Landscape and programmatic factors related to delisting impaired waterbodies, and applications to map water quality data

> Ari Engelberg ORISE Participant Dan Auerbach PhD ORISE Fellow

*For purposes of this presentation, delisting refers to waters no longer impaired by a particular cause due to restoration or reasons unknown and attaining water quality standards

What factors are correlated with assessed changes in water quality?

Datasets to

explore this

question

- 1) State 303(d)/305(b)
- 2) Landscape and programmatic
- 3) Montana Case Study
- 4) Interactive Mapping of Above Datasets

State 303(d)/305(b) data

State 303(d)/305(b) data

- 1346 Causes
- 34 cause group names
- Aggregating by group necessary to simplify analysis.

"Applicable WQS attained, due to restoration activities." Or "Applicable WQS attained; reason for recovery unspecified."

&

No impairment next cycle

State 303(d)/305(b) data + NHDplus

NHDPlus is Hydrologic geofabric with rich attribute data for 2.6 million catchments in lower 48.

Excellent format to bring IR data into communication with other landscape features.

State WQ Assessment Data->NHDplus

Landscape and Programmatic Data: Streamcat

Streamcat is dataset of anthropogenic and natural landscape attributes referenced to the NHD stream network at multiple scales.

Landscape and Programmatic Data: 319

- <u>1)Points-></u> representing impacted waterbodies, manually drawn project locations
- <u>2)Lines-></u> representing impacted reaches
- <u>3)Polygons-></u> representing impacted waterbodies, HUCs, and manually drawn project locations

Example Case Study: Montana

Montana Delistings 2008-2014

Examining causes of impairment in Montana which had

WQS_ATTAINMENT_REASON

"Applicable WQS attained, due to restoration activities."

Or

"Applicable WQS attained; reason for recovery unspecified."

Metal Impairments: 2012-2014

28 rivers/streams were delisted for metal impairment(s) in 2014.

238 rivers/streams had metal impairment(s) in both 2012 and 2014 without a metal delisting.

Visually Examine Distribution of Landscape Variables

Bringing in Streamcat data to visually examine potential patterns in landscape that may correlate to improvement vs lack of change.

These particular variables are just presented as examples.

Distribution of Landscape Variables, contd.

moroved

Quantify land cover characteristics with Streamcat data

E.g. : Road density, watershed area, NLCD classes of land cover, dam density, superfund site density, etc.

Potential to Model Impairment Status or changes in Status

Programmatic Data: 319 Metal Related Projects

Selected Columns

Double click on column names in the Subject Areas pane to add them to the analysis. Once added, drag-and-drop columns to reorder them. Edit a column's properties, formula and filters delete by clicking or hovering over the button next to its name.

Grant Information	Drainage Areas	Drainage Area Pollutan	nts General Information			
📄 State Name 🗮 📄 Award Fiscal Year 🗮	📄 PRJDRAR_SEQ 🗮	📄 Pollutant Type 🚦	🚍 📋 Project Title 🗮			

✓ Filters

Add filters to the analysis criteria by dicking on Filter option for the specific column in the Selected Columns pane, or by dicking on the filter button in the Filter pane header. Add a saved fi button after selecting its name in the catalog pane.

- Weight State Name is equal to / is in Montana
- AND W Pollutant Type is not null
- AND Ward Fiscal Year is less than 2010

AND Y Pollutant Type is equal to / is in Acid Mine Drainage; Acidity; Metals (Aluminum); Metals (Arsenic); Metals (Cadmium); Metals (Chromium); Metals (Copper); Metals (Iron); Metals (Lead); Metals (Manganese); Metals (Other); Metals (Zinc); pH

Table : : : :

	1110	
ч,	1	: . <i>Q</i>

State Name	Award Fiscal Year	PRJDRAR_SEQ	Pollutant Type	Project Title
Montana	2002	19383	Metals (Other)	Belt Creek Hydrocharacterization
Montana	2005	10410	Metals (Lead)	Middle and Lower Big Hole Watershed Restoration and Planning
Montana	2005	19410	Metals (Other)	Middle and Lower Big Hole Watershed Restoration and Planning
Montana	2005	19413	Metals (Other)	Blackfoot Headwaters TMDL Implementation
Montana	2005	19418	Metals (Other)	Middle Blackfoot/Nevada Creek/Lower Blackfoot TMDL Planning
Montana	2005	19421	Metals (Other)	Beaverhead Watershed TMDL
Montana	2009	01562	Metals (Copper)	Bigfork Storm Water Project
Montana	itana 2009 91563		Metals (Zinc)	Bigfork Storm Water Project

Corresponding Geometries in ArcGIS: "PRJDRAR_SEQ" IN ('19383','19410','19413','19418','19421','915 63')'

Intersecting NHDplus Catchments

Metal Impairments + 319 Work?

One delisted AU within five miles of GRTS drainage areas addressing metals.

Four AUs that remained impaired for metals in both cycles within five miles

Buffers to test whether GRTS catchments with metal remediation work are within certain distance of the selected rivers/streams

Mine, past or present producer
 Prospect or occurrence
 Processing plant
 O Unknown

Zortman Landusky mine Restoration

Active Treatment of AMD

Copper, lead, selenium, cadmium, iron delistings

Boulder River Area

Possible combination of BLM, FS, Superfund, and DEQ efforts

Cadmium, iron, zinc, silver, copper, lead, arsenic, selenium delistings

- Mine, past or present producer
- Prospect or occurrence
- Processing plant
- o Unknown

Flathead Lake Area

- Possible sediment restoration work by local watershed group
- Lead and copper delistings

Readily Available Datasets: 319 Geospatial Data

U.S. Environmental Protection Agency Grants Reporting and Tracking System - GRTS EPA Home > GRTS Home GRTS HOME Grant Reporting and Tracking System, Release 4.2 State Records **Tribal Grants** UPDATE (8/12/2016): Pre-Award Anticipated Changes to GRTS, & the Impend Watershed Plan Tracker Success Stories Hello Team GRTS: Polluted Runoff: As many of you know, there have been long-standing plans to update the GRTS **Nonpoint Source** Home In recent months, EPA has been working with the contractor team to develop s a much more user-friendly and modern GRTS. While most changes will appear Reports streamline and consolidate data resources and improve data quality. Load Reduction Models Exit Additionally, the impending shift from the Nonpoint Source Program Measure, 1 XML Data Impor housed in the GRTS environment and used to help build success stories in an Shapefiles on program successes using existing tools! Supplemental training and guidance docs will be provided to assist users until **Online Help Update My Profile** For both the updated GRTS system and the new SSDB, EPA Headquarters will t Change Password near future. If you are interested in participating in a pilot of either system, plea **Report an Issue** (Jorge.Adam@epa.gov). Logout Thank you again for your continued work.

https://iaspub.epa.gov/apex/waters/f?p=110:199

Readily Available Datasets: 305(b) Geospatial Data

305(b) Waters As Assessed NHDPlus Indexed Dataset with Program Attributes

	Shapefiles (353 MB)
Download	OGC GeoPackage (406 MB)
Extracted on June 18, 2015 Changelog (Excel)(24 K)	ESRI 10.x File Geodatabase (240 MB)
	Attributes Only (Excel, 48 MB)
Metadata	Spatial and attribute metadata is located at the EPA Environmental Dataset Gateway.
	For this dataset as of 2014, Reach Address Database events have been indexed to <u>NHDPlus v2.1</u> hydrology (previous versions utilized NHDPlus v1.0 hydrology).
Additional Information	Fact Sheet Coming Soon
	305(b) Assessed Waters by Assessed Uses Field Descriptions (2 pp, 21 K)
Geospatial and Attribute Linkage Information	Use the provided ESRL_KEY for joining tables. Note that there is a many-to-many relationship between attributes and geospatial records.

https://www.epa.gov/waterdata/waters-geospatialdata-downloads rad assd305b l SRCE DESCR GOOD THREATENED **IMPAIRED**

Additional attributes can be downloaded from <u>https://iaspub.epa.gov/apex/waters/f?p=ASKWATERS:</u> EXPERT:0

Take Away Questions/Comments

- Mapping the data and sharing this with colleagues, stakeholders, etc is very useful in NPS program implementation and data analysis.
- 303(d)/305(b) + NHDplus gives potential to examine factors associated with delistings or impairments within single cycle.
- Plan is to improve GRTS geospatial data entry by allowing users to actively edit which HUC12s are selected when they manually draw drainage areas.
- Next, a quick overview of several methods for interactive mapping of the above datasets

Lets get Mapping

- Mapping water quality and project data is an important first step in data analysis, stake holder engagement, and outreach.
- Many programs out there to facilitate interactive mapping

ArcGIS Online

ArcGIS - My Map

Use Privacy Contact Esri Report Abuse

https://www.arcgis.com/home/index.html

ArcGIS - mt_improved_metals

Search for - online layers

Drag and drop EPA WATERS data (e.g. Storet, GRTS, 303(d) etc.)

Popups with Useful Summary data

								_	-
Grant #:	99833610	Å	Award Fiscal Year:	2010	Region:	08	State:	мт	-
Project Number:	06	Stat	e Project Number:	210116	Statewide:	No			
Project Title:	Upper Clark Fork Tributary R	estoration							
Project Manager:	: Mark Kelley		Phone:	406-444-3508					
State Project Manager:	Robert Ray		Phone:	406-444-5319					
Will Have/Has Pollutant Load Data:	Yes		TMDL:	Implementing a TMDL	enting a TMDL				
Project Schedule									
Project Start Date:	Did Start On	07/01/2010	(MM/DD/YYYY)						
Project End Date:	Completed On	04/30/2013	(MM/DD/YYYY)						
Comments:									

🗄 Details 🏾 🖄 Add 👻 🛛 🚟 Basemap	🗟 Save 🚽 🍩 Share 🚔 Print 🚔 Measure 🛄 Bookmarks 🗍	butte
1 About 🔄 Content 🔚 Legend	768 6 6	
Legend	And Burr Grave	-
Improved_Metals -	Grankschra	R
	Remote Ministrandi Helataria Sati	2.0
ALL_OWRAD_NP21	Loge colorescence	
GRTS		3.
Nonpoint Source Projects Point		
Nonpoint Source Projects Line	Mastodon Sangand Gravel	
Nonpoint Source Projects Area	THE AD AND AND	à
MRDS		
Hine, past or present producer Prospect or occurrence Processing plant Unknown		
	Canbou Creek	198
	Cariboo Jeek	1
		×
		Lines.

Project Status

Designet Tofa

- Project Budget

 \Box

Nonpoint Source Projects Line:

FEATURE_PERMANENT_IDENTIFIER SOURCE ORIGINATOR

PERMANENT_IDENTIFIER

118253

EVENTDATE REACHCODE REACHSMDATE REACHRESOLUTION

ice of Water | Earthstar Geographics, CNES/Airbus DS | Esri, H

Grant Information

Cumulative Award for Grant:	\$1,170,283
Total 319(h) Funds for all Projects:	\$1,172,013
Balance:	-\$1,730
19(h) Base Funds:	\$126,000
\$ 319(h) Incremental Funds:	\$0
Total 319(h) Funds:	\$126,000
EPA Other:	\$0
EPA Budget:	\$126,000
Other Federal:	\$0
State Funds:	\$41,840

Esri,com - ArcGIS Marketplace - Help - Terms of Use -Privacy - Contact Esri - Report Abuse

<u>Add</u> <u>various</u> basemaps

Share as url or embed in website

Leaflet for R:

R package which provides access to Leaflet javascript library for interactive

mapping

Leaflet for R

× \ +

Leaflet for R - Introduction

←

🛈 💁 | https://**rstudio.github.io**/leaflet/

ntroduction	Introduction
The Map Widget	
Basemaps	websites ranging from The New York Times and The Washington Post to GitHub and Flickr, as well as GIS specialists like OpenStreetMap, Mapbox, and CartoDB.
Markers	This R package makes it easy to integrate and control Leaflet maps in R.
opups	Features
Lines and Shapes	Interactive panning/zooming
JSON	Compose maps using arbitrary combinations or: Map tiles Machines
Raster Images	 Markers Polygons Lines
Shiny Integration	Popups Carl SON
Colors	GeoJSON Create maps right from the R console or RStudio
Legends	 Embed maps in knitr/R Markdown documents and Shiny apps Easily render Spatial objects from the sp package, or data frames with latitude/longitude
Show/Hide Layers	columnsUse map bounds and mouse events to drive Shiny logic

🖾 C 🔍 Search

Installation

To install this R package, run this command at your R prompt:

install.packages("leaflet")

to install the development version from Github, run # devtools::install_github("rstudio/leaflet")

Once installed, you can use this package at the R console, within R Markdown documents, and within Shiny applications.

Basic Usage

You create a Leaflet map with these basic steps:

11/25/2010

🔺 📴 👹

1

Bring datasets into R, write a few lines of code, and export as stand alone webpage RStudio

File Edit Code View Plots Session Build Debug To	ols Help	
🔍 📲 🛫 🚽 🔒 🛛 🚔 🛛 🚁 Go to file/function		🖄 Project: (None) 👻
Environment History	Console ~/AE_research/GRTS_ATTAINS_Project/presentations/bostonpresentation/	-0
🞯 🔲 📰 Import Dataset 🗸 🎸 Clear 🛛 🤤 List 🗸	+ Summary UKE: ,grtSpUTHt\$PKJ_KPTJ/%>%	*
Global Environment -	+ # addCircles(lng = grtsstartend\$long,lat=grtsstartend\$lat,group="319 Projects",color="red	н,
Values	+ # popup = paste("Project Title:", + #	
💽 grtspoint 🛛 Formal class SpatialPointsD	+ # "Award Year:",grtsstartend\$AWARD_FY, " br>",	
<pre>Ogrtspoly Large SpatialPolygonsDataFr</pre>	+ # "Summary URL:",grtsstartend\$PRJ_RPT))%>% #for some reason th	ese not plotting
Ogrtsstarte…Formal class SpatialPointsD…	+ #	
Om Large leaflet (8 elements,	+ # addMarkers(lng = mt_mining\$longitude, lat = mt_mining\$latitude,group="Mining Data", #a	dd mining data,
<pre>Ometal_imprFormal class SpatialLinesDa</pre>	ncluded are deposit name, location, commodity	iout the world. I
	+ # clusterOptions = markerClusterOptions(), #clusters points based on zoom	
	<pre>popup = paste(site name: ,mt_miningssite_name, or> , #add basic into</pre>	on point in popu
	+ # "Development Status:",mt_mining\$dev_stat))%>%	
	<pre>+ # + addLegend("bottomleft", colors = c("blue","red"),labels = c("AMD Improved","319 Projects"))</pre>)
	> m# Print the man	
	>	
	=	
	mock up code for mt metal stuff.R ×	
Files Plots Packages Help Viewer	() () Source on Save () ∠ ·	Run 🐏 🕀 Source 👻
	14 install.packages("leaflet") #installing the leaflet for r package	
	15 library(leaflet) #enabling the package for use in current session	
+ Open Street Map	17	
💿 Esri World Imagery	18 m <- leaflet() %>%	
Bridge Esri World Topographic Map	20 setView(-110.093994, 47.124469, zoom = 6)%>% #sets the center of the map view and th	e zoom level
AMD Improved	21 22 addTiles(group="Open Street Map") %>% #add basemaps and indicate group name	
319 Projects	<pre>23 addProviderTiles("Esri.WorldImagery", group = "Esri World Imagery") %>%</pre>	
	<pre>24 addProviderTiles("Esri.WorldTopoMap", group = "Esri World Topographic Map") %>% 25</pre>	
	<pre>26 addLayersControl(baseGroups = c("Open Street Map","Esri World Imagery", #</pre>	=
	27 "Esri World Topographic Map"), 28 overlavGroups = c("AMD Tmproved", "319 Projects").	
	29 options = layersControlOptions(collapsed = FALSE)) %>%	
Monte a	30 31 addPolvlines(data = metal improved, group = "AMD Improved", color = "blue", #add i	mproved segments
	<pre>32 popup = paste("Assessment Unit ID:",metal_improved\$ID," >")) %>% #add</pre>	popups
	33 34 addPolygons(data=grtspoly.color="red",group="319 Projects",	
	<pre>35 popup = paste("Project Title:",</pre>	
Binnings	36 grtspolySPRJ_TITLE, " spolySPRJ_TITLE, " spolySAWARD FY, " br>".	
· · · · · · · · · · · · · · · · · · ·	38 "Summary URL:",grtspoly\$PRJ_RPT))%>%	
	<pre>39 40 addCircles(lng = grtspoint\$long,lat= grtspoint\$lat.group="319 Projects".color="red".</pre>	
	<pre>41 popup = paste("Project Title:",</pre>	
AMD Improved	42 grtspoint\$PRJ_TITLE," br>", 43 "Award Year:".grtspoint\$AWARD FY, " br>".	-
319 Projects	44	E.
Idabo & Leaflet © OpenStreetMap contributors, CC-BY-SA	35:40 🚺 (Top Level) 🗘	R Script \$
		1:12 PM

_ 0 ×

R and R studio (https://www.r-project.org/ and https://www.rstudio.com/products/RStudio/)

Resulting stand alone webpage

*319 data not filtered based on metals/pH/etc as seen in earlier slides.

Also, start/stop hydro not shown (just 2 points)

Include Base maps such as aerial imagery

<u>Add</u> popups.

E.g., Project title, award year, etc.

<u>Share map</u> with others!

Html map document

Simple web mapping to explore NPS data

D. Auerbach and A. Engelberg, (ORISE, USEPA Office of Water, Office of Wetlands, Oceans and Watersheds)

Workflow structure

This example assumes basic familiarity with R, best deployed with the RStudio IDE. You may also want to check out the nice primer on spatial data in R that Jeff Hollister has put together. Below, we'll briefly cover:

- 1. Data sources
- 2. A services-only map
- 3. A map based on local data

Tutorial Web page

1. Data types and sources

Our goal is a simple webpage that you can view in a browser and share easily with others. The two primary ways to map information in this context are via webservices and locally-held objects (i.e., files that you download, process and make part of the page).

Webservices allow dynamic and light-weight presentation because the underlying info is stored and maintained elsewhere. You get just what you need to display or query, but connection speed can influence performance. For example:

- EPA WATERS services display a number of Office of Water datasets, many aggregated from tribal and state partners.
- WQP is the centralized place for original water quality measurements.

However, downloading the objects themselves (tables, geometries, etc.) often makes sense if you expect to do substantial offline processing.

- EPA WATERS objects offers the (sometimes large) underlying datasets for various services.
- ATTAINS houses additional datasets related to 303/305 reporting.

Fortunately, the two modes can also usually be combined, allowing you to leverage common "point-of-reference" datasets (which may be quite large and subject to regular revision like NHD/NHDPlus) alongside smaller things where you've done more "custom" work.

2. Services make it easy to map quickly

The R package leaflet facilitates use of this powerful javascript library for interactive maps. Leaflet output can include different basemaps as well as various overlays, and allows lots of pretty formatting. Especially nice is the option to export a "standalone" .html file that you can share and engage with via any browser.

Let's step through an example. There's a fair bit going on, but it's pretty straightforward if we take it piece by piece.

In the code chunk below, after we tell R to bring in the leaflet set of commands with <code>library()</code>, we generate an "empty" map with the function <code>leaflet()</code>, and control the size of the output with width and height arguments (these can be left out to render a full screen map). The special "pipe" character <code>%>%</code> keeps commands linked together, with the output of one going automatically into the next.

So, the next setView() call knows that it's working on the previously generated map. The setView() call is optional (and we'll see below that

Final Points

- Readily Available national Datasets for Water Quality and NPS Restoration in multiple formats (e.g. shapefile, web maps, etc).
- Mapping the data supports program implementation efforts, cross agency collaboration, stakeholder outreach, and preliminary data analyses.
- ArcGIS and R provide straight forward approaches for interactive mapping.