kerri E Legerlotz	10
	VOCs	purge					
02898	TOTMOT GODT Handboab, vii	SW-846 8260B 25mL	1	C121781AA	06/26/2012 23:14	Kerri E Legerlotz	100
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121781AA	06/26/2012 22:52	Kerri E Legerlotz	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121781AA	06/26/2012 23:14	Kerri E Legerlotz	100

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG106I Ground Water

2732.05

LLI Sample # WW 6694173 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:05

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G106I SDG#: MAN25-08

CAT No.	Analysis Name	CAS Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge	02002 232	-		-		
02898	Benzene	71-43-2	2.5	U	2.5	0.5	5
02898	Bromobenzene	108-86-1	2.5	Ū	2.5	0.5	5
02898	Bromochloromethane	74-97-5	2.5	Ū	2.5	0.5	5
02898	Bromodichloromethane	75-27-4	2.5	Ū	2.5	0.5	5
02898	Bromoform	75-25-2	2.5	Ū	2.5	0.5	5
02898	Bromomethane	74-83-9	2.5	IJ	2.5	0.5	5
02898	n-Butylbenzene	104-51-8	2.5	IJ	2.5	0.5	5
02898	sec-Butylbenzene	135-98-8	2.5	IJ	2.5	0.5	5
02898	tert-Butylbenzene	98-06-6	2.5	IJ	2.5	0.5	5
02898	Carbon Tetrachloride	56-23-5	2.5	Ū	2.5	0.5	5
02898	Chlorobenzene	108-90-7	2.5	U	2.5	0.5	5
02898	Chloroethane	75-00-3	2.5	Ū	2.5	0.5	5
02898	Chloroform	67-66-3	2.5	U	2.5	0.5	5
02898	Chloromethane	74-87-3	2.5	U	2.5	1.0	5
02898	2-Chlorotoluene	95-49-8	2.5	U	2.5	0.5	5
02898	4-Chlorotoluene	106-43-4	2.5	U	2.5	0.5	5
02898	1,2-Dibromo-3-chloropropane	96-12-8	2.5	U	2.5	1.0	5
02898	Dibromochloromethane	124-48-1	2.5	U	2.5	0.5	5
02898	1,2-Dibromoethane	106-93-4	2.5	U	2.5	0.5	5
02898	Dibromomethane	74-95-3	2.5	U	2.5	0.5	5
02898	1,2-Dichlorobenzene	95-50-1	2.5	U	2.5	0.5	5
02898	1,3-Dichlorobenzene	541-73-1	2.5	U	2.5	0.5	5
02898	1,4-Dichlorobenzene	106-46-7	2.5	U	2.5	0.5	5
02898	Dichlorodifluoromethane	75-71-8	2.5	U	2.5	0.5	5
02898	1,1-Dichloroethane	75-34-3	2.5	U	2.5	0.5	5
02898	1,2-Dichloroethane	107-06-2	2.5	U	2.5	0.5	5
02898	1,1-Dichloroethene	75-35-4	2.5	U	2.5	0.5	5
02898	cis-1,2-Dichloroethene	156-59-2	2.5	U	2.5	0.5	5
02898	trans-1,2-Dichloroethene	156-60-5	2.5	U	2.5	0.5	5
02898	1,2-Dichloropropane	78-87-5	2.5	U	2.5	0.5	5
02898	1,3-Dichloropropane	142-28-9	2.5	U	2.5	0.5	5
02898	2,2-Dichloropropane	594-20-7	2.5	U	2.5	0.5	5
02898	1,1-Dichloropropene	563-58-6	2.5	U	2.5	0.5	5
02898	cis-1,3-Dichloropropene	10061-01-5	2.5	U	2.5	0.5	5
02898	trans-1,3-Dichloropropene	10061-02-6	2.5	U	2.5	0.5	5
02898	Ethylbenzene	100-41-4	2.5	U	2.5 2.5	0.5	5 5
02898	Freon 113	76-13-1	2.5	U		1.0	
02898 02898	Hexachlorobutadiene	87-68-3	2.5	U	2.5	0.5	5 5
02898	Isopropylteluene	98-82-8 99-87-6	2.5	U	2.5	0.5 0.5	5
02898	p-Isopropyltoluene Methylene Chloride	75-09-2	2.5	U	2.5	1.0	5
02898	Naphthalene	91-20-3	2.5	U	2.5	0.5	5
02898	n-Propylbenzene	103-65-1	2.5	U	2.5	0.5	5
02898	Styrene	100-42-5	2.5	IJ	2.5	0.5	5
02898	1,1,1,2-Tetrachloroethane	630-20-6	2.5	U	2.5	0.5	5
02898	1,1,2,2-Tetrachloroethane	79-34-5	2.5	U	2.5	0.5	5
02898	Tetrachloroethene	127-18-4	240	J	25	5.0	50
02898	Tetrahydrofuran	109-99-9	25	U	25	10	5
02898	Toluene	108-88-3	2.5	Ū	2.5	0.5	5
02898	1,2,3-Trichlorobenzene	87-61-6	2.5	IJ	2.5	0.5	5
	,,0 1110111010001120110	3. 31 0			= . 5		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG106I Ground Water

2732.05

LLI Sample # WW 6694173 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 17:05

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G106I SDG#: MAN25-08

CAT No.	Analysis Name		CAS	S Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenz	ene	120	0-82-1	2.5	U	2.5	0.5	5
02898	1,1,1-Trichloroetha	ne	71	-55-6	2.5	U	2.5	0.5	5
02898	1,1,2-Trichloroetha	ne	79	-00-5	2.5	U	2.5	0.5	5
02898	Trichloroethene		79	-01-6	2.5	U	2.5	0.5	5
02898	Trichlorofluorometh	ane	75	-69-4	2.5	U	2.5	0.5	5
02898	1,2,3-Trichloroprop	ane	96	-18-4	5.0	U	5.0	1.5	5
02898	1,2,4-Trimethylbenz	ene	95	-63-6	2.5	U	2.5	0.5	5
02898	1,3,5-Trimethylbenz	ene	108	3-67-8	2.5	U	2.5	0.5	5
02898	Vinyl Chloride		75	-01-4	2.5	U	2.5	0.5	5
02898	Xylene (Total)		133	30-20-7	2.5	U	2.5	0.5	5

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C121811AA	06/29/2012 18:49	Kerri E Legerlotz	5
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C121811AA	06/29/2012 19:11	Kerri E Legerlotz	50
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121811AA	06/29/2012 18:49	Kerri E Legerlotz	5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121811AA	06/29/2012 19:11	Kerri E Legerlotz	50

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG108I Ground Water

2732.05

LLI Sample # WW 6694174 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:45

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G108I SDG#: MAN25-09

Second S	CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
Durge	GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
0.2898 Benzene	00,110		OZOOD ZSME	٠.		5.	5.	
202398 Bromocharbene	02898		71-43-2	0.5	TT	0.5	0 1	1
202898 Bromochloromethane								
22898 Bromofichme 75-27-4 0.5 U 0.5 0.1 1					-			
Commonstration								
Case Bromomethane					U			
0.2898 n-Butylbenzene	02898	Bromomethane			U			
D2888 Extr-Butylbenzene	02898	n-Butylbenzene		0.5	Ū		0.1	
December December	02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
Case	02898	-		0.5	U	0.5	0.1	1
Case	02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
O2898 Chloroform	02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
D2898 Chloromethane	02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
2888 2-Chlorotoluene	02898	Chloroform	67-66-3	0.2	J	0.5	0.1	1
0.2888 4-Chlorotoluen	02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
0.2898 1,2-Dibromo-3-chloropropane 96-12-8 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1	02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
124-48-1	02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898 1,2-Dibromoethane 106-93-4 0.5 U 0.5 0.1 1	02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898 Dibrommethane 74-95-3 0.5 U 0.5 0.1 1 02898 1,2-Dichlorobenzene 95-50-1 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 156-59-2 1.8 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-69-5 1.8 0.5 0.1 1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 1 0 289 1,1-Dichloropropane 594-20-7 0	02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898 1,2-Dichlorobenzene 95-50-1 0.5 U 0.5 0.1 1 02898 1,3-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,1-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 156-59-2 1.8 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroptopane 156-60-5 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroptopane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptopane 504-20-7 0.5 U 0.5 0.1 1	02898	•	106-93-4	0.5	U	0.5	0.1	
02898 1,3-Dichlorobenzene 541-73-1 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 Dichlorodifluoromethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 156-59-2 1.8 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1	02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	
0.2898		•						
02898 Dichlorodifluoromethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-34-3 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 156-59-2 1.8 0.5 0.1 1 02898 trans-1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 3,1-Dichloropropane 563-58-6 0.5 U 0.5 0.1 1 02898 6 cis-1,3-Dichloropropane 10061-02-6 0.5 U 0.5 0.1					-			
0.2898		•						
02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-59-2 1.8 0.5 0.1 1 02898 trans-1,2-Dichloropthene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloroptopopane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptopane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloroptopane 194-20-7 0.5 U 0.5 0.1 1 02898 2,2-Dichloroptopene 1061-01-5 0.5 U 0.5 0.1 1 02898 1,1-Dichloroptopene 10061-01-5 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1								
02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-59-2 1.8 0.5 0.1 1 02898 trans-1,2-Dichloroptehene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1								
02898 cis-1,2-Dichloroethene 156-59-2 1.8 0.5 0.1 1 02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1								
02898 trans-1,2-Dichloropethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-01-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-01-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-01-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-01-02-6 0.5 U 0.5		•			U			
02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10041-42-4 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 100-42-6 0.5 U								
02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 100-41-4 0.5 U		•						
02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 J-Sopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 0289								
02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.2 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Methylene Chloride 91-20-3 0.5 U 0.5 0.1 1								
02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1								
02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.2 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 0.1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 0.1 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1 <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		-			-			
02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 p-Tsopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					-			
02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		-						
02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		-						
02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					-			
02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		-						
02898 Tetrachloroethene 127-18-4 100 5.0 1.0 10 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					-			
02898 Toluene 108-88-3 0.5 U 0.5 0.1 1					U			
		2						
	02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG108I Ground Water

2732.05

LLI Sample # WW 6694174 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:45

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G108I SDG#: MAN25-09

CAT	Analysis Name		CAS	S Number	As Rec Result	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenz	ene	120	0-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroetha	ine	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroetha	ine	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	-01-6	2.4		0.5	0.1	1
02898	Trichlorofluorometh	ane	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloroprop	ane	96-	-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenz	ene	108	3-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C121811AA	06/29/2012 19:33	Kerri E Legerlotz	1
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C121811AA	06/29/2012 19:56	Kerri E Legerlotz	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121811AA	06/29/2012 19:33	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C121811AA	06/29/2012 19:56	Kerri E Legerlotz	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG111D Ground Water

2732.05

LLI Sample # WW 6694175 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:20

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20 Reported: 07/03/2012 19:12

G111D SDG#: MAN25-10

Second State Sw-846 8260B 25mL bury burge Sw-846 8260B 25mL burge Stromobenzene 71-43-2 0.5 U 0.5 0.1 1 1 1 20289 Bromobenzene 108-86-1 0.5 U 0.5 0.1 1 1 1 20289 Bromobenzene 108-86-1 0.5 U 0.5 0.1 1 1 20289 Bromobenzene 74-97-5 0.5 U 0.5 0.1 1 1 20289 Bromobenzene 74-97-5 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-97-5 0.5 U 0.5 0.1 1 1 20289 Bromoform 75-22-2 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-83-9 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-83-9 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-83-9 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-83-9 0.5 U 0.5 0.1 1 1 20289 Bromoform 74-83-9 0.5 U 0.5 0.1 1 1 20289 Bromoform 98-86-6 0.5 U 0.5 0.1 1 1 20289 Bromoform 98-86-6 0.5 U 0.5 0.1 1 1 20289 Chlorobenzene 98-86-6 0.5 U 0.5 0.1 1 1 20289 Chlorobenzene 98-86-3 0.5 U 0.5 0.1 1 1 20289 Chloroform 67-66-3 0.5 U 0.5 0.1 1 1 20289 Chloroform 67-66-3 0.5 U 0.5 0.1 1 1 20289 Chloroform 74-87-3 0.5 U 0.5 0.1 1 1 20289 Chloroform 74-87-3 0.5 U 0.5 0.1 1 1 20289 Chloromothane 74-87-3 0.5 U 0.5 0.1 1 1 20289 Chloromothane 74-87-3 0.5 U 0.5 0.1 1 1 20289 Chloromothane 106-43-4 0.5 U 0.5 0.1 1 1 20289 Chloromothane 124-45-4 0.5 U 0.5 0.1 1 1 20289 Chloromothane 124-45-4 0.5 U 0.5 0.1 1 1 20289 Chloroformachane 124-45-4 0.5 U 0.5 0.1 1 1 20289 Chloroformothane 124-45-4 0.5 U 0.5 0.1 1 1 20289 Chloroformothane 75-74-7 0.5 U 0.5 0.1 1 1 20289 Chloroformothane 76-74-8 0.5 U 0.5 0.1 1 1 20289 Chloroformothane 76-74-8 0.5 U 0.5 0.1 1 1 20289 Chloroformothane 78-84-3 0.5 U 0.5 0.1 1 1 20289	CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
Date	CC/MC	Volatiles CW 946	9260B 25mT	ug/1		ug/1	ug/1	
0.2898 Benzene	GC/MS		0200B 23IIII	49/1		49/1	49,1	
December 108-86-1	00000		71 42 2	٥. ٦	TT	0 5	0 1	1
Case Bromochicomethane								
0.2898 Bromofethane								
Case Bromocham					-			
DAMPS					-			
0.2898 n-Butylbenzene					-			
December 135-98-8					-			
02898 Cart-Buty benzene		4						
202898 Carbon Tetrachloride 56-23-5 0.5 U 0.5 0.1 1		-						
D2888 Chlorobenzene		4			-			
D2898 Chloroethane					-			
0.2898 Chloroform								
0.2898 Chloromethane								
2888 2-Chlorotoluen								
0.2898 1,2-Dibromo-3-chloropropane 96-12-8 0.5 U 0.5 0.5 0.2 1 1 1 1 1 1 1 1 1								
D2888 1,2-Dibromo-3-chloropropane 96-12-8 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1								
D2898 Dibromochloromethane 124 - 48 - 1 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1					-			
02898 1,2-Dibromoethane 106-93-4 0.5 U 0.5 0.1 1								
02898 Dibrommethame 74-95-3 0.5 U 0.5 0.1 1 02898 1,2-Dichlorobenzene 95-50-1 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,4-Dichlorobenzene 106-46-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 156-59-2 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-69-2 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1								
1,2-Dichlorobenzene		· ·			-			
0.2898 1,3-Dichlorobenzene 541-73-1 0.5 U 0.5 0.1 1 1 1 1 1 1 1 1 1					-			
0.2898					-			
02898 Dichlorodifluoromethane 75-71-8 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethane 75-34-3 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 1,2-Dichloroptethene 156-59-2 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroptethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 10061-01-5 0.5 U 0.5 0.1		•			-			
02898 1,1-Dichloroethane 75-34-3 0.5 U 0.5 0.1 1 02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 156-59-2 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 10061-02-6 0.5 U 0.5 0.1 <t< td=""><td></td><td>,</td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>		,			-			
02898 1,2-Dichloroethane 107-06-2 0.5 U 0.5 0.1 1 02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-69-2 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloropthene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloroptopane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloroptopane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloroptopane 194-20-7 0.5 U 0.5 0.1 1 02898 2,2-Dichloroptopene 1061-01-5 0.5 U 0.5 0.1 1 02898 1,1-Dichloroptopene 10061-01-5 0.5 U 0.5 0.1 1 02898 1,1-Dichloroptopene 10061-01-5 0.5 U 0.5 0.1					-			
02898 1,1-Dichloroethene 75-35-4 0.5 U 0.5 0.1 1 02898 cis-1,2-Dichloroethene 156-59-2 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 tethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 tethylbenzene 100-41-4 0.5 U 0.5 0.1 <		· ·						
02898 cis-1,2-Dichloroethene 156-59-2 0.5 U 0.5 0.1 1 02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-02-6 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 <td></td> <td>· ·</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		· ·			-			
02898 trans-1,2-Dichloroethene 156-60-5 0.5 U 0.5 0.1 1 02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 10061-01-02-6 0.5 U 0.5		•			-			
02898 1,2-Dichloropropane 78-87-5 0.5 U 0.5 0.1 1 02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10041-02-6 0.5 U 0.5 0.1 1 02898 trans-1 13 0.5 U 0.5 0.1		•			-			
02898 1,3-Dichloropropane 142-28-9 0.5 U 0.5 0.1 1 02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10041-4 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U		•						
02898 2,2-Dichloropropane 594-20-7 0.5 U 0.5 0.1 1 02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Hsopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Napithalene 91-20-3 0.5 U 0.5 0.1 1		·						
02898 1,1-Dichloropropene 563-58-6 0.5 U 0.5 0.1 1 02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.1 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898		·						
02898 cis-1,3-Dichloropropene 10061-01-5 0.5 U 0.5 0.1 1 02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Methylene Chloride 91-20-3 0.5 U 0.5 0.1 1		·			IJ			
02898 trans-1,3-Dichloropropene 10061-02-6 0.5 U 0.5 0.1 1 02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 </td <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		·						
02898 Ethylbenzene 100-41-4 0.5 U 0.5 0.1 1 02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropylbenzene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.1 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1		·			U			
02898 Freon 113 76-13-1 0.5 U 0.5 0.2 1 02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.2 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 <td></td> <td></td> <td></td> <td>0.5</td> <td>U</td> <td></td> <td></td> <td></td>				0.5	U			
02898 Hexachlorobutadiene 87-68-3 0.5 U 0.5 0.1 1 02898 Isopropylbenzene 98-82-8 0.5 U 0.5 0.1 1 02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrachloroethene 108-88-3 0.5 U 0.5 0.1 <td>02898</td> <td>4</td> <td>76-13-1</td> <td>0.5</td> <td>Ū</td> <td>0.5</td> <td>0.2</td> <td></td>	02898	4	76-13-1	0.5	Ū	0.5	0.2	
02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrachloroethene 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	
02898 p-Isopropyltoluene 99-87-6 0.5 U 0.5 0.1 1 02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrachloroethene 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898				U			
02898 Methylene Chloride 75-09-2 0.5 U 0.5 0.2 1 02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Naphthalene 91-20-3 0.5 U 0.5 0.1 1 02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898			0.5	U	0.5	0.2	1
02898 n-Propylbenzene 103-65-1 0.5 U 0.5 0.1 1 02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898	-	91-20-3	0.5	U	0.5	0.1	1
02898 Styrene 100-42-5 0.5 U 0.5 0.1 1 02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898		103-65-1	0.5	Ū	0.5	0.1	
02898 1,1,1,2-Tetrachloroethane 630-20-6 0.5 U 0.5 0.1 1 02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898		100-42-5	0.5	U	0.5	0.1	
02898 1,1,2,2-Tetrachloroethane 79-34-5 0.5 U 0.5 0.1 1 02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1		1			U			
02898 Tetrachloroethene 127-18-4 0.2 J 0.5 0.1 1 02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1								
02898 Tetrahydrofuran 109-99-9 5.0 U 5.0 2.0 1 02898 Toluene 108-88-3 0.5 U 0.5 0.1 1				0.2	J			1
02898 Toluene 108-88-3 0.5 U 0.5 0.1 1	02898	Tetrahydrofuran		5.0	U	5.0	2.0	
02898 1,2,3-Trichlorobenzene 87-61-6 0.5 U 0.5 0.1 1	02898	±.	108-88-3	0.5	U	0.5	0.1	
	02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG111D Ground Water

2732.05

LLI Sample # WW 6694175 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:20

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G111D SDG#: MAN25-10

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,2,4-Trichlorobe	nzene	120-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroet	hane	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroet	hane	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorome	thane	75-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropr	opane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbe	nzene	95-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbe	nzene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		1330-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121811AA	06/29/2012 20:18	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C121811AA	06/29/2012 20:18	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG111I Ground Water

2732.05

LLI Sample # WW 6694176 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:15 IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20 Reported: 07/03/2012 19:12

G111I SDG#: MAN25-11

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	Ū	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	Ū	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	Ū	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	IJ	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	IJ	0.5	0.1	1
02898	Chloroform	67-66-3	0.1	J	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.2	1
02898	4-Chlorotoluene	106-43-4	0.5	IJ	0.5	0.1	1
02898			0.5	IJ	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	124-48-1	0.5	U	0.5	0.1	1
	Dibromochloromethane		0.5	U			
02898	1,2-Dibromoethane	106-93-4			0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.1	J	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	5.4		0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG111I Ground Water

2732.05

LLI Sample # WW 6694176 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 16:15

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G111I SDG#: MAN25-11

CAT No.	Analysis Name		CAS	Number	As Rec Result		As Received Limit of Quantitation*	Me	s Received ethod etection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	uç	g/l	
		purge								
02898	1,2,4-Trichlorobenz	ene	120	-82-1	0.5	U	0.5	0	.1	1
02898	1,1,1-Trichloroetha	ne	71-	55-6	0.5	U	0.5	0	.1	1
02898	1,1,2-Trichloroetha	ne	79-	00-5	0.5	U	0.5	0	.1	1
02898	Trichloroethene		79-	01-6	0.2	J	0.5	0	.1	1
02898	Trichlorofluorometh	ane	75-	69-4	0.5	U	0.5	0	.1	1
02898	1,2,3-Trichloroprop	ane	96-	18-4	1.0	U	1.0	0	.3	1
02898	1,2,4-Trimethylbenz	ene	95-	63-6	0.5	U	0.5	0	.1	1
02898	1,3,5-Trimethylbenz	ene	108	-67-8	0.5	U	0.5	0	.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0	.1	1
02898	Xylene (Total)		133	0-20-7	0.5	U	0.5	0	.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121812AA	06/29/2012 23:57	Kevin A Sposito	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C121812AA	06/29/2012 23:57	Kevin A Sposito	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG113D Ground Water

2732.05

LLI Sample # WW 6694177 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:40

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

G113D SDG#: MAN25-12

CAT No.	Analysis Name	CAS Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.1	J	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	U	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.8		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.7		0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG113D Ground Water

2732.05

LLI Sample # WW 6694177 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:40

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G113D SDG#: MAN25-12

CAT No.	Analysis Name		Amalusis Nome		CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l			
		purge								
02898	1,2,4-Trichlorob	enzene	120-82-1	0.5	U	0.5	0.1	1		
02898	1,1,1-Trichloroe	thane	71-55-6	0.5	U	0.5	0.1	1		
02898	1,1,2-Trichloroe	thane	79-00-5	0.5	U	0.5	0.1	1		
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1		
02898	Trichlorofluorom	ethane	75-69-4	0.5	U	0.5	0.1	1		
02898	1,2,3-Trichlorop	ropane	96-18-4	1.0	U	1.0	0.3	1		
02898	1,2,4-Trimethylb	enzene	95-63-6	0.5	U	0.5	0.1	1		
02898	1,3,5-Trimethylb	enzene	108-67-8	0.5	U	0.5	0.1	1		
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1		
02898	Xylene (Total)		1330-20-7	0.5	U	0.5	0.1	1		

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121812AA	06/30/2012 00:20	Kevin A Sposito	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C121812AA	06/30/2012 00:20	Kevin A Sposito	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG113I Ground Water

2732.05

LLI Sample # WW 6694178 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:15 IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20 Reported: 07/03/2012 19:12

G113I SDG#: MAN25-13

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MG	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
GC/M5		0200B 23IIII	-5/-		~g/ -	-5/ -	
00000	purge	71 42 0	0 5	***	0 5	0 1	1
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898 02898	Bromobenzene Bromochloromethane	108-86-1	0.5	U U	0.5	0.1	1
02898	Bromodichloromethane	74-97-5 75-27-4	0.5	IJ	0.5 0.5	0.1	1 1
02898	Bromoform	75-27-4	0.5	IJ	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	IJ	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.3	J	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	Ū	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	Ū	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	Ū	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG113I Ground Water

2732.05

LLI Sample # WW 6694178 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/18/2012 15:15

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street

Submitted: 06/20/2012 09:20

Houston TX 77008

Reported: 07/03/2012 19:12

G113I SDG#: MAN25-13

CAT No.	Analysis Name		CAS	3 Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenz	ene	120	0-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroetha	ne	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroetha	ne	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometh	ane	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloroprop	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenz	ene	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	G121841AA	07/02/2012 14:55	Angela D Sneeringer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	G121841AA	07/02/2012 14:55	Angela D Sneeringer	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: TB1 Water

2732.05

LLI Sample # WW 6694179 LLI Group # 1317054 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 06/12/2012

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20 Reported: 07/03/2012 19:12

2732T SDG#: MAN25-14TB*

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	Ū	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	IJ	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	IJ	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	Ū	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	IJ	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	IJ	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	IJ	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	Ū	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.2	1
02898	4-Chlorotoluene	106-43-4	0.5	IJ	0.5	0.1	1
02898		96-12-8	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	124-48-1	0.5	U	0.5	0.2	1
	Dibromochloromethane		0.5	U			
02898	1,2-Dibromoethane	106-93-4			0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: TB1 Water

2732.05

LLI Sample # WW 6694179

Account

LLI Group # 1317054 # 09671

Project Name: Supplemental VI Assessment

Collected: 06/12/2012

IBM c/o Sanborn Head and Assoc

1715 W. 13th Street Houston TX 77008

Submitted: 06/20/2012 09:20

Reported: 07/03/2012 19:12

2732T SDG#: MAN25-14TB*

CAT No.	Analysis Name		As Receiv Analysis Name CAS Number Result			As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenz	zene	120	0-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroetha	ine	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroetha	ine	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometh	nane	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloroprop	ane	96-	-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenz	ene	108	3-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121841AA	07/02/2012 20:08	Kerri E Legerlotz	1
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C121841AA	07/02/2012 20:08	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

Reported: 07/03/12 at 07:12 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	Result	<u>t</u>	LOQ * *	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
D-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0 7		()		A160 66041E	2				
Batch number: C121781AA					94168-669417		105	00 100	0	2.0
Benzene	0.5	U	0.5	0.1	ug/l	105	105	80-120	0	30
Bromobenzene	0.5	U	0.5	0.1	ug/l	113	114	80-120	1	30
Bromochloromethane	0.5	U	0.5	0.1	ug/l	104	104	80-125	1	30
Bromodichloromethane	0.5	U	0.5	0.1	ug/l	92	92	80-120	0	30
Bromoform	0.5	U	0.5	0.1	ug/l	98	98	70-128	1	30
Bromomethane	0.5	U	0.5	0.1	ug/l	110	109	66-124	2	30
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	108	108	80-120	0	30
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	114	114	80-120	0	30
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	126*	127*	80-120	0	30
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	86	85	74-133	1	30
Chlorobenzene	0.5	U	0.5	0.1	ug/l	111	112	80-120	1	30
Chloroethane	0.5	U	0.5	0.1	ug/l	101	99	67-124	2	30
Chloroform	0.5	U	0.5	0.1	ug/l	88	88	80-120	0	30
Chloromethane	0.5	U	0.5	0.2	ug/l	98	96	55-135	2	30
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	117	117	80-120	0	30
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	117	116	80-120	1	30
1,2-Dibromo-3-chloropropane	0.5	U	0.5	0.2	uq/l	115	126*	59-125	9	30
Dibromochloromethane	0.5	U	0.5	0.1	uq/l	104	106	80-120	2	30
1,2-Dibromoethane	0.5	U	0.5	0.1	ug/l	108	110	80-120	2	30
Dibromomethane	0.5	Ū	0.5	0.1	uq/l	99	102	80-120	2	30
1,2-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	110	110	80-120	0	30
1,3-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	112	113	80-120	1	30
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	111	112	80-120	0	30
Dichlorodifluoromethane	0.5	Ū	0.5	0.1	uq/l	83	82	39-120	2	30
1,1-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	92	92	89-122	0	30
1,2-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	75*	75*	80-127	0	30
1,1-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	113	112	80-123	1	30
cis-1,2-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	110	111	80-120	1	30
trans-1,2-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	110	109	80-121	1	30
1,2-Dichloropropane	0.5	Ū	0.5	0.1	ug/l	101	101	80-121	0	30
1,3-Dichloropropane	0.5	Ū	0.5	0.1	ug/l ug/l	101	101	80-120	2	30
2,2-Dichloropropane	0.5	Ū	0.5	0.1			82	75-122	2	30
	0.5	Ū	0.5	0.1	ug/1	80 98	6∠ 97	80-121	0	30
1,1-Dichloropropene					ug/l				-	
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	106	107	74-120	1	30
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	100	101	80-120	1	30
Ethylbenzene	0.5	U	0.5	0.1	ug/l	106	106	80-120	1	30
Freon 113	0.5	U	0.5	0.2	ug/l	105	104	78-132	1	30
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	83	83	79-120	1	30
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	109	110	80-120	0	30
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	114	113	80-120	1	30
Methylene Chloride	0.5	U	0.5	0.2	ug/l	102	103	80-120	1	30
Naphthalene	0.5	U	0.5	0.1	ug/l	91	94	77-120	4	30
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	111	111	80-120	0	30
Styrene	0.5	U	0.5	0.1	ug/l	116	118	80-122	1	30
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	100	101	80-120	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

,,	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	<u>.</u>	LOQ**	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	113	114	80-125	1	30
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	108	108	80-120	0	30
Tetrahydrofuran	5.0	U	5.0	2.0	ug/l	128	142*	65-131	10	30
Toluene	0.5	U	0.5	0.1	ug/l	109	109	80-120	0	30
1,2,3-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	89	91	77-120	3	30
1,2,4-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	95	99	79-120	3	30
1,1,1-Trichloroethane	0.5	U	0.5	0.1	ug/l	85	84	79-127	1	30
1,1,2-Trichloroethane	0.5	U	0.5	0.1	ug/l	109	111	80-120	2	30
Trichloroethene	0.5	U	0.5	0.1	ug/l	104	105	80-120	0	30
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	95	93	66-134	2	30
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	99	100	80-120	1	30
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	110	110	80-120	0	30
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	111	112	80-120	1	30
Vinyl Chloride	0.5	U U	0.5	0.1	ug/l	102	101	65-127	2 1	30
Xylene (Total)	0.5	U	0.5	0.1	ug/l	114	115	80-120	1	30
Batch number: C121811AA	Sampl	e numk	per(s): 66	94173-669	4175					
Benzene	0.5	U	0.5	0.1	uq/l	109	108	80-120	1	30
Bromobenzene	0.5	U	0.5	0.1	ug/l	105	105	80-120	0	30
Bromochloromethane	0.5	U	0.5	0.1	ug/l	102	101	80-125	1	30
Bromodichloromethane	0.5	U	0.5	0.1	ug/l	107	105	80-120	2	30
Bromoform	0.5	U	0.5	0.1	ug/l	106	105	70-128	1	30
Bromomethane	0.5	U	0.5	0.1	ug/l	100	97	66-124	3	30
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	109	108	80-120	1	30
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	111	110	80-120	1	30
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	113	112	80-120	0	30
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	99	97	74-133	2	30
Chlorobenzene	0.5	Ū	0.5	0.1	ug/l	104	103	80-120	1	30
Chloroethane	0.5	U	0.5	0.1	ug/l	100	96	67-124	4	30
Chloroform	0.5	U	0.5	0.1	ug/l	102	99	80-120	2	30
Chloromethane	0.5	U	0.5	0.2	ug/l	91	88	55-135	3	30
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	105	104	80-120	0	30
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	104	103	80-120 59-125	1	30
1,2-Dibromo-3-chloropropane Dibromochloromethane	0.5 0.5	U U	0.5 0.5	0.2 0.1	ug/l ug/l	110 108	123 107	80-120	11 1	30 30
1,2-Dibromoethane	0.5	Ū	0.5	0.1	ug/1 ug/1	106	107	80-120	1	30
Dibromomethane	0.5	Ū	0.5	0.1	ug/1	103	101	80-120	1	30
1,2-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/1	105	101	80-120	0	30
1,3-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	105	104	80-120	0	30
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	104	104	80-120	1	30
Dichlorodifluoromethane	0.5	Ū	0.5	0.1	uq/l	79	76	39-120	4	30
1,1-Dichloroethane	0.5	Ū	0.5	0.1	uq/l	108	105	89-122	3	30
1,2-Dichloroethane	0.5	U	0.5	0.1	uq/l	102	101	80-127	1	30
1,1-Dichloroethene	0.5	U	0.5	0.1	ug/l	114	110	80-123	4	30
cis-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	109	107	80-120	2	30
trans-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	109	104	80-121	5	30
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	109	107	80-120	2	30
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	108	106	80-120	2	30
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	102	98	75-122	4	30
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	107	104	80-121	3	30
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	108	105	74-120	2	30
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	118	114	80-120	3	30
Ethylbenzene	0.5	Ū	0.5	0.1	ug/l	111	109	80-120	1	30
Freon 113	0.5	U	0.5	0.2	ug/l	110	105	78-132	4	30
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	98	98	79-120	0	30
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	112	110	80-120	2	30
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	109	109	80-120	0	30
Methylene Chloride	0.5	U	0.5	0.2	ug/l	108	106	80-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

LCS/LCSD

LCS

Report

LCSD

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 9

Quality Control Summary

Blank

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

Blank

	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	Result	_	LOQ**	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Naphthalene	0.5	U	0.5	0.1	uq/l	103	103	77-120	0	30
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	112	110	80-120	1	30
Styrene	0.5	Ū	0.5	0.1	uq/l	114	113	80-122	1	30
	0.5	U	0.5	0.1		101	101	80-120	1	30
1,1,1,2-Tetrachloroethane					ug/l					
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	117	118	80-125	1	30
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	101	99	80-120	2	30
Tetrahydrofuran	5.0	U	5.0	2.0	ug/l	114	121	65-131	6	30
Toluene	0.5	U	0.5	0.1	uq/l	109	106	80-120	2	30
1,2,3-Trichlorobenzene	0.5	U	0.5	0.1	uq/l	105	105	77-120	0	30
1,2,4-Trichlorobenzene	0.5	U	0.5	0.1	uq/l	108	108	79-120	0	30
1,1,1-Trichloroethane	0.5	Ū	0.5	0.1	uq/l	101	99	79-127	2	30
		Ū		0.1	ug/l ug/l				1	30
1,1,2-Trichloroethane	0.5		0.5		٥,	108	109	80-120		
Trichloroethene	0.5	U	0.5	0.1	ug/l	106	104	80-120	2	30
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	101	97	66-134	4	30
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	105	111	80-120	5	30
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	uq/l	109	108	80-120	1	30
1,3,5-Trimethylbenzene	0.5	Ū	0.5	0.1	ug/l	110	108	80-120	2	30
Vinyl Chloride	0.5	Ū	0.5	0.1	ug/1	100	97	65-127	3	30
		IJ							2	
Xylene (Total)	0.5	U	0.5	0.1	ug/l	111	109	80-120	2	30
	_	_								
Batch number: C121812AA					4167,669417		.7.7			
Benzene	0.5	U	0.5	0.1	ug/l	106		80-120		
Bromobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
Bromochloromethane	0.5	U	0.5	0.1	uq/l	100		80-125		
Bromodichloromethane	0.5	IJ	0.5	0.1	uq/l	101		80-120		
Bromoform	0.5	Ū	0.5	0.1	uq/l	96		70-128		
Bromomethane	0.5	Ū	0.5	0.1	ug/1	95		66-124		
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	106		80-120		
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	106		80-120		
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	115		80-120		
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	95		74-133		
Chlorobenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
Chloroethane	0.5	U	0.5	0.1	ug/l	93		67-124		
Chloroform	0.5	U	0.5	0.1	uq/l	101		80-120		
Chloromethane	0.5	U	0.5	0.2	ug/l	84		55-135		
2-Chlorotoluene	0.5	Ū	0.5	0.1	ug/l	102		80-120		
4-Chlorotoluene	0.5	Ū	0.5	0.1	uq/l	102		80-120		
1,2-Dibromo-3-chloropropane	0.5	Ū	0.5	0.2	uq/l	80		59-125		
Dibromochloromethane	0.5	Ū	0.5	0.1	ug/1	103		80-120		
					J					
1,2-Dibromoethane	0.5	U	0.5	0.1	ug/l	105		80-120		
Dibromomethane	0.5	U	0.5	0.1	ug/l	103		80-120		
1,2-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
1,3-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
1,4-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	101		80-120		
Dichlorodifluoromethane	0.5	U	0.5	0.1	ug/l	68		39-120		
1,1-Dichloroethane	0.5	U	0.5	0.1	uq/l	104		89-122		
1,2-Dichloroethane	0.5	U	0.5	0.1	ug/l	103		80-127		
1,1-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	109		80-123		
cis-1,2-Dichloroethene	0.5	Ū	0.5	0.1	uq/l	106		80-120		
trans-1,2-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	105		80-121		
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	107		80-120		
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	106		80-120		
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	94		75-122		
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	100		80-121		
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	98		74-120		
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	106		80-120		
Ethylbenzene	0.5	U	0.5	0.1	ug/l	109		80-120		
Freon 113	0.5	Ū	0.5	0.2	ug/l	105		78-132		
	5.5	J		- · -	3/ -			. 0		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1317054

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc

Reported: 07/03/12 at 07:12 PM										
Analysis Name	Blank Result	_	Blank LOQ**	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	97		79-120		
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	108		80-120		
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	106		80-120		
Methylene Chloride	0.3	J	0.5	0.2	uq/l	111		80-120		
Naphthalene	0.5	Ū	0.5	0.1	ug/1	99		77-120		
n-Propylbenzene	0.5	Ū	0.5	0.1	ug/l	108		80-120		
= =										
Styrene	0.5	U	0.5	0.1	ug/l	113		80-122		
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	100		80-120		
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	112		80-125		
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	97		80-120		
Tetrahydrofuran	5.0	U	5.0	2.0	ug/l	87		65-131		
Toluene	0.5	U	0.5	0.1	uq/l	106		80-120		
1,2,3-Trichlorobenzene	0.5	IJ	0.5	0.1	ug/l	104		77-120		
1,2,4-Trichlorobenzene	0.5	Ū	0.5	0.1	ug/l	106		79-120		
1,1,1-Trichloroethane	0.5	Ū	0.5	0.1	ug/l	97		79-127		
		Ū	0.5	0.1				80-120		
1,1,2-Trichloroethane	0.5				ug/l	107				
Trichloroethene	0.5	U	0.5	0.1	ug/l	102		80-120		
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	95		66-134		
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	108		80-120		
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	106		80-120		
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	107		80-120		
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	93		65-127		
Xylene (Total)	0.5	U	0.5	0.1	uq/l	109		80-120		
					_					
Batch number: C121841AA	Sampl	e numl	per(s): 60	694179						
Benzene	0.5	U	0.5	0.1	ug/l	111	110	80-120	1	30
Bromobenzene	0.5	U	0.5	0.1	ug/l	106	105	80-120	1	30
Bromochloromethane	0.5	U	0.5	0.1	ug/l	99	101	80-125	2	30
Bromodichloromethane	0.5	Ū	0.5	0.1	ug/l	111	112	80-120	1	30
Bromoform	0.5	Ū	0.5	0.1	ug/l	113	113	70-128	0	30
Bromomethane	0.5	Ū	0.5	0.1	ug/l	120	118	66-124	1	30
n-Butylbenzene	0.5	IJ	0.5	0.1	ug/l	112	110	80-120	2	30
sec-Butylbenzene	0.5	Ū	0.5	0.1	ug/1	114	113	80-120	1	30
<u>-</u>				0.1	J.,				2	30
tert-Butylbenzene	0.5	U	0.5		ug/l	115	113	80-120		
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	100	97	74-133	3	30
Chlorobenzene	0.5	U	0.5	0.1	ug/l	104	102	80-120	2	30
Chloroethane	0.5	U	0.5	0.1	ug/l	118	116	67-124	2	30
Chloroform	0.5	U	0.5	0.1	ug/l	104	102	80-120	1	30
Chloromethane	0.5	U	0.5	0.2	ug/l	119	116	55-135	2	30
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	107	106	80-120	1	30
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	105	104	80-120	0	30
1,2-Dibromo-3-chloropropane	0.5	U	0.5	0.2	uq/l	103	103	59-125	0	30
Dibromochloromethane	0.5	U	0.5	0.1	uq/l	113	114	80-120	0	30
1,2-Dibromoethane	0.5	Ū	0.5	0.1	ug/l	109	110	80-120	0	30
Dibromomethane	0.5	Ū	0.5	0.1	ug/l	105	104	80-120	1	30
1,2-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	105	104	80-120	0	30
1,3-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	105	105	80-120	1	30
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/1 ug/1	103	103	80-120	1	30
Dichlorodifluoromethane	0.5	U	0.5	0.1	ug/l	115	114	39-120	2	30
1,1-Dichloroethane	0.5	U	0.5	0.1	ug/l	110	110	89-122	0	30
1,2-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	104	105	80-127	1	30
1,1-Dichloroethene	0.5	U	0.5	0.1	ug/l	113	111	80-123	2	30
cis-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	110	110	80-120	0	30
trans-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	108	106	80-121	2	30
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	112	111	80-120	1	30
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	110	111	80-120	1	30
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	100	101	75-122	0	30
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	108	106	80-121	1	30
,	- · -	-		- · ·	. 5, -					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1317054

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 5 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc

Reported. 07/03/12 de 07.	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	_	LOO**	MDL	Units	%REC	%REC	Limits	RPD	RPD Max
cis-1,3-Dichloropropene	0.5	≟ U	0.5	0.1	ug/l	116	116	74-120	1	30
	0.5	Ū	0.5	0.1	ug/1 ug/1	124*	126*	80-120	2	30
trans-1,3-Dichloropropene Ethylbenzene	0.5	Ū	0.5	0.1	ug/1 ug/1	113	112	80-120	1	30
Freon 113	0.5	Ū	0.5	0.1	ug/1 ug/1	108	108	78-132	0	30
Hexachlorobutadiene	0.5	Ū	0.5	0.2			108	79-132	0	30
	0.5	Ū			ug/l	102	113		1	30
Isopropylbenzene			0.5	0.1	ug/l	114		80-120		
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	113	110	80-120	2	30
Methylene Chloride	0.5	U	0.5	0.2	ug/l	110	109	80-120	0 2	30
Naphthalene	0.5	U	0.5	0.1	ug/l	106	109	77-120	_	30
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	115	113	80-120	1	30
Styrene	0.5	U	0.5	0.1	ug/l	116	116	80-122	0	30
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	103	102	80-120	1	30
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	120	120	80-125	0	30
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	102	98	80-120	3	30
Tetrahydrofuran	5.0	Ū	5.0	2.0	ug/l	107	100	65-131	6	30
Toluene	0.5	U	0.5	0.1	ug/l	110	108	80-120	3	30
1,2,3-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	106	109	77-120	2	30
1,2,4-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	111	113	79-120	2	30
1,1,1-Trichloroethane	0.5	U	0.5	0.1	ug/l	102	100	79-127	2	30
1,1,2-Trichloroethane	0.5	U	0.5	0.1	ug/l	111	112	80-120	0	30
Trichloroethene	0.5	U	0.5	0.1	ug/l	106	104	80-120	2	30
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	113	111	66-134	1	30
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	108	107	80-120	1	30
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	110	110	80-120	0	30
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	111	110	80-120	1	30
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	126	124	65-127	1	30
Xylene (Total)	0.5	U	0.5	0.1	ug/l	112	112	80-120	0	30
Batch number: G121841AA	Sampl	e numk	per(s): 66	94178						
Benzene	0.5	U	0.5	0.1	ug/l	97	96	80-120	1	30
Bromobenzene	0.5	U	0.5	0.1	ug/l	100	99	80-120	0	30
Bromochloromethane	0.5	U	0.5	0.1	ug/l	102	102	80-125	0	30
Bromodichloromethane	0.5	U	0.5	0.1	ug/l	89	88	80-120	1	30
Bromoform	0.5	U	0.5	0.1	uq/l	78	79	70-128	1	30
Bromomethane	0.5	U	0.5	0.1	ug/l	88	85	66-124	3	30
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	92	91	80-120	1	30
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	93	92	80-120	2	30
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	103	104	80-120	1	30
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	85	83	74-133	1	30
Chlorobenzene	0.5	U	0.5	0.1	ug/l	98	96	80-120	2	30
Chloroethane	0.5	Ū	0.5	0.1	ug/l	80	77	67-124	4	30
Chloroform	0.5	U	0.5	0.1	ug/l	93	93	80-120	1	30
Chloromethane	0.5	U	0.5	0.2	ug/l	66	64	55-135	3	30
2-Chlorotoluene	0.5	Ū	0.5	0.1	uq/l	97	96	80-120	2	30
4-Chlorotoluene	0.5	Ū	0.5	0.1	ug/l	97	96	80-120	1	30
1,2-Dibromo-3-chloropropane	0.5	Ū	0.5	0.2	ug/l	129*	126*	59-125	3	30
Dibromochloromethane	0.5	Ū	0.5	0.1	uq/l	89	88	80-120	1	30
1,2-Dibromoethane	0.5	Ū	0.5	0.1	uq/l	97	97	80-120	0	30
Dibromomethane	0.5	Ū	0.5	0.1	ug/l	97	95	80-120	2	30
1,2-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/1	99	99	80-120	0	30
1,3-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/1 ug/1	100	99	80-120	1	30
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/1	100	99	80-120	1	30
Dichlorodifluoromethane	0.5	Ū	0.5	0.1	ug/1 ug/1	51	49	39-120	5	30
1,1-Dichloroethane	0.5	U	0.5	0.1	ug/1 ug/1	91	90	89-122	1	30
1,1-Dichloroethane	0.5	Ū	0.5	0.1		91	90	80-127	1	30
		Ū	0.5	0.1	ug/l	104	103		1	30
1,1-Dichloroethene	0.5 0.5	Ū			ug/l			80-123	1	30
cis-1,2-Dichloroethene	0.5	IJ	0.5 0.5	0.1	ug/l	102 104	102 101	80-120	3	30
trans-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	104	TOT	80-121	3	3 ∪

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1317054

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 6 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc

Reported: 07/03/12 at 07:12 PM

nepereca: 07,03,12 ac 07	Blank	:	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Resul	t	LOQ**	MDL	Units	%REC	%REC	Limits	RPD	RPD Max
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	88	88	80-120	1	30
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	89	88	80-120	1	30
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	84	83	75-122	1	30
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	90	89	80-121	2	30
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	93	92	74-120	1	30
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	81	80	80-120	1	30
Ethylbenzene	0.5	U	0.5	0.1	ug/l	95	93	80-120	2	30
Freon 113	0.5	U	0.5	0.2	ug/l	101	101	78-132	0	30
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	94	93	79-120	1	30
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	96	94	80-120	2	30
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	97	95	80-120	1	30
Methylene Chloride	0.5	U	0.5	0.2	ug/l	102	101	80-120	1	30
Naphthalene	0.5	U	0.5	0.1	ug/l	96	95	77-120	1	30
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	92	91	80-120	1	30
Styrene	0.5	U	0.5	0.1	ug/l	99	97	80-122	2	30
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	89	89	80-120	0	30
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	92	90	80-125	2	30
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	103	99	80-120	4	30
Tetrahydrofuran	5.0	U	5.0	2.0	ug/l	118	117	65-131	1	30
Toluene	0.5	U	0.5	0.1	ug/l	96	94	80-120	2	30
1,2,3-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	99	98	77-120	0	30
1,2,4-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	100	100	79-120	1	30
1,1,1-Trichloroethane	0.5	U	0.5	0.1	ug/l	91	90	79-127	2	30
1,1,2-Trichloroethane	0.5	U	0.5	0.1	ug/l	98	96	80-120	2	30
Trichloroethene	0.5	U	0.5	0.1	ug/l	100	99	80-120	1	30
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	82	78	66-134	6	30
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	92	95	80-120	3	30
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	95	94	80-120	1	30
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	95	94	80-120	1	30
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	73	72	65-127	2	30
Xylene (Total)	0.5	U	0.5	0.1	ug/l	98	98	80-120	1	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	<u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: C121812AA	Sample	number(s)	: 6694166	-66941	67,6694	176-6694177	UNSPK: P70	4933	
Benzene	104	103	87-126	0	30				
Bromobenzene	103	104	80-123	0	30				
Bromochloromethane	103	103	82-125	0	30				
Bromodichloromethane	106	108	82-133	2	30				
Bromoform	92	89	60-138	3	30				
Bromomethane	86	86	69-135	0	30				
n-Butylbenzene	97	95	83-131	1	30				
sec-Butylbenzene	98	97	84-128	1	30				
tert-Butylbenzene	105	103	84-135	2	30				
Carbon Tetrachloride	83	84	81-148	1	30				
Chlorobenzene	101	100	78-133	1	30				
Chloroethane	80	80	70-139	0	30				
Chloroform	100	101	86-136	1	30				
Chloromethane	76	76	55-152	0	30				

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 7 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

Reported: 07/03/12 at 07:12 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
2-Chlorotoluene	102	101	81-120	0	30	· 		' <u></u>	
4-Chlorotoluene	100	101	82-119	0	30				
1,2-Dibromo-3-chloropropane	144	108	55-156	28	30				
Dibromochloromethane	104	101	79-125	3	30				
1,2-Dibromoethane	109	109	84-127	0	30				
Dibromomethane	105	104	83-126	1	30				
1,2-Dichlorobenzene	103	102	83-117	1	30				
1,3-Dichlorobenzene	103	103	81-118	0	30				
1,4-Dichlorobenzene	104	103	79-120	1	30				
Dichlorodifluoromethane	49	50	39-155	1	30				
1,1-Dichloroethane	66 (2)	77 (2)	88-136	1	30				
1,2-Dichloroethane	102	102	82-135	0	30				
1,1-Dichloroethene	94	97	83-150	3	30				
cis-1,2-Dichloroethene	76 (2)	72 (2)	82-129	0	30				
trans-1,2-Dichloroethene	-145	-80 (2)		1	30				
	(2)	(-)		=					
1,2-Dichloropropane	109	110	91-126	1	30				
1,3-Dichloropropane	109	107	80-127	2	30				
2,2-Dichloropropane	91	92	80-134	1	30				
1,1-Dichloropropene	91	92	86-139	1	30				
cis-1,3-Dichloropropene	102	100	74-132	2	30				
trans-1,3-Dichloropropene	105	102	71-128	3	30				
Ethylbenzene	95	98	80-140	1	30				
Freon 113	81*	83*	87-158	2	30				
Hexachlorobutadiene	89	90	84-128	1	30				
Isopropylbenzene	103	103	81-133	0	30				
p-Isopropyltoluene	102	100	84-124	2	30				
Methylene Chloride	109	108	84-122	0	30				
Naphthalene	95	97	70-131	0	30				
n-Propylbenzene	98	99	79-131	1	30				
Styrene	124	123	63-151	1	30				
1,1,1,2-Tetrachloroethane	98	97	87-126	1	30				
1,1,2,2-Tetrachloroethane	117	117	75-131	1	30				
Tetrachloroethene	89	91	63-156	2	30				
Tetrahydrofuran	134	99	56-154	30	30				
Toluene	95 (2)	98 (2)	83-127	1	30				
1,2,3-Trichlorobenzene	110	111	73-125	1	30				
1,2,4-Trichlorobenzene	118	118	77-120	0	30				
1,1,1-Trichloroethane	82*	87	85-140	2	30				
1,1,2-Trichloroethane	189*	189*	85-140	0	30				
Trichloroethene	99	110	85-131	6	30				
Trichlorofluoromethane	74	74	67-161	0	30				
				5					
1,2,3-Trichloropropane	116 81 (2)	110 84 (2)	76-120	0	30 30				
1,2,4-Trimethylbenzene	81 (2) 99	84 (2) 101	87-126 89-129	1	30				
1,3,5-Trimethylbenzene				1	30				
Vinyl Chloride	-2 (2)	6 (2)	65-151						
Xylene (Total)	100	102	81-137	0	30				

Surrogate Quality Control

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 8 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

Reported: 07/03/12 at 07:12 PM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EPA SW846/8260 (water-25ml) #1 Batch number: C121781AA

Batti ilu	mber: C121781AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6694166	93	100	94	85	
6694168	93	101	95	85	
6694169	93	102	93	84	
6694170	94	103	92	85	
6694171	94	102	95	86	
6694172	94	103	91	84	
Blank	92	101	96	86	
LCS	90	99	98	89	
LCSD	89	97	98	90	
Limits:	77-114	74-113	77-110	78-110	

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C121811AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6694173	98	102	97	92
6694174	99	104	97	93
6694175	100	104	99	93
Blank	97	104	99	94
LCS	96	100	101	99
LCSD	96	101	102	98
Limits:	77-114	74-113	77-110	78-110

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C121812AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6694167	100	107	99	95	
6694176	100	107	98	93	
6694177	99	104	99	93	
Blank	99	105	99	93	
LCS	97	103	102	98	
MS	98	102	103	99	
MSD	97	101	102	99	
Limits:	77-114	74-113	77-110	78-110	

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C121841AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6694179	98	105	100	95
Blank	96	103	100	97
LCS	95	100	101	98
LCSD	96	103	102	100
Limits:	77-114	74-113	77-110	78-110

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 9 of 9

Quality Control Summary

Client Name: IBM c/o Sanborn Head and Assoc Group Number: 1317054

Reported: 07/03/12 at 07:12 PM

Surrogate Quality Control

Analysis Name: EPA SW846/8260 (water-25ml) #1 Batch number: G121841AA

Daceir iid	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6694178	100	99	96	97	
Blank	100	103	96	97	
LCS	101	102	97	97	
LCSD	100	104	96	97	
Limits	77-114	74-113	77-110	78-110	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

9671/1317054/0094166-79

Shipping Group	:1	Chai	n_of_(Custo	dv		nquished		Date /	Time	R	eceived By	·:	Date / Time
SANBORN	HEAD	To:			•	Sess	icefo	ne	6/19/17	1830	Ó			
05	High St			ratories, I		Ι,								
	i, ME 04101		PO Box 1		C	 	$\overline{}$					$\overline{}$		
	761-9300		-	17605-24	25							\		,
F (207) 761-9339		(717) 65 (717) 65									2		6/20/12 920
¥	Project Inform				T 1T.			Informai	tion					Other Information
	Supplemental VI Asse	essment	•			Standard		_		•		SGD Con		
Number:	2732.05			Delivery .	Method:	Email					Interna	I COC Req	quired?	No
Location:	Manassas, Virginia		_	E	mail To:	ebradstr	eet@sant	ornhead.	com		Site	Specific Q	A/QC?	DUPS
Manager:	Erica Bradstreet		Data	Package	Option:									
Account #:			•	ED	D Type:	SHDMS	}			•				IBM Manassas VOCs list 6396
Quote #:			•											
			•		Ę	The second	 କୁ	ក្ន						
Lab ID (Lab Use Only)	Sample Name	Collect Date	tion Time	Matrix	Top Depth	Bottom Depth	Filtered? (Eield / Lab)	8260B/HC1						Remarks:
	DUP1	6/18/2012	1550	GW	80	80		3						
	EB1	6/18/2012	1730	AQ		1		2						
	FB1	6/18/2012	1735	AQ		41		2			į			
	OF54	6/18/2012	1630	GW	73.4	73,4		3					-	
	OF55	6/18/2012	1550	GW	80	80		3						
	SG102I	6/18/2012	1430	GW	21.8	21,8		3						
	SG106D	6/18/2012	1710	GW	41.8	41.8		1						
	SG106I	6/18/2012	1705	GW	25.3	25.3		3						
	SG108I	6/18/2012	1645	GW	26.9	26,9		3						
	SG111D	6/18/2012	1620	GW	44.2	44,2		3						

9671 /1317054/0694166-79

Shipping Group	:1	Chai	n of (Custo	157	Reli	nquished	Ву:	Date /	Time	Re	ceived By	:	Date / Time
SANBORN	HEAD	To:			•	Juss	infu	ru	649112	1830				
1 17	TT 1 0			ratories, In		1					\	\		
	High St 1, ME 04101		New Ho PO Box 1		;		$\overline{}$					$\overline{}$		
P (207	761-9300			17605-242	25							_		
F (207	7) 761-9339		(717) 65 (717) 65								2	2		Cholis aso
All Andreas	Project Inforn						iverable i	Informa	tion					Other Information
Name:	Supplemental VI Asse	essment			TAT:	Standard	<u> </u>					SGD Con	nplete?	Yes
Number:	2732.05			Delivery I	Method:	Email					Interna	l COC Red	quired?	No
Location:	Manassas, Virginia		•	Ei	nail To:	ebradstro	eet@sanb	ornhead	.com		Site	Specific Q	A/QC?	DUPS
Manager:	Erica Bradstreet		Data	Package	Option:									
Account #:				ED	D Type:	SHDMS						_		IBM Manassas VOCs list 6396
Quote #:			•		ч	: qpda	(p)	5						
Lab ID (Lab Use Only)	Sample Name	Collect Date	ion Time	Matrix	Тор Depth	Bottom Depth	Filtered? (Eield / Lab)	8260B/HCI						Remarks:
	SG111I	6/18/2012	1615	GW	30.3	30,3		1						
	SG113D	6/18/2012	1540	GW	42.2	42,2		1						
	SG1131	6/18/2012	1515	GW	24.4	24 4		3						
	TB1	6/12/2012		AQ				2						
			_			1								

🔅 eurofins	Lancaster Laboratories
------------	---------------------------

Environmental Sample Administration Receipt Documentation Log

Client/Project: Scinborn Head				Shippin	g Containe	er Sealed: (YES	NO NO	
Date o	f Receipt: 🧘	20/12		Custody Seal Present *: YES NO				
Time o	f Receipt:	920				act unless otherwise	noted in the	
Source	Code:	50-1		Package	iscrepancy se	Chilled	Not Chilled	
				, uokagi				
	Temperature of Shipping Containers							
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments	
1	0129951	1.8	TB	WI	Y	3		
2	Ì	1. q.,	.i			ì		
3		6.7						
4		24"						
5	V	1.3		\rightarrow	V	V		
6								
Numbe	r of Trip Blank	s received <u>N</u>	OT listed on chain	of custody:	\bigcirc	4.0244.4.0		
Paperwork Discrepancy/Unpacking Problems: 357-6013A 6 1912 930= 1357-601313 6 1912 930 1857-601316 6 1912 937 1857-601316 6 1912 937 1857-601316 6 1912 937 1857-601316 6 1912 937 1857-601316 6 1912 937 1857-601316 6 1912 937 1857-601316 1857-601316 1857-60								
624/34 time= 1545, tripliank vials have no labels								
Unpacker Signature/Emp#: 2308 Date/Time: 42012 1324								

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

_		•	=
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX C.2

JULY 2012 CHARACTERIZATION SAMPLING

7/26/2012 Ms. Lisa Jacob Sanborn, Head & Associates 1 Technology Park Drive

Westford MA 01886

Project Name: Supplemental VI Assessment

Scott

Project #: 2732.05 Workorder #: 1207235

Dear Ms. Lisa Jacob

The following report includes the data for the above referenced project for sample(s) received on 7/13/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

WORK ORDER #: 1207235

Work Order Summary

CLIENT: Ms. Lisa Jacob BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

1 Technology Park Drive 20 Foundry Street Westford, MA 01886 Concord, NH 03301

PHONE: 978-392-0900 **P.O.** # 2732.00

FAX: PROJECT # 2732.05 Supplemental VI Assessment

DATE RECEIVED: 07/13/2012 **CONTACT:** Ausha Scott 07/26/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	DUP1	Modified TO-15	6.0 "Hg	5 psi
02A	EB1	Modified TO-15	4.6 "Hg	5 psi
03A	SG114	Modified TO-15	6.0 "Hg	5 psi
04A	SG118S	Modified TO-15	7.2 "Hg	5 psi
05A	SG119	Modified TO-15	8.4 "Hg	5 psi
06A	SG120I	Modified TO-15	5.6 "Hg	5 psi
06AA	SG120I Lab Duplicate	Modified TO-15	5.6 "Hg	5 psi
07A	SG120S	Modified TO-15	6.6 "Hg	5 psi
08A	SG121I	Modified TO-15	6.2 "Hg	5 psi
09A	SG121S	Modified TO-15	7.6 "Hg	5 psi
10A	SG122	Modified TO-15	5.6 "Hg	5 psi
11A	SG123S	Modified TO-15	6.0 "Hg	5 psi
12A	SG31S	Modified TO-15	6.6 "Hg	5 psi
12AA	SG31S Lab Duplicate	Modified TO-15	6.6 "Hg	5 psi
13A	Lab Blank	Modified TO-15	NA	NA
13B	Lab Blank	Modified TO-15	NA	NA
14A	CCV	Modified TO-15	NA	NA
14B	CCV	Modified TO-15	NA	NA
15A	LCS	Modified TO-15	NA	NA
15AA	LCSD	Modified TO-15	NA	NA
15B	LCS	Modified TO-15	NA	NA
15BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY: DATE: 07/26/12

Technical Director

Certfication numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12.

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1207235

Twelve 1 Liter Summa Canister (100% Certified) samples were received on July 13, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) information for sample SG119 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Analytical Notes

Dilution was performed on samples SG120I, SG120I Lab Duplicate, SG31S and SG31S Lab Duplicate due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: DUP1
Lab ID#: 1207235-01A
No Detections Were Found.

Client Sample ID: EB1

Lab ID#: 1207235-02A

No Detections Were Found.

Client Sample ID: SG114

Lab ID#: 1207235-03A

No Detections Were Found.

Client Sample ID: SG118S Lab ID#: 1207235-04A

Amount Rpt. Limit Amount Rpt. Limit Compound (ug/m3) (ug/m3) (ppbv) (ppbv) Vinyl Chloride 0.88 12 2.2 30 Tetrachloroethene 0.88 1.4 6.0 9.8

Client Sample ID: SG119

Lab ID#: 1207235-05A

No Detections Were Found.

Client Sample ID: SG120I Lab ID#: 1207235-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	16	78	89	420
Tetrachloroethene	16	4400	110	30000

Client Sample ID: SG120I Lab Duplicate

Lab ID#: 1207235-06AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	16	84	89	450

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG120I Lab Duplicate

Lab ID#: 1207235-06AA

Tetrachloroethene 16 4100 110 28000

Client Sample ID: SG120S

Lab ID#: 1207235-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	0.86	8.2	5.8	56

Client Sample ID: SG121I

Lab ID#: 1207235-08A
No Detections Were Found.

Client Sample ID: SG121S

Lab ID#: 1207235-09A
No Detections Were Found.

Client Sample ID: SG122

Lab ID#: 1207235-10A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	0.82	9.4	5.6	64

Client Sample ID: SG123S

Lab ID#: 1207235-11A

Compound	Kpt. Limit (ppbv)	Amount (vdqq)	Kpt. Limit (ug/m3)	Amount (ug/m3)	
Tetrachloroethene	0.84	19	5.7	130	_

Client Sample ID: SG31S

Lab ID#: 1207235-12A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Vinyl Chloride	17	450	44	1200

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG31S

Lab ID#: 1207235-12A				
trans-1,2-Dichloroethene	17	340	68	1300
cis-1,2-Dichloroethene	17	3800	68	15000
Trichloroethene	17	690	92	3700
Tetrachloroethene	17	210	120	1400

Client Sample ID: SG31S Lab Duplicate

Lab ID#: 1207235-12AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	17	410	44	1000
trans-1,2-Dichloroethene	17	310	68	1200
cis-1,2-Dichloroethene	17	3600	68	14000
Trichloroethene	17	690	92	3700
Tetrachloroethene	17	230	120	1600

Client Sample ID: DUP1 Lab ID#: 1207235-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071813	Date of Collection: 7/11/12 11:51:00 AM
Dil. Factor:	1.68	Date of Analysis: 7/18/12 05:44 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	Not Detected	5.7	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: EB1 Lab ID#: 1207235-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071909	Date of Collection: 7/12/12 12:15:00 PM
Dil. Factor:	2.50	Date of Analysis: 7/19/12 04:57 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Trichloroethene	1.2	Not Detected	6.7	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Tetrachloroethene	1.2	Not Detected	8.5	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: SG114 Lab ID#: 1207235-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071814	Date of Collection: 7/11/12 11:51:00 AM
Dil. Factor:	1.68	Date of Analysis: 7/18/12 06:21 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	Not Detected	5.7	Not Detected

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	79	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: SG118S Lab ID#: 1207235-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071815	Date of Collection: 7/9/12 4:07:00 PM
Dil. Factor:	1.76	Date of Analysis: 7/18/12 06:57 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.88	12	2.2	30
trans-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.88	Not Detected	3.5	Not Detected
Trichloroethene	0.88	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	0.88	Not Detected	4.8	Not Detected
Tetrachloroethene	0.88	1.4	6.0	9.8

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SG119 Lab ID#: 1207235-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071910	Date of Collection: 7/9/12 4:55:00 PM
Dil. Factor:	2.62	Date of Analysis: 7/19/12 05:34 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.2	Not Detected
Trichloroethene	1.3	Not Detected	7.0	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Tetrachloroethene	1.3	Not Detected	8.9	Not Detected

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: SG120I Lab ID#: 1207235-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071816	Date of Collection: 7/9/12 3:58:00 PM
Dil. Factor:	33.0	Date of Analysis: 7/18/12 07:34 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	16	Not Detected	42	Not Detected
trans-1,2-Dichloroethene	16	Not Detected	65	Not Detected
cis-1,2-Dichloroethene	16	Not Detected	65	Not Detected
Trichloroethene	16	78	89	420
1,1,2-Trichloroethane	16	Not Detected	90	Not Detected
Tetrachloroethene	16	4400	110	30000

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG120I Lab Duplicate Lab ID#: 1207235-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071831	Date of Collection: 7/9/12 3:58:00 PM
Dil. Factor:	33.0	Date of Analysis: 7/19/12 04:48 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	16	Not Detected	42	Not Detected
trans-1,2-Dichloroethene	16	Not Detected	65	Not Detected
cis-1,2-Dichloroethene	16	Not Detected	65	Not Detected
Trichloroethene	16	84	89	450
1,1,2-Trichloroethane	16	Not Detected	90	Not Detected
Tetrachloroethene	16	4100	110	28000

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	89	70-130
1,2-Dichloroethane-d4	89	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: SG120S Lab ID#: 1207235-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071818	Date of Collection: 7/9/12 3:57:00 PM
Dil. Factor:	1.72	Date of Analysis: 7/18/12 08:48 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.86	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.86	Not Detected	3.4	Not Detected
Trichloroethene	0.86	Not Detected	4.6	Not Detected
1,1,2-Trichloroethane	0.86	Not Detected	4.7	Not Detected
Tetrachloroethene	0.86	8.2	5.8	56

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	89	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: SG121I Lab ID#: 1207235-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071819	Date of Collection: 7/9/12 3:18:00 PM
Dil. Factor:	1.69	Date of Analysis: 7/18/12 09:25 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.2	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.4	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	Not Detected	5.7	Not Detected

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SG121S Lab ID#: 1207235-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071821	Date of Collection: 7/9/12 3:17:00 PM
Dil. Factor:	1.79	Date of Analysis: 7/18/12 10:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.90	Not Detected	2.3	Not Detected
trans-1,2-Dichloroethene	0.90	Not Detected	3.5	Not Detected
cis-1,2-Dichloroethene	0.90	Not Detected	3.5	Not Detected
Trichloroethene	0.90	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	0.90	Not Detected	4.9	Not Detected
Tetrachloroethene	0.90	Not Detected	6.1	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	83	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: SG122 Lab ID#: 1207235-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071822	Date of Collection: 7/11/12 11:03:00 AM
Dil. Factor:	1.65	Date of Analysis: 7/18/12 11:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.82	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.82	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.82	Not Detected	3.3	Not Detected
Trichloroethene	0.82	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.82	Not Detected	4.5	Not Detected
Tetrachloroethene	0.82	9.4	5.6	64

Surrogates	%Recovery	Limits
Toluene-d8	82	70-130
1,2-Dichloroethane-d4	82	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: SG123S Lab ID#: 1207235-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071823	Date of Collection: 7/11/12 11:04:00 AM
Dil. Factor:	1.68	Date of Analysis: 7/18/12 11:52 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.84	Not Detected	2.1	Not Detected
trans-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
cis-1,2-Dichloroethene	0.84	Not Detected	3.3	Not Detected
Trichloroethene	0.84	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.84	Not Detected	4.6	Not Detected
Tetrachloroethene	0.84	19	5.7	130

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	90	70-130
1,2-Dichloroethane-d4	80	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: SG31S Lab ID#: 1207235-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071911	Date of Collection: 7/12/12 9:42:00 AM
Dil. Factor:	34.4	Date of Analysis: 7/19/12 06:11 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	17	450	44	1200
trans-1,2-Dichloroethene	17	340	68	1300
cis-1,2-Dichloroethene	17	3800	68	15000
Trichloroethene	17	690	92	3700
1,1,2-Trichloroethane	17	Not Detected	94	Not Detected
Tetrachloroethene	17	210	120	1400

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SG31S Lab Duplicate Lab ID#: 1207235-12AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071912	Date of Collection: 7/12/12 9:42:00 AM
Dil. Factor:	34.4	Date of Analysis: 7/19/12 06:48 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	17	410	44	1000
trans-1,2-Dichloroethene	17	310	68	1200
cis-1,2-Dichloroethene	17	3600	68	14000
Trichloroethene	17	690	92	3700
1,1,2-Trichloroethane	17	Not Detected	94	Not Detected
Tetrachloroethene	17	230	120	1600

••	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1207235-13A

EPA METHOD TO-15 GC/MS FULL SCAN

	Dil Eactor:		Date of Analysis: 7/18/12 01:07 PM Amount Rpt. Limit Amount	
T File Name: OU/1XU/ Date of Collection, NA	File Name:	0071807	Date of Collection: NA	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Container Type: NA - Not Applicable

21.		Method Limits	
Surrogates	%Recovery		
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	83	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: Lab Blank Lab ID#: 1207235-13B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	o071907	Dat	te of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 7/19/12 02:57 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Container Type: NA - Not Applicable

, , , , , , , , , , , , , , , , , , ,		Method Limits	
Surrogates	%Recovery		
Toluene-d8	86	70-130	
1,2-Dichloroethane-d4	88	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: CCV Lab ID#: 1207235-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/18/12 09:38 AM

Compound	%Recovery
Vinyl Chloride	103
trans-1,2-Dichloroethene	108
cis-1,2-Dichloroethene	113
Trichloroethene	101
1,1,2-Trichloroethane	113
Tetrachloroethene	112

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	81	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: CCV Lab ID#: 1207235-14B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 11:54 AM

Compound	%Recovery
Vinyl Chloride	104
trans-1,2-Dichloroethene	106
cis-1,2-Dichloroethene	110
Trichloroethene	102
1,1,2-Trichloroethane	113
Tetrachloroethene	109

21		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: LCS Lab ID#: 1207235-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/18/12 10:36 AM

Compound	%Recovery
Vinyl Chloride	103
trans-1,2-Dichloroethene	121
cis-1,2-Dichloroethene	109
Trichloroethene	103
1,1,2-Trichloroethane	115
Tetrachloroethene	114

, , , , , , , , , , , , , , , , , , ,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	88	70-130	
1,2-Dichloroethane-d4	81	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCSD Lab ID#: 1207235-15AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/18/12 11:13 AM

Compound	%Recovery
Vinyl Chloride	96
trans-1,2-Dichloroethene	115
cis-1,2-Dichloroethene	106
Trichloroethene	100
1,1,2-Trichloroethane	108
Tetrachloroethene	107

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	79	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCS Lab ID#: 1207235-15B

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071903 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 12:30 PM

Compound	%Recovery
Vinyl Chloride	114
trans-1,2-Dichloroethene	124
cis-1,2-Dichloroethene	109
Trichloroethene	107
1,1,2-Trichloroethane	108
Tetrachloroethene	112

, , , , , , , , , , , , , , , , , , ,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: LCSD Lab ID#: 1207235-15BB

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 0071904 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 01:07 PM

Compound	%Recovery
Vinyl Chloride	109
trans-1,2-Dichloroethene	121
cis-1,2-Dichloroethene	108
Trichloroethene	98
1,1,2-Trichloroethane	112
Tetrachloroethene	106

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	92	70-130	
1,2-Dichloroethane-d4	87	70-130	
4-Bromofluorobenzene	98	70-130	

7/30/2012 Ms. Lisa Jacob Sanborn, Head & Associates 1 Technology Park Drive

Westford MA 01886

Project Name: Supplemental VI Assessment

Scott

Project #: 2732.05 Workorder #: 1207320

Dear Ms. Lisa Jacob

The following report includes the data for the above referenced project for sample(s) received on 7/18/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Ausha Scott at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ausha Scott

Project Manager

05AA

LCSD

WORK ORDER #: 1207320

Work Order Summary

CLIENT: Ms. Lisa Jacob BILL TO: Accounts Payable

Sanborn, Head & Associates Sanborn, Head & Associates

1 Technology Park Drive 20 Foundry Street Westford, MA 01886 Concord, NH 03301

PHONE: 978-392-0900 **P.O.** # 2732.00

FAX: PROJECT # 2732.05 Supplemental VI Assessment

DATE RECEIVED: 07/18/2012 **CONTACT:** Ausha Scott 07/30/2012

RECEIPT **FINAL** FRACTION# **NAME** TEST VAC./PRES. **PRESSURE** 01A SG116 Modified TO-15 8.5 "Hg 5 psi Modified TO-15 9.0 "Hg 02A SG31D 5 psi 9.0 "Hg Modified TO-15 02AA SG31D Lab Duplicate 5 psi 03A Lab Blank Modified TO-15 NA NA **CCV** Modified TO-15 04A NA NA 05A LCS Modified TO-15 NA NA

Modified TO-15

NA

NA

	fleide pages	
CERTIFIED BY:		DATE: $\frac{07/30/12}{}$

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins | Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 Sanborn, Head & Associates Workorder# 1207320

Two 1 Liter Summa Canister (100% Certified) samples were received on July 18, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample SG31D due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG116

Lab ID#: 1207320-01A

No Detections Were Found.

Client Sample ID: SG31D Lab ID#: 1207320-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	_
Vinyl Chloride	1.3	390	3.2	1000	
trans-1,2-Dichloroethene	1.3	38	5.0	150	
cis-1,2-Dichloroethene	1.3	470	5.0	1900	
Trichloroethene	1.3	50	6.8	270	
Tetrachloroethene	1.3	6.7	8.6	46	

Client Sample ID: SG31D Lab Duplicate

Lab ID#: 1207320-02AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	410	3.3	1000
trans-1,2-Dichloroethene	1.3	39	5.1	150
cis-1,2-Dichloroethene	1.3	500	5.1	2000
Trichloroethene	1.3	54	6.9	290
Tetrachloroethene	1.3	7.7	8.7	52

Client Sample ID: SG116 Lab ID#: 1207320-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071913	Date of Collection: 7/16/12 11:45:00 AM
Dil. Factor:	1.87	Date of Analysis: 7/19/12 03:49 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.94	Not Detected	2.4	Not Detected
trans-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected
cis-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected
Trichloroethene	0.94	Not Detected	5.0	Not Detected
1,1,2-Trichloroethane	0.94	Not Detected	5.1	Not Detected
Tetrachloroethene	0.94	Not Detected	6.3	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	95	0-130	
1,2-Dichloroethane-d4	101	0-130	
4-Bromofluorobenzene	82	0-130	

Client Sample ID: SG31D Lab ID#: 1207320-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071914	Date of Collection: 7/16/12 2:46:00 PM
Dil. Factor:	2.55	Date of Analysis: 7/19/12 04:24 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	390	3.2	1000
trans-1,2-Dichloroethene	1.3	38	5.0	150
cis-1,2-Dichloroethene	1.3	470	5.0	1900
Trichloroethene	1.3	50	6.8	270
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	6.7	8.6	46

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Limits	
Toluene-d8	91	0-130	
1,2-Dichloroethane-d4	104	0-130	
4-Bromofluorobenzene	81	0-130	

Client Sample ID: SG31D Lab Duplicate Lab ID#: 1207320-02AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071915	Date of Collection: 7/16/12 2:46:00 PM
Dil. Factor:	2.56	Date of Analysis: 7/19/12 05:40 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	410	3.3	1000
trans-1,2-Dichloroethene	1.3	39	5.1	150
cis-1,2-Dichloroethene	1.3	500	5.1	2000
Trichloroethene	1.3	54	6.9	290
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	7.7	8.7	52

Container Type: 1 Liter Summa Canister (100% Certified)

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	91	0-130	
1,2-Dichloroethane-d4	103	0-130	
4-Bromofluorobenzene	83	0-130	

Client Sample ID: Lab Blank Lab ID#: 1207320-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071912	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 03:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	94	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	80	70-130	

Client Sample ID: CCV Lab ID#: 1207320-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3071903 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/19/12 10:05 AM

Compound	%Recovery
Vinyl Chloride	112
trans-1,2-Dichloroethene	108
cis-1,2-Dichloroethene	99
Trichloroethene	101
1,1,2-Trichloroethane	102
Tetrachloroethene	94

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	91	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	83	70-130	

Client Sample ID: LCS Lab ID#: 1207320-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071904	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 10:42 AM

Compound	%Recovery
Vinyl Chloride	117
trans-1,2-Dichloroethene	125
cis-1,2-Dichloroethene	103
Trichloroethene	104
1,1,2-Trichloroethane	106
Tetrachloroethene	97

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	90	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	84	70-130	

Client Sample ID: LCSD Lab ID#: 1207320-05AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3071907	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/19/12 12:10 PM

Compound	%Recovery
Vinyl Chloride	116
trans-1,2-Dichloroethene	126
cis-1,2-Dichloroethene	103
Trichloroethene	104
1,1,2-Trichloroethane	104
Tetrachloroethene	96

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	91	70-130	
1,2-Dichloroethane-d4	107	70-130	
4-Bromofluorobenzene	84	70-130	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

July 23, 2012

Project: Supplemental VI Assessment

Submittal Date: 07/12/2012 Group Number: 1321595 SDG: MAN27 PO Number: 2732.05 State of Sample Origin: VA

Client Sample Description	<u>Lancaster Labs (LLI) #</u>
D86 Water	6717575
FB1 Water	6717576
SG115I Water	6717577
SG115S Water	6717578
SG11822 Water	6717579
SG118I Water	6717580
SG123I Water	6717581
SG31D Water	6717582
SG31I Water	6717583
SG117 Water	6717584
SG31 Water	6717585
TB4 Water	6717586

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Sanborn Head and Assoc Attn: Erica Bradstreet

COPY TO

1 COPY TO Data Package Group

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Respectfully Submitted,

Nicole L. Maljovec

Mil 2 Mil

Senior Specialist Group Leader

(717) 556-7259

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: D86 Water

LLI Sample # WW 6717575 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Account # 09

Collected: 07/11/2012 14:53

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20 Reported: 07/23/2012 20:10

--D86 SDG#: MAN27-01

Column	CAT No.	Analysis Name		CAS Numbe	r	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
0.2898 Benzene	GC/MS	Volatiles	SW-846	8260B 25mL		ug/l		ug/l	ug/l	
Commonstance			purge							
Description	02898	Benzene	_	71-43-2		1.0	U	1.0	0.2	2
December 75-27-4	02898	Bromobenzene		108-86-1		1.0	U	1.0	0.2	2
0.2898 Bromochame	02898	Bromochloromethane		74-97-5		1.0	U	1.0	0.2	2
Description	02898	Bromodichloromethane		75-27-4		0.4	J	1.0	0.2	2
0.2898 n-Butylbenzene	02898	Bromoform		75-25-2		1.0	U	1.0	0.2	2
0.2898 sec-flutylbenzene	02898	Bromomethane		74-83-9		1.0	U	1.0	0.2	2
Case	02898	n-Butylbenzene		104-51-8		1.0	U	1.0	0.2	2
02898 Carbon Tetrachloride 56-23-5 1.0 U 1.0 0.2 2 02898 Chloroethane 75-00-3 1.0 U 1.0 0.2 2 02898 Chloroform 67-66-3 2.4 1.0 0.2 2 02898 Chlorotoluene 74-87-3 1.0 U 1.0 0.4 2 02898 1.2-bloromo-3-chloropropane 96-12-8 1.0 U 1.0 0.2 2 02898 1.2-bibromo-3-chloropropane 96-12-8 1.0 U 1.0 0.4 2 02898 1.2-bibromo-thane 106-43-4 1.0 U 1.0 0.4 2 02898 1.2-bibromo-thane 106-43-4 1.0 U 1.0 0.2 2 02898 1.2-bibromo-thane 106-43-4 1.0 U 1.0 0.2 2 02898 1.2-bibromo-thane 106-45-3 1.0 U 1.0 0.2 2 0	02898	sec-Butylbenzene		135-98-8		1.0	U	1.0	0.2	2
108.98 Chloropethane	02898	tert-Butylbenzene		98-06-6		1.0	U	1.0	0.2	2
Company Comp	02898	Carbon Tetrachloride		56-23-5		1.0	U	1.0	0.2	2
0.288	02898	Chlorobenzene		108-90-7		1.0	U	1.0	0.2	2
Case	02898	Chloroethane		75-00-3		1.0	U	1.0	0.2	2
0.288	02898	Chloroform		67-66-3		2.4		1.0	0.2	2
0.288	02898	Chloromethane		74-87-3		1.0	U	1.0	0.4	2
Description	02898	2-Chlorotoluene		95-49-8		1.0	U	1.0	0.2	2
02898 Dibromochloromethane 124-48-1 1.0 U 1.0 0.2 2 2 2 2 2 2 2 2 2	02898	4-Chlorotoluene		106-43-4		1.0	U	1.0	0.2	
0.2898 1,2-Dibromoethane	02898			96-12-8		1.0	U	1.0	0.4	2
02898 Dibromomethame	02898	Dibromochloromethane		124-48-1		1.0	U	1.0	0.2	2
02898 1,2-Dichlorobenzene	02898	1,2-Dibromoethane		106-93-4		1.0	U	1.0	0.2	
02898 1,3-Dichlorobenzene 541-73-1 1.0 U 1.0 0.2 2 02898 1,4-Dichlorobenzene 166-46-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethane 75-71-8 1.0 U 1.0 0.2 2 02898 1,2-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethene 75-35-4 1.0 U 1.0 0.2 2 02898 1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 2000 1.2-Dichloroethene 156-60-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropane 563-58-6 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 1061-01-5 1.0 U 1.0 0.2 </td <td>02898</td> <td>Dibromomethane</td> <td></td> <td>74-95-3</td> <td></td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>0.2</td> <td></td>	02898	Dibromomethane		74-95-3		1.0	U	1.0	0.2	
02898 1,4-Dichlorobenzene 106-46-7 1.0 U 1.0 0.2 2 02898 Dichlorodifiluoromethane 75-71-8 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 1,2-Dichloroethene 156-69-2 1.6 1.0 0.2 2 02898 1,3-Dichloropropane 18-6-7-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 563-58-6 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2										
02898 Dichlorodifluoromethane 75-71-8 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,2-Dichloroethene 75-35-4 1.0 U 1.0 0.2 2 02898 cis-1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 trans-1,2-Dichloroethene 156-60-5 1.0 U 1.0 0.2 2 02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,2-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2	02898			541-73-1		1.0		1.0	0.2	
02898 1,1-Dichloroethane 75-34-3 1,0 U 1.0 0.2 2 02898 1,2-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethene 75-35-4 1.0 U 1.0 0.2 2 02898 1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 1,2-Dichloropropane 156-60-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropane 503-58-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2		•								
02898 1,2-Dichloroethane 107-06-2 1.0 U 1.0 0.2 2 02898 1,1-Dichloroethene 75-35-4 1.0 U 1.0 0.2 2 02898 cis-1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 54-20-7 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 Ethylbenzene 1004-1-4 1.0 U 1.0 0.2 2 <t< td=""><td></td><td></td><td>ane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			ane							
02898 1,1-Dichloroethene 75-35-4 1.0 U 1.0 0.2 2 02898 cis-1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 trans-1,2-Dichloroethene 156-60-5 1.0 U 1.0 0.2 2 02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		•								
02898 cis-1,2-Dichloroethene 156-59-2 1.6 1.0 0.2 2 02898 trans-1,2-Dichloroethene 156-60-5 1.0 U 1.0 0.2 2 02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0		•					-			
02898 trans-1,2-Dichloroethene 156-60-5 1.0 U 1.0 0.2 2 02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0		•					U			
02898 1,2-Dichloropropane 78-87-5 1.0 U 1.0 0.2 2 02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.2 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Propropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 P-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2										
02898 1,3-Dichloropropane 142-28-9 1.0 U 1.0 0.2 2 02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Jsopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 Jsopropylbenzene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 <td></td> <td></td> <td>hene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			hene							
02898 2,2-Dichloropropane 594-20-7 1.0 U 1.0 0.2 2 02898 1,1-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.4 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 <td></td>										
02898 1,1-Dichloropropene 563-58-6 1.0 U 1.0 0.2 2 02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 P-Isopropylbenzene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
02898 cis-1,3-Dichloropropene 10061-01-5 1.0 U 1.0 0.2 2 02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Hexachlorobutadiene 98-82-8 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 P-Isopropylbenzene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
02898 trans-1,3-Dichloropropene 10061-02-6 1.0 U 1.0 0.2 2 02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898					_					
02898 Ethylbenzene 100-41-4 1.0 U 1.0 0.2 2 02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropylbenzene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.4 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 <td></td>										
02898 Freon 113 76-13-1 1.0 U 1.0 0.4 2 02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 2 0289			opene		ь					
02898 Hexachlorobutadiene 87-68-3 1.0 U 1.0 0.2 2 02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 2 02898 Tetrachloroethene 127-18-4 450 1 0 2.0 2		4								
02898 Isopropylbenzene 98-82-8 1.0 U 1.0 0.2 2 02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 2 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2										
02898 p-Isopropyltoluene 99-87-6 1.0 U 1.0 0.2 2 02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 <										
02898 Methylene Chloride 75-09-2 1.0 U 1.0 0.4 2 02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethane 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2										
02898 Naphthalene 91-20-3 1.0 U 1.0 0.2 2 02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2										
02898 n-Propylbenzene 103-65-1 1.0 U 1.0 0.2 2 02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2		-								
02898 Styrene 100-42-5 1.0 U 1.0 0.2 2 02898 1,1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2		-								
02898 1,1,1,2-Tetrachloroethane 630-20-6 1.0 U 1.0 0.2 2 02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2										
02898 1,1,2,2-Tetrachloroethane 79-34-5 1.0 U 1.0 0.2 2 02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2		2	thane							
02898 Tetrachloroethene 127-18-4 450 10 2.0 20 02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2										
02898 Tetrahydrofuran 109-99-9 10 U 10 4.0 2 02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2			CIIGIIC				J			
02898 Toluene 108-88-3 0.3 J 1.0 0.2 2 02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2							IJ			
02898 1,2,3-Trichlorobenzene 87-61-6 1.0 U 1.0 0.2 2		2								
			ne							

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: D86 Water

LLI Sample # WW 6717575 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 14:53

Houston TX 77008

Reported: 07/23/2012 20:10

--D86 SDG#: MAN27-01

CAT No.	Analysis Name		CAS	Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethar	ne	71-	55-6	1.0	U	1.0	0.2	2
02898	1,1,2-Trichloroethar	ne	79-	00-5	1.0	U	1.0	0.2	2
02898	Trichloroethene		79-	01-6	5.6		1.0	0.2	2
02898	Trichlorofluorometha	ane	75-	69-4	1.0	U	1.0	0.2	2
02898	1,2,3-Trichloropropa	ane	96-	18-4	2.0	U	2.0	0.6	2
02898	1,2,4-Trimethylbenze	ene	95-	63-6	1.0	U	1.0	0.2	2
02898	1,3,5-Trimethylbenze	ene	108	-67-8	1.0	U	1.0	0.2	2
02898	Vinyl Chloride		75-	01-4	1.0	U	1.0	0.2	2
02898	Xylene (Total)		133	0-20-7	1.0	U	1.0	0.2	2

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Gample	Analweie	Pecord
Haboracory	Sambre	AHALYSIS	Kecora

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 13:39	Kerri E Legerlotz	2
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 14:01	Kerri E Legerlotz	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 13:39	Kerri E Legerlotz	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C122011AA	07/19/2012 14:01	Kerri E Legerlotz	20

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: FB1 Water

LLI Sample # WW 6717576 LLI Group # 1321595 # 09671 Account

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Collected: 07/11/2012 17:45

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

MNNF1 SDG#: MAN27-02FB

CAT	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	IJ	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	Ū	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	Ū	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	Ū	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	U	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898 02898	1,2,3-Trichlorobenzene	87-61-6	0.5 0.5	U U	0.5	0.1	1 1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	Τ

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: FB1 Water

LLI Sample # WW 6717576 LLI Group # 1321595 # 09671 Account

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 17:45

Houston TX 77008

Reported: 07/23/2012 20:10

MNNF1 SDG#: MAN27-02FB

CAT No.	Analysis Name		CAS	S Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	е	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	е	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometha	ne	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ne	96-	-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ne	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ne	108	3-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA		Kerri E Legerlotz	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 12:55	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG115I Water

LLI Sample # WW 6717577 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/10/2012 12:19

Houston TX 77008

Reported: 07/23/2012 09:20

SG15I SDG#: MAN27-03

CAT No.	Analysis Name	CAS Number	As Rec Result	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B 25mL	ug/l		ug/l	ug/l	
	purge	1					
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.2	J	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	2.9		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropan		0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	IJ	0.5	0.1	1
02898 02898	1,2-Dichlorobenzene	95-50-1 541-73-1	0.5 0.5	U	0.5 0.5	0.1 0.1	1 1
02898	1,3-Dichlorobenzene 1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	Ū	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	IJ	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.2	J	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	IJ	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	Ū	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.6	***	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	J	0.5	0.1	1 1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	Т

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG115I Water

LLI Sample # WW 6717577 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/10/2012 12:19

Houston TX 77008

Reported: 07/23/2012 20:10

SG15I SDG#: MAN27-03

CAT No.	Analysis Name		CAS	3 Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	e	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	е	79-	00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	J	0.5	0.1	1
02898	Trichlorofluorometha	ne	75-	-69-4	0.1	J	0.5	0.1	1
02898	1,2,3-Trichloropropa	ne	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ne	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ne	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.2	J	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122011AA	07/19/2012 14:23	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122011AA	07/19/2012 14:23	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG115S Water

LLI Sample # WW 6717578 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20

Collected: 07/10/2012 11:41

Reported: 07/23/2012 20:10

SG15S SDG#: MAN27-04

CAT No.	Analysis Name	CAS Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.2	J	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.1	J	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	IJ	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	IJ	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	Ū	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	1.9	_	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	IJ	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	Ū	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	Ū	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	IJ	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	IJ	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	Ū	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	Ū	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.2	J	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	1.4		0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG115S Water

LLI Sample # WW 6717578 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc

Collected: 07/10/2012 11:41

1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

SDG#: MAN27-04

SG15S

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,1,1-Trichloroethan	ne	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	ne	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometh	ane	75-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-63-6	0.2	J	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		1330-20-7	1.2		0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122011AA	07/19/2012 14:45	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122011AA	07/19/2012 14:45	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG11822 Water

LLI Sample # WW 6717579 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street

Collected: 07/10/2012 10:35

Houston TX 77008

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

SG182 SDG#: MAN27-05

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
00,110	purge	02002 232	-		<u>.</u>		
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	IJ	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	Ū	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	IJ	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	4.4		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane Tetrachloroethene	79-34-5	0.5	U	0.5	0.1	1 1
02898		127-18-4	1.7	TT	0.5	0.1	
02898 02898	Tetrahydrofuran Toluene	109-99-9	5.0	U J	5.0	2.0	1 1
02898		108-88-3 87-61-6	0.4	IJ	0.5 0.5	0.1 0.1	1
02898	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1
02070	1,2,4-IIICIIIOTODEIIZEIIE	170-07-1	0.5	U	0.5	U.1	Τ

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG11822 Water

LLI Sample # WW 6717579 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Houston TX 77008

Reported: 07/23/2012 20:10

Collected: 07/10/2012 10:35

SG182 SDG#: MAN27-05

CAT No.	Analysis Name		alysis Name CAS Number Result			As Received Limit of Quantitation*	•	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B 2	5mL	ug/l		ug/l		ug/l	
		purge								
02898	1,1,1-Trichloroetha	ne	71-55	5-6	0.5	U	0.5		0.1	1
02898	1,1,2-Trichloroetha	ne	79-00) - 5	0.5	U	0.5		0.1	1
02898	Trichloroethene		79-01	L-6	0.5	U	0.5		0.1	1
02898	Trichlorofluorometh	ane	75-69	9-4	0.5	U	0.5		0.1	1
02898	1,2,3-Trichloroprop	ane	96-18	3-4	1.0	U	1.0		0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63	3 - 6	0.5	U	0.5		0.1	1
02898	1,3,5-Trimethylbenz	ene	108-6	57-8	0.5	U	0.5		0.1	1
02898	Vinyl Chloride		75-01	L-4	0.5	U	0.5		0.1	1
02898	Xylene (Total)		1330-	20-7	0.4	J	0.5		0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Gample	Analweie	Pecord
Laboratory	Sample	AHAIVSIS	Kecora

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122011AA	07/19/2012 15:08	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122011AA	07/19/2012 15:08	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG118I Water

LLI Sample # WW 6717580 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc

Collected: 07/10/2012 11:15

1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20 Reported: 07/23/2012 20:10

SG18I SDG#: MAN27-06

CAT No.	Analysis Name	CAS Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	J	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	IJ	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	5.4	Ü	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	IJ	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	IJ	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	IJ	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	IJ	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	II	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	Ū	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	IJ	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	IJ	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.6	O	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	IJ	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	Ū	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	IJ	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	Ū	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	IJ	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.1	J	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	IJ	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	Ū	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	IJ	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	IJ	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	20	5	5.0	1.0	10
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.7	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.7	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1
02030	T'7'4 ITTCHTOTONGHYCHC	120-02-1	٠. ٠	0	· · ·	U.1	±

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG118I Water

LLI Sample # WW 6717580 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/10/2012 11:15

Houston TX 77008

Reported: 07/23/2012 20:10

SG18I SDG#: MAN27-06

CAT No.	Analysis Name		CAS	Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	ne	71-	55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	ne	79-	00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	J	0.5	0.1	1
02898	Trichlorofluorometha	ane	75-	69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-	63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.7		0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Gample	Analweie	Pecord
Haboracory	Sambre	AHALYSIS	Kecora

					_				
CZ No	AT o.	Analysis Name		Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02	2898	Former 8021 Manassas, V VOCs	A	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 15:30	Kerri E Legerlotz	1
02	2898	Former 8021 Manassas, V VOCs	A	SW-846 8260B 25mL purge	1	C122022AA	07/20/2012 17:28	Kerri E Legerlotz	10
0.2	1163	GC/MS VOA Water Prep		SW-846 5030B	1	C122011AA	07/19/2012 15:30	Kerri E Legerlotz	1
0.2	1163	GC/MS VOA Water Prep		SW-846 5030B	2	C122022AA	07/20/2012 17:28	Kerri E Legerlotz	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG123I Water

LLI Sample # WW 6717581 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Collected: 07/10/2012 09:54

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

SG23I SDG#: MAN27-07

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B 25mL	ug/l		ug/l	ug/l	
	purg	e					
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	U	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropa		0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898 02898	1,2-Dibromoethane Dibromomethane	106-93-4 74-95-3	0.5 0.5	U	0.5 0.5	0.1 0.1	1 1
02898	1,2-Dichlorobenzene	95-50-1	0.5	IJ	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	Ū	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	IJ	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.1	J	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene		0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.1	J	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898 02898	Styrene	100-42-5 630-20-6	0.5 0.5	U U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		0.5	U	0.5 0.5	0.1 0.1	1 1
02898	Tetrachloroethene	127-18-4	6.2	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.8	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1
	, ,			-			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG123I Water

LLI Sample # WW 6717581 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Account

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20 Reported: 07/23/2012 20:10

Collected: 07/10/2012 09:54

SG23I SDG#: MAN27-07

CAT No.	Analysis Name		CAS	Number	As Rec Result	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethar	ne	71-	55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethar	ne	79-	00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.3	J	0.5	0.1	1
02898	Trichlorofluorometha	ane	75-	69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-	63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108	-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	0-20-7	0.6		0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA		Kerri E Legerlotz	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 15:52	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG31D Water

LLI Sample # WW 6717582 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 16:00

Reported: 07/23/2012 20:10

SG31D SDG#: MAN27-08

CAT	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
aa /wa	Walatilaa GW 046	0260D 25-1	ug/l		ug/l	ug/l	
GC/MS		8260B 25mL	ug/1		ug/ i	ug/ 1	
00000	purge	F1 42 0	0 5		0 5	0 1	_
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	3.0		0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	17		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.6		0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	8.8		0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.1	J	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.2	J	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5		0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.8		0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	2.4		0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG31D Water

LLI Sample # WW 6717582 LLI Group # 1321595

Project Name: Supplemental VI Assessment

Account # 09671

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 16:00

Houston TX 77008

Reported: 07/23/2012 20:10

SG31D SDG#: MAN27-08

CAT No.	Analysis Name		CAS	S Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	е	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	е	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	-01-6	0.8		0.5	0.1	1
02898	Trichlorofluorometha	ne	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ne	96-	-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ne	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ne	108	3-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.3	J	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 16:14	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 16:14	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG31I Water

LLI Sample # WW 6717583 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 13:33

Houston TX 77008

Reported: 07/23/2012 20:10

SG31I SDG#: MAN27-09

CAT No.	Analysis Name	CAS Number	As Rec Resul	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.3	J	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	5.2		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane		0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898 02898	1,2-Dibromoethane Dibromomethane	106-93-4 74-95-3	0.5 0.5	U	0.5 0.5	0.1	1 1
02898	1,2-Dichlorobenzene	95-50-1	0.5	IJ	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	Ū	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	Ū	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	IJ	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	65		5.0	1.0	10
02898	trans-1,2-Dichloroethene	156-60-5	1.6		0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.1	J	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.3	J	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5		0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5 0.5	U U	0.5	0.1	1 1
02898 02898	1,1,2,2-Tetrachloroethane Tetrachloroethene	79-34-5	7.0	U	0.5	0.1	1
02898	Tetrachioroethene Tetrahydrofuran	127-18-4	5.0	U	0.5 5.0	0.1 2.0	1
02898	Tetranydrofuran Toluene	109-99-9 108-88-3	0.5	J	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1
02030	1,2,4-111CHIOLODEHZEHE	120-02-1	0.5	U	···	∪.⊥	т

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG31I Water

LLI Sample # WW 6717583 LLI Group # 1321595

Project Name: Supplemental VI Assessment

Account # 09671

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/11/2012 13:33

Houston TX 77008

Reported: 07/23/2012 20:10

SG31I SDG#: MAN27-09

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,1,1-Trichloroeth	ane	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroeth	ane	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	9.4		0.5	0.1	1
02898	Trichlorofluoromet	hane	75-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropro	pane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylben	zene	95-63-6	0.1	J	0.5	0.1	1
02898	1,3,5-Trimethylben	zene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.6		0.5	0.1	1
02898	Xylene (Total)		1330-20-7	0.6		0.5	0.1	1
The	LCS and/or LCSD reco	overies are	e outside the stat	ed QC w	indow			

but within the marginal exceedance allowance of $\pm 1/2$ standard deviations as defined in the NELAC Standards. The following analytes are accepted based on this allowance: vinyl chloride.

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122011AA	07/19/2012 16:36	Kerri E Legerlotz	1
	VOCs	purge					
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122022AB	07/23/2012 14:23	Kerri E Legerlotz	10
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 16:36	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C122022AB	07/23/2012 14:23	Kerri E Legerlotz	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG117 Water

LLI Sample # WW 6717584 LLI Group # 1321595 # 09671 Account

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc 1715 W. 13th Street

Houston TX 77008

Collected: 07/11/2012 16:20

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

SG117 SDG#: MAN27-10

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	IJ	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	2.5		0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	15		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	J	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5 0.5	U U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3		IJ	0.5	0.1	1
02898 02898	Isopropylbenzene p-Isopropyltoluene	98-82-8 99-87-6	0.5 0.5	U	0.5 0.5	0.1 0.1	1 1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.1	1
02898	Naphthalene	91-20-3	0.5	IJ	0.5	0.2	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	IJ	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	IJ	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	IJ	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1
	,,1 1110111010001120110	120 02 1			- • •	· · ·	<u> </u>

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG117 Water

LLI Sample # WW 6717584 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Houston TX 77008

Reported: 07/23/2012 20:10

Collected: 07/11/2012 16:20

SG117 SDG#: MAN27-10

CAT No.	Analysis Name		CAS	3 Number	As Rec Resul	ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	.e	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	.e	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometha	ne	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ne	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ne	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ne	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898		SW-846 8260B 25mL	1	C122011AA	07/19/2012 16:58	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122011AA	07/19/2012 16:58	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG31 Water

LLI Sample # WW 6717585 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc

Collected: 07/10/2012 10:50

1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20 Reported: 07/23/2012 20:10

31SG- SDG#: MAN27-11

CAT No.	Analysis Name	CAS Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.1	J	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	Ū	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	5.0	Ü	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	ŢŢ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	IJ	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	ŢŢ	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	Ū	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	ŢŢ	0.5	0.1	1
02898	Chloroform	67-66-3	26		5.0	1.0	10
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	ŢŢ	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	Ū	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	Ū	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.9		0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	ŢŢ	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	ŢŢ	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	Ū	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	Ū	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	Ū	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	4.1		0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	J	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	Ū	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	2.6		0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.6		0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG31 Water

LLI Sample # WW 6717585 LLI Group # 1321595

Project Name: Supplemental VI Assessment

09671 Account

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Collected: 07/10/2012 10:50

Houston TX 77008

Reported: 07/23/2012 20:10

31SG-SDG#: MAN27-11

CAT No.	Analysis Name		CAS	Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	ne	71-	55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	ne	79-	00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.9		0.5	0.1	1
02898	Trichlorofluorometha	ane	75-	69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-	63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Gample	Analweie	Pecord
паротасоту	Dampte	AHALYSIS	Kecora

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 17:21	Kerri E Legerlotz	1
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122022AA	07/20/2012 18:13	Kerri E Legerlotz	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 17:21	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	C122022AA	07/20/2012 18:13	Kerri E Legerlotz	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: TB4 Water

LLI Sample # WW 6717586 LLI Group # 1321595 Account # 09671

Project Name: Supplemental VI Assessment

Sanborn Head and Assoc

Collected: 06/12/2012

1715 W. 13th Street Houston TX 77008

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

MNNT1 SDG#: MAN27-12TB*

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	Ū	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	Ū	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	0.5	Ū	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.5	U	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	U	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5 0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3		U	0.5	0.1	1
02898 02898	Isopropylbenzene	98-82-8 99-87-6	0.5 0.5	U	0.5 0.5	0.1	1 1
02898	p-Isopropyltoluene Methylene Chloride	75-09-2	0.5	U	0.5	0.1	1
02898		91-20-3	0.5	IJ	0.5	0.2	
02898	Naphthalene	103-65-1	0.5	U	0.5	0.1	1 1
02898	n-Propylbenzene Styrene	103-65-1	0.5	IJ	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	IJ	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	IJ	5.0	2.0	1
02898	Toluene	108-88-3	0.5	Ū	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	Ū	0.5	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	0.5	IJ	0.5	0.1	1
	,,1 1110111010001100110	120 02 1	···		- • •		*

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: TB4 Water

LLI Sample # WW 6717586

Project Name: Supplemental VI Assessment

LLI Group # 1321595 # 09671 Account

Collected: 06/12/2012

Sanborn Head and Assoc 1715 W. 13th Street

Submitted: 07/12/2012 09:20

Reported: 07/23/2012 20:10

Houston TX 77008

MNNT1 SDG#: MAN27-12TB*

CAT No.	Analysis Name		CAS	3 Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,1,1-Trichloroethan	e	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	.e	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometha	ne	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ne	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ne	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ne	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA VOCs	SW-846 8260B 25mL purge	1	C122011AA	07/19/2012 13:17	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 13:17	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321595

Reported: 07/23/12 at 08:10 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Resul</u>		Blank LOO**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: C122011AA	Sampl	e num	ber(s): 6	717575-671	L7586					
Benzene	0.5	U	0.5	0.1	uq/l	106		80-120		
Bromobenzene	0.5	U	0.5	0.1	ug/l	104		80-120		
Bromochloromethane	0.5	Ū	0.5	0.1	ug/l	105		80-125		
Bromodichloromethane	0.5	Ū	0.5	0.1	ug/l	112		80-120		
Bromoform	0.5	Ū	0.5	0.1	ug/l	120		70-128		
Bromomethane	0.5	Ū	0.5	0.1	ug/l	112		66-124		
n-Butylbenzene	0.5	U	0.5	0.1	uq/l	98		80-120		
sec-Butylbenzene	0.5	Ū	0.5	0.1	ug/l	102		80-120		
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	108		80-120		
Carbon Tetrachloride	0.5	U	0.5	0.1	uq/l	112		74-133		
Chlorobenzene	0.5	Ū	0.5	0.1	ug/l	102		80-120		
Chloroethane	0.5	U	0.5	0.1	ug/l	106		67-124		
Chloroform	0.5	U	0.5	0.1	uq/l	104		80-120		
Chloromethane	0.5	Ū	0.5	0.2	ug/l	111		55-135		
2-Chlorotoluene	0.5	Ū	0.5	0.1	ug/l	103		80-120		
4-Chlorotoluene	0.5	U	0.5	0.1	uq/l	102		80-120		
1,2-Dibromo-3-chloropropane	0.5	Ū	0.5	0.2	ug/l	102		59-125		
Dibromochloromethane	0.5	Ū	0.5	0.1	ug/l	117		80-120		
1,2-Dibromoethane	0.5	U	0.5	0.1	uq/l	105		80-120		
Dibromomethane	0.5	Ū	0.5	0.1	ug/l	109		80-120		
1,2-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
1,3-Dichlorobenzene	0.5	U	0.5	0.1	uq/l	104		80-120		
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	102		80-120		
Dichlorodifluoromethane	0.5	U	0.5	0.1	ug/l	92		39-120		
1,1-Dichloroethane	0.5	U	0.5	0.1	ug/l	105		80-122		
1,2-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	112		80-127		
1,1-Dichloroethene	0.5	U	0.5	0.1	ug/l	109		80-123		
cis-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	107		80-120		
trans-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	106		80-121		
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	105		80-120		
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	104		80-120		
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	112		75-122		
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	104		80-121		
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	108		74-120		
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	119		80-120		
Ethylbenzene	0.5	U	0.5	0.1	ug/l	107		80-120		
Freon 113	0.5	U	0.5	0.2	ug/l	112		78-132		
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	95		79-120		
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	109		80-120		
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	104		80-120		
Methylene Chloride	0.5	U	0.5	0.2	ug/l	107		80-120		
Naphthalene	0.5	U	0.5	0.1	ug/l	90		77-120		
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
Styrene	0.5	U	0.5	0.1	ug/l	111		80-122		
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	108		80-120		

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321595

Reported: 07/23/12 at 08:10 PM

Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Result	<u> </u>	LOQ**	MDL	Units	%REC	%REC	<u>Limits</u>	RPD	RPD Max
0.5	U	0.5	0.1	ug/l	105		80-125		
0.5	U	0.5	0.1	ug/l	104		80-120		
5.0	U	5.0	2.0	ug/l	94		65-131		
0.5	U	0.5	0.1	ug/l	104		80-120		
0.5	U	0.5	0.1	ug/l	95		77-120		
0.5	U	0.5	0.1	ug/l	101		79-120		
0.5	U	0.5	0.1	ug/l	111		79-127		
0.5	U	0.5	0.1	ug/l	108		80-120		
0.5	U	0.5	0.1	ug/l	105		80-120		
0.5	U	0.5	0.1	ug/l	124		66-134		
1.0	U	1.0	0.3	ug/l	107		80-120		
0.5	U	0.5	0.1		103		80-120		
0.5	U	0.5	0.1	ug/l	103		80-120		
0.5	U	0.5	0.1	ug/l	130*		65-127		
0.5	U	0.5	0.1	ug/l	108		80-120		
Sampl	e numl	ber(s): 6	717580,67	17585					
0.5	U	0.5	0.1	uq/l	104		80-120		
0.5	U	0.5	0.1	ug/l	109		80-120		
Sampl	e numl	ber(s): 6	717583						
0.5	U	0.5	0.1	ug/l	107		80-120		
	Result 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Result 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Result	Result LOQ** MDL 0.5 U 0.5 0.1 0.5 U 0.5 0.1 5.0 U 0.5 0.1 0.5 U 0.5 0.1 1.0 U 1.0 0.3 0.5 U 0.5 0.1 0.5	Result LOQ** MDL Units 0.5 U 0.5 0.1 ug/l 0.5 U 0.5 0.1 ug/l 5.0 U 5.0 2.0 ug/l 0.5 U 0.5 0.1 ug/l 0.5 </td <td>Result LOQ** MDL Units %REC 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 104 5.0 U 5.0 2.0 ug/l 94 0.5 U 0.5 0.1 ug/l 104 0.5 U 0.5 0.1 ug/l 101 0.5 U 0.5 0.1 ug/l 111 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103</td> <td>Result LOQ** MDL Units %REC %REC 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 104 5.0 U 5.0 2.0 ug/l 94 0.5 U 0.5 0.1 ug/l 104 0.5 U 0.5 0.1 ug/l 101 0.5 U 0.5 0.1 ug/l 111 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 130* 0.5 U 0.5 0.1 ug/l 103<</td> <td>Result LOQ** MDL Units %REC %REC Limits 0.5 U 0.5 0.1 ug/l 105 80-125 0.5 U 0.5 0.1 ug/l 104 80-120 5.0 U 5.0 2.0 ug/l 94 65-131 0.5 U 0.5 0.1 ug/l 104 80-120 0.5 U 0.5 0.1 ug/l 95 77-120 0.5 U 0.5 0.1 ug/l 101 79-127 0.5 U 0.5 0.1 ug/l 111 79-127 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 107 80-120 0.5 U 0.5 0.1 ug/l 107 80-120 0.5 U 0.5</td> <td>Result LOQ** MDL Units %REC %REC Limits RPD 0.5 U 0.5 0.1 ug/l 105 80-125 0.5 U 0.5 0.1 ug/l 104 80-120 5.0 U 5.0 2.0 ug/l 94 65-131 0.5 U 0.5 0.1 ug/l 104 80-120 0.5 U 0.5 0.1 ug/l 101 79-120 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 103 80-120 0.5</td>	Result LOQ** MDL Units %REC 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 104 5.0 U 5.0 2.0 ug/l 94 0.5 U 0.5 0.1 ug/l 104 0.5 U 0.5 0.1 ug/l 101 0.5 U 0.5 0.1 ug/l 111 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103	Result LOQ** MDL Units %REC %REC 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 104 5.0 U 5.0 2.0 ug/l 94 0.5 U 0.5 0.1 ug/l 104 0.5 U 0.5 0.1 ug/l 101 0.5 U 0.5 0.1 ug/l 111 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 105 0.5 U 0.5 0.1 ug/l 108 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 107 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 103 0.5 U 0.5 0.1 ug/l 130* 0.5 U 0.5 0.1 ug/l 103<	Result LOQ** MDL Units %REC %REC Limits 0.5 U 0.5 0.1 ug/l 105 80-125 0.5 U 0.5 0.1 ug/l 104 80-120 5.0 U 5.0 2.0 ug/l 94 65-131 0.5 U 0.5 0.1 ug/l 104 80-120 0.5 U 0.5 0.1 ug/l 95 77-120 0.5 U 0.5 0.1 ug/l 101 79-127 0.5 U 0.5 0.1 ug/l 111 79-127 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 107 80-120 0.5 U 0.5 0.1 ug/l 107 80-120 0.5 U 0.5	Result LOQ** MDL Units %REC %REC Limits RPD 0.5 U 0.5 0.1 ug/l 105 80-125 0.5 U 0.5 0.1 ug/l 104 80-120 5.0 U 5.0 2.0 ug/l 94 65-131 0.5 U 0.5 0.1 ug/l 104 80-120 0.5 U 0.5 0.1 ug/l 101 79-120 0.5 U 0.5 0.1 ug/l 108 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 105 80-120 0.5 U 0.5 0.1 ug/l 103 80-120 0.5

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: C122011AA	Sample	number(s)	: 6717575	-67175	86 UNSE	K: P717504			
Benzene	103	103	87-126	0	30				
Bromobenzene	106	108	80-123	2	30				
Bromochloromethane	106	106	82-125	0	30				
Bromodichloromethane	112	111	82-133	1	30				
Bromoform	120	119	60-138	1	30				
Bromomethane	105	105	69-135	0	30				
n-Butylbenzene	103	108	83-131	5	30				
sec-Butylbenzene	107	112	84-128	4	30				
tert-Butylbenzene	109	118	84-135	7	30				
Carbon Tetrachloride	110	112	81-148	1	30				
Chlorobenzene	106	107	78-133	1	30				
Chloroethane	101	103	70-139	1	30				
Chloroform	103	104	86-136	0	30				
Chloromethane	107	108	55-152	1	30				
2-Chlorotoluene	104	108	81-120	4	30				
4-Chlorotoluene	103	108	82-119	4	30				
1,2-Dibromo-3-chloropropane	104	99	55-156	4	30				
Dibromochloromethane	119	121	79-125	2	30				
1,2-Dibromoethane	107	108	84-127	1	30				
Dibromomethane	107	104	83-126	2	30				
1,2-Dichlorobenzene	104	108	83-117	3	30				
1,3-Dichlorobenzene	105	108	81-118	3	30				
1,4-Dichlorobenzene	103	108	79-120	5	30				

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321595

Reported: 07/23/12 at 08:10 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Anglassia Nama	MS	MSD	MS/MSD	DDD	RPD	BKG	DUP	DUP	Dup RPD
Analysis Name Dichlorodifluoromethane	<u>%REC</u> 91	<u>%REC</u> 90	<u>Limits</u> 39-155	RPD 1	<u>MAX</u> 30	Conc	Conc	<u>RPD</u>	<u>Max</u>
1.1-Dichloroethane	102	102	39-155 88-136	1	30				
1,1-Dichloroethane	102	102	88-136	2	30				
1,1-Dichloroethene	107	107	83-150	0	30				
cis-1,2-Dichloroethene	106	105	82-129	0	30				
trans-1,2-Dichloroethene	102	103	88-127	2	30				
1,2-Dichloropropane	104	104	91-126	1	30				
1,3-Dichloropropane	106	106	80-127	1	30				
2,2-Dichloropropane	111	111	80-134	0	30				
1,1-Dichloropropene	105	105	86-139	0	30				
cis-1,3-Dichloropropene	109	108	74-132	0	30				
trans-1,3-Dichloropropene	122	121	71-128	1	30				
Ethylbenzene	109	111	80-140	1	30				
Freon 113	110	110	87-158	0	30				
Hexachlorobutadiene	103	108	84-128	5	30				
Isopropylbenzene	114	117	81-133	3	30				
p-Isopropyltoluene	109	113	84-124	4	30				
Methylene Chloride	101	101	84-122	1	30				
Naphthalene	89	92	70-131	3	30				
n-Propylbenzene	106	109	79-131	3	30				
Styrene	114	115	63-151	1	30				
1,1,1,2-Tetrachloroethane	112	113	87-126	1	30				
1,1,2,2-Tetrachloroethane	105	107	75-131	2	30				
Tetrachloroethene	113	120	63-156	4	30				
Tetrahydrofuran	97	90	56-154	7	30				
Toluene	104	105	83-127	1	30				
1,2,3-Trichlorobenzene	96	100	73-125	4	30				
1,2,4-Trichlorobenzene	102	107	77-120	5	30				
1,1,1-Trichloroethane	109	110	85-140	1	30				
1,1,2-Trichloroethane	107	109	85-129	1	30				
Trichloroethene	105	105	85-131	0	30				
Trichlorofluoromethane	119	121	67-161	2	30				
1,2,3-Trichloropropane	107	109	76-120	2	30				
1,2,4-Trimethylbenzene	106	110	87-126	3	30				
1,3,5-Trimethylbenzene	106	110	89-129	3	30				
Vinyl Chloride	118	124	65-151	5	30				
Xylene (Total)	111	113	81-137	2	30				
Batch number: C122022AA	Sample	number(s)	: 6717580	,671758	35 UNSPK	K: P726582			
Chloroform	100	102	86-136	3	30				
Tetrachloroethene	112	115	63-156	3	30				
Batch number: C122022AB		number(s)				32			
cis-1,2-Dichloroethene	104	107	82-129	4	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321595

Reported: 07/23/12 at 08:10 PM

Surrogate Quality Control

Analysis Name: EPA SW846/8260 (water-25ml) #1 Batch number: C122011AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6717575	107	107	92	93
6717576	106	107	98	94
6717577	108	103	96	94
6717578	107	106	97	98
6717579	108	107	96	95
6717580	108	109	95	93
6717581	107	107	96	95
6717582	103	101	95	96
6717583	108	107	95	96
6717584	106	108	96	94
6717585	104	105	95	95
6717586	107	111	97	93
3lank	105	106	96	94
LCS	102	105	99	100
MS	103	104	100	99
MSD	102	103	100	99
Limits:	77-114	74-113	77-110	78-110

Batch number: C122022AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Blank	106	105	97	91
LCS	103	103	101	96
MS	103	108	101	97
MSD	103	103	101	97
Limits:	77-114	74-113	77-110	78-110

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C122022AB

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
Blank	106	105	96	90	
LCS	103	104	100	96	
MS	103	108	101	97	
MSD	103	103	101	97	
Limits:	77-114	74-113	77-110	78-110	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

9671 | 1321595 | 6717575 -86

Shipping Group	:1	Chai	n_of_(Custo		Reli	nquished	By:	Date /	Time	R	eceived B	y:	Date / Time
SANBORN	HEAD	To:	11-01-	Cusio	1 y	Jus	ca (Nà	7/11/17	. 1700				
']'	TILL CA			ratories, In										
	High St i, ME 04101		PO Box 1		5		$\overline{}$						$\overline{}$	
	761-9300			17605-242	25							1		
F (207	7) 761-9339		(717) 65 (717) 65				·	-			Bu	Ull	mh/	7.12.12 920
	Project Inform	41				N		T., C.	4			V	<u> </u>	
Nama	Supplemental VI Asse				TAT.	Standard	liverable .	injorma	uon					Other Information
			•	D #					_	•	• .	SGD Co	_	
Number:				Delivery I								l COC Re		No
Location:	Manassas, Virginia			Ei	mail To:	ebradstr	eet@sanb	ornhead.	com		Site	Specific (QA/QC?	
Manager:	Erica Bradstreet		Data	Package	Option:									
Account #:				ED	D Type:	SHDMS								IBM Manassas VOCs list 6396
Quote #:			•											
	-		· 		Æ	Dept	qq	Ę						
Lab ID	Sample Name	Collect		Matrix	Top Depth	Bottom Depth	Filtered? (Eield / Lab)	8260B/HCI						
(Lab Use Only)		Date	Time	-	To	<u> </u>	<u> 29</u>					_	_	Remarks:
	D86	7/11/2012	1453	GW				2				_	_	
	FB1	7/11/2012	1745	AQ				2						
	SG115I	7/10/2012	1219	GW		; [.		2						
	\$G115S	7/10/2012	1141	GW				2						
· .	SG11822	7/10/2012	1035	GW				2						
	SG118I	7/10/2012	1115	GW				2						
	SG123I	7/10/2012	0954	GW	_		-	2						
	SG31D	7/11/2012	1600	GW				2						
	\$G31I	7/11/2012	1333	GW	_			2			-			
									_	_				

9671 | 1321595 | 6717575-86

Shipping Group:	1	Chai	n of (Custo	1.,	Reli	nquishea	<i>By:</i>	Date /	Time	Re	eceived B	y:	Date / Time
SANBORN	HEAD	To:				Ses	xeat	recie	Hulia	- 1900		(
11.	II:_L G4			ratories, I Iland Pik										
	High St I, ME 04101		PO Box 1		C		\rightarrow							
P (207)	761-9300			17605-24	25									
F (207	761-9339		(717) 65 (717) 65)				Addition for the Conference on	Lbu	m	Su	0.12.12 920
	Project Infort	eation		and the second single site of the second single site of the second single site of the second site of the second site of the second single site of the second single site of the second s		Del	iverable	In forms	tion			V		Other Information
Name:	Supplemental VI Ass				TAT	Standard		injormu	uon			aan a		, and the second
			•	D - 1!			•				T	SGD Co		
Number:			•	Delivery .						i		l COC Re	-	No
Location:	Manassas, Virginia			Ei	nail To:	ebradstr	eet@sanl	ornhead	.com	•	Site	Specific (QA/QC?	
Manager:	Erica Bradstreet		Data	Package	Option:									
Account #:				ED	D Type:	SHDMS	}							IBM Manassas VOCs list 6396
Quote #:			•											
	-		•		Ę	Depth	-	ō						
Lab ID	Sample Name	Collect		Matrix	Top Depth	Bottom Depth	Filtered? (Eield / Lab)	8260B/HCI						
(Lab Use Only)		Date	Time			7	<u> </u>							Remarks:
	SG117	7/11/2012	1620	GW	30.35	30.35		2	_					
	SG31	7/10/2012	1050	GW	75.5	75 .5		2						
	TB4	6/12/2012		AQ				2						
	_													
					_	,		<u> </u>						
						1								
				_										

Environmental Sample Administration Receipt Documentation Log

Client/	Project:	xanbor	in Head	Shippin	g Containe	er Sealed: YE	S) NO
Date of	f Receipt: _	().	15.15	Custody	Seal Pres	sent*: (YE	NO (É
Time o	f Receipt: _	<u> </u>	20		seal was inta	ct unless otherwise	noted in the
Source	Code:		50-1	Package		Chilled	Not Chilled
			Temperature of	Shipping Contai	ners		
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	2737	39	TB	ω	X	B	
2							
3				_		,	
4							
5							
6							
			OT listed on chain	of custody:	٥		
TB	4 = -	TB.					
Unpac	ker Signature	/Emp#:	Bung	Sul,	ر Date/Tii	me: <u> </u>	12 12:39

Issued by Dept. 6042 Management

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

_		•	=
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Sanborn Head and Assoc 1 Technology Park Drive Westford MA 01886

July 23, 2012

Project: Supplemental VI Assessment

Submittal Date: 07/13/2012 Group Number: 1321868 SDG: MAN28 PO Number: 2732.05.030 State of Sample Origin: VA

 Client Sample Description
 Lancaster Labs (LLI) #

 Frac01 Grab Water
 6719353

 SG11723 Grab Water
 6719354

 SG117I Grab Water
 6719355

 TB1 Water
 6719356

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Sanborn Head and Assoc Attn: Erica Bradstreet

COPY TO

1 COPY TO Data Package Group

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Respectfully Submitted,

Nicole L. Maljovec

Mil 2 Mil

Senior Specialist Group Leader

(717) 556-7259

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: Frac01 Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719353 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 16:30

Sanborn Head and Assoc 1 Technology Park Drive Westford MA 01886

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

FRAC1 SDG#: MAN28-01

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
GC/IID	purge	0200B 25MB	3, -		-3, -	-3, -	
02898	Benzene	71-43-2	1.1		0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1 1
02898	Bromochloromethane	108-86-1 74-97-5	0.5	IJ	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	1.9	U	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	IJ	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	Ū	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	IJ	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	Ū	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	Ū	0.5	0.1	1
02898	Chloroform	67-66-3	17	Ü	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	Ū	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	Ū	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.4	J	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	Ū	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	1.1		0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.7		0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.1	J	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	U	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	8.7		0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: Frac01 Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719353 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 16:30

Sanborn Head and Assoc 1 Technology Park Drive Westford MA 01886

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

FRAC1 SDG#: MAN28-01

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,2,4-Trichlorobenz	ene	120-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroetha	ne	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroetha	ne	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometh	ane	75-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloroprop	ane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63-6	0.3	J	0.5	0.1	1
02898	1,3,5-Trimethylbenz	ene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		1330-20-7	5.3		0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C121981AA	07/16/2012 11:39	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C121981AA	07/16/2012 11:39	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG11723 Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719354 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 15:40

Sanborn Head and Assoc 1 Technology Park Drive

Submitted: 07/13/2012 09:30

Westford MA 01886

Reported: 07/23/2012 19:59

11723 SDG#: MAN28-02

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	5 8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	1.2		0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	7.5		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.2	J	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4 76-13-1	0.2	J U	0.5	0.1 0.2	1 1
02898 02898	Freon 113 Hexachlorobutadiene	87-68-3	0.5	IJ	0.5		1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5 0.5	0.1 0.1	1
02898		99-87-6	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene Methylene Chloride	75-09-2	0.5	U	0.5	0.1	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.2	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	Ū	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	Ū	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.5	Ū	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	IJ	5.0	2.0	1
02898	Toluene	108-88-3	1.0	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
	,,0 1110111010001120110	J. 01 0	· · · ·				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG11723 Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719354 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 15:40

Sanborn Head and Assoc 1 Technology Park Drive

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

Westford MA 01886

11723 SDG#: MAN28-02

CAT No.	Analysis Name		CAS	3 Number	As Rec Result		As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobenze	ene	120	0-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroethan	ne	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroethan	ne	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorometha	ane	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropropa	ane	96-	18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbenze	ene	95-	-63-6	0.3	J	0.5	0.1	1
02898	1,3,5-Trimethylbenze	ene	108	8-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	1.4		0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122011AA	07/19/2012 17:43	Kerri E Legerlotz	1
	VOCs	purge					
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C122011AA	07/19/2012 17:43	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: SG117I Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719355 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 14:45

Sanborn Head and Assoc 1 Technology Park Drive

Submitted: 07/13/2012 09:30

Westford MA 01886

Reported: 07/23/2012 19:59

S1171 SDG#: MAN28-03

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
	purge						
02898	Benzene	71-43-2	0.5	U	0.5	0.1	1
02898	Bromobenzene	108-86-1	0.5	U	0.5	0.1	1
02898	Bromochloromethane	74-97-5	0.5	U	0.5	0.1	1
02898	Bromodichloromethane	75-27-4	1.8		0.5	0.1	1
02898	Bromoform	75-25-2	0.5	U	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	U	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	U	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	U	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	U	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	U	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	11		0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	U	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	U	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.3	J	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	U	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5 0.5	U U	0.5	0.1 0.1	1 1
02898 02898	cis-1,3-Dichloropropene	10061-01-5 10061-02-6	0.5	U	0.5 0.5	0.1	1
02898	trans-1,3-Dichloropropene Ethylbenzene	10061-02-6	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.1	1
02898	Hexachlorobutadiene	87-68-3	0.5	IJ	0.5	0.2	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	Ū	0.5	0.1	1
02898	Methylene Chloride	75-09-2	6.9	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5		0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	Ū	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	Ū	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	Ū	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	0.2	J	0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	IJ	5.0	2.0	1
02898	Toluene	108-88-3	0.5	0	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1
	, , , = ===============================			-	, · -		_

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: SG117I Grab Water

Supplemental VI Assessment

LLI Sample # WW 6719355 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/12/2012 14:45

Sanborn Head and Assoc 1 Technology Park Drive Westford MA 01886

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

S1171 SDG#: MAN28-03

CAT No.	Analysis Name		CAS Number		ceived	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	ug/l	
		purge						
02898	1,2,4-Trichlorobe	nzene	120-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroet	hane	71-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroet	hane	79-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorome	thane	75-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropr	opane	96-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbe	nzene	95-63-6	0.1	J	0.5	0.1	1
02898	1,3,5-Trimethylbe	nzene	108-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		1330-20-7	0.4	J	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	Former 8021 Manassas, VA	SW-846 8260B 25mL	1	C122022AA	07/20/2012 17:06	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122022AA	07/20/2012 17:06	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: TB1 Water

Supplemental VI Assessment

LLI Sample # WW 6719356 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/05/2012

Sanborn Head and Assoc 1 Technology Park Drive

Westford MA 01886

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

SVATB SDG#: MAN28-04TB*

CAT No.	Analysis Name	CAS Number	As Re Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
CC/MC	Volatiles SW-846	8260B 25mL	ug/l		ug/l	ug/l	
GC/M5		0200B 25IIIL	49/1		49/1	49/1	
02898	purge	71-43-2	0.5	TT	0.5	0.1	1
02898	Benzene Bromobenzene	108-86-1	0.5	U U	0.5	0.1	1 1
02898	Bromochloromethane	108-86-1 74-97-5	0.5	IJ	0.5	0.1	1
02898	Bromodichloromethane	74-97-5	0.5	IJ	0.5	0.1	1
02898	Bromoform	75-25-2	0.5	IJ	0.5	0.1	1
02898	Bromomethane	74-83-9	0.5	IJ	0.5	0.1	1
02898	n-Butylbenzene	104-51-8	0.5	Ū	0.5	0.1	1
02898	sec-Butylbenzene	135-98-8	0.5	Ū	0.5	0.1	1
02898	tert-Butylbenzene	98-06-6	0.5	IJ	0.5	0.1	1
02898	Carbon Tetrachloride	56-23-5	0.5	IJ	0.5	0.1	1
02898	Chlorobenzene	108-90-7	0.5	U	0.5	0.1	1
02898	Chloroethane	75-00-3	0.5	U	0.5	0.1	1
02898	Chloroform	67-66-3	0.4	J	0.5	0.1	1
02898	Chloromethane	74-87-3	0.5	U	0.5	0.2	1
02898	2-Chlorotoluene	95-49-8	0.5	U	0.5	0.1	1
02898	4-Chlorotoluene	106-43-4	0.5	IJ	0.5	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	0.5	Ū	0.5	0.2	1
02898	Dibromochloromethane	124-48-1	0.5	Ū	0.5	0.1	1
02898	1,2-Dibromoethane	106-93-4	0.5	Ū	0.5	0.1	1
02898	Dibromomethane	74-95-3	0.5	U	0.5	0.1	1
02898	1,2-Dichlorobenzene	95-50-1	0.5	U	0.5	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	0.5	U	0.5	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	0.5	U	0.5	0.1	1
02898	Dichlorodifluoromethane	75-71-8	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethane	75-34-3	0.5	U	0.5	0.1	1
02898	1,2-Dichloroethane	107-06-2	0.5	U	0.5	0.1	1
02898	1,1-Dichloroethene	75-35-4	0.5	U	0.5	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	0.5	U	0.5	0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	0.5	U	0.5	0.1	1
02898	1,2-Dichloropropane	78-87-5	0.5	U	0.5	0.1	1
02898	1,3-Dichloropropane	142-28-9	0.5	U	0.5	0.1	1
02898	2,2-Dichloropropane	594-20-7	0.5	U	0.5	0.1	1
02898	1,1-Dichloropropene	563-58-6	0.5	U	0.5	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	0.5	U	0.5	0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	0.5	U	0.5	0.1	1
02898	Ethylbenzene	100-41-4	0.5	U	0.5	0.1	1
02898	Freon 113	76-13-1	0.5	U	0.5	0.2	1
02898	Hexachlorobutadiene	87-68-3	0.5	U	0.5	0.1	1
02898	Isopropylbenzene	98-82-8	0.5	U	0.5	0.1	1
02898	p-Isopropyltoluene	99-87-6	0.5	U	0.5	0.1	1
02898	Methylene Chloride	75-09-2	0.5	U	0.5	0.2	1
02898	Naphthalene	91-20-3	0.5	U	0.5	0.1	1
02898	n-Propylbenzene	103-65-1	0.5	U	0.5	0.1	1
02898	Styrene	100-42-5	0.5	U	0.5	0.1	1
02898	1,1,1,2-Tetrachloroethane	630-20-6	0.5	U	0.5	0.1	1
02898	1,1,2,2-Tetrachloroethane	79-34-5	0.5	U	0.5	0.1	1
02898	Tetrachloroethene	127-18-4	1.8		0.5	0.1	1
02898	Tetrahydrofuran	109-99-9	5.0	U	5.0	2.0	1
02898	Toluene	108-88-3	0.5	U	0.5	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	0.5	U	0.5	0.1	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: TB1 Water

Supplemental VI Assessment

LLI Sample # WW 6719356 LLI Group # 1321868 Account # 09671

Project Name: Supplemental VI Assessment

Collected: 07/05/2012

Sanborn Head and Assoc 1 Technology Park Drive

Westford MA 01886

Submitted: 07/13/2012 09:30

Reported: 07/23/2012 19:59

SVATB SDG#: MAN28-04TB*

CAT No.	Analysis Name		CAS	S Number	As Rec Resul	ceived t	As Received Limit of Quantitation*	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l		ug/l	ug/l	
		purge							
02898	1,2,4-Trichlorobe	enzene	120	0-82-1	0.5	U	0.5	0.1	1
02898	1,1,1-Trichloroet	thane	71-	-55-6	0.5	U	0.5	0.1	1
02898	1,1,2-Trichloroet	thane	79-	-00-5	0.5	U	0.5	0.1	1
02898	Trichloroethene		79-	-01-6	0.5	U	0.5	0.1	1
02898	Trichlorofluorome	ethane	75-	-69-4	0.5	U	0.5	0.1	1
02898	1,2,3-Trichloropi	ropane	96-	-18-4	1.0	U	1.0	0.3	1
02898	1,2,4-Trimethylbe	enzene	95-	-63-6	0.5	U	0.5	0.1	1
02898	1,3,5-Trimethylbe	enzene	108	3-67-8	0.5	U	0.5	0.1	1
02898	Vinyl Chloride		75-	-01-4	0.5	U	0.5	0.1	1
02898	Xylene (Total)		133	30-20-7	0.5	U	0.5	0.1	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898		SW-846 8260B 25mL	1	C122011AA	07/19/2012 18:31	Kerri E Legerlotz	1
01163	VOCs GC/MS VOA Water Prep	purge SW-846 5030B	1	C122011AA	07/19/2012 18:31	Kerri E Legerlotz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	Resul	t	LOQ**	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Datah numban, Claicella	Camp		hor(a). C	710252						
Batch number: C121981AA Benzene	0.5	U IIUII	ber(s): 6 0.5	0.1	ug/l	104		80-120		
Bromobenzene	0.5	Ū	0.5	0.1		104		80-120		
Bromochloromethane	0.5	Ū	0.5	0.1	ug/1	105		80-125		
					ug/l					
Bromodichloromethane	0.5	U	0.5	0.1	ug/l	111		80-120		
Bromoform	0.5	U	0.5	0.1	ug/l	120		70-128		
Bromomethane	0.5	U	0.5	0.1	ug/l	129*		66-124		
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	94		80-120		
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	100		80-120		
tert-Butylbenzene	0.5	Ū	0.5	0.1	ug/l	108		80-120		
Carbon Tetrachloride	0.5	Ū	0.5	0.1	ug/l	112		74-133		
Chlorobenzene	0.5	Ū	0.5	0.1	ug/l	103		80-120		
Chloroethane	0.5	U	0.5	0.1	ug/l	115		67-124		
Chloroform	0.5	U	0.5	0.1	ug/l	103		80-120		
Chloromethane	0.5	U	0.5	0.2	ug/l	100		55-135		
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	103		80-120		
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	103		80-120		
1,2-Dibromo-3-chloropropane	0.5	U	0.5	0.2	ug/l	102		59-125		
Dibromochloromethane	0.5	U	0.5	0.1	ug/l	117		80-120		
1,2-Dibromoethane	0.5	U	0.5	0.1	ug/l	106		80-120		
Dibromomethane	0.5	U	0.5	0.1	ug/l	105		80-120		
1,2-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,3-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,4-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
Dichlorodifluoromethane	0.5	U	0.5	0.1	ug/l	98		39-120		
1,1-Dichloroethane	0.5	U	0.5	0.1	uq/l	102		80-122		
1,2-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	107		80-127		
1,1-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	110		80-123		
cis-1,2-Dichloroethene	0.5	Ū	0.5	0.1	uq/l	107		80-120		
trans-1,2-Dichloroethene	0.5	Ū	0.5	0.1	uq/l	105		80-121		
1,2-Dichloropropane	0.5	Ū	0.5	0.1	uq/l	104		80-120		
1,3-Dichloropropane	0.5	Ū	0.5	0.1	uq/l	102		80-120		
2,2-Dichloropropane	0.5	Ū	0.5	0.1	ug/1	110		75-122		
1,1-Dichloropropene	0.5	Ū	0.5	0.1	ug/1	106		80-121		
cis-1,3-Dichloropropene	0.5	Ū	0.5	0.1	uq/l	110		74-120		
trans-1,3-Dichloropropene	0.5	IJ	0.5	0.1	ug/1	119		80-120		
Ethylbenzene	0.5	Ū	0.5	0.1	ug/1	106		80-120		
Freon 113	0.5	Ū	0.5	0.2	ug/1	111		78-132		
Hexachlorobutadiene	0.5	Ū	0.5	0.1	ug/l	97		79-120		
Isopropylbenzene	0.5	Ū	0.5	0.1	ug/1	107		80-120		
n Tannanultaluana	0.5	Ū	0.5	0.1	ug/1 ug/l	107		80-120		
p-Isopropyltoluene										
Methylene Chloride	0.5	U	0.5	0.2	ug/1	104		80-120		
Naphthalene	0.5	U	0.5	0.1	ug/1	91		77-120		
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	101		80-120		
Styrene	0.5	U	0.5	0.1	ug/l	110		80-122		
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	106		80-120		

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

•	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	:	LOQ**	MDL	Units	%REC	%REC	Limits	RPD	RPD Max
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	uq/l	104		80-125		
Tetrachloroethene	0.5	Ū	0.5	0.1	ug/1	105		80-120		
Tetrahydrofuran	5.0	Ū	5.0	2.0	ug/l	89		65-131		
Toluene	0.5	Ū	0.5	0.1	ug/l	102		80-120		
1,2,3-Trichlorobenzene	0.5	Ū	0.5	0.1		93		77-120		
	0.5	Ū	0.5	0.1	ug/l ug/l	99		79-120		
1,2,4-Trichlorobenzene										
1,1,1-Trichloroethane	0.5	U	0.5	0.1	ug/l	110		79-127		
1,1,2-Trichloroethane	0.5	U	0.5	0.1	ug/l	104		80-120		
Trichloroethene	0.5	Ū	0.5	0.1	ug/l	105		80-120		
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	120		66-134		
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	108		80-120		
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	121		65-127		
Xylene (Total)	0.5	U	0.5	0.1	uq/l	106		80-120		
-					5.					
Batch number: C122011AA	Sampl	e numb	per(s): 67	719354,671	L9356					
Benzene	0.5	U	0.5	0.1	uq/l	106		80-120		
Bromobenzene	0.5	U	0.5	0.1	ug/l	104		80-120		
Bromochloromethane	0.5	Ū	0.5	0.1	ug/l	105		80-125		
Bromodichloromethane	0.5	Ū	0.5	0.1	ug/l	112		80-120		
Bromoform	0.5	Ū	0.5	0.1	ug/l	120		70-128		
	0.5		0.5	0.1		112		66-124		
Bromomethane		U			ug/l					
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	98		80-120		
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	108		80-120		
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	112		74-133		
Chlorobenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
Chloroethane	0.5	U	0.5	0.1	ug/l	106		67-124		
Chloroform	0.5	U	0.5	0.1	ug/l	104		80-120		
Chloromethane	0.5	U	0.5	0.2	ug/l	111		55-135		
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	103		80-120		
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,2-Dibromo-3-chloropropane	0.5	U	0.5	0.2	ug/l	102		59-125		
Dibromochloromethane	0.5	U	0.5	0.1	ug/l	117		80-120		
1,2-Dibromoethane	0.5	U	0.5	0.1	ug/l	105		80-120		
Dibromomethane	0.5	Ū	0.5	0.1	ug/l	109		80-120		
1,2-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	103		80-120		
1,3-Dichlorobenzene	0.5	Ū	0.5	0.1	ug/l	104		80-120		
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	102		80-120		
Dichlorodifluoromethane	0.5	Ū	0.5	0.1	ug/l	92		39-120		
1,1-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	105		80-122		
1,2-Dichloroethane	0.5	Ū	0.5	0.1		112		80-127		
1,1-Dichloroethene	0.5	Ū	0.5	0.1	ug/l ug/l	109		80-127		
cis-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	107		80-120		
trans-1,2-Dichloroethene	0.5	U	0.5	0.1	ug/l	106		80-121		
1,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	105		80-120		
1,3-Dichloropropane	0.5	U	0.5	0.1	ug/l	104		80-120		
2,2-Dichloropropane	0.5	U	0.5	0.1	ug/l	112		75-122		
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	104		80-121		
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	108		74-120		
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	119		80-120		
Ethylbenzene	0.5	U	0.5	0.1	ug/l	107		80-120		
Freon 113	0.5	U	0.5	0.2	ug/l	112		78-132		
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	95		79-120		
Isopropylbenzene	0.5	Ū	0.5	0.1	uq/l	109		80-120		
p-Isopropyltoluene	0.5	Ū	0.5	0.1	ug/1	104		80-120		
Methylene Chloride	0.5	Ū	0.5	0.2	uq/l	107		80-120		
	0.5	J	0.5	V.2	49/ 1	107		JU 120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Reported: 07/23/12 at 07:										
	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result		LOQ**	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Naphthalene	0.5	U	0.5	0.1	ug/l	90		77-120		
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
Styrene	0.5	U	0.5	0.1	ug/l	111		80-122		
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	108		80-120		
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	uq/l	105		80-125		
Tetrachloroethene	0.5	U	0.5	0.1	uq/l	104		80-120		
Tetrahydrofuran	5.0	U	5.0	2.0	uq/l	94		65-131		
Toluene	0.5	U	0.5	0.1	ug/l	104		80-120		
1,2,3-Trichlorobenzene	0.5	Ū	0.5	0.1	uq/l	95		77-120		
1,2,4-Trichlorobenzene	0.5	Ū	0.5	0.1	uq/l	101		79-120		
1,1,1-Trichloroethane	0.5	Ū	0.5	0.1	ug/l	111		79-127		
1,1,2-Trichloroethane	0.5	Ū	0.5	0.1	ug/l	108		80-120		
Trichloroethene	0.5	Ū	0.5	0.1	ug/l	105		80-120		
Trichlorofluoromethane	0.5	Ū	0.5	0.1	ug/l	124		66-134		
1,2,3-Trichloropropane	1.0	Ū	1.0	0.3	ug/l	107		80-120		
	0.5	Ū	0.5	0.3				80-120		
1,2,4-Trimethylbenzene					ug/l	103				
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	130*		65-127		
Xylene (Total)	0.5	U	0.5	0.1	ug/l	108		80-120		
Batch number: C122022AA	Campl	a niimb	per(s): 67	710355						
Benzene	0.5		0.5	0.1	uq/l	107		80-120		
Bromobenzene		U								
	0.5		0.5	0.1	ug/l	104		80-120		
Bromochloromethane	0.5	U	0.5	0.1	ug/l	111		80-125		
Bromodichloromethane	0.5	U	0.5	0.1	ug/l	109		80-120		
Bromoform	0.5	U	0.5	0.1	ug/l	117		70-128		
Bromomethane	0.5	U	0.5	0.1	ug/l	114		66-124		
n-Butylbenzene	0.5	U	0.5	0.1	ug/l	99		80-120		
sec-Butylbenzene	0.5	U	0.5	0.1	ug/l	104		80-120		
tert-Butylbenzene	0.5	U	0.5	0.1	ug/l	109		80-120		
Carbon Tetrachloride	0.5	U	0.5	0.1	ug/l	110		74-133		
Chlorobenzene	0.5	U	0.5	0.1	ug/l	104		80-120		
Chloroethane	0.5	U	0.5	0.1	ug/l	111		67-124		
Chloroform	0.5	U	0.5	0.1	ug/l	104		80-120		
Chloromethane	0.5	U	0.5	0.2	ug/l	105		55-135		
2-Chlorotoluene	0.5	U	0.5	0.1	ug/l	103		80-120		
4-Chlorotoluene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,2-Dibromo-3-chloropropane	0.5	U	0.5	0.2	ug/l	107		59-125		
Dibromochloromethane	0.5	U	0.5	0.1	uq/l	118		80-120		
1,2-Dibromoethane	0.5	U	0.5	0.1	uq/l	108		80-120		
Dibromomethane	0.5	U	0.5	0.1	uq/l	107		80-120		
1,2-Dichlorobenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
1,3-Dichlorobenzene	0.5	U	0.5	0.1	uq/l	104		80-120		
1,4-Dichlorobenzene	0.5	Ū	0.5	0.1	uq/l	104		80-120		
Dichlorodifluoromethane	0.5	Ū	0.5	0.1	ug/l	89		39-120		
1,1-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	104		80-122		
1,2-Dichloroethane	0.5	Ū	0.5	0.1	ug/l	102		80-127		
1,1-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	110		80-123		
cis-1,2-Dichloroethene	0.5	Ū	0.5	0.1	uq/l	109		80-120		
trans-1,2-Dichloroethene	0.5	Ū	0.5	0.1	ug/l	106		80-121		
1,2-Dichloropropane	0.5	Ū	0.5	0.1	ug/l	107		80-121		
		Ū	0.5							
1,3-Dichloropropane	0.5 0.5	Ū		0.1	ug/l	105		80-120		
2,2-Dichloropropane			0.5		ug/l	102		75-122		
1,1-Dichloropropene	0.5	U	0.5	0.1	ug/l	105		80-121		
cis-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	105		74-120		
trans-1,3-Dichloropropene	0.5	U	0.5	0.1	ug/l	113		80-120		
Ethylbenzene	0.5	U	0.5	0.1	ug/l	110		80-120		
Freon 113	0.5	U	0.5	0.2	ug/l	110		78-132		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1321868

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 4 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc

Reported: 07/23/12 at 07:59 PM

. ,	Blank		Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	Result	<u> </u>	LOQ**	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Hexachlorobutadiene	0.5	U	0.5	0.1	ug/l	100		79-120		
Isopropylbenzene	0.5	U	0.5	0.1	ug/l	113		80-120		
p-Isopropyltoluene	0.5	U	0.5	0.1	ug/l	105		80-120		
Methylene Chloride	0.5	U	0.5	0.2	ug/l	106		80-120		
Naphthalene	0.5	U	0.5	0.1	ug/l	86		77-120		
n-Propylbenzene	0.5	U	0.5	0.1	ug/l	105		80-120		
Styrene	0.5	U	0.5	0.1	ug/l	115		80-122		
1,1,1,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	108		80-120		
1,1,2,2-Tetrachloroethane	0.5	U	0.5	0.1	ug/l	105		80-125		
Tetrachloroethene	0.5	U	0.5	0.1	ug/l	109		80-120		
Tetrahydrofuran	5.0	U	5.0	2.0	ug/l	97		65-131		
Toluene	0.5	U	0.5	0.1	ug/l	107		80-120		
1,2,3-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	90		77-120		
1,2,4-Trichlorobenzene	0.5	U	0.5	0.1	ug/l	96		79-120		
1,1,1-Trichloroethane	0.5	U	0.5	0.1	ug/l	107		79-127		
1,1,2-Trichloroethane	0.5	U	0.5	0.1	ug/l	106		80-120		
Trichloroethene	0.5	U	0.5	0.1	ug/l	106		80-120		
Trichlorofluoromethane	0.5	U	0.5	0.1	ug/l	118		66-134		
1,2,3-Trichloropropane	1.0	U	1.0	0.3	ug/l	102		80-120		
1,2,4-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	102		80-120		
1,3,5-Trimethylbenzene	0.5	U	0.5	0.1	ug/l	103		80-120		
Vinyl Chloride	0.5	U	0.5	0.1	ug/l	118		65-127		
Xylene (Total)	0.5	U	0.5	0.1	ug/l	112		80-120		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	<u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: C121981AA	Sample	number(s)	: 6719353	UNSPK:	P7193	70			
Benzene	95	105	87-126	11	30				
Bromobenzene	100	111	80-123	11	30				
Bromochloromethane	106	105	82-125	1	30				
Bromodichloromethane	102	114	82-133	11	30				
Bromoform	114	125	60-138	9	30				
Bromomethane	127	134	69-135	5	30				
n-Butylbenzene	92	106	83-131	14	30				
sec-Butylbenzene	95	111	84-128	15	30				
tert-Butylbenzene	100	115	84-135	14	30				
Carbon Tetrachloride	101	113	81-148	11	30				
Chlorobenzene	98	109	78-133	11	30				
Chloroethane	102	126	70-139	21	30				
Chloroform	96	105	86-136	9	30				
Chloromethane	105	112	55-152	6	30				
2-Chlorotoluene	96	110	81-120	14	30				
4-Chlorotoluene	96	107	82-119	11	30				
1,2-Dibromo-3-chloropropane	98	103	55-156	5	30				
Dibromochloromethane	110	122	79-125	10	30				
1,2-Dibromoethane	101	111	84-127	9	30				
Dibromomethane	99	106	83-126	7	30				
1,2-Dichlorobenzene	96	110	83-117	13	30				
1,3-Dichlorobenzene	97	111	81-118	13	30				

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 5 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
1,4-Dichlorobenzene	95	108	79-120	12	3 0		<u> </u>	<u> </u>	
Dichlorodifluoromethane	97	103	39-155	5	30				
1,1-Dichloroethane	93	104	88-136	11	30				
1,2-Dichloroethane	99	109	82-135	9	30				
1,1-Dichloroethene	101	111	83-150	9	30				
cis-1,2-Dichloroethene	97	109	82-129	12	30				
trans-1,2-Dichloroethene	94	105	88-127	11	30				
1,2-Dichloropropane	96	106	91-126	10	30				
1,3-Dichloropropane	99	108	80-127	9	30				
2,2-Dichloropropane	98	112	80-134	13	30				
1,1-Dichloropropene	94	108	86-139	13	30				
cis-1,3-Dichloropropene	100	113	74-132	12	30				
trans-1,3-Dichloropropene	111	123	71-128	10	30				
Ethylbenzene	101	113	80-140	12	30				
Freon 113	102	116	87-158	12	30				
Hexachlorobutadiene	94	109	84-128	15	30				
Isopropylbenzene	103	117	81-133	13	30				
p-Isopropyltoluene	97	112	84-124	14	30				
Methylene Chloride	95	104	84-122	9	30				
Naphthalene	86	100	70-131	15	30				
±	97	110	79-131	13	30				
n-Propylbenzene	66	68			30				
Styrene 1,1,1,2-Tetrachloroethane	103	116	63-151 87-126	3 12	30				
1,1,2,2-Tetrachloroethane	103			11	30				
Tetrachloroethene		112 111	75-131	11	30				
	99		63-156		30				
Tetrahydrofuran	103	98	56-154	5	30				
Toluene	96	106	83-127	9					
1,2,3-Trichlorobenzene	88	103	73-125	16	30				
1,2,4-Trichlorobenzene	94	110	77-120	16	30				
1,1,1-Trichloroethane	99	111	85-140	12	30				
1,1,2-Trichloroethane	102	112	85-129	9	30				
Trichloroethene	95	108	85-131	12	30				
Trichlorofluoromethane	117	125	67-161	7	30				
1,2,3-Trichloropropane	100	114	76-120	13	30				
1,2,4-Trimethylbenzene	97	110	87-126	12	30				
1,3,5-Trimethylbenzene	97	110	89-129	13	30				
Vinyl Chloride	118	132	65-151	12	30				
Xylene (Total)	102	114	81-137	12	30				
		, ,							
Batch number: C122011AA						PK: P717504			
Benzene	103	103	87-126	0	30				
Bromobenzene	106	108	80-123	2	30				
Bromochloromethane	106	106	82-125	0	30				
Bromodichloromethane	112	111	82-133	1	30				
Bromoform	120	119	60-138	1	30				
Bromomethane	105	105	69-135	0	30				
n-Butylbenzene	103	108	83-131	5	30				
sec-Butylbenzene	107	112	84-128	4	30				
tert-Butylbenzene	109	118	84-135	7	30				
Carbon Tetrachloride	110	112	81-148	1	30				
Chlorobenzene	106	107	78-133	1	30				
Chloroethane	101	103	70-139	1	30				
Chloroform	103	104	86-136	0	30				

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 6 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Chloromethane	107	108	55-152	1	30				
2-Chlorotoluene	104	108	81-120	4	30				
4-Chlorotoluene	103	108	82-119	4	30				
1,2-Dibromo-3-chloropropane	104	99	55-156	4	30				
Dibromochloromethane	119	121	79-125	2	30				
1,2-Dibromoethane	107	108	84-127	1	30				
Dibromomethane	107	104	83-126	2	30				
1,2-Dichlorobenzene	104	108	83-117	3	30				
1,3-Dichlorobenzene	105	108	81-118	3	30				
1,4-Dichlorobenzene	103	108	79-120	5	30				
Dichlorodifluoromethane	91	90	39-155	1	30				
1,1-Dichloroethane	102	102	88-136	1	30				
1,2-Dichloroethane	107	105	82-135	2	30				
1,1-Dichloroethene	107	107	83-150	0	30				
cis-1,2-Dichloroethene	106	105	82-129	0	30				
trans-1,2-Dichloroethene	102	103	88-127	2	30				
1,2-Dichloropropane	104	104	91-126	1	30				
1,3-Dichloropropane	106	106	80-127	1	30				
2,2-Dichloropropane	111	111	80-134	0	30				
1,1-Dichloropropene	105	105	86-139	0	30				
cis-1,3-Dichloropropene	109	108	74-132	0	30				
trans-1,3-Dichloropropene	122	121	71-128	1	30				
Ethylbenzene	109	111	80-140	1	30				
Freon 113	110	110	87-158	0	30				
Hexachlorobutadiene	103	108	84-128	5	30				
Isopropylbenzene	114	117	81-133	3	30				
p-Isopropyltoluene	109	113	84-124	4	30				
Methylene Chloride	101	101	84-122	1	30				
Naphthalene	89	92	70-131	3	30				
n-Propylbenzene	106	109	79-131	3	30				
Styrene	114	115	63-151	1	30				
1,1,1,2-Tetrachloroethane	112	113	87-126	1	30				
1,1,2,2-Tetrachloroethane	105	107	75-131	2	30				
Tetrachloroethene	113	120	63-156	4	30				
Tetrahydrofuran	97	90	56-154	7	30				
Toluene	104	105	83-127	1	30				
1,2,3-Trichlorobenzene	96	100	73-125	4	30				
1,2,4-Trichlorobenzene	102	107	77-120	5	30				
1,1,1-Trichloroethane	109	110	85-140	1	30				
1,1,2-Trichloroethane	107	109	85-129	1	30				
Trichloroethene	105	105	85-131	0	30				
Trichlorofluoromethane	119	121	67-161	2	30				
1,2,3-Trichloropropane	107	109	76-120	2	30				
1,2,4-Trimethylbenzene	106	110	87-126	3	30				
1,3,5-Trimethylbenzene	106	110	89-129	3	30				
Vinyl Chloride	118	124	65-151	5	30				
Xylene (Total)	111	113	81-137	2	30				
Batch number: C122022AA	Sample	number(s	: 6719355	UNSPK	: P7265	82			
Benzene	103	106	87-126	3	30				
Bromobenzene	104	107	80-123	3	30				
Bromochloromethane	113	109	82-125	3	30				
Bromodichloromethane	106	112	82-133	5	30				

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 7 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Bromoform	117	122	60-138	4	30			<u> </u>	
Bromomethane	102	101	69-135	1	30				
n-Butylbenzene	94	102	83-131	8	30				
sec-Butylbenzene	99	106	84-128	6	30				
tert-Butylbenzene	102	108	84-135	5	30				
Carbon Tetrachloride	106	109	81-148	3	30				
Chlorobenzene	102	106	78-133	4	30				
Chloroethane	103	101	70-139	3	30				
Chloroform	100	102	86-136	3	30				
Chloromethane	101	102	55-152	1	30				
2-Chlorotoluene	100	102	81-120	2	30				
4-Chlorotoluene	98	102	82-119	4	30				
1,2-Dibromo-3-chloropropane	117	114	55-156	3	30				
Dibromochloromethane	117	122	79-125	4	30				
1,2-Dibromoethane	106	111	84-127	4	30				
Dibromomethane	102	107	83-126	4	30				
1,2-Dichlorobenzene	102	105	83-117	3	30				
1,3-Dichlorobenzene	101	105	81-118	3	30				
1,4-Dichlorobenzene	101	105	79-120	4	30				
Dichlorodifluoromethane	76	76	39-155	1	30				
1,1-Dichloroethane	101	104	88-136	3	30				
1,2-Dichloroethane	99			3	30				
1,1-Dichloroethene	108	101 110	82-135 83-150	2	30				
·									
cis-1,2-Dichloroethene	104	107	82-129	4	30				
trans-1,2-Dichloroethene	103	105	88-127	2 4	30 30				
1,2-Dichloropropane	104	109	91-126		30				
1,3-Dichloropropane	104	108	80-127	4					
2,2-Dichloropropane	103	105	80-134	2	30				
1,1-Dichloropropene	103	106	86-139	3	30				
cis-1,3-Dichloropropene	114	118	74-132	4	30				
trans-1,3-Dichloropropene	118	123	71-128	4	30				
Ethylbenzene	105	108	80-140	3	30				
Freon 113	109	110	87-158	1	30				
Hexachlorobutadiene	91	96	84-128	6	30				
Isopropylbenzene	107	112	81-133	5	30				
p-Isopropyltoluene	99	106	84-124	7	30				
Methylene Chloride	103	104	84-122	1	30				
Naphthalene	96	102	70-131	6	30				
n-Propylbenzene	100	104	79-131	4	30				
Styrene	111	114	63-151	3	30				
1,1,1,2-Tetrachloroethane	106	108	87-126	2	30				
1,1,2,2-Tetrachloroethane	107	110	75-131	3	30				
Tetrachloroethene	112	115	63-156	3	30				
Tetrahydrofuran	102	99	56-154	2	30				
Toluene	103	105	83-127	2	30				
1,2,3-Trichlorobenzene	95	105	73-125	10	30				
1,2,4-Trichlorobenzene	95	104	77-120	9	30				
1,1,1-Trichloroethane	105	107	85-140	1	30				
1,1,2-Trichloroethane	108	111	85-129	3	30				
Trichloroethene	102	106	85-131	3	30				
Trichlorofluoromethane	109	109	67-161	0	30				
1,2,3-Trichloropropane	108	111	76-120	3	30				
1,2,4-Trimethylbenzene	97	102	87-126	5	30				

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 8 of 8

Quality Control Summary

Client Name: Sanborn Head and Assoc Group Number: 1321868

Reported: 07/23/12 at 07:59 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
1,3,5-Trimethylbenzene	98	103	89-129	5	30				
Vinyl Chloride	107	108	65-151	1	30				
Xvlene (Total)	107	110	81-137	3	3.0				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C121981AA

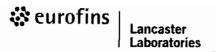
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6719353	105	104	97	98	
Blank	105	108	96	94	
LCS	103	103	98	98	
MS	101	102	100	98	
MSD	100	102	100	99	
Limits:	77-114	74-113	77-110	78-110	
	Name: EPA SW846/ mber: C122011AA	8260 (water-25ml)	#1		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6719354	107	106	96	97	
6719356	106	106	97	93	

Limits:	77-114	74-113	77-110	78-110	
MSD	102	103	100	99	
MS	103	104	100	99	
LCS	102	105	99	100	
Blank	105	106	96	94	
6719356	106	106	97	93	
6719354	107	106	96	97	

Analysis Name: EPA SW846/8260 (water-25ml) #1

Batch number: C122022AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6719355	107	107	97	93
Blank	106	105	97	91
LCS	103	103	101	96
MS	103	108	101	97
MSD	103	103	101	97
Limits:	77-114	74-113	77-110	78-110


*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Shipping Group:1						Relinquished By: Date / Time		Time	Received By:		Date / Time		
SANBORN		Chai	n-of-(Custo	dy		_		Hizli			291	
۱, ۲		Lancaster Laboratories, Inc.											
95 High St Portland, ME 04101		2425 New Holland Pike PO Box 12425					_		 				4
P (207) 761-9300		Lancaster, PA 17605-2425				1							
F (207) 761-9339			P (717) 656-2300					$\overline{}$	1		W -	1	<i>A</i>
		F	(717) 65	6-2681							Km	itin king	4 7-13-12 0930
	Project Infor	mation	ATT WARRIES .			De	liverable	Informa	tion				Other Information
Name:	Supplemental VI Ass				TAT:	Standard		ing or mu				SGD Complet	•
Number:			•	Delivery I					•	•	Interna	SGD Complet l COC Require	
					ebradstreet@sanbornhead.com				•		Specific QA/Q		
l	Erica Bradstreet Data Package Option:							•	5.16	opecific Qn Q			
•	Elica Bradstreet		· Duiu	_	-								IBM Manassas VOCs list 6396
Account #:				ED	D Type:	SHDMS			,	,			13.17 1.11111133113 7 0 0 3 1151 0 0 7 0
Quote #:			_			g s							
					pth	ස්	Fab)	ЭНСІ					
Lab ID (Lab Use Only)	Sample Name	Collect	ion Time	Matrix	rop Depth	Bottom Depth	Filtered? (Eield / Lab)	8260B/HCI					Remarks:
(Lab Use Only)	Frac01	7/12/2012	1630	GW	T	<u> </u>	三年 品	<u>‰</u> 					_
<u> </u>													Rush TATON
	SG11723	7/12/2012	1540	GW				2					Fracol perEB.
	SG117I	7/12/2012	1445	GW				2					100171002
	TB1	7/5/2012		AQ				2					
-													

Environmental Sample Administration Receipt Documentation Log

			•		· ·						
Client/	Project:	Sanbo	rn Head	Shippi	ng Contain	er Sealed: YE	s) NO				
Date of Receipt:				Custoo	Custody Seal Present *: YES NO						
Time of Receipt:0930				* Custod	y seal was inta	act unless otherwise					
Source Code: 50-1			Packaç	discrepancy s	Chilled	Not Chilled					
Temperature of Shipping Containers											
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments				
1	2783	1,40	TB	VI	4	В					
2											
3											
4											
5											
6											
Number of Trip Blanks received NOT listed on chain of custody:											
Paperwork Discrepancy/Unpacking Problems:											
Unpacker Signature/Emp#: Knoth Lugh 2123 Date/Time: 7-13-12 0930											

Issued by Dept. 6042 Management

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

=		· · · · · · · · · · · · · · · · · · ·	=
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX D

QUALITY ASSURANCE/QUALITY CONTROL & DATA VALIDATION

(on disc)

APPENDIX D.1

JUNE 2012 ROUTINE SAMPLING

environmental chemistry consultants

DATA VALIDATION REPORT

Method TO-15 Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: eurofins/Air Toxics Limited (ATL), Folsom, California

Work Orders: 1206667

Date(s) of Collection: June 25, 2012 – June 27, 2012

Number and type

Samples & analyses: 20 Soil Vapor samples for six project-specific VOCs by Method TO-15

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: August 28, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on Work Order 1103654R1. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining air data associated with this QAQC plan was performed. Please see the Data Usability Report for Work Order 1103654R1 for complete details on the TO-15 review. The Air Data Review Checklist, attached, was completed during this assessment to document the review of this Work Order.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis.

Former IBM Facility, Manassas, Virginia TO-15 Data Validation Review

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for all samples except SG-05-25, SG-06-44, SG102D, SG106D, SG-12, and SG-28, which were diluted to ensure all detected results were reported within the instrument calibration range. In addition, sample SG107 was received with a higher than expected receipt vacuum, which resulted in non-detects exceeding the expected RLs for this sample. The data user will need to evaluate the elevated non-detects in these samples for project objectives.

There was one field duplicate pair: SG-06-8 and DUP1. FD precision was acceptable for this FD pair indicating acceptable precision from field collection through analysis for the VOCs reported.

All other quality control information associated with accuracy, precision, and sensitivity for the project-specific list of VOCs reported met method criteria for the samples in this Work Order. The results reported by the laboratory were unchanged as a consequence of this data review and the results presented in the validated database are considered usable for project objectives.

Former IBM Facility, Manassas, VA Air Data Review Checklist

Lab: <u>eurofins/ Air Toxics Ltd.</u>
Date Sampled: <u>6/25/12 - 6/27/12</u>

Method of Analysis: TO-15 Full Scan

No. Samples 19 + 1FD

Matrix/Sampling method Air/SUMMA® Canisters

Work Order: 1206667

Data Element Acceptable	Canister Receipt	НТ	Surrogates & IS	LCS	Lab Dup (LCS or LD)	Tunes ICAL	CCAL	FD	RL & Quant.
Yes	√	√	V	V	√	$\sqrt{}$	V	\checkmark	$\sqrt{}$
No									

Other Issues: Yes All non-detects were > Expected RLs in 7 samples (see page 3)

Comments:

An In-Depth review of the TO-15 analysis for samples from the Former IBM Facility, Manassas, VA was performed on Work Order 1103654R1.

20 Soil Vapor samples were collected on 6/25/12 to 6/27/12 and were received at ATL on 6/29/12 in good condition. There were no COC issues noted.

These samples were analyzed for 6 project-specific VOCs, as requested on the COC, and as shown on page 5 of this checklist.

All Canister vacuums (field initial, field final, and lab receipt) were acceptable - Canister certification forms indicated all canisters were non-detect for 6 target VOCs prior to shipment to field; no Action required. Note surrogate %Rec on Certification form has the "1" cut off on all recoveries $\ge 100\%$ - no action except to note.

Samples were all analyzed by 7/5/12; therefore, HT met - No Action required.

All 3 Surrogates and 3 IS's were recovered within criteria for samples & QC - No Action required.

LCS/LCSD = p070304/p070303 & p070504/p070503. All 6 VOCs reported were recovered within criteria in both LCS/LCSD. The RPDs between LCS/LCSD were also acceptable. No Action required.

Date: 8/28/12

Data Reviewer: Nancy C. Rothman, Ph.D.

Lab: <u>eurofins/ Air Toxics Ltd.</u>

Associated Blanks: MB = p070307 & p070506

EB: EB1 (reported in W.O. #1206668)

Blank ID	Contaminant / Level (μg/m³)	Action Level DF=	Sample and reported result (µg/m³)	Corrected Database Result
p070307	None		No Blank Action Required	
p070506	None		No Blank Action Required	
EB1	None		No Blank Action Required	

Additional Notes:

LDs performed on SG-05-45 & SG-30. A comparison of detected results for these LDs shown below:

LD Evaluation_ Sample IDs:

Sample = SG-05-45

LD = SG-05-45 Lab Duplicate

		DF=1.73	Sample	5	Sample Result	LD		LD Result			
Analyte Name	CAS No.	RL (μ g/m ³)	μg/m ³	Q	Level	μg/m ³	Q	Level	RPD	A	Action
Trichloroethene	79-01-6	4.6	5.9		< 5xRL	6.7		< 5xRL	12.7	ı	None
Tetrachloroethene	127-18-4	5.9	1500		>5xRL	1500		> 5xRL	0.0	N	None

LD Evaluation_ Sample IDs:

Sample = SG-30

LD = SG-30 Lab Duplicate

		DF=1.78	Sample	Sample Result	LD		LD Result		
Analyte Name	CAS No.	RL (μ g/m ³)	μg/m ³	Q Level	μg/m ³	Q	Level	RPD	Action
trans-1,2-Dichloroethene	156-60-5	3.5	3.7	< 5xRL	4.6	U	< 5xRL	NA	None
Tetrachloroethene	127-18-4	6	52	> 5xRL	54		>5xRL	3.8	None

LD precision acceptable for both Sample/LD pairs - No Action required.

Date: <u>8/28/12</u>

Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u>

Work Order: <u>1206667</u>

Work Order: 1206667

Lab: eurofins/ Air Toxics Ltd.

Additional Notes:

FDs: SG-06-8/DUP1. A comparison of detected results shown below.

FD Evaluation_ Sample IDs:

Sample = SG-06-8

FD = DUP1

		DF=1.75	Sample	Sample Result	FD	F	D Result		
Analyte Name	CAS No.	RL (μ g/m ³)	μg/m ³	Q Level	μg/m ³	Q	Level	RPD	Action
Tetrachloroethene	127-18-4	5.9	35	> 5xRL	35		> 5xRL	0.0	None

FD precision was acceptable for SG-06-8 & DUP1 - No Action required.

Tunes: 4 BFB Tunes (Inst. P - 2 ICAL + 2 CCALs)- all 4 met criteria and samples was analyzed within 24 hours of tune - no action required.

ICAL: Instrument P performed 6/26-6/30/12. For ICAL, 6-level calibration from 0.5 to 200 ppbV for 6 target VOCs except trichloroethene and tetrachloroethene for which 7-level ICAL from 0.2 to 200 ppbV reported. ICALs supported RLs reported. %RSD \leq 30% and RRF > 0.05 for all 6 compounds. No Action required.

CCALs: p070302 & p070502 - All 6 VOCs were recovered within criteria - No Action required

All non-detects for the 6 project-specific VOCs were reported at or below the Expected RLs due to DF<2 except for sample SG107 due to higher than expected receipt vacuum (14.8 "Hg) and samples SG-05-25, SG-06-44, SG102D, SG106D, SG-12, and SG-28, which were diluted at the instrument level to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate non-detects at elevated levels for project use.

There were no "J" data reported.

The narrative did not raise any additional issues affecting data quality.

The data were unchanged as a consequence of this review

Date: <u>8/28/12</u>

Work Order: 1206667

Lab: eurofins/ Air Toxics Ltd.

			Expected RL		
		DF=1	DF=2	LCS Criteria	CCV Criteria
Analyte Name	CAS No.	RL (ppbv)	RL ($\mu g/m^3$)	%	%
Vinyl Chloride *	75-01-4	0.5	2.6	70-130	70-130
trans-1,2-Dichloroethene	156-60-5	0.5	4.0	60-140	60-140
cis-1,2-Dichloroethene *	156-59-2	0.5	4.0	70-130	70-130
Trichloroethene *	79-01-6	0.5	5.4	70-130	70-130
1,1,2-Trichloroethane	79-00-5	0.5	5.4	70-130	70-130
Tetrachloroethene *	127-18-4	0.5	6.8	70-130	70-130

^{*} Expected RL from Table C.1 of QAQC Plan. trans-1,2-Dichloroethene and 1,1,2-Trichloroethane were added as target compounds at the client's request after the QAQC Plan was developed.

result may be influenced by multiple QC issues.

QA/QC Criteria	for evaluation of TO-15 data:
SUMMA Canister Pressure (P):	Initial Field P < 25" Hg, J/UJ all results; Lab Receipt P > 15" Hg, J/UJ results; Lab Receipt P > ± 5" Hg of Final Field P, J/UJ results
Hold Time (HT):	30 days ≤ HT ≤ 60 days, J/UJ results; HT > 60 days, J detects/ R non-detects (or professional judgment)
Surrogates:	%Rec <10%, J detects, R non-detects; 10% ≤ %Rec <70%; J/UJ all associated data; %Rec >130%, J detects - no action for non-detects
IS:	Area <20% of CCAL, J detects, R non-detects; 20% ≤ Area<60%; J/UJ all associated data; Area >140%, J detects - no action for non-detects
LCS & CCV:	Percent Recovery (%Rec) <10%, J detects, reject (R) non-detects; 10% ≤ %Rec <lcl; %rec="" all="" associated="" data;="" j="" uj="">UCL, K detects -</lcl;>
	no action for non-detects
LDs & FDs:	LCS/LCSD, Sample/LD, or Sample/FD RPD > 25% for detects > 5x RL, J data; professional judgment for results < 5 x RL
Blank Actions:	Action Level = 5 x Level in Blank; Sample-specific Blank Action Level = Action Level x (Sample DF/Blank DF)
	Method Blank (MB) and Field Blank (Equipment Blank - EB): Result <blank action,="" at="" b="" level="" reported<="" result="" td=""></blank>
Tune:	SW-846 method 8260B tune criteria not met, professional judgment on R of all data; samples analyzed > 24-hours after tune; professional
	judgment on J/UJ or R of results
ICAL:	%RSD > 30%, J/UJ associated results
RLs + Quant:	Compound reported outside calibration range (< RL or at ppbV level > sample-specific highest ICAL standard for compound), J data. If RL > Expected
	RL, discuss possible issue with sensitivity of data

References: Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009; USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999

DV Qualifiers: U = compound is non-detect; J = result is estimated; UJ = non-detect is estimated; R = result is rejected and unusable. Final DV qualifier for a particular

Date: 8/28/12

Data Reviewer: Nancy C. Rothman, Ph.D. 4 of 4 New Environmental Horizons, Inc.

environmental chemistry consultants

DATA VALIDATION REPORT

Method TO-15 Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: eurofins/Air Toxics Limited (ATL), Folsom, California

Work Orders: 1206668

Date(s) of Collection: <u>June 25, 2012 – June 27, 2012</u>

Number and type

Samples & analyses: 12 Soil Vapor samples + 1 Equipment Blank for six project-specific VOCs by

Method TO-15

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: August 28, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the *Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia*, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*; Publication USEPA540/R-07/003, July 2007; *USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review*, September 1994; and Method TO-15, *Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)*, Publication EPA/625/R-96/010b, January 1999; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on Work Order 1103654R1. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining air data associated with this QAQC plan was performed. Please see the Data Usability Report for Work Order 1103654R1 for complete details on the TO-15 review. The Air Data Review Checklist, attached, was completed during this assessment to document the review of this Work Order.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis.

The canister valve on sample SG106S was found to be open upon receipt at the laboratory. The field final and lab receipt vacuums for this sample differed by more than 5"Hg suggesting that the canister may have leaked during transit from the field to the laboratory. All results for this sample were estimated (J or UJ) with possible low bias as shown in Table 1.

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for all samples except SG106S and SG108D, which were diluted to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate the elevated non-detects in these samples for project objectives.

The equipment blank (EB1) included in this SDG was non-detect for all six project VOCs. Therefore, blank action was not required.

There were two field duplicate pairs: SG101 / DUP2 and SG111S / DUP3. FD precision was acceptable for both FD pairs indicating acceptable precision from field collection through analysis for the VOCs reported.

All other quality control information associated with accuracy, precision, and sensitivity for the VOCs reported met project criteria for these samples with the exceptions summarized in Table 1, below. The attached Data Validation Checklist includes all QA/QC reviewed during validation (including QC results that were acceptable) and details on the justification for actions taken.

Field Sample ID Analyte Qualifier Bias **Validation Comments** Vinyl Chloride trans-1,2-Dichloroethene Field final and Receipt vacuum SG106S cis-1,2-Dichloroethene UJ L disagree Trichloroethene 1,1,2-Trichloroethane Field final and Receipt vacuum SG106S Tetrachloroethene J L disagree

Table 1. Summary of Data Validation Actions

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; EB = detected in field equipment blank; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

The qualified (U, UJ or J) and unqualified results presented in the validated data file, submitted electronically to SHA, are considered valid and usable for project objectives.

Lab: eurofins/ Air Toxics Ltd.

Work Order: 1206668

Date Sampled: 6/25/12 - 6/27/12	No. Samples	10 + 2FD + 1EB
Method of Analysis: TO-15 Full Scan	Matrix/Sampling method	Air/SUMMA® Canisters

F	Data Element Acceptable	Canister Receipt	HT	Surrogates & IS	LCS	Lab Dup (LCS or LD)	Tunes ICAL	CCAL	FD	RL & Quant.
	Yes		$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$	V	V	$\sqrt{}$	$\sqrt{}$
	No	Estimate (J or UJ) all results in SG106S								

Other Issues: Yes All non-detects were > Expected RLs in 2 samples (see page 3)

Comments:

An In-Depth review of the TO-15 analysis for samples from the Former IBM Facility, Manassas, VA was performed on Work Order 1103654R1.

12 Soil Vapor samples + 1 Equipment Blank were collected on 6/25/12 to 6/27/12 and were received at ATL on 6/29/12. The canister valve for sample SG106S was found to be open upon receipt at the lab and a brass plug was used to seal the canister.

These samples were analyzed for 6 project-specific VOCs, as requested on the COC, and as shown on page 5 of this checklist.

All Canister vacuums (field initial, field final, and lab receipt) were acceptable except for sample SG106S (field final vacuum was 7 " Hg and receipt vacuum was 0.5 " Hg) for which the canister valve was found to be open upon receipt at the lab. Canister certification forms indicated all canisters were non-detect for 6 target VOCs prior to shipment to field; no Action required. Note surrogate %Rec on Certification form has the "1" cut off on all recoveries ≥ 100% - no action except to note.

*ACTION: All results estimated (J or UJ) in SG106S with possible low bias due to a possible leak in the canister valve which caused the field final and lab receipt vacuums to differ by more than 5 " Hg.

Samples were all analyzed by 7/6/12; therefore, HT met - No Action required.

All 3 Surrogates and 3 IS's were recovered within criteria for samples & QC - No Action required.

LCS/LCSD = 0070604/0070603. All 6 VOCs reported were recovered within criteria in LCS/LCSD. The RPDs between LCS/LCSD were also acceptable. No Action required.

Date: 8/28/12

Data Reviewer: *Nancy C. Rothman, Ph.D.*

Lab: <u>eurofins/ Air Toxics Ltd.</u>

Associated Blanks: MB = o070606

EB: EB1

Blank ID	Contaminant / Level (μg/m³)	Action Level DF=	Sample and reported result (μg/m ³)	Corrected Database Result
o070606	None		No Blank Action Required	
EB1	None		No Blank Action Required	

Additional Notes:

LD performed on SG108D. A comparison of detected results for these LDs shown below:

LD Evaluation_ Sample IDs:

Sample = SG108D

LD = SG108D Lab Duplicate

		DF=342	Sample		Sample Result	LD		LD Result		
Analyte Name	CAS No.	RL (μ g/m ³)	μg/m ³	Q	Level	$\mu g/m^3$	Q	Level	RPD	Action
Tetrachloroethene	127-18-4	120	200000		> 5xRL	210000		> 5xRL	4.9	None

LD precision acceptable for Sample/LD pair - No Action required.

FDs: SG101/DUP2 & SG111S/DUP3. All results for SG101 and DUP2 were non-detect; therefore, while these results are consistent with one another, it is not possible to quantitatively evaluate FD precision through calculation of RPD. FD precision considered acceptable - No Action required. A comparison of detected results for SG111S/DUP3 shown below.

FD Evaluation_ Sample IDs:

Sample = SG111S

FD = DUP3

Analyte Name	CAS No.	DF=1.71 RL (μ g/m ³)	Sample μg/m ³	Sa Q	ample Result Level	FD μg/m ³	Q	FD Result Level	RPD	Action
Trichloroethene	79-01-6	4.6	18		< 5xRL	17		< 5xRL	5.7	None
Tetrachloroethene	127-18-4	5.8	200		> 5xRL	190		> 5xRL	5.1	None

FD precision was acceptable for SG111S & DUP3 - No Action required.

Date: 8/28/12

Data Reviewer: Nancy C. Rothman, Ph.D.

Work Order: 1206668

Work Order: 1206668

Lab: <u>eurofins/ Air Toxics Ltd.</u>

Additional Notes:

Tunes: 3 BFB Tunes (Inst. O - 2 ICAL + 1 CCALs)- all 3 met criteria and samples was analyzed within 24 hours of tune - no action required.

ICAL: Instrument O performed 5/16/12. For ICAL, 7-level calibration from 0.5 to 200 ppbV for 6 target VOCs except trichloroethene and tetrachloroethene for which 8-level ICAL from 0.2 to 200 ppbV reported. ICALs supported RLs reported. %RSD \leq 30% and RRF > 0.05 for all 6 compounds. No Action required.

CCAL: 0070602 - All 6 VOCs were recovered within criteria - No Action required

All non-detects for the 6 project-specific VOCs were reported at or below the Expected RLs due to DF<2 except for samples SG106S and SG108D, which were diluted at the instrument level to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate non-detects at elevated levels for project use.

There were no "J" data reported.

The narrative did not raise any additional issues affecting data quality.

Date: 8/28/12

Work Order: 1206668

Lab: eurofins/ Air Toxics Ltd.

		DF=1	DF=2	LCS Criteria	CCV Criteria
Analyte Name	CAS No.	RL (ppbv)	RL ($\mu g/m^3$)	%	%
Vinyl Chloride *	75-01-4	0.5	2.6	70-130	70-130
trans-1,2-Dichloroethene	156-60-5	0.5	4.0	60-140	60-140
cis-1,2-Dichloroethene *	156-59-2	0.5	4.0	70-130	70-130
Trichloroethene *	79-01-6	0.5	5.4	70-130	70-130
1,1,2-Trichloroethane	79-00-5	0.5	5.4	70-130	70-130
Tetrachloroethene *	127-18-4	0.5	6.8	70-130	70-130

^{*} Expected RL from Table C.1 of QAQC Plan. trans-1,2-Dichloroethene and 1,1,2-Trichloroethane were added as target compounds at the client's request after the QAQC Plan was developed.

QA/QC Criteria	for evaluation of TO-15 data:
SUMMA Canister Pressure (P):	Initial Field P < 25" Hg, J/UJ all results; Lab Receipt P > 15" Hg, J/UJ results; Lab Receipt P > \pm 5" Hg of Final Field P, J/UJ results
Hold Time (HT):	30 days ≤ HT ≤ 60 days, J/UJ results; HT > 60 days, J detects/ R non-detects (or professional judgment)
Surrogates:	%Rec <10%, J detects, R non-detects; 10% ≤ %Rec <70%; J/UJ all associated data; %Rec >130%, J detects - no action for non-detects
IS:	Area <20% of CCAL, J detects, R non-detects; 20% ≤ Area<60%; J/UJ all associated data; Area >140%, J detects - no action for non-detects
LCS & CCV:	Percent Recovery (%Rec) <10%, J detects, reject (R) non-detects; 10% ≤ %Rec <lcl; %rec="" all="" associated="" data;="" j="" uj="">UCL, K detects -</lcl;>
	no action for non-detects
LDs & FDs:	LCS/LCSD, Sample/LD, or Sample/FD RPD > 25% for detects > 5x RL, J data; professional judgment for results < 5 x RL
Blank Actions:	Action Level = 5 x Level in Blank; Sample-specific Blank Action Level = Action Level x (Sample DF/Blank DF)
	Method Blank (MB) and Field Blank (Equipment Blank - EB): Result <blank action,="" at="" b="" level="" reported<="" result="" td=""></blank>
Tune:	SW-846 method 8260B tune criteria not met, professional judgment on R of all data; samples analyzed > 24-hours after tune; professional
	judgment on J/UJ or R of results
ICAL:	%RSD > 30%, J/UJ associated results
RLs + Quant:	Compound reported outside calibration range (< RL or at ppbV level > sample-specific highest ICAL standard for compound), J data. If RL > Expected
	RL, discuss possible issue with sensitivity of data

DV Qualifiers: U = compound is non-detect; J = result is estimated; UJ = non-detect is estimated; R = result is rejected and unusable. Final DV qualifier for a particular result may be influenced by multiple QC issues.

References: Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009; USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999

Date: 8/28/12

4 of 4 Data Reviewer: *Nancy C. Rothman, Ph.D.* New Environmental Horizons, Inc.

environmental chemistry consultants

DATA VALIDATION REPORT Method 8260B Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: <u>eurofins/Lancaster Laboratories, Inc., Lancaster, Pennsylvania (Lancaster)</u>

SDG/Lab Project #: MAN25

Date(s) of Collection: June 18, 2012

Number and type

Samples & analyses: 11 Groundwater samples, 1 Equipment Blank, 1 Field Blank, and 1 Trip Blank

for 60 VOCs by Method 8260B

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: September 12, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the *Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia*, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*; Publication USEPA540/R-07/003, July 2007; *USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review*, September 1994; and EPA SW-846 Method 8260B; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on SDG MAN01. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining groundwater data associated with this QAQC plan was performed. Please see the Data Usability Report for SDG MAN01 for complete details on the 8260B review. The VOC Data Review Checklist, attached, was completed during this assessment to document the review of this SDG.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis. However, Lancaster reported 54 additional VOCs (60 total compounds reported) for the samples in this SDG. At the client's request, all 60 VOCs reported were evaluated.

The Trip Blank, TB1, date of collection is listed on the Chain-of-Custody (COC) as 6/12/12, which is probably the date when the TB was shipped from the laboratory to the field. Since there was no headspace in TB1, no action was taken for any holding time exceedance of this field QC sample.

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for the six target VOCs in all samples except cis-1,2-dichloroethene and trichloroethene in sample SG106I and vinyl chloride in samples DUP1, OF54, SG106D, and SG106I due to the dilutions made for sample analyses to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate the elevated non-detects in these samples for project objectives.

There were no MS/MSD analyses conducted on the samples in this SDG since insufficient sample was collected for this QC analysis. The laboratory narrated that they performed batch MS/MSD analysis on samples not related to this project (i.e., lab was method complaint); however, these results were not reported in this SDG since these MS/MSD data would not impact the samples reported herein.

There was one set of field duplicates (FD): OFF55 / DUP1. FD precision was unacceptable for cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. These three compounds were estimated (J) in the FD pair with indeterminate bias, as shown in Table 1. These results are an indication of variable precision and non-representativeness of the samples to the site location for these three VOCs in groundwater.

The Equipment Blank (EB1) reported detected results for several VOCs. A comparison of the compounds and levels detected in this blank with the sample results lead to qualification (B) of two tetrachloroethene results as shown in Table 1.

All other quality control information associated with accuracy, precision, and sensitivity for the VOCs reported met project criteria for these samples with the exceptions summarized in Table 1, below. The attached Data Validation Checklist includes all QA/QC reviewed during validation (including QC results that were acceptable) and details on the justification for actions taken.

Table 1. Summary of Data Validation Actions

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
SG102I SG111D	Tetrachloroethene	JB	I	Equipment Blank Action + Result uncertain below the calibration range
DUP1 OF55	Tetrachloroethene	J	I	FD imprecision
OF55	cis-1,2-Dichloroethene Trichloroethene	J	I	FD imprecision
DUP1	cis-1,2-Dichloroethene Trichloroethene	J	I	FD imprecision + Result uncertain below the calibration range
DUP1 FB1 OF54 SG102I SG106D	Benzene	UJ	L	Low LCS/LCSD recoveries

Table 1. Summary of Data Validation Actions - continued

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
OF55	Benzene	J	I	Low LCS/LCSD recoveries + Result uncertain below the calibration range
SG113D	Benzene	J	I	Result uncertain below the calibration range
EB1	Methylene Chloride Tetrachloroethene Naphthalene	J	I	Result uncertain below the calibration range
OF55	Chloromethane Vinyl Chloride trans-1,2-Dichloroethene	J	I	Result uncertain below the calibration range
SG102I	cis-1,2-Dichloroethene	J	I	Result uncertain below the calibration range
SG106D	cis-1,2-Dichloroethene Trichloroethene	J	I	Result uncertain below the calibration range
SG108I	Chloroform	J	I	Result uncertain below the calibration range
SG111I	cis-1,2-Dichloroethene Chloroform Trichloroethene	J	I	Result uncertain below the calibration range
SG113I	Chloroform	J	Ι	Result uncertain below the calibration range

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; B = Analyte was also detected in an associated Blank [Region III DV requirement]; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

The qualified (U, J, UJ, or JB) and unqualified results presented in the validated data file, submitted electronically to SHA, are considered valid and usable for project objectives.

Volatile Data Review Checklist Former IBM Facility, Manassas, Virginia

Lab Project #: MAN25

Lab: eurofins/Lancaster Laboratories

Date Sampled: 6/18/12

Method of Analysis: 8260B

No. Samples 10+1FD+1EB+1FB+1TB

Method of Analysis: 670 Matrix: Groundwater

Data
Tunes QL

Fractivation ICS / ICALs & Quant

Element	Preservation		LCS /			ICALs		& Quant.	
Acceptable	& HT	Surrogates	Blank Spike	MS/MSD	FD	CCALs	IS'	Correct	Other Issues
Yes	٧	٧		NA		٧	٧		
No			Benzene estimated (J or UJ) in 6 samples		Estimate (J) 3 results in OF55 & DUP1			Accept 20 "J" values	Lab reported 60 VOCs - QAQC plan, modified by client, required 6 VOCs for analysis

Comments: % solids OK? NA

Samples were received at the lab on 6/20/12. Samples were received intact at 1.8, 1.9, 0.6, 2.4 & 1.3 °C and there were no Chain-of-Custody (COC) issues noted pertaining to these VOC samples other than the Trip Blank did not have labels. Additional samples other than these represented in this SDG were part of this shipment. No Action for samples received < 2 °C since samples were intact and HCl preserved. Only 1 VOC vial was collected for SG106D, SG111I, and SG113D, presumably since it was difficult to obtain a GW sample from these locations.

Samples were preserved with HCl to pH < 2 and all field samples were analyzed within 14 days of collection. Note Trip Blank (TB1) date of collection is listed as 6/12/12, which is probably the date when TB1 was shipped from the lab to the field. Since there was no headspace in TB1 and all VOCs were non-detect, no action was taken to qualify the TB results due to HT exceedance.

Surrogates: all surrogates were recovered within 70-130% QAQC Plan limits - No Action required.

LCS/LCSD: LCSC55/LCDC55, LCSC61/LCDC61, LCSC63, LCSC67/LCDC67, & LCSG67/LCDG67 - all target VOCs (60) reported recovery within Lab criteria for all LCS and RPD between LCS/LCSD all OK except: tetrahydrofuran and 1,2-dibromo-3-chloropropane LCSD high, benzene LCS & LCSD recoveries low, but 10%, and tert-butylbenzene LCS & LCSD recoveries high in LCSC55/LCDC55; trans-1,3-dichloropropene LCS & LCSD recoveries high in LCSC67/LCDC67; and 1,2-dibromo-3-chloropropane LCS&LCSD recoveries high in LCSG67/LCDG67. All samples were non-detect for tetrahydrofuran, 1,2-dibromo-3-chloropropane, tert-butylbenzene, and trans-1,3-dichloropropene; therefore, no action required for high LCS/LCSD recoveries.

*ACTION: Benzene estimated (UJ or J) in samples DUP1, FB1, OF54, OF55, SG102I, and SG106D with possible low bias, unless other issues affect the data, due to low LCS/LCSD recoveries.

MS/MSD: there were no MS/MSD analyses performed on the GW samples in this SDG (insufficient sample collected to allow MS/MSD analysis). Narrative indicates batch MS/MSD on non-SDG related samples performed (lab was method compliant) but these were not reported since they would not affected the samples reported herein.

Date: 9/11/12

Lab: Lancaster

Method of Analysis: 8260B

Blank Action: Blanks Reviewed: MB: VBLKC55, VBLKC61, VBLKC63, VBLKC67, & VBLKG67

TB: TB1 FB: FB1 EB: EB1

DI 175		Matrix	Action Level		Corrected
Blank ID	Contaminant / Level	Related?	/ Action*	Sample and Reported Result	Result
VBLKC55	None	-		No Blank Action required	
VBLKC61	None	-	-	No Blank Action required	
VBLKC63	None	-	-	No Blank Action required	
VBLKC67	None	-	-	No Blank Action required	
VBLKG67	None	-	-	No Blank Action required	
TB1	None	-	-	No Blank Action required	
EB1	Methylene Chloride 0.2 J μg/L	Y	2 μg/L	All Samples were ND - no Blank Action required	
EB1	Tetrachloroethene 0.1 μg/L	Y	0.5 μg/L	SG102I 0.1 J	0.1 JB
				SG111D 0.2 J	0.2 JB
				All other Samples ND or >BAL - No Blank Action required	
EB1	Naphthalene 0.5 μg/L	Y	2.5 μg/L	All Samples were ND - no Blank Action required	
FB1	None	-	-	No Blank Action required	

Tunes: Instrument C 6/14/12 (ICAL), 6/26/12, 6/27/12 (ICAL), 6/29/12, 6/29/12 (2nd tune), and 7/2/12 and Instrument G 6/18/12 (ICAL) & 7/2/12. All abundances met BFB criteria and all samples were analyzed within 12 hours of BFB tune - No Action required.

ICALs: Instrument C (2 ICALs) & Instrument G - 6-level ICALs from 0.5 to 25 ug/L for 25-mL purge. ICALs contain more compounds than reported for samples in this SDG. Minimum RRF achieved for all compounds and %RSD < 30%. If %RSD > 15%, lab performed regression analysis and r2 > 0.99 - ICALs acceptable - No Action required.

CCAL: Inst. C 6/26/12, two on 6/29/12, & 7/2/12 and Inst. G on 7/2/12. RRF > 0.05 and %D $\leq \pm$ 25% for all target VOCs. No Action required.

Date: <u>9/11/12</u>

Data Reviewer: Nancy C. Rothman, Ph.D.

Lab: Lancaster
Method of Analysis: 8260B

Additional Notes:

IS: All IS areas and RTs were within criteria in all samples and QC - No Action required.

FD pair: OF55 & DUP1. A comparison of detected results shown below.

Field Duplicate Evaluation_ Sample IDs: Sample = OF55 FD = DUP1

	DF= 1 & 10 *	Sample	Samp	le Result	FD		FD Result		
Analyte Name	RL (µg/L)	μg/L	Q L	evel	μg/L	Q	Level	RPD	Action
Chloromethane	0.5	0.3	J	< RL	25	U	RL	NA	None
Vinyl Chloride	0.5	0.2	J	< RL	25	U	RL	NA	None
1,1-Dichloroethene	0.5	0.8	<	2 x RL	25	U	RL	NA	None
trans-1,2-Dichloroethene	0.5	0.1	J	< RL	25	U	RL	NA	None
cis-1,2-Dichloroethene	5	190	>	2 x RL	19	J	< RL	163.6	J Both
Benzene	0.5	0.5	J	< RL	25	U	RL	NA	None
Trichloroethene	5	23	>	2 x RL	6.3	J	< RL	114.0	J Both
Tetrachloroethene	5	180	>	2 x RL	1500		> 2 x RL	157.1	J Both

^{*} FD DF = 50 & 200 rather than 1 & 10

FD precision was unacceptable for cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene in FD pair (RPD > 30% for both or at least 1 result > 2 x RL).

*ACTION: cis-1,2-Dichloroethene, trichloroethene, and tetrachloroethene estimated (J) with indeterminate bias in samples OF55 and DUP1 due to FD imprecision

All GW samples were initial analyzed (DF=1 or DF>1) and several samples were reanalyzed to report all results within the instrument calibration range (see table on page 4). All sets of data reviewed and Lancaster's choice of result for reporting was considered acceptable.

The RLs reported were supported by the ICALs. Table C.1 of QAQC Plan gives expected RLs for VOCs (4 targets in plan: Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (cDCE), & Vinyl chloride (VC)) in Groundwater of 1 μ g/L. All non-detects for were < RLs expected except: cis-1,2-dichloroethene and trichloroethene in sample SG106I and vinyl chloride in samples DUP1, OF54, SG106D, and SG106I since samples were analyzed at dilutions to report all detects within the instrument calibration range (see page 4 for details on DF). The data user will need to evaluate non-detects for project uses.

20 results were reported at levels below the RL and were flagged "J" by the lab. These 20 "J" values were accepted with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range.

The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly.

Narrative did not raise any issues affecting quality.

Date: <u>9/11/12</u>

Volatile Data Review Checklist Former IBM Facility, Manassas, Virginia

Lab: Lancaster

Method of Analysis: 8260B

	Lab	Date	Field	Trip	Method		Date	Low or	Instrument
Sample ID	ID	Sampled	Blank	Blank	Blank	LCS	Analyzed	Med-Level	DF
DUP1	6694166	6/18/2012	FB1 & EB1	TB1	VBLKC55 & VBLKC63	C55 & C63	6/26/12 & 6/29/12	Low	50 & 200
EB1	6694167	6/18/2012	NA	TB1	VBLKC63	C63	6/29/2012	Low	1
FB1	6694168	6/18/2012	NA	TB1	VBLKC55	C55	6/26/2012	Low	1
OF54	6694169	6/18/2012	FB1 & EB1	TB1	VBLKC55	C55	6/26/2012	Low	4 & 20
OF55	6694170	6/18/2012	FB1 & EB1	TB1	VBLKC55	C55	6/26/2012	Low	1 & 10
SG102I	6694171	6/18/2012	FB1 & EB1	TB1	VBLKC55	C55	6/26/2012	Low	1
SG106D	6694172	6/18/2012	FB1 & EB1	TB1	VBLKC55	C55	6/26/2012	Low	10 & 100
SG106I	6694173	6/18/2012	FB1 & EB1	TB1	VBLKC61	C61	6/29/2012	Low	5 & 50
SG108I	6694174	6/18/2012	FB1 & EB1	TB1	VBLKC61	C61	6/29/2012	Low	1 & 10
SG111D	6694175	6/18/2012	FB1 & EB1	TB1	VBLKC61	C61	6/29/2012	Low	1
SG111I	6694176	6/18/2012	FB1 & EB1	TB1	VBLKC61	C61	6/29/2012	Low	1
SG113D	6694177	6/18/2012	FB1 & EB1	TB1	VBLKC63	C63	6/29/2012	Low	1
SG113I	6694178	6/18/2012	FB1 & EB1	TB1	VBLKG67	G67	7/2/2012	Low	1
TB1	6694179	6/12/2012	NA	NA	VBLKC67	C67	7/2/2012	Low	1

Date: <u>9/11/12</u> Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u>

Volatile Data Review Checklist Lab Project #: MAN25

Lab: Lancaster Method of Analysis: 8260B

SW-846 Method 8260B, QAQC Plan criteria, and National Functional Guidelines & Region III DV Guidance

HT: waters- pH >2 or no HCl: 7d<HT≤14 d, J Aromatic det/R Aromatic NDs; Accept all Non-aromatics;

pH < 2, 14d <HT < 28 d; J Aromatic det/R Aromatic NDs; J Non-aromatic det/J Non-aromatic ND

low- or medium-level solid - 14d <HT< 28 d, J det/J NDs; HT > 28 days, J det/R NDs

unfrozen solid - 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96hrs, J det/R NDs

Surrogates: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.

LCS: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs

Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.

ICAL: 5-Level; min. RRF < 0.05 J det/R NDs; %RSD > 30% J det/J NDs

CCAL: $\text{\%D} > \pm 25\%$. J det/J ND. If RRF < min.RRF J det/R ND

Blanks: Blank Action Level = 5 x Level reported except for Acetone, Methylene Chloride, and 2-Butanone with BAL = 10 x value reported in blank (Region III)

Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank

If contamination in blank(s) exist, if Result < Blank Action, B result at level reported

MS/MSD: %Rec<10%, J det/R NDs; 10% <%Rec<LCL, J det/J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J

ND; %RSD of non-spiked > 50%, J det

FD: Both Conc. > 2xOL, RPD > 30% (water) 50% (soil), J det; One result ND, other > 2 x OL, J det/J NDs; Both Conc. < 2xOL; RPD > criteria, LCS OK,

Accept data

IS: 25% ≤ Area < 50% of IS in CCAL, J det/J NDs; Area < 25% of CCAL, J det/R NDs; Area > 150% IS in CCAL, J det/Accept NDs

if result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify

results met criteria (RL and component list) Table C.1 of OAOC Plan

Date: <u>9/11/12</u>

5 of 5 Data Reviewer: *Nancy C. Rothman, Ph.D.* New Environmental Horizons, Inc.

APPENDIX D.2

JULY 2012 CHARACTERIZATION SAMPLING

environmental chemistry consultants

DATA VALIDATION REPORT

Method TO-15 Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: eurofins/Air Toxics Limited (ATL), Folsom, California

Work Orders: <u>1207235</u>

Date(s) of Collection: $\underline{\text{July } 9, 2012 - \text{July } 12, 2012}$

Number and type

Samples & analyses: 11 Soil Vapor samples + 1 Equipment Blank for six project-specific VOCs by

Method TO-15

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: September 7, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on Work Order 1103654R1. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining air data associated with this QAQC plan was performed. Please see the Data Usability Report for Work Order 1103654R1 for complete details on the TO-15 review. The Air Data Review Checklist, attached, was completed during this assessment to document the review of this Work Order.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis.

Former IBM Facility, Manassas, Virginia TO-15 Data Validation Review

The Sample Device ID for sample SG119 on the Chain-of-Custody (COC) is incorrectly listed as Canister #3350. The Canister tag and Canister certification information indicate the Canister for sample SG119 was actually #3355. The laboratory used Canister #3355 to associate with sample SG119 throughout the data package.

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for all samples except SG120I and SG31S, which were diluted to ensure all detected results were reported within the instrument calibration range. In addition, sample SG119 required repressurization of the Canister, which resulted in non-detects exceeding the expected RLs for this sample. The data user will need to evaluate the elevated non-detects in these samples for project objectives.

The equipment blank (EB1) included in this SDG was non-detect for all six project VOCs. Therefore, blank action was not required.

There was one field duplicate pair: SG114 and DUP1. All results were non-detect for SG114 and DUP1; therefore, while these results are consistent with each other, it was not possible to assess precision through calculation of RPD. FD precision was considered acceptable for this FD pair indicating acceptable precision from field collection through analysis for the VOCs reported.

All other quality control information associated with accuracy, precision, and sensitivity for the project-specific list of VOCs reported met method criteria for the samples in this Work Order. The results reported by the laboratory were unchanged as a consequence of this data review and the results presented in the validated database are considered usable for project objectives.

Lab: <u>eurofins/ Air Toxics Ltd.</u>
Date Sampled: 7/9/12 -7/12/12

Method of Analysis: TO-15 Full Scan

Matrix/Sampling method of Analysis: TO-15 Full Scan

No. Samples 10 + 1FD + 1EB

Matrix/Sampling method Air/SUMMA® Canisters

Work Order: 1207235

Data									
Element	Canister		Surrogates		Lab Dup	Tunes			RL
Acceptable	Receipt	HT	& IS	LCS	(LCS or LD)	ICAL	CCAL	FD	& Quant.
Yes	√	√	√	√	√	√	√	√	√
No									

Other Issues: Yes All non-detects were > Expected RLs in 3 samples (see page 3)

Comments:

An In-Depth review of the TO-15 analysis for samples from the Former IBM Facility, Manassas, VA was performed on Work Order 1103654R1.

11 Soil Vapor samples + 1 Equipment Blank were received at ATL on 7/13/12 in good condition. The Sample Device ID for sample SG119 on the COC is incorrectly listed as Canister # 3350. The Canister tag and Canister certification information indicate the Canister for sample SG119 was actually #3355. The laboratory used Canister #3355 to associate with sample SG119 throughout the data package.

These samples were analyzed for 6 project-specific VOCs, as requested on the COC, and as shown on page 4 of this checklist.

All Canister vacuums (field initial, field final, and lab receipt) were acceptable - Canister certification forms indicated all canisters were non-detect for 6 target VOCs prior to shipment to field; no Action required. Note surrogate %Rec on Certification form has the "1" cut off on all recoveries $\ge 100\%$ - no action except to note.

Samples were all analyzed by 7/19/12; therefore, HT met - No Action required.

All 3 Surrogates and 3 IS's were recovered within criteria for samples & QC - No Action required.

LCS/LCSD = o071804/o071803 & o071904/o071903. All 6 VOCs reported were recovered within criteria in both LCS/LCSD. The RPDs between LCS/LCSD were also acceptable. No Action required.

Date: 9/7/12

Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u> 1 of 4 New Environmental Horizons, Inc.

Lab: eurofins/ Air Toxics Ltd.

Associated Blanks: MB = 0071807 & 0071907

EB: EB1

Blank ID	Contaminant / Level (μg/m³)		Action Level DF=	Sample and reported result $(\mu g/m^3)$	Corrected Database Result
o071807	None			No Blank Action Required	
o071907	None]		No Blank Action Required	
EB1	None			No Blank Action Required	

Additional Notes:

LDs performed on SG120I & SG31S. A comparison of detected results for these LDs shown below:

LD Evaluation_ Sample IDs:

Sample = SG120I

LD = SG120I Lab Duplicate

		DF=33	Sample	e Sample Result		LD	LD Result			
Analyte Name	CAS No.	RL (μ g/m ³)	μg/m³	Q	Level	$\mu g/m^3$	Q	Level	RPD	Action
Trichloroethene	79-01-6	89	420		> 5xRL	450		> 5xRL	6.9	None
Tetrachloroethene	127-18-4	110	30000		> 5xRL	28000		> 5xRL	6.9	None

LD Evaluation_ Sample IDs:

Sample = SG31S

LD = SG31S Lab Duplicate

Analyte Name	CAS No.	DF=34.4 RL (μ g/m ³)	Sample μg/m ³	Sample Result Level	LD μg/m³	LD Result Q Level	RPD	Action
Vinyl Chloride	75-01-4	44	1200	> 5xRL	1000	> 5xRL	18.2	None
trans-1,2-Dichloroethene	156-60-5	68	1300	> 5xRL	1200	> 5xRL	8.0	None
cis-1,2-Dichloroethene	156-59-2	68	15000	> 5xRL	14000	> 5xRL	6.9	None
Trichloroethene	79-01-6	92	3700	> 5xRL	3700	> 5xRL	0.0	None
Tetrachloroethene	127-18-4	120	1400	> 5xRL	1600	> 5xRL	13.3	None

LD precision acceptable for both Sample/LD pairs - No Action required.

Date: 9/7/12

Data Reviewer: Nancy C. Rothman, Ph.D.

Work Order: <u>1207235</u>

Work Order: 1207235

Lab: eurofins/ Air Toxics Ltd.

Additional Notes:

FDs: SG114/DUP1. All 6 VOCs were non-detect in both samples; therefore, while these results are consistent with each other, it's not possible to evaluate precision quantitatively through calculation of RPD. FD precision considered acceptable - No Action required.

Tunes: 4 BFB Tunes (Inst. O - 2 ICAL + 2 CCALs)- all 4 met criteria and samples was analyzed within 24 hours of tune - no action required.

ICAL: Instrument O performed 5/16/12. For ICAL, 7-level calibration from 0.5 to 200 ppbV for 6 target VOCs except trichloroethene and tetrachloroethene for which 8-level ICAL from 0.2 to 200 ppbV reported. ICALs supported RLs reported. %RSD \leq 30% and RRF > 0.05 for all 6 compounds. No Action required.

CCALs: 0071802 & 0071902 - All 6 VOCs were recovered within criteria - No Action required

All non-detects for the 6 project-specific VOCs were reported at or below the Expected RLs due to DF<2 except for sample SG119 which required re-pressurization of the canister and samples SG120I and SG31S, which were diluted at the instrument level to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate non-detects at elevated levels for project use.

There were no "J" data reported.

The narrative did not raise any additional issues affecting data quality.

The data were unchanged as a consequence of this review

Date: <u>9/7/12</u>

Work Order: 1207235

Lab: eurofins/ Air Toxics Ltd.

			Expected RL		
		DF=1	DF=2	LCS Criteria	CCV Criteria
Analyte Name	CAS No.	RL (ppbv)	RL ($\mu g/m^3$)	%	%
Vinyl Chloride *	75-01-4	0.5	2.6	70-130	70-130
trans-1,2-Dichloroethene	156-60-5	0.5	4.0	60-140	60-140
cis-1,2-Dichloroethene *	156-59-2	0.5	4.0	70-130	70-130
Trichloroethene *	79-01-6	0.5	5.4	70-130	70-130
1,1,2-Trichloroethane	79-00-5	0.5	5.4	70-130	70-130
Tetrachloroethene *	127-18-4	0.5	6.8	70-130	70-130

^{*} Expected RL from Table C.1 of QAQC Plan. trans-1,2-Dichloroethene and 1,1,2-Trichloroethane were added as target compounds at the client's request after the QAQC Plan was developed.

QA/QC Criteria	for evaluation of TO-15 data:
SUMMA Canister Pressure (P):	Initial Field P < 25" Hg, J/UJ all results; Lab Receipt P > 15" Hg, J/UJ results; Lab Receipt P > ± 5" Hg of Final Field P, J/UJ results
Hold Time (HT):	30 days ≤ HT ≤ 60 days, J/UJ results; HT > 60 days, J detects/ R non-detects (or professional judgment)
Surrogates:	%Rec <10%, J detects, R non-detects; 10% ≤ %Rec <70%; J/UJ all associated data; %Rec >130%, J detects - no action for non-detects
IS:	Area <20% of CCAL, J detects, R non-detects; 20% ≤ Area<60%; J/UJ all associated data; Area >140%, J detects - no action for non-detects
LCS & CCV:	Percent Recovery (%Rec) <10%, J detects, reject (R) non-detects; 10% ≤ %Rec <lcl; %rec="" all="" associated="" data;="" j="" uj="">UCL, K detects -</lcl;>
	no action for non-detects
LDs & FDs:	LCS/LCSD, Sample/LD, or Sample/FD RPD > 25% for detects > 5x RL, J data; professional judgment for results < 5 x RL
Blank Actions:	Action Level = 5 x Level in Blank; Sample-specific Blank Action Level = Action Level x (Sample DF/Blank DF)
	Method Blank (MB) and Field Blank (Equipment Blank - EB): Result <blank action,="" at="" b="" level="" reported<="" result="" td=""></blank>
Tune:	SW-846 method 8260B tune criteria not met, professional judgment on R of all data; samples analyzed > 24-hours after tune; professional
	judgment on J/UJ or R of results
ICAL:	%RSD > 30%, J/UJ associated results
RLs + Quant:	Compound reported outside calibration range (< RL or at ppbV level > sample-specific highest ICAL standard for compound), J data. If RL > Expected
	RL, discuss possible issue with sensitivity of data

DV Qualifiers: U = compound is non-detect; J = result is estimated; UJ = non-detect is estimated; R = result is rejected and unusable. Final DV qualifier for a particular result may be influenced by multiple QC issues.

References: Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009; USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999

Date: 9/7/12

4 of 4 Data Reviewer: *Nancy C. Rothman, Ph.D.* New Environmental Horizons, Inc.

environmental chemistry consultants

DATA VALIDATION REPORT

Method TO-15 Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: <u>eurofins/Air Toxics Limited (ATL), Folsom, California</u>

Work Orders: 1207320

Date(s) of Collection: July 16, 2012

Number and type

Samples & analyses: 2 Soil Vapor samples for six project-specific VOCs by Method TO-15

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: September 7, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on Work Order 1103654R1. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining air data associated with this QAQC plan was performed. Please see the Data Usability Report for Work Order 1103654R1 for complete details on the TO-15 review. The Air Data Review Checklist, attached, was completed during this assessment to document the review of this Work Order.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis.

Former IBM Facility, Manassas, Virginia TO-15 Data Validation Review

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for all samples except for sample SG31D, which was diluted to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate the elevated non-detects in these samples for project objectives.

There were no field duplicates associated with the samples in this Work Order; therefore, precision from field collection through analysis could not be evaluated.

All other quality control information associated with accuracy, precision, and sensitivity for the project-specific list of VOCs reported met method criteria for the samples in this Work Order. The results reported by the laboratory were unchanged as a consequence of this data review and the results presented in the validated database are considered usable for project objectives.

Lab: <u>eurofins/ Air Toxics Ltd.</u>

Date Sampled: <u>7/16/12</u>

Method of Analysis: TO-15 Full Scan

No. Samples 2
Matrix/Sampling method Air/SUMMA® Canisters

Work Order: 1207320

Data Element Acceptable	Canister Receipt	НТ	Surrogates & IS	LCS	Lab Dup (LCS or LD)	Tunes ICAL	CCAL	FD	RL & Quant.
Yes	√	√	√	√	√	√	√	√	V
No									

Other Issues: Yes All non-detects were > Expected RLs in sample SG31D

Comments:

An In-Depth review of the TO-15 analysis for samples from the Former IBM Facility, Manassas, VA was performed on Work Order 1103654R1.

2 Soil Vapor samples were received at ATL on 7/18/12 in good condition. There were no COC issues noted.

These samples were analyzed for 6 project-specific VOCs, as requested on the COC, and as shown on page 4 of this checklist.

All Canister vacuums (field initial, field final, and lab receipt) were acceptable - Canister certification forms indicated all canisters were non-detect for 6 target VOCs prior to shipment to field; no Action required.

Samples were all analyzed by 7/19/12; therefore, HT met - No Action required.

All 3 Surrogates and 3 IS's were recovered within criteria for samples & QC - No Action required.

LCS/LCSD = 3071904/3071907. All 6 VOCs reported were recovered within criteria in LCS/LCSD. The RPDs between LCS/LCSD were also acceptable. No Action required.

Date: 9/7/12

Data Reviewer: Nancy C. Rothman, Ph.D. 1 of 4 New Environmental Horizons, Inc.

Lab: <u>eurofins/ Air Toxics Ltd.</u>

Associated Blanks: MB = 3071912

EB: EB1 (reported in W.O. 1207235)

Blank ID	Contaminant / Level (μg/m³)	Action Level DF=	Sample and reported result (μg/m³)	Corrected Database Result
3071912	None		No Blank Action Required	
EB1	None		No Blank Action Required	

Additional Notes:

LD performed on SG31D. A comparison of detected results for these LDs shown below:

LD Evaluation_ Sample IDs:

Sample = SG31D

LD = SG31D Lab Duplicate

		DF=2.55	Sample	5	Sample Result	LD		LD Result		
Analyte Name	CAS No.	RL ($\mu g/m^3$)	μg/m ³	Q	Level	μg/m ³	Q	Level	RPD	Action
Vinyl Chloride	75-01-4	3.2	1000		> 5xRL	1000		>5xRL	0.0	None
trans-1,2-Dichloroethene	156-60-5	5	150		> 5xRL	150		>5xRL	0.0	None
cis-1,2-Dichloroethene	156-59-2	5	1900		>5xRL	2000		>5xRL	5.1	None
Trichloroethene	79-01-6	6.8	270		> 5xRL	290		> 5xRL	7.1	None
Tetrachloroethene	127-18-4	8.6	46		> 5xRL	52		>5xRL	12.2	None

LD precision acceptable for both Sample/LD pairs - No Action required.

FDs: There were no FDs associated with the samples in this Work Order

Date: <u>9/7/12</u>

Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u>

Work Order: <u>1207320</u>

Work Order: <u>1207320</u>

Lab: <u>eurofins/ Air Toxics Ltd.</u>
Additional Notes:
Tunes: 2 BFB Tunes (Inst. 3 - 1 ICAL + 1 CCALs)- both met criteria and samples was analyzed within 24 hours of tune - no action required.
$ICAL$: Instrument 3 performed 7/16/12. For ICAL, 6-level calibration from 0.5 to 200 ppbV for 6 target VOCs. ICALs supported RLs reported. %RSD \leq 30% and RRF $>$ 0.05 for all 6 compounds. No Action required.
CCALs: 3071903 - All 6 VOCs were recovered within criteria - No Action required
All non-detects for the 6 project-specific VOCs were reported at or below the Expected RLs due to DF<2 except for sample SG31D, which was diluted at the instrument level to ensure all detected results were reported within the instrument calibration range. The data user will need to evaluate non-detects at elevated levels for project use.
There were no "J" data reported.

The narrative did not raise any additional issues affecting data quality.

The data were unchanged as a consequence of this review

Work Order: 1207320

Lab: eurofins/ Air Toxics Ltd.

			Expected RL		
		DF=1	DF=2	LCS Criteria	CCV Criteria
Analyte Name	CAS No.	RL (ppbv)	RL ($\mu g/m^3$)	%	%
Vinyl Chloride *	75-01-4	0.5	2.6	70-130	70-130
trans-1,2-Dichloroethene	156-60-5	0.5	4.0	60-140	60-140
cis-1,2-Dichloroethene *	156-59-2	0.5	4.0	70-130	70-130
Trichloroethene *	79-01-6	0.5	5.4	70-130	70-130
1,1,2-Trichloroethane	79-00-5	0.5	5.4	70-130	70-130
Tetrachloroethene *	127-18-4	0.5	6.8	70-130	70-130

^{*} Expected RL from Table C.1 of QAQC Plan. trans-1,2-Dichloroethene and 1,1,2-Trichloroethane were added as target compounds at the client's request after the QAQC Plan was developed.

result may be influenced by multiple QC issues.

QA/QC Criteria	for evaluation of TO-15 data:
SUMMA Canister Pressure (P):	$Initial\ Field\ P < 25"\ Hg,\ J/UJ\ all\ results;\ Lab\ Receipt\ P > 15"\ Hg,\ J/UJ\ results;\ Lab\ Receipt\ P > \pm 5"\ Hg\ of\ Final\ Field\ P,\ J/UJ\ results;$
Hold Time (HT):	30 days ≤ HT ≤ 60 days, J/UJ results; HT > 60 days, J detects/ R non-detects (or professional judgment)
Surrogates:	%Rec <10%, J detects, R non-detects; 10% ≤ %Rec <70%; J/UJ all associated data; %Rec >130%, J detects - no action for non-detects
IS:	Area <20% of CCAL, J detects, R non-detects; 20% ≤ Area<60%; J/UJ all associated data; Area >140%, J detects - no action for non-detects
LCS & CCV:	Percent Recovery (%Rec) <10%, J detects, reject (R) non-detects; 10% ≤ %Rec <lcl; %rec="" all="" associated="" data;="" j="" uj="">UCL, K detects -</lcl;>
	no action for non-detects
LDs & FDs:	LCS/LCSD, Sample/LD, or Sample/FD RPD > 25% for detects > 5x RL, J data; professional judgment for results < 5 x RL
Blank Actions:	Action Level = 5 x Level in Blank; Sample-specific Blank Action Level = Action Level x (Sample DF/Blank DF)
	Method Blank (MB) and Field Blank (Equipment Blank - EB): Result <blank action,="" at="" b="" level="" reported<="" result="" td=""></blank>
Tune:	SW-846 method 8260B tune criteria not met, professional judgment on R of all data; samples analyzed > 24-hours after tune; professional
	judgment on J/UJ or R of results
ICAL:	% RSD $>$ 30%, J/UJ associated results
RLs + Quant:	Compound reported outside calibration range (< RL or at ppbV level > sample-specific highest ICAL standard for compound), J data. If RL > Expected
-	RL, discuss possible issue with sensitivity of data
DV Qualifiers:	U = compound is non-detect; J = result is estimated; UJ = non-detect is estimated; R = result is rejected and unusable. Final DV qualifier for a particular

References: Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia, prepared by Sanborn, Head & Associates, May 29, 2009; USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review; Publication USEPA540/R-07/003, July 2007; USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review, September 1994; and Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Publication EPA/625/R-96/010b, January 1999

Date: 9/7/12

4 of 4 Data Reviewer: *Nancy C. Rothman, Ph.D.* New Environmental Horizons, Inc.

environmental chemistry consultants

DATA VALIDATION REPORT Method 8260B Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: <u>eurofins/Lancaster Laboratories, Inc., Lancaster, Pennsylvania (Lancaster)</u>

SDG/Lab Project #: MAN27

Date(s) of Collection: <u>July 10, 2012 – July 11, 2012</u>

Number and type

Samples & analyses: 8 Groundwater samples and 1 Field Blank for 60 VOCs by Method 8260B

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: September 12, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the *Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia*, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*; Publication USEPA540/R-07/003, July 2007; *USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review*, September 1994; and EPA SW-846 Method 8260B; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on SDG MAN01. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining groundwater data associated with this QAQC plan was performed. Please see the Data Usability Report for SDG MAN01 for complete details on the 8260B review. The VOC Data Review Checklist, attached, was completed during this assessment to document the review of this SDG.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis. However, Lancaster reported 54 additional VOCs (60 total compounds reported) for the samples in this SDG. At the client's request, all 60 VOCs reported were evaluated.

Ten groundwater samples, 1 field blank, and 1 trip blank were received at the laboratory on July 12, 2012. At SHA's request, the following samples were not validated: SG31, SG117, and TB4. These samples were not included in the EDD submitted to NEH from SHA. The trip blank (TB4) results were used to judge whether there was possible sample cross-contamination during transport from the field to the laboratory.

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for the six target VOCs in all samples.

There were no MS/MSD analyses conducted on the samples in this SDG since insufficient sample was collected for this QC analysis. The laboratory narrated that they performed batch MS/MSD analysis on samples not related to this project (i.e., lab was method complaint); however, these results were not reported in this SDG since these MS/MSD data would not impact the samples reported herein.

There were no field duplicates associated with the samples in this SDG; therefore, precision from field collection through analysis could not be evaluated for these groundwater samples.

There was no Equipment Blank (EB) associated with the samples in this SDG. The field blank, trip blank, and method blanks were all non-detect for VOCs; therefore, blank action was not required.

All other quality control information associated with accuracy, precision, and sensitivity for the VOCs reported met project criteria for these samples with the exceptions summarized in Table 1, below. The attached Data Validation Checklist includes all QA/QC reviewed during validation (including QC results that were acceptable) and details on the justification for actions taken.

Table 1. Summary of Data Validation Actions

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
SG31I	Vinyl Chloride	J	Н	High LCS recovery
D86	Bromodichloromethane Toluene	J	I	Result uncertain below the calibration range
SG115I	Trichlorofluoromethane cis-1,2-Dichloroethene Trichloroethene Bromodichloromethane Toluene Xylene (Total)	J	I	Result uncertain below the calibration range
SG115S	Benzene Bromodichloromethane Ethylbenzene 1,2,4-Trimethylbenzene	J	I	Result uncertain below the calibration range
SG11822	Toluene Xylene (Total)	J	I	Result uncertain below the calibration range
SG118I	Trichloroethene Bromodichloromethane Ethylbenzene	J	I	Result uncertain below the calibration range
SG123I	cis-1,2-Dichloroethene Trichloroethene Ethylbenzene	J	I	Result uncertain below the calibration range

Table 1. Summary of Data Validation Actions - continued

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
SG31D	trans-1,2-Dichloroethene p-Isopropyltoluene Xylene (Total)	J	I	Result uncertain below the calibration range
SG31I	Bromodichloromethane Toluene Ethylbenzene 1,2,4-Trimethylbenzene p-Isopropyltoluene	J	I	Result uncertain below the calibration range

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; B = Analyte was also detected in an associated Blank [Region III DV requirement]; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

The qualified (U or J) and unqualified results presented in the validated data file, submitted electronically to SHA, are considered valid and usable for project objectives.

Lab Project #: MAN27

Lab: eurofins/Lancaster Laboratories

Date Sampled: <u>7/10/12 - 7/11/12</u> Method of Analysis: 8260B

<u>2 - 7/11/12</u> 8260B No. Samples 8 + 1FB
Matrix: Groundwater

Data Element	Preservation		LCS /			Tunes ICALs		QL & Quant.	
Acceptable	& HT	Surrogates	Blank Spike	MS/MSD	FD	CCALs	IS'	Correct	Other Issues
Yes	٧	٧		NA	NA	V	٧		
No			Vinyl chloride estimated (J) in SG31I					Accept 28 "J" values	Lab reported 60 VOCs - QAQC plan, modified by client, required 6 VOCs for analysis

Comments: % solids OK? NA

10 GW Samples, 1 FB, and 1 TB were received at the lab on 7/12/12. Samples were received intact at 3.9°C and there were no Chain-of-Custody (COC) issues noted except the Trip Blank, TB4, was labeled merely TB. At SHA's request, the following samples were not validated: SG31, SG117, and TB4. These samples were not included in the EDD submitted to NEH from SHA. TB4 results were used however, to judge whether there was possible sample cross-contamination during transport from the field to the laboratory.

Samples were preserved with HCl to pH < 2 and all field samples were analyzed within 14 days of collection.

Surrogates: all surrogates were recovered within 70-130% QAQC Plan limits - No Action required.

LCS/LCSD: LCSC97 (no LCSD), LCSC02, & LCSC03 - all target VOCs (60) reported recovery within Lab criteria for LCSC97 except vinyl chloride %Rec high compared to lab criteria. LCSC02 only had chloroform and tetrachloroethene summarized and LCSC03 only had cis-1,2-dichloroethene recovery summarized on Form III since these were associated with dilution analyses for these specific target compounds (OK). All vinyl chloride data were non-detect except for sample SG31I; - no actin required for high LCS for non-detects.

*ACTION: Vinyl chloride estimated (J) in sample SG311 with possible high bias due to high LCS recovery.

Date: 9/12/12

Lab: Lancaster

Method of Analysis: 8260B

Blank Action: Blanks Reviewed: MB: VBLKC97, VBLKC02, & VBLKC03

TB: TB4 FB: FB1 EB: None

aminant / Level	Related?	/ Action*	Sample and Reported Result	Corrected Result
None	-	-	No Blank Action required	
None	-		No Blank Action required	
None	-		No Blank Action required	
None	-		No Blank Action required	
None	-	-	No Blank Action required	
		_		
	None None	None - None - None -	None None	None - No Blank Action required None - No Blank Action required None - No Blank Action required

Additional Notes:

MS/MSD analyses performed on the GW samples in this SDG (insufficient sample collected to allow MS/MSD analysis). Narrative indicates batch MS/MSD on non-SDG related samples performed (lab was method compliant) but these were not reported since they would not affected the samples reported herein.

Tunes: Instrument C 6/27/12 (ICAL), 7/19/12, 7/20/12, and 7/23/12. All abundances met BFB criteria and all samples were analyzed within 12 hours of BFB tune - No Action required.

ICALs: Instrument C - 6-level ICALs from 0.5 to 25 ug/L for 25-mL purge. ICALs contain more compounds than reported for samples in this SDG. Minimum RRF achieved for all compounds and %RSD < 30%. If %RSD > 15%, lab performed regression analysis and r2 > 0.99 - ICALs acceptable - No Action required.

CCAL: Inst. C 7/19/12, 7/20/12, and 7/23/12, RRF > 0.05 and %D \leq ± 25% for all 60 target VOCs. No action required.

IS: All IS areas and RTs were within criteria in all samples and QC - No Action required.

FD pair: There were no field duplicates associated with the samples in the SDG; therefore, unable to assess precision from field collection through analysis for these GW samples.

Date: <u>9/12/12</u>

Lab Project #: MAN27

Torrier low radiity, Mariassas, Virginia
Lab: Lancaster Method of Analysis: 8260B
Additional Notes:
All GW samples were initial analyzed (DF=1 or DF>1) and several samples were reanalyzed to report all results within the instrument calibration range (see table on page 4). All sets of data reviewed and Lancaster's choice of result for reporting was considered acceptable.
The RLs reported were supported by the ICALs. Table C.1 of QAQC Plan gives expected RLs for VOCs (4 targets in plan: Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (cDCE), & Vinyl chloride (VC)) in Groundwater of 1 μ g/L. All non-detects were \leq 1 μ g/L; therefore, sensitivity requirements were met for these data.
28 results were reported at levels below the RL and were flagged "J" by the lab. These 28 "J" values were accepted with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range.
The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly.

Narrative did not raise any issues affecting quality.

Lab: Lancaster

Method of Analysis: 8260B

	Lab	Date	Field	Trip	Method		Date	Low or	Instrument
Sample ID	ID	Sampled	Blank	Blank	Blank	LCS	Analyzed	Med-Level	DF
D86	6717575	7/11/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	2 & 20
FB1	6717576	7/11/2012	NA	TB4	VBLKC97	C97	7/19/2012	Low	1
SG115I	6717577	7/10/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	1
SG115S	6717578	7/10/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	1
SG11822	6717579	7/10/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	1
SG118I	6717580	7/10/2012	FB1	TB4	VBLKC97 & VBLKC02	C97 & C02	7/19/2012 & 7/20/2012	Low	1 & 10
SG123I	6717581	7/10/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	1
SG31D	6717582	7/11/2012	FB1	TB4	VBLKC97	C97	7/19/2012	Low	1
SG31I	6717583	7/11/2012	FB1	TB4	VBLKC97 & VBLKC03	C97 & C03	7/19/2012 & 7/23/2012	Low	1 & 10
									<u> </u>
					-				

Date: <u>9/12/12</u> Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u>

Volatile Data Review Checklist Lab Project #: MAN27

Lab: Lancaster Method of Analysis: 8260B

SW-846 Method 8260B, QAQC Plan criteria, and National Functional Guidelines & Region III DV Guidance

HT: waters- pH >2 or no HCl: 7d<HT≤14 d, J Aromatic det/R Aromatic NDs; Accept all Non-aromatics;

pH < 2, 14d <HT < 28 d; J Aromatic det/R Aromatic NDs; J Non-aromatic det/J Non-aromatic ND

low- or medium-level solid - 14d <HT< 28 d, J det/J NDs; HT > 28 days, J det/R NDs

unfrozen solid - 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96hrs, J det/R NDs

Surrogates: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.

LCS: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs

Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.

ICAL: 5-Level; min. RRF < 0.05 J det/R NDs; %RSD > 30% J det/J NDs

CCAL: $\text{\%D} > \pm 25\%$. J det/J ND. If RRF < min.RRF J det/R ND

Blanks: Blank Action Level = 5 x Level reported except for Acetone, Methylene Chloride, and 2-Butanone with BAL = 10 x value reported in blank (Region III)

Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank

If contamination in blank(s) exist, if Result < Blank Action, B result at level reported

MS/MSD: %Rec<10%, J det/R NDs; 10% <%Rec<LCL, J det/J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J

ND; %RSD of non-spiked > 50%, J det

FD: Both Conc. > 2xOL, RPD > 30% (water) 50% (soil), J det; One result ND, other > 2 x OL, J det/J NDs; Both Conc. < 2xOL; RPD > criteria, LCS OK,

Accept data

IS: 25% ≤ Area < 50% of IS in CCAL, J det/J NDs; Area < 25% of CCAL, J det/R NDs; Area > 150% IS in CCAL, J det/Accept NDs

if result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify

results met criteria (RL and component list) Table C.1 of OAOC Plan

Date: <u>9/12/12</u>

environmental chemistry consultants

DATA VALIDATION REPORT Method 8260B Analysis

Client: Sanborn, Head & Associates, Inc., Concord, New Hampshire (SHA)

Site: Former IBM Facility, Manassas, Virginia

Laboratory: <u>eurofins/Lancaster Laboratories, Inc., Lancaster, Pennsylvania (Lancaster)</u>

SDG/Lab Project #: MAN28

Date(s) of Collection: July 12, 2012

Number and type

Samples & analyses: 2 Groundwater samples for 60 VOCs by Method 8260B

Senior Data Reviewers: <u>Dr. Nancy C. Rothman, New Environmental Horizons, Inc.</u>

Susan D. Chapnick, New Environmental Horizons, Inc.

Date Completed: September 13, 2012

A Data Validation Checklist Review was performed on the Work Order identified with the following intentions: 1) to determine if the data were generated and reported in accordance with the *Former IBM Manassas Facility, QAQC Plan, Manassas, Virginia*, prepared by Sanborn, Head & Associates, May 29, 2009 (QAQC Plan); *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*; Publication USEPA540/R-07/003, July 2007; *USEPA Region III Modifications to the National Functional Guidelines for Organic Data Review*, September 1994; and EPA SW-846 Method 8260B; 2) to determine if the data met project data quality objectives for acceptable accuracy, precision, sensitivity; and technical usability; and 3) to update the project database with appropriate data quality qualifiers.

An In-Depth Data Usability Review was performed on SDG MAN01. This review indicated that overall the laboratory met project DQOs; therefore, a checklist review of remaining groundwater data associated with this QAQC plan was performed. Please see the Data Usability Report for SDG MAN01 for complete details on the 8260B review. The VOC Data Review Checklist, attached, was completed during this assessment to document the review of this SDG.

Table C.1 of the QAQC Plan identified four target compounds for analysis: vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene. At the client's request, two additional compounds, trans-1,2-dichloroethene and 1,1,2-trichloroethane, were added as target compounds for this project prior to sample analysis. However, Lancaster reported 54 additional VOCs (60 total compounds reported) for the samples in this SDG. At the client's request, all 60 VOCs reported were evaluated.

Three groundwater samples and 1 trip blank were received at the laboratory on July 13, 2012. At SHA's request, the following samples were not validated: Frac01 and TB1. These samples were not included in the EDD submitted to NEH from SHA. The trip blank (TB1) results were used to judge whether there was possible sample cross-contamination during transport from the field to the laboratory.

Sensitivity requirements compared to the Reporting Limits (RLs) defined in Table C.1 of the QAQC Plan were achieved for the six target VOCs in all samples.

There were no MS/MSD analyses conducted on the samples in this SDG since insufficient sample was collected for this QC analysis. The laboratory narrated that they performed batch MS/MSD analysis on samples not related to this project (i.e., lab was method complaint); however, these results were not reported in this SDG since these MS/MSD data would not impact the samples reported herein.

There were no field duplicates associated with the samples in this SDG; therefore, precision from field collection through analysis could not be evaluated for these groundwater samples.

There was no Equipment Blank (EB) or Field Blank (FB) associated with the samples in this SDG. The trip blank, TB1, reported detected results for two VOCs. A comparison of the compounds and levels detected in this blank with the sample results lead to qualification (B) of one tetrachloroethene result as shown in Table 1.

All other quality control information associated with accuracy, precision, and sensitivity for the VOCs reported met project criteria for these samples with the exceptions summarized in Table 1, below. The attached Data Validation Checklist includes all QA/QC reviewed during validation (including QC results that were acceptable) and details on the justification for actions taken.

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
SG117I	Tetrachloroethene	ЈВ	I	Trip Blank Action + Result uncertain below the calibration range
SG11723	Dibromochloromethane Ethylbenzene 1,2,4-Trimethylbenzene	J	I	Result uncertain below the calibration range
SG117I	Dibromochloromethane 1,2,4-Trimethylbenzene Xylene (Total)	J	I	Result uncertain below the calibration range

Table 1. Summary of Data Validation Actions

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; B = Analyte was also detected in an associated Blank [Region III DV requirement]; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

The qualified (U, J, or JB) and unqualified results presented in the validated data file, submitted electronically to SHA, are considered valid and usable for project objectives.

Lab: eurofins/Lancaster Laboratories Date Sampled: 7/12/12 No. Samples Method of Analysis: 8260B Matrix: Groundwater Tunes QL Data Preservation LCS / **ICALs** & Quant. Element & HT Surrogates Blank Spike MS/MSD **CCALs** IS' Acceptable FD Correct Other Issues ٧ ٧ ٧ ٧ ٧ NA NA Yes Lab reported 60 VOCs - QAQC plan, modified by client, Accept 7 "J" No required 6 VOCs for values analysis Comments: % solids OK? NA 3 GW Samples and 1 TB were received at the lab on 7/13/12. Samples were received intact at 1.4°C and there were no Chain-of-Custody (COC) issues noted. Since samples were intact, no action for Temperature upon receipt < 2°C. At SHA's request, the following samples were not validated: Frac01 and TB1. These samples were not included in the EDD submitted to NEH from SHA. TB1 results were used however, to judge whether there was possible sample cross-contamination during transport from the field to the laboratory. Samples were preserved with HCl to pH < 2 and all field samples were analyzed within 14 days of collection. Surrogates: all surrogates were recovered within 70-130% QAQC Plan limits - No Action required. LCS/LCSD: LCSC97 (no LCSD) & LCSC02 - all target VOCs (60) reported recovery within Lab criteria for both LCS except LCSC97 vinyl chloride "Rec high compared to

lab criteria. All vinyl chloride data were non-detect except for sample SG31I; - no actin required for high LCS for non-detects.

Date: <u>9/12/12</u>

Data Reviewer: Nancy C. Rothman, Ph.D.

Lab: Lancaster

Method of Analysis: 8260B

Blank Action: Blanks Reviewed: MB: VBLKC97 & VBLKC02

TB: TB1 FB: None EB: None

Blank ID	Contaminant / Level	Matrix Related?	Action Level / Action*	Sample and Reported Result	Corrected Result
VBLKC97	None	-	-	No Blank Action required	
VBLKC02	None	-	-	No Blank Action required	
TB1	Chloroform 0.4J μg/L	-	2 μg/L	Both samples >> Action Level - no Action required	
TB1	Tetrachloroethene 1.8 μg/L	-	9 μg/L	SG117I 0.2 J	0.2 JB
				other sample ND - No Blank Action required	

Additional Notes:

MS/MSD analyses performed on the GW samples in this SDG (insufficient sample collected to allow MS/MSD analysis). Narrative indicates batch MS/MSD on non-SDG related samples performed (lab was method compliant) but these were not reported since they would not affected the samples reported herein.

FD pair: There were no field duplicates associated with the samples in the SDG; therefore, unable to assess precision from field collection through analysis for these GW samples.

Tunes: Instrument C 6/27/12 (ICAL), 7/19/12 & 7/20/12. All abundances met BFB criteria and all samples were analyzed within 12 hours of BFB tune - No Action required.

ICALs: Instrument C - 6-level ICALs from 0.5 to 25 ug/L for 25-mL purge. ICALs contain more compounds than reported for samples in this SDG. Minimum RRF achieved for all compounds and %RSD < 30%. If %RSD > 15%, lab performed regression analysis and r2 > 0.99 - ICALs acceptable - No Action required.

CCAL: Inst. C 7/19/12 & 7/20/12, RRF > 0.05 and %D $\leq \pm$ 25% for all 60 target VOCs. No action required.

IS: All IS areas and RTs were within criteria in all samples and QC - No Action required.

Date: 9/12/12

Lab Project #: MAN28

Tomor is in a samp, managad, virginia
Lab: Lancaster Method of Analysis: 8260B
Additional Notes:
Both GW samples were analyzed undiluted (DF=1). There were no secondary dilution analyses performed or required.
The RLs reported were supported by the ICALs. Table C.1 of QAQC Plan gives expected RLs for VOCs (4 targets in plan: Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (cDCE), & Vinyl chloride (VC)) in Groundwater of 1 μ g/L. All non-detects were \leq 1 μ g/L; therefore, sensitivity requirements were met for these data.
7 results were reported at levels below the RL and were flagged "J" by the lab. These 7 "J" values were accepted with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range.
The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly.

Narrative did not raise any issues affecting quality.

Lab: Lancaster

Method of Analysis: 8260B

	Lab	Date	Field	Trip	Method		Date	Low or	Instrument
Sample ID	ID	Sampled	Blank	Blank	Blank	LCS	Analyzed	Med-Level	DF
SG11723	6719354	7/12/2012	NA	TB1	VBLKC97	C97	7/19/2012	Low	1
SG117I	6719355	7/12/2012	NA	TB1	VBLKC03	C02	7/20/2012	Low	1
	-								
	-								

Date: <u>9/12/12</u> Data Reviewer: <u>Nancy C. Rothman, Ph.D.</u>

Lab Project #: MAN28

Lab: Lancaster Method of Analysis: 8260B

SW-846 Method 8260B, QAQC Plan criteria, and National Functional Guidelines & Region III DV Guidance

HT: waters- pH >2 or no HCl: 7d<HT≤14 d, J Aromatic det/R Aromatic NDs; Accept all Non-aromatics;

pH < 2, 14d <HT < 28 d; J Aromatic det/R Aromatic NDs; J Non-aromatic det/J Non-aromatic ND

low- or medium-level solid - 14d <HT< 28 d, J det/J NDs; HT > 28 days, J det/R NDs

unfrozen solid - 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96hrs, J det/R NDs

Surrogates: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.

LCS: %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs

Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.

ICAL: 5-Level; min. RRF < 0.05 J det/R NDs; %RSD > 30% J det/J NDs

CCAL: $\text{\%D} > \pm 25\%$. J det/J ND. If RRF < min.RRF J det/R ND

Blanks: Blank Action Level = 5 x Level reported except for Acetone, Methylene Chloride, and 2-Butanone with BAL = 10 x value reported in blank (Region III)

Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank

If contamination in blank(s) exist, if Result < Blank Action, B result at level reported

MS/MSD: %Rec<10%, J det/R NDs; 10% <%Rec<LCL, J det/J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J

ND; %RSD of non-spiked > 50%, J det

FD: Both Conc. > 2xOL, RPD > 30% (water) 50% (soil), J det; One result ND, other > 2 x OL, J det/J NDs; Both Conc. < 2xOL; RPD > criteria, LCS OK,

Accept data

IS: 25% ≤ Area < 50% of IS in CCAL, J det/J NDs; Area < 25% of CCAL, J det/R NDs; Area > 150% IS in CCAL, J det/Accept NDs

if result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify

results met criteria (RL and component list) Table C.1 of OAOC Plan

Date: <u>9/12/12</u>

Data Reviewer: *Nancy C. Rothman, Ph.D.*