# Appendix A Superfund Risk Assessments and Public Health Assessments of 2009 Current Sites

Relatively few Superfund risk assessments or public health assessments were found for currently operating sites. Those that were found are listed here, in **Table A-1**.

| Row                                                                      | Mine Site                                                                                            | State                                                                                                                          | Document Titles                                                                                                                             | Document<br>Date |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1                                                                        | Argenta Mine and<br>Mill                                                                             | Nevada                                                                                                                         | Notice of Final Decision, Reclamation Permit 0252                                                                                           | May 2008         |
| 2                                                                        | ASARCO LLC<br>Hayden Plant Site                                                                      | Arizona                                                                                                                        | Screening-Level Ecological Risk Assessment                                                                                                  | Aug 2008         |
| 3                                                                        | Elkem Eramet                                                                                         | Ohio                                                                                                                           | Health Consultation: Marietta Area Air Investigation                                                                                        | July 2009        |
|                                                                          | Fort Knox Mine                                                                                       | Alaska                                                                                                                         | Arctic Grayling and Burbot Studies in the Fort Knox Water Supply Reservoir and Developed Wetlands, 2001                                     | Feb 2002         |
| 4                                                                        | Arctic Grayling and Burbot Studies in the Fort Knox<br>Supply Reservoir and Developed Wetlands, 2000 |                                                                                                                                | Arctic Grayling and Burbot Studies in the Fort Knox Water<br>Supply Reservoir and Developed Wetlands, 2000                                  | Jan 2002         |
| Arctic Grayling and Burb<br>Supply Reservoir, Stilling<br>Wetlands, 2002 |                                                                                                      | Arctic Grayling and Burbot Studies in the Fort Knox Water<br>Supply Reservoir, Stilling Basin, and Developed<br>Wetlands, 2002 | Dec 2002                                                                                                                                    |                  |
|                                                                          | Greens Creek                                                                                         | Alaska                                                                                                                         | Aquatic Biomonitoring at Greens Creek Mine                                                                                                  | June 2004        |
| _                                                                        | Mine                                                                                                 |                                                                                                                                | Aquatic Biomonitoring at Greens Creek Mine                                                                                                  | May 2005         |
| 5                                                                        |                                                                                                      |                                                                                                                                | Aquatic Biomonitoring at Greens Creek Mine                                                                                                  | July 2010        |
|                                                                          | Aquatic Biomonitoring at Greens Creek Mine                                                           |                                                                                                                                | Aquatic Biomonitoring at Greens Creek Mine                                                                                                  | May 2011         |
| 6                                                                        | Herculaneum<br>Lead Smelter Site                                                                     | Missouri                                                                                                                       | ATSDR Health Consultation-Exposure Investigation                                                                                            | June 2005        |
| 7                                                                        | Lincoln Park<br>Superfund Site                                                                       | Colorado                                                                                                                       | EPA Superfund Record of Decision                                                                                                            | Jan 2002         |
| 8                                                                        | Phelps Dodge<br>Tyrone                                                                               | New<br>Mexico                                                                                                                  | Wildlife Monitoring Plan for Post Closure                                                                                                   | Dec 2005         |
| 9                                                                        | Red Dog                                                                                              | Alaska                                                                                                                         | Aquatic Biomonitoring at Red Dog Mine, 2010.                                                                                                | Spring<br>2010   |
|                                                                          | Smokey Canyon<br>Mine                                                                                | Idaho                                                                                                                          | Smoky Canyon Mine CERCLA Investigations and<br>Response                                                                                     | Aug 2001         |
|                                                                          |                                                                                                      |                                                                                                                                | FINAL Site Investigation Report Smoky Canyon Mine                                                                                           | July 2005        |
| 10                                                                       |                                                                                                      |                                                                                                                                | Public Health Assessment for Southeast Idaho Phosphate<br>Mining Resource Area Bannock, Bear Lake, Bingham,<br>and Caribou Counties, Idaho. | Feb 2006         |
|                                                                          |                                                                                                      |                                                                                                                                | Baseline Human Health Risk Assessment                                                                                                       | July 2005        |
|                                                                          |                                                                                                      |                                                                                                                                | Public Health Assessment: Asarco Hayden Smelter Site<br>(A/K/A Asarco Incorporated Hayden Plant)                                            | Sept 2002        |

| Table A-1 Superfund  | Risk Assessments and | Public Health Asses | sments of 2009 Current Sites |
|----------------------|----------------------|---------------------|------------------------------|
| Table / The Superior |                      |                     |                              |

# Appendix B Defining the Universes of 108(b) Historical CERCLA and 2009 Current Sites

This appendix describes the data sources and methodologies that EPA used to define the universes of 108(b) CERCLA Historical sites and 2009 Current sites. **Section B.1** describes the data sources and methodology used to create the initial universe of 108(b) CERCLA Historical sites. Section B.1 also describes the randomized sampling that generated the 24 Case Study Historical sites for in-depth data gathering and evaluation. **Section B.2** details the later expansion of the 108(b) CERCLA Historical Sites universe, as well as the supplemental site sellection and data collection. Section B.3 describes the data sources and selection criteria used to create the universe of 2009 Current sites are described, along with the methods for locating these sites. Section B.4 documents those sites found in both the 108(b) CERCLA Historical Sites universe and the 2009 Current Sites universe.

# B.1 Initial List of 108(b) Historical CERCLA Sites

EPA constructed a dataset of known mining and primary mineral processing sites that have been cleaned up using Superfund (CERCLA) authority. These sites include CERCLA removal sites, National Priority List (NPL) sites, and sites cleaned up under CERCLA (sometimes in addition to other federal laws') authority. The list includes sites of which EPA is aware that mining, and/or primary mineral processing occurred, although it also includes some sites at which other types of activities may have occurred at different times (e.g., secondary mineral processing) or that are part of the overall Superfund site (e.g., manufactured gas plant or chemical manufacturing).

# B.1.1 Abandoned Mine Lands List as of 2002

EPA's National Mining Team developed a list of 561 mining and mineral processing sites that have been addressed using Superfund (CERCLA) cleanup authority or that are on the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) inventory of sites that might at a future date be cleaned up under CERCLA cleanup authority. Some of the sites have not yet been assessed for cleanup needs. The National Mining Team defines the term "abandoned mine lands" for its purposes as "…those lands, waters, and surrounding watersheds contaminated or scarred by the extraction, beneficiation or processing of ores and minerals (excluding coal). Abandoned mine lands include areas where mining or processing activity is determined to be temporarily inactive" (U.S. EPA, 2004).

The scope of the National Mining Team's efforts differs slightly from the scope and applicability of the proposed CERCLA 108(b) rule, which focusses on mines and processors of metal and non-fuel, non-metallic mineral resources identified in the July 2009 FR notice (74 FR 37213-37219). The CERCLA 108(b) rule also does not cover commodities excluded from the definition of "hardrock mining facilities" for the purposes of identifying the classes of facilities for which financial responsibility requirements would be first developed. The list of excluded commodities is based on an analysis of several factors published in the Priority Classes notice for the CERCLA 108(b) requirements (published July 28, 2009, in the Federal Register, 74 FR

37213-37219). EPA staff analyzed the following factors in determining what mining sectors and commodities to exclude:

- Annual amounts of hazardous substances released to the environment
- The number of facilities in active operation and production
- The physical size of the operation
- The extent of environmental contamination
- The number of sites on the CERCLA site inventory (including both National Priority List (NPL) sites and non-NPL sites)
- Government expenditures
- Projected clean-up expenditures; and
- Corporate structure and bankruptcy potential.

A memorandum to the record ("Mining Classes Not Included in Identified Hardrock Mining Classes of Facilities" from Stephen Hoffman and Shahid Mahmud, June 29, 2009, document number EPA-HQ-SFUND-2009-0265-0003, U.S. EPA (2009a)) lists 59 MSHA commodities to be excluded.

To conduct this evaluation, therefore, EPA identified those mining and mineral processing sites on the Abandoned Mines List associated with metal and non-metallic, non-fuel mineral commodities identified in the July 2009 FR notice [74 FR 37213-37219], excluding those listed in U.S. EPA (2009a).

### B.1.2 Filtering for 108(b) Historical CERCLA Sites

Based on the list of abandoned mine lands sites, EPA used the following criteria to identify relevant 108(b) Historical CERCLA sites:

- Mining or mineral processing occurred at the site (either alone, together, or in combination with other activities).
- For mineral processing, EPA documents describing site activities mention processing of *primary* (i.e., earthen) mineral resources rather than only secondary mineral resources (i.e., already circulating within the economy and returned for recovery).
- The site is or had been addressed by the EPA under CERCLA as an NPL site, a removal site, a site cleaned up as part of a CERCLA enforcement action, or some combination of these.
- Site contamination resulted at least in part from mining or mineral processing activities that occurred *at the site*, rather than solely from mining or mineral processing wastes transported to the site from a different location or from other non-mining, non-mineral processing activities.
- The commodity or commodities mined or processed at the sites fell within the scope of the July 2009 FR notice (74 FR 37213-37219).
- The site was not a member of a mining class excluded from the rule per EPA (2009a).

EPA identified 251 sites that have been cleaned up using Superfund (CERCLA) cleanup authority: as removal sites, NPL sites, or in some cases as part of a CERCLA enforcement

action. Attachment B1 presents the Historical CERCLA site names, identification numbers, locations, and commodities mined/processed.

# B.1.3 Stratification into pre- and post-1980 sites

A few of the Historical CERCLA Sites were included because of contamination from mining operations conducted as far back in time as the 1700s and early to mid 1800s. In order to focus the analysis on the historical sites that use mining and mineral processing practices similar to those used at current or future mining and mineral processing sites, EPA divided the list of 251 sites into two groups: one in which site operations ended before 1980 and one in which the operations occurred after 1980.

# **B.1.4** Random Selection of Case Study Historical Sites

A randomized selection process was used to sample a subset of the post-1980 historical sites. A set of priority rules was implemented for the selection process that included (1) sites with readily available data, and (2) no legal negotiation was ongoing at a site.

The selection process resulted in a set of 30 (24 NPL and 6 removal) sites that are more likely to be similar to modern mining and milling practices and mineral processing methods used at currently active sites. The subset of sites randomly selected from the post-1980 subset of 108(b) CERCLA sites is presented in **Table B-1**.

| Row | Site Name                                  | EPA ID       | Site<br>Type | Last<br>Operational<br>Year |
|-----|--------------------------------------------|--------------|--------------|-----------------------------|
| 1   | Anaconda Co. Smelter                       | MTD093291656 | NPL          | 1980                        |
| 2   | Bueno Mill & Mine Site                     | CON000802129 | Removal      | 2008*                       |
| 3   | Bunker Hill Mining & Metallurgical Complex | IDD048340921 | NPL          | 1991                        |
| 4   | Captain Jack Mill                          | COD981551427 | NPL          | 1981                        |
| 5   | Cimarron Mining Corp.                      | NMD980749378 | NPL          | 1982                        |
| 6   | Cyprus Tohono Mine                         | AZD094524097 | Removal      | 1997                        |
| 7   | Eagle Mine                                 | COD081961518 | NPL          | 1984                        |
| 8   | East Helena Site                           | MTD006230346 | NPL          | 2001                        |
| 9   | Eastern Michaud Flats Contamination        | IDD984666610 | NPL          | Current                     |
| 10  | Evening Star Mine                          | CON000802651 | Removal      | 2003*                       |
| 11  | Foote Mineral Co.                          | PAD077087989 | NPL          | 1991                        |
| 12  | Gilt Edge Mine                             | SDD987673985 | NPL          | 1998                        |
| 13  | Homestake Mining Co.                       | NMD007860935 | NPL          | 1990                        |
| 14  | Li Tungsten Corp.                          | NYD986882660 | NPL          | 1985                        |
| 15  | Macalloy Corporation                       | SCD003360476 | NPL          | 1998                        |
| 16  | Midnite Mine                               | WAD980978753 | NPL          | 1981                        |
| 17  | Mine Site 2028                             | INN000510234 | Removal      | 1996*                       |
| 18  | Monsanto Chemical Co. (Soda Springs Plant) | IDD081830994 | NPL          | Current                     |
| 19  | National Southwire Aluminum Co.            | KYD049062375 | NPL          | Current                     |
| 20  | Omaha Lead                                 | NESFN0703481 | NPL          | 1996                        |
| 21  | Ophir Mills and Smelter                    | UT0010221516 | Removal      | 2003*                       |

Table B-1. Randomly Selected Case Study Historical Sites

| Row | Site Name                              | EPA ID       | Site<br>Type | Last<br>Operational<br>Year |
|-----|----------------------------------------|--------------|--------------|-----------------------------|
| 22  | Ormet Corp.                            | OHD004379970 | NPL          | Current                     |
| 23  | Palmerton Zinc Pile                    | PAD002395887 | NPL          | 1980                        |
| 24  | Reynolds Metals Company                | ORD009412677 | NPL          | 2000                        |
| 25  | Silver Mountain Mine                   | WAD980722789 | NPL          | 1983                        |
| 26  | Silverton Mercury (HG) Concentrators   | WAN001002702 | Removal      | 1983*                       |
| 27  | Stauffer Chemical Co. (Tarpon Springs) | FLD010596013 | NPL          | 1981                        |
| 28  | Summitville Mine                       | COD983778432 | NPL          | 1992                        |
| 29  | Teledyne Wah Chang                     | ORD050955848 | NPL          | Current                     |
| 30  | Tex-Tin Corp.                          | TXD062113329 | NPL          | 1991                        |

\* When a Removal site's last operational year is unknown, the Last Non-NPL Status date was used

Note: A "current" listing in the *Last Operational Year* field indicates the site still had mining or mineral processing activities ongoing as of calendar year 2009. At the Bunker Hill site EPA has limited evidence that mining was occurring, but the mine became non-producing in 2009 and potentially should be classified as current. This limited evidence is the operating status information in the MSHA database at <u>http://www.msha.gov/drs/drshome.htm</u>, for the mine numbered as MSHA ID # 1000083.

# B.1.5 Documents from Superfund Data Management System

EPA extracted data on exposure to CERCLA hazardous substances associated with the historical NPL sites, from the following source documents:

- Superfund human health risk assessments (HHRA) and ecological risk assessments (ERA)
- NPL site summary information previously developed by EPA that included synopses for the record of decision (ROD), contaminants of concern, site characteristics, and NPL mining/mineral processing methods
- Remedial Investigation/Feasibility Study (RI/FS) documents
- RODs
- Other CERCLA site documents such as comprehensive 5-year review and risk assessments from CERCLIS and Regional Superfund web pages.

Data for the removal sites were extracted from the following CERCLA site documents:

- Action memos
- Supplemental action memos
- Pollution reports
- Other removal-related documentation.

In the above lists of document sources, preference was generally given for data extraction in the order shown. Preference was based on accessibility of exposure and CERCLA hazardous substance information already summarized and then additional documents were referenced, as needed, that were expected to contain the required data elements. Information that emerges over a period of time, such as with more comprehensive site field sampling, can sometimes change the picture of site conditions, and thus information from many different site documents needed to be evaluated to infer which documents contained the most complete data for the purposes of this report. Ultimately, RODs, RI/FS documents, and Superfund risk assessments were found to most frequently contain the information that was of interest.

Narrative case studies were developed for the Case Study Historical sites. These case studies are included in **Attachment B2**. However, insufficient data were available for any of the Removal sites; as a result, only the NPL sites were used in the analysis. The documents reviewed for each of the NPL Case Study Historical sites is provided in **Attachment B3**.

# B.2 Expanded List of 108(b) Historical CERCLA Sites and Supplemental Sampling

Ongoing QA/QC efforts identified issues which, in aggregate, suggested that EPA should continue developing the 108(b) Historical CERCLA Sites universe. For example, additional analysis of CERCLIS identified numerous additional sites that qualified to be on the list. Also, data collection efforts for the Cased Study Historical sites found that some sites on the list were not mines or mineral processors and should not have been on the list at all. EPA therefore decided to update the 108(b) Historical CERCLA Sites universe.

Also, EPA found that the Case Study Historical sites included a limited range of the commodities mined and/or processed when compared to the overall 108(b) Historical CERCLA Sites universe. EPA therefore conducted a supplemental selection of additional historical sites for in-depth data collection and study.

# B.2.1 Using CERCLIS Data to Update the 108(b) Historical CERCLA Sites Universe

While collecting data for the initial Case Study Historical sites, EPA found that insufficient data were available for Removal and other non-NPL sites. EPA therefore decided to concentrate the updating on NPL sites.

To further clarify and update the list, EPA compared the initial 108(b) Historical CERCLA Sites universe to the following two reports generated by the CERCLIS Public Access Database:

- List 9 (Active CERCLIS Sites, available at <u>http://www.epa.gov/superfund/list-9-active-cerclis-sites</u>): Displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted: and
- SCAP 12 (NPL Sites, available at <a href="http://www.epa.gov/superfund/scap-12-foia-nplnon-npl-site-summary-version-2401">http://www.epa.gov/superfund/scap-12-foia-nplnon-npl-site-summary-version-2401</a>): Displays the sequence of activities undertaken at all NPL sites in CERCLIS. NPL sites include sites proposed to the NPL, sites currently on the final NPL and sites deleted from the final NPL.

Similar to efforts described in Section B.1 above regarding filtering the AML list, EPA identified those mining and mineral processing sites on the List 9 and SCAP 12 reports associated with metal and non-metallic, non-fuel mineral commodities identified in the July 2009 FR notice [74 FR 37213-37219], excluding those listed in U.S. EPA (2009a). Based on the 108(b) Historical CERCLA Sites universe, as well as the List 9 and SCAP 12 reports, EPA developed a list of 448 sites that have been cleaned up using Superfund (CERCLA) authority: as NPL sites or, from the initial 108(b) Historical CERCLA Sites universe, as removal sites or as part of a CERCLA enforcement action. **Attachment B4** presents the list of 448 sites comprising the updated 108(b) Historical CERCLA Sites universe, including site names, identification numbers, locations, and commodities mined/processed.

# **B.2.2** Supplemental Selection of Historical Sites

In August 2012, while updating the 108(b) Historical CERCLA Sites universe, EPA took another sample to supplement the original, random sample of Case Study Historical sites for indepth data collection and study. The supplemental sampling differed from the original, random sampling in several respects:

- The list from which to sample excluded sites already on the original, randomly selected sites list;
- The list from which to sample excluded sites associated with commodities already represented in the original, randomly selected sites list; and
- The supplemental sampling was not restricted to post-1980 operating sites.

The list of sites selected during the supplemental sampling is presented in **Table B-2** below.

| Row |                                                                           |              | Site | Last<br>Operational |
|-----|---------------------------------------------------------------------------|--------------|------|---------------------|
|     | Site Name                                                                 | EPA ID       | Туре | Year                |
| 1   | ALCOA/Lavaca Bay                                                          | TXD008123168 | NPL  | 1979                |
| 2   | Blackbird Mine                                                            | IDD980725832 | NPL  | 1982                |
| 3   | Chemet Co.                                                                | TND987768546 | NPL  | 1987                |
| 4   | Cleveland Mill                                                            | NMD981155930 | NPL  | 1950                |
| 5   | E.I. du Pont de Nemours & Co., Inc. (Newport<br>Pigment Plant Landfill)   | DED980555122 | NPL  | Unknown             |
| 6   | Fremont National Forest/White King and Lucky<br>Lass Uranium Mines (USDA) | OR7122307658 | NPL  | 1964                |
| 7   | Libby Asbestos Site                                                       | MT0009083840 | NPL  | 1990                |
| 8   | Riverbank Army Ammunition Plant                                           | CA7210020759 | NPL  | Unknown             |
| 9   | Rockwool Industries Inc.                                                  | TXD066379645 | NPL  | 1987                |
| 10  | Saltville Waste Disposal Ponds                                            | VAD003127578 | NPL  | 1972                |
| 11  | U.S. Radium Corp.                                                         | NJD980654172 | NPL  | 1926                |
| 12  | Washington County Lead District - Old Mines                               | MON000705027 | NPL  | c. 1980             |

Table B-2. Historical Sites in Supplemental Sample

### **B.2.3** Documents from Superfund Data Management System

EPA extracted exposure and CERCLA hazardous substance data associated with the supplemental sample of historical sites from the same types of source documents as those used for the original, random sample (see Section B.1.5).

As with the original data collection effort, preference of data source documents was based on accessibility of information already summarized and then additional documents were referenced as needed. Ultimately, RODs, RI/FS documents, baseline risk assessments (BRA), human health risk assessments (HHRA) and ecological risk assessments (ERA) were found to most frequently contain the information that was of interest.

Please note that, while data were collected for the suplementally selected sites, and for completeness of documentation they are included in this report, the data were not available in time to be included in the analyses, and any conclusions drawn by this report are not based on these data. These data are available, however, for any future analyses.

# B.3 Currently Active Sites as of 2009 (2009 Current Sites)

The list of 2009 Current sites was based on the mineral or metal commodity mined or processed. The development of EPA's list of applicable commodities is described in **Section B.3.1** below. **Section B.3.2** describes how EPA identified mines and mineral processors using the list of commodities, and information from sources such as the Mine Safety and Health Administration (MSHA) and the U.S. Geological Survey (USGS), along with the mine status. **Section B.3.3** describes the list of 2009 Current sites and the processes used to locate each site.

## **B.3.1** Commodities Included in the Report

Two federal agencies survey and/or regulate the mining/mineral processing industry: the USGS, under the Department of the Interior, and the MSHA, under the Department of Labor. These two agencies use different categorization schemes and operate under different federal statutes. EPA is using data from both agencies to identify members of the hard rock mining industry that extract, beneficiate, or process metals and non-metallic, non-fuel minerals in the United States.

EPA began its efforts to identify members of the hard rock mining industry by setting a January 2010 target timeframe for operations to occur at the sites. The EPA identified a database maintained by MSHA, the Mine Data Retrieval System,<sup>1</sup> and a set of reports published annually by USGS (Minerals Yearbooks).<sup>2</sup>

The Minerals Yearbooks (as well as Commodity Summaries for the few commodities without yearbooks) are published for approximately 86 groups of commodities. EPA excluded helium, nitrogen, and sulfur from further consideration because they are extracted from natural gas and/or petroleum (fuels). The EPA also excluded peat on the basis of its occasional use as a

<sup>&</sup>lt;sup>1</sup> Weekly updates are available at <u>http://www.msha.gov/drs/drshome.htm</u>. EPA used a version that MSHA staff indicated represents MSHA's best-quality data for calendar year 2009, provided to Phuc Phan of EPA by Chad Hancher of MSHA in July 2010. EPA also periodically extracted data from the weekly updates.

<sup>&</sup>lt;sup>2</sup> Available at <u>http://minerals.usgs.gov/minerals/pubs/commodity/</u>.

fuel, leaving approximately 82 groups of commodities. EPA also excluded manufactured abrasives, reasoning that although minerals are used as feedstocks, the manufacturing process for abrasives is more akin to manufacturing than mineral processing.

Next, EPA arrayed the commodities listed by MSHA in its Mine Data Retrieval System database and removed the energy commodities (coal (anthracite); coal (bituminous); coal (lignite); oil mining; oil sand; oil shale) from that list, leaving approximately 98 groups of commodities.

There is significant overlap between the approximately 82 USGS commodities and approximately 98 MSHA commodities, and in many instances the commodity names are identical. Several that are tracked by USGS and not MSHA are likely to be ores/minerals that are imported from outside the United States and beneficiated/processed within the U.S.

EPA then merged the two lists of commodities to create a list of metal and non-metallic, non-fuel minerals that could be extracted, beneficiated, or processed in the United States. This list is not all-inclusive, because it represents ores and minerals mined and processed in the 2006 to 2009 timeframe; changes in market conditions and commodity prices over time could mean that additional ores/minerals not present on this list could begin to be mined or processed in the United States, while mining or processing of ores/minerals currently present on this list might be discontinued at some future point.

The preliminary merged list of commodities included 154 metals and non-metallic, nonfuel minerals (see **Table B-3**). Some listed commodities could be subsumed within other listed commodities, depending on definitions used. However, to the extent that there were slight differences between commodity names used by USGS and MSHA, EPA chose to keep those commodity groups separate. Table B-3 generally lists the commodities alphabeticallyr, although minerals in the clays, gemstones, crushed/broken and dimension stone/rock, and sand families are grouped together.

| Commodity            | Source Agency                      | Commodity            | Source Agency        |  |  |  |
|----------------------|------------------------------------|----------------------|----------------------|--|--|--|
| Agate MSHA           |                                    | Turquoise            | MSHA                 |  |  |  |
| Alumina              | USGS and MSHA                      | Germanium            | USGS                 |  |  |  |
| Aluminum             | USGS                               | Gilsonite            | MSHA                 |  |  |  |
| Aluminum Ore-Bauxite | MSHA (USGS just Bauxite)           | Gold                 | USGS (MSHA Gold Ore) |  |  |  |
| Amethyst             | MSHA                               | Graphite             | USGS and MSHA        |  |  |  |
| Antimony             | USGS (MSHA Antimony Ore)           | Gravel, Construction | USGS                 |  |  |  |
| Aplite               | MSHA                               | Gravel, Industrial   | USGS                 |  |  |  |
| Arsenic              | USGS                               | Gypsum               | USGS and MSHA        |  |  |  |
| Asbestos             | USGS                               | Hafnium              | USGS                 |  |  |  |
| Barite               | USGS (MSHA Barite Barium<br>Ore)   | Indium               | USGS                 |  |  |  |
| Beryllium            | USGS (MSHA Beryl-Beryllium<br>Ore) | lodine               | USGS                 |  |  |  |
| Bismuth              | USGS                               | Iron                 | USGS                 |  |  |  |
| Boron                | USGS (MSHA Boron Minerals)         | Iron, scrap          | USGS                 |  |  |  |

Table B-3. Merged list of USGS and MSHA Commodity Groups

| Commodity Source Agency            |                                                         | Commodity                    | Source Agency                     |  |
|------------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------|--|
| Bromine                            | USGS                                                    | Iron, slag                   | USGS                              |  |
| Brucite                            | MSHA                                                    | Iron Ore                     | USGS and MSHA                     |  |
| Cadmium                            | USGS                                                    | Iron Oxide Pigments          | USGS                              |  |
| Cement                             | USGS and MSHA                                           | Kyanite                      | USGS and MSHA                     |  |
| Cesium                             | USGS                                                    | Kyanite-Related Materials    | USGS                              |  |
| Chem. and Fertil. Mnls. NEC        | MSHA                                                    | Lead                         | USGS                              |  |
| Chromium                           | USGS (MSHA Chromite<br>Chromium Ore)                    | Lead-Zinc Ore                | MSHA                              |  |
| Clays                              |                                                         | Leonardite                   | MSHA                              |  |
| Bentonite                          | MSHA (USGS Clays)                                       | Lime                         | USGS and MSHA                     |  |
| Clay, Ceramic, Refractory<br>Mnls. | MSHA (USGS Clays)                                       | Lithium                      | USGS                              |  |
| Common Clays NEC                   | MSHA (USGS Clays)                                       | Magnesium                    | USGS                              |  |
| Fire Clay                          | MSHA (USGS Clays)                                       | Magnesium Compounds          | USGS                              |  |
| Fullers Earth                      | MSHA (USGS Clays)                                       | Magnesite                    | MSHA                              |  |
| Kaolin and Ball Clay               | MSHA (USGS Clays)                                       | Magnetite                    | MSHA                              |  |
| Cobalt                             | USGS                                                    | Manganese                    | USGS (MSHA Manganese<br>Ore)      |  |
| Copper                             | USGS (MSHA Copper Ore<br>NEC)                           | Mercury                      | USGS                              |  |
| Cristobalite, Ground               | MSHA                                                    | Mica                         | USGS and MSHA                     |  |
| Diatomaceous Earth<br>(Diatomite)  | MSHA (USGS Diatomite)                                   | Molybdenum                   | USGS (MSHA Molybdenum<br>Ore)     |  |
| Explosives                         | USGS                                                    | Nephaline Syenite            | USGS                              |  |
| Feldspar                           | USGS and MSHA                                           | Nickel                       | USGS                              |  |
| Ferroalloys                        | USGS                                                    | Niobium (Columbium)          | USGS                              |  |
| Fluorspar                          | USGS and MSHA                                           | Olivine                      | MSHA                              |  |
| Gallium                            | USGS                                                    | Perlite                      | USGS and MSHA                     |  |
| Gemstones                          | USGS and MSHA                                           | Phosphate Rock               | USGS and MSHA                     |  |
| Diamond, Industrial                | USGS                                                    | Pigment Minerals             | MSHA                              |  |
| Emerald                            | MSHA                                                    | Platinum-Group Metals        | USGS (MSHA Platinum Group<br>Ore) |  |
| Garnet                             | MSHA (USGS Garnet,<br>Industrial)                       | Potash                       | USGS and MSHA                     |  |
| Potash, Soda, Borate Mnls.<br>NEC  | MSHA                                                    | Crushed, Broken Slate        | MSHA                              |  |
| Potassium Compounds                | MSHA                                                    | Crushed, Broken Stone<br>NEC | MSHA                              |  |
| Pumice                             | USGS                                                    | Crushed, Broken Traprock     | MSHA                              |  |
| Pumicite                           | USGS and MSHA                                           | Stone, Dimension             | USGS                              |  |
| Pyrophyllite                       | USGS                                                    | Dimension Basalt             | MSHA                              |  |
| Quartz Crystal                     | USGS and MSHA                                           | Dimension Granite            | MSHA                              |  |
| Quartz, Ground                     | MSHA                                                    | Dimension Limestone          | MSHA                              |  |
| Rare Earths                        | USGS (MSHA Rare Earths<br>Ore)                          | Dimension Marble             | MSHA                              |  |
| Rhenium                            | USGS                                                    | Dimension Mica               | MSHA                              |  |
| Rubidium                           | USGS                                                    | Dimension Quartzite          | MSHA                              |  |
| Salt                               | USGS and MSHA                                           | Dimension Sandstone          | MSHA                              |  |
| Salt, Brine Evaporated             | MSHA                                                    | Dimension Slate              | MSHA                              |  |
| Sand                               |                                                         | Dimension Stone NEC          | MSHA                              |  |
| Construction Sand and<br>Gravel    | USGS and MSHA                                           | Dimension Traprock           | MSHA                              |  |
| Sand, Industrial NEC               | MSHA (USGS Industrial Sand<br>and Gravel, under Silica) | Steel                        | USGS                              |  |

| Commodity                        | Source Agency               | Commodity                   | Source Agency |
|----------------------------------|-----------------------------|-----------------------------|---------------|
| Sand, Common                     | MSHA                        | Steel Scrap                 | USGS          |
| Selenium                         | USGS                        | Steel Slag                  | USGS          |
| Shale                            | USGS (MSHA Common<br>Shale) | Strontium                   | USGS          |
| Shell                            | MSHA                        | Talc                        | USGS and MSHA |
| Silica                           | USGS                        | Tantalum                    | USGS          |
| Silica, Ground                   | MSHA                        | Tellurium                   | USGS          |
| Silica, Special                  | USGS                        | Thallium                    | USGS          |
| Silicon                          | USGS                        | Thorium                     | USGS          |
| Silver                           | USGS (MSHA Silver Ore)      | Tin                         | USGS          |
| Soda Ash                         | USGS                        | Titanium                    | USGS          |
| Sodium Sulfate                   | USGS                        | Titanium Ore                | MSHA          |
| Sodium Compounds                 | MSHA                        | Tripoli                     | USGS and MSHA |
| Silica, Special                  | USGS                        | Trona                       | MSHA          |
| Silicon                          | USGS                        | Tungsten                    | USGS          |
| Silver                           | USGS (MSHA Silver Ore)      | Uranium Ore                 | MSHA          |
| Soda Ash                         | USGS                        | Uranium-Vanadium Ore        | MSHA          |
| Sodium Sulfate                   | USGS                        | Vanadium                    | USGS          |
| Sodium Compounds                 | MSHA                        | Vanadium Ore                | MSHA          |
| Stone, Crushed                   | USGS                        | Vermiculite                 | USGS and MSHA |
| Crushed, Broken Basalt           | MSHA                        | Wollastonite                | USGS and MSHA |
| Crushed, Broken Granite          | MSHA                        | Zeolites                    | USGS and MSHA |
| Crushed, Broken Limestone<br>NEC | MSHA                        | Zinc                        | USGS and MSHA |
| Crushed, Broken Marble           | MSHA                        | Zirconium                   | USGS          |
| Crushed, Broken Mica             | MSHA                        | Misc. Metal Ore NEC         | MSHA          |
| Crushed, Broken Quartzite        | MSHA                        | Misc. Nonmetallic Mnls. NEC | MSHA          |
| Crushed, Broken<br>Sandstone     | MSHA                        |                             |               |

EPA then removed from the list the commodities listed in EPA (2009a), as well as similarly named USGS commodities that were not specifically identified in EPA (2009a).<sup>3</sup> EPA also removed the USGS commodity group "explosives," because it did not fit within the description of the July 29, 2009 Federal Register notice, and the two USGS commodity groups "iron scrap" and "steel scrap," because they generally describe secondary materials. In addition, EPA removed non-specific commodity categories such as "pigment minerals," "chemical and fertilizer minerals NEC," "Miscellaneous nonmetallic minerals NEC," etc. due to the analytical difficulties presented by lack of specificity of the exact commodity.

The end result is a list of 74 metals and non-metallic, non-fuel minerals, which are listed in **Table B-4**. This is the final commodities list upon which the 2009 Current Sites universe was based.

<sup>&</sup>lt;sup>3</sup> Construction gravel, industrial gravel, crushed stone, and pumicite.

| Commodity                     | Source Agency                        | Commodity             | Source Agency                  |
|-------------------------------|--------------------------------------|-----------------------|--------------------------------|
| Alumina                       | USGS and MSHA                        | Manganese             | USGS (MSHA Manganese Ore)      |
| Aluminum Ore-Bauxite          | MSHA (USGS just Bauxite)             | Mercury               | USGS                           |
| Aluminum                      | USGS                                 | Molybdenum            | USGS (MSHA Molybdenum Ore)     |
| Antimony                      | USGS (MSHA Antimony Ore)             | Nephaline Syenite     | USGS                           |
| Arsenic                       | USGS                                 | Nickel                | USGS                           |
| Asbestos                      | USGS                                 | Niobium (Columbium)   | USGS                           |
| Barite                        | USGS (MSHA Barite Barium Ore)        | Phosphate Rock        | USGS and MSHA                  |
| Beryllium                     | USGS (MSHA Beryl-Beryllium Ore)      | Platinum-Group Metals | USGS (MSHA Platinum Group Ore) |
| Bismuth                       | USGS                                 | Potash                | USGS and MSHA                  |
| Boron                         | USGS (MSHA Boron Minerals)           | Potassium Compounds   | MSHA                           |
| Bromine                       | USGS                                 | Pyrophyllite          | USGS                           |
| Brucite                       | MSHA                                 | Rare Earths           | USGS (MSHA Rare Earths Ore)    |
| Cadmium                       | USGS                                 | Rhenium               | USGS                           |
| Cesium                        | USGS                                 | Rubidium              | USGS                           |
| Chromium                      | USGS (MSHA Chromite<br>Chromium Ore) | Selenium              | USGS                           |
| Cobalt                        | USGS                                 | Silica                | USGS                           |
| Copper                        | USGS (MSHA Copper Ore NEC)           | Silicon               | USGS                           |
| Ferroalloys                   | USGS                                 | Silver                | USGS (MSHA Silver Ore)         |
| Fluorspar                     | USGS and MSHA                        | Steel                 | USGS                           |
| Gallium                       | USGS                                 | Strontium             | USGS                           |
| Germanium                     | USGS                                 | Talc                  | USGS and MSHA                  |
| Gold                          | USGS (MSHA Gold Ore)                 | Tantalum              | USGS                           |
| Hafnium                       | USGS                                 | Tellurium             | USGS                           |
| Indium                        | USGS                                 | Thallium              | USGS                           |
| lodine                        | USGS                                 | Thorium               | USGS                           |
| Iron                          | USGS                                 | Tin                   | USGS                           |
| Iron, slag                    | USGS                                 | Titanium              | USGS                           |
| Iron Ore                      | USGS and MSHA                        | Titanium Ore          | MSHA                           |
| Iron Oxide Pigments           | USGS                                 | Tungsten              | USGS                           |
| Kyanite and related materials | USGS                                 | Uranium Ore           | MSHA                           |
| Lead                          | USGS                                 | Uranium-Vanadium Ore  | MSHA                           |
| Lead-Zinc Ore                 | MSHA                                 | Vanadium              | USGS                           |
| Lithium                       | USGS                                 | Vanadium Ore          | MSHA                           |
| Magnesium                     | USGS                                 | Vermiculite           | USGS and MSHA                  |
| Magnesium<br>Compounds        | USGS                                 | Wollastonite          | USGS and MSHA                  |
| Magnesite                     | MSHA                                 | Zinc                  | USGS and MSHA                  |
| Magnetite                     | MSHA                                 | Zirconium             | USGS                           |

# Table B-4. MSHA and USGS Commodities Potentially Subject to CERCLA 108(b) Hard Rock Mining Rule

# B.3.2 MSHA and USGS Data Sources for 2009 Current Sites

For the purposes of this, EPA needed to define a list of mines and mineral processors that would potentially be subject to the rule. However, the population of mines and mineral processors that are operating at any given point in time can fluctuate significantly. This is because mines and mineral processors sometimes operate intermittently, due to fluctuating commodity prices, other business-related factors, mining and processing technical operations issues, and weather conditions. EPA chose to reflect the set of mines and mineral processors operating during calendar year 2009, the year in which the "priority classes" notice was published in the *Federal Register*.

EPA used two data sources to identify the mines and processors that handle the 108(b) mineral commodities:

- MSHA's Mine Data Retrieval System<sup>4</sup> (MDRS)
- Minerals Yearbook reports published annually by the USGS.<sup>5</sup>

In early 2010, when EPA began developing the list of mines and mineral processors, many of the Minerals Yearbooks for 2009 were not yet available. It is therefore possible that some mines and mineral processors on EPA's list were operational in 2007 and 2008 but not in 2009. Similarly, EPA did not obtain a quality-assured version of MSHA's mines database (MDRS) that reflected mines operating in 2009 until mid-2010; this was MSHA's 2009 annual close-out database and was used as the master source for comparison of all other mine and processor datasets as part of quality control and assurance protocols.

MSHA mines and processors site lists were compared to the USGS mine and processors site lists, to create the final list of 108(b) sites (i.e., mines or mineral processors of the metals and non-metallic, non-fuel minerals listed listed in Table B-4). The MSHA 2009 end-of-year dataset contains a total of 12,558 records for mines and mining facilities representing all commodity type groups (e.g., metals, industrial minerals, aggregates, dimension stone).

## B.3.3 Compilation of the 2009 Current Site List and Site Locations

The primary criteria used to identify 108(b) mines and processors from the original data sources are commodity produced (see **Table B-4** above for the list of commodities) and mine status. Spepcifically, EPA retained entries in MSHA's database with a current status of "active," "intermittent," "nonproducing," or "new," but excluded entries with a current status of "abandoned." MSHA's data dictionary for its mines database<sup>6</sup> does not provide definitions for these "current status" categories, so their meaning was inferred from general industry usage. The MSHA database included surface and underground mine types only. MSHA also identified mine "facilities" that were included, for the purposes of this work, as synonymous with mineral processing operations.

Next, records were removed when the detail in all data fields were identical to corresponding data fields of another data record(s) and determined to be a true duplicate.

<sup>&</sup>lt;sup>4</sup> Weekly updates are available at <u>http://www.msha.gov/drs/drshome.htm</u>; EPA used a version that MSHA staff had indicated represent MSHA's best-quality data for calendar year 2009, provided to EPA by MSHA in July 2010. These data were compared to other MSHA datasets downloaded on May 12, 2010, in ASCII file format from the Open Government Initiative dataset link found on the MSHA website (<u>http://www.msha.gov/Open GovernmentData</u>/<u>OGIMSHA.asp</u>). EPA also periodically queried data from the weekly updates.

<sup>&</sup>lt;sup>5</sup> Available at <u>http://minerals.usgs.gov/minerals/pubs/commodity/</u>.

<sup>&</sup>lt;sup>6</sup> Reference: MSHA 2010. MSHA Data Warehouse Data Dictionary. U.S. Department of Labor, Mine Safety and Health Administration, Arlington, VA, 2010.

However, any record with a minor difference compared with another was retained unless other information indicated that the record was a duplicate. All deletions were carefully documented in case additional site information was discovered at a later date. The resulting dataset included records on 564 currently active sites, including 293 mines and 271 processors.

As described in detail in **Appendix E**, the physical location of 2009 Current sites were identified using various techniques: address geocoding was used when an address or partial address was available; internet searches for location or other information on mines and processors; and consulting additional data sources to obtain information that could lead to the mine or processor location. ArcMap<sup>®</sup> aerial image software was used to evaluate the site locations found for each mine or processor. Mines were evaluated based on the ground-surface expression observed from the imagery as compared with information from the accompanying data either obtained with the MSHA data record attributes (e.g., aboveground mine, underground mine, processor type) or discovered from other information sources. If necessary, the coordinate location for a site was adjusted based on the information available as of the time the site location record was created. The address and latitude/longitude locations provided in the various sources were not always accurate or precise enough for the purpose of this study; the location provided for some records was the managing office for a site located in a nearby town or even a different state.

A numerical qualifier of 0, 1, or 2 was assigned to the point location for each mine and processor record to indicate EPA's general confidence in the geographic coordinates determined for the site. The confidence level depended on the availability and inferred quality of the information sources used to develop the coordinate location; therefore, these codes principally represent professional judgment and may not accurately describe the actual mine/processor locations. The site location confidence values are defined as follows:

- Level "0" confidence indicates that
  - no location could be found, or
  - the location is likely to be inaccurate and no source could be found to substantiate or improve it.
- Level "1" confidence indicates that the location may or may not be accurate based on the quality of available information.
- Level "2" confidence indicates that the location seems to be accurate relative to results of a visual comparison with known site attributes available in the data record and corroborating evidence from other sources (e.g., EPA reports).

In many cases, source data were available that allowed EPA to locate the mine with a high level of confidence; however, without contacting mine operators or accessing and reviewing land records data there is still the possibility of location errors. Thus all coordinate (i.e., latitude/longitude) data, regardless of the assigned confidence, should be considered unverified. The primary limitations in using the geolocated list of mines and processors include the uncertainty in the accuracy of some locations and in the limitations of representing very large mines with a single point. See **Appendix E** for a detailed description of the geocoding and location verification effort.

Primarily based on proximity, site name, and owner or operator name, EPA determined that a number of the sites could be combined into single sites. Combining sites in this way would eliminate duplicate entries that were for regulatory purposes a single "site." Therefore, mines and processors that were within 5 kilometers (approximately 3 miles) of each other and also shared a similar site name, owner name, or operator name were combined and represented by a single site record. When mines or processors were combined in this manner, EPA chose a new point location for the new site composed of the combined mine/processor sites, generally between the original locations or otherwise near the middle of the disturbed area evident in aerial imagery. The resulting dataset included individual mine sites, individual processor sites, and combinations of multiple mine sites, multiple processor sites, or mixtures of both mine and processor sites.

The combining exercise reduced the 2009 Current Sites universe to 491 sites. This dataset, listed in **Attachment B5**, retains the identity of the source dataset in case that information is needed later to evaluate a currently active site record, and uses a data variable called the Site ID to identify each combined site with a unique number. If an individual site (i.e., identified by a Mine ID or Processor ID) is part of a combined site, then a Site ID assigned to the group will be associated with that site and all other sites included in the grouping; sites that are not part of a combined site will have a unique Site ID.

Of the 491 sites in the 2009 Current Sites universe, 74 sites had a location confidence of "0," and therefore could not be mapped, leaving 417 sites that were mapped. **Figure B-2** maps the locations of 2009 Current mines and combined mines/processors where a location could be estimated. **Figure B-3** maps the locations of 2009 Current processors and combined mines/processors where a location could be estimated.



Figure B-2. 2009 Current mines and combined mines/processors.



Figure B-3. 2009 Current processors and combined mines/processors.

# B.4 Overlap between 108(b) Historical CERCLA and 2009 Current Sites

There was some overlap between the 108(b) Historical CERCLA Sites universe and the 2009 Current Sites universe; 17 sites appeared on both lists, including six Case Study Historical sites selected for in-depth review in this report. **Table B-5** lists those overlapping sites; those that are also Case Study Historical sites are bolded.

| Row | Site Name                                  | City           | State | EPA ID       |
|-----|--------------------------------------------|----------------|-------|--------------|
| 1   | Asarco Hayden Plant                        | Hayden         | AZ    | AZD008397127 |
| 2   | Bunker Hill Mining & Metallurgical Complex | Smelterville   | ID    | IDD048340921 |
| 3   | Cyprus Tohono Mine                         | Casa Grande    | AZ    | AZD094524097 |
| 4   | Eastern Michaud Flats Contamination        | Pocatello      | ID    | IDD984666610 |
| 5   | Idaho Lakeview Mine/Mill                   | Athol          | ID    | IDN001002537 |
| 6   | Iron King Mine - Humboldt Smelter          | Dewey-Humboldt | AZ    | AZ0000309013 |
| 7   | Kennecott (North Zone) (Sa)                | Magna          | UT    | UTD070926811 |
| 8   | Kennecott (South Zone) (Sa)                | Copperton      | UT    | UTD000826404 |
| 9   | Lincoln Park                               | Canon City     | CO    | COD042167858 |
| 10  | Molycorp, Inc.                             | Questa         | NM    | NMD002899094 |
| 11  | Monsanto Chemical Co. (Soda Springs Plant) | Soda Springs   | ID    | IDD081830994 |
| 12  | National Southwire Aluminum Co.            | Hawesville     | KY    | KYD049062375 |
| 13  | Ormet Corp.                                | Hannibal       | ОН    | OHD004379970 |
| 14  | Rock Creek Mine                            | Nome           | AK    | AKN001002823 |
| 15  | Teledyne Wah Chang                         | Albany         | OR    | ORD050955848 |
| 16  | Unimin Mine Fire                           | Spruce Pine    | NC    | NCD097358766 |
| 17  | U.S. Magnesium                             | Tooele County  | UT    | UTN000802704 |

Table B-5. Sites in Both the 108(b) Historical CERCLA Site and 2009 Current Site Universes

# Attachment B1. Initial 108(b) Historical CERCLA Sites Universe

| Row | Site Name                                      | EPA ID       | Site Type | State | Commodities mined/processed                                               |
|-----|------------------------------------------------|--------------|-----------|-------|---------------------------------------------------------------------------|
| 1   | Abbott/Turkey Run Mine                         | CAN000908401 |           | CA    |                                                                           |
| 2   | Alcoa (Vancouver Smelter)                      | WAD009045279 | NPL       | WA    | Aluminum                                                                  |
| 3   | Alder Mill                                     | WAD980722847 | Removal   | WA    | Arsenic, lead, metals                                                     |
| 4   | Allis Chalmers Dupont Landfill                 | WID982071839 | Removal   | WI    |                                                                           |
| 5   | Altoona Mine                                   | CAN000908402 | Removal   | CA    | Mercury                                                                   |
| 6   | American Fork Canyon/Uinta National            | UTD988074951 | Removal   | UT    |                                                                           |
| 7   | American Lead And Zinc Mill                    | CON000802649 | Removal   | CO    |                                                                           |
| 8   | American Smelting Co – El Paso Smelting Wk     | TXD990757668 |           | ТХ    |                                                                           |
| 9   | Anaconda Co. Smelter                           | MTD093291656 | NPL       | MT    | Copper                                                                    |
| 10  | Anaconda Copper Company                        | NVD083917252 | Removal   | NV    |                                                                           |
| 11  | Anderson-Calhoun Mine/Mill                     | WAN001002309 | Removal   | WA    |                                                                           |
| 12  | Annapolis Lead Mine                            | MO0000958611 | NPL       | MO    | Lead                                                                      |
| 13  | Asarco Hayden Plant                            | AZD008397127 | Removal   | AZ    |                                                                           |
| 14  | Asarco Sodium - East Helena                    | MTN000802439 | Removal   | MT    |                                                                           |
| 15  | Asarco Taylor Springs                          | ILN000508170 | NPL       | IL    |                                                                           |
| 16  | Asarco, Inc. (Globe Plant)                     | COD007063530 | NPL       | CO    |                                                                           |
| 17  | Atlas Asbestos Mine                            | CAD980496863 | NPL       | CA    | Asbestos                                                                  |
| 18  | Atlas Iron And Metal Co.                       | CAN000908308 | Removal   | CA    |                                                                           |
| 19  | Barite Hill/Nevada Goldfields                  | SCN000407714 | NPL       | SC    | Gold, silver                                                              |
| 20  | Barker Hughesville Mining District             | MT6122307485 | NPL       | MT    | Lead, silver                                                              |
| 21  | Barry Bronze Bearing Co.                       | NJC200400018 | Removal   | NJ    |                                                                           |
| 22  | Basin Mining Area                              | MTD982572562 | NPL       | MT    | Copper, silver, zinc, lead, iron, arsenic, sulfur, boron, silicon dioxide |
| 23  | Belden Cribbings                               | CON000802450 | Removal   | CO    |                                                                           |
| 24  | Big River Hills Lead Tailings                  | MON000705784 | NPL       | MO    |                                                                           |
| 25  | Big River Mine Tailings/St. Joe Minerals Corp. | MOD981126899 | NPL       | MO    | Lead                                                                      |
| 26  | Bingham Magna Ditch                            | UTN000802691 | Removal   | UT    | Arsenic (inorganic compounds)                                             |
| 27  | Black Butte Mine                               | OR0000515759 | NPL       | OR    | Mercury                                                                   |
| 28  | Blackbird Mine                                 | IDD980725832 | NPL       | ID    |                                                                           |
| 29  | Blue Ledge Mine                                | CAN000906063 | Removal   | CA    |                                                                           |
| 30  | Bluewater Uranium Mine                         | NND983469891 | Removal   | NM    |                                                                           |

| Row | Site Name                                    | EPA ID       | Site Type | State | Commodities mined/processed                                        |
|-----|----------------------------------------------|--------------|-----------|-------|--------------------------------------------------------------------|
| 31  | Bonne Terre Mine Tailings                    | MOD985818236 | Removal   | MO    |                                                                    |
| 32  | Brewer Gold Mine                             | SCD987577913 | NPL       | SC    | Gold                                                               |
| 33  | Bueno Mill & Mine Site                       | CON000802129 | Removal   | CO    |                                                                    |
| 34  | Bunker Hill Mining & Metallurgical Complex   | IDD048340921 | NPL       | ID    | Lead, zinc                                                         |
| 35  | Butterfield Mine (St Joe's Tunnel)           | UTD981548993 | Removal   | UT    |                                                                    |
| 36  | California Gulch                             | COD980717938 | NPL       | CO    | Lead, silver, zinc, copper, gold                                   |
| 37  | Callahan Mining Corp                         | MED980524128 | NPL       | ME    | Zinc, copper, sphalerite, chalcopyrite, pyrite, pyrite, pyrrhotite |
| 38  | Cane Valley Navajo Radioactive Structures    | NNN000908623 | Removal   | AZ    |                                                                    |
| 39  | Captain Jack Mill                            | COD981551427 | NPL       | CO    | Gold, silver                                                       |
| 40  | Carpenter Snow Creek Mining District         | MT0001096353 | NPL       | MT    | Silver, zinc, galena, lead, gold                                   |
| 41  | Carson River Mercury Site                    | NVD980813646 | NPL       | NV    | Gold, silver                                                       |
| 42  | Carthage City And Eastern Jasper County Lead | MON000705445 | Removal   | MO    |                                                                    |
| 43  | Celtor Chemical Works                        | CAD980638860 | NPL       | CA    | Copper, zinc                                                       |
| 44  | Central City, Clear Creek                    | COD980717557 | NPL       | CO    | Gold                                                               |
| 45  | Central Eureka Mine                          | CA0000726539 | Removal   | CA    |                                                                    |
| 46  | Central Farmers Activity                     | IDD980722292 | Removal   | ID    |                                                                    |
| 47  | Central Mining District Lead – Camden Co.    | MON000705679 | Removal   | MO    |                                                                    |
| 48  | Central Mining District Lead – Cole Co.      | MON000705444 | Removal   | MO    |                                                                    |
| 49  | Central Mining District Lead – Miller Co.    | MON000705678 | Removal   | MO    |                                                                    |
| 50  | Central Mining District Lead – Moniteau Co.  | MON000705681 | Removal   | MO    |                                                                    |
| 51  | Central Mining District Lead – Morgan Co.    | MON000705680 | Removal   | MO    |                                                                    |
| 52  | Chemet Co.                                   | TND987768546 | NPL       | TN    |                                                                    |
| 53  | Cherokee County                              | KSD980741862 | NPL       | KS    | Lead, zinc                                                         |
| 54  | Cima Road Mine Waste Site                    | CAN000905903 | Removal   | CA    |                                                                    |
| 55  | Cimarron Mining Corp.                        | NMD980749378 | NPL       | NM    | Gold, iron                                                         |
| 56  | Cinnabar Mine                                | IDD980665160 | Removal   | ID    |                                                                    |
| 57  | Circle Smelting Corp.                        | ILD050231976 | NPL       | IL    |                                                                    |
| 58  | Claim Jumper/Shock Hill                      | CON000802644 | Removal   | CO    |                                                                    |
| 59  | Clayton Silver Mine & Assoc Properties       | ID0000135798 | Removal   | ID    |                                                                    |
| 60  | Cleveland Mill                               | NMD981155930 | NPL       | NM    | Lead, zinc, copper                                                 |
| 61  | Cleveland Mine And Mill                      | WAN001002247 | Removal   | WA    |                                                                    |
| 62  | Coalinga Asbestos Mine                       | CAD980817217 | NPL       | CA    | Asbestos                                                           |
| 63  | Commencement Bay, Near Shore/Tide Flats      | WAD980726368 | NPL       | WA    |                                                                    |
| 64  | Conjecture Mine                              | IDN001002661 | Removal   | ID    |                                                                    |

| Row | Site Name                                                                 | EPA ID       | Site Type | State | Commodities mined/processed      |
|-----|---------------------------------------------------------------------------|--------------|-----------|-------|----------------------------------|
| 65  | Continental Mine And Mill                                                 | IDN001002317 | Removal   | ID    | Lead                             |
| 66  | Copper Basin Mining District                                              | TN0001890839 | Removal   | TN    |                                  |
| 67  | Cyprus Tohono Mine                                                        | AZD094524097 | Removal   | AZ    |                                  |
| 68  | Davenport And Flagstaff Smelters                                          | UTD988075719 | NPL       | UT    | Lead, silver                     |
| 69  | Denver Radium Site                                                        | COD980716955 | NPL       | CO    | Radium                           |
| 70  | Depue/New Jersey Zinc/Mobil Chemical Corp.                                | ILD062340641 | NPL       | IL    |                                  |
| 71  | Dona Ana Metal Survey                                                     | NM0000605387 |           | NM    |                                  |
| 72  | Douglas Mine                                                              | ID0000010108 | Removal   | ID    |                                  |
| 73  | Eagle 1 Mill Site                                                         | NV0001995604 | Removal   | NV    |                                  |
| 74  | Eagle Mine                                                                | COD081961518 | NPL       | CO    | Zinc, silver                     |
| 75  | Eagle Zinc Co Div T L Diamond                                             | ILD980606941 | NPL       | IL    |                                  |
| 76  | East Helena Site                                                          | MTD006230346 | NPL       | MT    | Lead, zinc                       |
| 77  | Eastern Michaud Flats Contamination                                       | IDD984666610 | NPL       | ID    | Phosphate                        |
| 78  | Elizabeth Mine                                                            | VTD988366621 | NPL       | VT    | Iron, pyrrhotite, copper         |
| 79  | Elvins Mine Tailings                                                      | MOD985818244 | Removal   | MO    |                                  |
| 80  | Ely Copper Mine                                                           | VTD988366571 | NPL       | VT    | Copper                           |
| 81  | Empire Canyon                                                             | UT0002005981 | Removal   | UT    |                                  |
| 82  | Eureka Mills                                                              | UT0002240158 | NPL       | UT    | Silver, lead                     |
| 83  | Evening Star Mine                                                         | CON000802651 | Removal   | CO    |                                  |
| 84  | Everett Smelter                                                           | WAN001002564 | Removal   | WA    |                                  |
| 85  | Fallow Road Lead                                                          | MON000705453 | Removal   | MO    |                                  |
| 86  | Federal Mine Tailings                                                     | MOD985808070 | Removal   | MO    |                                  |
| 87  | Flat Creek Imm                                                            | MT0012694970 | NPL       | MT    | Silver, gold, lead, copper, zinc |
| 88  | Foote Mineral Co.                                                         | PAD077087989 | NPL       | PA    | Lepidolite, lithium, monazite    |
| 89  | Formosa Mine                                                              | ORN001002616 | NPL       | OR    | Copper, zinc, thorium            |
| 90  | Franklin County Lead                                                      | MON000705442 | Removal   | MO    |                                  |
| 91  | Franklin Slag Pile (Mdc)                                                  | PASFN0305549 | NPL       | PA    | Copper                           |
| 92  | Fremont National Forest/White King And Lucky Lass<br>Uranium Mines (Usda) | OR7122307658 | NPL       | OR    | Uranium                          |
| 93  | French Gulch                                                              | CO0001093392 | Removal   | CO    |                                  |
| 94  | Gambonini Mercury Mine                                                    | CA0002322469 | Removal   | CA    |                                  |
| 95  | Gem Park Complex                                                          | CON000801985 | Removal   | CO    | Asbestos                         |
| 96  | Georgetown Railroad                                                       | MTD986068930 | Removal   | MT    |                                  |
| 97  | Gilt Edge Mine                                                            | SDD987673985 | NPL       | SD    | Gold, mercury, zinc              |
| 98  | Glen Ridge Radium Site                                                    | NJD980785646 | NPL       | NJ    | Radium                           |

| Row | Site Name                                    | EPA ID       | Site Type | State | Commodities mined/processed                                                                                                                                                                                                    |
|-----|----------------------------------------------|--------------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 99  | Goldome Mill                                 | CAN000908600 | Removal   | CA    | Mercury                                                                                                                                                                                                                        |
| 100 | Grandview Mine                               | WASFN1002165 | Removal   | WA    |                                                                                                                                                                                                                                |
| 101 | Grey Eagle Mine                              | CAD000629923 | Removal   | CA    |                                                                                                                                                                                                                                |
| 102 | Grouse Creek Mine                            | IDSFN1002152 | Removal   | ID    |                                                                                                                                                                                                                                |
| 103 | Harmony Mine & Mill Site                     | IDSFN1002104 | Removal   | ID    | Copper                                                                                                                                                                                                                         |
| 104 | Hegeler Zinc                                 | ILN000508134 | NPL       | IL    |                                                                                                                                                                                                                                |
| 105 | Herculaneum Lead Smelter Site                | MOD006266373 | Removal   | MO    |                                                                                                                                                                                                                                |
| 106 | Highway 00 Lead                              | MON000705438 | Removal   | MO    |                                                                                                                                                                                                                                |
| 107 | Homestake Mining Co.                         | NMD007860935 | NPL       | NM    | Uranium                                                                                                                                                                                                                        |
| 108 | Hutchinson Mine Pcb Site                     | PAD982364275 | Removal   | PA    |                                                                                                                                                                                                                                |
| 109 | Idaho Lakeview Mine                          | IDN001002537 | Removal   | ID    |                                                                                                                                                                                                                                |
| 110 | Industrial Minerals                          | CO0001407543 | Removal   | CO    | Bromine, cyanide                                                                                                                                                                                                               |
| 111 | International Minerals (E. Plant)            | INT190010876 | NPL       | IN    |                                                                                                                                                                                                                                |
| 112 | International Smelting And Refining          | UTD093120921 | NPL       | UT    | Copper, lead, zinc                                                                                                                                                                                                             |
| 113 | Interstate Lead Co. (IIco)                   | ALD041906173 | NPL       | AL    |                                                                                                                                                                                                                                |
| 114 | Iron King Mine - Humboldt Smelter            | AZ0000309013 | NPL       | AZ    | Gold, silver, lead, zinc, copper                                                                                                                                                                                               |
| 115 | Iron Mountain Mine                           | CAD980498612 | NPL       | CA    | Gold, silver, iron, pyrite, zinc, copper                                                                                                                                                                                       |
| 116 | Iron Springs Mining District                 | CO0001916360 | Removal   | CO    |                                                                                                                                                                                                                                |
| 117 | Jacks Creek/Sitkin Smelting & Refining, Inc. | PAD980829493 | NPL       | PA    |                                                                                                                                                                                                                                |
| 118 | Jacobs Smelter                               | UT0002391472 | NPL       | UT    | Silver                                                                                                                                                                                                                         |
| 119 | Jordan View Lot                              | UTD988073466 | Removal   | UT    |                                                                                                                                                                                                                                |
| 120 | Kaaba Texas Mine                             | WASFN1002145 | Removal   | WA    |                                                                                                                                                                                                                                |
| 121 | Kaiser Aluminum (Mead Works)                 | WAD000065508 | NPL       | WA    | Aluminum                                                                                                                                                                                                                       |
| 122 | Kennecott (North Zone) (Sa)                  | UTD070926811 | Removal   | UT    | Inorganics, metals                                                                                                                                                                                                             |
| 123 | Kennecott (South Zone) (Sa)                  | UTD000826404 | Removal   | UT    | Aluminum (metal), arsenic, barium, bicarbonate,<br>cadmium, calcium, chloride, chromium, copper,<br>fluoride, iron, lead, magnesium, manganese, nickel,<br>nitrate, potassium, selenium, silver, sodium, sulfate,<br>TDS, zinc |
| 124 | Kennecott Ne Stockton Property               | UTN000802693 | Removal   | UT    |                                                                                                                                                                                                                                |
| 125 | Kentucky/West Virginia Coal Slurry Spill     | WVN000305636 | Removal   | WV    |                                                                                                                                                                                                                                |
| 126 | Kern River/Bingham Creek Pipeline            | UTD988073458 | Removal   | UT    |                                                                                                                                                                                                                                |
| 127 | King Creek                                   | MTD986069920 | Removal   | MT    |                                                                                                                                                                                                                                |
| 128 | Kingsbury Creek Mine Lab                     | CA0002373736 | Removal   | CA    |                                                                                                                                                                                                                                |
| 129 | Klau/Buena Vista Mine                        | CA1141190578 | NPL       | CA    | Mercury                                                                                                                                                                                                                        |
| 130 | Lark Waste Rock And Tailings (Kennecott)     | UTD980959258 | Removal   | UT    |                                                                                                                                                                                                                                |

| Row | Site Name                                        | EPA ID       | Site Type | State | Commodities mined/processed |
|-----|--------------------------------------------------|--------------|-----------|-------|-----------------------------|
| 131 | Lava Cap Mine                                    | CAD983618893 | NPL       | CA    | Gold, silver                |
| 132 | Le Roi Co Smelter                                | WAD988507323 | Removal   | WA    |                             |
| 133 | Leadwood Mine Tailings                           | MOD985818210 | Removal   | MO    |                             |
| 134 | Leviathan Mine                                   | CAD980673685 | NPL       | CA    | Sulfur, copper sulfate      |
| 135 | Li Tungsten Corp.                                | NYD986882660 | NPL       | NY    | Tungsten                    |
| 136 | Libby Asbestos Site                              | MT0009083840 | NPL       | MT    | Vermiculite                 |
| 137 | Lincoln Park                                     | COD042167858 | NPL       | CO    | Uranium                     |
| 138 | Loflin Gold Mine                                 | NCN000407301 | Removal   | NC    |                             |
| 139 | Macalloy Corporation                             | SCD003360476 | NPL       | SC    | Ferrochromium               |
| 140 | Madison County Mines                             | MOD098633415 | NPL       | MO    | Lead                        |
| 141 | Marsh Creek Rd Abandoned Dump Site               | CAD980736060 | Removal   | CA    |                             |
| 142 | Martin-Marietta Aluminum Co.                     | ORD052221025 | NPL       | OR    | Aluminum                    |
| 143 | Matthiessen And Hegeler Zinc Company             | IL000064782  | NPL       | IL    | Zinc                        |
| 144 | Mccleur Tailings                                 | AZ0000309096 | Removal   | AZ    |                             |
| 145 | Mclaren Mill Tailings                            | MTD981550841 | Removal   | MT    |                             |
| 146 | Metals Refining Company                          | INN000509964 |           | MI    |                             |
| 147 | Midnite Mine                                     | WAD980978753 | NPL       | WA    | Uranium                     |
| 148 | Midvale Slag                                     | UTD081834277 | NPL       | UT    | Copper, gold, lead, silver  |
| 149 | Milltown Reservoir Sediments                     | MTD980717565 | NPL       | MT    | Copper                      |
| 150 | Mine Site 2028                                   | INN000510234 | Removal   | IN    |                             |
| 151 | Minnie Moore Mine                                | IDN001002295 | Removal   | ID    |                             |
| 152 | Molycorp, Inc.                                   | NMD002899094 | NPL       | NM    |                             |
| 153 | Monarch Mill                                     | IDN001002609 | Removal   | ID    |                             |
| 154 | Monsanto Chemical Co. (Soda Springs Plant)       | IDD081830994 | NPL       | ID    | Elemental phosphorus        |
| 155 | Montclair/West Orange Radium Site                | NJD980785653 | NPL       | NJ    | Radium                      |
| 156 | Monticello Mill Tailings (Usdoe)                 | UT3890090035 | NPL       | UT    | Uranium, vanadium           |
| 157 | Monticello Radioactively Contaminated Properties | UTD980667208 | NPL       | UT    | Uranium, vanadium           |
| 158 | Morning Star Mine                                | CA0000466748 | Removal   | CA    |                             |
| 159 | Mouat Industries                                 | MTD021997689 | NPL       | MT    | Chromium, sodium dichromate |
| 160 | Mta Vermiculite Rail Spur                        | CAN000905933 | Removal   | CA    |                             |
| 161 | Murray Smelter                                   | UTD980951420 | NPL       | UT    |                             |
| 162 | National Mine Tailings                           | MOD985818228 | Removal   | MO    |                             |
| 163 | National Southwire Aluminum Co.                  | KYD049062375 | NPL       | KY    | Aluminum                    |
| 164 | National Zinc Co.                                | KSD980406698 | Removal   | KS    |                             |
| 165 | National Zinc Corp.                              | OKD000829440 | NPL       | OK    |                             |

| Row | Site Name                                    | EPA ID       | Site Type | State | Commodities mined/processed                         |
|-----|----------------------------------------------|--------------|-----------|-------|-----------------------------------------------------|
| 166 | Nelson Tunnel/Commodore Waste Rock           | CON000802630 | NPL       | CO    | Silver, lead, zinc                                  |
| 167 | Newton County Mine Tailings                  | MOD981507585 | NPL       | MO    | Lead, cadmium, zinc                                 |
| 168 | NI Ind, Mine, Mill                           | COD980634604 | Removal   | CO    | Arsenic, cadmium, lead, metals, silver, zinc        |
| 169 | North Cave Hills Mining Sites                | SD0012261936 | Removal   | SD    |                                                     |
| 170 | Northeast Churchrock Mine Site               | NNN000906132 | Removal   | NM    |                                                     |
| 171 | Old Cobalt Tailings Pond                     | UTD980717987 | Removal   | UT    |                                                     |
| 172 | Omaha Lead                                   | NESFN0703481 | NPL       | NE    | Lead                                                |
| 173 | Ophir Mills And Smelter                      | UT0010221516 | Removal   | UT    |                                                     |
| 174 | Ore Knob Mine                                | NCN000409895 | NPL       | NC    | Copper, iron, silver, gold                          |
| 175 | Ormet Corp.                                  | OHD004379970 | NPL       | OH    | Aluminum                                            |
| 176 | Oronogo-Duenweg Mining Belt                  | MOD980686281 | NPL       | MO    | Lead, zinc, cadmium                                 |
| 177 | Palmerton Zinc Pile                          | PAD002395887 | NPL       | PA    | Zinc                                                |
| 178 | Pend Oreille Village                         | WAN001002719 | Removal   | WA    |                                                     |
| 179 | Pike Hill Copper Mine                        | VTD988366720 | NPL       | VT    | Copper                                              |
| 180 | Pioneer Foundry                              | MAN000105854 | Removal   | MA    | Asbestos, lead, oil & grease, PAHs, phosphoric acid |
| 181 | Pioneer Pir And Gardner's Point Placer Mines | CAN000905978 | Removal   | CA    |                                                     |
| 182 | Polar Star Mine                              | CASFN0905494 | Removal   | CA    |                                                     |
| 183 | Powhatan Mining Company                      | MDN000306665 | Removal   | MD    |                                                     |
| 184 | Puckett Smelter                              | ALN980824000 | Removal   | AL    |                                                     |
| 185 | Reynolds Metals Company                      | ORD009412677 | NPL       | OR    | Aluminum                                            |
| 186 | Richardson Flat Tailings                     | UTD980952840 | NPL       | UT    |                                                     |
| 187 | Rico - Argentine                             | COD980952519 | Removal   | CO    |                                                     |
| 188 | Rinconada Mine                               | CA0141190579 | Removal   | CA    |                                                     |
| 189 | Rock Creek Mine                              | AKN001002823 | Removal   | AK    |                                                     |
| 190 | Rsr Corporation                              | TXD079348397 | NPL       | ТΧ    |                                                     |
| 191 | Rumsey Tailings                              | MT0001992585 | Removal   | MT    | Arsenic, lead, mercury                              |
| 192 | Saco Steel                                   | MEN000104208 | Removal   | ME    | Metals, polychlorinated biphenyls                   |
| 193 | Salmon River Uranium Development             | IDN001002662 | Removal   | ID    |                                                     |
| 194 | San Vincente Creek Tailings                  | NMD980879415 | Removal   | NM    |                                                     |
| 195 | Shaharald Mine                               | CAN000908300 | Removal   | CA    |                                                     |
| 196 | Sharon Steel Corp. (Farrell Works)           | PAD001933175 | NPL       | PA    | Iron                                                |
| 197 | Sharon Steel Corp. (Midvale Tailings)        | UTD980951388 | NPL       | UT    | Lead, copper, zinc                                  |
| 198 | Shieldalloy Corp.                            | NJD002365930 | NPL       | NJ    | Niobium, steel, chromium, aluminum                  |
| 199 | Shieldalloy Metallurgical Corporation        | OHD042319244 | Removal   | OH    |                                                     |
| 200 | Silver Bow Creek/Butte Area                  | MTD980502777 | NPL       | MT    | Gold, silver, copper                                |

| Row | Site Name                                    | EPA ID       | Site Type | State | Commodities mined/processed |
|-----|----------------------------------------------|--------------|-----------|-------|-----------------------------|
| 201 | Silver Mountain Mine                         | WAD980722789 | NPL       | WA    | Silver, gold                |
| 202 | Silverton Mercury (Hg) Concentrators         | WAN001002702 | Removal   | WA    |                             |
| 203 | Smeltertown Site                             | COD983769738 | NPL       | CO    |                             |
| 204 | Smuggler Mountain                            | COD980806277 | NPL       | CO    | Silver, lead                |
| 205 | Southeast Idaho Selenium Project             | IDN001002245 | Removal   | ID    |                             |
| 206 | Southwest Assay Site                         | UTD988066239 | Removal   | UT    |                             |
| 207 | Southwest Jefferson County Mining            | MON000705443 | NPL       | MO    | Lead, zinc, barium          |
| 208 | St. Joe Mineral Corp – Viburnum              | MOD000823252 | Removal   | MO    |                             |
| 209 | Standard Mine                                | CO0002378230 | NPL       | CO    | Gold, silver, lead, zinc    |
| 210 | Stauffer Chemical Co. (Tarpon Springs)       | FLD010596013 | NPL       | FL    | Elemental phosphorus        |
| 211 | Stephenson – Bennett Mine                    | NMD986684231 | Removal   | NM    |                             |
| 212 | Stibnite/Yellow Pine Mining Area             | IDD980665459 | NPL       | ID    |                             |
| 213 | Sulphur Bank Mercury Mine                    | CAD980893275 | NPL       | CA    | Sulfur, mercury             |
| 214 | Summitville Mine                             | COD983778432 | NPL       | CO    | Gold                        |
| 215 | Talache Mine                                 | ID0002007250 | Removal   | ID    |                             |
| 216 | Tar Creek (Ottawa County)                    | OKD980629844 | NPL       | OK    | Iron, zinc                  |
| 217 | Tedder Road Lead                             | MON000705452 | Removal   | MO    |                             |
| 218 | Teledyne Wah Chang                           | ORD050955848 | NPL       | OR    | Zirconium                   |
| 219 | Tex-Tin Corp.                                | TXD062113329 | NPL       | TX    |                             |
| 220 | Tiger Metal Services Incorporated            | OHD004294625 | Removal   | OH    |                             |
| 221 | Tooele Valley Railroad                       | UT0011980278 | Removal   | UT    |                             |
| 222 | Torch Lake                                   | MID980901946 | NPL       | MI    | Copper                      |
| 223 | Tulsa Fuel And Manufacturing                 | OKD987096195 | NPL       | OK    | Zinc                        |
| 224 | Two Brothers Mine                            | CO0012044960 | Removal   | CO    |                             |
| 225 | U.S. Magnesium                               | UTN000802704 | NPL       | UT    | Magnesium                   |
| 226 | U.S. Radium Corp.                            | NJD980654172 | NPL       | NJ    | Radium                      |
| 227 | U.S. Smelter And Lead Refinery, Inc.         | IND047030226 | NPL       | IN    |                             |
| 228 | U.S. Titanium                                | VAD980705404 | NPL       | VA    | Titanium                    |
| 229 | Unimin Mine Fire                             | NCD097358766 | Removal   | NC    |                             |
| 230 | Union Pacific Vermiculite Rail Spur          | CAN000905932 | Removal   | CA    |                             |
| 231 | United Nuclear Corp.                         | NMD030443303 | NPL       | NM    | Uranium                     |
| 322 | Upper Tenmile Creek Mining Area              | MTSFN7578012 | NPL       | MT    | Gold, lead, zinc, copper    |
| 233 | Uravan Uranium Project (Union Carbide Corp.) | COD007063274 | NPL       | CO    | Radium, vanadium, uranium   |
| 234 | Usda Fs Boise Nf: Monarch Mine Stamp Mill    | ID0001413723 | Removal   | ID    |                             |
| 235 | V & V Mining Pcb Site                        | VAN000305626 | Removal   | VA    |                             |

| Row | Site Name                                                 | EPA ID       | Site Type | State | Commodities mined/processed |
|-----|-----------------------------------------------------------|--------------|-----------|-------|-----------------------------|
| 236 | Vasquez Boulevard and I-70 (VBI70)                        | CO0002259588 | NPL       | CO    |                             |
| 237 | Vermiculite Wrg4                                          | PAN000305592 | Removal   | PA    |                             |
| 238 | Vermont Asbestos Group Mine                               | VTN000105222 | Removal   | VT    |                             |
| 239 | Veta Grande Mining Co                                     | NVD038275020 | Removal   | NV    |                             |
| 240 | Viburnum Trend Lead Haul Roads                            | MON000704445 | Removal   | MO    |                             |
| 241 | W.R. Grace & Co., Inc./Wayne Interim Storage Site (USDOE) | NJ1891837980 | NPL       | NJ    | Monazite                    |
| 242 | Washington County Lead – Furnace Creek                    | MON000705842 | Removal   | MO    |                             |
| 243 | Washington County Lead District - Old Mines               | MON000705027 | NPL       | MO    | Lead, barite                |
| 244 | Washington County Lead District - Potosi                  | MON000705023 | NPL       | MO    | Lead, barite                |
| 245 | Washington County Lead District - Richwoods               | MON000705032 | NPL       | MO    | Lead, barite                |
| 246 | Weiss Road Drum Site                                      | NVN000905819 | Removal   | NV    |                             |
| 247 | Western Mineral Products                                  | MNN000508056 | Removal   | MN    |                             |
| 248 | Western Minerals Denver Plant                             | CO0010165136 | Removal   | CO    |                             |
| 249 | Whitewood Creek                                           | SDD980717136 | NPL       | SD    | Gold                        |
| 250 | WR Grace Hamilton Twp                                     | NJD067387472 | Removal   | NJ    |                             |
| 251 | Zeibright Mine                                            | CAN000905925 | Removal   | CA    |                             |

Known errata on the list of 250 include

- one site included erroneously (International Minerals, Terre Haute, Indiana, INT190 010876, which produced an insecticide; site contamination is apparently unrelated to any mining or primary mineral processing operations);
- one site misclassified as an NPL site that is a removal site (Big River Hills Lead Tailings, Missouri, MON000705784); and
- several sites that were present on the list of 561 but were omitted when the list of 251 was created:
  - o one site inadvertently omitted that mined magnetite (Ringwood Mines/Landfill, New Jersey, NJD980529739);
  - three sites that received waste from rare earth ore processing (Kerr McGee Residential Areas, ILD980824015, Kerr McGee (Kress Creek/West Branch of Dupage River), ILD980823991 and Kerr McGee (Reed-Keppler Park, ILD980824007);
  - o one iron works site with contamination from a secondary manufacturing process (Tar Lake, MID980794655);
  - o one mine tailings site (Silver Creek Tailings, UTD980951404);
  - o one gold dredge tailings site (Aerojet General, CAD980358832);
  - o one silver, lead and zinc ore processing waste site (Triumph Mine Site, IDD984666024); and
  - o one copper/zinc/silver/gold mine (USDA FS Wenatchee NF Holden Mine, WA91223007672).

# Attachment B2. Case Studies of Historical Sites

# Anaconda Co. Smelter NPL Site Summary

EPA ID: MTD093291656 Location: Anaconda, MT EPA Region: 8 Status: NPL - Final Number of Operable Units: 10 Date of NPL Listing: 1983 Last Operational Year: 1980 Documents Used: RI/FS & RODs (Various by OU)

### Introduction:

The Anaconda Smelter Site is located in the Deer Lodge County, Montana, in and around the city of Anaconda and approximately 25 miles northwest of Butte, Montana. Operations at the Anaconda smelter began in 1884 and ceased in 1980. Milling and smelting activities conducted at the Old Works and Washoe Reduction Works smelters have resulted in the contamination of various environmental media in the surrounding area through airborne emissions and disposal practices. Smelter emissions dispersed contaminants elevated in arsenic and metals over more than 300 square miles. Large amounts of slag and tailings were also produced. Ore processing to anode copper produced wastes that have spread over more than 6,000 acres and contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc. The wastes were estimated to include about 230 million cubic yards (mcy) of tailings, 30 mcy of slag, and 0.5 mcy of flue dust. Approximately 20,000 acres of soil were severely impacted by airborne emissions and millions of gallons of ground water were polluted. The milling and smelting contaminants pose well-documented risks to human health and the environment. The site is divided into operable units (OU) that focus the remedial actions on 10 OUs. The final ten OUs are as follows:

- OU1 site-wide;
- OU3 contaminated soils (under a realignment response, actions at this OU were incorporated into the OU4);
- OU4 Anaconda Regional Water and Waste and Soils (ARWW&S) that impacted surface water and ground water;
- OU7 Old Works/East Anaconda Development Area (OW/EADA) (provides the final response action at the Mill Creek OU15);
- OU9 Beryllium Removal (removal and disposal of beryllium wastes);
- OU11 Flue Dust (addresses flue dust at the site);
- OU12 Arbiter Removal (removal and disposal of arbiter wastes);
- OU14 Smelter Hill (the response action was incorporated into OU4);
- OU15 Mill Creek (permanent protection of residential health); and
- OU16 Community Soils (addresses all remaining residential and commercial/industrial soils within the site). Site remedial actions have been documented in Records of Decision (RODs) for OUs 4, 7, 11, 15, and 16.

### Summary of Site-related Contamination:

Site-related contamination is the result of smelting operations; specifically, airborne emissions and disposal practices. Site operations have contaminated various media (soil, sediment, ground water, surface water, residential dust, and debris) with numerous contaminants. A Center for Disease Control and Prevention (CDC) study showed that pre-school children from the community of Mill Creek had greater arsenic exposure than children of any other community in the Anaconda area. High levels of arsenic, cadmium, copper, lead, and zinc are present in

OU4 soil, sediment, tailings, slag, and other waste material. OU4 ground water contains elevated levels of arsenic, cadmium, copper, and zinc. Soils, slag, waste materials, and plant tissue in OU7 contain high levels of arsenic, cadmium, copper, lead, and zinc. OU11 also contains high levels of these contaminants in flue dust, tailings, slag, and sludge. These same contaminants are present at elevated levels in OU15 soils in extremely high levels. OU15 flue dust, tailings, and slag also contain high levels of arsenic, cadmium, and lead. OU16 also has high concentrations of arsenic and lead in soil and residential dust.

### **Conclusion of Site-related Risk:**

<u>Human Health Risk</u>: The primary threats contributing to human health, and the contaminants ultimately driving the site's remedial actions, are inorganic chemicals (arsenic, cadmium, copper, and lead). The two major media of concerns for human exposure to these contaminants are soil/dust and ground water. Residential, recreational, and occupational receptors exposed to these media potentially have unacceptable human health risks. The primary routes of human exposure to these media are ingestion (accidental or intentional) and inhalation.

Risks were not characterized for the ARWW&S OU (OU4), as data were relatively limited for some areas of the OU. Action levels were selected from Maximum Contaminant Levels (MCLs), non-zero Maximum Contaminant Level Goals (MCLGs), and State of Montana Numeric Water Quality Standards (Water Quality Bureau [WQB] standards) for comparison to site data to guide remedial activities. Consequently, risks for OU4 are not presented.

In OU7 (OW/EADA), the primary contributor to human health risk is arsenic [current cancer risks of 7E-03 and 4E-04 to occupational adult receptor from ingestion of contaminated ground water and soil, respectively, 3E-04 to recreational adult receptor from ingestion and inhalation of contaminated soil, and current non-cancer risk HQ of 30 to occupational adult from ingestion of contaminated ground water].

In OU 11 (Flue Dust), the primary contributors to human health risk are:

- (1) arsenic [future cancer risks of 7E-02, 7E-02, and 5E-02 to residential adult receptors from ingestion of contaminated soil, inhalation of contaminated air and dust, and ingestion of contaminated ground water, respectively, and 4E-03 to recreational adult from ingestion of contaminated soil; current cancer risk of 9E-03 to recreational adult from ingestion of contaminated soil; future non-cancer risk HQ of 70 to residential adult receptors from ingestion of contaminated ground water; current non-cancer risk HQ of 10 to residential adult receptors from ingestion of contaminated soil];
- (2) cadmium [future cancer risk of 5E-04 to residential adult receptors from inhalation of contaminated air and dust; future non-cancer risk HQ of 70 to residential adult receptors from ingestion of contaminated ground water; current non-cancer risk HQ of 2 to residential adult receptors from ingestion of contaminated soil];
- (3) copper [future non-cancer risk HQs of 40 and 6 to residential child receptors from ingestion of contaminated soil and ground water, respectively, and 5 and 3 to residential adult receptors from ingestion of contaminated soil and ground water, respectively]; and

(4) lead [future on-site residential children's estimated average blood lead levels were calculated at 73µg/dL; for current off-site children, the estimated average blood lead level is 2.6 µg/dL].

In OU15 (Mill Creek), the primary contributors to human health risk are

- (1) arsenic [current cancer risk of 2.8E-03 to residential receptor from ingestion of soil, drinking water, and the non-respirable fraction from the inhalation route];
- (2) arsenic and cadmium [current cancer risk of 1.6E-03 to residential receptor from inhalation of contaminated air and dust]; and
- (3) cadmium and lead [current non-cancer risk HQ of 1.96 to residential receptor from ingestion of cadmium and lead, and inhalation of lead, through cumulative pathways].

In OU 16 (Community Soils), all cancer risks were below the EPA threshold of 1E-04, and no non-cancer risk HQs exceeded 1.0.

<u>Ecological risks</u> have been identified for a number of avian and mammalian species, plants, and aquatic organisms in OUs 4, 7, and 11 from exposure to inorganic chemicals (arsenic, cadmium, copper, lead, and zinc).

In OU4, the primary contributors to ecological risk are

- (1) arsenic [current HQs of 189 and 171 for the Deer Mouse and Red Fox, respectively];
- (2) cadmium [current HQs of 83.4, 12.1, and 11.1 for the American Robin, White-tailed Deer, and American Kestrel, respectively];
- (3) copper [current HQs of 68.3, 60.1, 38.7, and 28.7 for the American Robin, American Kestrel, Red Fox, and White-tailed Deer, respectively]; and
- (4) lead [current HQs of 158, 127, and 40 for the Red Fox, American Kestrel, and American Robin, respectively].

In OU7 (OW/EADA) and OU11 (Flue Dust), ecological risks were not quantified. However, in OU7, arsenic, cadmium, copper, lead, and zinc were qualitatively identified as contributors to ecological risk for terrestrial vegetation and wildlife from direct contact, ingestion, and inhalation of soil, plants, and surface water.

In OU11, flue dust was found to poses potential risk to aquatic organisms, contaminated soil poses potential risk to plants, and plants pose potential risks to herbivores.

### Human Health Risk Driver(s):

<u>Operable Unit 7:</u> *Ground Water, Cancer* – *Current Worker, Ingestion* • Arsenic *Ground Water, Non-cancer* – *Current Worker, Ingestion* • Arsenic <u>Operable Unit 11 (cont'd):</u> *Ground Water, Non-cancer – Future Adult Resident, Ingestion* • Cadmium

<u>Operable Unit 15:</u> Soil, Drinking Water, and the Non-respirable Fraction from the Inhalation Route

Soil, Cancer - Current Worker, Ingestion • Arsenic - Adult Resident and Adult Recreational User, Ingestion & Inhalation • Arsenic Operable Unit 11: Soil, Cancer - Current & Future Adult Recreational User, Ingestion • Arsenic - Future Adult Resident, Ingestion • Arsenic Soil, Non-cancer - Current Adult & Child Resident, Ingestion • Arsenic, Copper Air/Dust, Cancer - Future Adult Resident, Inhalation • Arsenic, Cadmium Ground Water. Cancer - Future Adult Resident, Ingestion • Arsenic

- Current Resident, Ingestion • Arsenic Air and Soil/Dust. Cancer - Current Residential Inhalation • Arsenic, Cadmium **Ecological Risk Driver(s): Operable Unit 4:** - Current Avian, Combined Media/All Routes • Cadmium, Copper, Lead - Current Mammalian, Combined Media/All Routes • Arsenic, Copper, Lead **Operable Unit 7:** - Current Vegetation, Combined Media/All Routes • Arsenic, Cadmium, copper, lead, zinc - Current Wildlife, Combined Media/All Routes

• Arsenic, Cadmium, Copper, Lead, Zinc

<u>Operable Unit 11:</u> *Risk drivers not quantified or qualified.* 

### **Final Remedy:**

The selected remedial actions are as follows:

OU4 -

- (1) reduce surficial arsenic concentrations to below the designated action levels of 250 parts per million (ppm), 500 ppm, and 1,000 ppm using soil cover or in situ treatment;
- (2) reclamation of the soils and waste contamination via re-vegetation;
- (3) partial removal of waste materials followed by soil cover and re-vegetation for areas adjacent to streams and place in designated waste management areas;
- (4) for alluvial aquifers, clean up to applicable water quality standards by using soil covers, removing sources causing groundwater contamination and natural attenuation;
- (5) for the bedrock aquifers and a portion of the alluvial aquifer, waive the applicable groundwater standard;
- (6) for portions of the valley alluvial aquifers where ground water is underlying waste left in place, conduct point-of-compliance monitoring and institute treatment, where applicable;
- (7) reclamation of contaminated soils and engineered storm water management;
- (8) selective source removal and stream bank stabilization;

- (9) institutional controls (ICs) and operations and maintenance to ensure monitoring, repair of implemented actions, and communication with local government and private citizens; and
- (10) mitigation of impacts to wetlands from implementation of the remedy and communications with U.S. Fish and Wildlife Service will be coordinated.

OU7 (OW/EADA) -

- (1) cap waste materials in recreational and potential commercial/industrial areas exceeding arsenic levels of 1,000 ppm;
- (2) treat soils exceeding arsenic levels of 1,000 ppm in recreational and potential commercial/industrial areas using re-vegetation;
- (3) cover or treat soils exceeding arsenic levels of 500 ppm in current commercial/industrial areas;
- (4) provide for future soil remediation at the time of development;
- (5) construct surface controls to manage surface water runoff;
- (6) upgrade or repair levees adjacent to Warm Springs Creek to contain the 100-year peak flood event and prevent erosion;
- (7) replace bridges or culverts, as necessary;
- (8) implement ICs to protect engineering controls and manage future use;
- (9) implement long-term monitoring; and
- (10) preserve, to the extent practicable, historic features in the Old Works Historic District.

OU11 (Flue Dust) -

- (1) removal and treatment via cement/silicate-based stabilization of approximately 316,500 cy of flue dust material;
- (2) disposal of treatment residuals in an on-site repository; and
- (3) implementation of ICs and monitoring of the disposal area.

OU15 (Mill Creek) -

- (1) relocation of all residents;
- (2) demolition of structures; and
- (3) fencing the entire site.

OU16 (Community Soils) -

- (1) clean up all current residential soils that exceed 250 ppm soil arsenic concentration, through removal, clean backfill, and protective barrier;
- (2) where removal is not implementable, treatment or other measures will be taken to reduce arsenic concentrations to below the 250 ppm or to prevent exposure;

- (3) clean up future residential soils at the time of development that exceed 250 ppm soil arsenic concentration;
- (4) implement ICs to provide educational information to all residents;
- (5) clean up all current commercial or industrial areas that exceed 500 ppm soil arsenic concentration using re-vegetative techniques and/or engineered covers;
- (6) clean up all future commercial or industrial areas at the time of development that exceed the commercial/industrial action level of 500 ppm soil arsenic concentration;
- (7) construct a cap over contaminated railroad bed material; and
- (8) restrict access to the rail bed with a barrier and control surface runoff.

### **Bueno Mill and Mine Removal Site Summary**

**EPA ID:** CON000802129 **Location:** Jamestown, CO

**EPA Region:** 8

Status: Removal – Time Critical

Number of Operable Units: 1 Date in CERCLIS: 2002 Last Operational Year: Unknown, not currently in operation Documents Used: Action Memorandum, Site Assessment Report, Pollution Report

### Introduction:

The site is located in the Jamestown Mining District, in Boulder County, Colorado. The Jamestown Mining District extends across portions of the Lefthand Creek and South St. Vrain Creek watersheds. The contamination at the site is a result of mining and milling activity, starting in 1879, that produced gold, silver, and copper. The primary sources of contamination are tailings piles, mine waste dumps, and adits. The Bueno Tailings are located on a ridge northwest of Jamestown and approximately 3,800 feet southeast of the Bueno Mine. The site is owned by the Town of Jamestown, the U.S. Forest Service (USFS), and a private property owner. The second portion of the site is another tailings deposit near the floodplain of the Little James River and a large collection pond. These tailings are commonly referred to as the Streamside Tailings and comprise a large deposit in the creek channel, with the majority being impounded along the stream bank. The Bueno and Streamside tailings deposits combined are estimated to contain at least 40,000 cubic yards. This portion of the site is owned by a private landowner. The Town of Jamestown diverts water from James Creek for municipal use, including drinking water, just above the confluence with Little James Creek and along the stretch adjacent to the Bueno Tailings. In addition, flooding of Little James Creek is a significant concern for the long-term stability; the Streamside Tailings impoundment and routine flow continues to erode the tailings deposited in the creek and undermine the base of the impoundment due to their proximity to the creek. As a result, metals (primarily lead and zinc) have been found in the soil and surface water sediments.

### Summary of Site-related Contamination:

Site operations have contaminated various media (soil, surface water, and sediment) with numerous inorganic chemicals. A watershed survey conducted by U.S. Environmental Protection Agency (EPA) Region 8 and the USFS identified several sources of heavy metals loadings to the James Creek and Little James Creek surface water. In addition, the Jamestown water treatment plant has reported impacts to the water supply during run-off events transporting tailings from the Bueno Tailings Site. Consequently, the USFS identified the site as a priority within the Left-Hand Watershed for a potential removal action. A Removal Assessment was initiated in May 2005 and found high levels of lead, as well as other contaminants, in tailings deposits. These contaminants in the tailings are released from the tailings impoundments into the environment, including nearby residences and drinking water supply. The primary contaminants ultimately driving the site's remedial action are arsenic, copper, lead, and zinc.

### **Conclusion of Site-related Risk:**

The primary threats contributing to human health risks are inorganic chemicals (arsenic, copper, lead, and zinc). The onsite media of concern for human health risk are soil and surface water to current on-site trespasser receptors through unidentified pathways. In addition, current offsite residents may be at risk in the future due to migration of contaminants from the tailings through surface water into the drinking water supply. Current residents also may be at risk from hazardous substances becoming airborne or migrating offsite through other unspecified mechanisms. No human health risks were quantified for individual or combined exposure routes.

The primary contributors to ecological risk, for fish and fauna, are copper, lead, and zinc through direct contact with surface water and sediment or ingestion of food; no ecological risks were calculated for individual or combined exposure routes.

### **Final Remedy:**

The selected remedy addressed surface water, soil, and tailings waste. The initial action implemented was the installation of erosion-control fencing to reduce discharge of tailings into the Little James Creek prior to the spring runoff period. In addition, to address tailings waste and contaminated soil the following two options may be implemented that includes: (1) two tailings deposits will be relocated to one of the two onsite locations, and the tailings will be capped with geo-synthetic and soil cover and protected from run-off; or (2) this is not the preferred option but will be implemented if option 1 is not feasible, and entails consolidating tailings deposits at the existing Bueno Tailings location where the pile will be graded with a positive slope extending out from the center with a lined perimeter ditch constructed at the top margins of the pile and capped with a soil cover then re-vegetated.

To address surface water, the Streamside Tailings area will be stabilized and the channel restored. The tailings removal will be performed to the extent that the main impoundment is left in place. The uncontained tailings below the impoundment will be removed, and the dispersed deposits on the banks and in the channel of Little James Creek downstream from the impoundment area may not be removed to avoid creating further impacts to the streambed.

### **Bunker Hill Mining & Metallurgical Complex NPL Site Summary**

**EPA ID:** IDD048340921 **Location:** Smelterville, ID **EPA Region:** 10 **Status:** NPL - Final Number of Operable Units: 3 Date of NPL Listing: 1983 Last Operational Year: 1998 Documents Used: RI/FS & RODs (Various by OU)

#### Introduction:

The Bunker Hill Mining & Metallurgical Complex is a former lead and zinc smelting operation located in Smelterville, Idaho. The complex includes the Bunker Hill mine and mill, a lead and zinc smelter, and a phosphoric acid fertilizer plant. The facility includes miningcontaminated areas in the Coeur d'Alene River corridor, adjacent floodplains, downstream water bodies, tributaries, and fill areas, as well as the 21-square-mile Bunker Hill "Box," located in the area surrounding the smelting operations (the cities of Kellogg, Page, Pinehurst, Smelterville, and Wardner in Shoshone County). Mining within the Coeur d'Alene Basin has resulted in millions of tons of mill tailings, mine waste rock, and ore concentrates spread across the site. Mining contamination has affected more than 166 river miles of the Coeur d'Alene River corridor, adjacent floodplains, downstream water bodies, tributaries, and fill areas. Since 1968, tailings produced have generally been impounded or placed back in the mines. Inorganic chemical contamination is present in soil, sediment, surface water, and ground water from commercial mining, milling, and smelting operations, and associated modes of transportation. The site is divided into three operable units (OUs): the populated areas of the Box (OU1), the non-populated areas of the Box (OU2), and mining-related contamination in the broader Coeur d'Alene Basin (OU3).

#### **Summary of Site-related Contamination:**

Commercial mining, milling, and smelting operations, and associated modes of transportation, have led to site-wide contamination. An estimated 62 million tons of tailings were discharged to streams within the Coeur d'Alene Basin prior to 1968, containing an estimated 880,000 tons of lead and more than 720,000 tons of zinc. All three of the site's OUs are contaminated with inorganic chemicals (primarily antimony, arsenic, cadmium, copper, iron, lead, mercury, silver, and zinc) across multiple media (soils, surface water, ground water, sediment, waste piles, and dust). Land uses potentially affected by site contamination in all OUs include residential, occupational, and recreational.

### **Conclusion of Site-related Risk:**

In past years, children within a 2-mile radius of the industrial complex have been found to have elevated levels of lead in their blood from exposure to contaminated community soils. The primary threats contributing to human health and ecological risks, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals.

The contaminants that pose a risk to human health include antimony, arsenic, cadmium, copper, iron, lead, mercury, and zinc. The media of concern for human exposure are soil/dust, particulates in the air, ground water, and food. The receptors with potentially unacceptable risk from these media are future occupational workers and current residential receptors (particularly child residents). The primary routes of exposure to these media are ingestion (accidental or

intentional), inhalation, or combined exposure routes. The primary contributors to human health risk were determined by adding the risk associated with potentially high-risk activities to the baseline estimate. The baseline estimate comprises the following activities: (1) ingestion of residential yards soil, (2) ingestion of house dust, (3) inhalation of particulates, (4) consumption of produce, and (5) ingestion of public water supplies. In OU1, the primary contributors to human health risk are (1) arsenic (current baseline cancer risk of 1.1E-03 to residential receptor; additive risk includes [a] 6.7E-04 for ingestion of contaminated local ground water, [b] 2.2E-04 for ingestion of soil and dust [child with pica], and [c] 3.1E-05 for ingestion of residential soil at 95th percentile concentration); (2) cadmium (current baseline cancer risk of 5.8E-05 to residential receptor [no additive risk potential]); and (3) lead (50% of children within a 2-mile radius, and 30% within 2- to 3-mile radius, of the industrial complex had blood levels above 10  $\mu$ g/dL). In OU2, the primary contributors to human health risk are (1) arsenic (future cancer risk of 8.6E-04 to residential receptor from ingestion of contaminated food [market purchases]); and (2) combined inorganic chemicals (cadmium, lead, and mercury) (non-cancer HQ of 35.8 to future occupational receptor from baseline risk plus groundwater ingestion). In OU3, the primary contributors to human health risk are (1) arsenic (current cancer risk of 3E-04 to current residential receptors [adult and child] from combined exposure to yard soil and tap water); (2) cadmium (future HQ of 17 for future residential children ingestion of contaminated ground water); and (3) lead (11% of children surveyed were found to have blood lead levels above 10  $\mu g/dL$ ).

An ecological risk assessment was not conducted for OU1 due to the lack of sufficient/critical habitat. Ecological receptors in OU2 and OU3 include terrestrial biota, plants, soil invertebrates, microbial soil community viability, small- and medium-sized mammals, waterfowl, birds, benthic organisms, fish, aquatic plant species, and amphibians. The OU2 ecological risk assessment found inorganic chemicals (antimony, arsenic, copper, lead, manganese, mercury, silver, and zinc) to have qualitative risks for (1) benthic invertebrates, fish, and aquatic plants from surface water exposure; (2) terrestrial plants, soil invertebrates, and small mammals from soil; and (3) terrestrial plants from ground water and surface water. Qualitative risks included potentially adverse or toxic effects, possibly sub-lethal. The primary contributors to ecological risk in OU3 (for which pathways were not identified) are (1) lead (current HQ of 387 to Spotted Sandpipers); (2) zinc (current HQ of 35 and 25.5 to Song Sparrows and Masked Shrews, respectively); (3) mercury (current HQ of 7.5 to birds); and (4) cadmium (current HQ of 6.12 to Song Sparrows).
# Human Health Risk Driver(s):

Operable Unit 1:

Baseline Cancer

- Current Resident, Combined Media and Exposure Routes
- Arsenic, Cadmium
- Percent Children with Blood Lead Levels >P10
  - 50% (2-mile radius), 30% (2- to 3-mile radius

Operable Unit 2:

- Food (Market Basket), Cancer
- Future Resident, Ingestion
  - Arsenic, Cadmium

Baseline Non-cancer

- Future Worker, Groundwater Ingestion
- Cadmium, Lead, Mercury

Operable Unit 3: Combined Soil & Tap Water, Cancer – Current Resident, All Pathways • Arsenic Ground water, Non-cancer – Future Child Resident, Ingestion • Cadmium Percent Children with Blood Lead Levels >P10 • 11%

**Ecological Risks Driver(s):** 

<u>Operable Unit 2</u>: *All risks were qualitative* 

Operable Unit 3:

- Avian Risk: Cadmium, Copper, Lead, Mercury, Zinc
- Mammalian Risk: Arsenic, Copper, Zinc

# **Final Remedy:**

The selected remedial actions address soil/source materials, ground water, surface water, and airborne dust. The selected remedial actions are as follows:

OU1 (Populated Areas) –

- Sampling of residential properties' soils; removal, replacement, and re-vegetation of contaminated yard soil and sod; placement of a visual marker if lead in soil concentrations exceed 1,000 parts per million (ppm) below the depth of excavation; onsite disposal of contaminated materials;
- (2) dust suppression measures; and
- (3) institutional controls and monitoring.

OU2 (Non-populated Areas) -

- (1) stabilization of hillsides and associated drainages, including the re-establishment of riparian habitat and stream corridor vegetation;
- (2) drainage improvements to minimize contact between surface water and tailings and mine waste rock, and to reduce contaminant transport (i.e., sediment runoff) to the South Fork of the Coeur d'Alene River;
- (3) closure and cover of onsite solid waste landfills;
- (4) cap waste impoundment areas to minimize releases and infiltration through tailings and sludges;
- (5) closure of onsite wells;
- (6) road repair;

- (7) removal of contaminated soil and materials from gulches; and
- (8) demolition of stacks and buildings.

OU3 (Mining-related Contamination in the Broader Coeur d'Alene Basin) -

- (1) No further actions beyond those taken under OUs 1 and 2 for the protection of human health in community and residential areas;
- (2) for environmental protection in the Upper Basin and Lower Basin, an adaptive management strategy that consists of approximately 30 years of prioritized actions designed to achieve benchmarks for environmental protection;
- (3) for Coeur d'Alene Lake, no remedial actions; state, tribal, federal, and local governments implemented a Lake Management Plan outside of the Superfund process using separate legal authorities; and
- (4) for Spokane River, remedy includes all of the human health remedy upstream of Upriver Dam and all of the environmental remedy from the Idaho/Washington border to Upriver Dam; additional sampling to determine the need to address areas upstream of the state line for environmental protection and downstream of Upriver Dam for human health and environmental protection; and quantification of risks to persons, including Spokane tribal members and others who may practice a subsistence lifestyle in the Spokane River area and related appropriate future response actions, if any.

# Captain Jack Mill NPL Site Summary

**EPA ID:** COD981551427 **Location:** Ward, CO **EPA Region:** 8 **Status:** NPL – Final Number of Operable Units: 1 Date of NPL Listing: 2003 Last Operational Year: 1992 Documents Used: RI/FS & RODs (Varies by OU)

### Introduction:

The Captain Jack Mill site is a former mining operation located near Ward, Colorado, in Boulder County, within the Left Hand Creek Watershed. The site occupies a narrow valley called California Gulch and extends from the Big Five Adit toward the southeast to just above the intersection of Left Hand Canyon and Sawmill Roads. The site and resulting contamination is a result of mining and milling operations that produced gold and silver from low-grade ores. The site contains three distinct mining areas, as well as numerous smaller workings that operated over a period of more than 100 years and ceased operations in 1992. Waste on the site as a result of these operations includes waste piles, settling ponds, lagoons used for settling tailings, waste rock from mine tunnels, and a mine/mill dump. Approximately 85,000 cubic yards (cy) of contaminated waste rock, tailings, and soils were identified, which include approximately 9,000 cy of the highest contaminant concentration materials considered principal threat waste. The site was added to the NPL in 2003 because of the threat to human health and the environment posed by surface and subsurface contamination. The site is evaluated as one Operational Unit (OU00) that includes site-wide contamination.

### Summary of Site-related Contamination:

Site-related contamination is the result of mining and milling operations; specifically, waste piles, settling ponds, lagoons for settling tailings, waste rock from mine tunnels, and a mine/mill dump. Site operations have contaminated various media (food [fish and garden produce), ground water, mine water, surface water, sediment, subsurface soil, and surface soil) with numerous contaminants. Captain Jack Mill is contaminated with inorganic chemicals (primarily antimony, arsenic, cadmium, chromium, copper, iron, manganese, mercury, thallium, and zinc) and organic chemicals (primarily aroclor-1016, aroclor-1221, aroclor-1232, aroclor-1242, aroclor-1248, aroclor-1254, aroclor-1260, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene).

### **Conclusion of Site-related Risk:**

The primary threats contributing to human health risks, and the contaminants driving the site's remedial action, are inorganic chemicals (primarily arsenic and chromium) and organic chemicals (primarily benzo[a]pyrene). The major media concerns for human exposure to site-related contaminants are surface soil, subsurface soil, surface water, ground water, mine water, sediment, and food (fish and garden produce). The receptors with potentially unacceptable risk from these media are current and future residential, recreational, and occupational receptors. The primary routes of exposure to these media are dermal contact and ingestion.

The primary contributors to human health risk for current and future residents are (1) arsenic (cancer risk of 8.1E-03 and non-cancer hazard quotient [HQ] of 150 from surface soil ingestion); (2) benzo(a)pyrene (cancer risk of 4.7E-03 from dermal contact with ground water);

and (3) chromium (cancer risk of 3.2E-03 for mine water ingestion, 3.1E-03 for ground water ingestion, and 2.7E-03 for surface soil ingestion). The primary contributors to human health risk for current and future occupational receptors are: (1) arsenic (cancer risk of 6E-03, and non-cancer HQ of 37 from surface soil ingestion; cancer risk of 5.4E-04 for dermal contact with surface soil); and (2) chromium (cancer risk of 2E-03 for surface soil ingestion and 3.8E-04 for subsurface soil ingestion). The primary contributors to human health risk for current and future recreationalists are: (1) arsenic (cancer risk of 1.2E-03, and non-cancer HQ of 22 from surface soil ingestion, and cancer risk of 1.1E-04 from dermal contact with surface soil); and (2) chromium (cancer risk of 1.1E-04 for surface soil ingestion, 2.4E-04 for ingestion of fish, and 1.5E-04 for sediment ingestion).

The ecological receptors with risk from exposure to site-related contamination are avian and mammalian receptors, terrestrial plants and invertebrates, and aquatic life. The primary routes of exposure are direct contact with surface and subsurface soil, seeps, springs, and surface water; ingestion of surface soils, surface water, seeps, and springs; and ingestion of subsurface soil and aquatic life; and direct contact with seeps, springs, surface water, and sediments. The primary contributors to current environmental risk are (1) zinc (HQ of 5540 to Mountain Chickadee through ingestion of terrestrial invertebrates, and HQ of 488 to Red-tailed Hawk through ingestion of terrestrial invertebrates, birds and mammals); (2) aroclor-1221 (HQ of 2550 to Mountain Chickadee, and HQ of 1990 to American Dipper from all ingestion of benthic invertebrates); (3) lead (HQ of 2010 to Mountain Chickadee from ingestion of terrestrial invertebrates, and HQ of 419 to plants from direct contact with surface soil); (4) cadmium (HQ of 1540 to Mountain Chickadee from ingestion of terrestrial invertebrates); (5) copper (HQ of 1320 to Mountain Chickadee from ingestion of terrestrial invertebrates); and (6) aroclor (1016, 1232, 1242, 1248, 1254, and 1260) (each chemical has a non-cancer HQ of 1260 to Mountain Chickadee from ingestion of benthic invertebrates).

### Human Health Risk Driver(s):

| <u>Operable Unit 00 (site-wide):</u>                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface Soil, Cancer                                                                                                                                                                                                                                                                                                                                             | Mine Water, Cancer                                                                                                                                                                                                                                                                                                                                |
| - Current & Future Resident, Ingestion                                                                                                                                                                                                                                                                                                                           | - Current and Future Resident, Ingestion                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Arsenic, Chromium</li> <li><i>Current &amp; Future Worker, Ingestion/Dermal</i></li> <li>Arsenic</li> <li><i>Current &amp; Future Recreational User,</i></li> </ul>                                                                                                                                                                                     | <ul> <li>Chromium</li> <li>Food, Cancer         <ul> <li>Current and Future Recreational User,<br/>Ingestion (Fish)</li> <li>Chromium</li> </ul> </li> </ul>                                                                                                                                                                                      |
| <ul> <li>Arsenic, Chromium</li> <li>Surface Soil, Non-cancer <ul> <li>Current &amp; Future Resident and Worker, Ingestion</li> <li>Arsenic</li> <li>Current &amp; Future Recreational User, Ingestion</li> <li>Arsenic</li> </ul> </li> <li>Subsurface Soil, Non-cancer <ul> <li>Current &amp; Future Worker, Ingestion</li> <li>Chromium</li> </ul> </li> </ul> | Ecological Risk Driver(s):<br>Operable Unit 00 (site wide):<br>Food (Terrestrial Invertebrates)<br>– Current Mountain Chickadee, Ingestion<br>• Lead<br>Food (Terrestrial Invertebrates)<br>– Current Red-tailed Hawk, Ingestion<br>• Zinc<br>Food (Benthic Invertebrates)<br>– Current Avian (Mountain Chickadee,<br>American Dipper), Ingestion |

### Ground Water, Cancer

- Current and Future Resident, Ingestion
  - Chromium

• Aroclor-1016, 1221, 1232, 1242, 1248, 1254, 1260

### Surface Soil

- Current Plants, Direct Contact
  - Lead

# **Final Remedy:**

The following outlines the selected remedial actions address ground water, surface water, and soil site-wide.

# Surface Contamination Sources –

- (1) excavation and treatment of all contaminated materials and placement in constructed consolidation cells;
- (2) amendment of waste material by mixing lime into top 6 inches, cap with 6 inches of topsoil on top of 12 inches of select fill on top of a geo-synthetic clay liner, construction of consolidation cells;
- (3) diversion of surface water runoff; and
- (4) implementation of access controls.

# Subsurface Contamination Sources –

- (1) installation of bulkhead in tunnel and monitor for underground leaks;
- (2) use of injection wells to circulate NaOH or another pH-buffer into the mine pool;
- (3) monitoring of surface water;
- (4) if downstream RAOs are not being met, installation of a series of biochemical reactors outside the adit atop the waste dump; and
- (5) use of microorganisms to biologically transfer hazardous contaminants into nonhazardous substances, and routing of treated waters to onsite wetlands or discharge them to a creek. Surface water diversion allows for the draining of 50 gallons per minute of metals-contaminated water. 33,972 cubic yards of waste rock, tailings, are being remediated.

# **Cimarron Mining Corporation NPL Site Summary**

**EPA ID:** NMD980749378 **Location:** Carrizozo, NM **EPA Region:** 6 **NPL Status:** NPL - Final Number of Operable Units: 2 Date of CERCLA Regulation: 1989 Last Operational Year: 1982 Documents Used: RI/FS & ROD (Various by OU)

#### Introduction:

The Cimarron Mining Corporation is located in Carrizozo, Lincoln County, New Mexico. The Site is divided into two operable units (OUs). OU1 is the Cimarron Mill Site, which is approximately 10.6 acres and is located on the north side of Highway 380. OU2 consists of the Sierra Blanca Mill Site, which is 7.5 acres in area and is located east of U.S. Highway 54. The mill sites operated from 1960 to July 1982, with some temporary shutdowns. OU1 is an inactive milling facility and was used to recover iron and precious metals from ores. In 1979, the site was sold to Southwest Mineral Corporation, and soon thereafter, cyanide was apparently used to extract precious metals from the ore. OU2 was used to recover a variety of metals from ore transported to the site, although cyanide was apparently not used at this location. The site utilized precious metal extraction processes, which resulted in the unpermitted discharge of contaminated liquids and the stockpiling of approximately 570 cubic yards of contaminated material piles and other waste sediment. In 1979, the Sierra Blanca Mill Site was leased to American Minerals Recovery Corporation. The milling operation at OU1 was relocated to OU2 in June 1982. Both sites are currently inactive. OU1 is currently used as an auto repair shop and salvage yard. OU2 is fenced and is currently owned by the Town of Carrizozo. OU2 is presently not being used for residential or commercial purposes.

### Summary of Site-related Contamination:

Site operations, primarily ore recovery and extraction processes, have contaminated various media—mainly cyanide in OU1 and lead in OU2. OU1 is contaminated with approximately 30 inorganic chemicals, including arsenic, chromium VI, cyanide, and nitrate. In OU1, ground water is contaminated at levels up to 400 parts per billion (ppb), with cyanide due to poor well construction allowing waste from cyanide recovery to reach shallow ground water. OU2 is contaminated with inorganic chemicals, including arsenic, barium, beryllium, copper, lead, manganese, mercury, silver, sodium, and zinc. Within OU2, there are approximately 43 cubic yards of tank sediments, 182 cubic yards of material pile soils and rock, and 345 cubic yards of discharge pit sediment and site soils contaminated with lead levels above 500 ppm.

### **Conclusion of Site-related Risk:**

The primary threats contributing to human health risk, and the contaminants driving the remedial action, are inorganic chemicals (primarily arsenic, barium, chromium VI, cyanide, lead, manganese, nitrate, and silver). The major media of concern for human exposure to inorganic chemicals are soil, sediment, ground water, dust, and material piles. Residents exposed to contaminated media via accidental or intentional ingestion, dermal contact, or inhalation may have elevated health risks.

In OU1, the pathways of concern are ingestion of soil, sediment, or ground water and dermal contact with sediment by future onsite residential receptors. The primary contributor to

cancer risk is arsenic [cancer risk of 2.6E-05, 8.7E-06, and 1.7E-06 to residential children from the ingestion of sediment, ingestion of soil, and dermal contact with sediment, respectively]. Non-cancer risks from site-related contamination are the result of ingesting contaminated ground water. Non-cancer risks to residential children range from HQ 1.9 (chromium VI) to 9.5 (cyanide); non-cancer risks to residential adults range from HQ 3.5 (nitrate) to 4.1 (cyanide). In OU2, the pathways of concern include ingestion of surface soil, material piles, or tank sediment; dermal contact with surface soil or tank sediment; and inhalation of dust by future onsite residential receptors. Cancer risks for the operable unit were calculated for exposure to all contaminants assuming a 30-year exposure, beginning at childhood; however, arsenic and lead were identified as the primary contributors to risk. The cancer risks range from 4.70E-06 (dermal contact with material piles) to 9.30E-04 (ingestion of surface soil). Non-cancer risks range from 1.4 (ingestion of surface soil contaminated with barium) to 4.4 (ingestion of tank sediments contaminated with silver).

Current environmental threats are associated with exposure to cyanide via contaminated food and soil. In OU1, the primary threat to ecological risk is from cyanide. The receptor identified in the calculation of ecological HQs was rabbits, and the pathway identified includes combined ingestion of food and soil [HQ of 9 to rabbits through ingestion of contaminated food items and soil]. Ecological risk information was not quantified for OU2; however, localized lead deposit posed concern.

### Human Health Risk Driver(s):

<u>Operable Unit 1:</u> Soil, Cancer – Future Child Resident, Ingestion • Arsenic Ground Water, Non-Cancer – Future Child Resident, Ingestion • Chromium (VI), Cyanide, Nitrate

### Operable Unit 2:

Soil, Cancer

- Future Resident, Ingestion
  - Arsenic, Lead

<u>Operable Unit 2 (cont'd):</u> Soils (Surface Soil, Material Piles, Tank Sediments), Non-Cancer – Future Resident, Ingestion • Barium, Manganese, Silver

### **Ecological Risk Driver(s):**

<u>Operable Unit 1:</u> Soil, Food – Current & Future Mammalian, Ingestion • Cyanide

# **Final Remedy:**

The selected remedial actions are summarized below.

OU1 -

- (1) pump and discharge ground water to the Carrizozo Publically Owned Treatment Works (POTW);
- (2) biological activity within the existing treatment lagoons, in addition to effluent chlorination and photodecomposition, will provide treatment to reduce the cyanide concentration to acceptable levels; and
- (3) monitoring of the treatment plant effluent and sludge.

OU2 -

- (1) solidification/stabilization of contaminated soils and waste piles exceeding 500 ppm lead and onsite disposal;
- (2) site wide groundwater monitoring; removal to the process chemical drums, and decontamination of tanks and associated piping; filling in the discharge pit and cinder block trenches with onsite soils and waste pile materials and covering with clean fill; plugging of the onsite abandoned water supply well; and inspection and maintenance of the existing fence. Approximately 225 cubic yards of contaminated soil will be remediated using solidification/stabilization with onsite disposal.

# **Cyprus Tohono Mine Removal Site Summary**

**EPA ID:** AZD094524097 **Location:** Casa Grande, AZ **EPA Region:** 9 **Status:** Removal – Non-Time Critical Number of Operable Units: 1 Date in CERCLIS: 2002 Last Operational Year: 1997 Documents Used: Fact Sheet, PA/SI

### Introduction:

The Cyprus Tohono Corporation holds a mining lease of 4,180 acres with the Bureau of Indian Affairs and the Tohono O'odham Nation and a business lease that includes an additional 6,325.5 acres for a total of 10,505.5 acres located in Casa Grande, Arizona. The Cyprus Tohono Mine site is located on the southwest flank of the Slate Mountains on the Tohono O'odham Nation. The site is located in an undeveloped rural area, approximately 1 mile east of the village of Gu Komelik. Copper mining at the site began in the 1880s. Copper remained the mine's primary commodity as large-scale underground mining operated from 1970 to 1983. Copper leaching operations began in 1983 using a sulfuric acid solution (raffinate) pumped into over 500 injection wells. In-situ leaching operations were stopped in 1994 with the commencement of open pit mining, which continued until 1997. Through January 2005, extraction/electro-winning operations for processing heap solutions were conducted. Current contamination issues stem from mining operations, beginning with the large-scale mining in 1970. Major mine facilities remaining on site include a solvent extraction/electro-winning plant, offices, laboratories, and a lined heap-leach pad. Areas of mining-produced materials on site include (1) vat leach tailings (leached oxide ore material produced during vat leach operations from 1975 to 1983); (2) mill tailings (residual material from processing sulfide ore in a ball mill and flotation plant generated beginning in the mid-1970s; the mill tailings impoundment was also used for the placement of mine discharge waters, vat leach wash solutions, cementation copper bleed solution, roaster cooling solutions, direct precipitation rain water, and storm event run-on of rain waters from the plant area); (3) evaporation pond materials (from evaporation ponds constructed in 1973 of local alluvial material and lined with 3 to 8 feet of mill tailings; the ponds were used for placement of excess mill waters and in-situ leach solutions); (4) calcine leach residue ponds (calcine is a residue material generated as a result of roasting copper concentrate, and calcine leach residue is the solid residue material remaining after the calcine has been leached with raffinate solution to extract the copper values); and (5) overburden (unmineralized alluvium, fanglomerate, and other bedrocks of insignificant mineral value). Mining operations on site ceased in 1997.

### Summary of Site-related Contamination:

The contamination originates from onsite operations, including vat leach operations, processing sulfide ore, roasting of copper, and other mining and milling operations. Ground water on site has been contaminated with inorganic chemicals (selenium, sulfate, and thallium) and radionuclides (uranium-234 and uranium-236). Onsite soil and source materials were found to have elevated levels of inorganic chemicals (aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, sulfate, thallium, and zinc) and radionuclides (radium-228, thorium-228, thorium-230, thorium-232, uranium-234, uranium-235, and uranium-238). In residences in the village of Gu Komelik, samples indicated elevated levels of sulfate and nitrate. Forty migratory shore birds

(including 37 Avocets, 1 Mallard Duck, 1 Egret, and 1 Cormorant) have died after contact with Pit Lake, an artificial surface water body on the site.

### **Conclusion of Significant Site-related Risk:**

The major media of concern for human exposure to inorganic chemicals and radionuclides are soil, dust, and ground water. The primary routes of exposure to these media are ingestion, inhalation, and combined routes. The receptors with potential risk from these media are current residential receptors. Levels of uranium and sulfate in ground water (tested from onsite wells) exceeded health based benchmarks. Two wells approximately 1 mile west of the site, which residents use for drinking water, were also found to have elevated levels of sulfate (1500 mg/L) and uranium concentrations (uranium-234, 51.8 pCi/L) that exceed the U.S. Environmental Protection Agency's Maximum Contaminant Limits (MCLs) for drinking water of 250 mg/L and 1.1 pCi/L, respectively. People who ingest this water may have an elevated health risk. Levels of sulfate and uranium in the ground water have been continually increasing over time. There have also been reports of dust blowing into residential areas from the mine site. Samples taken of residential soils indicate elevated levels of sulfate on one property. No quantitative health risks were calculated for individual or combined exposure routes.

The major media of concern for ecological receptors to contaminants is surface water and soil. Current ecological threats directly affect terrestrial organisms, migratory birds, and the biotic community. The primary contributors to ecological risk, to which no specific receptors were provided, include inorganic chemicals (selenium, sulfate, and thallium) and radionuclides (uranium-234 and uranium-236). Surface water from Pit Lake contains elevated levels of uranium (uranium 234 at 50.2 pCi/L, uranium 235 at 2.8 pCi/L, and uranium 238 at 46.6 pCi/L) and sulfate (3,880 mg/L) that exceed MCLs of 1.1 pCi/L and 250 mg/L, respectively. The artificial habitat at Pit Lake is used by migratory shore birds. The Cactus Ferrigunous Pygmy Owl has been observed near the site and may be affected by contaminated soils on site due to feeding habits. No quantitative ecological risks were calculated.

### **Final Remedy:**

The selected remedy addresses ground water, soil, and surface water media. To reduce risk to residents from ground water,

- (1) all residential wells were shut down,
- (2) ground water monitoring was put in place, and
- (3) residents were supplied with an alternative source of water.

To address risk in surface water,

- (1) media were chemically treated and filtered,
- (2) storm water sumps were excavated, and
- (3) new contingency systems/ponds were installed to mitigate contaminant release.

In addition, to improve surface water flow and eliminate erosion, specific locations were re-vegetated and re-contoured. To help eliminate threats from contaminated airborne soil, a dustcontrol program was implemented. Finally, to address overall site conditions,

- (1) all historic processing facilities were dismantled and
- (2) a habitat improvement plan was implemented, including a study and documentation of the Cactus Ferruginous Pygmy Owl, an endangered species.

The amount of each media remediated/removed was not documented.

# **Eagle Mine NPL Site Summary**

**EPA ID:** COD081961518 **Location:** Minturn, CO **EPA Region:** 8 **Status:** NPL - Final Number of Operable Units: 3 Date of NPL Listing: 1985 Last Operational Year: 1984 Documents Used: RI/FS & RODs (Varies by OU)

### Introduction:

The Eagle Mine and its tailings piles, previously owned by the New Jersey Zinc Co. and Gulf and Western Industries, cover 110 acres in Eagle County, Colorado, between the towns of Minturn and Redcliff. About 1,300 people live within 3 miles of the tailings. The company's predecessors began purchasing mines in the area in 1912 and immediately began production. Zinc mining and milling operations ceased on December 30, 1977. Silver mining continued intermittently thereafter. The mine is now shut down completely and owned by Miller Enterprises. Two major tailings piles exist on the site. The old tailings pond was abandoned in 1946, when it reached capacity. A new tailings pond was constructed approximately 0.5 mile south where Cross Creek and Eagle River meet. Approximately 7 million tons of tailings piles are located on National Forest land nearby, and tailings have been dumped in areas in the Eagle River floodplain. The site is divided into three Operable Units (OUs):

- OU1 (Mine Site) addresses principal sources of mine waste pollution impacting the Eagle River and ground water resources;
- OU2 (Town of Gilman) addresses contaminated soils in the Minturn Middle School area and in an approximate 2 square mile area in the south end of Minturn, the surface soils and waste rock piles in the Town of Gilman area, and private drinking water wells possibly being used in the Minturn area; and
- OU3 (North Property) addresses contamination of the North Property.

### Summary of Site-related Contamination:

Site-related contamination is the result of mining and milling operations; specifically, tailing ponds and disposal practices. Site operations have contaminated various media (ground water, surface water, solid waste, soil, liquid waste, debris, and sediment) with numerous contaminants. OU1 contains high levels of inorganic chemicals (arsenic, cadmium, chromium, lead, manganese) and PCBs (not specified). OU2 contains high levels of arsenic, cadmium, chromium, iron, lead, manganese, nickel and zinc. Finally, OU3 contains elevated levels of inorganic chemicals (arsenic cadmium, calcium, cobalt, iron, magnesium, nickel, sulfate, thallium and zinc). Elevated levels of zinc have been also found in fish tissue in the North Property (OU3).

### **Conclusion of Site-related Risk:**

In past years, children in the town of Minturn have been found to have elevated levels of lead in their blood from exposure to contaminated soils and dust. Specifically, the primary threats contributing to human health, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (arsenic, cadmium, calcium, cobalt, iron, lead, manganese, magnesium, nickel, sulfate, thallium, and zinc). The two major media of concern for human exposure to inorganic contaminants are soil/dust and ground water. The receptors with potentially unacceptable risk from these media are residential, recreational, and occupational workers. The primary routes of exposure to these media are ingestion (accidental or intentional), inhalation, and dermal contact.

In OUs 1 and 2, the primary contributor to human health risks are (1) arsenic (current cancer risks of 1.4E-04 and 1.1E-04 for residential adolescent and adult receptors, respectively, from ingestion of contaminated soil/dust; current non-cancer HQ of 4.5 for residential adolescents from ingestion of contaminated soil/dust); (2) combine exposure from arsenic and cadmium (current cancer risk of 7.32E-04 for residential adolescents from the ingestion and inhalation of contaminated air, soil, and dust); and (3) lead (16.5% of children in the town of Minturn were found to have blood lead levels exceeding P10 [10µg/dL] from the ingestion and inhalation of contaminated air, soil, and dust). OU2, additionally, had a primary contributor to human health risk not found in OU1: (1) combined exposure to arsenic, cadmium, chromium, iron, lead, and manganese (current cancer risk of 3E-04 for residential children from the ingestion of contaminated soil).

In OU3, the primary contributors to human health risk are (1) arsenic (future cancer risk for residential age averaged receptor from the ingestion of soil [2.54E-03], ingestion of ground water [1.76E-03], ingestion of boulder-chips [1.93E-04], and dermal contact with soil [1.67E-04]; and current and future risks to recreational hiker [2.52E-04; age averaged] and occupational adult [1.04E-04] receptors for ingestion of contaminated soil. Future non-cancer HQs ranging from 10.0, 12.7, and 23.4 for residential receptors [adult, age averaged, and child, respectively] for ingestion of contaminated ground water), and (2) inorganic chemicals (including future HQs ranging from 201 to 469 for iron, 54.8 to 128 for thallium, 49.3 to 115 for zinc, 38.8 to 90.6 for manganese, and 21.4 to 49.9 for cadmium, for residential receptors [adult and child, respectively] for ingestion of contaminated ground water).

Metals loading in the Eagle River pose ecological concerns; however, specific risk was not quantified. Specific ecological receptors and exposure routes have not been identified.

| Human | Health Risk Driver(s): |  |
|-------|------------------------|--|
|       |                        |  |

| Operable Units 1& 2:                         | <u>Operable Unit 3 (cont'd):</u>               |
|----------------------------------------------|------------------------------------------------|
| Soil/Dust, Cancer                            | Soil, Cancer                                   |
| – Current Adult and Adolescent Resident,     | – Future Age-Averaged Resident, Ingestion      |
| Ingestion                                    | Arsenic                                        |
| • Arsenic                                    | Soil, Cancer                                   |
| Soil/Dust, Non-cancer                        | – Current & Future Age-Averaged Recreational   |
| – Current Adolescent Resident, Ingestion     | Hiker, Ingestion                               |
| • Arsenic                                    | Arsenic                                        |
| Air and Soil/Dust, Cancer                    | – Current & Future Worker, Ingestion           |
| – Current Adolescent Resident, Ingestion and | Arsenic                                        |
| Inhalation                                   | – Future Age-Averaged Resident, Dermal Contact |
| • Arsenic and Cadmium                        | Arsenic                                        |
| Air and Soil/Dust, Non-cancer                | Boulder-chips, Cancer                          |
| – Current Adolescent Resident, Ingestion and | – Future Age-Averaged Resident, Ingestion      |
| Inhalation (Blood lead level)                | Arsenic                                        |
| • Lead                                       | Ground Water, Non-cancer                       |
|                                              |                                                |

### Operable Unit 2 (Only):

Soil, Cancer

- Current Child Resident, Ingestion
  - Arsenic, Cadmium, Chromium, Iron, Lead, Manganese

Operable Unit 3:

Ground Water, Cancer

- Future Age-Averaged Resident, Ingestion
  Arsenic
  - Alsellic

- Future Adult and Child Resident, Ingestion

- Arsenic, Iron, Manganese, Thallium, Zinc
- Future Age-Averaged Resident, Ingestion
  - Arsenic, Iron, Manganese, Thallium, Zinc

**Ecological Risk Driver(s):** 

Specific ecological risks (and receptors and exposure routes) have not been identified.

### **Final Remedy:**

The selected remedial actions for the Mine Site (**OU1**) address major environmental threats to the Eagle River and human health threats from surface water, sediment, soil, ground water, and additional waste. To mitigate risk from soils and sediment, remedial actions include

(1) the excavation of contaminated soils and sediments from the Maloit Park Wetlands;

- (2) control of seepage from the tailings; and
- (3) rapid addition of topsoil and re-vegetation.

The remedial actions chosen to address surface water contamination include

- (1) regular monitoring of surface water and biota, and
- (2) draining and capping the historic pond and diversion of Rock Creek upgradient of contaminated mine seepage.

For ground water, the selected remedies include:

- (1) ground water monitoring,
- (2) leachability tests on waste rock,
- (3) implementation of use restrictions for ground water at the Rex Flats and Old Tailings pile,
- (4) accelerated re-vegetation at Rex Flats,
- (5) ground water treatment,
- (6) use restrictions,
- (7) the construction of an up-gradient ground water diversion structure, and
- (8) the relocation of the Town of Minturn drinking water wells.

Additional site waste remedial actions include:

- (1) diverting and collecting contaminated mine seepage,
- (2) capping the Consolidated Tailings Pile,
- (3) continued treatment of mine seepage at the Water Treatment Plant, and

(4) re-vegetation in area of Roaster Pile 1.

For the Town of Gilman (*OU2*), current and potential human health risks posed by contaminated soil and waste rock will be remedied through the implementation of institutional controls to limit site access and provide long-term, local presence.

Remedial actions to address contamination in the North Property (**OU3**) have not been selected and are pending further evaluation.

# East Helena NPL Site Summary

**EPA ID:** MTD006230346 **Location:** East Helena, MT **EPA Region:** 8 **Status:** NPL - Final Number of Operable Units: 2 Date of NPL Listing: 1984 Last Operational Year: 2001 Documents Used: RI/FS & ROD (Various by OU)

### Introduction:

The East Helena Site is a former primary lead and zinc smelting operation located in Lewis and Clark County, Montana, near, and including parts of, East Helena, Montana. The site and resulting contamination is the result of smelting operations at the site. The site consists of the smelter facility; all of the City of East Helena; nearby residential subdivisions; numerous rural developments such as farms and homes on small acreage plots; and surrounding undeveloped lands. The smelter adjacent to East Helena operated from 1888 until April 2001. ASARCO bought the property in 1895 from Helena and Livingston Lead Smelting and continued operations until the smelter was closed in 2001. During its operation, the smelter produced lead bullion, but also recovered copper, gold, silver, and platinum for refining at other ASARCO facilities. Over more than 100 years of operation contamination to air, soils, surface water, and ground water resulted from smelter stack emissions; fugitive emissions from plant processes, such as the blast furnace, dross plant, and sinter plant; ore storage area, particularly prior to 1990; slag pile (a minor source); process ponds and process fluids circuitry; and direct discharges to Prickly Pear Creek and East Helena water treatment facilities. The site was added to the NPL in 1984 due to findings of contaminated soils in East Helena residential areas, elevated bloodlead levels in area children, elevated metal levels in the air, and contaminated process ponds over shallow ground water near the plant. The site is divided into two Operable Units (OUs): OU1 (Process Ponds and Fluids) addresses contamination of soil, sediment, and underlying ground water in the process ponds, and OU2 (East Helena Residential Soils and Undeveloped Lands) consists of non-smelter property surface soils of residential areas, rural developments, and surrounding agricultural land.

# **Summary of Site-related Contamination:**

Site-related contamination is the result of smelter stack emissions; fugitive emissions from plant processes such as the blast furnace, dross plant, and sinter plant; the ore storage area, particularly prior to 1990; the slag pile (a minor source); process ponds and process fluids circuitry; and direct discharges to Prickly Pear Creek and East Helena water treatment facilities. Site operations have contaminated various media (surface soil, subsurface soil, sediment, ground water, surface water, fish tissue, residential dust, and air). Inorganic chemicals (arsenic, lead, cadmium, copper and zinc) from former processes can be found site-wide in all the media listed above. OU1 (Process Ponds) has been identified as a source of contamination to ground water and surface water in Prickly Pear Creek. Surface soil, sediment, surface water, and ground water in residential and undeveloped lands (OU2) are contaminated with the inorganic chemicals listed above, as well as antimony, chromium, manganese, mercury, selenium, silver, and thallium, which may pose an elevated health risk to residential receptors.

# **Conclusion of Site-related Risk:**

Human health risks have been identified for residential receptors from exposure to inorganic chemicals (arsenic and cadmium). The major pathways of concern are soil and food ingestion and inhalation of air. OU1 narratively states that although a human health on-site exposure pathway exists, it is incomplete since workers are protected from process pond contaminants under Occupational Safety and Health Administration (OSHA) regulations, and therefore, no specific worker risks were reported. The primary contributors to human health risks in OU2 to residential receptors are (1) arsenic (cancer risks ranging from 3E-04 from air inhalation to 4E-06 from food/vegetable ingestion); and (2) cadmium (cancer risk of 8E-05 from air inhalation to residential receptors).

Site-wide elevated soil lead poses a risk to insectivorous birds or small mammals. Sitewide ecological risks have been identified for a number of avian and mammalian receptors from exposure to inorganic chemicals (antimony, arsenic, cadmium, copper, lead, manganese, mercury, selenium, thallium, and zinc). The major pathways of concern are ingestion of sediment and various different food sources. The primary contributors to site-wide ecological risk are (1) lead (Hazard Quotient [HQ] of 130 to Cliff Swallow from ingestion of sediment, HQ of 37 through ingestion of aquatic invertebrates, and HQ of 29 to Mallard from ingestion of sediment); (2) cadmium and selenium (each with an HQ of 28 to Cliff Swallow through ingestion of sediment); and (3) copper (HQ of 19 and 17 to the Cliff Swallow for ingestion of aquatic invertebrates and sediment, respectively).

### Human Health Site-Related Risks:

<u>Operable Unit 1:</u> Only occupational receptors, regulated under OSHA. <u>Operable Unit 2:</u> *Air, Cancer* – *Current Resident, Inhalation* • Arsenic, Cadmium *Food (vegetable), Cancer* – *Current Adult Resident, Ingestion* • Arsenic *Soil, Cancer* – *Current Adult Resident, Ingestion* • Arsenic

# **Ecological Site-Related Risks:**

<u>Operable Unit 00 (site-wide):</u> Sediment - Current Avian and Mammalian Ingestion • Cadmium, Copper, and Selenium

- Food (through aquatic invertebrates)
  - Current Avian Ingestion
    - Lead and Copper

# **Final Remedy:**

The following outlines the elected remedial actions to address human health and ecological risk from process water, soil, and sediments.

### *OU1* –

(1) (Lower Lake) Replace Lower Lake with storage tanks, construct a lined pond for storm water runoff, in-place co-precipitation of Lower Lake process waters; remove sediments

by dredge, dragline, or industrial vacuum; and dry sediments on drying pad; smelt sediments in the smelter process;

- (2) (Speiss granulating pond and pit) replace existing pond with tank and secondary containment facility, replaceme existing pit with a new lined facility, excavate contaminated soils, and smelt soils in the smelting process;
- (3) (Acid Plant Treatment facility) remove settling pond, dumpster system, and sediment drying area, and replace enclosed aboveground mechanical separation system; and
- (4) (Thornock Lake) excavate bottom sediments, stockpiling, and smelting.

Remedial actions for OU2 are

- (1) (residential areas) conduct selected soil removal (1,000/500 ppm lead) and community education and institutional controls; and
- (2) (undeveloped areas) establish in-place treatment involving removal, capping, and treatment of undeveloped lands, and application of institutional controls and monitoring.

# Eastern Michaud Flats NPL Site Summary

**EPA ID:** IDD984666610 **Location:** Pocatello, ID **EPA Region:** 10 **Status:** NPL - Final Number of Operable Units: 2 Date of NPL Listing: 1990 Last Operational Year: 2001 (FMC Plant) Documents Used: RI/FS & ROD (Various by OU)

### Introduction:

The Eastern Michaud Flats Contamination Site is located on 2,475 acres in Power County, Idaho, near Pocatello. Within the eastern part of the flats are two adjacent phosphate processing facilities. The FMC Corp. Elemental Phosphorus Plant produced elemental phosphorus from phosphate shale ore on ~1,450 acres from 1949 to its shutdown in 2001. The J.R. Simplot Co. Don Plant has produced a variety of fertilizer products from phosphate ore on ~1,025 acres since 1944. The site has been divided into two Operable Units (OUs): OU1 addresses the FMC Plant and related offsite areas, and OU2 addresses the Simplot Plant and related offsite areas.

### Summary of Site-related Contamination:

Site-related contamination is the result of phosphate ore processing operations and waste handling practices; specifically, releases of ore constituents to the air, water, and soil. Site operations have contaminated various media, including soil, air, ground water, and food – milk, meat, and vegetables. The site is contaminated primarily with inorganic chemicals (antimony, arsenic, beryllium, boron, cadmium, chromium [VI], fluoride, manganese, mercury, vanadium, and zinc); volatile organic compounds (VOCs) (tetrachloroethene, trichloroethene); and radionuclides (lead 210, polonium 210, potassium 40, radium 226, radon 222, thorium 230, uranium 234, uranium 238). OU1 is also contaminated with polycyclic aromatic hydrocarbons (PAHs) and other fuel-related VOCs (benzene, toluene, ethylbenzene, and xylenes).

### **Conclusion of Site-related Risk:**

Receptors potentially affected by site contamination include residential and occupational workers. The major media of concern for human exposure to contaminants are soil, ground water, food, air, and external radiation. The primary routes of exposure to these media are ingestion (accidental or intentional), dermal contact, external radiation, and inhalation.

The primary contributors to human health risks site-wide are (1) lead-210 (cancer risk of 1.06E-02 for ingestion of ground water to future residential receptors); (2) radium-226 (cancer risk of 4.35E-03 from external gamma radiation from soil to current residential receptors); (3) arsenic (cancer risk of 1.17E-03 from groundwater ingestion to future residential receptors); (4); cadmium (hazard quotient [HQ] values ranging from 40.41 to 41.66 for ingestion of vegetables and all exposure routes of soil to current residential receptors, respectively); and (5) fluoride (HQ values ranging from 24.71 [future] to 33.72 [current] for ingestion of meat and all exposure routes of soil to residential receptors, respectively). In OU1, the primary contributors to human health risks are (1) radon-222 (cancer risk of 5.71E-03 for inhalation of air to future occupational receptors); (2) combined radionuclides (cancer risks of 1.05E-03 and 1.41E-03 for external gamma exposure to current and future occupational receptors, respectively); and (3) arsenic (cancer risk of 6.83E-04 for ingestion of ground water by future occupational receptors). In OU2,

the primary contributors to human health risk are (1) radon-222 (cancer risk of 4.63E-03 for air inhalation by future occupational receptors); (2) arsenic (cancer risk of 1.68E-03 for ingestion of ground water by future occupational receptors); and (3) fluoride (HQ of 14.51 from ground water ingestion by future occupational receptors).

Potential ecological receptors include avian, mammalian, and plant species. Ecological receptors were found to be at risk due to exposure to fluoride through dietary ingestion (Red-Tailed Hawk, Horned Lark, and coyote) or incidental ingestion of soil (Horned Lark and Sage Grouse). Two state species of concern (Yellow-Billed Cuckoo and Wolverine) may be located on the site and have potential for risk; however, their presence on the site is unlikely. HQ values for fluoride range from 1.3 for the Horned Lark to 4.09 for the Sage Grouse.

### Human Health Risk Driver(s):

Operable Unit 00 (site-wide): Ground Water, Cancer - Future Resident, Ingestion • Lead-210, Arsenic Soil. Cancer - Current Resident, External Gamma Radiation • Radium-226 Ground Water, Non-cancer - Future Resident, Ingestion • Arsenic Food, Non-cancer - Current Resident, Ingestion Soil. Non-cancer - Current Resident, Ingestion • Cadmium, Fluoride Operable Unit 1:

Air, Cancer – Future Worker, Inhalation • Radon-222 External Radiation, Cancer – Current & Future Worker, External Gamma Exposure • Radionuclides

Operable Unit 1 (cont'd): Ground Water. Cancer - Future Worker, Ingestion • Arsenic Ground Water. Non-cancer - Future Worker, Ingestion • Arsenic Operable Unit 2: Air. Cancer – Future Worker, Inhalation • Radon-222 Ground Water, Cancer – Future Worker, Ingestion • Arsenic, Fluoride Ground Water, Non-cancer - Future Worker, Ingestion • Arsenic

### **Ecological Risk Driver(s):**

<u>Operable Unit 00 (site-wide):</u> Combined Pathways/Multiple Routes – Current Avian and Mammalian • Fluoride

# **Final Remedy:**

The following outlines selected remedial actions to address soil, ground water, air and solids. *OU1 (FMC Plant)* –

- (1) cap waste ponds and solids storage area;
- (2) line Railroad Swale to reduce or eliminate infiltration of rainwater and prevent incidental exposure to contaminants;

- (3) monitor ground water and implement controls to prevent use of contaminated ground water for drinking purposes under current and future ownership, prevent potential future residential use, and control potential worker exposures under future ownership;
- (4) implement contingent groundwater extraction treatment system if contaminated ground water migrates beyond company owned property and into adjoining springs or the Portneuf River;
- (5) contain contamination by hydrodynamic controls;
- (6) treat and recycle extracted ground water within the plant to replace unaffected ground water that would have been extracted and used in plant operations; and
- (7) conduct operation and maintenance on capped areas and ground water extraction system, if implemented.

*OU2* –

- (1) implement a groundwater extraction system to contain contaminants associated with the phosphogypsum stack and control potential worker exposures under current and future ownership;
- (2) excavate contaminated soils from the dewatering pit and east overflow pond;
- (3) monitor ground water and implement controls to prevent use of contaminated ground water for drinking purposes under current and future ownership;
- (4) continue groundwater monitoring and controls until site contaminants of concern in ground water decline below MCLs or RBCs; and
- (5) operate and maintain the groundwater extraction system.

# OUs 1 and 2 (Off-Plant Areas, Actions Common to Both OUs) -

- (1) implement land-use controls and monitoring in the off-plant area to restrict property use due to potential exposure to radionuclides in soils;
- (2) inform future property owners of the potential human health risks associated with consumption of homegrown fruits and vegetables; and
- (3) monitor fluoride levels around the site to determine the levels present and to evaluate the potential risk to ecological receptors; if measured levels indicate risk, conduct further evaluation followed by source control or other action, if necessary; and
- (4) conduct groundwater monitoring in the off-plant area.

# **Evening Star Mine Removal Site Summary**

**EPA ID:** CON000802651 **Location:** Jamestown, CO **EPA Region:** 8 **Status:** Removal, Time Critical Number of Operable Units: 1 Date in CERCLIS: 2006 Last Operational Year: Unknown Documents Used: Action Memorandum

### Introduction:

In 2005, the U.S. Environmental Protection Agency (EPA) commissioned a feasibility study to assess numerous mines in the James Creek Basin (Little James Creek Mine Site Draft Feasibility Assessment Report, April 2005). The study estimated that approximately 2,000 cubic yards of waste rock material was present at the Evening Star Mine. In February 2007, the EPA On-Scene Coordinator (OSC) visited the site to evaluate current conditions. It was observed that, although the spring melt had not yet begun, water was flowing from the mine's collapsed adit. The flow meandered across the top of the waste rock pile, ultimately flowing down the western edge of the pile. The OSC observed drainage patterns in the waste rock pile, indicating the routine presence of flows up to four times the volumetric flow rate present at the date of the OSC's site visit. These higher flows have obviously caused the adit drainage to flow across the top and down over the face of the pile in the past. On February 9, and again on March 19, under direction from the OSC, the Superfund Technical Assistance and Response Team (START) contractor mobilized to the site, collected soil and water samples, and conducted field measurements of water quality and flow rates. The first day that START was at the site, the flow from the adit was less than half what it had been on the day of the OSC's visit. It was measured to be 2 gallons per minute (GPM). On March 19, the OSC observed that the flow had decreased to approximately 0.5 GPM, that it entered the waste rock pile at a sinkhole, and that it flowed via subsurface to the confluence with Little James Creek. The formation of a sinkhole can be an indication that the pile is becoming unstable. Also, waste rock material was observed in the ephemeral drainage below the site, indicating that material has migrated offsite in the past. Site inspection results indicated elevated levels of inorganic chemicals in waste rock, soil, and surface water on site as a result of site operations.

### Summary of Site-related Contamination:

Mining operations have led to site-wide contamination, primarily with inorganic chemicals (arsenic, copper, lead, aluminum, and zinc), via waste rock material and adit drainage. Current environmental threats from inorganic chemical exposure from contaminated soil and surface water threaten terrestrial mammals, plants, and aquatic organisms.

### **Conclusion of Site-related Risk:**

The primary current threats to human health and the environment, and the contaminants driving the removal action, are heavy metals (primarily arsenic, copper, lead, aluminum, and zinc). Arsenic was identified as having unacceptable human health cancer risks, greater than 1E-04 for soil and waste rock combined inhalation, ingestion, and dermal exposure to onsite recreational receptors. Lead concentrations in the main pile exceed the level at which EPA toxicologists would expect a 5% probability of elevated blood levels in female recreational users at childbearing age from combined inhalation, ingestion, and dermal exposure to soil and waste rock on site. Copper, lead, aluminum, and zinc in surface water downgradient of the adit exceed

Ambient Water Quality Criteria and may pose a risk to aquatic communities. Arsenic, copper, and aluminum in soil and waste rock on the site also exceed Eco-Soil Screening Levels for both terrestrial mammals and plants, in many cases by 100 or 1,000 times. Potential heavy metal loading of the Little James Creek is also of concern.

### **Final Remedy:**

The selected remedy addresses contaminated soil and the migration of contaminants to water. The overall approach for the removal action involves

- (1) excavation/scraping of waste rock present upslope from the mine adit, if possible (if not possible due to extreme slope angles, these areas will be covered and re-vegetated to the extent practicable);
- (2) consolidation of excavated waste rock with the existing main pile;
- (3) grading/shaping the waste rock pile to promote slope stability and proper runoff;
- (4) implementation of drainage controls to protect against runon and to armor the ephemeral drainage side of the re-graded waste rock pile against erosion from spring runoff/flash flooding;
- (5) placement of 12 inches of alkaline clean cover material and 6 to 12 inches of soil amended with growth media over the re-graded waste rock pile; and
- (6) re-vegetation of the covered waste rock pile and any areas disturbed during the course of the removal.

The study estimated that approximately 2,000 cubic yards of waste rock material was present at the site.

# Foote Mineral Co. NPL Site Summary

EPA ID: PAD077087989 Location: East Whiteland Township, PA EPA Region: 3 Status: NPL - Final Number of Operable Units: 2 Date of NPL Listing: 1992 Last Operational Year: 1991 Documents Used: RI/FS & RODs (Varies by OU)

## Introduction:

The Foote Mineral Co. site is located on a 79-acre property primarily in East Whiteland Township, Pennsylvania. Starting in 1941, the Foote Company built and operated a variety of process buildings on the property for the manufacture of lithium metal and lithium chemicals and inorganic fluxes for the metal industry. Ores and minerals were also crushed and sized as part of site operations. When the plant closed in 1991, the site included two quarries, a pit used to burn solvents, a lined basin, and more than 50 buildings and process areas. There were also three unlined lagoons that had been leveled and backfilled, and an area where a small amount of neutralized lithium arsenite was buried and later removed. Because the various areas of the site differed in physical characteristics, the site was split into two Operable Units (OUs): OU1, Plant Area and North Quarry, and OU2, South Quarry and Contaminated ground water plume.

# **Summary of Site-related Contamination:**

Site-related contamination is the result of ore processing; specifically, a waste pit, lined basin, and unlined lagoons. Site operations have contaminated various media (soil, sediment, surface water, and ground water) with numerous contaminants. Contaminants were reported on a site-wide (OU00) basis, rather than by OU. Site-wide contamination is primarily due to inorganic chemicals, (aluminum, antimony, arsenic, copper, hafnium, iron, lithium, manganese, mercury, thallium, vanadium); semi-volatile organic compounds SVOCs (benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, aroclor 1260); and volatile organic compounds (VOCs; e.g., bromoform, carbon tetrachloride, 1,2-dichloroethane, benzene, tetrachloroethene, trichloroethene).

# **Conclusion of Site-related Risk:**

The primary threats contributing to human health, and the contaminants ultimately driving the site's remedial action are inorganic chemicals, (antimony, arsenic, barium, boron, chromium, copper, hafnium, iron, lithium, manganese, mercury, thallium, vanadium); PCBs (aroclor-1260); SVOCs (benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene); and VOCs (1,2-dichloroethane benzene, bromoform, carbon tetrachloride, tetrachloroethene, and trichloroethene). The major media of concern for human exposure to inorganic and organic contaminants are soil, sediment, and ground water. The receptors with potentially unacceptable risk from these media are future trespassers, residential (child and adult), and occupational workers. The primary routes of exposure to these contaminated media are ingestion (accidental or intentional), inhalation, and dermal contact.

High risks from exposure to ground water, soil, and sediment are reported as resulting from multiple contaminants per media via several combined exposure routes (ingestion, inhalation, and dermal contact). Contaminants associated with sediment exposure risks include

cancer risks for arsenic, chromium, and benzo(a)pyrene; and non-cancer risks for antimony, arsenic, barium, chromium, copper, iron, lithium, manganese, thallium, vanadium, and benzo(a)pyrene. Contaminants associated with soil exposure pose both cancer risks (arsenic, aroclor-1260, benzo[a]pyrene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene) and non-cancer risks (antimony, arsenic, hafnium, iron, lithium, manganese, mercury, thallium, and vanadium). Contaminants associated with groundwater exposure include cancer risks for arsenic, chromium, 1,2-dichloroethane, benzene, bromoform, carbon tetrachloride, tetrachloroethene, and trichloroethene; and non-cancer risks for boron, chromium, and lithium. The primary risk drivers for ground water are cancer risk of 2.4E-04 for future residential (adult and child) receptor; and non-cancer HQ values ranging from 660 for future residential adult to 1600 for a future residential child. The primary risk drivers from exposure to contaminated soil—with a range of cancer risk from 4.8E-05 to 3.8E-04 and non-cancer HQ values ranging from 2.9 to 50—are for future trespassers and residential children, respectively. The primary risk drivers from exposure to contaminated soil—with a range of curve trespassers and residential children, respectively. The primary risk drivers from exposure to contaminated sediment include cancer risks that range from 2E-06 to 3.1E-05 and non-cancer HQ values ranging from 3.2 to 61 for future trespasser and residential children, respectively.

The ecological risk assessment determined that the two media most responsible for potential contamination and associated ecological risk were surface water and sediment. Additionally, the two ecological receptors most susceptible to surface water and sediment are the mink and Great Blue Heron. No ecological hazard quotients were found above 1 for either receptor (total HQ of 0.03 and 0.01 for the Great Blue Heron and mink, respectively). However, the sediments in the North Quarry were qualitatively stated to be a potential future risk to ecological receptors due to inorganic contaminants (cadmium, chromium, copper, lead, manganese, silver) and organic contaminants (benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene). Additionally, boron and lithium in surface water may also pose future risks to ecological receptors.

### Human Health Risk Driver(s):

Operable Unit 00 (site-wide): Ground Water, Cancer - Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact • Inorganic Chemicals and VOCs Ground Water. Non-cancer - Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact • Inorganic Chemicals and VOCs Soil, Cancer - Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact • Inorganic Chemicals and SVOCs Soil, Non-cancer - Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact • Inorganic Chemicals and SVOCs

Sediment, Cancer

- Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact
   Inorganics and SVOCs
- Sediment, Non-cancer
  - Future Resident, Worker, and Trespasser, Ingestion, Inhalation, and Dermal Contact
    - Inorganic Chemicals and SVOCs

### **Ecological Risk Driver(s):**

Operable Unit 00 – Site-wide:

No quantitative HQs above 1. Future qualitative risk may exist in the North Quarry from sediment and surface water exposure.

### **Final Remedy:**

The selected remedial actions address soil, ground water, and wastes site-wide rather than by OU and are as following:

- (1) excavation and offsite disposal of 904 cubic yards of radiation-contaminated soils at an appropriately permitted facility;
- (2) in-situ soil stabilization of process tailing wastes located in the South Quarry;
- (3) excavation and consolidation of contaminated soils, waste materials, and debris into the North and South quarries to prevent direct contact threats;
- (4) capping of the North and South quarries with engineered, multilayered geo-synthetic caps;
- (5) long-term ground water monitoring;
- (6) removal of Light Non-Aqueous Phase Liquids (LNAPL) from ground water;
- (7) use of institutional controls to prevent residential use of ground water and the capped areas; and
- (8) implementation of a Ground water Management Zone in plume area.

# Gilt Edge Mine NPL Site Summary

**EPA ID:** SDD987673985 **Location:** Lead, SD **EPA Region:** 8 **Status:** NPL – Final Number of Operable Units: 4 Date of NPL Listing: 2000 Last Operational Year: 1998 Documents Used: RI/FS & RODs (Varies by OU)

### Introduction:

The Gilt Edge Superfund Site is located in the mining district in the Black Hills of South Dakota. The site is located approximately 6 miles south-southeast of the towns of Lead and Deadwood and lies immediately adjacent to the upper reaches of Strawberry Creek. Mining operations for gold, copper, and tungsten were conducted in this small mining district starting in 1876. About a century ago, a series of small mines began dumping metals-laden mill tailing into Strawberry Creek and Bear Butte Creek. By 1986, when BMC began conducting larger-scale open-pit mining, off-site waters were already contaminated. Site operations ceased in 1998. The site is comprised of four operable units (OUs).

OU1 (Primary Mine Disturbance Area) – addresses existing contaminant sources within the primary mine disturbance area, such as waste rock, spent ore, exposed mineralized bedrock, and sludge;

OU2 (Water Treatment, Groundwater, and Lower Strawberry Creek) - addresses

(1) acid rock drainage (ARD) at the site;

- (2) ground water contamination; and
- (3) contaminant sources, surface water, and sediments in the Lower Strawberry Creek area; and
- OU3 (Ruby Gulch Waste Rock Dump) addresses contaminant sources located within the Ruby Gulch waste rock dump.
- OU4 (Cyprus Phelps/Dodge) has been added recently. The site has been extensively disturbed by mining and mineral processing operations.

Six specific types of site features have a significant impact on the site:

- (1) open pits,
- (2) underground mine workings,
- (3) heap leach pad (HLP),
- (4) waste rock dumps,
- (5) surface water management systems, and
- (6) Lower Strawberry Creek.

### Summary of Site-related Contamination:

Mining operations have led to site-wide contamination via waste rock, spent ore, exposed mineralized bedrock, sludge, metals-laden mill tailings in on-site waters, and ARD. Site operations have produced contaminated various media (soils, sediment, surface water, ground water, and fish tissues) within Gilt Edge Mine's OUs, with numerous inorganic chemicals that include aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, nitrate, nitrite, phosphorous, potassium, selenium, silver, sodium, strontium, thallium, vanadium, and zinc. The site has elevated exposure risks for residential (adult and child), occupational, and recreational receptors (current and future), as well as avian, mammalian, aquatic, and benthic ecological receptors.

### **Conclusion of Site-related Risk:**

The major pathway concerns for human exposure to inorganic chemicals are soil, ground water, surface water, sediment, and food (fish). The receptors with potentially unacceptable risk from these media are offsite current residents, onsite future residents, offsite and onsite Current and Future recreationalists, and onsite future workers. The primary routes of exposure to these media are ingestion (accidental or intentional) and inhalation.

Risks for the site were quantified site-wide. The primary contaminants driving risk from soil include arsenic, manganese, and thallium; those driving risk from ground water include aluminum, antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, thallium, and zinc. The contributors to risk for future onsite residents are (1) total metals (cancer risk of 2E-02, and non-cancer risk Hazard Index [HI] of 800 from ingestion of ground water); and (2) dissolved metals (cancer risk of 1E-02, and HI of 700 from ingestion of ground water, cancer risk of 1E-03 and HI of 50 from soil ingestion). The contributors to Current and Future offsite adult residents are (1) total metals (cancer risk of 6E-03, and HI of 80 from ingestion of ground water); and (2) dissolved metals (cancer risk of 8E-04, and HI of 70 from ingestion of ground water). The contributors to Current and Future risk to offsite child residents are from combined contaminants through ingestion of sediment (cancer risk of 2E-05) and surface water (cancer risk of 2E-06). The contributors to future onsite workers are (1) total metals (cancer risk of 4E-03, and HI of 200 from ingestion of ground water); (2) dissolved metals (cancer risk of 3E-03, and HI of 200 from ingestion of ground water, cancer risk of 1E-04 and HI of 6 from soil ingestion); and (3) combined contaminants (primarily arsenic, manganese, and thallium) (cancer risk of 5E-05, and HI of 50 from ingestion/inhalation of soil). The contributors to Current and Future risk to on-site recreational receptors are from combined contaminants from ingestion of surface water (cancer risk of 9E-04) and combined ingestion and inhalation of soil (cancer risk of 2E-04).

The primary contributors to current ecological risk include inorganic chemicals (aluminum, antimony, arsenic, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, sodium, thallium, vanadium, and zinc). Aquatic organisms (from direct contact with surface water), benthic invertebrates (from direct contact with sediment), and plant and soil invertebrates (from direct contact with soil) all have HQ values listed as greater than 1 (qualitatively documented), with the most severe effects from cadmium, copper, lead, manganese, silver, and zinc. Within riparian areas, the greatest risks related to inorganic chemicals include ingestion of surface water, sediment/soil, and food (varies by receptor) as follows: (1) aluminum (HI of 10,000 for the Masked Shrew, and HI of 300 for the

Deer Mouse); (2) lead (HI of 400 for the Masked Shrew, and HI of 60 for the American Robin); and (3) cadmium (HI of 200 for the Masked Shrew).

## Human Health Risk Driver(s):

### Operable Unit 00 (site-wide):

Soil, Cancer

- Future Resident, Ingestion
  - Dissolved metals (primarily Arsenic, Thallium)
- Future Worker, Ingestion
  - Dissolved metals (primarily Thallium)
- Current & Future Worker, Ingestion and Inhalation
  - Combined contaminants (primarily Arsenic, Manganese, Thallium)
- Current and Future Recreational User, Ingestion and Inhalation
  - Combined contaminants (primarily Arsenic, Manganese, Thallium)

### Soil, Non-cancer

- Future Resident, Ingestion
  - Dissolved metals (primarily Arsenic, Thallium)
- Future Worker, Ingestion
- Dissolved metals (primarily Thallium)
- Future Worker, Ingestion and Inhalation
  - Combined contaminants (primarily Arsenic, Thallium)

# Ground Water, Cancer

- Future Resident, Ingestion
  - Total metals and Dissolved metals (Aluminum, Antimony, Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Thallium, Zinc)
- Current & Future Resident and Future Worker, Ingestion
  - Total metals and Dissolved metals (Aluminum, Antimony, Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Thallium, Zinc)

# Ground Water, Non-cancer

- Current & Future Resident and Future Worker, Ingestion
  - Total metals and Dissolved metals (Aluminum, Antimony, Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Thallium, Zinc)

Surface Water, Cancer

 Current & Future Recreational User, Ingestion/Dermal Contact

- Combined Contaminants (Not specified)
- Current & Future Child Resident, Ingestion
- Combined Contaminants (Not specified) Sediment
  - Current & Future Resident, Ingestion/Dermal Contact
    - Arsenic
- Ground Water, Non-cancer
  - Current & Future Resident and Future Worker, Ingestion
    - Total metals and Dissolved metals (Aluminum, Antimony, Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Thallium, Zinc)

# Ecological Risk Driver(s):

### Operable Unit 00 (site-wide):

- Surface Water, Sediment, and Food (Varies)
  - Current Masked Shrew, Ingestion
    - Aluminum, Cadmium, Lead
  - Current Deer Mouse, Ingestion
    - Aluminum, Antimony, Thallium
  - Current American Robin, Ingestion
- Lead

# Surface Water

- Current Aquatic Organisms, Direct Contact
  - Aluminum, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Selenium, Sodium, Thallium, Zinc

### Sediment

- Current Benthic Organisms, Direct Contact
  - Aluminum, Cadmium, Cobalt, Copper, Lead, Manganese, Silver, Zinc
- Soil
  - Current Plants & Soil Invertebrates, Direct Contact
    - Cobalt, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium, Zinc

# **Interim Remedy:**

Risk was quantified site-wide, and remedial actions by OU were based on this risk. OU3 required an interim remedy to address contamination associated with the largest ARD source on the site. The interim actions taken include

- (1) re-grading of waste rock, including placement in the upper Ruby Gulch drainage;
- (2) construction of a composite cap using a geo-membrane liner;
- (3) installation of lateral drainage structures to limit erosion and convey runoff;
- (4) construction of a protective layer for the liner and surface water controls using materials consisting of the Highway 385 project rock and growth materials from on-site sources; and
- (5) construction of surface water run-on diversion channels.

### **Final Remedy:**

The selected remedy addresses ground water, surface water, waste rock, acid-generating bedrock, wastewater, and sludge. The selected remedy helps achieve greater water quality and reduces the toxicity and volume of acid water and ARD. The overall remedial actions taken include those outlined in the following sentences.

## *OU1* –

- (1) ARD collection,
- (2) upgrades to the water treatment plant (WTP),
- (3) removal, consolidation, and containment of acid-generating waste rock and fills,
- (4) sludge removal and disposal as a part of OU2, and
- (5) land-use controls to protect human receptors.

# *OU2* –

- (1) maintain site control and operations infrastructures,
- (2) collect metal-laden toxic waters and ARD for treatment in the WTP,
- (3) upgrades to the WTP, and
- (4) implement optimized on-site sludge management using on-site storage basins or sludge filtering. The amount of media remediated and/or removed was not specified.

OU4 is still being investigated.

# Homestake Mining Co. NPL Site Summary

**EPA ID:** NMD007860935 **Location:** Milan, NM **EPA Region:** 6 **Status:** NPL - Final Number of Operable Units: 3 Date of NPL Listing: 1983 Last Operational Year: 1990 Documents Used: RI/FS & RODs (Various by OU)

### Introduction:

The Homestake Mining Co. (HMC) Site is a former uranium milling operation located in Cibola County, New Mexico, about 5.5 miles north of the town of Milan. The site and resulting contamination is the result of uranium milling operations that took place between 1958 and 1990. Uranium milling operations involved an alkaline leach-caustic precipitation process to extract and concentrate uranium oxide from uranium ores. Waste byproducts from the milling operations were either disposed above ground in the two tailings impoundments or recycled back into the milling process. The tailings are composed of a uranium-depleted sand fraction and a fine fraction (slimes). The sand fraction was used for building the sides and internal dikes of the impoundment, while the slimes were allowed to collect in the center of the impoundment. Seepage from two large tailings ponds on the site has contaminated a shallow aquifer that provides water to residents in several down-gradient subdivisions. The contamination of soil resulted from windblown tailings that were carried from the tailings impoundments and deposited mostly in the northeast of the tailings impoundments, the prominent downwind direction, on the surface soil surrounding the mill site. The water is unsafe for drinking and cooking. In addition, possible radon releases into residential subdivisions were investigated. The site is divided into three Operable Units (OUs):

- OU1- addresses tailing seepage contamination of groundwater aquifers;
- OU2- addresses long-term tailings stabilization, surface reclamation, and site closure; and
- OU3- addresses radon concentrations in neighboring residential areas.

# **Summary of Site-related Contamination:**

Site-related contamination is the result of uranium milling operations, specifically slag piles and dust/particulates emitted from smelting stacks. Site operations have contaminated various media (soil, air, and ground water). The contaminants present from site-related activities in (1) ground water include inorganic chemicals (chloride, chromium, molybdenum, nitrate, selenium, sulfate, and vanadium) and radionuclides (radium-226 and radium-228, thorium-230, and uranium); (2) soil (from windblown tailings) include radionuclides (radium-226 and thorium-230); and (3) indoor air includes one radionuclide (radon-222).

# **Conclusion of Significant Site-related Risk:**

The primary threats contributing to human health risks, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals and radionuclide contaminants in ground water (particularly selenium) and radon-222 in air. The two major pathway concerns for human exposure to inorganic chemicals and radionuclides are ground water and air. The

receptors with potentially unacceptable risk from these media are current residents in nearby subdivisions. The primary routes of exposure to these media are ingestion and inhalation.

OU1 states that human health risks exist from selenium to current residents ingesting ground water due to contamination of the shallow aquifer in OU1; however, no quantitative risks were provided. OU2 is under the direction of the Nuclear Regulatory Commission (NRC), and neither quantitative nor qualitative risks were provided in accessible documents. In OU3, the primary contributor to human health risk is radon-222 (current cancer risk of 5.9E-04 to residential receptors from inhalation of contaminated air).

An ecological risk assessment was not conducted for the site.

Human Health Risk Driver(s): <u>Operable Unit 00 (site-wide):</u> *Air, Cancer* – *Current Resident, Inhalation* • Radon-222 **Ecological Risk Driver(s):** An ecological risk assessment was not conducted for this site.

### **Final Remedy:**

The following outlines the selected remedial actions to address soil, ground water, and surface water.

### OU1 (Contamination of Ground Water from Tailings Seepage) -

- (1) previous actions taken by HMC in agreement with the state and the U.S. Environmental Protection Agency (EPA) include providing an alternative water source for affected residents and funding of the alternate water costs for 10 years as well as injection of clean water; and
- (2) collection, cleaning, and reinjection of contaminated ground water from the aquifer.

Nearly 4.5 billion gallons of ground water was removed, and 540 million gallons of treated water was injected through the OU1 remedy. NRC reasserted regulatory authority over uranium milling operations in New Mexico in 1986 and regulated ground water remedial activities.

*OU2* (*Stabilization of the Tailings*) – 21 million tons of soil were remediated in the large tailing impoundment and 1.2 million tons in the small tailing impoundment. After milling operations ceased in 1990, the activities for mill decommissioning, surface reclamation and remediation, stabilization of the tailings impoundments, and site closure have been performed under the direction of the NRC. For addressing air in

*OU3 (Radon Concentrations in Neighboring Subdivisions)*, EPA determined that it does not have the authority to address radon concentrations in the subdivisions; however, house-specific radon reduction methods were given as recommendations to homeowners, and a Memorandum of Understanding was signed by EPA and the NRC designating the NRC as the lead federal agency addressing the radon issue. EPA will continue to review outdoor radon

monitoring and particulates data collected at the facility boundary pursuant to NRC license requirements.

# Li Tungsten Corp. NPL Site Summary

EPA ID: NYD986882660 Location: Glen Cove, NY EPA Region: 2 Status: NPL - Final Number of Operable Units: 4 Date of NPL Listing: 1992 Last Operational Year: 1985 Documents Used: RI/FS & ROD (Various by OU)

#### Introduction:

The Li Tungsten Corp. Site is a former primary smelting facility in an industrial area along the north bank of Glen Cove Creek in Glen Cove, Nassau County, New York. From the 1940s to the early 1980s, tungsten ores imported from around the world were smelted at the facility to produce tungsten carbide powder, tungsten wire, and welding rods. The site consists of two tracts of land: the 26-acre property comprising the former Li Tungsten facility, and portions of the 23-acre former Captain's Cove condominium development property. From the late 1950s to the late 1970s, the Captain's Cove area was used as a dump site for the disposal of incinerator ash, sewage sludge, rubbish, household debris, dredged sediments from Glen Cove Creek, and industrial wastes. Typical operations in the extraction process included physical, chemical, and mechanical processes, such as sizing and crushing, gravity separation, magnetic and electrostatic separation, roasting, leaching, flotation, and fusion. These operations resulted in contaminated slag and radioactive ore residuals. The site is divided into four Operable Units (OUs):

OU1– addresses soils and ground water at the former facility;

OU2- addresses soils and ground water at the Captain's Cove property);

OU3- addresses radiological survey of Dice Complex (this OU was discontinued); and

OU4- addresses radioactive slag in Glen Cove Creek.

#### Summary of Site-related Contamination:

Site-related contamination is the result of smelting operations; specifically, disposal practices, slag, and radioactive ore residual. Site operations have contaminated various media (surface soil, sediment, dust/air, and ground water) with numerous contaminants. Li Tungsten operable units are contaminated with inorganic chemicals, radionuclides, pesticides, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), semi-volatile organic compounds (SVOCs), and volatile organic compounds (VOCs).

### **Conclusion of Site-related Risk:**

The primary threats contributing to human health and ecological risks, and the contaminants driving the remedial action, are inorganic chemicals, pesticides, PAHs, PCBs, VOCs, and radionuclides. The major media of concern include soil, dust, ground water, sediment, and surface water. Expose individuals potentially experiencing unacceptable health risk from these media are residential, occupational, recreational, and trespassing receptors. The primary routes of exposure to these media are ingestion (accidental or intentional), inhalation, dermal contact, and external radiation.

In OU1, the primary contributors to human health risk are (1) arsenic (future cancer risk ranges from 1E-06 to occupational receptor from dermal exposure to contaminated ground water to 1E-02 to residential child receptor from ingestion of contaminated soil, and future non-cancer risk hazard quotient [HQ] of 300 to residential child receptor from ingestion of contaminated soil); (2) cadmium (future cancer risk of 9E-03 to residential adult receptor from ingestion of contaminated ground water); (3) thorium-228 (cancer risk ranges from 1E-06 to current trespasser adolescent receptor from external radiation from contaminated sediment to 5E-03 and 8E-03 to future residential and occupational receptors from external radiation from contaminated soil); (4) radium-226 (cancer risk ranges from 1E-06, each, for current trespasser adolescent receptor and future occupational receptor from external radiation from sediment and soil, respectively, to 2E-03 and 3E-03 for future residential and occupational external radiation from soil); (5) radium-228 (future cancer risk of 1E-06, each, for residential child and occupational receptors from external radiation from ground water and soil, respectively, to 3E-03 and 4E-03 for residential adult and occupational receptors, respectively, from external radiation from soil); (6) vinyl chloride (future cancer risk of 2E-06 to occupational receptor from dermal contact with ground water to 3E-03 to residential adult receptor from ingestion of ground water); and (7) 1,1dichloroethene (future cancer risk of 1E-06 to occupational receptor from dermal contact with ground water to 7E-04 to residential adult receptor from ingestion of ground water). In OU2, the primary contributors to human health risk are (1) arsenic (cancer risk ranges from 1E-06 for current trespasser adolescent receptor from ingestion of sediment to 6E-02, 2E-01, and 9E-02 for future occupational, residential adult, and residential child, respectively, from ingestion of ground water, and with non-cancer risk HQs of 400, 1000, and 2000, respectively); (2) thorium-228 (cancer risk ranges from 2E-06 for current trespasser adolescent receptor from external radiation from soil to 7E-03 for future residential adult receptor from external radiation from soil); (3) radium-226 (cancer risk ranges from 5E-06 for current trespasser adolescent receptor from external radiation from soil to 3E-02 for future residential adult from external radiation from soil); (4) radium-228 (future cancer risk ranges from 2E-06 for residential child receptor from external radiation from ground water to 3E-03 residential adult receptor from external radiation from soil); (5) uranium-238 (future cancer risk ranges from 3E-06 to 1E-03 for occupational and residential adult receptor, respectively, from external radiation from soil); (6) vinyl chloride (future cancer risk ranges from 1E-06 to 4E-04 and 6E-04 for residential adult, occupational, and residential child receptors, respectively, from ingestion of ground water). In OU4, the primary contributors to human health risk are (1) radium-226 (future cancer risk ranges from 8.3E-04 to 3.3E-03 for occupational and residential child receptors, respectively, from external radiation from soil; additionally, occupational and residential adult receptors' ingestion of ground water yields future cancer risks of 1.2E-04 and 3.3E-04, respectively); (2) radium-228 (future cancer risk ranges from: 1.7E-02 and 8.5E-03 for occupational and residential child receptors, respectively, from external radiation from soil; 1.3E-03 and 1.7E-02 for residential adult receptor from ingestion of soil and ground water, respectively; and 2.1E-03 for residential child receptor from ingestion of ground water); and (3) thorium-228 (current and future cancer risk of 1E-03 for recreational adolescent receptor from external radiation from sediment; cancer risk ranges from 1.4E-02 to 5.8E-02 for residential child and adult receptors, respectively, from external radiation from surface soil).

Terrestrial and aquatic birds and small mammals may also experience elevated exposure risks as a result of contact with contaminated soil, sediment, surface water, and food items. Ecological risks have been identified for a number of avian and mammalian species, as well as terrestrial plants and invertebrates, and aquatic biota from exposure to inorganic chemicals, PAHs, pesticides, PCBs, VOCs, and radionuclides in OU1 and OU2. The pathways analyzed include ingestion of food items, soil, sediment, and surface water; direct uptake from soil; and combined exposure pathways. The primary contributors to risk to aquatic organisms from surface water are (1) pesticides (HQ 9100 from 4,4'-DDD; HQ 4600 from 4,4'-DDT); (2) PCBs (HQ of 1000 from all PCBs); and (3) metals (HQ of 2880 from cobalt; HQ of 905 from silver; HQ of 533 from iron). The primary contributors to ecological risk to avian receptors from ingestion of soil, sediment, surface water and food items include (1) zinc (HQ of 2380 to the American Robin and 1280 to the Mallard); (2) selenium (HO of 2350 to the Mallard and 1510 to the American Robin); and (3) lead (HQ of 1600 to the American Robin and 422 to the Mallard). The primary contributors to ecological risk to mammalian receptors include (1) selenium (HQ of 39800 to the Raccoon, 9380 to the Red Fox, and 4740 to the Deer Mouse); (2) antimony (HQ of 14400 to the Red Fox, 7640 to the Deer Mouse, and 582 to the Raccoon); (3) arsenic (HQ of 12000 to the Red Fox, 11900 to the Raccoon, and 7660 to the Deer Mouse); and (4) aluminum (HQ of 7970 to the Red Fox, 6960 to the Raccoon, and 4270 to the Deer Mouse). The primary contributor to ecological risk to soil invertebrates from direct contact with soil and ingestion of food items and soil is (1) chromium (HQ of 4050). The primary contributors of risk to terrestrial plants from direct uptake from soil are (1) chromium (HQ of 1620); (2) aluminum (HQ of 1130); and (3) antimony (HO of 1120).

# Human Health Risk Driver(s).

| Operable Unit 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Operable Unit 1:<br/>Soil, Cancer <ul> <li>Future Worker, Ingestion, Dermal Contact, and External Radiation</li> <li>Arsenic, Radium-226, Radium-228, Thorium-228</li> <li>Future Child and Adult Resident, Ingestion, Dermal Contact, and External Radiation</li> <li>Arsenic, Lead-210, Radium-226, Radium-228, Thorium-228</li> <li>Current Trespasser, Ingestion, Dermal Contact, and External Radiation <ul> <li>Arsenic, Thorium-228</li> </ul> </li> <li>Current Trespasser, Ingestion, Dermal Contact, and External Radiation <ul> <li>Arsenic, Thorium-228</li> </ul> </li> <li>Soil, Non-Cancer <ul> <li>Future Worker, Ingestion and Dermal Contact</li> <li>Antimony, Arsenic</li> <li>Future Child and Adult Resident, Ingestion and Dermal Contact</li> <li>Antimony, Arsenic, Manganese, Nickel</li> </ul> </li> <li>Future Trespasser, Ingestion and Dermal Contact</li> <li>Antimony, Arsenic, Manganese, Nickel</li> <li>Future Trespasser, Ingestion <ul> <li>Arsenic</li> </ul> </li> <li>Ground Water, Cancer</li> <li>Future Worker, Ingestion and Dermal Contact</li> <li>1,1-Dichloroethane, Arsenic, Tetrachloroethene, Vinyl Chloride</li> <li>Future Child and Adult Resident, Ingestion and Inhalation</li> <li>1,1-Dichloroethane, Arsenic, Cadmium, Tetrachloroethene, Trichloroethene, Vinyl Chloride</li> </ul> </li> </ul> | <ul> <li>Ground Water, Non-cancer <ul> <li>Future Child and Adult Resident, Ingestion and Dermal Contact</li> <li>1,2-Dichloroethane, Antimony, Arsenic, Trichloroethene</li> <li>Future Worker, Ingestion and Dermal Contact</li> <li>1,2-Dichloroethane, Antimony, Arsenic</li> </ul> </li> <li>Sediment, Cancer <ul> <li>Future Worker, Ingestion, Inhalation, and Dermal Contact</li> <li>Arsenic</li> </ul> </li> <li>Current Trespasser, Ingestion, Dermal Contact, and External Radiation <ul> <li>Arsenic, Radium-226, Thorium-228</li> </ul> </li> <li>Surface Water, Cancer <ul> <li>Current Trespasser, Dermal Contact</li> <li>Arsenic</li> </ul> </li> <li>Dust/Air, Cancer <ul> <li>Cobalt, Manganese</li> <li>Future Worker, Inhalation</li> <li>Cobalt, Manganese</li> </ul> </li> <li>Future Adult Resident and Worker, Inhalation <ul> <li>Cobalt, Manganese</li> </ul> </li> </ul> |
| Operable Unit 2:<br>Ground Water, Cancer<br>– Future Resident, Ingestion and Dermal<br>Contact<br>• Arsenic, Vinyl Chloride<br>– Future Worker, Ingestion<br>• Arsenic, Vinyl Chloride<br>Ground Water, Non-cancer<br>– Future Worker, Ingestion and Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil, Cancer<br>– Future Worker, External Radiation<br>• Radium-226<br>– Future Adult and Child Resident, Ingestion,<br>Dermal Contact, and External Radiation<br>• Arsenic, Lead-210, Radium-226, Radium-<br>228, Thorium-228, Uranium-238<br>Soil, Non-cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

• Arsenic

- Future Adult and Child Resident, Ingestion and Inhalation
  - Arsenic, Chloroform

- rium-228, Uranium-238
- Soil, Non-cancer
  - Future Adult and Child Resident, Ingestion, Dermal Contact, and Inhalation
    - Antimony, Arsenic, Chloroform, Manganese
#### Human Health Risk Driver(s) (cont'd):

<u>Operable Unit 4:</u> *Ground Water, Cancer* – *Future Worker, Ingestion* • Radium-226 – *Future Adult and Child Resident, Ingestion* • Radium-226, Radium-228

Sediment, Cancer

- Current & Future Worker, External Radiation
  - Radium-228
- Current & Future Adult and Child Resident, Ingestion and External Radiation
- Radium-228, Thorium-228
- Soil , Cancer
  - Future Worker, Ingestion and External Radiation
    - Radium-226 Radium-228, Thorium-228, Thorium-232
  - Future Adult and Child Resident, Ingestion and External Radiation
    - Radium-226, Radium-228, Thorium-228, Thorium-232

**Ecological Risk Driver(s):** 

- <u>Operable Units 1 and 2:</u>
  Food, Soil, Sediment, Surface Water

  Avian, Ingestion
  Lead, Selenium, Zinc
  Mammalian, Ingestion
  Aluminum, Antimony, Arsenic, Zinc

  Food and Soil
  - Soil Invertebrates, Ingestion and Direct Contact
    - Chromium
- Direct Uptake from Soil
  - Terrestrial Plants
  - Aluminum, Antimony, Chromium
- Not specified, Aquatic Biota
  - Inorganic Chemicals, Pesticides, PCBs

## **Final Remedy:**

The following outlines the selected remedial actions to address soil, ground water and sediment. *OU1 and OU2 soils* –

- (1) excavation of soils and sediments contaminated above cleanup levels;
- (2) separation of radionuclide-contaminated soil from non-radionuclide soil contaminated with heavy metals;
- (3) offsite disposal of both radionuclide and metals contaminated soil at appropriately licensed facilities;
- (4) offsite disposal of radioactive waste at an appropriately licensed facility;
- (5) building demolition at the facility;
- (6) storm sewer and sump cleanouts at the Li Tungsten facility;
- (7) institutional controls governing the future use of the site; decommissioning of Industrial Well N1917 on Parcel A; and
- (8) collection and offsite disposal of contaminated surface water from Parcels B and C.

## OU 1 and OU2 ground water -

(1) no action; and

(2) long-term groundwater monitoring program to assess the recovery of the Upper Glacial Aquifer after the soil remedy is implemented.

**OU4** –

- (1) construction of a dewatering facility on the Li Tungsten property;
- (2) two phases of Creek dredging to remove radioactive slag materials;
- (3) dewatering of the dredged sediment followed by segregation of slag from the dewatered sediment; and
- (4) off-site transportation and disposal of the radioactive slag at an appropriately licensed facility.

# **MacAlloy Corporation NPL Site Summary**

**EPA ID:** SCD003360476 **Location:** North Charleston, SC **EPA Region:** 4 **Status:** NPL - Final Number of Operable Units: 1 Date of NPL Listing: 2000 Last Operational Year: 1998 Documents Used: RI/FS & ROD

#### Introduction:

The Macalloy Corporation site is a former ferrochromium alloy manufacturing plant located in North Charleston, Charleston County, South Carolina. The site is approximately 140 acres fronting Shipyard Creek in an industrial and commercial section of the Charleston Peninsula, which is formed by the confluence of the Ashley and Cooper rivers. The site was used to manufacture ferrochromium alloy from 1941 to 1998 by several companies and, at various times, the U.S. Department of Defense, by smelting chromium ore in as many as 12 submerged electric arc furnaces. The site and resulting contamination is the result of site smelting operations and storage of ferrochromium alloy, chrome ore, and slag. Waste materials generated during furnace operations included slag; airborne waste gases; fine particulate matter, ashes and dust (PMAD); gas conditioning tower (GCT) sludge and associated wastewater; electrostatic precipitator (ESP) dust; and bag house dust, which were stored in unlined and lined impoundments throughout the site. An estimated 80,000 tons of air pollution control material, consisting of ESP dust and GCT sludge, is contained in an unlined surface impoundment on site. A 20-acre groundwater plume of hexavalent chromium exists below the impoundment. Historically, the facility discharged surface water offsite to the Shipyard Creek (a tributary of the Cooper River) and adjacent wetland areas via a National Pollutant Discharge Elimination System (NPDES) permit. The site was added to the NPL in 2000 because of the threat to human health and the environment posed by the soil and groundwater contamination on the Macalloy property. The site was treated as a single operational unit for the purposes of risk assessment. In 2005, the site was purchased by a third party, which has redeveloped ~20 acres at the southern portion of the site as an industrial park, and an inter-modal shipping facility with Shipyard Creek access is planned for the northern portion of the site.

## Summary of Site-related Contamination:

Site-related contamination is primarily due to alloy manufacturing and smelting; specifically, waste storage and disposal practices, including slag, waste gases, fine particulate matter emission, sludge, wastewater, and unlined impoundments. Site operations have contaminated various media (surface and subsurface soil, shallow ground water, sediment, onsite surface water/storm water, and food [shellfish]) with inorganic chemicals (arsenic, chromium VI, iron, lead, manganese, nickel, and zinc), organic chemicals (benzo[a]pyrene and chloromethane), and radionuclides (radium-226, thorium-232, potassium-40, and uranium-235). Several documented quantities of contamination include (1) approximately 60,000 cubic yards (cy) of soil contaminated with hexavalent chromium; (2) a 20-acre ground water plume of hexavalent chromium; (3) approximately 110 cy of soil and debris with elevated gamma radiation levels; (4) surface water samples associated with storm water that show elevated levels of hexavalent chromium and other inorganic chemicals; and (5) approximately 1,000 cy of sediment contaminated with inorganic chemicals.

## **Conclusion of Site-related Risk:**

The site is currently unused; however, future industrial use is planned.

Site-wide human health risks have been identified from exposure to inorganic chemicals (antimony, arsenic, chromium VI, iron, and manganese) and organic chemicals (benzo[a]pyrene equivalents). The pathways of concern for human health risks are ingestion of ground water, soil, and food (shrimp). Receptors with potentially unacceptable risk from these media are residential, occupational, and recreational receptors. Elevated risks were identified under future land-use scenarios. The primary contributors of risk to residential receptors are (1) arsenic (lifetime weighted average cancer risks of 2E-04 and 2E-05 from groundwater ingestion and surface soil ingestion, respectively); (2) benzo(a)pyrene equivalent (lifetime weighted average cancer risks of 1E-05 and 5E-06 for soil ingestion and dermal contact, respectively); and, (3) hexavalent chromium (future non-cancer risk HQs of 203 [child] and 86.8 [adult] for residential groundwater ingestion). The primary contributor of risk to onsite occupational receptors is hexavalent chromium (non-cancer risk HQ of 31 from groundwater ingestion). The primary contributor of risk to onsite receptors is arsenic (cancer risk of 2.4E-04, and non-cancer HQ of 3.11 from ingestion of food [shrimp]).

The primary contributors to ecological risk are inorganic chemicals (chromium [total], lead, nickel, and zinc); however, risks were qualitatively stated as being acceptable to benthic organisms through ingestion and direct contact with contaminated sediment.

## Human Health Risk Driver(s):

Operable Unit 00 (site-wide): Soil, Cancer – Future Adult and Child Resident, Ingestion and Dermal Contact • Arsenic, Benzo(a)pyrene Equivalent Ground Water, Cancer – Future Adult and Child Resident, and Worker, Ingestion • Arsenic Ground Water, Non-cancer – Future Adult and Child Resident, and Worker, Ingestion • Chromium (VI) Food (Shrimp), Cancer – Future Recreational User, Ingestion • Arsenic Food (Shrimp), Non-Cancer – Future Recreational User, Ingestion • Arsenic

## **Ecological Risk Driver(s):**

Operable Unit 00 (site-wide):

Sediment

- Current Benthic Organisms, Multiple Routes
  - No Risk Drivers
  - Shrimp contamination will be monitored

## **Final Remedy:**

The selected remedial actions address sediment, ground water, soil, and surface water/storm water are

 to prevent exposure to radiation levels greater than twice the measured background concentration, excavation of ~ 110 cy of radiological soil and debris, with off-site disposal;

- (2) to eliminate exposure to benthic organisms from unacceptable concentrations of chromium, nickel, and zinc, dredging of contaminated sediment in area 001 Tidal Creek, with upland disposal, capping, and restoration;
- (3) to monitor Zone C Shipyard Creek sediment until the preparation of the Five-Year Review Report;
- (4) to prevent exposure to chromium (VI) concentrations in shallow ground water above the maximum contaminant level (MCL) specified by the Safe Drinking Water Act for total chromium (100 μg/L) and to minimize the migration of chromium (VI) from ground water to Shipyard Creek, enhanced *in situ* chemical reduction of contaminated ground water;
- (5) to prevent the leaching of chromium (VI) from site soil to ground water at concentrations exceeding the groundwater cleanup level, on-site chemical reduction of ~ 115,000 cy of soil contaminated with chromium (VI), with stabilization/solidification, i.e., *ex situ* treatment with mechanical mixing;
- (6) to mitigate discharge of contaminants into Shipyard Creek and address the substantive requirements of the Clean Water Act, a comprehensive storm water and sediment control management system; and
- (7) to establish institutional controls and restrictive covenants to limit land use to commercial/industrial purposes and prohibit the use of ground water underlying the property.

# Midnite Mine NPL Site Summary

**EPA ID:** WAD980978753 **Location:** Wellpinit, WA **EPA Region:** 10 **Status:** NPL – Final Number of Operable Units: 2 Date of NPL Listing: 1983 Last Operational Year: 1981 Documents Used: OU1- ROD, RI/FS

#### Introduction:

The Midnite Mine Superfund Site is located on the Spokane Indian Reservation in eastern Washington State, approximately 45 miles northwest of Spokane. The site is located on federal government lands held in trust for the Spokane Tribe of Indians. Mining operations began in 1955 and continued until 1981, excluding a 4-year period in the late 1960s. The site includes an inactive open pit uranium mine as well as the areas impacted by mine-related contamination. About 2.4 million tons of ore and proto-ore were stockpiled on site. Waste rock was used to backfill a series of previously mined pits, construct roads, and grade the site, or was dumped in piles. Pit 3 and Pit 4 were not backfilled and remain open. The site is divided into two Operable Units (OUs): OU1 (Mined Area and Mining Affected Area) consists of the mined area, the gravel haul roads at and near the mine and areas of ground water, surface water, sediments, and soil affected by the environmental transport of mine-related contaminants; and OU2 (Midnite Mine Haul Route) consists of areas along the paved road where ore or waste spilled in transit to the mill or was dumped, leading to levels of gamma radiation that posed a risk to human health. Prior to the final remedy, a removal action was performed to excavate ore debris in OU2 and stage the debris in OU1.

## Summary of Site-related Contamination:

The site is contaminated primarily with inorganic chemicals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, thallium, vanadium, and zinc) as well as radionuclides (including lead-210, radium-226, radon-222, thorium-228, uranium-234, and uranium-238). These contaminants result from acid mine drainage, radioactive decay, and particulate migration.

## **Conclusion of Significant Site-related Risk:**

The contaminants ultimately driving the site's remedial action are inorganic chemicals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc) and radionuclides (lead-210, radium-226, radon-222, thorium-228, uranium-234, and uranium-238). The major media of concern include soil, surface water, sediment, ground water, air, and contaminated food. All receptors for human health are from the local Indian tribes. The receptors with potentially unacceptable risk are future residents, and current and future non-residential and recreational receptors. The primary routes of exposure to these media include inhalation, ingestion, and external radiation.

Due to the removal action in OU2 and incorporation with OU1, specific risks are reported only for OU1. The primary contributors to human health cancer risk in OU1 include (1) uranium isotopes (risk to future residents from inhalation of ground water of 7E-01 [uranium-234] and 6E-01 [uranium-238]; and inhalation of surface water of 4E-01 [both uranium-234 and uranium-

238]); (2) lead-210 (risk to future residents from plant ingestion of 4E-01 and meat ingestion of 1E-01 and risk to current/future non-residential receptors from meat ingestion of 2E-01); and (3) airborne radon (risk to future residents from inhalation of 2E-01). The primary contributors to non-cancer risk include (1) all contaminants (HQ of 141,653 and 77,347 to future child and adult residents, respectively, from ingestion of plants; HQ of 15,309 from inhalation of ground water by future adult residents; and HQ of 9,767 from inhalation of surface water by future adult residents); and (2) uranium (HQ of 141,070 and 77,029 to future child and adult residents, respectively, from ingestion of plants).

Current ecological risks were identified for many receptors, including periphyton, benthic macroinvertebrates, fish, terrestrial soil community, terrestrial plants, amphibians, wetland plants, wetland invertebrates, mammals (with various feeding strategies), and birds (with various feeding strategies) from exposure to inorganic chemicals and radionuclides. The primary contributors to ecological risk in OU1 are (1) zinc (HQ of 1370 for direct contact with surface water by amphibians; HQ of 381 for terrestrial plants exposed to contaminated surface soil through unspecified routes), (2) uranium (HQ of 728 for wetland plant exposed to contaminated sediment through unspecified routes; HQ of 214.1 for wetland invertebrates exposed to contaminated sediment through unspecified routes), (3) copper (HQ of 116.7 for amphibians exposed to contaminated surface water through direct contact), and (4) chromium (HQ of 165 for the terrestrial soil community exposed to contaminated soil through unspecified routes).

#### Human Health Risk Driver(s):

| <u>Operable Unit 1:</u>                                   |
|-----------------------------------------------------------|
| Ground Water, Cancer                                      |
| – Future Resident, Inhalation                             |
| <ul> <li>Uranium-234, Uranium-238</li> </ul>              |
| Ground Water, Non-cancer                                  |
| – Future Adult Resident, Inhalation                       |
| <ul> <li>All Contaminants (Inorganic chemical</li> </ul>  |
| Radionuclides)                                            |
| Surface Water, Cancer                                     |
| – Future Resident, Inhalation                             |
| <ul> <li>Uranium-234, Uranium-238</li> </ul>              |
| Surface Water, Non-cancer                                 |
| – Future Adult Resident, Inhalation                       |
| <ul> <li>All Contaminants (Inorganic chemical)</li> </ul> |
| Radionuclides)                                            |
| Food (plants), Cancer                                     |
| – Future Resident, Ingestion                              |
| • Lead-210                                                |
| Food (plants), Non-cancer                                 |
| – Future Child and Adult Resident, Ingestion              |
| All Contaminants (Inorganic chemical                      |
| Radionuclides)                                            |
| - /                                                       |
|                                                           |

Food (meat), Cancer – Current & Future Non-Resident, Ingestion • Lead-210 Indoor Air, Cancer –Future Resident, Inhalation

Radon

#### **Ecological Risk Driver(s):**

- <u>Operable Unit 1:</u> Surface Water - Current Amphibian, Direct Contact • Copper, Zinc Surface Soil - Current Terrestrial Plant Community, Unspecified Route • Chromium, Zinc Sediment - Current Wetland Plant Community, Unspecified Route • Uranium - Current Wetland Invertebrates, Unspecified
  - Current Wetland Invertebrates, Unspecified Route
    - Uranium

## **Final Remedy:**

Prior to the final remedy, a removal action was performed to excavate ore debris in OU2 and stage the debris in OU1. The final remedy addresses site-wide contamination in soil, ground water, surface water, and sediment. The remedy helps mitigate risks from direct contact with soil and radiation exposure as well as risks related to contaminated water. The remedial actions taken for the entire site include

- (1) excavation and containment of mine wastes in pits,
- (2) seep and pit water collection and treatment,
- (3) residuals waste management,
- (4) surface water and sediment management,
- (5) monitored natural attenuation of ground water,
- (6) institutional controls and access restrictions,
- (7) long-term site management, and
- (8) contingent actions for sediment cleanup and acid rock drainage reduction.

The amount of each media remediated/removed was not documented.

# Mine Site 2028 Removal Site Summary

**EPA ID:** INN000510234 **Location:** Brazil, IN **EPA Region:** 5 **Status:** Removal – Time Critical Number of Operable Units: 1 Date in CERCLIS: 2007 Last Operational Year: 1926 Documents Used: Action Memorandum & Site Assessment Report

#### Introduction:

Mine Site 2028 is located immediately west of 911 West Hendrix, in Brazil, Indiana (which, as of July 2006, had a population of 8,212). The area around Brazil has hosted a large number of companies that produce ceramic products ranging from ceramic pumps to tiles and bricks. In addition, Brazil has large deposits of shale, clay, and coal. Mine Site 2028 contains two large ponds and former clay/coal pits. Mining operations were conducted from 1896 until 1926. Coal was located at a depth of 80 feet and was found in a seam 4 feet thick. Due to former underground mining on this property, there are numerous subsidence areas. Mine Site 2028 is bordered by a trucking company to the east, residential areas to the east and southeast, and mixed farmland/residential/light industrial to the west and north. Mining operations and drum disposal have led to site-wide contamination. It was estimated that approximately 1,000 cubic yards of soil were contaminated along with the presence of approximately 306 drums. In addition to the physical hazard represented by the compromised land surface, deteriorating drums containing potentially combustible materials could pose a fire and explosion hazard. For these reasons, the Agency for Toxic Substances and Disease Registry (ATSDR) concluded that site conditions posed a potential public health hazard and recommended removal of the drums to be protective of the health of area residents.

## **Summary of Site-related Contamination:**

Site-related contamination is the result of mining operations, specifically large waste ponds and clay/coal pits. During the May 2007 site assessment, four drum and six soil samples were collected, of which, two drums were found to exceed 40 CFR §261.24, toxicity characteristic, which defines waste that is hazardous due to certain characteristics. Specifically, the 40 CFR §261.24 regulatory levels were exceeded for cadmium and lead, which are, respectively, 1 and 5 milligrams per liter (mg/L). The highest toxicity characteristic leaching procedure (TCLP) drum results are 11 mg/L for cadmium and 29 mg/L for lead. The highest total concentration in soil is 520 parts per million (ppm) for cadmium and 5,000 ppm for lead. Given that only four drums were sampled, and as many as 200 drums were counted in the area, there is a possibility that greater levels of contamination and other contaminants besides metals are present in the drums and in the soils around the drums. The site is contaminated with other inorganic chemicals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, cobalt, copper, hexavalent chromium, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc).

## **Conclusion of Site-related Risk:**

The primary threats contributing to human health, and the contaminants found to exceed the Indiana Department of Environmental Management's (IDEM's) Risk Integrated System of Closure (RISC) guidelines, are inorganic chemicals (antimony, arsenic, barium, cadmium, hexavalent chromium, lead, and mercury). These contaminants are found in varying combinations in soil and deposited drums, with the potential threat to migrate to ground water. Although it is unlikely that chronic exposures would occur at the location of the drums, a residential area lies to the east and southeast of the site within half a mile. Because access to the site is not restricted, even intermittent exposures on the property are possible.

Due to the time-critical removal as a result of ATSDR site assessment, no human health or ecological risk assessments were conducted. According to the health consultation prepared by ATSDR, concentrations of antimony, cadmium, hexavalent chromium, and lead exceed ATSDR's risk-based health criterion by as much as 48 times for antimony, 20 times for lead, and 10 times for cadmium. Human health cancer and non-cancer risks were not specifically quantified for this site.

Although the primary contributors to ecological risk were not evaluated for this site, it is reported that the Indiana Bat, a federally endangered species, inhabits the area and may be impacted by site contamination.

## **Final Remedy:**

The selected remedy directly addresses contaminated soil and waste drums and indirectly mitigates migration of contamination into ground water. The overall approach for the removal action involves

- (1) cleaning and grubbing of vegetation,
- (2) drum removal from sinkhole (306 drums),
- (3) drum disposal, and
- (4) backfilling of sinkholes with various rocks overlain with clay and re-vegetation of the area.

# Monsanto Chemical Co. (Soda Springs Plant) NPL Site Summary

**EPA ID:** IDD081830994 **Location:** Soda Springs, ID **EPA Region:** 10 **Status:** NPL - Final Number of Operable Units: 1 Date of NPL Listing: 1990 Last Operational Year: Currently in operation Documents Used: RI/FS & ROD (Various by OU)

#### Introduction:

Since 1952, the Monsanto Chemical Company has produced elemental phosphorus from locally mined phosphate ore in southeastern Idaho, 1 mile north of Soda Springs, Caribou County, Idaho. The 530-acre site is in a broad valley near the western base of the Aspen Range. Monsanto's Soda Springs plant generates a number of process waste streams containing inorganic compounds. Most liquid and solid wastes are stored or treated in onsite ponds or piles. Slag constitutes the greatest quantity of waste. Molten slag is tapped from the base of the electric air furnaces and poured out to cool in piles. The piles cover a large portion of the site and are more than 150-feet high. Groundwater contamination sources at the site were identified as a leaky hydro-clarifier and several unlined ponds. Monsanto has discontinued use of the old ponds, installed new lined ponds, and replaced the old hydro-clarifier. Onsite monitoring wells and sediments in an old unlined pond, having received process wastewater, were shown to be contaminated with inorganic chemicals (arsenic, cadmium, and chromium). Within 3 miles of the site are public springs and private wells that provide drinking water to an estimated 3,000 people. Water discharging from an onsite pond to Soda Creek, 2,000 feet away, is contaminated with cadmium. Water withdrawn from Soda Canal, 1.2 miles downstream, is used to irrigate 4,040 acres. There is only one Operable Unit (OU 00) designated for site-wide contamination at the Soda Springs plant.

#### **Summary of Site-related Contamination:**

Site-related contamination is the result of mining operations; specifically, liquid and solid wastes stored and treated in onsite ponds and piles, including slag. In addition, leaking equipment, such as the hydro-clarifier, contributed to groundwater contamination. Site operations have contaminated various media (ground water, soil, surface water, sediment, and air) with inorganic chemicals (primarily arsenic, beryllium, cadmium, fluoride, and selenium) and radionuclides (primarily lead-210, radium-226, thorium-230, and uranium-238) for onsite industrial and residential receptors (children and adults).

## **Conclusion of Site-related Risk:**

The current exposure routes for residential receptors include external gamma radiation and the ingestion or inhalation of soils/dust. Industrial receptors' current exposure risks include external radiation and the ingestion or inhalation of source pile/waste materials. There is no current pathway for groundwater ingestion; however, if drinking water wells are installed in the future, groundwater ingestion may be a concern. Future exposure routes of concern for residential receptors include external gamma radiation and the ingestion or inhalation of soils, particulates, and ground water. Industrial receptors' future exposure risks include external radiation and the ingestion or inhalation of source pile/waste materials. More specifically, the primary threats to human health and the environment, and the contaminants driving the remedial action, are inorganic chemicals (arsenic, beryllium, cadmium, fluoride, and selenium) and radionuclides (lead-210, radium-226, thorium-230, and uranium-238).

Site-wide, the primary contributors to human health risks are (1) radionuclides (current cancer risk from 2E-03 [radium-226] for residential and industrial receptor external radiation with soil/source materials to 2E-06 for industrial receptor inhalation of source pile/waste material [thorium-230 and uranium-238, respectively]); (2) radium-226 (future cancer risk ranging from 2E-03 for residential and industrial receptor external radiation exposure to 1E-06 for industrial receptor ingestion of soil/source materials); (3) arsenic (future cancer risk ranging from 9E-05 for future residential ingestion of soil, particulates, and ground water to 1E-06 for current residential inhalation of soil/dust); and (4) total contaminant exposure (cancer risk ranging from 1E-04 [inorganic chemicals] for future residential exposure to soil, particulates, ground water, and gamma radiation via all exposure routes to 5E-04 [radionuclides] for future industrial exposure to source pile/waste materials via all exposure routes).

The site-wide ecological risks appeared to be minimal soil risks to mammals and plants outside the Monsanto plant boundaries; however, the discharge of contaminants into Soda Creek could lead to surface water and sediment risks for sensitive aquatic organisms. The primary contributors to ecological risk were not quantified, but may include inorganic chemicals: (1) cadmium, (2) fluoride, (3) selenium, and (4) zinc. The final ecological assessment concluded that ecological impacts were unlikely and that ecological risk-based target cleanup levels should not be used to set remediation goals.

#### Human Health Risk Driver(s):

<u>Operable Unit 00 (site-wide):</u> Source Pile/Waste Materials – Current & Future Worker • Arsenic and Radium-226 Soil/Particulate/Ground Water/Gamma – Current Resident

- Arsenic, Beryllium, Radionuclide (cumulative)
- Soil/Particulate/Ground Water/Gamma
  - Future Resident
    - Arsenic, Beryllium, Lead-210, Radium-226, Uranium-238

#### **Ecological Risk Driver(s):**

Operable Unit 00 (site-wide):

- Combined Pathways, Multiple Routes
  - Cadmium, Fluoride, Selenium, Zinc

## **Interim Remedy:**

Actions taken by Monsanto in conjunction with EPA's activities pursuant to CERCLA have resulted in significant improvements to the plant and reduced emissions prior to the final remedy. Groundwater remedial actions included

(1) replacing the hydro-clarifier,

- (2) abandoning four wells in accordance with regulatory guidelines,
- (3) taking the underflow solids ponds out of service,

- (4) closing and excavating the northwest pond,
- (5) installing a new plant drinking water well, and
- (6) installing recovery wells to intercept contaminated ground water.

Emissions remedial actions included

- (1) installation of a new dryer and dust collector,
- (2) installation of four high-energy venture scrubbers, separators, fans, and stacks for additional scrubbing of kiln exhaust,
- (3) improved handling procedures of crushed slag in the baghouse dust disposal,
- (4) implementation of emissions controls in the nodule reclaim area, and
- (5) use of dust suppressants for on-plant stockpiles.

## **Final Remedy:**

The selected remedy addresses ground water, industry property soils, and non-industrial property soils and reduces risks to onsite workers and residents. The remedy addresses contaminated ground water by monitoring natural attenuation with institutional controls. The ground water is not being used as a direct source for drinking water, so natural attenuation should mitigate risk. The remedy addresses contaminated soils through

- (1) institutional controls through land-use restrictions placed on plant property and
- (2) giving residential property owners in contaminated areas the choice to have their property either
  - (a) cleaned up via evacuation, containment, and replacement of soils or
  - (b) rendered protective of human health and the environment via land-use restrictions in the form of environmental easement held by the responsible party.

Past remedial measures, including ongoing engineering and institutional controls and compliance with regulations, have reduced onsite worker exposure to risks posed by source piles and materials within the plant. No significant human health concerns or environmental impacts were found related to air, surface water, or Soda Creek sediments, so the selected remedy did not address these media.

## National Southwire Aluminum Co. NPL Site Summary

**EPA ID:** KYD049062375 **Location:** Hawesville, KY **EPA Region:** 4 **Status:** NPL - Final Number of Operable Units: 1 Date of NPL Listing: 1994 Last Operational Year: Currently in Operation Documents Used: Interim ROD, Final ROD, RI/FS

#### Introduction:

The National Southwire Aluminum (NSW) facility is an active aluminum refining operation and a subsidiary of the Southwire Company. The site is located on approximately 900 acres in Hancock County, Kentucky, and has been in use since 1969. The operation produces primary aluminum from alumina ore. The site includes a number of manufacturing and service buildings, three former waste disposal impoundments, one active wastewater impoundment, several former waste disposal landfills, a potliner accumulation building, and a drainage ditch. The production process and materials are responsible for contamination at the site. The primary mode of contamination is produced in the carbon linings of reduction vessels (pots) during the production of aluminum. The NSW facility currently generates approximately 3,000 tons/year of spent potliners. The NSW NPL site is evaluated under one Operable Unit (OU00), which includes site-wide contamination.

#### Summary of Site-related Contamination:

Site-related contamination is the result of aluminum refining operations; specifically, waste disposal impoundments, wastewater impoundments, landfills, spent potliners, and a drainage ditch. Site operations have contaminated various media (surface soil, subsurface soil, sediment, surface water, and ground water) with numerous contaminants. Contamination at the site consists of inorganic chemicals (aluminum, barium, beryllium, cadmium, chromium, copper, fluoride, iron, lead, manganese, nickel, vanadium, and zinc) and organic chemicals (1,2-dichloroethane, 2-methylnaphthalene, 2,4-dimethylphenol, 4-methylphenol, acenaphthene, acenaphthylene, aroclor 1242, aroclor 1248, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, butylbenzylphthalate, chrysene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]pyrene). These contaminants appear to be migrating from the Old South Pond into the center of the North Plume.

#### **Conclusion of Site Risk:**

The primary current threats to human health, and the contaminants driving the remedial action, are one inorganic chemical (beryllium) and organic chemicals (aroclor 1242, aroclor 1248, benzo[a]anthracene, benzo[a] pyrene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]pyrene). The major media of concern for human exposure to organic and inorganic contaminants are soil, surface water, and combined exposure from all media. Current receptors of contamination from these media are site visitors (adults and adolescents) and occupational workers. The primary routes of exposure to these media are ingestion, dermal contact, and inhalation.

The primary contributors to current human health risk at the site are (1) exposure to combined contaminants in soil from all routes to onsite visitor adolescent receptors (current cancer risk of 2E-05]); (2) exposure to combined contaminants in all media from all routes to

onsite site visitor adult and adolescent receptors (current cancer risk of 2.0E-05); (3) exposure to benzo(a)pyrene in soil through all routes to onsite site visitor adolescent and adult receptors (current cancer risk of 1.4E-05 and 1.3E-05, respectively); and (4) exposure to benzo(a)pyrene from soil ingestion to onsite adolescent receptors (current cancer risk of 1.0E-05).

Current pathways of concern for ecological risks include (1) ingestion, respiration, and direct contact with sediment (benthic organism receptors); (2) ingestion, respiration, and direct contact with surface water (fish receptors); (3) ingestion and direct contact with surface soil and subsurface soil (terrestrial invertebrate receptors); and (4) uptake of chemicals in surface soil and subsurface soil via roots (terrestrial plant receptors). The primary contributors to ecological risk, for which no specific receptors were quantitatively identified, are (1) beryllium (current HQ of 1410 from sediment exposure]); (2) acenaphthylene (current HQ of 920 from surface soil exposure); (3) butylbenzylphthalate (current HQ of 385 from surface soil exposure); (4) acenaphthene (current HQ of 280 from surface soil exposure); (5) iron (current HQ of 260.5 from surface soil exposure); (6) aroclor 1242 (current HQ of 123.3 from surface soil exposure); (7) combined PAH exposure (current HQ of 99.8 from surface soil exposure); (8) chrysene (current HQ of 97.3 from surface soil exposure); (9) 4-methylphenol (current HQ of 92 from surface soil exposure); and (10) benzo(a)anthracene (current HQ of 80.6 from surface soil exposure).

## Human Health Site-related Risks:

Operable Unit 00 (site-wide):

Soil, Cancer

- Current Adolescent and Adult Site Visitor, Combined Routes
  - Combined Inorganic and Organic Contaminants, Benzo(a)pyrene

## Combined Media, Cancer

– Current Adult Site Visitor, Combined Routes

• Combined Inorganic and Organic Contaminants

#### All Media, Cancer

- Current Adolescent Site Visitor, Combined Routes
  - Combined Inorganic and Organic Contaminants

## **Ecological Site-related Risks:**

Operable Unit 00 (site-wide):

- Sediment
  - Current (receptor not specified) Combined Routes
    - Beryllium

Surface Soil

- Current (receptor not specified) Combined Routes
  - Acenaphthylene, Butylbenzylphthalate, Benzo(a) pyrene, Acenaphthene, Iron, Aroclor-1242, Total PAHs, Chrysene, 4-Methylphenol, Benzo(a)anthracene

## **Interim Remedy:**

In response to evidence of cyanide- and fluoride-contaminated groundwater plumes, interim remedial actions were sought. The Old North Pond was closed using a synthetic liner, clay, and soil in 1986. It was necessary to take action at the Old South Pond to prevent additional infiltration of rainwater, facilitating mobilization of contaminants from the Old South Pond into the North Plume. Remediation of the Old South Pond began in mid-1995, beginning with a removal action that significantly reduced the hydraulic loading of the area and mitigated the migration of contaminants into the local ground water. This was followed by a new pump-and-treat system, which was able to operate more efficiently due to the removal because it would not

be overly affected by Old South Pond contaminants. The volume of ground water treated was not documented.

## **Final Remedy:**

The selected remedy addresses ground water, soil, sediment, and surface water media and reduces risks to onsite workers and site visitors from the surface soil and surface water. In addition, the remedy mitigates contaminant migration to ground water and surface water from source materials. The site was divided into contaminant areas to more effectively address the risk. The overall remedial actions taken include

- (1) excavation of onsite soils with offsite disposal, deed restrictions, and installation of a physical barrier (fence), monitoring, and a cap and vegetative cover;
- (2) excavation of sediment and onsite disposal (cap); and
- (3) collection and treatment of leachate.

Approximately 850 cubic yards of PCB-contaminated soils, 4,200 cubic yards of other contaminated soils, and 2,000 cubic yards of contaminated sediment were excavated and disposed of.

# **Omaha Lead NPL Site Summary**

**EPA ID:** NESFN0703481 **Location:** Omaha, NE **EPA Region:** 7 **Status:** NPL - Final Number of Operable Units: 2 Date of NPL Listing: 2003 Last Operational Year: 1997 Documents Used: RI/FS & RODs (Various by OU)

## Introduction:

The Omaha Lead site, located in Douglas County, Nebraska, includes surface soils present at residential properties, child care facilities, schools, and other residential-type properties in eastern Omaha that have been contaminated as a result of air emissions from lead smelting operations. The total area of the Omaha Lead site is approximately 8,840 acres. Multiple facilities were involved in activities contributing to lead contamination at the site. The ASARCO facility conducted lead refining operations from the early 1870s until 1996. The ASARCO facility is located on approximately 23 acres on the west bank of the Missouri River in downtown Omaha. During the operational period, lead and other heavy metals were emitted into the atmosphere through smoke stacks. The pollutants were transported downwind in various directions and deposited on the ground surface due to the combined process of turbulent diffusion and gravitational settling. In addition, Gould, Inc. operated as a lead battery recycling plant and was considered a secondary lead smelter in the area. The Gould, Inc. plant closed in 1982. Soil testing of approximately 35,000 residential properties has revealed widespread lead contamination over eastern Omaha. The lead contamination is found in surface soils that are accessible and pose a risk to children 6 years of age and younger. In addition, the Douglas County Health Department has been screening children for lead poisoning for approximately 25 years. This blood lead screening has shown that several ZIP codes in close proximity to the former lead refinery have a high occurrence of elevated blood lead levels in young children. Lead is classified by the U.S. Environmental Protection Agency (EPA) as a probable human carcinogen and a cumulative toxicant. Due to the extent of contamination, the site response was divided into two operable units (OUs). OU1 addresses high child impact properties and the most highly contaminated Omaha Lead Site properties, and OU2 addresses the remaining properties that exceed risk-based soil lead levels.

## **Summary of Site-related Contamination:**

Site-related contamination is the result of smelting operations; specifically, lead particulates in air emissions from smelter stacks. Site operations have contaminated surface soil media and dust particulates with several inorganic contaminants (aluminum, antimony, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, thallium, vanadium, and zinc).

## **Conclusion of Site-related Risk:**

The primary threats contributing to human health risks, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (antimony, arsenic, lead, mercury, and thallium). The major medium of concern for human exposure to inorganic contaminants is soil. The receptors with potentially high risk from contaminated soil are current residential adults and children. The primary routes of exposure to contamination are ingestion (accidental or intentional) and dermal contact.

Site-wide, the primary contributors to human health risk are (1) arsenic [current cancer risks of 1E-03 to residential receptors from surface soil ingestion and dermal contact combined; non-cancer HQs values of 24 and 3 for ingestion and dermal contact of soil by residential children and adults, respectively]; (2) lead [32% of total properties analyzed for lead levels had elevated blood lead levels in current residential children (P10 values exceeded by 5%)]; (3) mercury [current HQs of 17 and 2 for ingestion and dermal contact of soil by residential children and adults, respectively]; and (4) thallium [current HQs of 11 and 1 for ingestion and dermal contact of soil by residential children and adults, respectively].

No ecological risks are available for the Omaha Lead Site because an ecological risk assessment was deemed inappropriate due to site operations and a lack of sufficient habitat.

#### **Site-Wide Human Health Risk Driver(s)**:

**Site-Wide Ecological Risk Driver(s):** *Ecological risk assessment was not conducted* 

Surface Soil

Current Resident, Ingestion (Blood Lead Levels)
Lead

Surface Soil, Cancer

Current Adult and Child Resident, Ingestion and Dermal Contact
Arsenic

Surface Soil, Non-cancer

Current Adult and Child Resident, Ingestion and Dermal Contact
Ansenic

## **Interim Remedy:**

A time-critical removal action was performed addressing OU1 (High Child Impact Properties) are

- (1) excavation, backfilling, and re-vegetation of lead-contaminated residential soils in an estimated 5,600 residential-type properties exceeding 800 parts per million (ppm) and properties exceeding 400 ppm considered high child impact areas or with a residing child exhibiting an elevated blood lead level;
- (2) participation in a comprehensive remedy with other organizations and agencies to characterize and address all identified sources of lead exposure at the site;
- (3) stabilization of exterior lead-based paint that threatens the long-term protectiveness achieved through excavation and replacement of lead-contaminated surface soils;
- (4) removal of interior dust in instances where contaminated soils contribute to interior lead dust loadings; and
- (5) health education for the Omaha community and medical professionals to support public awareness; exposure prevention programs; in-home assessments; blood-lead screening programs; and diagnosis, treatment, and surveillance programs.

## **Final Remedy:**

The selected remedial actions address soil for OU2 (Remaining Properties) are

- (1) excavation, backfilling, and re-vegetation of lead-contaminated residential soils in an estimated 9,966 residential-type properties exceeding 400 ppm;
- (2) participation in a comprehensive remedy with other organizations and agencies to characterize and address all identified sources of lead exposure at the site;
- (3) stabilization of exterior lead-based paint that threatens the long-term protectiveness achieved through excavation and replacement of lead contaminated surface soils;
- (4) response to interior dust involving a high efficiency particulate air vacuum program and health education at remediated properties with interior dust lead levels exceeding eligibility criteria; and
- (5) health education for the Omaha community and medical professionals to support public awareness; exposure prevention programs; in-home assessments; blood lead screening programs; and diagnosis, treatment, and surveillance programs.

# **Ophir Mills and Smelter Removal Site Summary**

**EPA ID:** UT0010221516 **Location:** Ophir, UT **EPA Region:** 8

Status: Removal – Time Critical

Number of Operable Units: 1 Date in CERCLIS: 2001 Last Operational Year: Unknown, not currently operating Documents Used: Action Memorandum & Site Assessment Report

## Introduction:

The Ophir Mills and Smelter site is located in Tooele County, south of Salt Lake City, Utah. The town site is located along the intermittent flowing Ophir Creek and between steep mountains both to the north and south, with elevations more than 6,000 feet above sea level. Mining for gold, silver, lead, and zinc took place in an adjoining drainage northeast and southwest of Ophir. Most of the metals were produced between 1870 and the 1930s, and the area includes several mines, two mills, and a smelter. All past workings have been abandoned, leaving behind several old mines, waste rock and tailing piles, and mill foundations scattered throughout the town and surrounding areas. These workings were the source of wastes that have migrated to the residences, as well as to settling ponds along the drainage. These hazardous substances appear to have been released into the residential soils by site-related mining activities and spread in and around the City of Ophir by water drainage and manual and aerial deposition. Presently, the Town of Ophir has a population of 31 full-time residents. There are approximately 23 homes occupied year-round or seasonally. Additionally, there are campsites and vacant areas within the community with soil that contains metal contaminants that vary in degree but are generally high in concentrations of lead and arsenic. Mines and mine waste dumps may be located upgradient of or near the source protection area for Ophir's municipal water sources. These water sources, which include two municipal wells, provide 100 percent of the municipal water supply for Ophir's residents. The removal action was intended to take immediate steps to minimize direct exposure to individuals who come into contact with surficial soils/contaminated dust

## Summary of Site-related Contamination:

Site-related contamination is the result of mining, milling, and smelter operations; specifically, abandoned mines, waste rock and tailing piles, mill foundation debris, and settling ponds. Site operations have contaminated various media (surface soil, dust, sediment, and surface water). The site contaminants present at the site are inorganic chemicals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc).

## **Conclusion of Site-related Risk:**

A soil screening assessment at the site focused on inorganic contaminant levels (primarily arsenic, cadmium, and lead), in surficial and sub-surface soils at occupied and vacant residential lots, tailing piles, Ophir Creek, and other suspected areas of contamination associated with site-related mining operations. Sample analyses showed the presence of arsenic varying from 12 to 2300 parts per million (ppm) and lead from 20 to 54,000 ppm. Due to high levels of arsenic and

lead sampled, no human health or ecological risk assessments were conducted and an immediate, time critical, removal action was conducted to minimize the direct exposure to current residential receptors that come into contact with contaminated soil and dust. The primary routes of exposure to residential soils, increasing health risks, are the current combined exposure via ingestion, inhalation, and dermal contact.

## **Final Remedy:**

The selected remedy addresses soil and vegetation. The remedy includes the following actions:

- (1) contaminated soils will be removed and waste piles on designated residential lots with steep slopes will be stabilized;
- (2) individual residences where soil is removed will be backfilled with clean material, usually sand, and top soil to the original grade and landscaped with sod or other plants, etc.;
- (3) structures and fencing on the properties will be left in place or returned to their original locations if removal is necessary (if fencing cannot be reused, it will be replaced);
- (4) contaminated soils may be consolidated at a staging area and secured in storage prior to disposal; contaminated soils may also be placed in an onsite repository if existing mining waste piles are available;
- (5) existing shrubs and/or bushes (defined as low, densely branched plants that impede soil removal) will be removed and replaced with the same or other locally available species, standard nursery stock, and number of plants;
- (6) existing perennial plants will be removed and replaced with the same (to the extent possible) or similar species, approximate size, and number of plants;
- (7) existing landscape covers and borders will be removed and replaced with equivalent materials in areas requiring remediation; however, the original materials may also be used if soil is removed before replacement and materials are not damaged during removal or they are not contaminated;
- (8) movable buildings and sheds will be temporarily relocated during remediation, if remediation is necessary at that location; and
- (9) prevention of indoor dust will be accomplished by employing dust suppression measures during the Removal Action.

In addition, owners will be asked for permission to remediate their properties. If a property owners refuses to grant permission, that property will not be remediated. Detailed plans will be developed with the owners for each property, and owners will be provided copies. The removal schedule will also be provided to the owner. After the removal has been completed, each owner will review the action with the On-Scene Coordinator OSC and discuss any future activities.

# **Ormet Corporation NPL Site Summary**

**EPA ID:** OHD004379970 **Location:** Hannibal, OH **EPA Region:** 5 **Status:** NPL - Final Number of Operable Units: 1 Date of NPL Listing: 1987 Last Operational Year: Presently in operation Documents Used: RI/FS & ROD (Various by OU)

#### Introduction:

The Ormet Corporation operates an active, primary aluminum smelter on approximately 245-acre tract of land on the Ohio River in Hannibal, Monroe County, Ohio. Since the facility began operations in 1958, its main process has been the reduction of alumina to produce aluminum metal. The site includes the remainder of a 10-acre former spent potliner storage area (FSPSA), five unlined former disposal ponds (FDPs) (totaling approximately18 acres), a construction material scrap dump (CMSD), and a carbon runoff and deposition area (CRDA). From 1958 to 1968, approximately 85,000 tons of spent potliner were placed in the unlined FSPSA. From 1968 to 1981, Ormet removed much of the potliner waste from the FSPSA and transported it to an onsite recovery plant that removed cryolite from the potliner. Approximately 370,000 cubic yards of waste slurry from the cryolite recovery plant was routed to the largest FDP, although the other FDPs may have received minor amounts of cryolite plant waste. The tailings are alkaline and consist primarily of carbonaceous material from the potliner, along with sodium and calcium-based salt. The four smaller FDPs received approximately 50,000 cubic yards of process waste from the air emissions wet-scrubbing system in the form of sludge. From about 1966 until mid-1979, Ormet deposited waste (e.g., construction materials and other miscellaneous plant debris, including capacitors and spent potliners) in the CMSD. In 1972, following the identification of high groundwater levels of fluoride coming from one of the FDPs, two extraction wells were installed to intercept the contaminated groundwater plume before it reaches the process water well on the reduction plant property; these wells have operated continuously through the present day. This contaminated ground water is sent to an onsite treatment plant. Since 1980, spent potliner material generated by the plant has been transported off site for disposal. The CRDA contains carbon deposits, probably carried there by stormwater runoff from an area of the Ormet plant where spent graphite anodes were crushed in a mill. The site has one operable unit (OU), which is addressed by the human health and ecological risks.

## **Summary of Site-related Contamination:**

Site-related contamination is the result of smelting operations and aluminum production; specifically, a potliner storage area, unlined disposal pond impoundments, a scrap dump, and a carbon run-off and deposition area. Site operations have contaminated various media (soil, sediment, surface water, and ground water) with numerous contaminants. Ground water is contaminated with inorganic chemicals (arsenic, beryllium, fluoride, vanadium, and manganese) and also cyanide compounds and tetrachloroethene (PCE). Soils and sediments in a backwater area were contaminated with inorganic fluoride, cyanide, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). In addition to defining the contamination found in the disposal areas, seeps were discovered during the Remedial Investigation near the Plant Recreational Area ball fields and along the western edge of the CMSD. The seeps contained cyanide ranging in concentrations from 79 to 950 parts per billion (ppb).

## **Conclusion of Site-related Risk:**

The primary threats contributing to human health risk, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (arsenic, beryllium, fluoride, manganese, and vanadium), PAHs (tetrachloroethene), and PCBs. The media of concern for human exposure to contaminants are soil, surface water, ground water, sediment, air, and contaminated fish. The receptors with potentially unacceptable risk from these media are current residential adults and trespassers, future residential children and adults, and occupational receptors. The primary routes of exposure to these media are ingestion (accidental or intentional), dermal contact, and inhalation.

In OU1, the primary contributors to human health risk are (1) carcinogenic contaminants (current cancer risk of 1E-01, 2E-04, and 2E-05 for residential adult ingestion of fish, trespasser ingestion of sediment [PCBs and PAHs], and trespasser dermal contact of sediment, respectively; future cancer risk for residential receptors ranging from 7E-06 to 7E-03 [arsenic, beryllium, vanadium, PAHs, and PCBs] for the inhalation of air and ingestion of soil, respectively; future occupational cancer risks of 1E-03 [arsenic, beryllium, fluoride, manganese, vanadium, cyanide, and PCE] for ingestion of ground water); and (2) non-carcinogenic contaminants (future noncancer HQs of 600 [arsenic, beryllium, fluoride, manganese, vanadium, cyanide, and PCE], 100, and 30 [arsenic, beryllium, fluoride, manganese, vanadium, cyanide, and PCE] for residential child, residential adult, and occupational receptors ingestion of ground water, respectively).

In OU1, ecological risks have been identified from exposure to inorganic chemicals (antimony and lead) and organic chemicals, such as cyanide and semi-volatiles (PAHs and PCBs). The pathways of concern to ecological receptors are surface water and sediment. The ecological receptors with potentially unacceptable risk from these media are current aquatic organisms. Although not quantified, the potential ecological risks were reported as sub-lethal and adverse or other toxic effects. Additionally, two state endangered species are found in the general vicinity of the site: the Ohio Lamprey and Channel Darter.

Arsenic, Beryllium, Vanadium, PAHs,

and PCBs

## Human Health Risk Driver(s):

Sediment, Cancer Operable Unit 1: Food-Fish, Cancer - Current Trespasser, Ingestion - Current Adult Resident, Ingestion • PAHs and PCBs • Carcinogenic Contaminants Soil. Cancer - Future Resident and Trespasser, Ingestion Air, Cancer - Future Resident, Inhalation • Carcinogenic Contaminants Ground Water, Cancer Surface Water, Cancer - Future Resident, Ingestion and Dermal - Future Resident and Worker, Ingestion **Contact** • Arsenic, Beryllium, Fluoride, Manganese, • Carcinogenic Contaminants Vanadium, Cyanide, Tetrachloroethene Ground Water. Non-cancer **Ecological Risk Driver(s):** - Future Adult and Child Resident and Operable Unit 1: Worker, Ingestion Surface Water and Sediment • Arsenic, Beryllium, Fluoride, Manganese, - Current Aquatic Organisms Vanadium, Cyanide, Tetrachloroethene • Antimony, Lead, Cyanide, PCBs, and **PAHs** 

## **Final Remedy:**

The selected remedy addresses ground water, leachate, soil, and sediment and reduces risks associated with exposure to contaminated media. Additionally, the remedy mitigates contaminant migration to surface water from ground water and source materials. The overall remedial actions taken include

- pumping of ground water, the use of interceptor wells to maintain the capture zone of contaminated ground water, and subsequent treatment, with discharge into the Ohio River;
- (2) use of trench drains to intercept and extract seeping leachate, with subsequent treatment to National Pollution Discharge Elimination System discharge limits;
- (3) soil excavation, recontouring, and covering, with a dual-barrier cap;
- (4) soil treatment by in-situ flushing;
- (5) sediment dredging, with solidification and capping for sediments with PCB concentrations below 50 ppm and offsite disposal in an EPA-approved disposal facility for those sediments that exceed 50 ppm PCBs; and
- (6) use of institutional controls to limit ground water and land use.

# Palmerton Zinc Pile NPL Site Summary

**EPA ID:** PAD002395887 **Location:** Palmerton, PA **EPA Region:** 3 **Status:** NPL – Final Number of Operable Units: 4 Date of NPL Listing: 1983 Last Operational Year: 1980 Documents Used: RI/FS & ROD (Various by OU)

## Introduction:

The Palmerton Zinc Pile Site is a former primary zinc smelting operation located in Carbon County, Pennsylvania, near the Lehigh Gap and ~15 miles north of Allentown, Pennsylvania. The site and resulting contamination originates from Palmerton smelting operations. Over 70 years, the New Jersey Zinc Company deposited 33 million tons of slag at the site, creating a cinder bank—a smoldering residue pile—that is approximately 2.5 miles long, 100 feet high, 500 to and 1,000 feet wide, and that covers approximately 200 acres. Smelting operations emitted large amounts of lead, cadmium, zinc, and arsenic as dust and particulate fallout from stack emissions. Primary zinc smelting was discontinued in December 1980. The West Plant is currently not active. The East Plant houses a current electric arc furnace dust processing operation. The site was added to the NPL in 1983 because of environmental risks posed by the cinder bank. Emissions from the former smelting operations have led to elevated levels of inorganic chemicals throughout the Palmerton area. As a result, approximately 2,000 acres on nearby Blue Mountain have been defoliated, leaving a barren mountainside. Soil on the defoliated area of the mountain has contaminated the runoff flowing across it, and erosion has carried contaminants into Aquashicola Creek and the Lehigh River. The site is divided into four Operable Units (OUs):

- OU1- addresses re-vegetation of approximately 2,000 acres of non-residential land;
- OU2- consists of remediation of the cinder bank;
- OU3- consists of remediation of residential soils and interior house dust exhibiting elevated levels of lead; and
- OU4– concerns an area-wide investigation of contamination in the ground and surface waters and includes an Ecological Risk Assessment.

## **Summary of Site-related Contamination:**

Site-related contamination is the result of smelting operations, specifically slag piles and dust/particulates emitted from smelting stacks. Site operations have contaminated various media (surface soil, sediment, ground water, surface water, fish tissue, plant tissue, residential dust, and debris) with inorganic chemicals. OU1 (Blue Mountain) and OU2 (Cinder Bank Contamination) is primarily due to cadmium, lead, and zinc; OU3 (Community Soil Contamination) is primarily due to arsenic, cadmium, lead, and zinc and has elevated exposure risks for residential receptors; and OU4 (Ground Water, Surface Water, and Fish Tissue Contamination) is due to inorganic chemicals (arsenic, cadmium, chromium, copper, lead, manganese, nickel, and zinc) and has elevated exposure risks for residential (adult and child) and occupational receptors, as well as avian and mammalian ecological receptors.

## **Conclusion of Site-related Risk:**

The primary threats contributing to human health and ecological risks, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (arsenic, cadmium, lead, manganese, nickel, and zinc). The two major media of concern for human exposure to inorganic contaminants are soil/dust and ground water. The receptors with potentially unacceptable risk from these media are occupational workers and residential child and adult. The primary routes of exposure to these media are ingestion (accidental or intentional) and dermal contact. In past years, children in Palmerton have been found to have elevated levels of lead in their blood from exposure to contaminated community soils.

OU1 and OU2 narratively state that human health risks do exist from exposure to inorganic contaminants; however, no quantitative risks were provided. In OU3, the primary contributor to human health risks are (1) arsenic (current and future risk of 3E-04 to residential receptor from ingestion of contaminated soil/dust); and (2) lead (current probability of 5.9% that residential children exceed the blood lead level of 10  $\mu$ g/dL from ingestion of soil/dust). In OU4, the primary contributors to human health risk are (1) manganese (future non-cancer risk – hazard quotient (HQ) of 204, 80.1, and 57.2 for residential children, residential adult, and occupational receptor's ingestion of contaminated ground water, respectively), (2) nickel (future non-cancer risk – HQ of 19.7 and 7.74 for residential children and residential adult's ingestion of contaminated ground water, respectively), and (3) zinc (future non-cancer risk – HQ of 154, 60.5, and 43.2 for residential children, residential adult, and occupation of contaminated ground water, respectively).

Site-wide ecological risks have been identified for a number of avian and mammalian species from exposure to inorganic chemicals (arsenic, cadmium, chromium, copper, lead, and zinc). The receptor-specific scenarios of exposure were individually evaluated; however, the major pathways were not individually evaluated for each receptor. The pathways analyzed include ingestion of food items and surface water, as well as ingestion, dermal contact, and inhalation of soil and sediment. The greatest site-related risk is posed to two avian receptors (Woodcock and American Robin) from lead exposure. The primary contributors to site-wide ecological risk are (1) arsenic (current HQ of 16.9 for the Meadow Vole); (2) cadmium (current HQ of 77, 56, and 13.5 for the American Robin, Woodcock, and Meadow Vole, respectively); and (3) lead (current HQ of 1585.22, 1156.54, 85.36, and 35.1 for the American Robin, Woodcock, Barn Owl, and Northern Harrier, respectively); and (4) zinc (current HQ of 54.3, 39.6, 15.35, and 12.54 for the American Robin, Woodcock, King Fisher, and Barn Owl, respectively).

## Human Health Risk Driver(s):

<u>Operable Unit 3:</u> Soil, Cancer – Current & Future Resident, Ingestion • Arsenic Soil/Dust, Non-cancer – Current & Future Resident, Ingestion and Dermal Contact • Arsenic – Current Child Resident, Ingestion (Blood Lead Levels) • Lead <u>Operable Unit 4:</u> Ground Water, Non-cancer – Current Child Resident, Ingestion • Cadmium

- Future Adult and Child Resident, Ingestion
  - Manganese, Nickel, Zinc

Operable Unit 4 (cont'd):

- Future Worker, Ingestion
  - Manganese, Nickel, Zinc
- Future Worker, Dermal Contact
  - Manganese

## **Ecological Risk Driver(s):**

Operable Unit 00 (site-wide):

- Current Avian, Combined Pathways/ Multiple Routes
  - Cadmium, Lead, Zinc
- Current Mammalian, Combined Pathways/ Multiple Routes
  - Arsenic, Cadmium

## **Final Remedy:**

The selected remedial actions address soil, ground water, surface water, and indoor air include:

## OU1 (Denuded Land on Blue Mountain) -

- (1) Soil amendments and re-vegetation with deed restrictions, including the mixing of sewage sludge with a lime and fly ash mixture; and
- (2) grass cover has been established on approximately 1,000 acres of Blue Mountain, with approximately 1,000 acres remaining to be re-vegetated.

**OU2** (*Cinder Bank*) – Installation of a cap and cover (about 200 acres to be capped), using soil amendments of sewage sludge with a lime and fly ash mixture, plus collection and treatment of all run-on and run-off water.

*OU3 (Residential Soils and Dust)* – Pre-amendment of soil with in-situ treatment, soil compaction, soil removal, and/or re-vegetation as a contingent remedy, specialized interior cleaning, including HEPA vacuuming, wet wiping of hard surfaces, and clearance sampling for floors. Finally,

**OU4 (Area Wide Ground and Surface Water Contamination)** is currently being studied for remedy selection.

# **Reynolds Metal Company NPL Site Summary**

**EPA ID:** ORD009412677 **Location:** Troutdale, OR **EPA Region:** 10 **Status:** NPL – Final Number of Operable Units: 2 Date of NPL Listing: 1994 Last Operational Year: 2000 Documents Used: RI/FS & RODs (Varies by OU)

## Introduction:

The Reynolds Metals Company (RMC) site is a former primary aluminum reduction plant. The facility is located approximately 20 miles east of Portland, Oregon. The property borders the Columbia River to the north, the Sandy River to the east, and Salmon Creek to the west. Approximately 108 acres of the 800-acre site were occupied by the former plant area. A U.S. Army Corps of Engineers dike surrounds the plant on the northern and eastern sides and protects the plant from floods. The plant was constructed for the U.S. Government in 1941 to produce aluminum for wartime operations. RMC operated the plant until 2000, when the aluminum-reduction operations were permanently discontinued. Large quantities of wastes were produced at the Reynolds plant during the production of aluminum from electrical equipment. The Columbia and Sandy rivers are used for recreation and fishing, and people reach the rivers by traversing the Reynolds property. The site was divided into two Operable Units (OUs): OU1 addresses source area contamination, and OU2 addresses contaminated ground water. OUs 1 and 2 were remediated together, as documented in the interim remedial action ROD and final action ROD. The risks associated with the site were calculated in a site-wide RI/FS.

#### Summary of Site-related Contamination:

Site-related contamination is the result of aluminum reduction and processing; specifically, settling ponds, spent potliners, diesel spill areas, dewatering sumps, process residues, and a scrap yard. Site operations have contaminated various media (ground water, surface and subsurface soils, surface water, sediment, and plant tissues). The RMC OUs are contaminated with inorganic chemicals (aluminum, chromium, vanadium, zinc), halides (cyanide, fluoride), and organic polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs).

## **Conclusion of Site-related Risks:**

The primary threats contributing to human health risk, and the contaminants ultimately driving the site's remedial action, are arsenic, fluoride, PAHs (principally benzo[a]pyrene, dibenz[a,h]anthracene, and benzo[b]fluoranthene), PCBs, and tetrachloroethene. The major media of concern for human exposure to contaminants are surface and subsurface soil, sediment, dredge spoils, and ground water. Potentially unacceptable risks from these media are for future occupational, trespasser, and residential adult receptors. The primary routes of exposure to these media are ingestion (accidental or intentional), inhalation, and dermal contact.

Site-wide, the primary contributors to human health risk are (1) PAHs (current and future risk of 1.01E-04 [benzo(a)pyrene] and 1.95E-05 [dibenzo(a,h)anthracene] for occupational ingestion of soil; 4.88E-05 [benzo(a)pyrene] and 8.91E-05 [benzo(a)pyrene] for trespasser ingestion of soil and sediment, respectively; 5.91E-06 [benzo(a)pyrene] to residential receptors from ingestion of soil); (2) arsenic (current and future risk of 1.39E-05, 9.16E-06, 3.53E-06 for

residential ingestion of soil, residential ingestion of dredge spoils, and occupational ingestion of soil, respectively); (3) combined PCB exposure (current and future risk of 2.17E-06 and 1.35E-06 for occupational ingestion of soil and residential ingestion of dredge spoils, respectively); (4) tetrachloroethene (future risk of 4.47E-06 for occupational inhalation of ground water); and (5) fluoride (future residential receptors, non-cancer HI of 3.3 from ingestion of fluoride in ground water).

The pathways of concern to ecological receptors are unspecified, but occur in the upland area and the open water/wetland area habitats. These habitats contain avian and mammalian ecological receptors with current elevated risks from all exposure routes. Avian and mammalian receptors, including the bald eagle and American peregrine falcon, have potential health risks from exposure to inorganic chemicals and halides and organic PAHs and PCBs. Site-wide ecological risks have been identified for a number of avian and mammalian species (coyote and mink) from exposure to site-contaminated media in the upland areas and open water/wetland areas habitats, primarily from inorganic chemicals (aluminum, chromium, fluoride, vanadium, zinc), PCBs, and PAHs. Only the American robin was found to have ecological risks greater than 1E+01 (HQ of 13.0 for aluminum from all pathways in upland areas via all exposure routes).

#### Human Health Risk Driver(s):

Operable Unit 00 (site-wide):

Soil, Cancer

- Current & Future Resident, Trespasser, and Worker, Ingestion
  - Arsenic, Benzo(a)pyrene, and Dibenzo(a.h)anthracene

Sediment, Cancer

- Current & Future Trespasser, Ingestion
  - Risk Driver(s) = Benzo(a)pyrene
- Dredge Spoils, Cancer
  - Current & Future Resident and Worker, Ingestion
    - Arsenic and Combined PCBs
- Ground Water, Cancer
  - Future Worker, Inhalation
    - Tetrachloroethene
- Ground Water, Non-cancer
  - Future Resident, Ingestion
    - Fluoride

#### **Ecological Risk Driver(s):**

Operable Unit 00 (site-wide):

Upland Areas

- Current Avian, Unspecified Pathway/All Routes
  - Aluminum, Chromium, Zinc
- Current Mammalian (Coyote), Unspecified Pathway/All Routes
- Aluminum
- **Open Water/Wetland Areas** 
  - Current Avian, Unspecified Pathway/All Routes
    - Total PCBs, Fluoride
  - Current Mammalian (Mink), Unspecified Pathway/All Routes
    - Total PBCs, Aluminum, Vanadium, Total PAHs

## Interim Remedy:

Between 1995 and 2002, early actions resulting in excavation and off-site disposal of 170,401 tons of contaminated soil and waste material and the installation of rock and soil caps, including 283 tons of contaminated soil from sumps; 515 tons of PCB-contaminated dust, siding, soil, and concrete; 13,900 tons of cryolite; 2,650 tons of soil; 11,542 tons of spent potliner and soil; 1,193 tons of contaminated material; 150 tons of debris; 22,918 tons of waste and soil; 90 tons of PCB-contaminated process residue and soil; and 8,775 tons of process residue, soil, and

sediment. Groundwater remedial actions selected in the interim ROD and completed at the site include

- (1) the previously described soil source removals;
- (2) decommissioning of several production wells and sumps; and
- (3) installation of a focused extraction and production well optimization (FE/PWO) system with groundwater monitoring.

## **Final Remedy:**

Following completion of the interim remedial action, no further soil remedial activity was required. Demolition of the RMC plant occurred between 2003 and 2005, during which soil and debris contaminated with asbestos, PCBs, PAHs, and spent potliner was removed to permitted offsite disposal facilities. The selected final remedial actions address ground water with the following actions:

- (1) institutional controls to protect future users of the site and ensure that future site uses and the associated ground water are compatible with the cleanup levels achieved;
- (2) continued operation of the FE/PWO system until groundwater cleanup levels are achieved;
- (3) maintenance and monitoring of capped areas to protect the integrity of the remedy, as well as human health and the environment; and
- (4) groundwater monitoring to evaluate the effectiveness of the completed and ongoing cleanup actions.

# Silver Mountain Mine NPL Site Summary

**EPA ID:** WAD980722789 **Location:** Horse Springs Coulee, WA **EPA Region:** 10 **Status:** NPL - Deleted Number of Operable Units: 1 Date of NPL Listing: 1986 Last Operational Year: 1982 Documents Used: ROD

## Introduction:

The Silver Mountain Mine site is located on 5-acres in Okanogan County, Washington. Silver Mountain Mine was originally opened as the Silver Star in 1902 by the Silver Star Mining Corporation, Tonasket, Washington. Silver, gold, and copper were all extracted from the mine. The main features of interest at the site include a heap of mined material ("leach heap") and a trench remaining from an abandoned cyanide heap leaching operation ("leachate pond"). Directly west of the leach heap is a larger pile of unprocessed mined material (the "mine dump"). In 1980 and 1981, the mine used cyanide in its processing operations. Approximately 1,100 gallons of cyanide were poured over silver tailings, which had been placed on top of a plastic liner, in an effort to extract gold. The water running off the pile was collected in a plastic lined basin. The site contains more than 2,500 tons of contaminated tailings and 20,000 gallons of contaminated liquid. According to the state, at one time the site contained liquid cyanide at 1,100 parts per million (ppm). The leach heap operation was abandoned in late 1981 without cleanup of contaminated material. The site was kept as one Operable Unit (OU 00) that addresses site-wide contamination.

## Summary of Site-related Contamination:

Site-related contamination is the result of mining operations; specifically, leaching operations and leaching ponds. Site operations have contaminated various media (surface soil, ground water, and surface water) with numerous inorganic chemicals, primarily aluminum, antimony, arsenic, copper, and lead. These contaminants originate from the leach heap operations that took place at the mining site.

## **Conclusion of Site-related Risk:**

The primary threat contributing to human health and ecological risks, and the contaminant driving the site's remedial action, is arsenic. Other inorganic chemicals that may pose an elevated health risk include aluminum, antimony, arsenic, copper, and lead. The media of concern for human exposure to inorganic contaminants are surface soil and ground water. Potentially unacceptable risks from exposure to these media are for future site visitors, industrial, and residential receptors. The primary routes of exposure to these media are ingestion (accidental or intentional) and dermal contact.

Site-wide, the primary contributors to future industrial receptors: arsenic (cancer risk of 2.3E-03 from the ingestion and dermal contact of soil and the ingestion of ground water; additionally, risks of 1.9E-03, 1.6E-03, and 2.3E-04 from dermal contact with soil, ingestion of ground water, and ingestion of soil).

Quantified ecological risk information was not available. However, qualitative descriptions of the possible ecological risk were provided. Ecological receptors are primarily

exposed to arsenic, aluminum, copper, and lead from soil and surface water. Receptors at greatest risk include vegetation and ruminant wildlife. The greatest documented risk to wildlife and plants is from the arsenic concentrations in the soils surrounding the leach heap. Surface water may continue to be a source of elevated arsenic impacting wildlife. There does not appear to be current risk to wildlife and plants from ground water, and future risk is not anticipated. The seep area may continue to be a source of elevated risk due to aluminum, copper, and lead.

## **Human Health Risk Driver(s)**:

Operable Unit 00 (site-wide): For Industrial Receptors (Residential and site visitor receptors qualitatively stated to also be at risk): Soil, Cancer - Future Ingestion & Dermal Contact • Arsenic Ground Water, Cancer - Future Ingestion and Dermal Contact

• Arsenic

## **Interim Remedy:**

The Washington Department of Ecology stabilized the site in June 1985. This activity included

- (1) draining the leachate and removing it for off-site treatment;
- (2) covering the site with a 3/4-inch cotton liner and a plastic liner;
- (3) securing the liners with tires;
- (4) removing drums that previously contained hazardous materials;
- (5) removing a wooden structure that appeared insecure; and
- (6) fencing the site with barbed wire. The life of the liner is estimated at 20 years.

## **Final Remedy:**

The selected remedy addresses ground water, soil, and contaminated mine dump materials and reduces risks to onsite workers and site visitors from the surface soil and waste materials. Additionally, the remedy mitigates contaminant migration to ground water and surface water from source materials. The overall remedial actions taken include

- (1) consolidating and grading approximately 5,740 cubic yards of contaminated materials;
- (2) covering the materials with a soil/clay cap;
- (3) fencing the site and sealing the entrance to the mine;
- (4) disconnecting the mine drainage pipe from the existing stock tank and installing a new well in the Horse Springs Coulee aquifer to provide an alternate water supply for the cattle:
- (5) placing a deed restriction to protect the cap; and

# **Ecological Risk Driver(s):**

Operable Unit 00 (site-wide): *Soil and Surface Water – Current Exposure for* Vegetation and Wildlife – Possible Risk

(6) monitoring the ground water to assure that it does not become contaminated. If groundwater analyses indicate contamination at a concentration in excess of the U.S. Environmental Protection Agency health-based levels, a contingent groundwater treatment program will be implemented.

During construction, conditions prevented the establishment of an alternative stock water supply. Additional risk assessment was conducted, and this element of the remedy was removed. Approximately 5,740 cubic yards of contaminated waste materials were excavated and removed for disposal. Construction has been completed, and the Silver Mountain Site was deleted from the NPL in 1997.

## Silverton Mercury Condenser Removal Site Summary

**EPA ID:** WAN001002702 **Location:** Silverton, WA **EPA Region:** 10 **Status:** Removal, Time Critical Number of Operable Units: 1 Date in CERCLIS: 2007 Last Operational Year: 1942 Documents Used: Action Memorandum

#### Introduction:

The Silverton Mercury Condenser site is located 0.25 miles southwest of Silverton, Washington. Mercury condensers were used on site to extract mercury from ore mined nearby. Currently, two of the original four mercury condensers are still standing, and two of them have been demolished, either intentionally or by age and weather, leaving only the foundation. The site is located on the north bank of Silver Gulch, a historically small, dry stream bed that in the winter of 2006 was widened by flooding. During the flood event, some amount of the north bank soils were eroded down the gulch. This erosion removed soil directly underneath two of the condensers, causing them to partially hang over the edge of the north bank. This site is located in the Mount Baker Snoqualmie National Forest, and there is low-density residential property in the surrounding area. Extraction of mercury in condensers occurs when the ore is placed in a furnace and heated to high temperatures. Potential sources of contamination at the site include the mercury condensers and onsite soils. The potential contaminants of concern at the site associated with these sources are Target Analyte List (TAL) metals. The mine's last years of operation were between 1939 and 1942 when, by federal law, mines that were not producing large amounts of war-essential minerals were closed. Minerals mined or found in the mine include copper, silver, lead, gold, and mercury.

#### **Summary of Site-related Contamination:**

Condenser operations have led to site-wide contamination via condenser waste and brick material. Onsite surface soil was contaminated with elevated levels of inorganic chemicals, including arsenic, cadmium, lead, and mercury. Sediments in the Silver Gulch and South Fork Stillaguamish River contain levels of mercury above background concentrations.

#### **Conclusion of Site-related Risk:**

The primary current threats to human health and the environment, and the contaminants driving the removal action, are inorganic chemicals (primarily arsenic, cadmium, lead, and mercury). Elevated health risk is possible for human receptors exposed to arsenic, cadmium, lead, and mercury from ingestion of onsite soils. It is also possible that receptors exposed to elevated levels of mercury in downstream sediments may have potential elevated health risks. Migration of contaminants from onsite soils into surface water and ground water may be a problem in the future to residential receptors ingesting these media. Ecological threats may exist from exposure to contaminated surface water, primarily in the gully south of the Stillaguamish River due to elevated inorganic chemicals migrating from the site and elevated mercury in sediments. Specific risk information was not provided in available documentation.

#### **Final Remedy:**

The selected remedy addresses soil and condenser structures as well as the migration of contaminants to water. To reduce the risk to residents, the selected remedy includes

- (1) the excavation and removal of remaining condenser structures,
- (2) soil excavation and removal, and
- (3) backfilling and topping of excavated areas. The quantity of media removed was not indicated.

# Stauffer Chemical Co. (Tarpon Springs) NPL Site Summary

**EPA ID:** FLD010596013 **Location:** Tarpon Springs, FL **EPA Region:** 4 **Status:** NPL - Final Number of Operable Units: 2 Date of NPL Listing: 1994 Last Operational Year: 1981 Documents Used: RI/FS & ROD

## Introduction:

The Stauffer Chemical Company Tarpon Springs site is situated on 130 acres along the Anclote River in Tarpon Springs, Pinellas County, Florida. The facility was used to produce elemental phosphorous using phosphate ore mined from deposits in Florida. The plant began production in 1947 and continued to manufacture elemental phosphorous until the plant's closure in 1981. While operating, the plant utilized a system of 17 waste ponds onsite; these unlined ponds no longer contain waste or water. During site operations, radioactive waste material, suspected to have originated from the phosphate ore (radium) processing plant, was disposed onsite. Land use in the surrounding area includes light industrial, commercial, and residential functions. The most significant surface water bodies near the Tarpon Springs site are the Anciote River, located along the site's southern and western boundaries, and the Gulf of Mexico, located approximately 2 miles from the site. Two primary aquifers underlie Pinellas County and the site: the surficial aquifer and the Floridan aquifer. The surficial aquifer ground water is relatively shallow, which limits its usefulness as a drinking water supply; however, the aquifer provides water for irrigation purposes. The Floridan aquifer, consisting of a thick sequence of carbonate (limestone) rocks that are hydraulically connected, provides most of the public water supply for Pinellas County. There are no active residential or commercial wells either onsite or between the site and the Anclote River; therefore, no ground water users exist onsite or down-gradient of the site. The decision to decommission and dismantle the plant permanently was made in 1983. The site is divided into two operable units (OUs): OU1 addresses contaminated soil and ground water affected by source material, and OU2 addresses contaminated ground water in the surficial aquifer. A remedial investigation of OU2 had not yet begun as of March 22, 2011.

#### **Summary of Site-related Contamination:**

Site-related contamination is the result of mineral processing operations; specifically, unlined waste ponds and radioactive waste material from phosphate ore processing. Site operations resulted in the contamination of soils, sediment, ground water, surface water, and plant and fish tissues. OU1 is primarily contaminated with inorganic chemicals (arsenic, beryllium, cadmium, and fluoride), polyaromatic hydrocarbons (PAHs), and radionuclides (lead-210, radium-226, radon-222, and radium-228).

#### **Conclusion of Site-related Risk:**

The primary threats contributing to human health risk, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (arsenic, beryllium, cadmium, and fluoride) and radionuclides (lead-210, radium-226, radon-222, and radium-228). The two main media of concern for human exposure to inorganic contaminants are ground water and surface soil, while the media of concern for human exposure to radionuclides are surface soil, plant tissue, and road-bed material. The receptors with potentially unacceptable risk from exposures to these media are residential child and adult (future) and occupational worker (current and future).
The primary routes of exposure to these media are ingestion (accidental or intentional), inhalation, and external radiation.

In OU1 (contaminated soil and ground water), the primary contributors to human health risk are (1) combined radionuclide contaminants (current risks range from 4.5E-03 for occupational external radiation to 1.8E-06 for occupational ingestion of surface soil, while current residential risks are highest for adults inhaling radon-222 in outdoor air; future risks range from 2.2E-02 and 5.7E-03 to 2.5E-06 and 1.6E-04 for adult and child residential receptors, respectively, from ingestion of plant tissue; and future risks range from 1.2E-02 (non-cancer HQ of 200) and 4.5E-03 (non-cancer HQ of 90) to adult residential and both adult occupational receptor and residential child, respectively, from external radiation from surface soil) (2) arsenic (future risks range from 2.0E-02 and 1.0E-2 for adult residential and child residential receptors, respectively, from ingestion of ground water to 1E-04 and 3E-04 for the ingestion of surface soil); and (3) beryllium (future cancer risk of 6.0E-03 for a child receptor from ingestion of surface soil). OU2, a remedial investigation of contaminated ground water in the surficial aquifer, has not been performed; therefore, health risks are unavailable.

Current and future ecological receptors with elevated risk are in the wetlands and in the deepwater habitats contaminated with inorganic chemicals and PAHs, although no individual species are named as receptors. OU1 ecological risks have been qualitatively captured for wetland and deep-water habitats as ranging from low to moderate risk. The pathways analyzed include current and future exposure via sediment and surface water, primarily contaminated from inorganic chemicals and PAHs. The ecological risk assessment identified 34 threatened species that inhabit the area in and around Stauffer Chemical Co., including avian, mammalian, and reptilian species. The ecological analysis was conducted on a site-wide, rather than OU-specific, basis.

#### Human Health Risk Driver(s):

Operable Unit 00 (site-wide):Food-Plant Tissue, Cancer- Future Adult & Child Resident, Ingestion• Lead-210, Radium-226, Radium-228Ground Water, Cancer- Future Adult & Child Resident, Ingestion• ArsenicSurface Soil, Cancer- Future Adult & Child Resident, Ingestion• Radium-226, BerylliumSurface Soil/Roadbed Material, Cancer- Future Adult & Child Resident, and Worker, External Radiation• Radium-226

Air (Indoor and Outdoor)

- Future Adult & Child Resident, and Worker, Inhalation

• Radon-222

Ground Water, Non-cancer

- Future Adult & Child Resident, Ingestion
  - Arsenic, Fluoride

#### **Ecological Risk Driver(s):**

deep-water habitat

<u>Operable Unit 00 (site-wide):</u> Low to moderate qualitative risk for wetland and

### **Final Remedy:**

The following lists outline the selected remedial actions address soil, waste material, and ground water.

*OU1* –

- (1) excavation of radiological and chemical contaminated material/soil exceeding Residential Cleanup Standards;
- (2) consolidation of the radiological and contaminated media (soil) in the main pond area and capping of the consolidation area;
- (3) implementation of institutional controls, including deed restrictions, land-use ordinances, physical barriers, and water supply well permitting prohibitions to limit access to the site and prohibit the disturbance of the remedy; and
- (4) in-situ solidification/stabilization of pond material and contaminated soil below the water table in the consolidation areas onsite.

OU2, the remedial investigation study, has not yet begun.

## Summitville Mine NPL Site Summary

**EPA ID:** COD983778432 **Location:** Rio Grande County, CO **EPA Region:** 8 **Status:** NPL - Final Number of Operable Units: 5 Date of NPL Listing: 1994 Last Operational Year: 1992 Documents Used: RI/FS & ROD (Various by OU)

#### Introduction:

The Summitville Mine Site is a former open-pit mining operation located in the San Juan Mountains near Del Norte in Rio Grande County, Colorado. Gold and silver mining began around 1870 at the site. The most recent operator, Summitville Consolidated Mining Corp., Inc. (SCMCI), began open-pit mining and gold recovery through heap leaching in 1986. SCMCI originally designed the mining operation as a non-discharging wastewater facility. Problems with discharges eventually required SCMCI to obtain a NPDES permit from the state to operate a wastewater treatment plant. Several releases of water contaminated with cyanide and metals have been documented at the mine. The state has issued Notices of Violation to SCMCI for unpermitted releases of contaminated water. Fish kills have been reported from Wightman Fork, approximately 20 miles downstream from the mine site. The site was added to the NPL in 1994 due to the threat to human health and the environment posed by contamination of soil, surface water, and ground water resulting from the mining and heap leaching operations. Due to the highly mineralized character of the site, almost all exposed earthen materials are capable of acid generation. The site is divided into five Operable Units (OUs):

- OU1– addresses acid mine drainage (AMD) and cyanide contaminated waters from the Heap Leach Pad (HLP);
- OU2– addresses acid mine drainage from the Cropsy Waste Pile (CWP), Summitville Dam Impoundment (SDI), Beaver Mud Dump (BMD), and Mine Pits;
- OU3– (South Mountain Groundwater) was incorporated into the site-wide RI/FS in the late 1990s and moved into OU5;
- OU4– (Mine Site Reclamation/Re-vegetation) includes grading and re-vegetation, rehabilitation of existing ditch systems, and construction of new ditches; and
- OU5– (Final Site-wide Remedy) is a final action that will address the threats to the environment that remain at the site after completion of emergency and interim remedial actions.

#### Summary of Site-related Contamination:

Site-related contamination is the result of mining operations; specifically, heap leaching operations. Site operations have contaminated various media (surface soil, ground water, and surface water) with numerous contaminants; specifically, inorganic chemicals (aluminum, arsenic, cadmium, hexavalent chromium, copper, cyanide, iron, lead, mercury, manganese, silver, and zinc). All of these contaminants, except cyanide, occur naturally at the site, but are made soluble in the AMD generating chemical process, which is accelerated by the mining activities. AMD water contributes metal loads to Wightman Fork and the Alamosa River. This creates adverse conditions that prevent the growth and maintenance of a healthy aquatic

ecosystem. These adverse effects have been noted in various studies of water quality of Wightman Fork and the Alamosa River.

### **Conclusion of Site-related Risk:**

Human exposure to these site-related contaminants is limited, since no one lives onsite or within 2 miles of the site, and site ground water is not used for drinking. For those risks present offsite, the primary threats contributing to human health risks, and the contaminants ultimately driving the site's remedial action, are arsenic and manganese. The major media of concern for human exposure to these inorganic contaminants are surface water and ground water. The receptors with potentially unacceptable risk from these media are residential and recreational receptors. The primary routes of exposure to these media are ingestion (accidental or intentional) and dermal contact.

Due to limited potential exposure, human health risks were only captured for OU5. The primary contributors to human health risk are (1) arsenic (cancer risk of 2.0E-06 to current residential and recreational receptors from ingestion or dermal contact with surface water, respectively); and (2) total inorganic contaminants (primarily manganese) (current hazard quotient [HQ] values of 8 and 3 from groundwater ingestion to current residential child and adult receptors, respectively).

The primary contributors to ecological risk include inorganic chemicals (primarily copper). The receptors identified to have significant risk include rainbow trout and benthic macroinvertebrates, both of which had an HQ >1 associated with direct contact and ingestion of surface water and sediment and ingestion of food items.

#### Human Health Risk Driver(s):

<u>Operable Unit 5:</u> *Ground Water, Non-cancer* – *Current Resident, Ingestion* • Manganese *Surface Water, Cancer* – *Current Resident & Recreational Adult, Ingestion and Dermal Contact* • Arsenic

#### **Ecological Risk Driver(s):**

<u>Operable Unit 5:</u> Surface Water, Sediment, Food Items – Current Rainbow Trout and Macroinvertebrates, Ingestion and Direct Contact

• Copper

### **Interim Remedy:**

The selected interim remedial actions addressing soil, ground water, and surface water include the following for each OU.

*OU1* –

- (1) development and implementation of HLP solution collection system consisting of injection/extraction wells installed in the HLP;
- (2) pumping and treating of the contaminated leachate;
- (3) short-term bio-treatment of waters, in-situ bio-treatment of ore and leachate using cyanide-destroying bacteria;

- (4) grading, re-contouring, capping, and re-vegetating the HLP to reduce the volume of water to be treated;
- (5) installation of a lined surge pond and a bioreactor using sulfate-reducing bacteria to treat acid waters generated after the HLP is remediated; and
- (6) periodic monitoring of ground water for cyanide and/or metal concentrations.

**OU2** –

- (1) excavation of the Cropsy Waste Pile to an elevation of 11,620 feet;
- (2) excavation of the Beaver Mud Dump and Summitville Dam Impoundment;
- (3) lining of the Bottom of the Mine Pits with a layer of pH neutralizing material; and
- (4) placement and capping of excavated material in the Mine Pits, comprising approximately 4.5 million cubic yards.

OU3 – OU 3 was incorporated into OU5.

**OU4** –

- (1) reclamation of approximately 504 acres of disturbed land;
- (2) rough grading of all areas to be reclaimed to a 33 percent or less grade;
- (3) use of on-site topsoil that was previously stockpiles and stored;
- (4) addition of an optimum amount of amendments needed to produce a topsoil capable of promoting and sustain plant growth;
- (5) reconfiguration of the areas for slope stabilization, erosion control, and moisture retention;
- (6) seeding with a seed mixture designed to establish a natural, self-sustaining vegetative cover; and
- (7) provision of adequate weather protection for the severe site conditions.

#### **Final Remedy:**

The selected remedial actions addressing soil, ground water, and surface water include the following for each OU.

#### OU5 (Final Site-wide Remedy) -

- (1) on-site contaminated water impoundment upstream of the Wightman Fork-Cropsy Creek confluence;
- (2) construction of a new gravity-fed water treatment plant downstream of the contaminated water impoundment;
- (3) possible breach and removal of the existing Summitville Dam Impoundment;
- (4) construction of a sludge disposal repository;
- (5) upgrade of Wightman Fork Diversion;

- (6) upgrade of select site ditches;
- (7) construction of groundwater interceptor drains;
- (8) construction of a Highwall ditch;
- (9) rehabilitation of Reynolds Adit;
- (10) management of mine pool water;
- (11) continued site maintenance, and ground water/surface water and geotechnical monitoring on-site; and
- (12) surface water, sediment, and aquatic life monitoring in Alamosa River and Terrace Reservoir.

*OU00 (site-wide)* – continued treatment of the Cropsy Waste Pile drainage and the French Drain waters in the Cropsy Water Treatment Plant.

## **Teledyne Wah Chang NPL Site Summary**

**EPA ID:** ORD050955848 **Location:** Millersburg, OR **EPA Region:** 10 **Status:** NPL - Final Number of Operable Units: 4 Date of NPL Listing: 1983 Last Operational Year: Currently in operation Documents Used: RI/FS & RODs (Various by OU)

#### Introduction:

The Oremet-Wah Chang (OWC) (formerly Teledyne Wah Chang) plant is a producer of zirconium and other rare earth metals and alloys. The site is located in Millersburg, Oregon, and includes two areas: (1) a 110-acre plant and a 115-acre area made up of four ponds containing sludges from the plant's wastewater treatment facility, and (2) a 60-acre field where sludge containing radium was used as a soil amendment. Production at the site began in 1957. Solids generated from the process wastewater treatment system have been stored in a number of surface impoundments. Until 1980, sludge was taken to seven unlined storage ponds onsite. Due to the complexity of site contamination, the U.S. Environmental Protection Agency (EPA) divided the site into four Operable Units (OUs): (1)

OU1– addresses a sludge ponds unit, which is being dealt with separately due to the property owners' and the public's wish for an expeditious cleanup of the sludge materials, which may be contributing to ground water contamination at the site;

OU2- addresses ground water and sediments;

- OU3- addresses surface and subsurface soils; and
- OU4- addresses soils amendment area (recently listed, pending further study).

#### **Summary of Site-related Contamination:**

Process wastes from site operations have contaminated various media (surface soil, subsurface soil, sediment, surface water, ground water, and sludge) with numerous contaminants (primarily inorganic chemicals, organic chemicals including chlorinated solvents, and radionuclides). Onsite sludge has been contaminated with radionuclides (radium, thorium, and uranium), volatile organic compounds (VOCs; e.g., methylene chloride, TCE, PCE, 1,1,1 trichloroethane, hexachlorobenzene), metals (chromium, thorium, arsenic, barium, beryllium, copper, mercury, nickel, lead, antimony, selenium, zinc., and zirconium) and cyanide compounds (unspecified). Creek sediments are contaminated with polychlorinated biphenyls (PCBs). Soil is contaminated with radionuclides, inorganic chemicals, PCBs, and VOCs. Shallow ground water is contaminated with radium, other inorganic chemicals, and VOCs. Radium-contaminated soil may produce radon gas emissions. The discharge of contaminated ground water into nearby creeks could pose ecological risks to aquatic organisms via contaminated surface water, sediment, and food items.

#### **Conclusion of Site-related Risk:**

The primary current threats to human health and the environment, and the contaminants driving the remedial action, are inorganic chemicals, organic chemicals (primarily VOCs and PCBs), and radionuclides, accounting for a total of approximately 50 contaminants.

The media of concern for human health include sludge, soil, and ground water exposure for residential, occupational, and trespassing receptors. Primary routes of exposure include ingestion, inhalation, and external radiation. Most human health cancer and non-cancer risks were calculated for contaminants grouped as radionuclides or non-radionuclides. The primary contributors to (future) residential receptor risk include:

- OU1– combined ingestion and inhalation of sludge contaminated with radionuclides and non-radionuclides (cancer risk of 3E-03; non-cancer risk hazard quotient [HQ] of 16.5; risk drivers include radionuclides, arsenic, chromium VI, nickel, and hexachlorobenzene);
- OU2– ingestion of ground water contaminated with all inorganic chemicals, organic chemicals, and radionuclides (cancer risk of 4E-04; HQ of 5.5; risk drivers for cancer: VOCs, arsenic; risk drivers for non-cancer: VOCs, inorganic constituents); and
- OU3- inhalation of soil contaminated with radon (cancer risk of 1.4E-02).

The primary contributors to (future) trespasser receptor risk include combined ingestion and inhalation of sludge contaminated with radionuclides and non-radionuclides contaminants (cancer risk of 5E-06).

The primary contributors to occupational receptor risk include:

- OU1– combined ingestion and inhalation of sludge contaminated with radionuclides or non-radionuclides (cancer risk of 1E-03; HQ of 5.2; future occupational receptors; risk drivers include radionuclides, arsenic, chromium VI, nickel, and hexachlorobenzene);
- OU2– ingestion of ground water contaminated with inorganic chemicals, organic chemicals, and radionuclides (cancer risk of 6E-03; HQ of 84.75; current occupational receptors; risk drivers for cancer:VOCs, arsenic; risk drivers for non-cancer VOCs, inorganic constituents); and
- OU3– inhalation of soil contaminated with radon (cancer risk of 2.9E-03; future occupational receptors).

Ecological risks have been identified for OU2 and include PCBs and hexachlorobenzene. The receptors identified include aquatic organisms and predatory fish. The pathways of concern include ingestion of sediment and fish tissue. The primary contributors to ecological risk are (1) PCBs (ingestion of sediment by aquatic organisms and fish tissue ingestion by predatory fish), and (2) hexachlorobenzene (ingestion of sediment by aquatic organisms and fish tissue ingestion by predatory fish). No ecological HQs were provided. Ecological risk information was not available for other OUs.

### Human Health Site-Related Risks:

#### Operable Unit 1:

Sludge, Cancer

- Future Resident, Worker, and Trespasser, Ingestion and Inhalation
  - Radionuclides, Arsenic, Chromium VI, Nickel, and Hexachlorobenzene

#### Sludge, Non-cancer

- Future Resident and Worker, Ingestion and Inhalation
  - Radionuclides, Arsenic, Chromium VI, Nickel, and Hexachlorobenzene

Operable Unit 2:

Ground Water, Cancer

- Future Resident, Ingestion
  - VOCs and Arsenic

Ground Water, Cancer

- Current Worker, Ingestion and Inhalation
  - VOCs and arsenic

Ground Water, Non-cancer

- Future Resident and Worker, Ingestion

• VOCs and inorganic constituent

### Operable Unit 3:

Soil, Cancer

- Future Resident and Worker, Inhalation
  Risk Driver(s) = Radon

### **Ecological Site-Related Risks:**

<u>Operable Unit 2:</u> Sediment

– Aquatic Organisms, Direct Contact

• PCBs and hexachlorobenzene

Food (Fish)

- Predatory Fish, Ingestion
  - PCBs and hexachlorobenzene

### Interim Remedy:

The selected remedial actions addressing sludge include: OU1 -

- (1) excavation and removal of 85,000 cubic yards sludge;
- (2) a treatment plant that will be built to partial solidify sludge to improve handling and reduce gross mobility of the solid; and
- (3) disposal in an offsite landfill.

### **Final Remedy:**

The following lists outline the selected remedy to address ground water and soils.

*OU2* –

- Extraction and remediation of ground water for areas with unacceptable cancer risk levels until concentrations throughout the site are below Safe Drinking Water Act (SDWA) Maximum Contaminant Levels (MCLs), non-zero MCL goals, or cancer levels are no longer unacceptable;
- (2) discharge of extracted ground water to Teledyne Wah Chang Albany's wastewater treatment plant;
- (3) treatment or removal of subsurface source material near the Feed Makeup Building on the main plant;

- (4) slope erosion protection consisting of a geotextile covered by riprap placed along the banks of Truax Creek to prevent contaminated fill material from entering the creek;
- (5) removal of approximately 3,600 cubic yards of contaminated sediments from the surface water bodies adjacent to, or flowing through, the site (additional ecological characterization prior to removal to determine potential impacts of sediment removal to the local ecosystem and to provide mechanisms to mitigate those impacts);
- (6) deed restrictions and institutional controls on land and ground water use for both the main plant and Farm Ponds area (the objective of this component of the remedy is to ensure that the property and ground water are used only for purposes appropriate to the cleanup levels achieved);
- (7) environmental evaluations of currently uncharacterized potential contaminant source areas, as needed, to ensure achievement of ground water remedial action objectives RAOs; and
- (8) long-term onsite and offsite ground water, surface water, and sediment monitoring, which shall include, at a minimum, the monitoring of onsite wells that are in exceedance of maximum contaminant levels (MCLs) and non-zero maximum contaminant level goals (MCLGs) cancer risk levels of 10[-6], and non-cancer risk Hazard Index (HI) > 1 for residential exposure.

*OU3* –

- (1) Excavation of contaminated material exceeding the gamma radiation action level of 20 micro-rem/hour above background levels;
- (2) transportation of the excavated material to an appropriate offsite facility for disposal;
- (3) for areas of the site where modeling indicates that radon concentrations in future buildings could exceed 4 pCi/liter, institutional controls requiring that future buildings be constructed using radon-resistant construction methods;
- (4) requirement that information on areas of subsurface PCB and radionuclide contamination, which do not pose a risk if they are not disturbed, be incorporated into the TWCA facilities maintenance plan and be made available to future site purchasers or regulatory agencies;
- (5) because the determination that action is not required for certain areas of the site is based on scenarios that do not allow unrestricted use, should excavation occur as part of future development of the TWCA Main Plant or the Soil Amendment Area, excavated material must be properly handled and disposed of in accordance with federal and state laws; and
- (6) institutional controls requiring that land use remain consistent with current industrial zoning.

## Tex-Tin Corp. NPL Site Summary

**EPA ID:** TXD06211332 **Location:** Texas City, TX **EPA Region:** 6 **Status:** NPL – Final Number of Operable Units: 4 Date of NPL Listing: 1990 Last Operational Year: 1991 Documents Used: RI/FS, ROD (Various by OU)

#### Introduction:

The Tex-Tin site is located in a mixed industrial/petrochemical/residential area at the intersection of State Highway 146 and farm Road FM 519 in Texas City, Galveston County, Texas. The site is approximately 10 miles north of Galveston, Texas, and the City of LaMarque is located about half a mile northwest of the site. The 170-acre Tex-Tin site is a former tin and copper smelter, constructed during World War II. The smelter produced Grade A tin ingots from 1941 to 1988. Annual production at the facility varied from 4,000 to more than 40,000 metric tons of Grade A tin. The waste products consisted primarily of an iron-rich acidic liquid (ferrous and ferric chloride) and slag. From 1988 to 1991, the facility operated as a secondary copper smelter. Tin-lead materials with a high lead content have been used at the facility. Bolivian ore, which was processed at the facility, contains high concentrations of arsenic and copper. Roasting was employed in the smelting process at Tex-Tin, and some of the arsenic and lead present in the materials was removed by volatilization. The site contained numerous waste piles, five wastewater treatment ponds, open and closed acid ponds, slag piles, a permitted low-level radioactive waste landfill, and an inactive hydrocarbon recovery facility. Industrial facilities are located north and west of the site, and marsh areas are located to the south. The site is divided into four Operable Units (OUs):

- OU1– (Tex-Tin Facility) addresses the former tin and copper smelting facility and covers approximately 140 acres, including Ponds 22, 24, 25, and 26;
- OU2– (Amoco Parcel H) addresses 27 acres of the former smelter facility owned by BP Amoco Corporation;
- OU3- (Off-site Residential Area) addresses La Marque residential areas located northwest from the former smelter facility; and
- OU4– (Swan Lake Salt Marsh) addresses the Swan Lake, associated salt marsh habitats, and the Wah Chang ditch east of Loop 197.

#### **Summary of Site-related Contamination:**

Site operations have contaminated various media (soil, ground water, sediment, surface water, waste ponds, drums, and additional debris) with numerous contaminants. The site is contaminated primarily with inorganic chemicals (aluminum, antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, tin, vanadium, and zinc), poly-aromatic hydrocarbons (PAHs), and radionuclides (radium-226, radium-228, thorium-228, thorium-230, thorium-232, uranium-234, uranium-235, and uranium-238). Chemical analyses of the surface soil samples collected from 51 residential yards indicate metal contamination at levels greater than three times background levels. An estimated 25,000 people live within a three-mile radius of the site.

### **Conclusion of Significant Site-related Risk:**

The primary threats contributing to human health risk, and the contaminants ultimately driving the site's remedial action, are inorganic chemicals (primarily antimony, arsenic, beryllium, chromium, copper, lead, molybdenum, nickel, silver, tin, and zinc) and radionuclides (primarily radium-226, radium-228, thorium-228). The major media of concern include surface and subsurface soils, sediment, surface water, ground water, drums, waste piles, and homegrown produce. The receptors with potentially unacceptable risk are current and future residential, occupational, and trespassing receptors. The primary routes of exposure to these media include inhalation, ingestion, and external exposure.

The primary contributors to human health cancer risk include the following:

OU1-

- radionuclides (cancer risk of 2.30E-02, 1.90E-02, and 7.50E-03 from the inhalation/external radiation to future onsite industrial workers from surface and subsurface soils and waste piles contaminated with radium-226, radium-228, and thorium-228, respectively);
- (2) arsenic (cancer risk ranging from 6.30E-03 to 1.6E-04 for current and future onsite occupational receptors from the ingestion of drum contents and sediment/surface water, respectively; the ingestion of arsenic contaminated drum contents also has a non-cancer risk for future onsite occupational receptors of 193.5);
- (3) beryllium (cancer risk of 1.5E-03 for future onsite occupational receptors from the ingestion of ground water); and
- (4) other inorganic chemicals (non-cancer HQs of 51.5, 39, 29.7, and 27.6 for future onsite occupational receptors ingesting ground water contaminated with cadmium, manganese, copper, and silver, respectively).

OU2: combined exposure to arsenic, chromium, and lead from soil to current and future receptors (cancer risk of 2.04E-04 to industrial workers, 3.33E-06 to construction workers, 6.43E-06 to residential receptors, and 8.45E-06 to trespassers; specific exposure routes were not present in the documents available).

- OU3:
- (1) arsenic (cancer risk of 8.50E-05 for residential adult ingestion of surface soil and homegrown produce; non-cancer risk of 1.2 and 2.6 for residential ingestion of surface soil to adults and children, respectively);
- (2) beryllium (cancer risk of 5.50E-06 to current residential adults from ingestion of surface soil and homegrown produce).

The media of concern for ecological risk are sediment and surface water. The primary contributors to ecological risk are (1) chromium (current HQ of 14.3), (2) lead (current HQ of 8.7), (3) copper (current HQ of 5.2); and (4) zinc (current HQ of 4.3) to benthic macro invertebrates from exposure to sediment. In addition, the site is considered critical habitat for two threatened or endangered species: the White-Faced Ibis and the Reddish Egret.

### Human Health Risk Driver(s):

Operable Unit 1: Soils and Waste Piles, Cancer – Future Worker. Inhalation and External Radiation • Radium-226, Radium-228, Thorium-228 Drum Contents and Sediment/Surface Water, Cancer - Current & Future Worker, Ingestion • Arsenic Ground Water, Cancer - Future Worker, Ingestion • Beryllium Drum Contents. Non-cancer - Future Worker, Ingestion • Arsenic Ground Water, Non-cancer - Future Worker, Ingestion

• Cadmium, Manganese, Copper, Silver

### Operable Unit 2:

#### Soil, Cancer

- Future Resident, Worker, and Trespasser
  - (Exposure Route Not Documented)Arsenic, chromium and lead.

# Operable Unit 3:

Surface Soil and Homegrown Produce, Cancer

- Current Adult and Child Resident, Ingestion
  - Arsenic, Beryllium

### **Ecological Risk Driver(s):**

Operable Unit 4:

- Sediment – Current Benthic Macroinvertebrates
  - Chromium, Copper, Lead and Zinc

### **Interim Actions:**

Response Actions have already addressed exposure risk to industrial workers in OU2. Response Actions included installation of a soil/vegetative cover, construction of a slurry cutoff wall, implementation of a long-term groundwater monitoring program, restricted use of site ground water, and limiting future site use to industrial purposes only. A Time-Critical Removal Action has already reduced risk to residents in OU3 by evacuating soil, backfilling, and revegetating affected areas.

### **Final Remedy:**

To address human health and ecological risk from contaminants the following remedial actions were employed:

### OU1-

- (1) neutralization of acid ponds and disposal of acid liquid, neutralization of acidic sediments, excavation and disposal of sediments exceeding preliminary remediation goals, and capping of materials with clay soil cover;
- (2) stabilization of drums and disposal of inorganic contents; offsite disposal of organic content and capping of stabilized materials with clay soil cover;
- (3) onsite disposal and capping of naturally occurring radioactive material (NORM) slag, onsite disposal of hazardous non-NORM slag and covering with RCRA Type C or equivalent cap;

- (4) covering of soils exceeding preliminary remediation goals (PRGs) with clay soil cover, including the low-level radioactive landfill area, stabilization and disposal of soils identified as principal threat materials, and treatment and disposal of hazardous soils;
- (5) discharge of wastewater pond liquids, usage of Pond 2 as a consolidation cell for disposal of hazardous materials, covering of materials exceeding health-based levels with clay soil cover, and capping materials exceeding Toxicity Characteristic Leaching (not Leachate) Procedure (TCLP) levels with an RCRA Type C or equivalent cap;
- (6) groundwater remedial actions, including installation of a slurry wall barrier, installation of an enhanced evapotranspiration system, cap and cover of Pond 7 with an impermeable layer, and long-term monitoring;
- (7) offsite disposal of organic contents from above ground storage tanks;
- (8) removal of dust and asbestos from buildings, building demolition and onsite disposal of debris, recycling of building structural components, and use of building foundations to function as part of cap/cover over surface contamination.

For OU2 and OU3, see interim actions above.

OU4-

- (1) implementation of segmented wave barriers in Swan Lake totaling approximately 5,200 feet;
- (2) operations and maintenance to ensure wave barrier integrity.

# **Attachment B3. References for Case Study Historical Sites**

Most Superfund documents are available for download at: https://www.epa.gov/superfund/search-superfund-documents

Five-Year review documents are available for download at: <u>https://www.epa.gov/superfund/search-superfund-five-year-reviews</u>

Decision documents are available for download at: <u>https://www.epa.gov/superfund/search-superfund-decision-documents</u>

### Anaconda (MTD093291656)

- ARCO. 1996a. ARCO. Anaconda Regional Water and Waste Operable Unit, Final Remedial Investigation Report, Volume 1 of 4, Text. ARCO, Anaconda, MT. February. Retrieved from http://anacondasuperfund.com/library/files/2.18.10.08A.pdf
- ARCO. 1996b. ARCO. Anaconda Regional Water and Waste Operable Unit, Final Remedial Investigation Report, Volume 2 of 4, Text and Appendices. ARCO, Anaconda, MT. February. Retrieved from http://anacondasuperfund.com/library/files/2.18.10.08B.pdf
- ARCO. 1996c. ARCO. Anaconda Regional Water and Waste Operable Unit, Final Remedial Investigation Report, Volume 3 of 4, Appendices. ARCO, Anaconda, MT. February. Retrieved from <u>http://anacondasuperfund.com/library/files/2.18.10.08C.pdf</u>
- ARCO. 1996d. ARCO. Anaconda Regional Water and Waste Operable Unit, Final Remedial Investigation Report, Volume 4 of 4, Plates. ARCO, Anaconda, MT. February. Retrieved from http://anacondasuperfund.com/library/files/2.18.10.08D.pdf
- ARCO. 1996e ARCO. Anaconda Smelter NPL Site, Anaconda Regional Spoils Operable Unit, Remedial Investigation Report, Volume 2 of 2, Figures. Prepared by Titan Environmental Corporation, Bozeman, MT, for ARCO, Anaconda, MT. October.
- ARCO. 1996f ARCO. Anaconda Smelter NPL Site, Smelter Hill Operable Unit, Remedial Investigation Report, Volume I. ARCO, Anaconda, MT. December.
- ARCO. 1996g. ARCO. Anaconda Smelter NPL Site, Smelter Hill Operable Unit, Remedial Investigation Report, Volume II: Plates. ARCO, Anaconda, MT. December. Retrieved at http://anacondasuperfund.com/library/files/2.13.05.05B.pdf
- ARCO, 1996h. ARCO. Anaconda Smelter NPL Site, Smelter Hill Operable Unit, Remedial Investigation Report, Volume III: Appendices. ARCO, Anaconda, MT, December 1996. Retrieved at <u>http://anacondasuperfund.com/library/files/2.13.05.05C.pdf</u>
- Tetra Tech. 1985. *Background Wells at the Anaconda Smelter Site (Anaconda Smelter RI/FS, Technical Memorandum No. 1)*. Tetra Tech, Inc., Bellevue, WA. October. Retrieved at <a href="http://anacondasuperfund.com/library/files/2.01.09.09.pdf">http://anacondasuperfund.com/library/files/2.01.09.09.pdf</a>

- U.S. EPA (Environmental Protection Agency). 1987. *Record of Decision: Mill Creek, Montana, Anaconda Smelter Superfund Site, First Operable Unit, Volume I.* U.S. Environmental Protection Agency, Region 8, Helena, MT. October.
- U.S. EPA (Environmental Protection Agency). 1988a. EPA Superfund Record of Decision: Anaconda Co. Smelter, EPA ID: MTD093291656 OU 15 Anaconda, MT 10/02/1987. EPA/ROD/R08-88/018. U.S. Environmental Protection Agency, Region 8, Helena, MT.
- U.S. EPA (Environmental Protection Agency). 1988b. EPA Superfund Record of Decision Amendment: Anaconda Co. Smelter EPA ID: MTD093291656 OU 15 Anaconda, MT 01/06/1988. EPA/AMD/R08-88/500. U.S. Environmental Protection Agency, Region 8, Helena, MT. January 6.
- U.S. EPA (Environmental Protection Agency). 1991. EPA Superfund Record of Decision: Anaconda Co. Smelter EPA ID: MTD093291656 OU 11 Anaconda, MT 09/23/1991. EPA/ROD/R08-91/053. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. September.
- U.S. EPA (Environmental Protection Agency). 1996. Final Baseline Human Health Risk Assessment, Anaconda Smelter NPL Site, Anaconda, Montana. Prepared by CDM Federal Programs Corporation, Golden, CO, for U.S. Environmental Protection Agency, Region 8, Helena, MT. January 24.
- U.S. EPA (Environmental Protection Agency). 2005. *Third Five-Year Review Report for Anaconda Company Smelter Site, Anaconda, Deer Lodge County, Montana*. U.S. Environmental Protection Agency, Region 8, Helena, MT. September 29. Retrieved from <u>https://quicksilver.epa.gov/work/HQ/179170.pdf</u>
- U.S. EPA (Environmental Protection Agency). 2010. Fourth Five-Year Review Report, Anaconda Smelter Superfund Site, Anaconda, Montana. U.S. Environmental Protection Agency, Region 8, Helena, MT. September 30.
- US EPA & Montana DEQ, 1995. U.S. Environmental Protection Agency and Montana Department of Environmental Quality. *Explanation of Significant Differences: Anaconda Smelter Superfund Site, Old Works/East Anaconda Development Area, Operable Unit* (*OU 7*), *Anaconda, Deer Lodge County, Montana*. EPA/ESD/R08-96/501. U.S. Environmental Protection Agency, Region 8, Helena, MT. October. Retrieved from <u>http://www.mtech.edu/academics/clsps/ptc/sciencesocietysuperfund/pdfs/archival\_materi</u> <u>als/anaconda\_archives/anaconda\_rod/a\_esd\_anaconda.pdf</u>
- US EPA & Montana DEQ, 1996. U.S. Environmental Protection Agency & Montana Department of Environmental Quality. *EPA Superfund Record of Decision: Anaconda Co. Smelter EPA ID: MTD093291656 OU 16 Anaconda, MT 09/30/1996.* EPA/ROD/R08-96/127. U.S. Environmental Protection Agency, Region 8, Helena, MT. September 30.
- US EPA & Montana DEQ, 1998. U.S. Environmental Protection Agency and Montana Department of Environmental Quality. *EPA Superfund Record of Decision: Anaconda*

Regional Water, Waste, and Soils Operable Unit, Anaconda Smelter NPL Site, Anaconda, MT. U.S. Environmental Protection Agency, Region 8, Helena, MT. September.

- US EPA & Montana DEQ, 2011. U.S. Environmental Protection Agency and Montana Department of Environmental Quality. *EPA Superfund Record of Decision Amendment: Anaconda Regional Water, Waste, and Soils Operable Unit, Anaconda Smelter NPL Site, Anaconda-Deer Lodge County, MT.* U.S. Environmental Protection Agency, Region 8, Helena, MT. September.
- US EPA & Montana DHES, 1994. U.S. Environmental Protection Agency and Montana Department of Health and Environmental Sciences. *EPA Superfund Record of Decision: Old Works/East Anaconda Development Area, Operable Unit, Anaconda Smelter NPL Site, Anaconda, Montana*. EPA/ROD/R08-94/083. U.S. Environmental Protection Agency, Region 8, Helena, MT. July.

## Bunker Hill (IDD048340921)

- TerraGraphics. 2001. TerraGraphics Environmental Engineering. Final Human Health Risk Assessment for the Coeur d'Alene Basin Extending from Harrison to Mullan on the Coeur d'Alene River and Tributaries Remedial, Investigation/Feasibility Study. Prepared by TerraGraphics Environmental Engineering for Idaho Department of Health and Welfare, Idaho Department of Environmental Quality, and U.S. Environmental Protection Agency, Region 10. Retrieved from https://www3.epa.gov/region10/pdf/sites/bunker\_hill/hhra\_080101.pdf
- U.S. EPA (Environmental Protection Agency). 1991a. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex EPA ID: IDD048340921 OU 1 Smelterville, ID. EPA/ROD/R10-91/028. U.S. Environmental Protection Agency, Region 10, Seattle, WA. August 30.
- U.S. EPA (Environmental Protection Agency). 1991b. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex, ID. EPA/ROD/R10-91/028. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. August.
- U.S. EPA (Environmental Protection Agency). 1992a. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex, EPA ID: IDD048340921 OU 02. EPA/ROD/R10-92/041. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 22.
- U.S. EPA (Environmental Protection Agency). 1992b. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex, ID. EPA/ROD/R10-92/041. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. September.
- U.S. EPA (Environmental Protection Agency). 1996. EPA Superfund Record of Decision Amendment: Bunker Hill Mining & Metallurgical Complex EPA ID: IDD048340921 OU

2 Smelterville, ID 09/09/1996. EPA/AMD/R10-96/146. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 9.

- U.S. EPA (Environmental Protection Agency). 1997. EPA Superfund Record of Decision Amendment: Bunker Hill Mining & Metallurgical Complex (Non-Populated Areas) Superfund Site Smelterville, ID 9/9/1996. EPA/AMD/R10-96/146. U.S. Environmental Protection Agency, Region 10, Seattle, WA., April.
- U.S. EPA (Environmental Protection Agency). 1998a. EPA Superfund Explanation of Significant Difference for the Record of Decision: Bunker Hill Mining and Metallurgical Complex Smelterville, ID 4/18/1998. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC, PB98-963106. EPA 541-R98-037, September.
- U.S. EPA (Environmental Protection Agency). 1998b. EPA Superfund Explanation of Significant Differences: Bunker Hill Mining and Metallurgical Complex EPA ID: IDD048340921 OU 02 Smelterville, ID 4/18/1998. U.S. Environmental Protection Agency, Region 10, Seattle, WA, EPA/ESD/R10-98/037. April 8.
- U.S. EPA (Environmental Protection Agency). 1999. *Superfund Cleanup at Bunker Hill: An Overview*. EPA 910-R-99-09. U.S. Environmental Protection Agency, Region 10, Seattle, WA. April.
- U.S. EPA (Environmental Protection Agency). 2000. *First 5-Year Review of the Non-Populated Area Operable Unit Bunker Hill Mining and Metallurgical Complex Shoshone County, Idaho*. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September. Retrieved from https://www3.epa.gov/region10/pdf/sites/bunker\_hill/bh\_unpopulated\_fyr\_2000.pdf
- U.S. EPA (Environmental Protection Agency). 2001a. Bunker Hill Mine Water Management Remedial Investigation/Feasibility Study. Prepared by URS Greiner, Inc., Seattle, WA, and CH2M HILL, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA, April. Retrieved from <u>https://www3.epa.gov/region10/pdf/sites/bunker\_hill/mine\_water\_management\_rifs\_apr2\_001.pdf</u>
- U.S. EPA (Environmental Protection Agency). 2001b. EPA Superfund Record of Decision Amendment: Bunker Hill Mining & Metallurgical Complex EPA ID: IDD048340921 OU 2 Smelterville, ID 12/10/2001. EPA/AMD/R10-02/604. U.S. Environmental Protection Agency, Region 10, Seattle, WA. November.
- U.S. EPA (Environmental Protection Agency). 2002. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex EPA ID: IDD048340921 OU 3 Smelterville, ID. EPA/ROD/R10-02/032. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 12.
- U.S. EPA (Environmental Protection Agency). 2005. Second Five Year Review for the Bunker Hill Mining and Metallurgical Complex Superfund Site, Operable Units 1, 2, and 3,

*Idaho and Washington*. EPA 910-R-05-006. U.S. Environmental Protection Agency, Region 10, Seattle, WA. October. Retrieved from https://www3.epa.gov/region10/pdf/sites/bunker\_hill/bh\_2nd\_fyr\_102505.pdf

- U.S. EPA (Environmental Protection Agency). 2008. Source Areas of Concern Report, Operable Unit 2, Bunker Hill Mining and Metallurgical Complex Superfund Site. Prepared by CH2M HILL, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. March 24. Retrieved from <u>https://yosemite.epa.gov/R10/CLEANUP.NSF/box/Technical+Documents/\$FILE/OU2+</u> <u>Source+Areas+of+Concern+Report.pdf</u>
- U.S. EPA (Environmental Protection Agency). 2010a. *Hardrock Mine Site Data Summary NPL or NPL Equivalent, Bunker Hill Mining & Metallurgical Complex, Smelterville, ID.* U.S. Environmental Protection Agency, Washington, DC. July 12.
- U.S. EPA (Environmental Protection Agency). 2010b. Draft Final, Focused Feasibility Study Report. Upper Basin of the Coeur d'Alene River, Bunker Hill Mining and Metallurgical Complex Superfund Site, Volume 1 – Executive Summary and Main Text. Prepared by CH2M HILL, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July. Retrieved from https://www3.epa.gov/region10/pdf/sites/bunker\_hill/cda\_basin/final\_ffs\_report\_volume \_1.pdf
- U.S. EPA (Environmental Protection Agency). 2010c. Draft Final, Focused Feasibility Study Report. Upper Basin of the Coeur d'Alene River, Bunker Hill Mining and Metallurgical Complex Superfund Site, Volume 4. Prepared by CH2M HILL, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July. Retrieved from <u>https://www3.epa.gov/region10/pdf/sites/bunker\_hill/cda\_basin/final\_ffs\_report\_volume\_4.pdf</u>

## Captain Jack Mill (COD981551427)

- Colorado DPHE (Department of Public Health and Environment). 2008a. *Final Captain Jack Superfund Site Feasibility Study Report*. Prepared by Walsh Environmental Scientists and Engineers, Boulder, CO, for Colorado Department of Public Health and Environment, Denver, CO. May 22.
- Colorado DPHE (Department of Public Health and Environment). 2008b. *Final Captain Jack Superfund Site Remedial Investigation and Risk Assessment Report, Vol. 1.* Prepared by Walsh Environmental Scientists and Engineers, Boulder, CO, for Colorado Department of Public Health and Environment, Denver, CO. May 22.
- Colorado DPHE (Department of Public Health and Environment). 2008c. *Final Captain Jack Superfund Site Remedial Investigation and Risk Assessment Report, Vol. 2.* Prepared by Walsh Environmental Scientists and Engineers, Boulder, CO, for Colorado Department of Public Health and Environment, Denver, CO. May 22.

Colorado DPHE & US EPA, 2008. Colorado Department of Public Health and Environment & U.S. Environmental Protection Agency. *Final Captain Jack Superfund Site Record of Decision*. Prepared by Walsh Environmental Scientists and Engineers, Boulder, CO, for Colorado Department of Public Health and Environment, Denver, CO, and U.S. Environmental Protection Agency, Region 8, Denver, CO. September 23.

## Cimarron (NMD980749378)

- Carrizozo, 2006. Carrizozo, NM. Prohibition Against Disturbance. Executed by Town of Carrizozo, NM. April 25. Retrieved from <u>https://quicksilver.epa.gov/work/06/209690.pdf</u>
- Means, 2006. Means, Timothy. *Prohibition Against Disturbance. Executed by Timothy Means* for Cimarron Mining Corporation Superfund Site, Carrizozo, NM. April 25. Retrieved From <u>https://semspub.epa.gov/work/06/209691.pdf</u>
- U.S. EPA (Environmental Protection Agency). 1990a. EPA Superfund Record of Decision: Cimarron Mining Corp. EPA ID: NMD980749378 OU 01 Carrizozo, NM 09/21/1990. EPA/ROD/R06-90/060. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 1990b. EPA Superfund Record of Decision: Cimarron Mining, NM: Decision Summary, Cimarron Mining Corporation Site, Operable Unit 1. EPA/ROD/R06-90/060. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. September.
- U.S. EPA (Environmental Protection Agency). 1991a. EPA Superfund Record of Decision, Cimarron Mining, NM: Decision Summary, Cimarron Mining Corporation Site, Operable Unit 2 (Sierra Blanca). EPA/ROD/R06-91/067. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. September.
- U.S. EPA (Environmental Protection Agency). 1991b. *Decision Summary, Cimarron Mining Corporation Site, Operable Unit 2 (Sierra Blanca), Record of Decision.* U.S. Environmental Protection Agency, Region 6, Dallas, TX. September. Retrieved from <u>https://quicksilver.epa.gov/work/HQ/187893.pdf</u>
- U.S. EPA (Environmental Protection Agency). 1998. *Cimarron Mining Corporation Superfund Site Ground Water Remedial Action Five-Year Review*. U.S. Environmental Protection Agency, Region 6, Superfund Division, Dallas, TX. July.
- U.S. EPA (Environmental Protection Agency). 2003. Second Five-Year Review Report for Cimarron Mining Corporation Superfund Site Operable Unit 1 and 2, Carrizozo, Lincoln County, New Mexico. U.S. Environmental Protection Agency, Region 6, Dallas, TX. June.
- U.S. EPA (Environmental Protection Agency). 2008. *Third Five-Year Review Report for Cimarron Mining Corporation Superfund Site Operable Unit 1 and 2, Carrizozo, Lincoln County, New Mexico.* U.S. Environmental Protection Agency, Region 6, Dallas, TX. July.

## Eagle Mine (COD081961518)

- Morrison Knudsen & ICF Kaiser, 1997. *Final Eagle Mine Site, Task 5: Risk Assessment Deliverables*. Morrison Knudsen Corporation, Englewood, CO, and ICF Kaiser Engineers, Lakewood, CO. February 11.
- U.S. EPA (Environmental Protection Agency). 1993a. *Final Report on the Health Risk Assessments for the Eagle Mine Superfund Site, Minturn, Colorado*. Prepared by John S. Reif for EREBA under a Technical Advisory Grant for U.S. Environmental Protection Agency, Region 8, Denver, CO. April 15.
- U.S. EPA (Environmental Protection Agency). 1993b. EPA Superfund Record of Decision: Eagle Mine EPA ID: COD081961518 OU 01 Minturn/Redcliff, CO 03/29/1993. EPA/ROD/R08-93/068. U.S. Environmental Protection Agency, Region 8, Denver, CO. March 29.
- U.S. EPA (Environmental Protection Agency). 1998. EPA Superfund Record of Decision: Eagle Mine, EPA ID: COD081961518 OU 02 Minturn/Redcliff, CO 09/03/1998. EPA/ROD/R08-98/079. U.S. Environmental Protection Agency, Region 8, Denver, CO. September 3.
- U.S. EPA (Environmental Protection Agency). 2005. Second Five-Year Review Report for Eagle Mine Superfund Site, CERCLIS ID: COD081961518, Minturn, Eagle County, Colorado. Prepared by Colorado Department of Public Health and Environment, Denver, for U.S. Environmental Protection Agency, Region 8, Denver, CO. September.
- U.S. EPA (Environmental Protection Agency). 2006. Remedial Investigation Report: Bolts Lake Area and Areas within OU-1 of Eagle Mine Site. Prepared by Environmental Resources Management, Greenwood Village, CO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. September 15.
- U.S. EPA (Environmental Protection Agency). 2007a. *Human Health Risk Assessment: Bolts Lake Area and Areas within OU-1 of Eagle Mine Site*. Prepared by Environmental Resources Management, Greenwood Village, CO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. February 2.
- U.S. EPA (Environmental Protection Agency). 2007b. Remediation Feasibility Study: Bolts Lake Area and Areas within OU-1 of Eagle Mine Site. Prepared by Environmental Resources Management, Greenwood Village, CO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. February 16.
- U.S. EPA (Environmental Protection Agency). 2008. *Third Five-Year Review Report for Eagle Mine Superfund Site, CERCLIS ID: COD081961518, Minturn, Eagle County, Colorado.* Prepared by U.S. Environmental Protection Agency, Region 8, Denver, CO. September.

## East Helena (MTD006230346)

- U.S. EPA (Environmental Protection Agency). 1989. *Record of Decision: East Helena Smelter Site, Process Ponds Operable Unit, East Helena, Montana*. U.S. Environmental Protection Agency, Region 8, Helena, MT. November.
- U.S. EPA (Environmental Protection Agency). 1990a. Volume 5: Comprehensive Remedial Investigation/Feasibility Study – ASARCO, Inc., East Helena, Montana. Prepared by Hydrometrics, Inc., Helena, MT., for U.S. Environmental Protection Agency, Region 8, Helena, MT. March 30.
- U.S. EPA (Environmental Protection Agency). 1990b. EPA Superfund Record of Decision: East Helena Site\_EPA ID\_MTD 006230346 OU 01 East Helena, MT 11/22/1989. EPA/ROD/R08-90/027. U.S. Environmental Protection Agency, Region 8, Denver, CO.
- U.S. EPA (Environmental Protection Agency). 2005. *Technical Memorandum: Supplemental Ecological Risk Assessment for the East Helena Smelter Site, Montana*. U.S. Environmental Protection Agency, Region 8, Denver, CO. January 25.
- U.S. EPA (Environmental Protection Agency). 2006. Second Five-Year Review Report for the East Helena Superfund Site, East Helena, Lewis and Clark County, Montana. Prepared by HDR One Company, for U.S. Environmental Protection Agency, Region 8, Helena, MT. March 31.
- U.S. EPA (Environmental Protection Agency). 2009. *East Helena Superfund Site, Operable Unit No. 2, Residential Soils and Undeveloped Lands, Final Record of Decision*. U.S. Environmental Protection Agency, Washington, DC. September.
- U.S. EPA (Environmental Protection Agency). 2011. *Third Five-Year Review Report for the East Helena Superfund Site, East Helena, Lewis and Clark County, Montana*. Prepared by Pacific Western Technologies, Ltd, for U.S. Environmental Protection Agency, Region 8, Helena, MT. September 20.

### Eastern Michaud (IDD984666610)

- FMC. 2010a. FMC. Volume 1: Supplemental Remedial Investigation Report for the FMC Plant Operable Unit. FMC Idaho LLC, Pocatello, ID. January.
- FMC. 2010b. FMC. Volume 2 Appendices: Supplemental Remedial Investigation Report for the *FMC Plant Operable Unit*. FMC Idaho LLC, Pocatello, ID. January.
- U.S. EPA (Environmental Protection Agency). 1995a. *Baseline Human Health Risk Assessment, Eastern Michaud Flats, Pocatello, Idaho.* Prepared by Ecology and Environment, Inc., Lancaster, NY, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July.
- U.S. EPA (Environmental Protection Agency). 1995b. *Baseline Human Health Risk Assessment, Eastern Michaud Flats, Pocatello, Idaho: Appendices A – K.* Prepared by Ecology and Environment, Inc., Lancaster, NY, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July.

- U.S. EPA (Environmental Protection Agency). 1995c. *Ecological Risk Assessment, Eastern Michaud Flats, Pocatello, Idaho*. Prepared by Ecology and Environment, Inc., Lancaster, NY, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July.
- U.S. EPA (Environmental Protection Agency). 1998. Record of Decision: Declaration, Decision Summary, and Responsiveness Summary for Eastern Michaud Flats Superfund Site, Pocatello, Idaho. U.S. Environmental Protection Agency, Region 10, Seattle, WA. June. Retrieved from <u>https://quicksilver.epa.gov/work/10/100002719.pdf</u>

## Foote Mineral (PAD077087989)

- ATSDR (Toxic Substances and Disease Registry). 1994. Preliminary Public Health Assessment for Foote Mineral Company, Frazer, Chester County, Pennsylvania, CERCLIS No. PAD077087989. Prepared by the Pennsylvania Department of Health for the Agency for Toxic Substances and Disease Registry, Division of Health Assessment and Consultation, Atlanta, GA. April 7. Available at http://www.atsdr.cdc.gov/HAC/pha/PHA.asp?docid=309&pg=0
- ERM (Environmental Resources Management). 1999. Cyprus Foote Mineral Remedial Investigation/Risk Assessment Report Volume II, Appendices A to K, East Whiteland Township, Pennsylvania. Environmental Resources Management, Exton, PA. April 2.
- ERM (Environmental Resources Management). 2000. Cyprus Foote Mineral Remedial Investigation/Risk Assessment Report Volume III, Appendices D to L, East Whiteland Township, Pennsylvania. Environmental Resources Management, Exton, PA. May 23.
- ERM (Environmental Resources Management). 2000. Cyprus Foote Mineral Remedial Investigation/Risk Assessment Report Volume IV, Appendices M to R, East Whiteland Township, Pennsylvania. Environmental Resources Management, Exton, PA. May 23.
- U.S. EPA (Environmental Protection Agency). 2006. Superfund Record of Decision: Foote Mineral Co. EPA ID: PAD077087989 OU 01 East Whiteland Township, PA. EPA/ROD/R2006030001596. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. March 31.

## Gilt Edge (SDD987673985)

- U.S. EPA (Environmental Protection Agency). 2001a. Early Action Interim Record of Decision, OU2 – Water Treatment Operations, Gilt Edge Mine NPL Site, Lawrence County, South Dakota. EPA/ROD/R08-01/611. U.S. Environmental Protection Agency, Denver, CO. April 23.
- U.S. EPA (Environmental Protection Agency). 2001b. Interim Record of Decision, Operable Unit 3, Ruby Gulch Waste Rock Dump, Gilt Edge Mine NPL Site, Lawrence County, South Dakota. EPA/ROD/R08-01/548. U.S. Environmental Protection Agency, Denver, CO. August 30.

- U.S. EPA (Environmental Protection Agency). 2003. *Baseline Ecological Risk Assessment for the Gilt Edge Mine, Lead, South Dakota, Final.* U.S. Environmental Protection Agency, Region 8, Denver, CO. November.
- U.S. EPA (Environmental Protection Agency). 2006. *Final Baseline Human Health Risk Assessment for the Gilt Edge Mine Site, Lawrence County, South Dakota*. U.S. Environmental Protection Agency, Region 8, Denver, CO. July.
- U.S. EPA (Environmental Protection Agency). 2007. *First Five-Year Review Report for Gilt Edge Mine Superfund Site Operable Units 2 and 3, Lawrence County, South Dakota*. U.S. Environmental Protection Agency, Region 8, Denver, CO. April.
- U.S. EPA (Environmental Protection Agency). 2008a. *Final Feasibility Study Report for the Gilt Edge Superfund Site, Operable Unit 1 (OU1) Lawrence County, South Dakota.* Prepared by CDM Federal Programs Corporation, Kansas City, MO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. May.
- U.S. EPA (Environmental Protection Agency). 2008b. *Final Remedial Investigation Report for the Gilt Edge Superfund Site Lawrence County, South Dakota, Volume I – Text.* Prepared by CDM Federal Programs Corporation, Denver, CO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. February 1.
- U.S. EPA (Environmental Protection Agency). 2008c. Final Remedial Investigation Report for the Gilt Edge Superfund Site Lawrence County, South Dakota, Volume II – Figures and Tables. Prepared by CDM Federal Programs Corporation, Denver, CO, for U.S. Environmental Protection Agency, Region 8, Denver, CO. February 1.
- U.S. EPA (Environmental Protection Agency). 2008d. *Record of Decision for Gilt Edge Mine Superfund Site Operable Unit 1, Lawrence County, South Dakota*. U.S. Environmental Protection Agency, Region 8, Denver, CO. September.

### Homestake (NMD007860935)

- U.S. EPA (Environmental Protection Agency). 1989a. *Record of Decision: Homestake Mining Company, Radon Operable Unit, Cibola County, New Mexico*. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 1989b. EPA Superfund Record of Decision: Homestake Mining Company, EPA ID: NMD007860935, OU 01, Milan, New Mexico. EPA/ROD/R06-89/050. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September 27.
- U.S. EPA (Environmental Protection Agency). 2001. *First Five-Year Review Report for Homestake Mining Company Superfund Site, Cibola County, New Mexico.* U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.

U.S. EPA (Environmental Protection Agency). 2006. Second Five-Year Review Report for Homestake Mining Company Superfund Site, Cibola County, New Mexico. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.

### Li Tungsten (NYD986882660)

- U.S. EPA (Environmental Protection Agency). 1998a. Li Tungsten, Glen Cove, New York, Draft Final Remedial Investigation (Rl) Report, Volume I of IV. U.S. Environmental Protection Agency, Region 2, New York, NY. May.
- U.S. EPA (Environmental Protection Agency). 1998b. Li Tungsten, Glen Cove, New York, Draft Final Remedial Investigation (Rl) Report, Volume II of IV (Tables, Figures, Plates). U.S. Environmental Protection Agency, Region 2, New York, NY. May.
- U.S. EPA (Environmental Protection Agency). 1998c. Li Tungsten, Glen Cove, New York, Draft Final Remedial Investigation (Rl) Report, Volume III of IV. U.S. Environmental Protection Agency, Region 2, New York, NY. May.
- U.S. EPA (Environmental Protection Agency). 1998d. Li Tungsten, Glen Cove, New York, Draft Final Remedial Investigation (Rl) Report, Volume IV of IV. U.S. Environmental Protection Agency, Region 2, New York, NY. May.
- U.S. EPA (Environmental Protection Agency). 1999a. Draft Final Feasibility Study Report: Li Tungsten, Glen Cove, New York, Work Assignment No. 028-RICO-024, Volume I of II. U.S. Environmental Protection Agency, Region 2, New York, NY. July.
- U.S. EPA (Environmental Protection Agency). 1999b. Draft Final Feasibility Study Report: Li Tungsten, Glen Cove, New York, Work Assignment No. 028-RICO-024, Volume II of II. U.S. Environmental Protection Agency, Region 2, New York, NY. July.
- U.S. EPA (Environmental Protection Agency). 1999c. *Record of Decision for OU1\_Facility and OU2\_Captains Cove for the Li Tungsten Corporation Site*. U.S. Environmental Protection Agency, Region 2, New York, NY. September.
- U.S. EPA (Environmental Protection Agency). 1999d. Record of Decision: Li Tungsten Corporation Superfund Site, EPA ID: NYD986882660, OU 01, 02, Glen Cove, Nassau County, New York. EPA/ROD/R02-99/158. U.S. Environmental Protection Agency, Region 2, New York, NY. September 30.
- U.S. EPA (Environmental Protection Agency). 2005a. EPA Superfund, Explanation of Significant Differences: Li Tungsten Corp. EPA ID: NYD986882660 OU 02 Glen Cove, NY 05/02/2005. EPA/ESD/E2005020001615. U.S. Environmental Protection Agency, Region 2, New York, NY. May 2
- U.S. EPA (Environmental Protection Agency). 2005b. Five-Year Review Report for Li Tungsten Superfund Site, Glen Cove, Nassau County, New York. U.S. Environmental Protection Agency, Region 2, New York, NY. August.

U.S. EPA (Environmental Protection Agency). 2005c. Record of Decision: Li Tungsten Corporation Superfund Site, Operable Unit Four - Glen Cove Creek, City of Glen Cove, Nassau County, New York.. EPA/ROD/R02-05/017. U.S. Environmental Protection Agency, Region 2, New York, NY. March 30.

## Macalloy (SCD003360476)

- Macalloy. 1994. Macalloy Corporation. *Human Health Risk Assessment for Macalloy Corporation, Charleston, South Carolina*. Prepared by ChemRisk Division, McLaren/Hart Environmental Engineering Corporation, Wexford, PA, for Macalloy Corporation, Charleston, SC. September.
- Macalloy. 2001a. Macalloy Corporation. *Final Phase I Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina, Volume I of V, Sections 1 to 10.* Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. April 18.
- Macalloy. 2001b. Macalloy Corporation. *Final Phase I Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina, Volume II of V, Figures*. Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. April 18.
- Macalloy. 2001c. Macalloy Corporation. *Final Phase I Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina, Volume III of V, Appendix 2.A to Appendix 4.A (Grid Soil Borings).* Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. April 18.
- Macalloy. 2001d. Macalloy Corporation. Final Phase I Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina, Volume IV of V, Appendix 4.A (Groundwater Monitoring Wells) to Appendix 8.A. Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. April 18.
- Macalloy. 2001e. Macalloy Corporation. Final Phase I Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina, Volume V of V, Ecological Risk Assessment of the Macalloy Corporation and Shipyard Creek. Prepared by Breedlove, Dennis & Young, Inc., Franklin, TN, for Macalloy Corporation, Charleston, SC. April 18.
- Macalloy. 2002a. Macalloy Corporation. *Final Feasibility Study Report, Macalloy Corporation, Charleston, South Carolina*. Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. March 29.
- Macalloy. 2002b. Macalloy Corporation. Final Phase II Remedial Investigation Report, Macalloy Corporation, Charleston, South Carolina. Prepared by EnSafe Inc., Memphis, TN, and BDY Breedlove, Dennis, Young & Associates, Inc., for Macalloy Corporation, Charleston, SC. January 28.
- Macalloy. 2002c. Macalloy Corporation. *Final Phase II Remediation Report, Macalloy Corporation, Charleston, South Carolina*. Prepared by EnSafe Inc., Memphis, TN, for Macalloy Corporation, Charleston, SC. January 28.

- U.S. EPA (Environmental Protection Agency). 2002. Superfund Record of Decision: Macalloy Corporation, EPA ID: SCD003360476, OU 01, North Charleston, SC, 8/21/2002. EPA/ROD/R04-02/084. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. August 21.
- U.S. EPA (Environmental Protection Agency). 2010. *First Five-Year Review Report, Macalloy Corporation National Priorities List Site Charleston, Charleston County, South Carolina*. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. June 24.

### Midnite Mine (WAD980978753)

- U.S. EPA (Environmental Protection Agency). 2005a. *Final Feasibility Study Report for Midnite Mine Stevens County, Washington*. Prepared by URS Corporation, Seattle, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 30.
- U.S. EPA (Environmental Protection Agency). 2005b. *Final Midnite Mine Human Health Risk Assessment Report*. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September.
- U.S. EPA (Environmental Protection Agency). 2005c. *Final Remedial Investigation Report for Midnite Mine Stevens County, Washington*. Prepared by URS Corporation, Seattle, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 30.
- U.S. EPA (Environmental Protection Agency). 2005d. *Final Report, Midnite Mine Site, Ecological Risk Assessment, Wellpinit, Washington.* Prepared by Lockheed Martin, Edison, NJ, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. September.
- U.S. EPA (Environmental Protection Agency). 2006. *Midnite Mine Superfund Site, Spokane Indian Reservation, Washington, Record of Decision*. U.S. Environmental Protection Agency Region 10, Seattle, WA. September.

### Monsanto (IDD081830994)

- Monsanto. 1993. Monsanto Chemical Company. Phase II Remedial Investigation Report for the Monsanto Soda Springs Elemental Phosphorus Plant, Volume IV. Prepared by Golder Associates, Redmond, WA, for Monsanto Chemical Company, Soda Springs, ID. October 6.
- Monsanto. 1995. Monsanto Chemical Company. Phase II Remedial Investigation Report for the Monsanto Soda Springs Elemental Phosphorus Plant, Volume I. Prepared by Golder Associates, Redmond, WA, for Monsanto Chemical Company, Soda Springs, ID. November 21.
- U.S. EPA (Environmental Protection Agency). 1997. *Record of Decision, Monsanto Chemical Company Superfund Site, Caribou County, Idaho*. U.S. Environmental Protection Agency Region 10, Seattle, WA. April.

- U.S. EPA (Environmental Protection Agency). 2003. First Five-Year Review Report for Monsanto Chemical Co. (Soda Springs Plant), Caribou County, Idaho. U.S. Environmental Protection Agency Region 10, Seattle, WA. September.
- U.S. EPA (Environmental Protection Agency). 2008. Second Five-Year Review Report for Monsanto Chemical Co. (Soda Springs Plant), EPA ID: IDD081830994, Caribou County, Idaho. U.S. Environmental Protection Agency Region 10, Seattle, WA. August.

## National Southwire (KYD049062375)

- U.S. EPA (Environmental Protection Agency). 1993. EPA Superfund Record of Decision: National Southwire Aluminum Co. EPA ID: KYD049062375 OU 01 Hawesville, KY 02/19/1993. EPA/ROD/R04-93/132. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. February 19.
- U.S. EPA (Environmental Protection Agency). 2000. EPA Superfund Record of Decision: National Southwire Aluminum Co. EPA ID: KYD049062375 OU 00 Hawesville, KY 07/06/2000. EPA/ROD/R04-00/079. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. July.
- U.S. EPA (Environmental Protection Agency). 2001. Superfund First Five-Year Review Report for National Southwire Aluminum Co., Hawesville, Hancock County, Kentucky. Prepared by U.S. Army Corps of Engineers, Louisville District, for U.S. Environmental Protection Agency, Region 4, Atlanta, GA. July.
- U.S. EPA (Environmental Protection Agency). 2006. Superfund Second Five-Year Review Report, Final, National Southwire Aluminum Co., Hawesville, Kentucky. Prepared by U.S. Army Corps of Engineers, Louisville District, for U.S. Environmental Protection Agency, Region 4, Atlanta, GA. July.

## Omaha Lead (NESFN0703481)

- U.S. EPA (Environmental Protection Agency). 2004. *Omaha Lead Site, Operable Unit 01, Interim Record of Decision*. U.S. Environmental Protection Agency, Region 7, Kansas City, KS. December 15.
- U.S. EPA (Environmental Protection Agency). 2008. *Draft-Final Baseline Human Health Risk Assessment for the Omaha Lead Site, Omaha, Nebraska*. Prepared by Syracuse Research Corporation, Denver, CO, for U.S. Environmental Protection Agency, Region 7, Kansas City, KS. October.
- U.S. EPA (Environmental Protection Agency). 2009a. *Final Omaha Lead Site Final Feasibility Study, Omaha, Nebraska*. Prepared by Black & Veatch Special Projects Corp., Overland Park, KS, for U.S. Environmental Protection Agency, Region 7, Kansas City, KS. April.
- U.S. EPA (Environmental Protection Agency). 2009b. Omaha Lead Site Final Remedial Investigation Report, Volume I, Omaha, Nebraska. Prepared by Black & Veatch Special

Projects Corp., Overland Park, KS, for U.S. Environmental Protection Agency, Region 7, Kansas City, KS. April.

- U.S. EPA (Environmental Protection Agency). 2009c. Omaha Lead Site Final Remedial Investigation Report, Volume II, Appendices A through L, Omaha, Nebraska. Prepared by Black & Veatch Special Projects Corp., Overland Park, KS, for U.S. Environmental Protection Agency, Region 7, Kansas City, KS. April.
- U.S. EPA (Environmental Protection Agency). 2009d. Omaha Lead Site Final Remedial Investigation Report, Volume III, Appendix M, Omaha, Nebraska. Prepared by Black & Veatch Special Projects Corp., Overland Park, KS, for U.S. Environmental Protection Agency, Region 7, Kansas City, KS. April.
- U.S. EPA (Environmental Protection Agency). 2009e. *Omaha Lead Site, Operable Unit 02, Final Record of Decision*. U.S. Environmental Protection Agency, Region 7, Kansas City, KS. May 13.

## Ormet (OHD004379970)

- U.S. EPA (Environmental Protection Agency). 1994. EPA Superfund Record of Decision: Ormet Corp., EPA ID: OHD004379970, OU 01, Hannibal, OH, 09/12/1994. EPA/ROD/R05-94/259. U.S. Environmental Protection Agency, Region 5, Chicago, IL. September 12.
- U.S. EPA (Environmental Protection Agency). 2002. First Five-Year Review Report for Ormet Corp. Superfund Site, Hannibal, Monroe County, Ohio. U.S. Environmental Protection Agency, Region 5, Chicago, IL. April.
- U.S. EPA (Environmental Protection Agency). 2007. Second Five-Year Review Report for Ormet Corp. Superfund Site, Monroe County, Ohio. U.S. Environmental Protection Agency, Region 5, Chicago, IL. May.

## Palmerton (PAD002395887)

- U.S. EPA (Environmental Protection Agency). 1987. EPA Superfund Record of Decision: Palmerton Zinc Pile EPA ID: PAD002395887 OU 01 Palmerton, PA 09/04/1987. EPA/ROD/R03-87/036. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. September.
- U.S. EPA (Environmental Protection Agency). 1988. EPA Superfund Record of Decision: Palmerton Zinc Pile EPA ID: PAD002395887 OU 02 Palmerton, PA 06/29/1988. EPA/ROD/R03-88/063. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. June.
- U.S. EPA (Environmental Protection Agency). 1998. *Final Risk Assessment Report for the Palmerton Zinc Site, Palmerton, Pennsylvania.* Prepared by CDM Federal Programs Corporation, Wayne, PA, for U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. May.

- U.S. EPA (Environmental Protection Agency). 2000. Feasibility Study Report for the Palmerton Zinc Site Residential Soil and Household Dust, Operable Unit (OU 3), Palmerton, Pennsylvania. Prepared by Black and Veatch Special Projects, Corp., Philadelphia, PA, for U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. May.
- U.S. EPA (Environmental Protection Agency). 2001a. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 1: Executive Summary and Problem Formulation.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001b. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 2: Aquatic Community Endpoints.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001c. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 3: Terrestrial Community Endpoints.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001d. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 4: Project Summary, Uncertainty and Wetland Community Endpoints*. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001e. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 5: Appendices A and B.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001f. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 6: Appendix C.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001g. *Final Draft, Palmerton Zinc Site Ecological Risk Assessment, Volume 7: Appendices D through K.* U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2001h. Record of Decision: Palmerton Zinc Pile Superfund Site, Operable Unit #3, Community Soils, Palmerton, Carbon County, Pennsylvania. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. October.
- U.S. EPA (Environmental Protection Agency). 2002a. Second Five-Year Review Report, Palmerton Zinc Pile Superfund Site, Palmerton, Carbon County, Pennsylvania. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.
- U.S. EPA (Environmental Protection Agency). 2002b. EPA Superfund Explanation of Significant Differences: Palmerton Zinc Pile EPA ID: PAD002395887 OU 02 Palmerton, PA 08/27/2002. EPA/ESD/R03-02/058. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. February.

- U.S. EPA (Environmental Protection Agency). 2002c. EPA Superfund Record of Decision: Palmerton Zinc Pile EPA ID: PAD002395887 OU 03 Palmerton, PA 10/09/2001. EPA/ROD/R03-88/063. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. October.
- U.S. EPA (Environmental Protection Agency). 2007. *Third Five-Year Review Report for Palmerton Zinc Pile Superfund Site, Palmerton, Carbon County, PA*. U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. September.

## Reynolds (ORD009412677)

- RMC (Reynolds Metals Company). 2006a.. Post-Demolition Residual Remedial Investigation Report. Reynolds Metals Company, Troutdale Facility. June.
- RMC (Reynolds Metals Company). 2006b. *Post-Demolition Residual Risk Assessment*. Reynolds Metals Company, Troutdale Facility. June.
- U.S. EPA (Environmental Protection Agency). 2002. *Reynolds Metals Company (RMC)* Superfund Site Troutdale, Oregon, Record of Decision for Interim Remedial Action. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 30.
- U.S. EPA (Environmental Protection Agency). 2006. *Reynolds Metals Company Superfund Site, Troutdale, Oregon, Record of Decision for Final Remedial Action.* U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 29.
- U.S. EPA (Environmental Protection Agency). 2008. Five-Year Review Report, First Five-Year Review Report for Reynolds Metals Superfund Site, City of Troutdale Multnomah County, Oregon. U.S. Environmental Protection Agency, Region 10, Seattle, WA. July.

### Silver Mountain (WAD980722789)

- U.S. EPA (Environmental Protection Agency). 1990a. Declaration for the Silver Mountain Mine Superfund Site, Record of Decision, Silver Mountain Mine, Okanogan County, Washington. U.S. Environmental Protection Agency, Region 10, Seattle, WA. March.
- U.S. EPA (Environmental Protection Agency). 1990b. EPA Superfund Record of Decision: Silver Mountain Mine, EPA ID: WAD980722789, OU 01, Loomis, WA, 03/27/1990. EPA/ROD/R10-90/022. U.S. Environmental Protection Agency, Region 10, Seattle, WA. March 27.
- U.S. EPA (Environmental Protection Agency). 1995. EPA Superfund Explanation of Significant Differences: Silver Mountain Mine, EPA ID: WAD980722789, OU 01, Loomis, WA, 10/12/1994. EPA/ESD/R10-95/116. U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- U.S. EPA (Environmental Protection Agency). 2002. Second 5-Year Review of the Silver Mountain Mine, Okanogan County, Washington. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September.

U.S. EPA (Environmental Protection Agency). 2007. *Third Five-Year Review of the Silver Mountain Mine Superfund Site, Okanogan County, Washington*. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September.

## Stauffer (FLD010596013)

- U.S. EPA (Environmental Protection Agency). 1995. *Revised Final Baseline Risk Assessment Part A and B for Stauffer Chemical Company, Tarpon Springs, Florida*. Prepared by Black & Veatch Waste Science, Inc., Atlanta, GA, for U.S. Environmental Protection Agency, Region 4, Waste Management Division, Atlanta, GA. July 21.
- U.S. EPA (Environmental Protection Agency). 1998. EPA Superfund Record of Decision: Stauffer Chemical Co. (Tarpon Springs), EPA ID: FLD010596013, OU 01, Tarpon Springs, FL, 07/02/1998. EPA/ROD/R04-98/103. U.S. Environmental Protection Agency, Region 4, Atlanta, GA.
- Weston. 1993. Weston. *Stauffer Management Company, Tarpon Springs, Florida, Final Site Remedial Investigation Report, Volume I of V.* Roy F. Weston, Inc., West Chester, PA. December.

## Summitville (COD983778432)

- Colorado DPHE (Department of Public Health and Environment). 2005. Second Five-Year Review, Summitville Mine Superfund Site, Rio Grande County, Colorado. Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, Denver, CO. September.
- Colorado DPHE (Department of Public Health and Environment). 2010. *Third Five-Year Review Report, Summitville Mine Superfund Site, Rio Grande County, Colorado*. Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, Denver, CO. September.
- U.S. EPA (Environmental Protection Agency). 1995a. EPA Superfund Record of Decision: Summitville Mine EPA ID: COD983778432 OU 00 Rio Grande County, CO 12/15/1994. EPA/ROD/R08-95/095. U.S. Environmental Protection Agency, Region 8, Denver, CO. January.
- U.S. EPA (Environmental Protection Agency). 1995b. EPA Superfund Record of Decision: Summitville Mine EPA ID: COD983778432 OU 01 Heap Leach Pad, Rio Grande County, CO 12/15/1994. EPA/ROD/R08-95/096. U.S. Environmental Protection Agency, Region 8, Denver, CO.
- U.S. EPA (Environmental Protection Agency). 1995c. EPA Superfund Record of Decision: Summitville Mine, EPA ID: COD983778432, OU 02, Cropsy Waste Pile, Beaver Mud Dump/Summitville Dam Impoundment, and Mine Pits, Rio Grande County, CO, 12/15/1994. EPA/ROD/R08-95/097. U.S. Environmental Protection Agency, Region 8, Denver, CO. January.

- U.S. EPA (Environmental Protection Agency). 1995d. EPA Superfund Record of Decision: Summitville Mine EPA ID: COD983778432 OU 04 Rio Grande County, CO 12/15/1994. EPA/ROD/R08-95/098. U.S. Environmental Protection Agency, Region 8, Denver, CO. January.
- U.S. EPA (Environmental Protection Agency). 2001a. *Record of Decision for Summitville Mine Final Site-Wide Remedy Operable Unit 5, Summitville Mine Superfund Site, Rio Grande County, Colorado*. U.S. Environmental Protection Agency, Region 8, Denver, CO.
- U.S. EPA (Environmental Protection Agency). 2001b. EPA Superfund Record of Decision: Summitville Mine EPA ID: COD983778432 OU 05 Rio Grande County, CO 09/28/2001. EPA/ROD/R08-01/538. U.S. Environmental Protection Agency, Region 8, Denver, CO.

## Teledyne Wah Chang (ORD050955848)

- U.S. EPA (Environmental Protection Agency). 1989. Record of Decision, Decision Summary, and Responsiveness Summary for Interim Response Action, Teledyne Wah Chang Albany Superfund Site, Operable Unit #1 (Sludge Ponds Unit), Albany, Oregon. EPA/ROD/R10-90/021. U.S. Environmental Protection Agency, Region 10, Seattle, WA. December.
- U.S. EPA (Environmental Protection Agency). 1990. EPA Superfund Record of Decision: Teledyne Wah Chang EPA ID: ORD050955848 OU 02 Albany, OR 12/28/1989. EPA/ROD/R10-90/021.U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- U.S. EPA (Environmental Protection Agency). 1994. EPA Superfund Record of Decision: Teledyne Wah Chang EPA ID: ORD050955848 OU 02 Albany, OR 06/10/1994.
   EPA/ROD/R10-94/078. U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- U.S. EPA (Environmental Protection Agency). 1995. EPA Superfund Record of Decision: Teledyne Wah Chang EPA ID: ORD050955848 OU 03 Albany, OR 09/27/1995.
   EPA/ROD/R10-95/125. U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- U.S. EPA (Environmental Protection Agency). 1997. EPA Superfund Explanation of Significant Differences: Teledyne Wah Chang, EPA ID: ORD050955848, OU 01, Albany, OR, 10/08/1996. EPA/ESD/R10-97/082. U.S. Environmental Protection Agency, Seattle, WA.
- U.S. EPA (Environmental Protection Agency). 1998. EPA Superfund Explanation of Significant Differences for the Record of Decision: Teledyne Wah Chang Superfund Site Albany, OR 10/8/1996. EPA/514/R-97/082. U.S. Environmental Protection Agency, Office of Environmental Cleanup, Seattle, WA. January.
- U.S. EPA (Environmental Protection Agency). 2001. EPA Superfund Explanation of Significant Differences: Teledyne Wah Chang, EPA ID: ORD050955848, OU 03, Albany, OR, 09/28/2001. EPA/ESD/R10-01/550. U.S. Environmental Protection Agency, Office of Environmental Cleanup, Seattle, WA. September.

- U.S. EPA (Environmental Protection Agency). 2003. Second Five-Year Review Report for Teledyne Wah Chang Albany Superfund Site, Millersburg, Oregon. U.S. Environmental Protection Agency, Environmental Cleanup Division, Region 10, Seattle, WA. January.
- U.S. EPA (Environmental Protection Agency). 2008. *Final Third Five-Year Review Report for the Teledyne Wah Chang Superfund Site*. U.S. Environmental Protection Agency, Region 10, Environmental Cleanup Division, Seattle, WA. January.
- U.S. EPA (Environmental Protection Agency). 2009. Second Explanation of Significant Differences for the June 10, 1994, Record of Decision for the Final Remedial Action of the Groundwater and Sediments Operable Unit Teledyne Wah Chang Superfund Site, Albany, Oregon. U.S. Environmental Protection Agency, Region 10, Seattle, WA. June.

## Tex Tin (TXD06211332)

- U.S. EPA (Environmental Protection Agency). 1999. EPA Superfund Record of Decision: Tex Tin Corp. EPA ID: TXD062113329, OU 01, Texas City, Texas, 05/17/1999.
   EPA/ROD/R06-99/093. U.S. Environmental Protection Agency, Region 6, Dallas, TX. May 17.
- U.S. EPA (Environmental Protection Agency). 2000a. Amended Record of Decision, Tex Tin Corporation Superfund Site, Operable Unit No. 1, Texas City, Galveston County, Texas. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 2000b. Record of Decision, Tex Tin Corporation Superfund Site, Operable Unit No. 3 – Residential Property, La Marque, Galveston County, Texas. U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 2001a. *Record of Decision, Tex Tin Corporation Superfund Site, Operable Unit No. 2 – Amoco Property, Texas City, Texas.* U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 2001b. *Record of Decision, Tex Tin Corporation Superfund Site, Operable Unit No. 4, Galveston County, Texas City, Texas.* U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 2003. Five-Year Review Report, Tex Tin Corporation Superfund Site, Operable Unit No. 2, Texas City, Texas, Galveston County.
   U.S. Environmental Protection Agency, Region 6, Dallas, TX. September.
- U.S. EPA (Environmental Protection Agency). 2005. Second Five-Year Review Report for the Tex Tin Corporation Superfund Site, Texas City, Galveston County, Texas. U.S. Environmental Protection Agency, Region 6, Dallas, TX. August.

# Attachment B4. Expanded 108(b) Historical CERCLA Sites Universe

| Row | Site Name                                    | EPA ID       | State        | Site Type                              |
|-----|----------------------------------------------|--------------|--------------|----------------------------------------|
| 1   | Abandoned Uranium Mines on the Navajo Nation | NNN000906087 | NM and<br>AZ | Removal                                |
| 2   | Abbot/Turkey Run Mine                        | CAN000908401 | CA           | Removal                                |
| 3   | ACM Smelter and Refinery                     | MTD093291599 | MT           | NPL                                    |
| 4   | Aerojet General                              | CAD980358832 | CA           | NPL, removal                           |
| 5   | Agrico Chemical Company                      | FLD980221857 | FL           | NPL                                    |
| 6   | Agrifos Acid Spill 2                         | TXD099387474 | ТХ           | NPL, removal                           |
| 7   | AGRIUM ACID SPILL                            | IDN001002691 | ID           |                                        |
| 8   | AKRON MILL                                   | CON000802707 | СО           | Removal                                |
| 9   | ALCOA (Vancouver Smelter)                    | WAD009045279 | WA           | Deleted NPL                            |
| 10  | ALCOA Properties                             | ILSFN0508010 | IL           | Removal                                |
| 11  | ALCOA/Lavaca Bay                             | TXD008123168 | ТХ           | NPL, removal                           |
| 12  | Alder Mill                                   | WAD980722847 | WA           | Removal                                |
| 13  | Allied-Pulaski                               | VAD980551915 | VA           | Removal                                |
| 14  | Altoona Mine                                 | CAN000908402 | CA           | Removal                                |
| 15  | Aluminum Company of America                  | NYD980506232 | NY           | Removal                                |
| 16  | Ambler Asbestos Piles                        | PAD000436436 | PA           | Deleted NPL,<br>removal                |
| 17  | American Fork Canyon/UINTA National          | UTD988074951 | UT           | Removal                                |
| 18  | American Lead and Zinc Mill                  | CON000802649 | СО           | Removal                                |
| 19  | AMERICAN ZINC & LEAD SMELTING CO - FORMER    | KSD984971986 | KS           | Removal                                |
| 20  | Anaconda Co. Smelter                         | MTD093291656 | MT           | NPL, removal                           |
| 21  | Anaconda Copper Company                      | NVD083917252 | NV           | Removal                                |
| 22  | Anderson-Calhoun Mine/Mill                   | WAN001002309 | WA           | Removal                                |
| 23  | Annapolis Lead Mine                          | MO0000958611 | MO           | NPL, removal                           |
| 24  | Annie Creek Mine Tailings                    | SDD987666013 | SD           | Proposed NPL/<br>withdrawn,<br>unknown |
| 25  | ARCELORMITTAL CAUSTIC SPILL                  | INN000510508 | IN           | Removal                                |
| 26  | Argonaut Mine                                | CAD983650011 | CA           | Enforcement site                       |
| 27  | ARMCO, Inc., Hamilton Plant                  | OHD074705930 | ОН           | Proposed NPL                           |
| 28  | ARSENIC MINES                                | NYD982531469 | NY           | Removal                                |
| 29  | ASARCO Hayden Plant                          | AZD008397127 | AZ           | Removal                                |
| 30  | ASARCO INC                                   | WAD010187896 | WA           |                                        |
| 31  | ASARCO Sodium - East Helena                  | MTN000802439 | MT           | Removal                                |
| 32  | ASARCO Taylor Springs                        | ILN000508170 | IL           | NPL, removal                           |

| 33 | ASARCO, Inc. (Globe Plant)                     | COD007063530  | СО | Proposed NPL             |
|----|------------------------------------------------|---------------|----|--------------------------|
| 34 | Ashepoo Phosphate/Fertilizer Works             | SC0001645373  | SC | Removal                  |
| 35 | Atlantic Phosphate Works                       | SC0002332815  | SC | Removal                  |
| 36 | Atlas Asbestos Mine                            | CAD980496863  | CA | NPL, removal             |
| 37 | Austin Avenue Radiation Site                   | PAD 987341716 | PA | Deleted NPL              |
| 38 | Badger Mine/Mill                               | MON000706006  | MO | Removal                  |
| 39 | Balaklala Mine                                 | CAD980814867  | CA | Enforcement site         |
| 40 | BALLARD MINE                                   | IDN001002859  | ID |                          |
| 41 | Barite Hill/Nevada Goldfields                  | SCN000407714  | SC | NPL, removal             |
| 42 | Barker Hughesville Mining District             | MT6122307485  | MT | NPL, removal             |
| 43 | BARTH SMELTING CORP.                           | NJN008010373  | NJ | Removal                  |
| 44 | Basin Mining Area                              | MTD982572562  | MT | NPL, removal             |
| 45 | Bautsch-Gray Mine                              | ILN000510407  | IL | Proposed NPL,<br>removal |
| 46 | Belden Cribbings                               | CON000802450  | СО | Removal                  |
| 47 | BERGSTROM DUMP SITE                            | NVD986775260  | NV | Removal                  |
| 48 | Berks Sand Pit                                 | PAD980691794  | PA | NPL, removal             |
| 49 | Big River Hills Lead Tailings                  | MON000705784  | MO | Removal                  |
| 50 | Big River Mine Tailings/St. Joe Minerals Corp. | MOD981126899  | MO | NPL, removal             |
| 51 | BINGHAM MAGNA DITCH                            | UTN000802691  | UT |                          |
| 52 | Black Butte Mine                               | OR0000515759  | OR | NPL                      |
| 53 | Blackbird Mine                                 | IDD980725832  | ID | Proposed NPL,<br>removal |
| 54 | Blende Smelter                                 | CON000802698  | CO | Removal                  |
| 55 | Blue Ledge Mine                                | CAN000906063  | CA | NPL, removal             |
| 56 | Bluewater Uranium Mine                         | NND983469891  | NM | Removal                  |
| 57 | Bluewater Uranium Mine (DOE)                   | NND986683290  | NM | Removal                  |
| 58 | BLUEWATER URANIUM MINE (SANTA FE)              | NND986683316  | NM | Removal                  |
| 59 | BM-ROLLA RESEARCH CENTER                       | MOSFN0703485  | MO | Removal                  |
| 60 | Bodie State Historical Park                    | CAN000908532  | CA | Removal                  |
| 61 | Bonanza Mill                                   | WASFN1002221  | WA | Removal                  |
| 62 | Bonne Terre Mine Tailings                      | MOD985818236  | MO | Removal                  |
| 63 | Borden Chem Co/ Tenoric Mine                   | FLD980727432  | FL |                          |
| 64 | BoRIt Asbestos                                 | PAD981034887  | PA | NPL, removal             |
| 65 | Brewer Gold Mine                               | SCD987577913  | SC | NPL, removal             |
| 66 | Broad Brook Mill                               | CT0002055887  | СТ | Proposed NPL             |
| 67 | Brushy Creek Mine/Mill Facility                | MOT300010691  | MO | Removal                  |
| 68 | Bueno Mill & Mine SIte                         | CON000802129  | СО | Removal                  |
| 69 | Bunker Hill Mining & Metallurgical Complex     | IDD048340921  | ID | NPL                      |
| 70 | BUTTERFIELD CREEK-HERRIMAN RESIDENTIAL         | UT0002055176  | UT | Removal                  |
| 71 | BUTTERFIELD MINE (ST. JOE'S TUNNEL)            | UTD981548993  | UT | Removal                  |
| 72  | California Gulch                             | COD980717938            | СО           | NPL, removal             |  |
|-----|----------------------------------------------|-------------------------|--------------|--------------------------|--|
| 73  | Callahan Mining Corp                         | MED980524128            | NPL          |                          |  |
| 74  | CANE VALLEY NAVAJO RADIOACTIVE<br>STRUCTURES | NNN000908623            | AZ           | Removal                  |  |
| 75  | Captain Jack Mill                            | COD981551427            | NPL, removal |                          |  |
| 76  | Caraleigh Phosphate and Fertilizer Works     | NCN000407686            | NC           | Removal                  |  |
| 77  | Carpenter Snow Creek Mining District         | MT0001096353            | MT           | NPL, removal             |  |
| 78  | Carson River Mercury Site                    | NVD980813646            | NV           | NPL, removal             |  |
| 79  | Carthage City and Eastern Jasper County Lead | MON000705445            | MO           | Removal                  |  |
| 80  | Cedartown Industries, Inc.                   | GAD095840674            | GA           | Deleted NPL,<br>removal  |  |
| 81  | Cedartown Municipal Landfill                 | GAD980495402            | GA           | Deleted NPL              |  |
| 82  | Celtor Chemical Works                        | CAD980638860            | CA           | Deleted NPL,<br>removal  |  |
| 83  | Central City, Clear Creek                    | COD980717557            | СО           | NPL, removal             |  |
| 84  | Central Eureka Mine                          | CA0000726539            | CA           | Removal                  |  |
| 85  | CENTRAL FARMERS ACTIVITY                     | IDD980722292            | ID           | Removal                  |  |
| 86  | Central Mining District Lead – Camden Co.    | MON000705679            | MO           | Removal                  |  |
| 87  | Central Mining District Lead – Cole Co.      | MON000705444            | MO           | Removal                  |  |
| 88  | Central Mining District Lead – Miller Co.    | MON000705678            | Removal      |                          |  |
| 89  | Central Mining District Lead – Moniteau Co.  | MON000705681            | MO           | Removal                  |  |
| 90  | Central Mining District Lead – Morgan Co.    | MON000705680            | MO           | Removal                  |  |
| 91  | CERRILLOS MILL/SMELTER                       | NMD986668721            | Removal      |                          |  |
| 92  | Chemet Co.                                   | TND987768546            | TN           | Deleted NPL,<br>removal  |  |
| 93  | Cherokee County                              | KSD980741862            | KS           | NPL, removal             |  |
| 94  | Chevron Questa                               | NMD002899094            | NM           | NPL                      |  |
| 95  | Chlor-Alkali Facility (Former)               | NHN000103313            | NH           | NPL                      |  |
| 96  | CHURCH ROCK NAVAJO RADIOACTIVE<br>STRUCTURES | NNN000908945            | Removal      |                          |  |
| 97  | CIMA ROAD MINE WASTE SITE                    | CAN000905903            | CA           | Removal                  |  |
| 98  | Cimarron Mining Corp.                        | NMD980749378            | NM           | NPL, removal             |  |
| 99  | Cinnabar Mine                                | IDD980665160            | ID           | Removal                  |  |
| 100 | Circle Smelting Corp.                        | ILD050231976            | IL           | Proposed NPL,<br>removal |  |
| 101 | Claim Jumper/Shock Hill                      | CON000802644            | СО           | Removal                  |  |
| 102 | Clayton Silver Mine & Assoc Properties       | ID0000135798            | ID           | Removal                  |  |
| 103 | Cleve Reber                                  | LAD980501456            | LA           | Deleted NPL,<br>removal  |  |
| 104 | Cleveland Mill                               | NMD981155930            | NM           | Deleted NPL,<br>removal  |  |
| 105 | Cleveland Mine and Mill                      | WAN001002247            | WA           | Removal                  |  |
| 106 | Coalinga Asbestos Mine                       | CAD980817217            | CA           | Deleted NPL,<br>removal  |  |
| 107 | COLORADO SCHOOL OF MINES RI/CREEKSIDE        | COD000823401 CO Removal |              |                          |  |

| 108 | Columbia Nitrogen                                                    | SC0001040393    | SC                 | Not on NPL, not a removal |  |  |  |
|-----|----------------------------------------------------------------------|-----------------|--------------------|---------------------------|--|--|--|
| 109 | COMEBACK MINE                                                        | IDD980982953    | Removal            |                           |  |  |  |
| 110 | Commencement Bay, Near Shore/Tide Flats                              | WAD980726368    | NPL, removal       |                           |  |  |  |
| 111 | COMMODITY METALS SITE - HAZMAT                                       | MIN000510097    | MI                 | Removal                   |  |  |  |
| 112 | CONDA MINE                                                           | IDN001002862    | ID                 | Removal                   |  |  |  |
| 113 | Conjecture Mine                                                      | IDN001002661    | ID                 | Removal                   |  |  |  |
| 114 | Continental Mine and Mill                                            | IDN001002317    | ID                 | Removal                   |  |  |  |
| 115 | Copper Basin Mining District                                         | TN0001890839    | TN                 | Removal                   |  |  |  |
| 116 | Coronet Industries                                                   | FLD001704741    | FL                 | Enforcement site          |  |  |  |
| 117 | COVE NAVAJO RADIOACTIVE STRUCTURE SITE                               | NNN000908603    | AZ                 | Removal                   |  |  |  |
| 118 | COVE RED VALLEY(NORTHERN AGENCY)<br>RADIOACTIVE STRUCTURE SITE       | NNN000909454    | AZ                 | Removal                   |  |  |  |
| 119 | COVE TRANSFER STATION                                                | NNN000906016    | AZ                 | Removal                   |  |  |  |
| 120 | CUBA SMELTER SITE                                                    | NMD986668457    | NM                 | Removal                   |  |  |  |
| 121 | Cyprus Tohono Mine                                                   | AZD094524097    | AZ                 | Removal                   |  |  |  |
| 122 | Davenport and Flagstaff Smelters                                     | UTD988075719    | UT                 | NPL, removal              |  |  |  |
| 123 | Denver Radium Site                                                   | COD980716955    | СО                 | NPL, removal              |  |  |  |
| 124 | DEPUE/New Jersey Zinc/Mobil Chemical Corp.                           | ILD062340641    | IL                 | NPL                       |  |  |  |
| 125 | Diamond Shamrock (Painesville Works)                                 | OHD980611909    | ОН                 | Proposed NPL,<br>removal  |  |  |  |
| 126 | Dona Ana Metal Survey                                                | NM0000605387    | NM                 | Removal                   |  |  |  |
| 127 | DOUGLAS MINE                                                         | ID0000010108    | ID                 | Removal                   |  |  |  |
| 128 | E.I. du Pont de Nemours & Co., Inc. (Newport Pigment Plant Landfill) | DED980555122 DE |                    | NPL, removal              |  |  |  |
| 129 | Eagle Mine                                                           | COD081961518    | CO                 | NPL, removal              |  |  |  |
| 130 | Eagle Zinc Co Div T L Diamond                                        | ILD980606941    | 41 IL NPL, removal |                           |  |  |  |
| 131 | East Helena Site                                                     | MTD006230346    | Removal            |                           |  |  |  |
| 132 | Eastern Michaud Flats Contamination                                  | IDD984666610    | ID                 | NPL, removal              |  |  |  |
| 133 | Elizabeth Mine                                                       | VTD988366621    | VT                 | Removal                   |  |  |  |
| 134 | ELVINS MINE TAILINGS                                                 | MOD985818244    | MO                 | Removal                   |  |  |  |
| 135 | Ely Copper Mine                                                      | VTD988366571    | VT                 | NPL                       |  |  |  |
| 136 | Empire Canyon                                                        | UT0002005981    | UT                 | Removal                   |  |  |  |
| 137 | ENOCH VALLEY MINE                                                    | IDN001002861    | ID                 |                           |  |  |  |
| 138 | Estech General Chemical                                              | NCD051827905    | NC                 | Removal                   |  |  |  |
| 139 | Eureka Mills                                                         | UT0002240158    | UT                 | NPL, removal              |  |  |  |
| 140 | Evening Star Mine                                                    | CON000802651    | СО                 | Removal                   |  |  |  |
| 141 | Everett Smelter                                                      | WAN001002564    | WA                 | Removal                   |  |  |  |
| 142 | FEDERAL MINE TAILINGS                                                | MOD985808070    | MO                 | Removal                   |  |  |  |
| 143 | Feed Materials Production Center (USDOE)                             | OH6890008976    | ОН                 | NPL, removal              |  |  |  |

| 144 | FIBERFINE OF MEMPHIS                                                      | TND007017056 | Removal          |                            |  |  |  |
|-----|---------------------------------------------------------------------------|--------------|------------------|----------------------------|--|--|--|
| 145 | Fields Brook                                                              | OHD980614572 | ОН               | NPL, removal               |  |  |  |
| 146 | Flat Creek IMM                                                            | MT0012694970 | MT               | NPL, removal               |  |  |  |
| 147 | Flat Top Mine                                                             | SDN000802781 | SD               | Removal                    |  |  |  |
| 148 | Foote Mineral Co.                                                         | PAD077087989 | 989 PA NPL, remo |                            |  |  |  |
| 149 | Former United Zinc Smelter                                                | KSN000705026 | KS               | Proposed ? NPL,<br>removal |  |  |  |
| 150 | FORMER W&J LANYON ZINC WORKS                                              | KSN000706199 | KS               | Enforcement site           |  |  |  |
| 151 | Formosa Mine                                                              | ORN001002616 | OR               | NPL, removal               |  |  |  |
| 152 | Fourco Glass                                                              | WVD988768693 | WV               | Removal                    |  |  |  |
| 153 | Franklin County Lead                                                      | MON000705442 | MO               | Removal                    |  |  |  |
| 154 | Fremont National Forest/White King and Lucky Lass<br>Uranium Mines (USDA) | OR7122307658 | OR               | NPL, removal               |  |  |  |
| 155 | French Gulch                                                              | CO0001093392 | СО               | Removal                    |  |  |  |
| 156 | Gambonini Mercury Mine                                                    | CA0002322469 | CA               | Removal                    |  |  |  |
| 157 | GAY MINE SITE                                                             | IDN001002730 | ID               | Enforcement site           |  |  |  |
| 158 | Gem Park Complex                                                          | CON000801985 | Removal          |                            |  |  |  |
| 159 | Georgetown Railroad                                                       | MTD986068930 | MTD986068930 MT  |                            |  |  |  |
| 160 | Gilt Edge Mine                                                            | SDD987673985 | SD               | NPL, removal               |  |  |  |
| 161 | GIRARDEAU STEVEDORES PYRITE FIRE                                          | MON000705901 | MO               | Removal                    |  |  |  |
| 162 | GLEN RIDGE RADIUM SITE                                                    | NJD980785646 | NJ               | Deleted NPL                |  |  |  |
| 163 | Golden Age Mine                                                           | CO000023077  | СО               | Enforcement site           |  |  |  |
| 164 | Goldome Mine                                                              | CAN000908600 | CA               | Removal                    |  |  |  |
| 165 | Grandview Mine                                                            | WASFN1002165 | Removal          |                            |  |  |  |
| 166 | Great Republic Smelter                                                    | MTN000802591 | Removal          |                            |  |  |  |
| 167 | GREEN RIVER CYANIDE DRUMS                                                 | UTD980717995 | Removal          |                            |  |  |  |
| 168 | Grey Eagle Mine                                                           | CAD000629923 | Removal          |                            |  |  |  |
| 169 | Grouse Creek Mine                                                         | IDSFN1002152 | ID               | Removal                    |  |  |  |
| 170 | Gulf States Steel/Black Creek                                             | ALD004014973 | AL               | Removal                    |  |  |  |
| 171 | Halliburton Plant Fire                                                    | TXN000607023 | ТΧ               | Removal                    |  |  |  |
| 172 | HAMMOND HULL SITE FOUND NOT TO BE<br>VIRGINIA CAROLINA CHEMICAL (VCC)     | SCN000407726 | SC               | Removal                    |  |  |  |
| 173 | Hanford 1100-Area (USDOE)                                                 | WA4890090075 | WA               | Deleted NPL,<br>removal    |  |  |  |
| 174 | Hanlin-Allied-Olin                                                        | WVD024185373 | WV               | NPL, removal               |  |  |  |
| 175 | Harmony Mine & Mill Site                                                  | IDSFN1002104 | ID               | Removal                    |  |  |  |
| 176 | HAYSTACK NAVAJO RADIOACTIVE STRUCTURES                                    | NNN000909132 | NM               | Removal                    |  |  |  |
| 177 | HEARST MILL                                                               | NM0000037408 | NM Removal       |                            |  |  |  |
| 178 | Hegeler Zinc                                                              | ILN000508134 | IL               | NPL, removal               |  |  |  |
| 179 | HEMATITE RADIOACTIVE                                                      | MOD985770767 | MO               | MO                         |  |  |  |

| 180 | Hendricks Mining & Milling                 | COD078348737        | СО                       | Enforcement site          |  |  |
|-----|--------------------------------------------|---------------------|--------------------------|---------------------------|--|--|
| 181 | HENRY MINE                                 | IDN001002860        | Enforcement site         |                           |  |  |
| 182 | Herculaneum Lead Smelter Site              | MOD006266373        | MO                       | Removal                   |  |  |
| 183 | Highway 00 Lead                            | MON000705438        | 00705438 MO Rei          |                           |  |  |
| 184 | Hocomonco Pond                             | MAD980732341        | 1 MA NPL                 |                           |  |  |
| 185 | Holden Mine                                | WA9122307672        | WA                       | Removal                   |  |  |
| 186 | Holtra Chem                                | NCD991278631        | NC                       | Removal                   |  |  |
| 187 | Homestake Mining Co.                       | NMD007860935        | NM                       | NPL                       |  |  |
| 188 | Horton Iron and Metal                      | NCN000407480        | NC                       | NPL                       |  |  |
| 189 | Idaho Lakeview Mine                        | IDN001002537        | ID                       | Removal                   |  |  |
| 190 | Ilse Mine AKA Terrible Mine                | COD980957674        | CO                       | Removal                   |  |  |
| 191 | Industrial Minerals                        | CO0001407543        | СО                       | Removal                   |  |  |
| 192 | INDUSTRI-PLEX                              | MAD076580950        | MA                       | NPL                       |  |  |
| 193 | Intermountain Insulation SLC Plant         | UT0010165126        | UT                       | Removal                   |  |  |
| 194 | International Minerals and Chemicals (IMC) | SCD003350493        | SC                       | Removal                   |  |  |
| 195 | International Smelting and Refining        | UTD093120921        | UT                       | NPL                       |  |  |
| 196 | Iron King Mine - Humboldt Smelter          | AZ0000309013        | AZ                       | NPL, removal              |  |  |
| 197 | Iron Mountain Mine                         | CAD980498612        | NPL, removal             |                           |  |  |
| 198 | Iron Springs Mining District               | CO0001916360        | CO                       | Removal                   |  |  |
| 199 | Jackpile-Paguate Uranium Mine              | NMN000607033        | Proposed NPL,<br>unknown |                           |  |  |
| 200 | Jackson Township Landfill                  | NJD980505283        | NJ                       | Deleted NPL               |  |  |
| 201 | Jacobs Smelter                             | UT0002391472        | UT                       | NPL, removal              |  |  |
| 202 | JEFFERSON CITY RESIDENTIAL YARDS           | MTN000802725        | MT                       | Removal                   |  |  |
| 203 | Jewett White Lead Co. Site                 | NYD980531545        | NY                       | Removal                   |  |  |
| 204 | JIS Landfill                               | NJD097400998        | NJ                       | NPL                       |  |  |
| 205 | JOHNNY M MINE AREA                         | NMN000607139        | NM                       | Removal                   |  |  |
| 206 | JORDAN VIEW LOT                            | UTD988073466        | Removal                  |                           |  |  |
| 207 | JOSEPHINE MILL # 1 AKA OLD JOSEPHINE MILL  | WAN001002401        | WA                       | Removal                   |  |  |
| 208 | Joslyn Street Tailings                     | MT0000616409        | MT                       | SF Alternative Site       |  |  |
| 209 | Kaaba Texas Mine                           | WASFN1002145        | WA                       | Removal                   |  |  |
| 210 | Kaiser Aluminum (Mead Works)               | WAD000065508        | WA                       | NPL, removal              |  |  |
| 211 | Kemira Acid Spill                          | GASFN0406941        | GA                       | Removal                   |  |  |
| 212 | Kennecott (North Zone) (SA)                | UTD070926811        | UT                       | Proposed NPL,<br>removal  |  |  |
| 213 | Kennecott (South Zone) (SA)                | UTD000826404        | UT                       | Withdrawn NPL, removal    |  |  |
| 214 | KERBER CREEK SITE                          | CON000802775        | CO                       | Removal                   |  |  |
| 215 | KERN RIVER/BINGHAM CREEK PIPELINE          | UTD988073458        | UT                       | Removal                   |  |  |
| 216 | KerrAmerican Mine                          | MED055715775        | ME                       | Other Cleanup<br>Activity |  |  |
| 217 | KERR-MCGEE (REED-KEPPLER PARK)             | ILD980824007 IL NPL |                          |                           |  |  |

| 218 | KERR-MCGEE (RESIDENTIAL AREAS)                  | ILD980824015        | NPL |                         |  |  |  |
|-----|-------------------------------------------------|---------------------|-----|-------------------------|--|--|--|
| 219 | Kerr-McGee Chemical Soda Springs Plant          | IDD041310707        | NPL |                         |  |  |  |
| 220 | Kerr-McGee Kress Creek/West Branch Dupage River | ILD980823991        | IL  | NPL                     |  |  |  |
| 221 | KING CREEK                                      | MTD986069920        | MT  | Removal                 |  |  |  |
| 222 | King Tutt Mesa Aggregate Site                   | NND986667434        | NM  | Enforcement site        |  |  |  |
| 223 | KINGSBURY CREEK MINE LAB                        | CA0002373736        | CA  | Removal                 |  |  |  |
| 224 | Klau/Buena Vista Mine                           | CA1141190578        | CA  | NPL, removal            |  |  |  |
| 225 | Landsdowne Radiation                            | PAD980830921        | PA  | Deleted NPL,<br>removal |  |  |  |
| 226 | LARK WASTE ROCK AND TAILINGS (KENNECOTT)        | UTD980959258        | UT  | Removal                 |  |  |  |
| 227 | Lava Cap Mine                                   | CAD983618893        | CA  | NPL, removal            |  |  |  |
| 228 | Lawrence County Mining Area Sites               | MON000703982        | MO  | Removal                 |  |  |  |
| 229 | LCP Chemicals                                   | GAD099303182        | GA  | NPL, removal            |  |  |  |
| 230 | LCP Chemicals Inc.                              | NJD079303020        | NJ  | NPL                     |  |  |  |
| 231 | Le Roi Co Smelter                               | WAD988507323        | WA  | Removal                 |  |  |  |
| 232 | LEADWOOD MINE TAILINGS                          | MOD985818210        | MO  | Removal                 |  |  |  |
| 233 | Leeds 5 Stamp Mill                              | UT0000934653        | UT  | Removal                 |  |  |  |
| 234 | Leeds Silver Reclamation Site                   | UTD981550619        | UT  | Removal                 |  |  |  |
| 235 | Leviathan Mine                                  | CAD980673685        | CA  | NPL, removal            |  |  |  |
| 236 | Li Tungsten Corp.                               | NYD986882660        | NY  | NPL, removal            |  |  |  |
| 237 | Libby Asbestos Site                             | MT0009083840        | MT  | NPL, removal            |  |  |  |
| 238 | Lincoln Park                                    | COD042167858        | СО  | NPL                     |  |  |  |
| 239 | Loflin Gold Mine                                | NCN000407301        | NC  | Removal                 |  |  |  |
| 240 | LOUISA MINE (VA VERMICULITE LTD.)               | VAN000305634        | VA  |                         |  |  |  |
| 241 | Macalloy Corporation                            | SCD003360476        | SC  | NPL, removal            |  |  |  |
| 242 | Madison County Mines                            | MOD098633415        | MO  | NPL, removal            |  |  |  |
| 243 | Magma Copper Co.                                | AZD001886654        | AZ  | Enforcement site        |  |  |  |
| 244 | MARIANO LAKE AUM SITE                           | NNN000908585        | NM  | Removal                 |  |  |  |
| 245 | Marsh Creek Rd Abandoned Dump Site              | CAD980736060        | CA  | Removal                 |  |  |  |
| 246 | Martin-Marietta Aluminum Co.                    | ORD052221025        | OR  | Deleted NPL             |  |  |  |
| 247 | Matthiessen and Hegeler Zinc Company            | IL0000064782        | IL  | NPL, removal            |  |  |  |
| 248 | MAYFLOWER MOUNTAIN TAILINGS PONDS               | UTD980951438        | UT  | Removal                 |  |  |  |
| 249 | Maywood Chemical                                | NJD980529762        | NJ  | NPL, removal            |  |  |  |
| 250 | McCleur Tailings                                | AZ0000309096        | AZ  | Removal                 |  |  |  |
| 251 | McLaren Mill Tailings                           | MTD981550841        | MT  | Removal                 |  |  |  |
| 252 | MEMPHIS DEFENSE DEPOT (DLA)                     | TN4210020570        | TN  | NPL                     |  |  |  |
| 253 | Midnite Mine                                    | WAD980978753        | WA  | NPL, removal            |  |  |  |
| 254 | Midvale Slag                                    | UTD081834277        | UT  | NPL, removal            |  |  |  |
| 255 | MILLTOWN RESERVOIR SEDIMENTS                    | MTD980717565 MT NPL |     |                         |  |  |  |
| 256 | Minnie Moore Mine                               | IDN001002295        | ID  | Removal                 |  |  |  |

| 257 | Monarch Mill do not confuse with Monarch Stamp Mill<br>in Elmore County | IDN001002609 | Removal           |                          |  |  |  |
|-----|-------------------------------------------------------------------------|--------------|-------------------|--------------------------|--|--|--|
| 258 | Monsanto                                                                | GAD001700699 | GA                | Deleted NPL              |  |  |  |
| 259 | Monsanto Chemical Co. (Soda Springs Plant)                              | IDD081830994 | NPL               |                          |  |  |  |
| 260 | MONTCLAIR/WEST ORANGE RADIUM SITE                                       | NJD980785653 | NJ                | Deleted NPL              |  |  |  |
| 261 | Monticello Mill Tailings (USDOE)                                        | UT3890090035 | UT                | NPL                      |  |  |  |
| 262 | MONTICELLO RADIOACTIVELY CONTAMINATED<br>PROPERTIES                     | UTD980667208 | UT                | NPL                      |  |  |  |
| 263 | Morning Star Mine                                                       | CA0000466748 | CA                | Removal                  |  |  |  |
| 264 | Mouat Industries                                                        | MTD021997689 | MT                | Removal                  |  |  |  |
| 265 | Mountain View Mobile Home Estates                                       | AZD980735724 | AZ                | Deleted NPL,<br>removal  |  |  |  |
| 266 | MT NORRIS SCOUT RESERVATION                                             | VTN000105934 | VT                | Removal                  |  |  |  |
| 267 | MTA Vermiculite Rail Spur                                               | CAN000905933 | CA                | Removal                  |  |  |  |
| 268 | MULBERRY PHOSPHATES INC                                                 | FLD004106415 | FL                | Removal                  |  |  |  |
| 269 | Murray Smelter                                                          | UTD980951420 | UT                | Proposed NPL,<br>removal |  |  |  |
| 270 | NATIONAL MINE TAILINGS                                                  | MOD985818228 | MO                | Removal                  |  |  |  |
| 271 | National Southwire Aluminum Co.                                         | KYD049062375 | KY                | NPL, removal             |  |  |  |
| 272 | National Zinc Co.                                                       | KSD980406698 | KS                | Removal                  |  |  |  |
| 273 | National Zinc Corp.                                                     | OKD000829440 | ОК                | Proposed NPL,<br>removal |  |  |  |
| 274 | NAVAJO RADIOACTIVE HOGANS                                               | NNN000905864 | AZ                | Removal                  |  |  |  |
| 275 | Ne Churchrock Quivira Mines                                             | NNSFN0905492 | NM                | NM Removal               |  |  |  |
| 276 | Nelson Tunnel/Commodore Waste Rock                                      | CON000802630 | СО                | NPL, removal             |  |  |  |
| 277 | New Idria Mercury Mine                                                  | CA0001900463 | NPL, removal      |                          |  |  |  |
| 278 | Newton County Mine Tailings                                             | MOD981507585 | 5 MO NPL, removal |                          |  |  |  |
| 279 | NL IND, Mine Mill                                                       | COD980634604 | Removal           |                          |  |  |  |
| 280 | NORFOLK NAVAL BASE (SEWELLS POINT NAVAL COMPLEX)                        | VA6170061463 | NPL               |                          |  |  |  |
| 281 | North Cave Hills Mining Sites                                           | SD0012261936 | SD                | Removal                  |  |  |  |
| 282 | Northeast Chemical                                                      | NCSFN0406973 | NC                | Removal                  |  |  |  |
| 283 | Northeast Churchrock Mine Site                                          | NNN000906132 | NM                | Removal                  |  |  |  |
| 284 | Novak Sanitary Landfill                                                 | PAD079160842 | PA                | NPL                      |  |  |  |
| 285 | Nuclear Metals, Inc.                                                    | MAD062166335 | MA                | NPL and Removal          |  |  |  |
| 286 | Ohio River Park                                                         | PAD980508816 | PA                | NPL                      |  |  |  |
| 287 | Old American Zinc Plant                                                 | IL0000034355 | IL                | Removal                  |  |  |  |
| 288 | Old Cobalt Tailings Pond                                                | UTD980717987 | UT                | Removal                  |  |  |  |
| 289 | Olin Corporation (McIntosh Plant)                                       | ALD008188708 | AL                | NPL, removal             |  |  |  |
| 290 | Omaha Lead                                                              | NESFN0703481 | NE                | NPL, removal             |  |  |  |
| 291 | Onondaga Lake                                                           | NYD986913580 | NY                | IY NPL, removal          |  |  |  |
| 292 | Ophir Mills and Smelter                                                 | UT0010221516 | UT                | Removal                  |  |  |  |

| 293 | Ore Knob Mine                                   | NCN000409895 | NC  | NPL, removal                |  |  |  |
|-----|-------------------------------------------------|--------------|-----|-----------------------------|--|--|--|
| 294 | Ormet Corp.                                     | OHD004379970 | NPL |                             |  |  |  |
| 295 | Oronogo-Duenweg Mining Belt                     | MOD980686281 | MO  | NPL, removal                |  |  |  |
| 296 | OVERNIGHT INN MERCURY                           | UTN000802436 | UT  | Removal                     |  |  |  |
| 297 | Palmerton Zinc Pile                             | PAD002395887 | PA  | NPL, removal                |  |  |  |
| 298 | Park City Mine Chemical                         | MON000705985 | MO  | Removal                     |  |  |  |
| 299 | Pend Oreille Village                            | WAN001002719 | WA  | Removal                     |  |  |  |
| 300 | Phelps Dodge New Cornelia Branch                | AZD081687063 | AZ  | Enforcement site            |  |  |  |
| 301 | PHILLIPS CHEMICAL CO.                           | NED000325167 | NE  | Proposed NPL/<br>withdrawn  |  |  |  |
| 302 | Pike Hill Copper Mine                           | VTD988366720 | VT  | NPL                         |  |  |  |
| 303 | Pioneer Pit and Gardner's Point Placer Mines    | CAN000905978 | CA  | Removal                     |  |  |  |
| 304 | Pittsburg Zinc                                  | KSD985015338 | KS  | Removal                     |  |  |  |
| 305 | PLUMAS EUREKA STATE HISTORIC PARK               | CAN000908832 | CA  | Removal                     |  |  |  |
| 306 | Polar Star Mine                                 | CASFN0905494 | CA  | Removal                     |  |  |  |
| 307 | Portland Cement (Kiln Dust 2 & 3)               | UTD980718670 | UT  | NPL                         |  |  |  |
| 308 | PORTLAND CEMENT KILN DUST #1,4,5                | UTD980952832 | UT  | Removal                     |  |  |  |
| 309 | Powhatan Mining Company                         | MDN000306665 | MD  | Removal                     |  |  |  |
| 310 | Prime Western Smelter                           | KSD980685366 | KS  | Removal                     |  |  |  |
| 311 | Quinton Smelter                                 | OKD987088366 | ОК  | Removal                     |  |  |  |
| 312 | RAMSHORN MINE                                   | IDN001002538 | ID  | Removal                     |  |  |  |
| 313 | RED VALLEY NAVAJO RADIOACTIVE STRUCTURE<br>SITE | NNN000908604 | AZ  | Removal                     |  |  |  |
| 314 | RED WATER MINE                                  | MT0001120534 | MT  | Removal                     |  |  |  |
| 315 | Reeser's Landfill                               | PAD980829261 | PA  | Deleted NPL                 |  |  |  |
| 316 | Reilly Tar & Chemical Corp. (Dover Plant)       | OHD980610042 | ОН  | NPL, removal                |  |  |  |
| 317 | Reynolds Metals Aluminum Reduction Site         | NYD002245967 | NY  | Removal                     |  |  |  |
| 318 | Reynolds Metals Company                         | ORD009412677 | OR  | NPL, removal                |  |  |  |
| 319 | Richardson Flat Tailings                        | UTD980952840 | UT  | Proposed NPL                |  |  |  |
| 320 | Richmond Hill Project                           | SD0001014406 | SD  | Enforcement site            |  |  |  |
| 321 | Rico - Argentine                                | COD980952519 | СО  | Removal                     |  |  |  |
| 322 | Riconada Mine                                   | CA0141190579 | CA  | Removal                     |  |  |  |
| 323 | Ringwood Mines/Landfill                         | NJD980529739 | NJ  | NPL, removal                |  |  |  |
| 324 | RIO TINTO COPPER MINE                           | NV3141190030 | NV  | Proposed or withdrawn NPL ? |  |  |  |
| 325 | Riverbank Army Ammunition Plant                 | CA7210020759 | CA  | NPL, removal                |  |  |  |
| 326 | Robinson Insulation                             | ND0010165116 | ND  | Removal                     |  |  |  |
| 327 | Rock Creek Mine                                 | AKN001002823 | AK  | Removal                     |  |  |  |
| 328 | ROCKWOOL BUTTONS                                | CO0001580463 | CO  | Removal                     |  |  |  |
| 329 | Rocky Flats Plant (USDOE)                       | CO7890010526 | СО  | NPL, removal                |  |  |  |

| 330 | Rumsey Tailings                           | MT0001992585            | Removal      |                            |  |  |
|-----|-------------------------------------------|-------------------------|--------------|----------------------------|--|--|
| 331 | Salmon River Uranium Development          | IDN001002662            | Removal      |                            |  |  |
| 332 | Salt Chuck Mine                           | AK0001897602            | AK           | NPL                        |  |  |
| 333 | Saltville Waste Disposal Ponds            | VAD003127578            | NPL, removal |                            |  |  |
| 334 | San Vincente Creek Tailings               | NMD980879415            | NM           | Removal                    |  |  |
| 335 | Sandoval Zinc Company                     | ILD053980454            | IL           | NPL                        |  |  |
| 336 | Sandy Smelter Site                        | UTD988078044            | UT           | Enforcement site           |  |  |
| 337 | SANTA FE MINE #2 - RED MOUNTAIN           | CAN000908979            | CA           | Removal                    |  |  |
| 338 | Savannah River Site (US DOE)              | SC1890008989            | SC           | NPL, removal               |  |  |
| 339 | SECTION 32 AUM SITE                       | NNN000908747            | NM           | Removal                    |  |  |
| 340 | SECTION 33 AUM SITE                       | NNN000908748            | NM           |                            |  |  |
| 341 | Shaharald Mine                            | CAN000908300            | CA           | Removal                    |  |  |
| 342 | Sharon Steel Corp. (Midvale Tailings)     | UTD980951388            | UT           | Deleted NPL,<br>removal    |  |  |
| 343 | Sheildalloy Metallurgical Corporation     | OHD042319244            | ОН           | Removal                    |  |  |
| 344 | Shieldalloy Corp.                         | NJD002365930            | NJ           | NPL                        |  |  |
| 345 | Silver Bow Creek/Butte Area               | MTD980502777            | MT           | NPL, removal               |  |  |
| 346 | Silver Creek Tailings                     | UTD980951404            | UT           | Proposed NPL/<br>withdrawn |  |  |
| 347 | Silver Mountain Mine                      | WAD980722789            | WA           | Deleted NPL                |  |  |
| 348 | SILVERADO HEAP LEACH                      | NVD982029019            | NV           | Removal                    |  |  |
| 349 | Silverton Mercury (Hg) Concentrators      | WAN001002702            | WA           | Removal                    |  |  |
| 350 | SKYLINE AUM WASTE PILE SITE               | NNN000908358            | UT Removal   |                            |  |  |
| 351 | Sloan Glass Site                          | WV0004294104            | WV           | Removal                    |  |  |
| 352 | Smeltertown Site                          | COD983769738            | СО           | Proposed NPL,<br>removal   |  |  |
| 353 | Smoky Canyon Mine                         | IDN001002800            | ID           | Removal                    |  |  |
| 354 | Smuggler Mountain                         | COD980806277            | СО           | Deleted NPL,<br>removal    |  |  |
| 355 | Southeast Idaho Selenium Project          | IDN001002245            | ID           | Removal                    |  |  |
| 356 | Southwest Jefferson County Mining         | MON000705443            | MO           | NPL, removal               |  |  |
| 357 | Spelter Zinc Plant                        | WV0000634584            | WV           | Removal                    |  |  |
| 358 | St Louis Smelting & Refining Co           | ILD980607006            | IL           | Removal                    |  |  |
| 359 | St. Joe Mineral Corp – Viburnum           | MOD000823252            | MO           | Removal                    |  |  |
| 360 | St. Louis River Site                      | MND039045430            | MN           | NPL                        |  |  |
| 361 | Standard Mine                             | CO0002378230            | CO           | NPL, removal               |  |  |
| 362 | Starmet CMI                               | SCD987570405            | SC           | Removal                    |  |  |
| 363 | Stauffer Chemical Co. (Tarpon Springs)    | FLD010596013            | FL           | NPL, removal               |  |  |
| 364 | Stauffer Chemical LeMoyne                 | ALD008161176            | AL           | NPL                        |  |  |
| 365 | Steeler, Inc. Drywall Construction Supply | CAD981389653            | CA           | Removal                    |  |  |
| 366 | Stephenson – Bennett Mine                 | NMD986684231 NM Removal |              |                            |  |  |

| 367 | Stibnite/Yellow Pine Mining Area                | IDD980665459 | Proposed NPL,<br>removal  |                         |  |  |
|-----|-------------------------------------------------|--------------|---------------------------|-------------------------|--|--|
| 368 | Stono Phosphate Works                           | SC0002316404 | SC                        | Removal                 |  |  |
| 369 | Success Mine                                    | IDD984674986 | IDD984674986 ID           |                         |  |  |
| 370 | Sulphur Bank Mercury Mine                       | CAD980893275 | CA                        | NPL, removal            |  |  |
| 371 | Summitville Mine                                | COD983778432 | СО                        | NPL, removal            |  |  |
| 372 | Swift Agri-Chem                                 | SCD058181991 | SC                        | Enforcement site        |  |  |
| 373 | Sydney Mine Sludge Ponds                        | FLD000648055 | FL                        | NPL, removal            |  |  |
| 374 | Talache Mine                                    | ID0002007250 | ID                        | Removal                 |  |  |
| 375 | Tar Creek (Ottawa County)                       | OKD980629844 | OK                        | NPL, removal            |  |  |
| 376 | Tar Lake                                        | MID980794655 | MI                        | NPL, removal            |  |  |
| 377 | TEEC NOS POS NAVAJO RADIOACTIVE<br>STRUCTURES   | NNN000908610 | AZ                        | Removal                 |  |  |
| 378 | Teledyne Wah Chang                              | ORD050955848 | OR                        | NPL                     |  |  |
| 379 | TERRERO MINE                                    | NMD986668820 | NM                        |                         |  |  |
| 380 | Tex-Tin Corp.                                   | TXD062113329 | ТΧ                        | NPL, removal            |  |  |
| 381 | TOOELE VALLEY RAILROAD                          | UT0011980278 | UT                        | Removal                 |  |  |
| 382 | Torch Lake                                      | MID980901946 | MI                        | NPL, removal            |  |  |
| 383 | Triumph Mine Tailings Piles                     | IDD984666024 | Proposed<br>NPL/withdrawn |                         |  |  |
| 384 | Trona Mercury                                   | CAN000908696 | CA                        | Removal                 |  |  |
| 385 | TUBA CITY ABANDONED LDFL                        | NND982400145 | AZ                        | Remedial<br>enforcement |  |  |
| 386 | TUBA CITY ACID TANK                             | AZD981621899 | AZ                        | Removal                 |  |  |
| 387 | TUBA CITY NAVAJO RADIOACTIVE STRUCTURES<br>SITE | NNN000908774 | AZ                        | Removal                 |  |  |
| 388 | Tulsa Fuel and Manufacturing                    | OKD987096195 | OK                        | NPL, removal            |  |  |
| 389 | TWO BROTHERS MINE                               | CO0012044960 | СО                        | Removal                 |  |  |
| 390 | U S Smelter                                     | CO0009354248 | СО                        | Removal                 |  |  |
| 391 | U.S. DOE Gaseous Diffusion Plant                | KY8890008982 | KY                        | NPL, removal            |  |  |
| 392 | U.S. DOE Oak Ridge Reservation                  | TN1890090003 | TN                        | NPL, removal            |  |  |
| 393 | U.S. Magnesium                                  | UTN000802704 | UT                        | NPL                     |  |  |
| 394 | U.S. Radium Corp.                               | NJD980654172 | NJ                        | NPL, removal            |  |  |
| 395 | U.S. Smelter and Lead Refinery, Inc.            | IND047030226 | IN                        | NPL, removal            |  |  |
| 396 | U.S. Titanium                                   | VAD980705404 | VA                        | NPL                     |  |  |
| 397 | Union Pacific Vermiculite Rail Spur             | CAN000905932 | CA                        | Removal                 |  |  |
| 398 | UNITED MINES TUCSON CYANIDES                    | AZN000909469 | AZ                        | Removal                 |  |  |
| 399 | United Nuclear Corp.                            | NMD030443303 | NM                        | NPL                     |  |  |
| 400 | Upper Tenmile Creek Mining Area                 | MTSFN7578012 | MT                        | NPL, removal            |  |  |
| 401 | Uravan Uranium Project (Union Carbide Corp.)    | COD007063274 | CO NPL                    |                         |  |  |
| 402 | USDA FS Boise NF: Monarch Mine Stamp Mill USDA  | ID0001413723 | ID                        | ID Removal              |  |  |
| 403 | USDOI BLM HWS GOLD & SILVER MINE ELK CY         | IDD980835904 | ID                        |                         |  |  |

| 404 | Vasquez Boulevard and I-70                                | CO0002259588 | СО           | NPL, removal     |  |  |  |
|-----|-----------------------------------------------------------|--------------|--------------|------------------|--|--|--|
| 405 | VCC Albany                                                | GAD981237043 | GA           | Removal          |  |  |  |
| 406 | VCC Augusta                                               | GAN000407494 | GA           | Removal          |  |  |  |
| 407 | VCC Columbus                                              | GAN000409850 | GA           | Removal          |  |  |  |
| 408 | VCC Greenville                                            | SCN000407814 | 14 SC Remova |                  |  |  |  |
| 409 | VCC Opelika                                               | ALD983186123 | AL           | Removal          |  |  |  |
| 410 | VCC Pon Pon                                               | SCS123457002 | SC           | Removal          |  |  |  |
| 411 | VCC Rome                                                  | GAN000410416 | GA           | Removal          |  |  |  |
| 412 | VCC Social Circle                                         | GAN000407760 | GA           | Removal          |  |  |  |
| 413 | VCC Winston Salem                                         | NCN000410344 | NC           | Removal          |  |  |  |
| 414 | Vermiculite EXFO W R Grace GAO150                         | SCD003344108 | SC           | Removal          |  |  |  |
| 415 | Vermiculite Intermountain Site                            | UTN000802119 | UT           | Removal          |  |  |  |
| 416 | Vermiculite Northwest                                     | WAN001002259 | WA           | Removal          |  |  |  |
| 417 | Vermiculite of Hawaii                                     | HIN000905638 | HI           | Removal          |  |  |  |
| 418 | Vermiculite WRG4                                          | PAN000305592 | PA           | Removal          |  |  |  |
| 419 | Vermont Asbestos Group Mine                               | VTN000105222 | VT           | Removal          |  |  |  |
| 420 | Veta Grande Mining Co                                     | NVD038275020 | NV           | Removal          |  |  |  |
| 421 | VIBURNUM TREND LEAD HAUL ROADS                            | MON000704445 | MO           | Removal          |  |  |  |
| 422 | Virginia Carolina Chemical (VCC) Columbia                 | SCN000410253 | SC           | Removal          |  |  |  |
| 423 | Virginia Carolina Chemical (VCC) Port of Baldwin Mines    | SCN000407725 | SC           | Removal          |  |  |  |
| 424 | Virginia Carolina Chemical (VCC) Wando                    | SCN000410243 | SC Removal   |                  |  |  |  |
| 425 | Vulcan-Louisville/Fansteel                                | ILD097271563 | IL           | Removal          |  |  |  |
| 426 | Vulture Mill Site                                         | AZ0000262725 | AZ           | Enforcement site |  |  |  |
| 427 | W.R. Grace - Wilder, KY                                   | KYN000407413 | KY           | Removal          |  |  |  |
| 428 | W.R. Grace & Co., Inc./Wayne Interim Storage Site (USDOE) | NJ1891837980 | NJ           | NPL, removal     |  |  |  |
| 429 | Washington County Lead District - Furnace Creek           | MON000705842 | MO           | NPL, removal     |  |  |  |
| 430 | Washington County Lead District - Old Mines               | MON000705027 | MO           | NPL, removal     |  |  |  |
| 431 | Washington County Lead District - Pea Ridge               | MON000706017 | MO           | Removal          |  |  |  |
| 432 | Washington County Lead District - Potosi                  | MON000705023 | MO           | NPL, removal     |  |  |  |
| 433 | Washington County Lead District - Richwoods               | MON000705032 | MO           | NPL, removal     |  |  |  |
| 434 | Weldon Spring Quarry/Plant/Pits (USDOE/Army)              | MO3210090004 | MO           | NPL, removal     |  |  |  |
| 435 | Western Mineral Products                                  | MNN000508056 | MN           | Removal          |  |  |  |
| 436 | Western Minerals Denver Plant                             | CO0010165136 | СО           | Removal          |  |  |  |
| 437 | Westlake Landfill OU2                                     | MOD079900932 | MO           | NPL              |  |  |  |
| 438 | Whitewood Creek                                           | SDD980717136 | SD           | Deleted NPL      |  |  |  |
| 439 | Wolff-Alport Chemical                                     | NYC200400810 | NY           | NPL, removal     |  |  |  |
| 440 | WR Grace Hamilton TWP                                     | NJD067387472 | NJ           | Removal          |  |  |  |
| 441 | Wright Chemical Corporation                               | NCD024766719 | NC           | NPL              |  |  |  |

| 442 | Wrigley Charcoal Plant   | TND980844781 | TN | NPL, removal |  |
|-----|--------------------------|--------------|----|--------------|--|
| 443 | YOUNG AMERICA MINE       | WASFN1002166 | WA | Removal      |  |
| 444 | Yttrium Processing Plant | WYD982587461 | WY | Removal      |  |
| 445 | Zeibright Mine           | CAN000905925 | CA | Removal      |  |
| 446 | Zonolite Road GAO 144    | GAN000410399 | GA | Removal      |  |
| 447 | Zonolite/W.R. Grace      | MASFN0103055 | MA | Removal      |  |

## Attachment B5. 2009 Current Sites Universe

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                  | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status       | Operator                                | Controller                                                          |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|-------------------|-----------------------------------------|---------------------------------------------------------------------|
| 1   | 1                       | 2                       |                              | Copper Queen Branch                        | AZ    | 2                      | Copper Ore<br>NEC                 | Surface mine      | Mine_<br>Combo              | Non-<br>producing | Freeport McMoRan<br>Corporation         | Freeport-McMoRan<br>Copper & Gold Inc                               |
| 2   | 1                       | 90                      |                              | Copreco LLC                                | AZ    | 2                      | Copper Ore<br>NEC                 | Surface mine      | Mine_<br>Combo              | Active            | Copreco LLC                             | Phelps Dodge Mining<br>Co; Bio Teq<br>Environmental<br>Technologies |
| 3   | 3                       | 92                      |                              | Saint-Gobain Proppants                     | AR    | 2                      | Alumina                           | Surface mine      | Mine_<br>Combo              | Active            | Saint-Gobain<br>Proppants               | St Gobain                                                           |
| 4   | 3                       | 93                      |                              | Saint-Gobain Proppants                     | AR    | 2                      | Aluminum Ore-<br>Bauxite          | Surface mine      | Mine_<br>Combo              | Active            | Saint-Gobain<br>Proppants               | St Gobain                                                           |
| 5   | 4                       | 251                     |                              | New Birmingham<br>Resources LLC            |       | 0                      | Iron Ore                          | Surface mine      | Mine_<br>Combo              | Active            | New Birmingham<br>Resources LLC         | David J Durrett; Lewie<br>Byers                                     |
| 6   | 4                       | 252                     |                              | New Birmingham<br>Resources, LLC #2        |       | 0                      | Iron Ore                          | Surface mine      | Mine_<br>Combo              | Active            | New Birmingham<br>Resources, LLC        | David J Durrett; Lewie<br>Byers                                     |
| 7   | 5                       | 174                     |                              | Barrick Cortez                             | NV    | 2                      | Gold Ore                          | Surface mine      | Mine_<br>Combo              | Active            | Cortez Joint Venture                    | Barrick Gold Corp                                                   |
| 8   | 5                       | 211                     |                              | Barrick Cortez<br>Underground              | NV    | 2                      | Gold Ore                          | Underground mine  | Mine_<br>Combo              | Active            | Cortez Joint Venture                    | Barrick Gold Corp                                                   |
| 9   | 7                       | 35                      |                              | Getchell Mine                              | NV    | 2                      | Gold Ore                          | Underground mine  | Mine_<br>Combo              | Non-<br>producing | Barrick Turquoise<br>Ridge Incorporated | Barrick Gold Corp                                                   |
| 10  | 7                       | 198                     |                              | Turquoise Ridge Mine                       | NV    | 2                      | Gold Ore                          | Underground mine  | Mine_<br>Combo              | Active            | Barrick Turquoise<br>Ridge Inc          | Barrick Gold Corp                                                   |
| 11  | 8                       | 276                     |                              | General Chemical Mine                      | WY    | 2                      | Trona                             | Underground mine  | Mine_<br>Combo              | Active            | General Chemical<br>(Soda Ash) Partners | Tata Chemicals Ltd                                                  |
| 12  | 8                       | 277                     |                              | General Chemical Mill                      | WY    | 2                      | Trona                             | Surface mine      | Mine_<br>Combo              | Active            | General Chemical<br>(Soda Ash) Partners | Tata Chemicals Ltd                                                  |
| 13  | 9                       | 319                     |                              | C-100 Jaw Plant Nordberg<br>#42165100B     | MA    | 1                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine_<br>Combo              | NewMine           | Gagliarducci<br>Construction, Inc.      | Jerome J<br>Gagliarducci                                            |
| 14  | 9                       | 320                     |                              | Screener-Warrior Power<br>Screen #12203097 | MA    | 1                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine_<br>Combo              | NewMine           | Gagliarducci<br>Construction, Inc.      | Jerome J<br>Gagliarducci                                            |
| 15  | 12                      | 326                     |                              | Yellowstone Mine                           | MT    | 1                      | Talc                              | Surface mine      | Mine_<br>Combo              | Active            | Luzenac America<br>Incorporated         | Rio Tinto Group                                                     |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                               | State | Location<br>Confidence | Commodity            | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator                        | Controller                      |
|-----|-------------------------|-------------------------|------------------------------|-----------------------------------------|-------|------------------------|----------------------|-------------------|-----------------------------|-------------|---------------------------------|---------------------------------|
| 16  | 12                      | 347                     |                              | Three Forks Mill                        |       | 0                      | Talc                 | Processor         | Mine_<br>Combo              | Active      | Luzenac America<br>Incorporated | Rio Tinto Group                 |
| 17  | 13                      |                         | 38                           | Corpus Christi Grinding<br>Plant        | ТΧ    | 1                      | Barite Barium<br>Ore | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 18  | 13                      |                         | 45                           | Battle Mountain Grinding<br>Plant       | NV    | 2                      | Barite Barium<br>Ore | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 19  | 14                      |                         | 46                           | Sherwin Alumina Co.                     | ТΧ    | 2                      | bauxite and alumina  | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 20  | 14                      |                         | 291                          | Sherwin Alumina                         | ТΧ    | 2                      | Alumina              | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 21  | 15                      |                         | 1                            | Bayer Alumina Plant                     | ТΧ    | 1                      | Alumina              | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 22  | 15                      |                         | 48                           | Alcoa World Alumina<br>Atlantic         | ТΧ    | 1                      | Bauxite and alumina  | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 23  | 17                      |                         | 260                          | W.R. Grace & Co.                        | SC    | 2                      | Vermiculite          | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 24  | 18                      |                         | 55                           | Searles Valley Minerals Inc             | CA    | 2                      | Boron                | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 25  | 18                      |                         | 235                          | IMC Chemicals<br>Incorporated           | CA    | 2                      | Soda ash             | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 26  | 19                      |                         | 24                           | Excalibar Minerals                      | TN    | 2                      | Barite               | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 27  | 19                      |                         | 41                           | Dyersburg Plant                         | TN    | 2                      | Barite Barium<br>Ore | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 28  | 20                      |                         | 266                          | Young Mill                              | TN    | 2                      | Zinc                 | Processor         | Processor_<br>Combo         | Active      |                                 |                                 |
| 29  | 21                      |                         | 59                           | Nyrstar NV                              | TN    | 2                      | Cadmium              | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 30  | 21                      |                         | 75                           | Strategic Resource<br>Acquisition Corp  | TN    | 2                      | Germanium            | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 31  | 21                      |                         | 267                          | Plasminco (probably should be Pasminco) | TN    | 2                      | Zinc                 | Processor         | Processor_<br>Combo         | NA          |                                 |                                 |
| 32  | 22                      | 148                     |                              | United Plant                            | MN    | 1                      | Iron Ore             | Surface mine      | Mine_<br>Combo              | Active      | United Taconite LLC             | Cliffs Natural<br>Resources Inc |
| 33  | 22                      | 151                     |                              | United - Mine                           | MN    | 2                      | Iron Ore             | Surface mine      | Mine_<br>Combo              | Active      | United Taconite LLC             | Cliffs Natural<br>Resources Inc |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                  | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                          | Controller                                               |
|-----|-------------------------|-------------------------|------------------------------|----------------------------|-------|------------------------|----------------------------------------------------------|-------------------|-----------------------------|---------------|-----------------------------------|----------------------------------------------------------|
| 34  | 23                      | 225                     |                              | Lewis Mine                 | NY    | 2                      | Wollastonite                                             | Surface mine      | Mine_<br>Combo              | Inter-mittent | NYCO Minerals Inc                 | Rolling Rock Minerals<br>Inc                             |
| 35  | 23                      | 228                     |                              | Oak Hill Mine              | NY    | 2                      | Wollastonite                                             | Surface mine      | Mine_<br>Combo              | Inter-mittent | NYCO Minerals, Inc.               | Rolling Rock Minerals<br>Inc                             |
| 36  | 24                      | 321                     |                              | Tilden Mine                | MI    | 2                      | Iron Ore                                                 | Surface mine      | Mine_<br>Combo              | Active        | Tilden Mining<br>Company L C      | Ontario Tilden<br>Company; Cliffs TIOP<br>Inc            |
| 37  | 24                      | 322                     |                              | Empire Mine                | MI    | 2                      | Iron Ore                                                 | Surface mine      | Mine_<br>Combo              | Active        | Empire Iron Mining<br>Partnership | Inland Steel Industries<br>Inc - Cleveland Cliffs<br>Inc |
| 38  | 27                      |                         | 108                          | US Steel Granite City      | IL    | 2                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 39  | 27                      |                         | 110                          | Beelman Truck Co.          | IL    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 40  | 27                      |                         | 135                          | Stein, Inc.                | IL    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 41  | 28                      |                         | 180                          | Elkem Metals Co.           | OH    | 2                      | Manganese                                                | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 42  | 28                      |                         | 183                          | Eveready Battery Co. Inc.  | ОН    | 2                      | Manganese                                                | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 43  | 29                      |                         | 106                          | US Steel Braddock          | PA    | 2                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 44  | 29                      |                         | 142                          | Tube City IMS, LLC         | PA    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 45  | 30                      |                         | 103                          | Severstal Warren           | ОН    | 2                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |
| 46  | 30                      |                         | 124                          | Lafarge North America Inc. | ОН    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA            |                                   |                                                          |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                            | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------|-------|------------------------|----------------------------------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 47  | 30                      |                         | 132                          | MultiServ Plt 6                      | OH    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          | -        |            |
| 48  | 31                      |                         | 100                          | Republic Engineered<br>Products Inc  | OH    | 1                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA          |          |            |
| 49  | 31                      |                         | 138                          | Stein, Inc.                          | OH    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          |          |            |
| 50  | 32                      |                         | 92                           | Arcelor Mittal Burns Harbor          | IN    | 1                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA          |          |            |
| 51  | 32                      |                         | 139                          | The Levy Co., Inc.                   | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          |          |            |
| 52  | 33                      |                         | 98                           | Arcelor Mittal USA Indiana<br>Harbor | IN    | 1                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA          |          |            |
| 53  | 33                      |                         | 107                          | US Steel Gary Works                  | IN    | 1                      | Iron and steel                                           | Processor         | Processor_<br>Combo         | NA          |          |            |
| 54  | 33                      |                         | 111                          | Beemsterboer Slag Corp.              | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          |          |            |
| 55  | 33                      |                         | 112                          | Beemsterboer Slag Corp.              | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          | -        |            |
| 56  | 33                      |                         | 113                          | Edward C. Levy Co.                   | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          | -        |            |
| 57  | 33                      |                         | 119                          | Holcim (US) Inc./Mercier<br>Corp.?   | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo         | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                                     | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup>  | Site Status | Operator                                             | Controller                    |
|-----|-------------------------|-------------------------|------------------------------|---------------------------------------------------------------|-------|------------------------|----------------------------------------------------------|-------------------|------------------------------|-------------|------------------------------------------------------|-------------------------------|
| 58  | 33                      |                         | 122                          | Lafarge North America Inc.                                    | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          |                                                      |                               |
| 59  | 33                      |                         | 128                          | MultiServ                                                     | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          | -                                                    | -                             |
| 60  | 33                      |                         | 140                          | The Levy Co., Inc.                                            | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          | -                                                    | -                             |
| 61  | 33                      |                         | 141                          | Tube City IMS, LLC                                            | IN    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          | ł                                                    | -                             |
| 62  | 33                      |                         | 144                          | U.S. Aggregates, Inc.                                         | IN    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          | ł                                                    | -                             |
| 63  | 34                      |                         | 96                           | Arcelor Mittal Riverdale                                      | IL    | 1                      | Iron and steel                                           | Processor         | Processor_<br>Combo          | NA          |                                                      |                               |
| 64  | 34                      |                         | 127                          | MultiServ                                                     | IL    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          |                                                      |                               |
| 65  | 34                      |                         | 134                          | Phoenix Services<br>LLC/listed as Harsco<br>Multiserv Plt 27? | IL    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor_<br>Combo          | NA          | -                                                    |                               |
| 66  | 1001                    | 222                     |                              | NO. 4 Mine                                                    | NY    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC                        | Underground mine  | Mine_<br>Processor_<br>Combo | Active      | R.T.Vanderbilt Co,<br>Gouverneur Mineral<br>Division | R T Vanderbilt<br>Company Inc |
| 67  | 1001                    | 223                     |                              | Balmat Mining Operations                                      | NY    | 2                      | Talc                                                     | Surface mine      | Mine_<br>Processor_<br>Combo | Active      | R T Vanderbilt Co<br>Gouverneur Mineral<br>Division  | R T Vanderbilt<br>Company Inc |
| 68  | 1001                    | 226                     |                              | No. 4 Mine                                                    | NY    | 2                      | Talc                                                     | Surface mine      | Mine_<br>Processor_<br>Combo | Active      | R.T.Vanderbilt Co,<br>Gouverneur Mineral<br>Division | R T Vanderbilt<br>Company Inc |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                       | State | Location<br>Confidence | Commodity            | Operation<br>Type | Entity<br>Type <sup>1</sup>  | Site Status       | Operator                                    | Controller                            |
|-----|-------------------------|-------------------------|------------------------------|-------------------------------------------------|-------|------------------------|----------------------|-------------------|------------------------------|-------------------|---------------------------------------------|---------------------------------------|
| 69  | 1001                    |                         | 263                          | R.T.Vanderbilt Company                          | NY    | 1                      | Wollastonite         | Processor         | Mine_<br>Processor_<br>Combo | NA                | -                                           |                                       |
| 70  | 1002                    | 325                     |                              | Barretts Mill                                   | MT    | 1                      | Talc                 | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | Barretts Minerals Inc                       | Minerals Technologies<br>Inc          |
| 71  | 1002                    |                         | 274                          | Specialty Minerals Inc.<br>(Barretts Minerals)  | MT    | 2                      | Pyrophyllite         | Processor?        | Mine_<br>Processor_<br>Combo | NA                |                                             |                                       |
| 72  | 1003                    | 346                     |                              | Boron Operations                                | CA    | 2                      | Boron Minerals       | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | U S Borax Inc                               | Rio Tinto Group                       |
| 73  | 1003                    |                         | 53                           | US Borax waste pile from<br>Boron CA operations | CA    | 2                      | Boron                | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                             |                                       |
| 74  | 1004                    | 351                     |                              | Brownsville Mill                                |       | 0                      | Barite Barium<br>Ore | Processor         | Mine_<br>Processor_<br>Combo | Active            | Milwhite, Inc.                              | Milwhite Inc                          |
| 75  | 1004                    |                         | 32                           | Milwhite                                        | ТХ    | 2                      | Barite               | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                             |                                       |
| 76  | 1005                    | 78                      |                              | Freeport McMoRan Miami<br>Inc                   | AZ    | 2                      | Copper Ore<br>NEC    | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | Freeport McMoran<br>Miami Inc               | Freeport-McMoRan<br>Copper & Gold Inc |
| 77  | 1005                    |                         | 67                           | Copper Cities Unit                              | AZ    | 1                      | Copper               | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                             |                                       |
| 78  | 1006                    | 36                      |                              | Open Pit & Continental<br>Surf Comp             | NM    | 2                      | Copper Ore<br>NEC    | Surface mine      | Mine_<br>Processor_<br>Combo | Non-<br>producing | Freeport-McMoRan<br>Cobre Mining<br>Company | Freeport-McMoRan<br>Copper & Gold Inc |
| 79  | 1006                    | 38                      |                              | Chino Mines Co Mine                             | NM    | 2                      | Copper Ore<br>NEC    | Surface mine      | Mine_<br>Processor_<br>Combo | Non-<br>producing | Freeport-McMoRan<br>Chino Mines<br>Company  | Freeport-McMoRan<br>Copper & Gold Inc |
| 80  | 1006                    |                         | 70                           | SX-EW                                           | NM    | 2                      | Copper Ore<br>NEC    | Processor         | Mine_<br>Processor_<br>Combo | Active            |                                             |                                       |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                              | State | Location<br>Confidence | Commodity                | Operation<br>Type | Entity<br>Type <sup>1</sup>  | Site Status       | Operator                          | Controller                            |
|-----|-------------------------|-------------------------|------------------------------|----------------------------------------|-------|------------------------|--------------------------|-------------------|------------------------------|-------------------|-----------------------------------|---------------------------------------|
| 81  | 1006                    |                         | 278                          | Continental Mill Complex               | NM    | 1                      | Copper Ore<br>NEC        | Processor         | Mine_<br>Processor_<br>Combo | Non-<br>producing |                                   |                                       |
| 82  | 1006                    |                         | 279                          | Ivanhoe Concentrator                   | NM    | 1                      | Copper Ore<br>NEC        | Processor         | Mine_<br>Processor_<br>Combo | Non-<br>producing | -                                 |                                       |
| 83  | 1007                    | 315                     |                              | Du Pont Florida Mine &<br>Plant        | FL    | 2                      | Titanium Ore             | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | E I Dupont De<br>Nemours & Co Inc | El DuPont De<br>Nemours & Co Inc      |
| 84  | 1007                    |                         | 271                          | E.I. Dupont de Nemours                 | FL    | 2                      | Zirconium and<br>hafnium | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                   |                                       |
| 85  | 1008                    | 132                     |                              | Enoch Valley Mine                      | ID    | 2                      | Phosphate<br>Rock        | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | P4 Production LLC                 | Monsanto Company                      |
| 86  | 1008                    |                         | 207                          | P4 Production LLC                      | ID    | 2                      | Phosphate rock           | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                   |                                       |
| 87  | 1009                    | 332                     |                              | Enoree Operations                      | SC    | 2                      | Vermiculite              | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | W R Grace & Co.                   | W R Grace &<br>Company                |
| 88  | 1009                    |                         | 255                          | WR Grace and Co.                       | SC    | 1                      | Vermiculite              | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                   |                                       |
| 89  | 1010                    | 139                     |                              | Excalibar Minerals                     |       | 0                      | Barite Barium<br>Ore     | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | Excalibar Minerals<br>LLC         | Newpark Resources<br>Inc              |
| 90  | 1010                    |                         | 30                           | Excalibar Minerals of<br>Louisiana LLC | LA    | 2                      | Barite                   | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                   |                                       |
| 91  | 1011                    | 308                     |                              | Freeport-McMoRan<br>Morenci Inc.       | AZ    | 2                      | Copper Ore<br>NEC        | Surface mine      | Mine_<br>Processor_<br>Combo | Active            | Freeport-McMoRan<br>Morenci Inc.  | Freeport-McMoRan<br>Copper & Gold Inc |
| 92  | 1011                    |                         | 199                          | Phelps-Dodge Morenci                   | AZ    | 2                      | Molybdenum               | Processor         | Mine_<br>Processor_<br>Combo | NA                |                                   |                                       |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                    | State | Location<br>Confidence | Commodity         | Operation<br>Type | Entity<br>Type <sup>1</sup>   | Site Status  | Operator                                                | Controller                             |
|-----|-------------------------|-------------------------|------------------------------|------------------------------|-------|------------------------|-------------------|-------------------|-------------------------------|--------------|---------------------------------------------------------|----------------------------------------|
| 93  | 1012                    | 178                     |                              | Genesis                      | NV    | 2                      | Gold Ore          | Surface mine      | Mine_<br>Processor_<br>Combo  | Active       | Newmont USA Limited                                     | Newmont Mining Corp                    |
| 94  | 1012                    | 188                     |                              | Meikle Mine                  | NV    | 2                      | Gold Ore          | Underground mine  | Mine_<br>Processor_<br>Combo  | Active       | Barrick Goldstrike<br>Mines Inc                         | Barrick Gold Corp                      |
| 95  | 1012                    | 189                     |                              | Goldstrike Mine              | NV    | 2                      | Gold Ore          | Surface mine      | Mine_<br>Processor_<br>Combo  | Active       | Barrick Goldstrike<br>Mines Inc                         | Barrick Gold Corp                      |
| 96  | 1012                    | 195                     |                              | Leeville                     | NV    | 1                      | Gold Ore          | Underground mine  | Mine_<br>Processor_<br>Combo  | Active       | Newmont USA Limited                                     | Newmont Mining Corp                    |
| 97  | 1012                    | 203                     |                              | Deep Post                    | NV    | 1                      | Gold Ore          | Underground mine  | Mine_Proc<br>essor_Com<br>bo  | Intermittent | Newmont USA Limited                                     | Newmont Mining Corp                    |
| 98  | 1012                    | 207                     |                              | Storm Exploration Decline    | NV    | 1                      | Gold Ore          | Underground mine  | Mine_Proc<br>essor_Com<br>bo  | Active       | Barrick Goldstrike<br>Mine Inc                          | Barrick Gold Corp                      |
| 99  | 1012                    |                         | 79                           | Roaster Operations           | NV    | 2                      | Gold Ore          | Processor         | Mine_Proc<br>essor_Com<br>bo  | Active       |                                                         |                                        |
| 100 | 1012                    |                         | 81                           | Mill/Autoclave Operations    | NV    | 2                      | Gold Ore          | Processor         | Mine_Proc<br>essor_Com<br>bo  | Active       |                                                         | -                                      |
| 101 | 1013                    | 84                      |                              | Hayden Concentrator          | AZ    | 2                      | Copper Ore<br>NEC | Surface mine      | Mine_Proc<br>essor_Com<br>bo  | Active       | Asarco LLC                                              | Grupo Mexico S A                       |
| 102 | 1013                    |                         | 66                           | Asarco, LLC - Hayden         | AZ    | 2                      | Copper            | Processor         | Mine_Proc<br>essor_Com<br>bo  | NA           |                                                         |                                        |
| 103 | 1014                    | 143                     |                              | Minntac Maintenance<br>Dept. | MN    | 2                      | Iron Ore          | Surface mine      | Mine_Proc<br>essor_Com<br>bo_ | Active       | United States Steel<br>Corp-Minnesota Ore<br>Operations | USX Corp (United<br>States Steel Corp) |
| 104 | 1014                    | 147                     |                              | Minntac Mine                 | MN    | 2                      | Iron Ore          | Surface mine      | Mine_Proc<br>essor_Com<br>bo  | Active       | United States Steel<br>Corp-Minnesota Ore<br>Operations | USX Corp (United<br>States Steel Corp) |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                   | State | Location<br>Confidence | Commodity            | Operation<br>Type   | Entity<br>Type <sup>1</sup>  | Site Status | Operator                                       | Controller                                               |
|-----|-------------------------|-------------------------|------------------------------|---------------------------------------------|-------|------------------------|----------------------|---------------------|------------------------------|-------------|------------------------------------------------|----------------------------------------------------------|
| 105 | 1014                    |                         | 146                          | Minntac Plant                               | MN    | 1                      | Iron Ore             | Processor           | Mine_Proc<br>essor_Com<br>bo | Active      |                                                |                                                          |
| 106 | 1015                    | 316                     |                              | New Riverside Ochre<br>Company Incorporated | GA    | 2                      | Barite Barium<br>Ore | Surface mine        | Mine_Proc<br>essor_Com<br>bo | Active      | New Riverside Ochre<br>Company<br>Incorporated | Dellinger James R Jr<br>& Estate Of James R<br>Dellinger |
| 107 | 1015                    |                         | 22                           | Baroid Drilling Fluids                      | GA    | 1                      | Barite               | Processor           | Mine_Proc<br>essor_Com<br>bo | NA          |                                                |                                                          |
| 108 | 1016                    | 349                     |                              | Plant #2                                    |       | 0                      | Boron Minerals       | Processor           | Mine_Proc<br>essor_Com<br>bo | Active      | Industrial Minerals Inc                        | L G Wilson Jr                                            |
| 109 | 1016                    |                         | 54                           | American Borate/Industrial<br>Minerals Co.  | SC    | 2                      | Boron                | Processor           | Mine_Proc<br>essor_Com<br>bo | NA          |                                                |                                                          |
| 110 | 1017                    | 175                     |                              | South Area                                  | NV    | 2                      | Gold Ore             | Surface mine        | Mine_Proc<br>essor_Com<br>bo | Active      | Newmont USA Limited                            | Newmont Mining Corp                                      |
| 111 | 1017                    | 210                     |                              | Chukar                                      | NV    | 2                      | Gold Ore             | Underground<br>mine | Mine_Proc<br>essor_Com<br>bo | Active      | Newmont USA Limited                            | Newmont Mining Corp                                      |
| 112 | 1017                    |                         | 82                           | Mill 6                                      | NV    | 2                      | Gold Ore             | Processor           | Mine_Proc<br>essor_Com<br>bo | Active      |                                                |                                                          |
| 113 | 1018                    | 190                     |                              | Twin Creeks Mine                            | NV    | 2                      | Gold Ore             | Surface mine        | Mine_Proc<br>essor_Com<br>bo | Active      | Newmont USA Limited                            | Newmont Mining Corp                                      |
| 114 | 1018                    |                         | 58                           | Sage Mill                                   | NV    | 2                      | Brucite              | Processor           | Mine_Proc<br>essor_Com<br>bo | Active      |                                                |                                                          |
| 115 | 1019                    | 221                     |                              | Willsboro Mine (Fox Knoll)                  | NY    | 2                      | Wollastonite         | Surface mine        | Mine_Proc<br>essor_Com<br>bo | Active      | NYCO Minerals, Inc.                            | Rolling Rock Minerals<br>Inc                             |
| 116 | 1019                    |                         | 264                          | NYCO Minerals                               | NY    | 2                      | wollastonite         | Processor           | Mine_Proc<br>essor_Com<br>bo | NA          |                                                |                                                          |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                        | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup>  | Site Status       | Operator                                             | Controller                         |
|-----|-------------------------|-------------------------|------------------------------|----------------------------------|-------|------------------------|-----------------------------------|-------------------|------------------------------|-------------------|------------------------------------------------------|------------------------------------|
| 117 | 1020                    | 244                     |                              | Young Mine                       | ΤN    | 2                      | Zinc                              | Underground mine  | Mine_Proc<br>essor_Com<br>bo | Active            | Nyrstar Tennessee<br>Mines, Strawberry<br>Plains LLC | Nyrstar NV                         |
| 118 | 1020                    |                         | 265                          | Maintenance and Supply           | ΤN    | 2                      | Zinc                              | Processor         | Mine_Proc<br>essor_Com<br>bo | Active            |                                                      |                                    |
| 119 | 1021                    | 231                     |                              | Celatom Mine                     | OR    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine_Proc<br>essor_Com<br>bo | Inter-mittent     | EP Minerals, LLC                                     | Eagle-Picher<br>Industries Inc     |
| 120 | 1021                    |                         | 192                          | Celatom Plant                    | OR    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Mine_Proc<br>essor_Com<br>bo | Active            |                                                      |                                    |
| 121 | 1022                    | 310                     |                              | Mission/San<br>Xavier/Eisenhower | AZ    | 2                      | Copper Ore<br>NEC                 | Surface mine      | Mine_Proc<br>essor_Com<br>bo | Active            | Asarco LLC, a<br>Delaware limited<br>liability       | Grupo Mexico S A                   |
| 122 | 1022                    |                         | 197                          | Asarco LLC Mission<br>Complex    | AZ    | 2                      | Molybdenum                        | Processor         | Mine_Proc<br>essor_Com<br>bo | NA                |                                                      |                                    |
| 123 | 2003                    |                         |                              | Pinenut                          | AZ    | 2                      | Uranium Ore                       | Underground mine  | Mine                         | Non-<br>producing | Denison Mines (USA)<br>Corp                          | International Uranium<br>Corp      |
| 124 | 2004                    | 4                       |                              | North American Industries        | AZ    | 2                      | Chem. and<br>Fertil. Mnls.<br>NEC | Surface mine      | Mine                         | Inter-mittent     | NORTH AMERICAN<br>INDUSTRIES                         | Heinz Brung                        |
| 125 | 2005                    | 5                       |                              | Rosemont Copper Project          | AZ    | 2                      | Copper Ore<br>NEC                 | Surface mine      | Mine                         | Non-<br>producing | Rosemont Copper<br>Company                           | Augusta Resource<br>Corp           |
| 126 | 2007                    | 7                       |                              | Sixteen To One Mine              | CA    | 2                      | Gold Ore                          | Underground mine  | Mine                         | Non-<br>producing | Original Sixteen To<br>One Mine Inc                  | Michael M Miller                   |
| 127 | 2008                    | 8                       |                              | Washington Niagara Mine          | 1     | 0                      | Gold Ore                          | Underground mine  | Mine                         | Non-<br>producing | French Gulch<br>(Nevada) Mining Corp                 | Timothy A Callaway                 |
| 128 | 2009                    | 9                       |                              | Red Arrow                        | CO    | 2                      | Gold Ore                          | Underground mine  | Mine                         | Non-<br>producing | Red Arrow Gold<br>Corporation                        | Craig A Liukko                     |
| 129 | 2010                    | 10                      |                              | Liberty                          | 1     | 0                      | Gold Ore                          | Underground mine  | Mine                         | Non-<br>producing | The Mining Company,<br>Inc.                          | Kenneth J Orvis;<br>Cristy L Orvis |
| 130 | 2011                    | 11                      |                              | S P Chase Partner<br>Newcomb     |       | 0                      | Gold Ore                          | Underground mine  | Mine                         | Non-<br>producing | Barnhard Mining<br>Company LLC                       | Albert J Barnhard                  |
| 131 | 2012                    | 12                      |                              | Whirlwind Mine                   | CO    | 2                      | Uranium-<br>Vanadium Ore          | Underground mine  | Mine                         | Non-<br>producing | Energy Fuels<br>Resources                            | Energy Fuels<br>Incorporated       |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                     | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status       | Operator                          | Controller                                         |
|-----|-------------------------|-------------------------|------------------------------|-------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|-------------------|-----------------------------------|----------------------------------------------------|
| 132 | 2013                    | 13                      |                              | Sunshine Mine                 | ID    | 2                      | Silver Ore                        | Underground mine  | Mine                        | Non-<br>producing | Sterling Mining<br>Company        | Roger Van Voorhees                                 |
| 133 | 2014                    | 14                      |                              | Bunker Hill Mine              | ID    | 2                      | Lead-Zinc Ore                     | Underground mine  | Mine                        | Non-<br>producing | Placer Mining<br>Corporation      | Robert Hopper                                      |
| 134 | 2015                    | 15                      |                              | Rescue Mine                   | ID    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Non-<br>producing | Shoshone Silver<br>Mining Co      | Carol Stephan                                      |
| 135 | 2016                    | 16                      |                              | Golden Chest Project          | ID    | 1                      | Gold Ore                          | Underground mine  | Mine                        | Non-<br>producing | New Jersey Mining<br>Company      | Fred W Brackebusch;<br>Grant A Brackebusch         |
| 136 | 2025                    | 25                      |                              | Humboldt Mill                 | MI    | 2                      | Iron Ore                          | Surface mine      | Mine                        | Non-<br>producing | Kennecott Eagle Land<br>LLC       | Rio Tinto Group                                    |
| 137 | 2027                    | 27                      |                              | Wings Enterprise Phase<br>One |       | 0                      | Iron Ore                          | Surface mine      | Mine                        | Non-<br>producing | Wings Enterprise Inc              | James C Kennedy                                    |
| 138 | 2029                    | 29                      |                              | Montana Tunnels Mining<br>Inc | MT    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Non-<br>producing | Montana Tunnels<br>Mining Inc     | Apollo Gold<br>Corporation; Elkhorn<br>Tunnels LLC |
| 139 | 2031                    | 31                      |                              | Montanore Project             | MT    | 2                      | Silver Ore                        | Underground mine  | Mine                        | Non-<br>producing | Mines Management,<br>Inc.         | Glenn M. Dobbs                                     |
| 140 | 2032                    | 32                      |                              | Sterling Mine                 | NV    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Non-<br>producing | Sterling Gold Mining<br>Corp      | Imperial Metals Corp                               |
| 141 | 2033                    | 33                      |                              | Fencemaker                    | NV    | 1                      | Antimony Ore                      | Underground mine  | Mine                        | Non-<br>producing | Stockpile Reserves<br>LLC         | Richard Brown; Mary<br>Fitzpatrick                 |
| 142 | 2034                    | 34                      |                              | February Premier              |       | 0                      | Gold Ore                          | Underground mine  | Mine                        | Non-<br>producing | Lode Star Gold Inc                | Lonnie S Humphries                                 |
| 143 | 2037                    | 37                      |                              | H B Potash                    | NM    | 1                      | Potash                            | Underground mine  | Mine                        | Non-<br>producing | H B Potash LLC                    | Hugh E Harvey                                      |
| 144 | 2039                    | 39                      |                              | Balmat Mine No. 4 & Mill      |       | 0                      | Lead-Zinc Ore                     | Underground mine  | Mine                        | Non-<br>producing | St. Lawrence Zinc<br>Company, LLC | Ontzinc                                            |
| 145 | 2040                    | 40                      |                              | Horizon Ag Products           |       | 0                      | Chem. and<br>Fertil. Mnls.<br>NEC | Surface mine      | Mine                        | Active            | Horizon Ag Products               | Brad Knickel; Michael<br>Farmar                    |
| 146 | 2042                    | 42                      |                              | Cumberland Mine               | ΤN    | 2                      | Zinc                              | Underground mine  | Mine                        | Non-<br>producing | Nyrstar Gordonsville,<br>LLC      | Nyrstar NV                                         |
| 147 | 2044                    | 44                      |                              | Tony M                        | UT    | 2                      | Uranium Ore                       | Underground mine  | Mine                        | Non-<br>producing | Denison Mines (USA)<br>Corp       | International Uranium<br>Corp                      |
| 148 | 2048                    | 48                      |                              | Kensington                    | AK    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Non-<br>producing | Coeur Alaska Inc                  | Coeur D'Alene Mines<br>Corp                        |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                        | State | Location<br>Confidence | Commodity               | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status       | Operator                          | Controller                                         |
|-----|-------------------------|-------------------------|------------------------------|----------------------------------|-------|------------------------|-------------------------|-------------------|-----------------------------|-------------------|-----------------------------------|----------------------------------------------------|
| 149 | 2049                    | 49                      |                              | Cyprus Tohono<br>Corporation     | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Non-<br>producing | Cyprus Tohono Corp                | Freeport-McMoRan<br>Copper & Gold Inc              |
| 150 | 2050                    | 50                      |                              | Niblack Project LLC              | AK    | 2                      | Gold Ore                | Underground mine  | Mine                        | Non-<br>producing | Niblack Project LLC               | Heatherdale<br>Resources; CBR Gold<br>Corporation  |
| 151 | 2052                    | 52                      |                              | Resolution Mine                  | AZ    | 2                      | Copper Ore<br>NEC       | Underground mine  | Mine                        | Non-<br>producing | Resolution Copper<br>Mining LLC   | RTZ Corp PLC;<br>Broken Hill Proprietary<br>Co Ltd |
| 152 | 2068                    | 68                      |                              | Walla Walla Mine                 | ID    | 2                      | Gold Ore                | Underground mine  | Mine                        | Non-<br>producing | F & H Mining                      | James Johnston; Roy<br>A Sternes                   |
| 153 | 2077                    | 77                      |                              | Dudley Red #1                    | AL    | 2                      | Iron Ore                | Surface mine      | Mine                        | Active            | Alabama Pigments Co<br>LLC        | Gerald Cobern                                      |
| 154 | 2079                    | 79                      |                              | Freeport-McMoRan<br>Bagdad Inc   | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Freeport-McMoRan<br>Bagdad Inc    | Freeport-McMoRan<br>Copper & Gold Inc              |
| 155 | 2080                    | 80                      |                              | Ray                              | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Asarco LLC                        | Grupo Mexico S A                                   |
| 156 | 2081                    | 81                      |                              | Mineral Park Inc                 | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Mineral Park Inc                  | Mercator Minerals Ltd                              |
| 157 | 2082                    | 82                      |                              | Pinto Valley Operations          | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | BHP Copper Inc                    | Broken Hill Proprietary<br>Company Ltd             |
| 158 | 2083                    | 83                      |                              | Freeport-McMoRan Sierrita<br>Inc | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Freeport-McMoRan<br>Sierrita Inc  | Freeport-McMoRan<br>Copper & Gold Inc              |
| 159 | 2085                    | 85                      |                              | Arizona #1                       | AZ    | 2                      | Uranium Ore             | Underground mine  | Mine                        | Active            | Denison Mines (USA)<br>Corp       | International Uranium<br>Corp                      |
| 160 | 2086                    | 86                      |                              | Carlota Copper Company           | AZ    | 1                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Carlota Copper<br>Company         | Quadra Mining Ltd                                  |
| 161 | 2087                    | 87                      |                              | Gold Road Mine                   | AZ    | 2                      | Gold Ore                | Underground mine  | Mine                        | Intermittent      | Addwest Minerals Inc              | Addwest Minerals<br>International Ltd              |
| 162 | 2088                    | 88                      |                              | Johnson Camp Mine                | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Nord Resources<br>Corporation     | Nord Resources Corp                                |
| 163 | 2089                    | 89                      |                              | The Old Wasp Mine                | AZ    | 2                      | Gold Ore                | Surface mine      | Mine                        | Inter-mittent     | The Old Wasp Mine                 | Clay Worst                                         |
| 164 | 2091                    | 91                      |                              | Freeport-McMoRan<br>Safford Inc  | AZ    | 2                      | Copper Ore<br>NEC       | Surface mine      | Mine                        | Active            | Freeport-McMoRan<br>Safford Inc   | Freeport-McMoRan<br>Copper & Gold Inc              |
| 165 | 2095                    | 95                      |                              | Alabama Mine                     | AR    | 2                      | Aluminum Ore<br>Bauxite | Surface mine      | Mine                        | Active            | McGeorge Contracting<br>Co., Inc. | Haskell L Dickinson                                |
| 166 | 2096                    | 96                      |                              | Section 27                       |       | 0                      | Aluminum Ore<br>Bauxite | Surface mine      | Mine                        | Inter-mittent     | Semcoa                            | Ted Smith; Tom<br>Reed                             |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                       | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                             | Controller                                             |
|-----|-------------------------|-------------------------|------------------------------|---------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|---------------|--------------------------------------|--------------------------------------------------------|
| 167 | 2097                    | 97                      |                              | Owens Lake Mine                 |       | 0                      | Trona                             | Surface mine      | Mine                        | Active        | U S Borax Inc                        | Rio Tinto Group                                        |
| 168 | 2098                    | 98                      |                              | Colorado Quartz                 | CA    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Colorado Quartz Gold<br>Corp         | Lance W Barker                                         |
| 169 | 2099                    | 99                      |                              | Dredge 17                       | CA    | 1                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Cal Sierra<br>Development Inc        | Jemco LLC                                              |
| 170 | 2100                    | 100                     |                              | Baxter Mine                     | CA    | 2                      | Iron Ore                          | Surface mine      | Mine                        | Active        | Hahm International Inc               | Scott R Descher                                        |
| 171 | 2101                    | 101                     |                              | Mt Pass Mine & Mill             | CA    | 2                      | Rare Earths<br>Ore                | Surface mine      | Mine                        | Active        | Molycorp Minerals<br>LLC             | Resource Capital<br>Funds; Traxys North<br>America LLC |
| 172 | 2102                    | 102                     |                              | Big Seam Mine                   |       | 0                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Wildcat Mining LLC                   | Richard R Sykora                                       |
| 173 | 2103                    | 103                     |                              | Mesquite                        | CA    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Western Mesquite<br>Mines, Inc.      | New Gold Inc                                           |
| 174 | 2104                    | 104                     |                              | CR Briggs                       | СА    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active        | CR Briggs                            | Canyon Resources<br>Corp                               |
| 175 | 2105                    | 105                     |                              | Jerico Products<br>Incorporated | СА    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active        | Jerico Products Inc                  | Michael Lind                                           |
| 176 | 2106                    | 106                     |                              | Silverlake Mine                 |       | 0                      | Iron Ore                          | Surface mine      | Mine                        | Active        | Hahm International Inc               | Scott R Descher                                        |
| 177 | 2107                    | 107                     |                              | Red Ledge Mining                | СА    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | Red Ledge Mining<br>Company LLC      | Barry Yampol; David<br>Yampol                          |
| 178 | 2108                    | 108                     |                              | Mockingbird Mine                | СА    | 1                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Emmett's Excavation<br>Inc           | John Emmett                                            |
| 179 | 2109                    | 109                     |                              | Ocean View Mine                 | CA    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Underground mine  | Mine                        | Inter-mittent | Ocean View Mines<br>LLC              | Jeffrey A Swanger                                      |
| 180 | 2110                    | 110                     |                              | Joiner Portable #2              |       | 0                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Inter-mittent | Joiner Construction<br>Inc           | Craig W Joiner                                         |
| 181 | 2111                    | 111                     |                              | Climax Mine                     | СО    | 2                      | Molybdenum<br>Ore                 | Surface mine      | Mine                        | Inter-mittent | Climax Molybdenum<br>Company         | Freeport-McMoRan<br>Copper & Gold Inc                  |
| 182 | 2113                    | 113                     |                              | May Day - Idaho                 | CO    | 1                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Wildcat Mining Corp                  | Mike Clements                                          |
| 183 | 2114                    | 114                     |                              | Cresson Project                 | CO    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Anglogold Ashanti<br>(Colorado) Corp | Anglogold Ltd; Golden<br>Cycle Gold Corp               |
| 184 | 2115                    | 115                     |                              | Alma Placer Mine                | СО    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | Environmental Mining<br>Corp         | Zane Schmeeckle;<br>Jerry Miller                       |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                          | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                       | Controller                         |
|-----|-------------------------|-------------------------|------------------------------|------------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|---------------|--------------------------------|------------------------------------|
| 185 | 2116                    | 116                     |                              | Hookers Prairie Mine               | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Mosaic Fertilizer LLC          | Mosaic Company                     |
| 186 | 2117                    | 117                     |                              | Hardee Phosphate<br>Complex        | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | C F Industries Inc             | Stephen R Wilson                   |
| 187 | 2118                    | 118                     |                              | Swift Creek Mine                   | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | PCS Phosphate-White<br>Springs | Potash Corp Of<br>Saskatchewan     |
| 188 | 2119                    | 119                     |                              | Four Corners                       | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Mosaic Phosphates<br>Company   | Mosaic Global<br>Holdings          |
| 189 | 2120                    | 120                     |                              | Manko Co Sec 5<br>Mine/Phos        | FL    | 1                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Manko Company                  | Manko Company                      |
| 190 | 2121                    | 121                     |                              | South Fort Meade Mine              | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Mosaic Fertilizer LLC          | Mosaic Company                     |
| 191 | 2122                    | 122                     |                              | Wingate Creek Mine                 | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Mosaic Fertilizer LLC          | Mosaic Company                     |
| 192 | 2123                    | 123                     |                              | Hopewell                           | FL    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Mosaic Phosphates<br>Company   | Mosaic Global<br>Holdings          |
| 193 | 2124                    | 124                     |                              | Thompson Creek Mining<br>Co        | ID    | 2                      | Molybdenum<br>Ore                 | Surface mine      | Mine                        | Active        | Thompson Creek<br>Metals Co.   | Blue Pearl Mining                  |
| 194 | 2125                    | 125                     |                              | Galena                             | ID    | 2                      | Silver Ore                        | Underground mine  | Mine                        | Active        | U.S. Silver - Idaho,<br>Inc.   | U S Silver Corporation             |
| 195 | 2126                    | 126                     |                              | Lucky Friday                       | ID    | 2                      | Silver Ore                        | Underground mine  | Mine                        | Active        | Hecla Limited                  | Hecla Mining<br>Company            |
| 196 | 2127                    | 127                     |                              | Enoch Valley & South<br>Rass Mines | ID    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Degerstrom Ventures            | Dravo Corp & N A<br>Degerstrom Inc |
| 197 | 2128                    | 128                     |                              | Dry Valley Mine                    | ID    | 1                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | Nu-West Industries<br>Inc      | Agrium Inc                         |
| 198 | 2129                    | 129                     |                              | Smoky Canyon Mine                  | ID    | 2                      | Phosphate<br>Rock                 | Surface mine      | Mine                        | Active        | J R Simplot Company            | Scott Simplot                      |
| 199 | 2130                    | 130                     |                              | Bond Mine                          |       | 0                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Gold Pan Dan's                 | Daniel K Vaughan                   |
| 200 | 2131                    | 131                     |                              | New Acers                          | ID    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Inter-mittent | Clayton's Calcium Inc          | Todd G Clayton                     |
| 201 | 2133                    | 133                     |                              | Atlanta Mountain                   | ID    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | Atlanta Gold Corp              | Atlanta Gold Inc                   |
| 202 | 2134                    | 134                     |                              | McKinley Mine                      | ID    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | Caldera LLC                    | Matthew Miller; Darrel<br>E Cox    |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                              | State | Location<br>Confidence | Commodity              | Operation<br>Type         | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                                | Controller                               |
|-----|-------------------------|-------------------------|------------------------------|----------------------------------------|-------|------------------------|------------------------|---------------------------|-----------------------------|---------------|---------------------------------------------------------|------------------------------------------|
| 203 | 2135                    | 135                     |                              | Golden Eagle                           | ID    | 2                      | Gold Ore               | Underground mine          | Mine                        | Active        | Greyhound Mine &<br>Milling, Inc.                       | Daniel R Yanke;<br>Christopher Clark     |
| 204 | 2136                    | 136                     |                              | Rasmussen Ridge Mine                   | ID    | 2                      | Phosphate<br>Rock      | Surface mine              | Mine                        | Inter-mittent | Nu-West Industries<br>Inc                               | Agrium Inc                               |
| 205 | 2137                    | 137                     |                              | Robins Shop                            | IA    | 1                      | Misc. Metal Ore<br>NEC | <sup>9</sup> Surface mine | Mine                        | Active        | Wendling Quarries Inc                                   | Manaco Corporation                       |
| 206 | 2138                    | 138                     |                              | National Oilwell Varco LP              |       | 0                      | Barite Barium<br>Ore   | Surface mine              | Mine                        | Active        | Nationa Oilwell Varco<br>LP                             | NOW, Inc.; NOW<br>Oilfield Services, Inc |
| 207 | 2140                    | 140                     |                              | 6 X 20 Cedar Rapids<br>Portable Screen |       | 0                      | Iron Ore               | Surface mine              | Mine                        | Inter-mittent | A Lindberg & Sons Inc                                   | David J Crimmins;<br>Roger C Crimmins    |
| 208 | 2141                    | 141                     |                              | Northshore Mine                        | MN    | 2                      | Iron Ore               | Surface mine              | Mine                        | Active        | Northshore Mining<br>Company                            | Cleveland-Cliffs Inc                     |
| 209 | 2142                    | 142                     |                              | SP-16 6X20 Screen Plant                |       | 0                      | Iron Ore               | Surface mine              | Mine                        | Inter-mittent | A Lindberg & Son's<br>Inc                               | David J Crimmins;<br>Roger C Crimmins    |
| 210 | 2144                    | 144                     |                              | ArcelorMittal Minorca Mine<br>Inc      | MN    | 2                      | Iron Ore               | Surface mine              | Mine                        | Active        | ArcelorMittal Minorca<br>Mine Inc                       | Mittal Steel USA Inc                     |
| 211 | 2145                    | 145                     |                              | Cedar Rapids Screen #2                 |       | 0                      | Iron Ore               | Surface mine              | Mine                        | Inter-mittent | A Lindberg & Sons Inc                                   | David J Crimmins;<br>Roger C Crimmins    |
| 212 | 2146                    | 146                     |                              | Peterson Mine                          | MI    | 1                      | Iron Ore               | Surface mine              | Mine                        | Inter-mittent | Bessemer Iron Ore<br>Company Inc                        | Virginia L. Poquette                     |
| 213 | 2149                    | 149                     |                              | Spread Three (3)                       |       | 0                      | Iron Ore               | Surface mine              | Mine                        | Inter-mittent | Hoover Construction<br>Company                          | Peter J Johnson                          |
| 214 | 2150                    | 150                     |                              | Keewatin Taconite                      | MN    | 2                      | Iron Ore               | Surface mine              | Mine                        | Active        | United States Steel<br>Corp-Minnesota Ore<br>Operations | USX Corp (United<br>States Steel Corp)   |
| 215 | 2152                    | 152                     |                              | Viburnum #29 Mine                      | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |
| 216 | 2153                    | 153                     |                              | Brushy Creek Mine/Mill                 | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |
| 217 | 2154                    | 154                     |                              | Fletcher Mine and Mill                 | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |
| 218 | 2155                    | 155                     |                              | Buick Mine/Mill                        | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |
| 219 | 2156                    | 156                     |                              | Sweetwater Mine/Mill                   | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |
| 220 | 2157                    | 157                     |                              | Viburnum #35 (Casteel<br>Mine)         | MO    | 2                      | Lead-Zinc Ore          | Underground mine          | Mine                        | Active        | Doe Run Company                                         | Renco Group                              |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                          | State | Location<br>Confidence | Commodity             | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                    | Controller                                               |
|-----|-------------------------|-------------------------|------------------------------|------------------------------------|-------|------------------------|-----------------------|-------------------|-----------------------------|---------------|---------------------------------------------|----------------------------------------------------------|
| 221 | 2158                    | 158                     |                              | Genesis Inc. Troy Mine             | MT    | 2                      | Copper Ore<br>NEC     | Underground mine  | Mine                        | Active        | Genesis Inc.                                | Revett Silver<br>Company                                 |
| 222 | 2159                    | 159                     |                              | Continental Mine                   | MT    | 2                      | Copper Ore<br>NEC     | Surface mine      | Mine                        | Active        | Montana Resources                           | Montana Resources<br>Inc; Asarco Inc                     |
| 223 | 2160                    | 160                     |                              | Treasure Mine                      | MT    | 2                      | Talc                  | Surface mine      | Mine                        | Active        | Barretts Minerals Inc                       | Minerals Technologies<br>Inc                             |
| 224 | 2161                    | 161                     |                              | Norweigen                          | MT    | 2                      | Gold Ore              | Underground mine  | Mine                        | Active        | Belmont Mining &<br>Explorations            | Edward Barrier;<br>Matthew Ratteree                      |
| 225 | 2162                    | 162                     |                              | Drumlummon Mine                    | MT    | 1                      | Gold Ore              | Underground mine  | Mine                        | Active        | New Millennium<br>Mining Contracting<br>LLC | Ben P Gunsinger                                          |
| 226 | 2163                    | 163                     |                              | Golden Sunlight Mine Inc           | MT    | 2                      | Gold Ore              | Surface mine      | Mine                        | Active        | Golden Sunlight Mine<br>Inc                 | Barrick Gold Corp                                        |
| 227 | 2164                    | 164                     |                              | Stillwater Mine                    | MT    | 2                      | Platinum Group<br>Ore | Underground mine  | Mine                        | Active        | Stillwater Mining<br>Company                | Stillwater Mining<br>Company                             |
| 228 | 2165                    | 165                     |                              | Oro Management                     |       | 0                      | Gold Ore              | Surface mine      | Mine                        | Inter-mittent | Oro Management                              | Richard Mathey;<br>Zane Pasma                            |
| 229 | 2166                    | 166                     |                              | East Boulder mine                  | MT    | 2                      | Platinum Group<br>Ore | Underground mine  | Mine                        | Active        | Stillwater Mining<br>Company                | Stillwater Mining<br>Company                             |
| 230 | 2167                    | 167                     |                              | Regal Mine                         | MT    | 2                      | Talc                  | Surface mine      | Mine                        | Active        | Barretts Minerals Inc                       | Minerals Technologies<br>Inc                             |
| 231 | 2168                    | 168                     |                              | Butte Highlands                    | MT    | 2                      | Gold Ore              | Underground mine  | Mine                        | Active        | Small Mine<br>Development LLC               | Ronald W Guill                                           |
| 232 | 2169                    | 169                     |                              | Indian Creek                       | MT    | 2                      | Gold Ore              | Surface mine      | Mine                        | Inter-mittent | Tracy Fortner                               | Tracy Fortner                                            |
| 233 | 2171                    | 171                     |                              | Victoria / Madison Gold            | MT    | 2                      | Copper Ore<br>NEC     | Underground mine  | Mine                        | Inter-mittent | Coronado Resources<br>Inc                   | Coronado Resources<br>Ltd                                |
| 234 | 2172                    | 172                     |                              | Black Butte Mine                   | MT    | 2                      | Iron Ore              | Surface mine      | Mine                        | Inter-mittent | Holcim (US) Inc                             | Holcim Ltd                                               |
| 235 | 2173                    | 173                     |                              | Ashdown Mine                       | NV    | 2                      | Molybdenum<br>Ore     | Underground mine  | Mine                        | Active        | Ashdown Project LLC                         | Win-Eldrich Mines Ltd;<br>Golden Phoenix<br>Minerals Inc |
| 236 | 2176                    | 176                     |                              | Phoenix Mine                       | NV    | 1                      | Gold Ore              | Surface mine      | Mine                        | Active        | Newmont USA Limited                         | Newmont Mining Corp                                      |
| 237 | 2177                    | 177                     |                              | Sexton Mine                        | NV    | 2                      | Barite Barium<br>Ore  | Surface mine      | Mine                        | Inter-mittent | Nutritional Additives                       | Donald Sexton; David<br>Sexton                           |
| 238 | 2179                    | 179                     |                              | Nevada Barth Iron Mine<br>and Mill | NV    | 2                      | Iron Ore              | Surface mine      | Mine                        | Inter-mittent | Saga Exploration Inc.                       | Gregory G Austin                                         |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status       | Operator                                     | Controller                                     |
|-----|-------------------------|-------------------------|------------------------------|--------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|-------------------|----------------------------------------------|------------------------------------------------|
| 239 | 2180                    | 180                     |                              | Grefco Mine & Mill       | NV    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active            | Grefco Minerals Inc                          | Belmont Holdings<br>Corp                       |
| 240 | 2181                    | 181                     |                              | Inland Navigator Project | NV    | 1                      | Rare Earths<br>Ore                | Surface mine      | Mine                        | Inter-mittent     | Columbus SM LLC                              | Ireland Inc                                    |
| 241 | 2182                    | 182                     |                              | Denton-Rawhide Mine      | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Kennecott Rawhide<br>Mining Co               | Rtz-CRA Group;<br>Dayton Mining<br>Corporation |
| 242 | 2183                    | 183                     |                              | Fernley Plant            |       | 0                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active            | Celite Corp                                  | Imerys S A                                     |
| 243 | 2184                    | 184                     |                              | Rochester Mine           | NV    | 2                      | Silver Ore                        | Surface mine      | Mine                        | Active            | Coeur Rochester Inc                          | Coeur D'Alene Mines<br>Corp                    |
| 244 | 2185                    | 185                     |                              | Jerritt Canyon Mill      | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Queenstake<br>Resources U.S.A.,<br>Inc.      | Yukon-Nevada Gold<br>Corp                      |
| 245 | 2186                    | 186                     |                              | Lone Tree Mine           | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Non-<br>producing | Newmont USA Limited                          | Newmont Mining Corp                            |
| 246 | 2187                    | 187                     |                              | Bald Mountain Mine       | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Barrick Gold U S Inc                         | Barrick Gold Corp                              |
| 247 | 2191                    | 191                     |                              | Moltan Mine              | NV    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active            | Moltan Company                               | Cheryl Followell                               |
| 248 | 2192                    | 192                     |                              | Midas Mine               | NV    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Active            | Newmont USA Limited                          | Newmont Mining Corp                            |
| 249 | 2193                    | 193                     |                              | Marigold Mine            | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Marigold Mining Co                           | Glamis Gold Ltd;<br>Homestake Mining Co        |
| 250 | 2194                    | 194                     |                              | Spring Valley Mine       | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Geo Nevada Inc                               | Hau Sun Ho                                     |
| 251 | 2196                    | 196                     |                              | Hollister Mine           | NV    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Active            | Rodeo Creek Gold                             | Great Basin Gold                               |
| 252 | 2197                    | 197                     |                              | Rossi Jig Plant          | NV    | 2                      | Barite Barium<br>Ore              | Surface mine      | Mine                        | Active            | Halliburton Energy<br>Services-Baroid        | Halliburton                                    |
| 253 | 2199                    | 199                     |                              | Ruby Hill Mine           | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Homestake Mining<br>Company Of<br>California | Barrick Gold Corp                              |
| 254 | 2200                    | 200                     |                              | Sunrise Gold Placer Mine | NV    | 1                      | Gold Ore                          | Surface mine      | Mine                        | Active            | Sunrise Minerals                             | Donald E Siecke                                |
| 255 | 2201                    | 201                     |                              | Robinson Operation       | NV    | 2                      | Copper Ore<br>NEC                 | Surface mine      | Mine                        | Active            | Robinson Nevada<br>Mining Company            | Quadra Mining Ltd                              |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                         | State | Location<br>Confidence | Commodity                         | Operation<br>Type         | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                     | Controller                            |
|-----|-------------------------|-------------------------|------------------------------|-----------------------------------|-------|------------------------|-----------------------------------|---------------------------|-----------------------------|---------------|----------------------------------------------|---------------------------------------|
| 256 | 2202                    | 202                     |                              | Florida Canyon Mine               | NV    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Active        | Florida Canyon Mining<br>Inc                 | Jipangu International                 |
| 257 | 2204                    | 204                     |                              | Hycroft Mine                      | NV    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Active        | Hycroft Resources &<br>Development Inc       | Vista Gold<br>Corporation             |
| 258 | 2205                    | 205                     |                              | PAP Portable #1                   |       | 0                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Portable Aggregate<br>Producers LLC          | Sandy Robles; Laura<br>A Lintz        |
| 259 | 2206                    | 206                     |                              | Esmeralda Mine                    | NV    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Active        | Antler Peak Gold Inc                         | Great Basin Gold<br>Limited           |
| 260 | 2208                    | 208                     |                              | Black Mountain Screening<br>Plant | NV    | 2                      | Fluorspar                         | Surface mine              | Mine                        | Active        | Black Mountain<br>Industrial Minerals<br>LLC | Barbara Spurgeon                      |
| 261 | 2209                    | 209                     |                              | Lee Smith Mine                    | NV    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Active        | Small Mine<br>Development LLC                | Ronald W Guill                        |
| 262 | 2212                    | 212                     |                              | Exodus                            |       | 0                      | Gold Ore                          | Underground mine          | Mine                        | Active        | Small Mine<br>Development LLC                | Ronald W Guill                        |
| 263 | 2214                    | 214                     |                              | Intrepid Potash West              | NM    | 2                      | Potash                            | Underground mine          | Mine                        | Active        | Intrepid Potash NM<br>LLC                    | Hugh E Harvey                         |
| 264 | 2215                    | 215                     |                              | Tyrone Mine                       | NM    | 2                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | Active        | Freeport-McMoRan<br>Tyrone Inc               | Freeport-McMoRan<br>Copper & Gold Inc |
| 265 | 2216                    | 216                     |                              | Mesa Verde Resources              | NM    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine              | Mine                        | Active        | Mesa Verde<br>Resources                      | Bruce Reid                            |
| 266 | 2217                    | 217                     |                              | St Cloud Surface                  | NM    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine              | Mine                        | Active        | St Cloud Mining<br>Company                   | Imagin Minerals<br>Incorporated       |
| 267 | 2218                    | 218                     |                              | Questa Mine & Mill                | NM    | 2                      | Molybdenum<br>Ore                 | Underground mine          | Mine                        | Active        | Chevron Mining Inc                           | Chevron Corporation                   |
| 268 | 2219                    | 219                     |                              | Summit Mine Site                  | NM    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Active        | Lordsburg Mining<br>Company                  | Santa Fe Gold<br>Corporation          |
| 269 | 2220                    | 220                     |                              | Star Lake Mine                    | NM    | 1                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine              | Mine                        | Active        | Menefee Mining Corp                          | John F Lown                           |
| 270 | 2224                    | 224                     |                              | Ruby Mountain                     | NY    | 2                      | Misc. Metal Ore<br>NEC            | <sup>e</sup> Surface mine | Mine                        | Active        | Barton Mines Co LLC                          | Charles H Bracken Jr                  |
| 271 | 2227                    | 227                     |                              | Lee Creek Mine                    | NC    | 2                      | Phosphate<br>Rock                 | Surface mine              | Mine                        | Active        | PCS Phosphate<br>Company Inc                 | Potash Corp Of<br>Saskatchewan        |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                    | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                              | Controller                        |
|-----|-------------------------|-------------------------|------------------------------|------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|---------------|-------------------------------------------------------|-----------------------------------|
| 272 | 2229                    | 229                     |                              | Tripoli                      | ОК    | 1                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active        | American Tripoli Inc                                  | Fording Inc                       |
| 273 | 2230                    | 230                     |                              | Don J                        | OR    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | Rocking C Mining LLC                                  | Carl Cummings;<br>Richard Huret   |
| 274 | 2232                    | 232                     |                              | Oregon Belle Mine            | OR    | 2                      | Gold Ore                          | Underground mine  | Mine                        | Inter-mittent | Oregon Belle Holdings<br>Inc                          | L R Hata; L G<br>Hurlburt         |
| 275 | 2233                    | 233                     |                              | GPM-1                        |       | 0                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | M.R. Miller Inc.                                      | Michael R Miller                  |
| 276 | 2235                    | 235                     |                              | Sullivan Pit                 | OR    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Inter-mittent | LuDan LLC                                             | Dan Kukla; Luvernia<br>Buddrius   |
| 277 | 2238                    | 238                     |                              | Penn Mag Inc. Plant #2       |       | 0                      | Chromite<br>Chromium Ore          | Surface mine      | Mine                        | Active        | Penn Mag, Inc.                                        | Anil Bhadsavle                    |
| 278 | 2239                    | 239                     |                              | Brown # 2                    | SC    | 2                      | Vermiculite                       | Surface mine      | Mine                        | Active        | Carolina Vermiculite<br>Division-Va<br>Vermiculite LP | Robert Sansom                     |
| 279 | 2240                    | 240                     |                              | The Wharf Mine               | SD    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Wharf Resources<br>(USA) Inc                          | Goldcorp Inc                      |
| 280 | 2241                    | 241                     |                              | Candy Branch                 |       | 0                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Confederate Mining<br>Company                         | Robert Andrew Price               |
| 281 | 2242                    | 242                     |                              | CF & I PIT                   |       | 0                      | Iron Ore                          | Surface mine      | Mine                        | Active        | Pete Lien & Sons Inc                                  | Pete Lien & Sons Inc              |
| 282 | 2243                    | 243                     |                              | Coy Mine                     | ΤN    | 2                      | Zinc                              | Underground mine  | Mine                        | Active        | Nyrstar Tennessee<br>Mines, Strawberry<br>Plains LLC  | Nyrstar NV                        |
| 283 | 2245                    | 245                     |                              | Immel Mine                   | TN    | 2                      | Zinc                              | Underground mine  | Mine                        | Active        | Nyrstar Tennessee<br>Mines, Strawberry<br>Plains LLC  | Nyrstar NV                        |
| 284 | 2246                    | 246                     |                              | Elmwood/Gordonsville<br>Mine | TN    | 2                      | Zinc                              | Underground mine  | Mine                        | Active        | Nyrstar Gordonsville,<br>LLC                          | Nyrstar NV                        |
| 285 | 2247                    | 247                     |                              | Houston Mill                 |       | 0                      | Talc                              | Surface mine      | Mine                        | Active        | Luzenac America                                       | Rio Tinto Group                   |
| 286 | 2248                    | 248                     |                              | Houston Plant                |       | 0                      | Barite Barium<br>Ore              | Surface mine      | Mine                        | Active        | Excalibar Minerals<br>LLC                             | Newpark Resources<br>Inc          |
| 287 | 2250                    | 250                     |                              | Portable #2                  |       | 0                      | Iron Ore                          | Surface mine      | Mine                        | Active        | Nash Trucking &<br>Construction Ltd.                  | Michael Nash                      |
| 288 | 2253                    | 253                     |                              | Brush Mine                   | UT    | 2                      | Beryl-Beryllium<br>Ore            | Surface mine      | Mine                        | Active        | Brush Resources Inc                                   | Brush Engineered<br>Materials Inc |
| 289 | 2254                    | 254                     |                              | OTR Crushing LLC             | ТХ    | 2                      | Iron Ore                          | Surface mine      | Mine                        | Inter-mittent | OTR Crushing LLC                                      | William Mark Miller               |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                          | State | Location<br>Confidence | Commodity                         | Operation<br>Type         | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                        | Controller                                                           |
|-----|-------------------------|-------------------------|------------------------------|------------------------------------|-------|------------------------|-----------------------------------|---------------------------|-----------------------------|---------------|-------------------------------------------------|----------------------------------------------------------------------|
| 290 | 2255                    | 255                     |                              | Bingham Canyon Mine                | UT    | 2                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | Active        | Kennecott Utah<br>Copper LLC                    | Rio Tinto Group                                                      |
| 291 | 2256                    | 256                     |                              | Deer Trail                         | UT    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Inter-mittent | Unico Incorporated                              | Ray C Brown                                                          |
| 292 | 2257                    | 257                     |                              | Pandora Complex                    | UT    | 1                      | Uranium Ore                       | Underground mine          | Mine                        | Active        | Denison Mines (USA)<br>Corp.                    | International Uranium<br>Corp                                        |
| 293 | 2258                    | 258                     |                              | Gdc Crusher #1                     | UT    | 1                      | Iron Ore                          | Surface mine              | Mine                        | Inter-mittent | Gilbert Development<br>Corp                     | Steve L Gilbert                                                      |
| 294 | 2259                    | 259                     |                              | Kennecott Barneys<br>Canyon Mining | UT    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Active        | Kennecott Barneys<br>Canyon Mining              | Rio Tinto Group                                                      |
| 295 | 2260                    | 260                     |                              | Cresent Creek Project              |       | 0                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Martinique Mining<br>Corp                       | Bromide Mining LLC;<br>Henry Mountain<br>Mining & Exploration<br>LLC |
| 296 | 2261                    | 261                     |                              | OK and Hidden Treasure             | UT    | 1                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | Active        | Western Utah Copper<br>Company                  | Mark D Dotson                                                        |
| 297 | 2262                    | 262                     |                              | Lisbon Valley Mining Co            | UT    | 2                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | Active        | Lisbon Valley Mining<br>Co LLC                  | Lisbon Valley<br>Holdings LLC                                        |
| 298 | 2263                    | 263                     |                              | Daneros                            | UT    | 2                      | Uranium Ore                       | Underground mine          | Mine                        | Inter-mittent | Utah Energy<br>Corporation                      | White Canyon<br>Uranium Ltd                                          |
| 299 | 2265                    | 265                     |                              | Luzenac America Inc                | VT    | 2                      | Talc/Pyrophylli<br>e              | <sup>t</sup> Surface mine | Mine                        | Active        | Luzenac America Inc                             | Rio Tinto Group                                                      |
| 300 | 2266                    | 266                     |                              | R. E. Sansom Mine & Mill           | VA    | 2                      | Vermiculite                       | Surface mine              | Mine                        | Active        | Virginia Vermiculite<br>LLC                     | Ned Gumble                                                           |
| 301 | 2267                    | 267                     |                              | Pend Oreille Mine                  | WA    | 2                      | Lead-Zinc Ore                     | Underground mine          | Mine                        | Inter-mittent | Teck Washington<br>Incorporated                 | Teck Resources<br>Limited                                            |
| 302 | 2268                    | 268                     |                              | Concord Mine &<br>Concentrator     | VA    | 2                      | Titanium Ore                      | Surface mine              | Mine                        | Active        | Iluka Resources Inc.                            | Iluka Resources Ltd                                                  |
| 303 | 2269                    | 269                     |                              | Brink Mine & Concentrator          | VA    | 2                      | Titanium Ore                      | Surface mine              | Mine                        | Active        | Iluka Resources Inc.                            | Iluka Resources Ltd                                                  |
| 304 | 2270                    | 270                     |                              | Kenite Plants 1 & 2                |       | 0                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine              | Mine                        | Active        | Celite Corp                                     | Imerys S A                                                           |
| 305 | 2271                    | 271                     |                              | Kettle River Mill Site             | WA    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Active        | Kinross Gold Corp<br>Kettle River<br>Operations | Kinross Gold Corp                                                    |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                            | State | Location<br>Confidence | Commodity              | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                       | Controller                      |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------|-------|------------------------|------------------------|-------------------|-----------------------------|---------------|------------------------------------------------|---------------------------------|
| 306 | 2272                    | 272                     |                              | D D One                              |       | 0                      | Gold Ore               | Underground mine  | Mine                        | Inter-mittent | Diversified<br>Development<br>Company          | Lane A Griffin                  |
| 307 | 2273                    | 273                     |                              | White Rock Quarry                    | WA    | 2                      | Misc. Metal Ore<br>NEC | Surface mine      | Mine                        | Inter-mittent | Dawson Trucking Inc                            | Dennis L Dawson                 |
| 308 | 2274                    | 274                     |                              | Buckhorn Mine                        | WA    | 2                      | Gold Ore               | Underground mine  | Mine                        | Active        | Crown Resources-<br>Kettle River<br>Operations | Kinross Gold Corp               |
| 309 | 2275                    | 275                     |                              | Reiss Viking Div OF C<br>Reiss Coal  | WV    | 1                      | Magnetite              | Surface mine      | Mine                        | Active        | Reiss Viking Div of C<br>Reiss Coal            | Koch Industries Inc             |
| 310 | 2278                    | 278                     |                              | NYAC Mining Co                       | AK    | 1                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | NYAC Mining Co                                 | John M James                    |
| 311 | 2279                    | 279                     |                              | Middle Fork Mine                     |       | 0                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Hoffman Mining                                 | Russell D Hoffman               |
| 312 | 2280                    | 280                     |                              | Fort Knox Mine                       | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Active        | Fairbanks Gold Mining<br>Inc                   | Kinross Gold Corp               |
| 313 | 2281                    | 281                     |                              | Fairbanks Creek Mine                 | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Earth Movers Of<br>Fairbanks                   | James L Thurman                 |
| 314 | 2282                    | 282                     |                              | Nome Operations                      | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Alaska Gold Company                            | Novagold Resources<br>Inc       |
| 315 | 2283                    | 283                     |                              | Ketchum Creek Location;<br>Alaska    | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Sherlund Mining LLC                            | Rick G Sherlund                 |
| 316 | 2284                    | 284                     |                              | Hecla Greens Creek Mine              | AK    | 2                      | Silver Ore             | Underground mine  | Mine                        | Active        | Hecla Greens Creek<br>Mining Company           | Hecla Mining<br>Company         |
| 317 | 2285                    | 285                     |                              | Ketchem Creek                        | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Miller Creek Mining                            | Fred Wilkinson                  |
| 318 | 2286                    | 286                     |                              | Robert P. Wright                     | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Robert P. Wright                               | Robert P Wright                 |
| 319 | 2287                    | 287                     |                              | Placer Mine                          | AK    | 1                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Seuffert Mining                                | George Seuffert                 |
| 320 | 2288                    | 288                     |                              | Taiga Mining Company<br>Incorporated |       | 0                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Taiga Mining<br>Company Inc                    | Jerome Birch                    |
| 321 | 2290                    | 290                     |                              | #7 Below Discovery                   |       | 0                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Kenwin Enterprises                             | Kenneth A Lee;<br>Winona Jo Lee |
| 322 | 2291                    | 291                     |                              | Red Dog                              | AK    | 2                      | Lead-Zinc Ore          | Surface mine      | Mine                        | Active        | Teck Alaska Inc                                | Teck Resources<br>Limited       |
| 323 | 2292                    | 292                     |                              | Fox Mine                             |       | 0                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Polar Mining Inc                               | Daniel J May                    |
| 324 | 2293                    | 293                     |                              | Eagle Creek                          | AK    | 1                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | L & L Mining Inc                               | Clayton Lapp                    |
| 325 | 2294                    | 294                     |                              | Tillicum Resources                   | AK    | 2                      | Gold Ore               | Surface mine      | Mine                        | Inter-mittent | Tillicum Resources                             | Fred G Cornelius                |
| 326 | 2295                    | 295                     |                              | Linda Creek                          | AK    | 2                      | Gold Ore               | Underground mine  | Mine                        | Inter-mittent | Compass Mining Inc                             | Thomas E Hall                   |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                | State | Location<br>Confidence | Commodity                         | Operation<br>Type         | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                               | Controller                                            |
|-----|-------------------------|-------------------------|------------------------------|--------------------------|-------|------------------------|-----------------------------------|---------------------------|-----------------------------|---------------|--------------------------------------------------------|-------------------------------------------------------|
| 327 | 2296                    | 296                     |                              | Pogo Mine                | AK    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Active        | Sumitomo Metal<br>Mining Pogo LLC                      | Sumitomo Metal<br>Mining Co Ltd                       |
| 328 | 2297                    | 297                     |                              | MS 1890                  |       | 0                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Freedom Resources,<br>LLC                              | Judy A Martinson                                      |
| 329 | 2298                    | 298                     |                              | R & M Mining             | AK    | 1                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | R & M Mining                                           | Roger Moore; Walter<br>Largent                        |
| 330 | 2299                    | 299                     |                              | Platinum Creek Mine      | AK    | 2                      | Platinum Group<br>Ore             | <sup>9</sup> Surface mine | Mine                        | Inter-mittent | XS Platinum Inc.                                       | Bruce Butcher                                         |
| 331 | 2300                    | 300                     |                              | NAGC                     | AK    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Nome Alaska Gold<br>Concentrates                       | Marvin Rapose;<br>Robert Sanders                      |
| 332 | 2301                    | 301                     |                              | R B Gravel Company       | AK    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | R B Gravel Company                                     | Gerald Hassel                                         |
| 333 | 2302                    | 302                     |                              | Magnet & Gold Creek      | AK    | 1                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | RTD Mining                                             | Richard L Wright                                      |
| 334 | 2303                    | 303                     |                              | Anderson & Sons Mining   |       | 0                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Anderson & Sons<br>Mining                              | Ralph Anderson;<br>Floyd Anderson                     |
| 335 | 2304                    | 304                     |                              | Channel Quest            | AK    | 2                      | Gold Ore                          | Surface mine              | Mine                        | Inter-mittent | Ellet Enterprises Inc                                  | Michael J Kingsbury;<br>Deborah M Albert              |
| 336 | 2309                    | 309                     |                              | Silver Bell Mining LLC   | AZ    | 2                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | Active        | ASARCO LLC, a<br>Delaware limited<br>liability company | Grupo Mexico S A                                      |
| 337 | 2311                    | 311                     |                              | Stratcor, Inc.           | AR    | 1                      | Vanadium Ore                      | Surface mine              | Mine                        | Active        | Stratcor, Inc.                                         | Strategic Minerals<br>Corp (Stratcor)                 |
| 338 | 2312                    | 312                     |                              | Lompoc Plant             | CA    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine              | Mine                        | Active        | Celite Corp                                            | Imerys S A                                            |
| 339 | 2313                    | 313                     |                              | Henderson Operations     | CO    | 2                      | Molybdenum<br>Ore                 | Underground mine          | Mine                        | Active        | Climax Molybdenum<br>Company                           | Freeport-McMoRan<br>Copper & Gold Inc                 |
| 340 | 2314                    | 314                     |                              | Golden Wonder            |       | 0                      | Gold Ore                          | Underground mine          | Mine                        | Inter-mittent | Coal Creek<br>Construction                             | Michael Ray Schell                                    |
| 341 | 2317                    | 317                     |                              | New Jersey Mine & Mill   | ID    | 2                      | Gold Ore                          | Underground mine          | Mine                        | Inter-mittent | New Jersey Mining<br>Company                           | Fred W Brackebusch;<br>Grant A Brackebusch            |
| 342 | 2318                    | 318                     |                              | Intermountain Minerals   |       | 0                      | Gold Ore                          | Underground mine          | Mine                        | Inter-mittent | Intermountain<br>Minerals                              | Randy D Mattson                                       |
| 343 | 2323                    | 323                     |                              | Hibbing Taconite Company | MN    | 1                      | Iron Ore                          | Surface mine              | Mine                        | Active        | Hibbing Taconite<br>Company                            | Mittal-US Steel<br>Canada-Cliffs Natural<br>Resources |
| 344 | 2324                    | 324                     |                              | PolyMet                  | MN    | 2                      | Copper Ore<br>NEC                 | Surface mine              | Mine                        | NewMine       | PolyMet Mining                                         | Polymet Mining Corp                                   |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                         | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator                                      | Controller                                          |
|-----|-------------------------|-------------------------|------------------------------|-----------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|---------------|-----------------------------------------------|-----------------------------------------------------|
| 345 | 2327                    | 327                     |                              | Smoky Valley Common<br>Operations | NV    | 2                      | Gold Ore                          | Surface mine      | Mine                        | Active        | Round Mountain Gold<br>Corporation            | Kinross Gold Corp                                   |
| 346 | 2328                    | 328                     |                              | Clark Mine                        | NV    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active        | EP Minerals LLC                               | Eagle-Picher<br>Industries Inc                      |
| 347 | 2329                    | 329                     |                              | Intrepid Potash East              | NM    | 1                      | Potash                            | Underground mine  | Mine                        | Active        | Intrepid Potash NM<br>LLC                     | Hugh E Harvey                                       |
| 348 | 2330                    | 330                     |                              | Mosaic Potash Carlsbad,<br>Inc.   | NM    | 1                      | Potash                            | Underground mine  | Mine                        | Active        | Mosaic Potash<br>Carlsbad Inc                 | Mosaic Company                                      |
| 349 | 2331                    | 331                     |                              | Hillsborough Mine                 | NC    | 2                      | Alumina                           | Surface mine      | Mine                        | Active        | Resco Products Inc /<br>Piedmont Minerals Div | Bill K Brown                                        |
| 350 | 2333                    | 333                     |                              | TP Claims 1 & 2 / Rosa<br>Blanca  |       | 0                      | Talc                              | Surface mine      | Mine                        | Active        | American Talc<br>Company                      | John Wold                                           |
| 351 | 2334                    | 334                     |                              | Sidco Minerals Siderite<br>Mine   | ТХ    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Surface mine      | Mine                        | Active        | Sidco Minerals Inc                            | William J Fuerst                                    |
| 352 | 2335                    | 335                     |                              | Fuglar Pit                        |       | 0                      | Iron Ore                          | Surface mine      | Mine                        | Inter-mittent | J H Oden<br>Construction                      | Tom Oden                                            |
| 353 | 2336                    | 336                     |                              | FMC @ Westvaco                    |       | 0                      | Trona                             | Underground mine  | Mine                        | Active        | FMC Corp                                      | FMC Corp                                            |
| 354 | 2337                    | 337                     |                              | Big Island Mine & Refinery        | WY    | 2                      | Trona                             | Underground mine  | Mine                        | Active        | OCI Wyoming LP                                | OCI Company, Ltd.;<br>Anadarko Petroleum<br>Corp    |
| 355 | 2338                    | 338                     |                              | Solvay Chemicals, Inc             |       | 0                      | Trona                             | Underground mine  | Mine                        | Active        | Solvay Chemicals,<br>Inc                      | Solvay S A                                          |
| 356 | 2340                    | 340                     |                              | Alum Pit                          | NV    | 2                      | Potassium<br>Compounds            | Surface mine      | Mine                        | Inter-mittent | DC Minerals Inc.                              | Dale Fought                                         |
| 357 | 2343                    | 343                     |                              | American Tripoli Inc.             | MO    | 2                      | Tripoli                           | Surface mine      | Mine                        | Active        | American Tripoli Inc                          | Fording Inc                                         |
| 358 | 2344                    | 344                     |                              | Арех                              | MT    | 2                      | Garnet                            | Surface mine      | Mine                        | Inter-mittent | Apex Abrasives Inc.                           | Dirk E Nelson; Ernest<br>E Nelson; John J<br>Womack |
| 359 | 2345                    | 345                     |                              | TPC Aggregates Jean<br>Quarry     |       | 0                      | Brucite                           | Surface mine      | Mine                        | Active        | TPC Aggregates Jean<br>Quarry                 | Tutor-Saliba Corp.                                  |
| 360 | 2348                    | 348                     |                              | Premier Chemicals LLC             |       | 0                      | Magnesite                         | Processor         | Mine                        | Active        | Premier Chemicals<br>LLC                      | Premier Chemicals<br>LLC                            |
| 361 | 2350                    | 350                     |                              | American Talc Co - Mill           |       | 0                      | Talc                              | Processor         | Mine                        | Active        | American Talc Co -<br>Mill                    | John Wold                                           |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                               | State | Location<br>Confidence | Commodity | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|-----------------------------------------|-------|------------------------|-----------|-------------------|-----------------------------|-------------|----------|------------|
| 362 | 3002                    |                         | 2                            | Gramercy Facility                       | LA    | 2                      | Alumina   | Processor         | Processor                   | Active      |          |            |
| 363 | 3003                    |                         | 3                            | Alcan Primary Metal<br>Sebree Works     | KY    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 364 | 3004                    |                         | 4                            | Alcoa                                   | ΤX    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 365 | 3005                    |                         | 5                            | Alcoa Inc Wenatchee<br>Works            | WA    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 366 | 3006                    |                         | 6                            | Alcoa Intalco Works                     | WA    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 367 | 3007                    |                         | 7                            | Alcoa Warrick Operations                | IN    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 368 | 3009                    |                         | 9                            | Alumax of SC Incorporated               | SC    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 369 | 3010                    |                         | 10                           | Aluminum Co of America<br>Badin         | NC    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 370 | 3011                    |                         | 11                           | Century Aluminum of<br>Kentucky         | KY    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 371 | 3012                    |                         | 12                           | Columbia Falls Aluminum<br>Company, LLC | MT    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 372 | 3013                    |                         | 13                           | Eastalco Aluminum<br>Company            | MD    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 373 | 3014                    |                         | 14                           | Noranda Aluminum<br>Incorporated        | MO    | 1                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 374 | 3015                    |                         | 15                           | Ormet Aluminum Mill<br>Products Corp    | ОН    | 2                      | Aluminum  | Processor         | Processor                   | NA          |          |            |
| 375 | 3016                    |                         | 16                           | United State Antimony<br>Corporation    | MT    | 2                      | Antimony  | Processor         | Processor                   | NA          |          |            |
| 376 | 3017                    |                         | 17                           | Unknown barite grinding<br>operation    |       | 0                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 377 | 3018                    |                         | 18                           | Unknown barite grinding<br>operation    |       | 0                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 378 | 3019                    |                         | 19                           | US Clay                                 |       | 0                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 379 | 3020                    |                         | 20                           | Excalibar Minerals LLC                  | ΤX    | 1                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 380 | 3021                    |                         | 21                           | Halliburton Energy<br>Services          |       | 0                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 381 | 3023                    |                         | 23                           | Elementis Pigments                      | L     | 2                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 382 | 3026                    |                         | 26                           | Halliburton Energy<br>Services          | ТХ    | 1                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 383 | 3027                    |                         | 27                           | M-I LLC                                 | ТХ    | 2                      | Barite    | Processor         | Processor                   | NA          |          |            |
| 384 | 3028                    |                         | 28                           | New Riverside Ochre                     | GA    | 2                      | Barite    | Processor         | Processor                   | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                  | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 385 | 3029                    |                         | 29                           | Ambar Drilling Fluids                      | LA    | 2                      | Barite                            | Processor         | Processor                   | NA          |          |            |
| 386 | 3031                    |                         | 31                           | M-I L L CB                                 |       | 0                      | Barite                            | Processor         | Processor                   | NA          |          |            |
| 387 | 3033                    |                         | 33                           | Dunphy Mill                                | NV    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 388 | 3034                    |                         | 34                           | Evanston Barite Mill                       | WA    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 389 | 3035                    |                         | 35                           | Corpus Christi Grinding<br>Plant           | ТΧ    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 390 | 3036                    |                         | 36                           | Amelia Barite Plant                        | LA    | 1                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 391 | 3037                    |                         | 37                           | Morgan City Grinding Plant                 | LA    | 1                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 392 | 3039                    |                         | 39                           | Corpus Christi Plant                       | ТΧ    | 1                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 393 | 3040                    |                         | 40                           | De Quincy Plant                            | LA    | 1                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 394 | 3042                    |                         | 42                           | Halliburton                                | LA    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 395 | 3043                    |                         | 43                           | Galveston GBT Barite<br>Grinding Plant     | ТΧ    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 396 | 3044                    |                         | 44                           | Argenta Mine and Mill                      | NV    | 2                      | Barite Barium<br>Ore              | Processor         | Processor                   | Active      |          |            |
| 397 | 3047                    |                         | 47                           | Ormet Primary Aluminum<br>Corp             | LA    | 2                      | Bauxite and alumina               | Processor         | Processor                   | NA          |          |            |
| 398 | 3049                    |                         | 49                           | Brush Resources Inc                        | UT    | 2                      | Beryllium                         | Processor         | Processor                   | NA          |          |            |
| 399 | 3050                    |                         | 50                           | Brush Wellman Inc                          | OH    | 2                      | Beryllium                         | Processor         | Processor                   | NA          |          |            |
| 400 | 3051                    |                         | 51                           | US Borax or Rio Tinto<br>Borax             |       | 0                      | Boron                             | Processor         | Processor                   | NA          |          |            |
| 401 | 3052                    |                         | 52                           | American Borate/Industrial<br>Minerals Co. |       | 0                      | Boron                             | Processor         | Processor                   | NA          |          |            |
| 402 | 3056                    |                         | 56                           | Chemtura                                   | AR    | 1                      | Bromine                           | Processor         | Processor                   | NA          |          |            |
| 403 | 3057                    |                         | 57                           | Albemarle                                  | AR    | 2                      | Bromine                           | Processor         | Processor                   | NA          |          |            |
| 404 | 3060                    |                         | 60                           | Cabot                                      | PA    | 2                      | Cesium                            | Processor         | Processor                   | NA          |          |            |
| 405 | 3061                    |                         | 61                           | Savage Plant                               | MN    | 2                      | Chem. and<br>Fertil. Mnls.<br>NEC | Processor         | Processor                   | Active      |          |            |
| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                            | State | Location<br>Confidence | Commodity         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status       | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------|-------|------------------------|-------------------|-------------------|-----------------------------|-------------------|----------|------------|
| 406 | 3062                    |                         | 62                           | Global Tungsten &<br>Powders Corp.   | PA    | 2                      | Cobalt            | Processor         | Processor                   | NA                |          |            |
| 407 | 3063                    |                         | 63                           | Umicore Cobalt & Energy<br>Products  | NC    | 2                      | Cobalt            | Processor         | Processor                   | NA                |          |            |
| 408 | 3064                    |                         | 64                           | Chino Mine - Hurley<br>Facility      | NM    | 2                      | Copper            | Processor         | Processor                   | NA                |          |            |
| 409 | 3065                    |                         | 65                           | White Pine Copper<br>Refinery Inc    | MI    | 2                      | Copper            | Processor         | Processor                   | NA                |          |            |
| 410 | 3068                    |                         | 68                           | Kennecott Corp-Smelter &<br>Refinery | UT    | 1                      | Copper            | Processor         | Processor                   | NA                |          |            |
| 411 | 3069                    |                         | 69                           | Copperton Concentrator               | UT    | 2                      | Copper Ore<br>NEC | Processor         | Processor                   | Active            |          |            |
| 412 | 3071                    |                         | 71                           | Rosiclare Facility Hastie<br>Mining  | IL    | 2                      | Fluorspar         | Processor         | Processor                   | Active            |          |            |
| 413 | 3072                    |                         | 72                           | Hastie Mining and Trucking<br>Co     | IL    | 1                      | Fluorspar         | Processor         | Processor                   | NA                |          |            |
| 414 | 3073                    |                         | 73                           | Germanium Corporation of<br>America  | NY    | 1                      | Germanium         | Processor         | Processor                   | NA                |          |            |
| 415 | 3074                    |                         | 74                           | Umicore Optical Materials<br>USA     | OK    | 1                      | Germanium         | Processor         | Processor                   | NA                |          |            |
| 416 | 3076                    |                         | 76                           | Prospect Mine                        | MT    | 2                      | Gold Ore          | Processor         | Processor                   | Non-<br>producing |          |            |
| 417 | 3077                    |                         | 77                           | Idaho Lakeview Mill                  |       | 0                      | Gold Ore          | Processor         | Processor                   | Inter-mittent     |          |            |
| 418 | 3078                    |                         | 78                           | Gold Mountain Mine                   |       | 0                      | Gold Ore          | Processor         | Processor                   | Inter-mittent     |          |            |
| 419 | 3080                    |                         | 80                           | Pickett Mining Group                 | NC    | 2                      | Gold Ore          | Processor         | Processor                   | Inter-mittent     |          |            |
| 420 | 3083                    |                         | 83                           | Clarkdale Metals Corp                | AZ    | 2                      | Gold Ore          | Processor         | Processor                   | Active            |          |            |
| 421 | 3084                    |                         | 84                           | Intrepid Potash North                | NM    | 2                      | Gold Ore          | Processor         | Processor                   | Active            |          |            |
| 422 | 3085                    |                         | 85                           | Shenandoah Mill                      | NV    | 2                      | Gold Ore          | Processor         | Processor                   | Active            |          |            |
| 423 | 3086                    |                         | 86                           | Umicore Indium Products              | RI    | 2                      | Indium            | Processor         | Processor                   | NA                |          |            |
| 424 | 3087                    |                         | 87                           | Indium Corp of America               | NY    | 2                      | Indium            | Processor         | Processor                   | NA                |          |            |
| 425 | 3088                    |                         | 88                           | lochem                               | OK    | 2                      | lodine            | Processor         | Processor                   | NA                |          |            |
| 426 | 3089                    |                         | 89                           | lofina plc                           | MT    | 2                      | lodine            | Processor         | Processor                   | NA                |          |            |
| 427 | 3090                    |                         | 90                           | Arcelor Mittal Cleveland             |       | 0                      | Iron and steel    | Processor         | Processor                   | NA                |          |            |
| 428 | 3091                    |                         | 91                           | Arcelor Mittal South<br>Chicago      |       | 0                      | Iron and steel    | Processor         | Processor                   | NA                |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                         | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|---------------------------------------------------|-------|------------------------|----------------------------------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 429 | 3093                    |                         | 93                           | AK Ashland                                        | KY    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 430 | 3094                    |                         | 94                           | AK Middletown Works                               | OH    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 431 | 3095                    |                         | 95                           | AK Steel Corp. Mansfield                          | OH    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 432 | 3097                    |                         | 97                           | Severstal Wheeling                                | OH    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 433 | 3099                    |                         | 99                           | Arcelor Mittal Weirton                            | WV    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 434 | 3101                    |                         | 101                          | Severstal Dearborn                                | MI    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 435 | 3102                    |                         | 102                          | Severstal Sparrows Point                          | MD    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 436 | 3104                    |                         | 104                          | US Steel (ET Works)                               | PA    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 437 | 3105                    |                         | 105                          | US Steel Birmingham<br>(Fairfield)                | AL    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 438 | 3109                    |                         | 109                          | US Steel Great Lakes<br>Works                     | MI    | 2                      | Iron and steel                                           | Processor         | Processor                   | NA          |          |            |
| 439 | 3114                    |                         | 114                          | Edward C. Levy Co.                                | MI    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 440 | 3115                    |                         | 115                          | Edward C. Levy Co.                                | MI    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 441 | 3116                    |                         | 116                          | Edward C. Levy Co.                                | MI    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 442 | 3117                    |                         | 117                          | Fritz Enterprises, Inc.                           | AL    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 443 | 3118                    |                         | 118                          | Fritz Enterprises, Inc.                           | MD    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 444 | 3120                    |                         | 120                          | Holcim (US) Inc./Vulcan<br>Construction Materials | AL    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                              | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|--------------------------------------------------------|-------|------------------------|----------------------------------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 445 | 3121                    |                         | 121                          | Lafarge North America Inc.                             | L     | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          | -        |            |
| 446 | 3123                    |                         | 123                          | Lafarge North America Inc.                             | OH    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 447 | 3125                    |                         | 125                          | Lafarge North America Inc.                             | PA    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 448 | 3126                    |                         | 126                          | Lafarge North America<br>Inc./Maryland Slag<br>Company | MD    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 449 | 3129                    |                         | 129                          | MultiServ                                              | MD    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 450 | 3130                    |                         | 130                          | MultiServ                                              | OH    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 451 | 3131                    |                         | 131                          | MultiServ Plt 4                                        | OH    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 452 | 3133                    |                         | 133                          | Phoenix Services LLC                                   | MD    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 453 | 3136                    |                         | 136                          | Stein, Inc.                                            | КҮ    | 1                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                               | State | Location<br>Confidence | Commodity                                                | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|---------------------------------------------------------|-------|------------------------|----------------------------------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 454 | 3137                    |                         | 137                          | Stein, Inc.                                             | OH    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          |            |
| 455 | 3143                    |                         | 143                          | Tube City IMS, LLC dba<br>Olympic Mill Service          | OH    | 2                      | Iron and steel<br>slag (non-<br>electric arc<br>furnace) | Processor         | Processor                   | NA          |          | -          |
| 456 | 3145                    |                         | 145                          | Quality Magnetite LLC                                   | WV    | 1                      | Iron Ore                                                 | Processor         | Processor                   | Active      |          |            |
| 457 | 3147                    |                         | 147                          | Densimix Incorporated                                   | TX    | 2                      | Iron Ore                                                 | Processor         | Processor                   | Active      |          |            |
| 458 | 3148                    |                         | 148                          | Mesabi Nugget Delaware,<br>LLC                          | MN    | 2                      | Iron Ore                                                 | Processor         | Processor                   | Active      |          |            |
| 459 | 3149                    |                         | 149                          | Northshore Mining<br>Company                            | MN    | 2                      | Iron Ore                                                 | Processor         | Processor                   | Active      |          |            |
| 460 | 3150                    |                         | 150                          | Hoover Color Corp.                                      | VA    | 2                      | Iron oxide<br>pigments                                   | Processor         | Processor                   | NA          |          |            |
| 461 | 3151                    |                         | 151                          | Doe Run Resources Corp.                                 | MO    | 2                      | Lead                                                     | Processor         | Processor                   | NA          |          |            |
| 462 | 3167                    |                         | 167                          | Chemetall Foote                                         | NV    | 1                      | Lithium                                                  | Processor         | Processor                   | NA          |          |            |
| 463 | 3168                    |                         | 168                          | Chemetall Foote                                         | TN    | 2                      | Lithium                                                  | Processor         | Processor                   | NA          |          |            |
| 464 | 3169                    |                         | 169                          | Chemetall Foote                                         | NC    | 2                      | Lithium                                                  | Processor         | Processor                   | NA          |          |            |
| 465 | 3170                    |                         | 170                          | FMC Corp. Lithium<br>Division                           | NC    | 2                      | Lithium                                                  | Processor         | Processor                   | NA          |          |            |
| 466 | 3171                    |                         | 171                          | FMC Corp. Lithium<br>Division Bayport Texas<br>facility | ТХ    | 2                      | Lithium                                                  | Processor         | Processor                   | NA          |          |            |
| 467 | 3172                    |                         | 172                          | Giles Chemical                                          | IN    | 2                      | Magnesium<br>compounds                                   | Processor         | Processor                   | NA          |          |            |
| 468 | 3173                    |                         | 173                          | Giles Chemical                                          | NY    | 1                      | Magnesium<br>compounds                                   | Processor         | Processor                   | NA          |          |            |
| 469 | 3174                    |                         | 174                          | Giles Chemical                                          | NC    | 2                      | Magnesium compounds                                      | Processor         | Processor                   | NA          |          |            |
| 470 | 3175                    |                         | 175                          | Martin Marietta Chemical<br>Corp                        | MI    | 2                      | Magnesium compounds                                      | Processor         | Processor                   | NA          |          |            |
| 471 | 3176                    |                         | 176                          | Martin Marietta Magnesia<br>Specialties LLC             | OH    | 2                      | Magnesium compounds                                      | Processor         | Processor                   | NA          |          |            |
| 472 | 3177                    |                         | 177                          | Muscle Shoals Minerals<br>Inc.                          |       | 0                      | Magnesium compounds                                      | Processor         | Processor                   | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                               | State | Location<br>Confidence | Commodity                         | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|-----------------------------------------|-------|------------------------|-----------------------------------|-------------------|-----------------------------|-------------|----------|------------|
| 473 | 3178                    |                         | 178                          | Penn Mag, Inc. Plant #1                 |       | 0                      | Magnetite                         | Processor         | Processor                   | Active      |          |            |
| 474 | 3179                    |                         | 179                          | Hazy Ridge Coal Company                 |       | 0                      | Magnetite                         | Processor         | Processor                   | Active      |          |            |
| 475 | 3181                    |                         | 181                          | Erachem Comilog Inc.                    | MD    | 2                      | Manganese                         | Processor         | Processor                   | NA          |          |            |
| 476 | 3182                    |                         | 182                          | Erachem Comilog Inc.                    | TN    | 2                      | Manganese                         | Processor         | Processor                   | NA          |          |            |
| 477 | 3184                    |                         | 184                          | Felman Production Inc.                  | WV    | 2                      | Manganese                         | Processor         | Processor                   | NA          |          |            |
| 478 | 3185                    |                         | 185                          | Tronox LLC                              | NV    | 2                      | Manganese                         | Processor         | Processor                   | NA          |          |            |
| 479 | 3186                    |                         | 186                          | Wilmington Plant                        | DE    | 1                      | Manganese<br>Ore                  | Processor         | Processor                   | Active      |          |            |
| 480 | 3187                    | 1                       | 187                          | Bethlehem Apparatus Co.<br>Inc.         | PA    | 2                      | Mercury                           | Processor         | Processor                   | NA          |          |            |
| 481 | 3188                    |                         | 188                          | Mesabi Chief 3                          |       | 0                      | Misc. Metal Ore<br>NEC            | Processor         | Processor                   | Active      |          |            |
| 482 | 3189                    |                         | 189                          | Hudson River Plant                      | NY    | 2                      | Misc. Metal Ore<br>NEC            | Processor         | Processor                   | Active      |          |            |
| 483 | 3190                    |                         | 190                          | Teague Mineral Products                 | OR    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 484 | 3191                    |                         | 191                          | A-1 Grit Co                             | CA    | 1                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 485 | 3193                    |                         | 193                          | Kittanning Plant                        | PA    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 486 | 3194                    |                         | 194                          | Lake Charles Plant                      | LA    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 487 | 3195                    | -                       | 195                          | Zeox Corp Ash Meadows<br>Plant & Mine   | NV    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 488 | 3196                    |                         | 196                          | Unimin Corporation-<br>Emmett Plant     | ID    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC | Processor         | Processor                   | Active      |          |            |
| 489 | 3198                    |                         | 198                          | Climax Molybdenum Co.<br>Henderson Mill | CO    | 2                      | molybdenum                        | Processor         | Processor                   | NA          |          |            |
| 490 | 3200                    |                         | 200                          | Vernal Pit & Mill                       | UT    | 2                      | Phosphate<br>Rock                 | Processor         | Processor                   | Active      |          |            |
| 491 | 3201                    |                         | 201                          | Agrifos Fertilizer Pasadena             | ТΧ    | 2                      | Phosphate rock                    | Processor         | Processor                   | NA          |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                      | State | Location<br>Confidence | Commodity              | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status  | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|------------------------------------------------|-------|------------------------|------------------------|-------------------|-----------------------------|--------------|----------|------------|
| 492 | 3202                    |                         | 202                          | Innophos - Rhodia<br>Geismar Facility          | LA    | 1                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 493 | 3203                    |                         | 203                          | J R Simplot Co Pocatello                       | ID    | 2                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 494 | 3204                    |                         | 204                          | Mississippi Phosphates<br>Corp.                | MS    | 1                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 495 | 3205                    |                         | 205                          | Mosaic Fertilizer, LLC -<br>Taft Plant         | LA    | 1                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 496 | 3206                    |                         | 206                          | Mosaic Fertilizer, LLC -<br>Uncle Sam Plant    | LA    | 2                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 497 | 3208                    |                         | 208                          | PCS Nitr Fert                                  | LA    | 1                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 498 | 3209                    |                         | 209                          | PCS Phosphate Co. Inc<br>Morehead City         | NC    | 2                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 499 | 3210                    |                         | 210                          | PCS Phosphate White<br>Springs                 | FL    | 1                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 500 | 3211                    |                         | 211                          | SF Phosphates Limited<br>Company               | OH    | 2                      | Phosphate rock         | Processor         | Processor                   | NA           |          |            |
| 501 | 3212                    |                         | 212                          | Moab Salt/Salt & Potash<br>Production Facility | UT    | 2                      | Potash                 | Processor         | Processor                   | NA           |          |            |
| 502 | 3213                    |                         | 213                          | Banner Mill Site                               | NM    | 2                      | Potash                 | Processor         | Processor                   | Intermittent |          |            |
| 503 | 3214                    |                         | 214                          | Great Salt Lake Minerals<br>Corp.              | UT    | 2                      | Potash                 | Processor         | Processor                   | NA           |          |            |
| 504 | 3215                    |                         | 215                          | IMC Fertilizer Inc.                            | NM    | 1                      | Potash                 | Processor         | Processor                   | NA           |          |            |
| 505 | 3216                    |                         | 216                          | IMC Potash Hersey                              | MI    | 2                      | Potash                 | Processor         | Processor                   | NA           |          |            |
| 506 | 3217                    |                         | 217                          | Aldrich-APL LLC                                | IL    | 2                      | Rare earths            | Processor         | Processor                   | NA           |          |            |
| 507 | 3218                    |                         | 218                          | Boulder Scientific Co.                         | CO    | 2                      | Rare earths            | Processor         | Processor                   | NA           |          |            |
| 508 | 3219                    |                         | 219                          | Electron Energy Magnet<br>Mfg                  | PA    | 1                      | Rare earths            | Processor         | Processor                   | NA           |          |            |
| 509 | 3220                    |                         | 220                          | Santoku America                                | AZ    | 2                      | Rare earths            | Processor         | Processor                   | NA           |          |            |
| 510 | 3221                    |                         | 221                          | W.R. Grace & Co Conn.<br>Davison Catalysts     | LA    | 2                      | Rare earths            | Processor         | Processor                   | NA           |          |            |
| 511 | 3222                    |                         | 222                          | Cabot Corp.?                                   |       | 0                      | Rubidium               | Processor         | Processor                   | NA           |          |            |
| 512 | 3223                    |                         | 223                          | Amarillo Copper Refinery                       | ТΧ    | 2                      | Selenium and tellurium | Processor         | Processor                   | NA           |          |            |
| 513 | 3224                    |                         | 224                          | Solsil                                         |       | 0                      | Silicon                | Processor         | Processor                   | NA           |          |            |
| 514 | 3225                    |                         | 225                          | MEMC Electronic Materials                      |       | 0                      | Silicon                | Processor         | Processor                   | NA           |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                                      | State | Location<br>Confidence | Commodity    | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status   | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|------------------------------------------------|-------|------------------------|--------------|-------------------|-----------------------------|---------------|----------|------------|
| 515 | 3226                    |                         | 226                          | Dow Corning Corp.                              |       | 0                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 516 | 3227                    |                         | 227                          | Mitsubishi Materials Group                     |       | 0                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 517 | 3228                    |                         | 228                          | REC Group                                      |       | 0                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 518 | 3229                    |                         | 229                          | Hemlock Semiconductor<br>Corp.                 |       | 1                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 519 | 3230                    |                         | 230                          | Elkem Metals Company?                          | WV    | 2                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 520 | 3231                    |                         | 231                          | Globe Metallurgical                            | AL    | 2                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 521 | 3232                    |                         | 232                          | Globe Metallurgical Inc.                       | NY    | 2                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 522 | 3233                    |                         | 233                          | Globe Metallurgical Inc.                       | OH    | 2                      | Silicon      | Processor         | Processor                   | NA            |          |            |
| 523 | 3234                    |                         | 234                          | American Soda, LLP /<br>Solvay Chemicals, Inc. | CO    | 2                      | Soda ash     | Processor         | Processor                   | NA            |          |            |
| 524 | 3236                    |                         | 236                          | Olancha Mill                                   |       | 0                      | Talc         | Processor         | Processor                   | Inter-mittent |          |            |
| 525 | 3237                    |                         | 237                          | IMI FABI Benwood Plant                         | WV    | 2                      | Talc         | Processor         | Processor                   | Active        |          |            |
| 526 | 3238                    |                         | 238                          | Laws Mill                                      | CA    | 2                      | Talc         | Processor         | Processor                   | Inter-mittent |          |            |
| 527 | 3239                    |                         | 239                          | American Talc Co - Wild<br>Horse Plant         | ТΧ    | 2                      | Talc         | Processor         | Processor                   | Inter-mittent |          |            |
| 528 | 3240                    |                         | 240                          | Mineral Separation Plant                       | VA    | 2                      | Titanium Ore | Processor         | Processor                   | Active        |          |            |
| 529 | 3241                    |                         | 241                          | MSHA Mine ID 0405092                           |       | 0                      | Tungsten     | Processor         | Processor                   | NA            |          |            |
| 530 | 3242                    |                         | 242                          | Tungsten Joint Venture                         | MN    | 1                      | Tungsten     | Processor         | Processor                   | NA            |          |            |
| 531 | 3243                    |                         | 243                          | ATI Alldyne                                    | AL    | 2                      | Tungsten     | Processor         | Processor                   | NA            |          |            |
| 532 | 3244                    |                         | 244                          | White Mesa Mill                                | UT    | 2                      | Uranium Ore  | Processor         | Processor                   | Active        |          |            |
| 533 | 3245                    |                         | 245                          | Sun Gro Horticulture<br>Canada Ltd.            |       | 0                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 534 | 3246                    |                         | 246                          | Isolatek International, Inc.                   |       | 0                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 535 | 3247                    |                         | 247                          | Southwest Vermiculite Co.,<br>Inc.             |       | 0                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 536 | 3248                    |                         | 248                          | Vermiculite Industrial Corp.                   |       | 0                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 537 | 3249                    |                         | 249                          | Palmetto Vermiculite Co.,<br>Inc.              | SC    | 1                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 538 | 3250                    |                         | 250                          | J.P. Austin Associates, Inc.                   | PA    | 1                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 539 | 3251                    |                         | 251                          | P.V.P. Industries, Inc.                        | OH    | 1                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |
| 540 | 3252                    |                         | 252                          | Therm-O-Rock East, Inc.                        | PA    | 1                      | Vermiculite  | Processor         | Processor                   | NA            |          |            |

| Row | Site<br>ID <sup>1</sup> | Mine<br>ID <sup>2</sup> | Processor<br>ID <sup>2</sup> | Mine Name                           | State | Location<br>Confidence | Commodity                            | Operation<br>Type | Entity<br>Type <sup>1</sup> | Site Status        | Operator | Controller |
|-----|-------------------------|-------------------------|------------------------------|-------------------------------------|-------|------------------------|--------------------------------------|-------------------|-----------------------------|--------------------|----------|------------|
| 541 | 3253                    |                         | 253                          | Sun Gro Horticulture<br>Canada Ltd. | MI    | 1                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 542 | 3254                    |                         | 254                          | Therm-O-Rock West, Inc.             | AZ    | 1                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 543 | 3256                    |                         | 256                          | Whittemore Co., Inc.                | MA    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 544 | 3257                    |                         | 257                          | Thermal Ceramics Inc.               | IL    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 545 | 3258                    |                         | 258                          | Schundler Co., The                  | NJ    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 546 | 3259                    |                         | 259                          | Verlite Co.                         | FL    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 547 | 3261                    |                         | 261                          | W.R. Grace & Co.                    | AZ    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 548 | 3262                    |                         | 262                          | W.R. Grace & Co.                    | FL    | 2                      | Vermiculite                          | Processor         | Processor                   | NA                 |          |            |
| 549 | 3268                    |                         | 268                          | ATI Wah Chang                       | OR    | 2                      | Zirconium and<br>hafnium             | Processor         | Processor                   | NA                 |          |            |
| 550 | 3269                    |                         | 269                          | Magnesium Elektron                  | NJ    | 2                      | Zirconium and<br>hafnium             | Processor         | Processor                   | NA                 |          |            |
| 551 | 3270                    |                         | 270                          | Western<br>Zirconium/Westinghouse   | UT    | 2                      | Zirconium and<br>hafnium             | Processor         | Processor                   | NA                 |          |            |
| 552 | 3272                    |                         | 272                          | Protech Minerals, Inc               | CA    | 2                      | Pyrophyllite                         | Processor?        | Processor                   | NA                 |          |            |
| 553 | 3273                    |                         | 273                          | Sappington Mill                     | MT    | 2                      | Pyrophyllite                         | Processor         | Processor                   | Active             |          |            |
| 554 | 3275                    |                         | 275                          | Alberene Soapstone Co.              | VA    | 2                      | Pyrophyllite                         | Processor         | Processor                   | NA                 |          |            |
| 555 | 3276                    |                         | 276                          | Cotter Mill                         | CO    | 2                      | Uranium Ore                          | Processor         | Processor                   | Non-<br>producing  |          |            |
| 556 | 3277                    |                         | 277                          | Iluka Resources Inc                 | FL    | 2                      | Titanium Ore                         | Processor         | Processor                   | Non-<br>producing  |          |            |
| 557 | 3280                    |                         | 280                          | Eufaula Plant                       | AL    | 2                      | Aluminum Ore-<br>Bauxite             | Processor         | Processor                   | Non-<br>productive |          |            |
| 558 | 3281                    |                         | 281                          | Arkansas Operations Mill            | AR    | 2                      | Aluminum                             | Processor         | Processor                   | Active             |          |            |
| 559 | 3282                    |                         | 282                          | Little Rock Plant                   | AR    | 2                      | Aluminum Ore-<br>Bauxite             | Processor         | Processor                   | Active             |          |            |
| 560 | 3283                    |                         | 283                          | Granusol, Inc.                      | IL    | 1                      | Manganese<br>Ore                     | Processor         | Processor                   | Active             |          |            |
| 561 | 3287                    |                         | 287                          | Micro-Lite LLC.                     | KS    | 2                      | Potash, Soda,<br>Borate Mnls.<br>NEC | Processor         | Processor                   | Active             |          |            |
| 562 | 3290                    |                         | 290                          | Clark Mill                          | NV    | 2                      | Misc.<br>Nonmetallic<br>Mnls. NEC    | Processor         | Processor                   | Active             |          |            |
| 563 | 3292                    |                         | 292                          | Standard Mineral Co., Inc.          | NC    | 2                      | Pyrophyllite                         | Processor         | Processor                   | NA                 |          |            |

<sup>1</sup>Site ID is the identifier for a site point location. This number will be the same for individual sites that are related by proximity and/or common owner or operator and that have been grouped together as representing a single site location. The 'Entity type' field also describes if a site is part of a site group or is a single mine or processor site.

<sup>2</sup>Mine ID is the identifier used for a single mine site and Processor ID is the identifier for a single processor site.

### Known Errata for List of 491

Sherwin Alumina, Corpus Christi, TX, commodity: alumina U.S. Magnesium, Rowley, UT, commodity: magnesium were omitted accidentally.

# Appendix C Presence and Sources of CERCLA Hazardous Substances at 108(b) Historical CERCLA Sites

# C.1 Historical Site Contamination Sources

EPA compiled the ore/mineral types that were mined and/or processed at the 251 sites in the original 108(b) Historical CERCLA Sites universe. For the 120 NPL sites, these data were drawn from CEDRCLA site documents such as Records of Decision (RODs) or Site Investigation (SI) reports. For the 131 non-NPL sites, EPA used site documents such as Removal Action Memoranda or Engineering Estimate/Cost Analysis (EECA) reports. Occasionally the data were drawn from the NPL Site Listing Narratives. These data allow general inferences to be made about the types of ores, minerals, and mining and mineral processing practices that caused CEDRCLA hazardous substance contamination of a sufficient degree to warrant a Superfund clean up or removal action.

EPA conducted a more in-depth analysis of contamination sources and CERCLA hazardous substances found to be responsible for risks at the 24 Case Study Historical sites. From available CERCLA documents (e.g., Superfund risk assessments – see **Appendix B**, **Attachment B3** for a compete list of source documents for the Case Study sites), EPA identified the CERCLA hazardous substances that were contaminants of concern (COCs) at those sites, as well as the types of contamination sources at those sites.

# C.1.1 General Patterns for 108(b) Historical CERCLA Sites

Sites in the 108(b) Historical CERCLA Sites universe mine or process a wide range of ores and minerals. In general, waste disposal practices were the source of many of the COCs at these sites, although in some cases (primarily smelters), stack air emissions were a significant source of COCs. **Table C-1** presents the ore/mineral types and, when available, the contamination sources, for the NPL sites in the original 108(b) Historical CERCLA Sites universe. This information comes from EPA's NPL site summaries and site status information published at <a href="http://www.epa.gov/superfund/search-superfund-sites-where-you-live">http://www.epa.gov/superfund/search-superfund-sites-where-you-live</a>.

| Row | Site Name                         | CERCLIS ID   | Associated Commodities/Contamination<br>Sources           |
|-----|-----------------------------------|--------------|-----------------------------------------------------------|
| 1   | Kaiser Aluminum (Mead Works)      | WAD000065508 | Aluminum reduction (potliner) waste disposal              |
| 2   | National Southwire Aluminum Co.   | KYD049062375 | Aluminum reduction (potliner) waste disposal              |
| 3   | Martin-Marietta Aluminum Co.      | ORD052221025 | Aluminum reduction waste disposal                         |
| 4   | Reynolds Metals Company           | ORD009412677 | Aluminum reduction waste disposal                         |
| 5   | Alcoa (Vancouver Smelter)         | WAD009045279 | Aluminum smelting (potliner) waste disposal               |
| 6   | Ormet Corp.                       | OHD004379970 | Aluminum smelting (potliner) waste disposal               |
| 7   | Atlas Asbestos Mine               | CAD980496863 | Asbestos mining and milling waste disposal                |
| 8   | Coalinga Asbestos Mine            | CAD980817217 | Asbestos mining and milling waste disposal                |
| 9   | International Minerals (E. Plant) | INT190010876 | Benezene hexachloride manufacturing, packing, and storing |
| 10  | Mouat Industries                  | MTD021997689 | Chromium ore processing                                   |

Table C-1. Commodities and Contamination Sources at 108(b) Historical NPL Sites, by Commodity

| Daw | Cite Name                                     |              | Associated Commodities/Contamination                                                                        |
|-----|-----------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------|
| Row | Site Name                                     | CERCLISID    | Sources                                                                                                     |
| 11  | Asarco Taylor Springs                         | ILN000508170 | Coal mining and storage, slab zinc, zinc-oxide and sulfuric acid production                                 |
| 12  | Blackbird Mine                                | IDD980725832 | Cobalt and copper mining                                                                                    |
| 13  | Pike Hill Copper Mine                         | VTD988366720 | Copper mining and milling waste disposal and acid mine drainage                                             |
| 14  | Ely Copper Mine                               | VTD988366571 | Copper mining and smelting waste                                                                            |
| 15  | Torch Lake                                    | MID980901946 | Copper mining waste disposal                                                                                |
| 16  | Milltown Reservoir Sediments                  | MTD980717565 | Copper ore mill tailings deposited in river                                                                 |
| 17  | Anaconda Co. Smelter                          | MTD093291656 | Copper smelting emissions and waste disposal                                                                |
| 18  | Franklin Slag Pile (Mdc)                      | PASFN0305549 | Copper smelting slag waste                                                                                  |
| 19  | Midvale Slag                                  | UTD081834277 | Copper, gold, lead, and silver smelting                                                                     |
| 20  | Ore Knob Mine                                 | NCN000409895 | Copper, iron, silver and gold mining and milling                                                            |
| 21  | International Smelting And Refining           | UTD093120921 | Copper, lead and zinc smelting and processing                                                               |
| 22  | Basin Mining Area                             | MTD982572562 | Copper, silver, zinc, lead, iron, arsenic, sulfur, boron and silicon dioxide mining and mine waste disposal |
| 23  | Celtor Chemical Works                         | CAD980638860 | Copper, zinc and precious metals ore processing                                                             |
| 24  | Formosa Mine                                  | ORN001002616 | Copper, zinc and thorium mine acid mine drainage                                                            |
| 25  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Elemental phosphorus production                                                                             |
| 26  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Elemental phosphorus production                                                                             |
| 27  | Macalloy Corporation                          | SCD003360476 | Ferrochromium alloy production                                                                              |
| 28  | Lava Cap Mine                                 | CAD983618893 | Gold and silver concentrating with cyanide, mining/processing waste disposal                                |
| 29  | Cimarron Mining Corp.                         | NMD980749378 | Gold milling with cyanide, iron extraction                                                                  |
| 30  | Central City, Clear Creek                     | COD980717557 | Gold mining acid mine drainage                                                                              |
| 31  | Summitville Mine                              | COD983778432 | Gold mining and cyanide heap leaching                                                                       |
| 32  | Whitewood Creek                               | SDD980717136 | Gold mining and milling waste disposal                                                                      |
| 33  | Gilt Edge Mine                                | SDD987673985 | Gold mining and milling with cyanide, mercury and<br>zinc processes                                         |
| 34  | Brewer Gold Mine                              | SCD987577913 | Gold mining, cyanide heap leaching, waste disposal                                                          |
| 35  | Upper Tenmile Creek Mining<br>Area            | MTSFN7578012 | Gold, lead, zinc and copper mine waste disposal                                                             |
| 36  | Silver Bow Creek/Butte Area                   | MTD980502777 | Gold, silver, copper mining and smelting waste (from 1992 ROD)                                              |
| 37  | Asarco, Inc. (Globe Plant)                    | COD007063530 | Gold, silver, copper, lead smelting and production of lead, arsenic trioxide, and cadmium                   |
| 38  | Iron Mountain Mine                            | CAD980498612 | Gold, silver, iron, pyrite, zinc and copper mining                                                          |
| 39  | Standard Mine                                 | CO0002378230 | Gold, silver, lead and zinc mining and milling                                                              |
| 40  | Iron King Mine - Humboldt<br>Smelter          | AZ0000309013 | Gold, silver, lead, zinc and copper mining and<br>smelting waste disposal                                   |
| 41  | Barite Hill/Nevada Goldfields                 | SCN000407714 | Gold/silver mining and heap leaching, mine waste disposal                                                   |
| 42  | Captain Jack Mill                             | COD981551427 | Gold/silver mining and milling, mine waste disposal                                                         |
| 43  | Carson River Mercury Site                     | NVD980813646 | Gold/silver mining and milling, mine waste disposal                                                         |
| 44  | Stibnite/Yellow Pine Mining<br>Area           | IDD980665459 | Gold-antimony and tungsten mining and milling                                                               |
| 45  | Sharon Steel Corp. (Farrell<br>Works)         | PAD001933175 | Iron and ferroalloy production waste disposal                                                               |
| 46  | Tar Creek (Ottawa County)                     | OKD980629844 | Iron and zinc mining                                                                                        |

| Row | Site Name                                                    | CERCLIS ID   | Associated Commodities/Contamination<br>Sources                                             |
|-----|--------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|
| 47  | Elizabeth Mine                                               | VTD988366621 | Iron/pyrrhotite/copper mining and copper smelting                                           |
| 48  | Washington County Lead<br>District - Old Mines               | MON000705027 | Lead and barite mining, milling or smelting                                                 |
| 49  | Washington County Lead<br>District - Potosi                  | MON000705023 | Lead and barite mining, milling or smelting                                                 |
| 50  | Washington County Lead<br>District - Richwoods               | MON000705032 | Lead and barite mining, milling or smelting                                                 |
| 51  | Commencement Bay, Near<br>Shore/Tide Flats                   | WAD980726368 | Lead and copper smelting and refining                                                       |
| 52  | Bunker Hill Mining &<br>Metallurgical Complex                | IDD048340921 | Lead and zinc smelting waste disposal                                                       |
| 53  | Chemet Co.                                                   | TND987768546 | Lead laden ore processing                                                                   |
| 54  | Big River Hills Lead Tailings                                | MOD981126899 | Lead mine tailings disposal                                                                 |
| 55  | Big River Mine Tailings/St. Joe<br>Minerals Corp.            | MOD981126899 | Lead mine waste disposal                                                                    |
| 56  | Madison County Mines                                         | MOD098633415 | Lead mining                                                                                 |
| 57  | Annapolis Lead Mine                                          | MO0000958611 | Lead mining waste disposal                                                                  |
| 58  | Murray Smelter                                               | UTD980951420 | Lead smelting and arsenic refining                                                          |
| 59  | Interstate Lead Co. (ILCO)                                   | ALD041906173 | Lead smelting and lead battery recycling                                                    |
| 60  | RSR Corporation                                              | TXD079348397 | Lead smelting and processing                                                                |
| 61  | U.S. Smelter and Lead<br>Refinery, Inc.                      | IND047030226 | Lead smelting and recovery of lead from scrap metal<br>and old batteries                    |
| 62  | Newton County Mine Tailings                                  | MOD981507585 | Lead, cadmium and zinc mining                                                               |
| 63  | Sharon Steel Corp. (Midvale<br>Tailings)                     | UTD980951388 | Lead, copper and zinc ore froth floatation to produce sulfide concentrates                  |
| 64  | California Gulch                                             | COD980717938 | Lead, silver, zinc, copper and gold mining acid mine drainage                               |
| 65  | Southwest Jefferson County<br>Mining                         | MON000705443 | Lead, zinc and barium mining; lead smelting                                                 |
| 66  | Cleveland Mill                                               | NMD981155930 | Lead, zinc and copper milling waste disposal                                                |
| 67  | Oronogo-Duenweg Mining Belt                                  | MOD980686281 | Lead, zinc, cadmium mining, milling and smelting                                            |
| 68  | Barker Hughesville Mining<br>District                        | MT6122307485 | Lead/silver ore acid mine drainage and mine waste disposal                                  |
| 69  | Davenport And Flagstaff<br>Smelters                          | UTD988075719 | Lead/silver smelting and waste disposal                                                     |
| 70  | Cherokee County                                              | KSD980741862 | Lead/zinc mining waste disposal                                                             |
| 71  | East Helena Site                                             | MTD006230346 | Lead/zinc smelting                                                                          |
| 72  | Foote Mineral Co.                                            | PAD077087989 | Lepidolite ore processing, lithium compound<br>production, and monazite sand processing     |
| 73  | U.S. Magnesium                                               | UTN000802704 | Magnesium production from brine                                                             |
| 74  | Black Butte Mine                                             | OR0000515759 | Mercury mining and milling waste disposal                                                   |
| 75  | Klau/Buena Vista Mine                                        | CA1141190578 | Mercury mining and ore processing                                                           |
| 76  | Richardson Flat Tailings                                     | UTD980952840 | Metal (not specified) mining and milling                                                    |
| 77  | Molycorp, Inc.                                               | NMD002899094 | Molybdenum mining and milling                                                               |
| 78  | W.R. Grace & Co., Inc./Wayne<br>Interim Storage Site (USDOE) | NJ1891837980 | Monazite ore processing to produce thorium and rare earths                                  |
| 79  | Shieldalloy Corp.                                            | NJD002365930 | Niobium ore processing, steel, chromium and aluminum alloys and specialty metals production |
| 80  | Eagle Zinc Co DIV T L<br>Diamond                             | ILD980606941 | Oxide production and zinc smelting                                                          |

| Row | Site Name                                                                    | CERCLIS ID   | Associated Commodities/Contamination<br>Sources                                                   |
|-----|------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|
| 81  | Eastern Michaud Flats<br>Contamination                                       | IDD984666610 | Phosphate ore processing                                                                          |
| 82  | Omaha Lead                                                                   | NESFN0703481 | Primary and/or secondary lead smelting and/or other lead processing                               |
| 83  | Li Tungsten Corp.                                                            | NYD986882660 | Production of tungsten carbide powder, tungsten wire, and welding rods from imported tungsten ore |
| 84  | U.S. Radium Corp.                                                            | NJD980654172 | Radium processing waste disposal                                                                  |
| 85  | Glen Ridge Radium Site                                                       | NJD980785646 | Radium processing waste disposal/"beneficial use"                                                 |
| 86  | Montclair/West Orange Radium<br>Site                                         | NJD980785653 | Radium processing waste disposal/"beneficial use"                                                 |
| 87  | Denver Radium Site                                                           | COD980716955 | Radium processing, refining and/or fabricating into products                                      |
| 88  | Uravan Uranium Project (Union Carbide Corp.)                                 | COD007063274 | Radium, vanadium and uranium milling                                                              |
| 89  | Jacks Creek/Sitkin Smelting & Refining, Inc.                                 | PAD980829493 | Reclamation of precious metals and smelting (not specified)                                       |
| 90  | Silver Mountain Mine                                                         | WAD980722789 | Silver and gold mining with cyanide leaching                                                      |
| 91  | Smuggler Mountain                                                            | COD980806277 | Silver and lead mining waste                                                                      |
| 92  | Eureka Mills                                                                 | UT0002240158 | Silver and lead ore mining and milling, waste disposal                                            |
| 93  | Jacobs Smelter                                                               | UT0002391472 | Silver ore smelting                                                                               |
| 94  | Flat Creek Imm                                                               | MT0012694970 | Silver, gold, lead, copper, and zinc ore mining and milling waste                                 |
| 95  | Nelson Tunnel/Commodore<br>Waste Rock                                        | CON000802630 | Silver, lead and zinc mining waste                                                                |
| 96  | Carpenter Snow Creek Mining<br>District                                      | MT0001096353 | Silver, zinc, galena, lead, and gold mining and processing waste disposal                         |
| 97  | Depue/New Jersey Zinc/Mobil<br>Chemical Corp.                                | ILD062340641 | Slab zinc and diammonium phosphate (for fertilizers)production                                    |
| 98  | Leviathan Mine                                                               | CAD980673685 | Sulfur and copper sulfate mining waste disposal                                                   |
| 99  | Sulphur Bank Mercury Mine                                                    | CAD980893275 | Sulfur and mercury mining                                                                         |
| 100 | Tex-Tin Corp.                                                                | TXD062113329 | Tin and copper smelting, Bolivian ore processing                                                  |
| 101 | U.S. Titanium                                                                | VAD980705404 | Titanium mine and ore refining to produce titanium dioxide                                        |
| 102 | Homestake Mining Co.                                                         | NMD007860935 | Uranium milling waste disposal                                                                    |
| 103 | Lincoln Park                                                                 | COD042167858 | Uranium milling waste disposal                                                                    |
| 104 | United Nuclear Corp.                                                         | NMD030443303 | Uranium milling waste disposal                                                                    |
| 105 | Midnite Mine                                                                 | WAD980978753 | Uranium mining waste disposal                                                                     |
| 106 | Fremont National Forest/White<br>King And Lucky Lass Uranium<br>Mines (USDA) | OR7122307658 | Uranium mining waste disposal and acid mine drainage                                              |
| 107 | Monticello Mill Tailings<br>(USDOE)                                          | UT3890090035 | Uranium, vanadium milling                                                                         |
| 108 | Monticello Radioactively<br>Contaminated Properties                          | UTD980667208 | Uranium, vanadium milling waste<br>disposal/"beneficial use"                                      |
| 109 | Libby Asbestos Site                                                          | MT0009083840 | Vermiculite milling waste disposal and air emissions                                              |
| 110 | National Zinc Corp.                                                          | OKD000829440 | Zinc and cadmium recovery through smelting and chemical processing                                |
| 111 | Eagle Mine                                                                   | COD081961518 | Zinc mining and milling and silver mining waste disposal                                          |
| 112 | Tulsa Fuel and Manufacturing                                                 | OKD987096195 | Zinc smelting and lead roasting waste disposal                                                    |

| Row | Site Name                               | CERCLIS ID   | Associated Commodities/Contamination<br>Sources                                                            |
|-----|-----------------------------------------|--------------|------------------------------------------------------------------------------------------------------------|
| 113 | Hegeler Zinc                            | ILN000508134 | Zinc smelting and production of sulfuric acid and fireworks                                                |
| 114 | Circle Smelting Corp.                   | ILD050231976 | Zinc smelting to recover zinc from scrap metals                                                            |
| 115 | Matthiessen and Hegeler Zinc<br>Company | IL0000064782 | Zinc smelting waste disposal                                                                               |
| 116 | Palmerton Zinc Pile                     | PAD002395887 | Zinc smelting waste disposal and air emissions                                                             |
| 117 | Callahan Mining Corp                    | MED980524128 | Zinc/copper mining and milling waste disposal from mining sphalerite, chalcopyrite, pyrite and pyrrhotite. |
| 118 | Smeltertown Site                        | COD983769738 | Zinc-sulfate manufacturing, wood treating, and smelting (Not specified)                                    |
| 119 | Teledyne Wah Chang                      | ORD050955848 | Zirconium and rare earth metals and alloys                                                                 |

# C.1.2 Historical Site Commodity Categories

For the Case Study Historical sites, the information in the RODs and other CERCLA site documents provides more detail on the specific waste disposal practices and contamination sources than is generally available for the entire universe of 108(b) Historical CERCLA Sites. For example, documents for 10 of the Case Study Historical sites indicate either acid mine drainage or acid rock drainage as a contamination source; several sites' documents mention leachate, slag, fugitive dust, air/smelter emissions, and ore waste (varying descriptions).

**Table C-2** groups the Case Study Historical sites into six broad categories of commodities, based on similarities in waste disposal/CERCLA hazardous substance contamination sources within each category. The six broad categories are:

- Primary metals (gold, silver, copper, zinc, and/or lead)
- Aluminum
- Iron and steel
- Phosphates
- Radioactive metals
- Other metals and minerals.

**Tables C-2** and **C-3** summarize the occurrence of waste types (or sources) and the commodity mined or processed at the 24 NPL Case Study Historical sites. Wastes were also associated with specific site activities in some site records. Table C-2 shows waste by commodity and Table C-3 shows waste activity by commodity. The waste sources reported are general descriptions. The few identified specific chemical wastes are typically associated with processors. Generally, the lists below can be considered characteristic of waste associated with mining, milling, or processing activities.

| -1 and $-2$ . These $-1$ and $-2$ and $-1$ and $-2$ and $-1$ and $-2$ and |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Row | Site Name               | CERCLA Site ID | Waste Name or<br>Source | Commodity |
|-----|-------------------------|----------------|-------------------------|-----------|
| 1   | Reynolds Metals Company | ORD009412677   | Cryolite Disposal       | Aluminum  |
| 2   | Ormet Corp              | OHD004379970   | Debris                  | Aluminum  |
| 3   | Reynolds Metals Company | ORD009412677   | Debris/Scrap            | Aluminum  |

| Row | Site Name                                     | CERCLA Site ID | Waste Name or<br>Source               | Commodity      |
|-----|-----------------------------------------------|----------------|---------------------------------------|----------------|
| 4   | National Southwire Aluminum Co.               | KYD049062375   | Drainage                              | Aluminum       |
| 5   | Reynolds Metals Company                       | ORD009412677   | Fuel/Oil                              | Aluminum       |
| 6   | National Southwire Aluminum Co.               | KYD049062375   | Potliners                             | Aluminum       |
| 7   | Ormet Corp                                    | OHD004379970   | Potliners                             | Aluminum       |
| 8   | Reynolds Metals Company                       | ORD009412677   | Potliners                             | Aluminum       |
| 9   | Reynolds Metals Company                       | ORD009412677   | Process Residues                      | Aluminum       |
| 10  | Ormet Corp                                    | OHD004379970   | Sludge                                | Aluminum       |
| 11  | Macalloy Corporation                          | SCD003360476   | Fugitive Dust                         | Iron and Steel |
| 12  | Cimarron Mining Corp.                         | NMD980749378   | Sediment Piles                        | Iron and Steel |
| 13  | Macalloy Corporation                          | SCD003360476   | Slag                                  | Iron and Steel |
| 14  | Macalloy Corporation                          | SCD003360476   | Sludge                                | Iron and Steel |
| 15  | Cimarron Mining Corp.                         | NMD980749378   | Tailings                              | Iron and Steel |
| 16  | Cimarron Mining Corp.                         | NMD980749378   | Unlined Pits                          | Iron and Steel |
| 17  | Cimarron Mining Corp.                         | NMD980749378   | Waste Drums                           | Iron and Steel |
| 18  | Li Tungsten Corp.                             | NYD986882660   | Asbestos Fibers                       | Other Metals   |
| 19  | Foote Mineral Co.                             | PAD077087989   | Debris                                | Other Metals   |
| 20  | Li Tungsten Corp.                             | NYD986882660   | Dredged Sediments                     | Other Metals   |
| 21  | Li Tungsten Corp.                             | NYD986882660   | Drums                                 | Other Metals   |
| 22  | Li Tungsten Corp.                             | NYD986882660   | Household Debris                      | Other Metals   |
| 23  | Li Tungsten Corp.                             | NYD986882660   | Incinerator Ash                       | Other Metals   |
| 24  | Foote Mineral Co.                             | PAD077087989   | Municipal Waste                       | Other Metals   |
| 25  | Li Tungsten Corp.                             | NYD986882660   | Ore Waste                             | Other Metals   |
| 26  | Li Tungsten Corp.                             | NYD986882660   | Radioactive Waste Piles               | Other Metals   |
| 27  | Li Tungsten Corp.                             | NYD986882660   | Rubbish                               | Other Metals   |
| 28  | Li Tungsten Corp.                             | NYD986882660   | Sewage Sludge                         | Other Metals   |
| 29  | Li Tungsten Corp.                             | NYD986882660   | Slag                                  | Other Metals   |
| 30  | Foote Mineral Co.                             | PAD077087989   | Spent Mineral Waste                   | Other Metals   |
| 31  | Li Tungsten Corp.                             | NYD986882660   | Storage Tanks                         | Other Metals   |
| 32  | Li Tungsten Corp.                             | NYD986882660   | Transformers                          | Other Metals   |
| 33  | Li Tungsten Corp.                             | NYD986882660   | Waste Piles                           | Other Metals   |
| 34  | Foote Mineral Co.                             | PAD077087989   | Wastewater                            | Other Metals   |
| 35  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Calcium Fluoride                      | Phosphates     |
| 36  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Calcium Silicate Slag<br>Piles        | Phosphates     |
| 37  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Coke Dust Slurry                      | Phosphates     |
| 38  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Coke Stockpiles                       | Phosphates     |
| 39  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Fugitive Dust                         | Phosphates     |
| 40  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Nodule Stockpiles                     | Phosphates     |
| 41  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Non-Contacting Cool<br>Water Effluent | Phosphates     |
| 42  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Ore Stockpiles                        | Phosphates     |
| 43  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Phossy Water                          | Phosphates     |
| 44  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994   | Process Stacks Air<br>Emissions       | Phosphates     |

| Row | Site Name                                     | CERCLA Site ID | Waste Name or<br>Source                   | Commodity      |
|-----|-----------------------------------------------|----------------|-------------------------------------------|----------------|
| 45  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Quartzite Dust Slurry                     | Phosphates     |
| 46  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Raw Coal                                  | Phosphates     |
| 47  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Silica                                    | Phosphates     |
| 48  | Eastern Michaud Flats Contamination           | IDD984666610   | Slag                                      | Phosphates     |
| 49  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Slag                                      | Phosphates     |
| 50  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Slag                                      | Phosphates     |
| 51  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Sulfates/Sulfites                         | Phosphates     |
| 52  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Treater Dust Stock Piles                  | Phosphates     |
| 53  | Monsanto Chemical Co. (Soda Springs<br>Plant) | IDD081830994   | Underflow Solids Piles                    | Phosphates     |
| 54  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013   | Waste Piles                               | Phosphates     |
| 55  | Eagle Mine                                    | COD081961518   | Acid Mine Drainage                        | Primary Metals |
| 56  | Anaconda Co. Smelter                          | MTD093291656   | Acid Mine Drainage/<br>Acid Rock Drainage | Primary Metals |
| 57  | Bunker Hill Mining & Metallurgical<br>Complex | IDD048340921   | Acid Mine Drainage/<br>Acid Rock Drainage | Primary Metals |
| 58  | Captain Jack Mill                             | COD981551427   | Acid Mine Drainage/<br>Acid Rock Drainage | Primary Metals |
| 59  | Silver Mountain Mine                          | WAD980722789   | Acid Mine Drainage/<br>Acid Rock Drainage | Primary Metals |
| 60  | Summitville Mine                              | COD983778432   | Acid Mine Drainage/<br>Acid Rock Drainage | Primary Metals |
| 61  | Eagle Mine                                    | COD081961518   | Acid Rock Drainage                        | Primary Metals |
| 62  | Gilt Edge Mine                                | SDD987673985   | Acid Rock Drainage                        | Primary Metals |
| 63  | Omaha Lead                                    | NESFN0703481   | Airborne Emissions                        | Primary Metals |
| 64  | Anaconda Co. Smelter                          | MTD093291656   | Demolition Dumps                          | Primary Metals |
| 65  | Gilt Edge Mine                                | SDD987673985   | Exposed Mineralized<br>Bedrock            | Primary Metals |
| 66  | Tex-Tin Corporation                           | TXD062113329   | Ferrous-chloride                          | Primary Metals |
| 67  | Anaconda Co. Smelter                          | MTD093291656   | Flue Dust                                 | Primary Metals |
| 68  | Tex-Tin Corporation                           | TXD062113329   | Gypsum                                    | Primary Metals |
| 69  | Tex-Tin Corporation                           | TXD062113329   | Iron-rich Liquid Acid                     | Primary Metals |
| 70  | Captain Jack Mill                             | COD981551427   | Leachate                                  | Primary Metals |
| 71  | Palmerton Zinc Pile                           | PAD002395887   | Leachate                                  | Primary Metals |
| 72  | Summitville Mine                              | COD983778432   | Leachate                                  | Primary Metals |
| 73  | Eagle Mine                                    | COD081961518   | Manual/Aerial<br>Deposition               | Primary Metals |
| 74  | Tex-Tin Corporation                           | TXD062113329   | Ore Slimes                                | Primary Metals |
| 75  | East Helena Site                              | MTD006230346   | Ore Storage                               | Primary Metals |
| 76  | Eagle Mine                                    | COD081961518   | Overburden                                | Primary Metals |
| 77  | Silver Mountain Mine                          | WAD980722789   | Overburden                                | Primary Metals |
| 78  | East Helena Site                              | MTD006230346   | Process Fluids                            | Primary Metals |
| 79  | East Helena Site                              | MTD006230346   | Process Ponds                             | Primary Metals |
| 80  | Captain Jack Mill                             | COD981551427   | Run-off                                   | Primary Metals |
| 81  | Tex-Tin Corporation                           | TXD062113329   | Slag                                      | Primary Metals |
| 82  | East Helena Site                              | MTD006230346   | Slag Pile                                 | Primary Metals |
| 83  | Palmerton Zinc Pile                           | PAD002395887   | Slag Piles                                | Primary Metals |

| Row | Site Name            | CERCLA Site ID | Waste Name or<br>Source                   | Commodity          |
|-----|----------------------|----------------|-------------------------------------------|--------------------|
| 84  | Gilt Edge Mine       | SDD987673985   | Sludge                                    | Primary Metals     |
| 85  | Anaconda Co. Smelter | MTD093291656   | Smelter Emissions                         | Primary Metals     |
| 86  | East Helena Site     | MTD006230346   | Smelter Emissions                         | Primary Metals     |
| 87  | Gilt Edge Mine       | SDD987673985   | Spent Ore                                 | Primary Metals     |
| 88  | Anaconda Co. Smelter | MTD093291656   | Tailings                                  | Primary Metals     |
| 89  | Eagle Mine           | COD081961518   | Tailings                                  | Primary Metals     |
| 90  | Silver Mountain Mine | WAD980722789   | Tailings                                  | Primary Metals     |
| 91  | Summitville Mine     | COD983778432   | Tailings                                  | Primary Metals     |
| 92  | Anaconda Co. Smelter | MTD093291656   | Waste Piles                               | Primary Metals     |
| 93  | Eagle Mine           | COD081961518   | Waste Piles                               | Primary Metals     |
| 94  | Summitville Mine     | COD983778432   | Waste Piles                               | Primary Metals     |
| 95  | Anaconda Co. Smelter | MTD093291656   | Waste Ponds                               | Primary Metals     |
| 96  | Captain Jack Mill    | COD981551427   | Waste Rock                                | Primary Metals     |
| 97  | Eagle Mine           | COD081961518   | Waste Rock                                | Primary Metals     |
| 98  | Gilt Edge Mine       | SDD987673985   | Waste Rock                                | Primary Metals     |
| 99  | East Helena Site     | MTD006230346   | Wastewater                                | Primary Metals     |
| 100 | Midnite Mine         | WAD980978753   | Acid Mine Drainage                        | Radioactive Metals |
| 101 | Homestake Mining Co. | NMD007860935   | Acid Mine Drainage/<br>Acid Rock Drainage | Radioactive Metals |
| 102 | Teledyne Wah Chang   | ORD050955848   | Chlorinator Residue                       | Radioactive Metals |
| 103 | Midnite Mine         | WAD980978753   | Ore Waste                                 | Radioactive Metals |
| 104 | Midnite Mine         | WAD980978753   | Particulate Matter                        | Radioactive Metals |
| 105 | Midnite Mine         | WAD980978753   | Proto-ore                                 | Radioactive Metals |
| 106 | Midnite Mine         | WAD980978753   | Radioactive Decay                         | Radioactive Metals |
| 107 | Teledyne Wah Chang   | ORD050955848   | Sludge                                    | Radioactive Metals |
| 108 | Homestake Mining Co. | NMD007860935   | Tailings                                  | Radioactive Metals |
| 109 | Teledyne Wah Chang   | ORD050955848   | Waste Materials                           | Radioactive Metals |

### Table C-3. Waste Types and Site Activity at Case Study Historical Sites: By Commodity

| Row | Site Name                       | Site ID      | Waste Name        | Reported Activity           | Metal Type     |
|-----|---------------------------------|--------------|-------------------|-----------------------------|----------------|
| 1   | Reynolds Metals Company         | ORD009412677 | Potliners         | Metals Reduction            | Aluminum       |
| 2   | Reynolds Metals Company         | ORD009412677 | Cryolite Disposal |                             | Aluminum       |
| 3   | Reynolds Metals Company         | ORD009412677 | Debris/Scrap      |                             | Aluminum       |
| 4   | Reynolds Metals Company         | ORD009412677 | Fuel/Oil          |                             | Aluminum       |
| 5   | Reynolds Metals Company         | ORD009412677 | Process Residues  |                             | Aluminum       |
| 6   | Ormet Corp                      | OHD004379970 | Potliners         | Smelting                    | Aluminum       |
| 7   | Ormet Corp                      | OHD004379970 | Sludge            | Ore Processing              | Aluminum       |
| 8   | Ormet Corp                      | OHD004379970 | Debris            |                             | Aluminum       |
| 9   | National Southwire Aluminum Co. | KYD049062375 | Potliners         | Smelting                    | Aluminum       |
| 10  | National Southwire Aluminum Co. | KYD049062375 | Drainage          |                             | Aluminum       |
| 11  | Cimarron Mining Corp.           | NMD980749378 | Tailings          | Precious Metals<br>Recovery | Iron and Steel |
| 12  | Cimarron Mining Corp.           | NMD980749378 | Sediment Piles    | Milling                     | Iron and Steel |
| 13  | Cimarron Mining Corp.           | NMD980749378 | Unlined Pits      | Cyanide Extraction          | Iron and Steel |
| 14  | Cimarron Mining Corp.           | NMD980749378 | Waste Drums       |                             | Iron and Steel |
| 15  | Macalloy Corporation            | SCD003360476 | Slag              | Smelting                    | Iron and Steel |

| Row | Site Name                                     | Site ID      | Waste Name                               | Reported Activity                 | Metal Type     |
|-----|-----------------------------------------------|--------------|------------------------------------------|-----------------------------------|----------------|
| 16  | Macalloy Corporation                          | SCD003360476 | Sludge                                   |                                   | Iron and Steel |
| 17  | Macalloy Corporation                          | SCD003360476 | Fugitive Dust                            |                                   | Iron and Steel |
| 18  | Foote Mineral Co.                             | PAD077087989 | Wastewater                               | Ore Processing                    | Other Metals   |
| 19  | Foote Mineral Co.                             | PAD077087989 | Debris                                   |                                   | Other Metals   |
| 20  | Foote Mineral Co.                             | PAD077087989 | Municipal Waste                          |                                   | Other Metals   |
| 21  | Foote Mineral Co.                             | PAD077087989 | Spent Mineral<br>Waste                   | Ore Mineral<br>Extraction         | Other Metals   |
| 22  | Li Tungsten Corp.                             | NYD986882660 | Slag                                     | Smelting                          | Other Metals   |
| 23  | Li Tungsten Corp.                             | NYD986882660 | Radioactive<br>Waste Piles               | Ore Processing                    | Other Metals   |
| 24  | Li Tungsten Corp.                             | NYD986882660 | Drums                                    |                                   | Other Metals   |
| 25  | Li Tungsten Corp.                             | NYD986882660 | Storage Tanks                            |                                   | Other Metals   |
| 26  | Li Tungsten Corp.                             | NYD986882660 | Transformers                             |                                   | Other Metals   |
| 27  | Li Tungsten Corp.                             | NYD986882660 | Asbestos Fibers                          |                                   | Other Metals   |
| 28  | Li Tungsten Corp.                             | NYD986882660 | Waste Piles                              |                                   | Other Metals   |
| 29  | Li Tungsten Corp.                             | NYD986882660 | Incinerator Ash                          |                                   | Other Metals   |
| 30  | Li Tungsten Corp.                             | NYD986882660 | Sewage Sludge                            |                                   | Other Metals   |
| 31  | Li Tungsten Corp.                             | NYD986882660 | Rubbish                                  |                                   | Other Metals   |
| 32  | Li Tungsten Corp.                             | NYD986882660 | Household Debris                         |                                   | Other Metals   |
| 33  | Li Tungsten Corp.                             | NYD986882660 | Dredged<br>Sediments                     |                                   | Other Metals   |
| 34  | Li Tungsten Corp.                             | NYD986882660 | Ore Waste                                |                                   | Other Metals   |
| 35  | Eastern Michaud Flats<br>Contamination        | IDD984666610 | Slag                                     | Ore Processing                    | Phosphates     |
| 36  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Waste Piles                              | Mining                            | Phosphates     |
| 37  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Raw Coal                                 | Ore Processing                    | Phosphates     |
| 38  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Calcium Fluoride                         |                                   | Phosphates     |
| 39  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Sulfates/Sulfites                        |                                   | Phosphates     |
| 40  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Silica                                   |                                   | Phosphates     |
| 41  | Stauffer Chemical Co. (Tarpon Springs)        | FLD010596013 | Slag                                     |                                   | Phosphates     |
| 42  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Ore Stockpiles                           | Elemental Metals<br>Manufacturing | Phosphates     |
| 43  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Nodule Stockpiles                        | Mineral<br>Beneficiation          | Phosphates     |
| 44  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Fugitive Dust                            | Ore Processing                    | Phosphates     |
| 45  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Calcium Silicate<br>Slag Piles           | Ore Mineral<br>Extraction         | Phosphates     |
| 46  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Quartzite Dust<br>Slurry                 |                                   | Phosphates     |
| 47  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Non-Contacting<br>Cool Water<br>Effluent |                                   | Phosphates     |
| 48  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Treater Dust<br>Stock Piles              |                                   | Phosphates     |

| Row | Site Name                                     | Site ID      | Waste Name                                   | Reported Activity       | Metal Type     |
|-----|-----------------------------------------------|--------------|----------------------------------------------|-------------------------|----------------|
| 49  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Underflow Solids<br>Piles                    |                         | Phosphates     |
| 50  | Monsanto Chemical Co. (Soda Springs Plant)    | IDD081830994 | Process Stacks<br>Air Emissions              |                         | Phosphates     |
| 51  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Slag                                         |                         | Phosphates     |
| 52  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Coke Dust Slurry                             |                         | Phosphates     |
| 53  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Phossy Water                                 |                         | Phosphates     |
| 54  | Monsanto Chemical Co. (Soda<br>Springs Plant) | IDD081830994 | Coke Stockpiles                              |                         | Phosphates     |
| 55  | Bunker Hill Mining &<br>Metallurgical Complex | IDD048340921 | Acid Mine<br>Drainage/Acid<br>Rock Drainage  | Mining                  | Primary Metals |
| 56  | Tex-Tin Corporation                           | TXD062113329 | Iron-rich Liquid<br>Acid                     | Smelting                | Primary Metals |
| 57  | Tex-Tin Corporation                           | TXD062113329 | Slag                                         | Metals Recovery         | Primary Metals |
| 58  | Tex-Tin Corporation                           | TXD062113329 | Ferrous-chloride                             | Ore Processing          | Primary Metals |
| 59  | Tex-Tin Corporation                           | TXD062113329 | Ore Slimes                                   | Wastewater<br>Treatment | Primary Metals |
| 60  | Tex-Tin Corporation                           | TXD062113329 | Gypsum                                       | Oil Recovery            | Primary Metals |
| 61  | Captain Jack Mill                             | COD981551427 | Leachate                                     | Mining                  | Primary Metals |
| 62  | Captain Jack Mill                             | COD981551427 | Acid Mine<br>Drainage/ Acid<br>Rock Drainage |                         | Primary Metals |
| 63  | Captain Jack Mill                             | COD981551427 | Run-off                                      |                         | Primary Metals |
| 64  | Captain Jack Mill                             | COD981551427 | Waste Rock                                   |                         | Primary Metals |
| 65  | Anaconda Co. Smelter                          | MTD093291656 | Smelter<br>Emissions                         | Smelting                | Primary Metals |
| 66  | Anaconda Co. Smelter                          | MTD093291656 | Acid Mine<br>Drainage/Acid<br>Rock Drainage  | Milling                 | Primary Metals |
| 67  | Anaconda Co. Smelter                          | MTD093291656 | Tailings                                     |                         | Primary Metals |
| 68  | Anaconda Co. Smelter                          | MTD093291656 | Waste Ponds                                  |                         | Primary Metals |
| 69  | Anaconda Co. Smelter                          | MTD093291656 | Demolition<br>Dumps                          |                         | Primary Metals |
| 70  | Anaconda Co. Smelter                          | MTD093291656 | Flue Dust                                    |                         | Primary Metals |
| 71  | Anaconda Co. Smelter                          | MTD093291656 | Waste Piles                                  |                         | Primary Metals |
| 72  | Eagle Mine                                    | COD081961518 | Manual/Aerial<br>Deposition                  | Mining                  | Primary Metals |
| 73  | Eagle Mine                                    | COD081961518 | Tailings                                     | Mineral Processing      | Primary Metals |
| 74  | Eagle Mine                                    | COD081961518 | Waste Rock                                   | Beneficiation           | Primary Metals |
| 75  | Eagle Mine                                    | COD081961518 | Acid Mine<br>Drainage                        |                         | Primary Metals |
| 76  | Eagle Mine                                    | COD081961518 | Acid Rock<br>Drainage                        |                         | Primary Metals |
| 77  | Eagle Mine                                    | COD081961518 | Overburden                                   |                         | Primary Metals |
| 78  | Eagle Mine                                    | COD081961518 | Waste Piles                                  |                         | Primary Metals |
| 79  | East Helena Site                              | MTD006230346 | Smelter<br>Emissions                         | Smelting                | Primary Metals |

| Row | Site Name            | Site ID      | Waste Name                                  | Reported Activity                    | Metal Type            |
|-----|----------------------|--------------|---------------------------------------------|--------------------------------------|-----------------------|
| 80  | East Helena Site     | MTD006230346 | Slag Pile                                   |                                      | Primary Metals        |
| 81  | East Helena Site     | MTD006230346 | Ore Storage                                 |                                      | Primary Metals        |
| 82  | East Helena Site     | MTD006230346 | Process Ponds                               |                                      | Primary Metals        |
| 83  | East Helena Site     | MTD006230346 | Process Fluids                              |                                      | Primary Metals        |
| 84  | East Helena Site     | MTD006230346 | Wastewater                                  |                                      | Primary Metals        |
| 85  | Omaha Lead           | NESFN0703481 | Airborne<br>Emissions                       | Smelting                             | Primary Metals        |
| 86  | Palmerton Zinc Pile  | PAD002395887 | Slag Piles                                  | Metals Processing                    | Primary Metals        |
| 87  | Palmerton Zinc Pile  | PAD002395887 | Leachate                                    |                                      | Primary Metals        |
| 88  | Summitville Mine     | COD983778432 | Leachate                                    | Mining                               | Primary Metals        |
| 89  | Summitville Mine     | COD983778432 | Acid Mine<br>Drainage/Acid<br>Rock Drainage |                                      | Primary Metals        |
| 90  | Summitville Mine     | COD983778432 | Tailings                                    |                                      | Primary Metals        |
| 91  | Summitville Mine     | COD983778432 | Waste Piles                                 |                                      | Primary Metals        |
| 92  | Silver Mountain Mine | WAD980722789 | Acid Mine<br>Drainage/Acid<br>Rock Drainage | Ore Extraction                       | Primary Metals        |
| 93  | Silver Mountain Mine | WAD980722789 | Tailings                                    |                                      | Primary Metals        |
| 94  | Silver Mountain Mine | WAD980722789 | Overburden                                  |                                      | Primary Metals        |
| 95  | Gilt Edge Mine       | SDD987673985 | Acid Rock<br>Drainage                       | Mining                               | Primary Metals        |
| 96  | Gilt Edge Mine       | SDD987673985 | Waste Rock                                  | Mineral Processing                   | Primary Metals        |
| 97  | Gilt Edge Mine       | SDD987673985 | Spent Ore                                   |                                      | Primary Metals        |
| 98  | Gilt Edge Mine       | SDD987673985 | Exposed<br>Mineralized<br>Bedrock           |                                      | Primary Metals        |
| 99  | Gilt Edge Mine       | SDD987673985 | Sludge                                      |                                      | Primary Metals        |
| 100 | Homestake Mining Co. | NMD007860935 | Tailings                                    | Ore Processing                       | Radioactive<br>Metals |
| 101 | Homestake Mining Co. | NMD007860935 | Acid Mine<br>Drainage/Acid<br>Rock Drainage | Alkaline<br>Precipitation<br>Process | Radioactive<br>Metals |
| 102 | Midnite Mine         | WAD980978753 | Acid Mine<br>Drainage                       | Open Pit Mining                      | Radioactive<br>Metals |
| 103 | Midnite Mine         | WAD980978753 | Ore Waste                                   |                                      | Radioactive<br>Metals |
| 104 | Midnite Mine         | WAD980978753 | Proto-ore                                   |                                      | Radioactive<br>Metals |
| 105 | Midnite Mine         | WAD980978753 | Radioactive<br>Decay                        |                                      | Radioactive<br>Metals |
| 106 | Midnite Mine         | WAD980978753 | Particulate Matter                          |                                      | Radioactive<br>Metals |
| 107 | Teledyne Wah Chang   | ORD050955848 | Sludge                                      | Metals Fabrication                   | Radioactive<br>Metals |
| 108 | Teledyne Wah Chang   | ORD050955848 | Waste Materials                             | Smelting                             | Radioactive<br>Metals |
| 109 | Teledyne Wah Chang   | ORD050955848 | Chlorinator<br>Residue                      | Nonferrous Metals<br>Manufacturing   | Radioactive<br>Metals |

# Appendix D Identification of Contaminants of Concern and Priority Contaminants of Concern at Case Study Historical Sites

This appendix describes how contaminants of concern (COCs) at Historical sites were identified, and how Priority COCs were selected from among the COCs.

CERCLA hazardous substances are defined by CERCLA Section 101(14) as certain substances, elements, compounds, mixtures, hazardous wastes, toxic pollutants, hazardous air pollutants or imminently hazardous chemical substances or mixtures designated under the major U.S. environmental laws. In all, the Superfund law designates more than 800 substances as hazardous substances. In addition, there are approximately 1,500 known radionuclides, approximately 760 of which are listed individually. The list of CERCLA hazardous substances (and reportable quantities) is located in 40 CFR 302.4.

Contaminants of potential concern (COPCs) are CERCLA hazardous substances which (a) are present at a site, (b) occur at concentrations which are or might be of health concern to exposed humans or ecological receptors, and (c) are or might be due to releases from a Superfund site. USEPA has derived a standard method for selecting COPCs at a site, as detailed in *Risk Assessment Guidance for Superfund: Human Health Evaluation Manual (Part A)* (USEPA 1989). In brief, EPA assumes that any chemical detected at a site is a candidate for selection as a COPC, but identifies a number of methods that may be used for determining when a chemical is not of concern and may be eliminated from further consideration. Each Superfund risk assessment may choose to apply some or all of the methods identified by EPA to select COPCs, as appropriate for the specific site. Those COPCs identified in the Superfund risk assessment as being present at or above a level of concern (under the National Contingency Plan, published at 40 CFR 300.430(e)(2)(i)) are generally identified as COCs.

For this report, EPA reviewed the Superfund risk assessments and other CERCLA site documents, for the Case Study Historical sites to identify which specific CERCLA hazardous substances were found to be COCs at those sites. The frequency of occurrence noted for COCs are provided in **Section D.1**.

# D.1 Case Study Historical Site COCs

**Table D-1** presents the CERCLA hazardous substances (in alphabetical order) identified in Superfund risk assessments performed at the 24 Case Study Historical sites in the original sample.<sup>1</sup> The table indicates the frequency with which each substance is above levels of concern for each type of receptor (human or ecological). A total of 86 CERCLA hazardous substances were identified as COCs at the Case Study Historical sites.

<sup>&</sup>lt;sup>1</sup> As described in Appendix B ("Defining the Universes of 108(b) Historical CERCLA and 2009 Current Sites"), the 30 sites randomly selected in the original sampling included 24 NPL sites and 6 Removal sites. While data were collected for a supplemental sampling of the 108(b) Historical CERCLA sites universe, the data for the supplemental sites were not available in time and were not used in this analysis.

EPA also reviewed the COCs at the six Case Study Historical Removal sites, and found that a smaller group of 18 inorganics (including cyanide), three radionuclide groups (radium 228, 3 thorium isotopes and 2 uranium isotopes) and no organics, were identified. All COCs identified at Case Study Historical Removal sites were already represented on the list of 86 COCs shown in Table D-1.

| Row | CASRN       | COC                         | Sites with Human<br>Risks of Concern | Sites with Ecological<br>Risks of Concern |
|-----|-------------|-----------------------------|--------------------------------------|-------------------------------------------|
| 1   | 83-32-9     | Acenaphthene                | 0                                    | 2                                         |
| 2   | 208-96-8    | Acenaphthylene              | 0                                    | 2                                         |
| 3   | 67-64-1     | Acetone                     | 0                                    | 1                                         |
| 4   | 014952-40-0 | Actinium-227                | 1                                    | 0                                         |
| 5   | 120-12-7    | Anthracene                  | 0                                    | 1                                         |
| 6   | 7440-36-0   | Antimony and compounds      | 11                                   | 7                                         |
| 7   | 12674-11-2  | Aroclor 1016                | 1                                    | 1                                         |
| 8   | 11104-28-2  | Aroclor 1221                | 1                                    | 1                                         |
| 9   | 11141-16-5  | Aroclor 1232                | 1                                    | 1                                         |
| 10  | 53469-21-9  | Aroclor 1242                | 2                                    | 2                                         |
| 11  | 12672-29-6  | Aroclor 1248                | 2                                    | 2                                         |
| 12  | 11097-69-1  | Aroclor 1254                | 1                                    | 2                                         |
| 13  | 11096-82-5  | Aroclor 1260                | 2                                    | 1                                         |
| 14  | 7440-38-2   | Arsenic and compounds       | 23                                   | 9                                         |
| 15  | 56-55-3     | Benz[a]anthracene           | 5                                    | 2                                         |
| 16  | 71-43-2     | Benzene                     | 2                                    | 0                                         |
| 17  | 191-24-2    | Benzo(g,h,i)perylene        | 0                                    | 2                                         |
| 18  | 50-32-8     | Benzo[a]pyrene              | 7                                    | 2                                         |
| 19  | 205-99-2    | Benzo[b]fluoranthene        | 6                                    | 2                                         |
| 20  | 207-08-9    | Benzo[k]fluoranthene        | 1                                    | 1                                         |
| 21  | 7440-41-7   | Beryllium and compounds     | 9                                    | 5                                         |
| 22  | 111-44-4    | Bis(2-chloroethyl)ether     | 1                                    | 0                                         |
| 23  | 117-81-7    | Bis(2-ethylhexyl) phthalate | 0                                    | 2                                         |
| 24  | 75-25-2     | Bromoform                   | 1                                    | 0                                         |
| 25  | 85-68-7     | Butyl benzyl phthlate       | 0                                    | 1                                         |
| 26  | 7440-43-9   | Cadmium and compounds       | 13                                   | 9                                         |
| 27  | 56-23-5     | Carbon tetrachloride        | 1                                    | 0                                         |
| 28  | 57-74-9     | Chlordane, alpha isomer     | 0                                    | 1                                         |
| 29  | 108-90-7    | Chlorobenzene               | 1                                    | 0                                         |
| 30  | 67-66-3     | Chloroform                  | 1                                    | 1                                         |
| 31  | 18540-29-9  | Chromium (VI)               | 3                                    | 0                                         |
| 32  | 7440-47-3   | Chromium and compounds      | 5                                    | 7                                         |
| 33  | 218-01-9    | Chrysene                    | 0                                    | 2                                         |
| 34  | 7440-48-4   | Cobalt compounds            | 3                                    | 4                                         |
| 35  | 7440-50-8   | Copper and compounds        | 7                                    | 9                                         |
| 36  | 106-44-5    | Cresol, p-                  | 0                                    | 1                                         |
| 37  | 57-12-5     | Cyanides                    | 2                                    | 2                                         |

| Table D-1. CERCLA Hazardous Substances Identified as Above a Level of Concern in Superfund |
|--------------------------------------------------------------------------------------------|
| Risk Assessments Performed at Case Study Historical Sites                                  |

| Row | CASRN      | сос                               | Sites with Human<br>Risks of Concern | Sites with Ecological<br>Risks of Concern |
|-----|------------|-----------------------------------|--------------------------------------|-------------------------------------------|
| 38  | 72-54-8    | DDD                               | 0                                    | 1                                         |
| 39  | 72-55-9    | DDE, 4,4'-                        | 0                                    | 1                                         |
| 40  | 50-29-3    | DDT                               | 0                                    | 1                                         |
| 41  | 53-70-3    | Dibenz[a,h]anthracene             | 5                                    | 1                                         |
| 42  | 106-46-7   | Dichlorobenzene, 1,4-             | 1                                    | 0                                         |
| 43  | 107-06-2   | Dichloroethane, 1,2-              | 2                                    | 0                                         |
| 44  | 75-35-4    | Dichloroethylene, 1,1-            | 1                                    | 0                                         |
| 45  | 156-60-5   | Dichloroethylene, 1,2-            | 1                                    | 0                                         |
| 46  | 72-20-8    | Endrin                            | 0                                    | 1                                         |
| 47  | 206-44-0   | Fluoranthene                      | 0                                    | 1                                         |
| 48  | 7782-41-4  | Fluorine (as fluoride)            | 5                                    | 3                                         |
| 49  | 193-39-5   | Indeno[1,2 3-cd]pyrene            | 3                                    | 1                                         |
| 50  | 7439-92-1  | Lead and compounds                | 6                                    | 10                                        |
| 51  | 14255-04-0 | Lead-210                          | 5                                    | 0                                         |
| 52  | 7439-96-5  | Manganese and compounds           | 14                                   | 6                                         |
| 53  | 7439-97-6  | Mercury and compounds             | 7                                    | 4                                         |
| 54  | 72-43-5    | Methoxychlor                      | 0                                    | 1                                         |
| 55  | 75-09-2    | Methylene chloride                | 1                                    | 0                                         |
| 56  | 7440-02-0  | Nickel and compounds              | 6                                    | 4                                         |
| 57  | 85-01-8    | Phenanthrene                      | 0                                    | 2                                         |
| 58  | 13981-52-7 | Polonium-210                      | 1                                    | 0                                         |
| 59  | 1336-36-3  | Polychlorinated biphenyls         | 4                                    | 2                                         |
| 60  | NA         | Polynuclear aromatic hydrocarbons | 1                                    | 2                                         |
| 61  | 13966-00-2 | Potassium-40                      | 1                                    | 0                                         |
| 62  | 129-00-0   | Pyrene                            | 0                                    | 3                                         |
| 63  | NA         | Radionuclides                     | 6                                    | 0                                         |
| 64  | 7440-14-4  | Radium                            | 1                                    | 0                                         |
| 65  | 13982-63-3 | Radium-226                        | 6                                    | 0                                         |
| 66  | 15262-20-1 | Radium-228                        | 3                                    | 0                                         |
| 67  | 10043-92-2 | Radon                             | 2                                    | 0                                         |
| 68  | 14859-67-7 | Radon-222                         | 4                                    | 0                                         |
| 69  | 7782-49-2  | Selenium and compounds            | 2                                    | 7                                         |
| 70  | 7440-22-4  | Silver and compounds              | 3                                    | 5                                         |
| 71  | 7440-23-5  | Sodium                            | 0                                    | 1                                         |
| 72  | 79-34-5    | Tetrachloroethane, 1,1,2,2-       | 2                                    | 0                                         |
| 73  | 127-18-4   | Tetrachloroethylene               | 3                                    | 0                                         |
| 74  | 7440-28-0  | Thallium and compounds            | 6                                    | 7                                         |
| 75  | 14274-82-9 | Thorium-228                       | 4                                    | 0                                         |
| 76  | 14269-63-7 | Thorium-230                       | 3                                    | 0                                         |
| 77  | 7440-29-1  | Thorium-232                       | 1                                    | 0                                         |
| 78  | 71-55-6    | Irichloroethane, 1,1,1-           | 1                                    | 0                                         |
| 79  | 79-01-6    | Irichloroethylene                 | 3                                    | 1                                         |
| 80  | 7440-61-1  | Uranium                           | 1                                    | 0                                         |
| 81  | 7440-61-1  | Uranium-230                       | 1                                    | 0                                         |
| 82  | 13966-29-5 | Uranium-234                       | 3                                    | 0                                         |

| Row | CASRN      | сос                | Sites with Human<br>Risks of Concern | Sites with Ecological<br>Risks of Concern |
|-----|------------|--------------------|--------------------------------------|-------------------------------------------|
| 83  | 15117-96-1 | Uranium-235        | 1                                    | 0                                         |
| 84  | 7440-61-1  | Uranium-238        | 5                                    | 1                                         |
| 85  | 75-01-4    | Vinyl Chloride     | 1                                    | 0                                         |
| 86  | 7440-66-6  | Zinc and compounds | 13                                   | 10                                        |

# D.2 Priority COCs

To focus further study on those COCs that are most frequently found at mining and mineral processing sites, EPA selected the subset of 27 COCs, for either human or ecological receptors, at four or more of the Case Study Historical sites. This selection was modeled after the ATSDR Priority List (found at <u>http://www.atsdr.cdc.gov/spl/</u>). These Priority COCs are presented in **Table D-2** in rank order from highest to lowest frequency found.

 Table D-2. CERCLA Hazardous Substances Identified as COCs at Four or More Case Study

 Historical Sites

| Row | CASRN      | Priority COC              | Sites with Human<br>Risks of Concern | Sites with Ecological<br>Risks of Concern |
|-----|------------|---------------------------|--------------------------------------|-------------------------------------------|
| 1   | 7440-38-2  | Arsenic and compounds     | 23                                   | 9                                         |
| 2   | 7439-96-5  | Manganese and compounds   | 14                                   | 6                                         |
| 3   | 7440-43-9  | Cadmium and compounds     | 13                                   | 9                                         |
| 4   | 7440-66-6  | Zinc and compounds        | 13                                   | 10                                        |
| 5   | 7440-36-0  | Antimony and compounds    | 11                                   | 7                                         |
| 6   | 7439-92-1  | Lead and compounds        | 6                                    | 10                                        |
| 7   | 7440-41-7  | Beryllium and compounds   | 9                                    | 5                                         |
| 8   | 7440-50-8  | Copper and compounds      | 7                                    | 9                                         |
| 9   | 50-32-8    | Benzo[a]pyrene            | 7                                    | 2                                         |
| 10  | 7440-47-3  | Chromium and compounds    | 5                                    | 7                                         |
| 11  | 7439-97-6  | Mercury and compounds     | 7                                    | 4                                         |
| 12  | 7782-49-2  | Selenium and compounds    | 2                                    | 7                                         |
| 13  | 7440-28-0  | Thallium and compounds    | 6                                    | 7                                         |
| 14  | 205-99-2   | Benzo[b]fluoranthene      | 6                                    | 2                                         |
| 15  | 7440-02-0  | Nickel and compounds      | 6                                    | 4                                         |
| 16  | NA         | Radionuclides             | 6                                    | 0                                         |
| 17  | 13982-63-3 | Radium-226                | 6                                    | 0                                         |
| 18  | 56-55-3    | Benz[a]anthracene         | 5                                    | 2                                         |
| 19  | 53-70-3    | Dibenz[a,h]anthracene     | 5                                    | 1                                         |
| 20  | 7782-41-4  | Fluorine (as fluoride)    | 5                                    | 3                                         |
| 21  | 14255-04-0 | Lead-210                  | 5                                    | 0                                         |
| 22  | 7440-22-4  | Silver and compounds      | 3                                    | 5                                         |
| 23  | 7440-61-1  | Uranium-238               | 5                                    | 1                                         |
| 24  | 7440-48-4  | Cobalt compounds          | 3                                    | 4                                         |
| 25  | 1336-36-3  | Polychlorinated biphenyls | 4                                    | 2                                         |
| 26  | 14859-67-7 | Radon-222                 | 4                                    | 0                                         |
| 27  | 14274-82-9 | Thorium-228               | 4                                    | 0                                         |

# Appendix E Geospatial Methodologies and Quality Assurance Protocol for 2009 Current Site Analyses

This appendix describes, in detail, the geospatial analysis' original selection, assessment, and documentation of secondary data sources. Section 6 discusses the issues, approaches, and quality assurance/quality control (QA/QC) procedures performed during the geospatial analysis itself. It includes references to a number of additional documents that provide more details regarding each of the primary data development and analysis tasks. The attachments (labeled E1, E2, E3, E4, and E5) reflect various refinements and additions to the original analysis.

This Quality Assurance Protocol originated as a Quality Assurance Project Plan (QAPP) formatted according to '*QAPP Requirements for Secondary Data Research Projects*', dated 7/1/1999 and EPA's *Guidance for Geospatial Data Quality Assurance Project Plans (EPA QA/G-5G)* (available at: <u>http://www.epa.gov/quality</u>) (March 2003).

# E.1 Objectives

The objective of this geospatial work is to allow examination of potential human and ecological exposures to CERCLA hazardous substances from current and future CERCLA 108(b) mines and mineral processors (hereafter referred to as "2009 Current" sites), using national-scale secondary data. Existing data elements contained in data systems maintained by federal agencies, and other available potential sources, will be identified that can be used to characterize exposure potential. Geospatial data will also be used to evaluate the relative severity of the potential environmental impacts broadly associated with 2009 Current site activities.

The methodology uses an iterative process that integrates four subtasks:

- Subtask 1: Preliminary draft QAPP;
- Subtask 2: Identifying, Evaluating, and Documenting Data Elements and Sources;
- Subtask 3: Obtain and Process Datasets Meeting Quality Criteria; and
- Subtask 4: Identification of Factors Related to Exposure to CERCLA Hazardous Substances (Questions) and Data Analysis.

Each of the subtasks is described in greater detail in Section E.2 below.

# E.2 Planned Evaluation Approach

This section describes the general approach used to identify and evaluate secondary data and describes the type of analytical and processing techniques.

### E.2.1 Analytical Techniques

This evaluation used specific analyses or statistical methods to characterize types of data displays, and buffer zone queries regarding location proximity to specific features of interest. Existing federal data systems were explored to identify qualitative, semi-quantitative, and

quantitative secondary data elements contained in these datasets and to evaluate the relevance of these data to examining the identified exposure factors or scenarios of interest. To the extent practicable, raw and processed data were compiled on a national scale.

### E.2.2 Evaluation QAPP

The primary objectives of the evaluation include:

- the identification of data sources and data elements,
- the determination of data quality characterizing secondary data that EPA found acceptable for use, and
- the development of examination and evaluation processes and methods.

Attachment E3, Figure E3-1 illustrates the evaluation's general process flow.

### E.2.3 Subtask 2. Identifying, Evaluating, and Documenting Data Elements and Sources

**Step1.** Identification of data sources and data elements: If existing data layers were not available or known from past EPA projects then federal data repositories were explored as the principal sources to find appropriate and sufficient datasets with coverage in the continental United States, Hawaii, Alaska, Puerto Rico, the U.S. Virgin Islands, Guam, and the Commonwealth of the Northern Mariana Islands. EPA developed summaries of the data source(s) and the associated applicable data element(s), including a general description of the data element(s).

**Step 2.** Evaluation of data usability: EPA evaluated the usability of the data sources in terms of accessibility; completeness; scale; timeframe in which data were obtained and compiled, relative to timeframes for which data are needed; reliability; availability of metadata that describe how the data have been obtained, compiled, and subsequently managed, along with any other pertinent information that characterizes the data quality.

Attachment E3, Figure E3-2 illustrates the general process flow for Subtask 2.

# E.2.4 Subtask 3. Obtain and Process Datasets Meeting Quality Criteria

EPA generally projected national level geospatial data to a standard North American map projection such as Lambert Conformal Conic, to limit distortion of distance and area so that buffer zones, areas, and lengths of geographic features were accurately calculated. EPA queried the federal data system to obtain the required datasets for specified site locations, regions, or the areas associated with the specified national-scale coverage. In many cases file geodatabases (i.e., GIS data layers for ArcMap version 9.3) had been created using the raw data elements; however, some datasets had been processed before a spatial data layer was created. When processing data, EPA prepared metadata documenting the processing steps. The geospatial analysis software generates metadata in automated format when data elements are mapped without any manipulation. EPA archived the raw datasets along with the spatial data layer and/or other associated data products generated from the original data. Attachment E3, Figure E3-3 illustrate the general process flow of Subtask 3.

### E.2.5 Subtask 4. Identification of Factors Regarding Potential Exposure to CERCLA Hazardous Substances (Questions) and Data Analysis

Attachment E3, Figure E3-4 illustrates the integration of the exposure questions with the geospatial analyses performed.

### Subtask 4, Part 1:

EPA reviewed the identified datasets for usability with respect to general questions regarding the proximity of human and ecological receptors to site features associated with release of CERCLA hazardous substances. U.S. Census Bureau data provided the best ability to measure human proximity to 2009 Current sites. Although EPA used Census 2000 data, and during the course of the project Census 2010 data became available, EPA decided that the geospatial analysis results likely would not change significantly with Census 2010 data due to the general pattern of 2009 Current site locations.

For ecological receptors, EPA distinguished between threatened and endangered species, which have special status under the Endangered Species Act, versus non-threatened and endangered species. For threatened and endangered species, the U.S. Fish and Wildlife Service data on critical habitat provided the best ability to estimate vulnerability (due to proximity) to 2009 Current sites. For other (non-threatened and endangered species) ecological receptors, a variety of federal geospatial data were used, both for assessing potential vulnerability (due to proximity) of those receptors to CERCLA hazardous substance releases at the 2009 Current sites, and for assessing impacts from low-probability, high-consequence events such as floods.

<u>Subtask 4, Part 2</u>: EPA used the Geographic Information System (GIS) to perform spatial analyses to answer the associated potential for exposure to CERCLA hazardous substance question or query, and documented the steps and processes included in developed algorithms.

# E.3 Secondary Data Needs and Sources

EPA did not to collect primary data for the geospatial analysis due to the large volume of already-published data that could be used as secondary data in the analysis. In general, EPA used national level geospatial data to provide consistency in the analysis. National level geospatial data created by various Federal agencies are standard sources for EPA geospatial analyses. EPA generally used data covering the most recent timeframe of this report (approximately 2010-2011). Due to the complexity and cost of developing national geospatial data layers, the dates for these most recent geospatial data vary. For some subjects (e.g., surficial geology), the time period of the data is not of great importance since surficial geology generally does not change significantly over time. For other layers, such as landuse/landcover, various sources are available with dates ranging from the 1970s to the early 2000s.

National level geospatial data are available at different scales depending on the subject. National elevation data, for example, is available at 30-meter pixel resolution. National Hydrography Datasets are produced from maps at a scale of 1:100,000. Some geospatial data (such as census bureau TIGER line files) are produced from more than one scale of original maps and therefore are sometimes referred to as multi-scale themes. In general, EPA used geospatial data layers at the highest resolution (largest scale) available for each theme to produce analytical results at the best precision possible. This evaluation used Federal Geographic Data Committee (FGDC) metadata. The metadata fully document the source of the data, processing steps used to generate the data, any limitations or errors known to exist in the data, the structure of the data and source scale.

Secondary data were collected from a variety of sources and are described in Section 6 and in additional documents that are referenced in Section 6.

Attachment E5, Figures E5-1, E5-2, E5-3, and E5-4 list the types of secondary data used for this report. In general, EPA used data sources that were 1) recognized according to a national geospatial standard, 2) the most recent available, 3) at the largest scale (most precise), and 4) had Federal Geospatial Data Coordinating Committee (FGDC) metadata. Data documentation is reproduced in Attachments E1 and E2.

# E.4 Quality of Secondary Data

For this report, EPA assessed the quality of all secondary data for appropriateness for its intended use, as described below.

# E.4.1 Quality Requirements

In general, EPA assumed that national geospatial data sources from other federal agencies were of known and appropriate accuracy, completeness, and precision. In certain cases, for feature definitions and coded attributes, EPA also made some assumptions regarding feature definitions and coded attributes for standard national datasets. For example, the National Hydrography Dataset (NHD) contains features coded as 'Swamp/Marsh' features. EPA assumed that Swamp/Marsh features from NHD represent what one would normally think of as 'wetlands' even though no feature coded as 'wetlands' exists in the NHD. These assumptions are documented in Attachments E-1 and E-2.

For non-spatial secondary data from sources such as spreadsheets, reports, and other documents, EPA used various techniques to assess the quality and accuracy of the information, such as spot-checking a subset of the records and comparing against other data sources, as well as evaluating the data source (agency, organization, or person creating the data).

# E.4.2 QA/QC Procedures

EPA used a checklist to assess the general appropriateness and quality of each identified secondary data source for use. The checklist included items such as, "Does the source provide national coverage?"; "Does the source contain FGDC metadata?"; and "What is the scale/resolution of the data source?" Data sources that did not meet the appropriateness check either were not used, or were used with a disclaimer (see section E.3.3 below) to note that its quality was not known. In addition, a second analyst reviewed specific analytical methods such as buffers and overlays, to ensure that those analyses were carried out correctly.

# E.4.3 Data Disclaimers

EPA provides disclaimers about the assessment of a data source's quality. For example, queries regarding proximity of certain receptors, such as the presence of threatened or endangered species within a given distance from each site, might only be able to be developed to indicate the number of threatened and endangered species within the counties that are touched by the distance buffer around each site. This result occurs because secondary data sources of threatened and endangered species are only available at the county geography level and it is not possible to identify where a particular threatened or endangered species may exist within a county.

# E.5 Data Reporting, Data Reduction, and Data Validation

### E.5.1 Data Reduction and Calculation Procedures

EPA used standard software tools for the data characterization. For example, ArcGIS® software was used to calculate geographic measurements such as areas, lengths, elevations, etc. The specific calculation code used to make these measurements is not available to the user. However, EPA ensured that the proper methods were used to analyze the data, calculate new variables, or perform data summaries and data reductions. For example, a second analyst checked query results to ensure appropriateness and accuracy of the method used.

### E.5.2 Validation Procedures

The validation procedures that were used are fully documented in Attachments E1 and E2.

Geospatial data were saved in ArcGIS® 9.3 file geodatabase format. These data were structured and organized in such a way to make it easy for other ArcGIS® 9.3 users to view the secondary data sources used and to view the results of each query analysis.

# E.6 QA/QC Actions and Summaries

The draft QAPP, *CERCLA 108(b) Risk Analysis Support: Geographic Information System*, described the quality assurance and quality control activities. It was subsequently updated: The current version (below) contains the most recent revisions.

The completed tasks are as follows:

- Assembled the list of 2009 Current sites
- Geolocated individual 2009 Current sites using automated and manual techniques.
- Collapsed (or combined) selected mines and processors based on distance and attribute criteria.
- Measured the widest extent of each mine
- Estimated population demographics within 1, 2, 3, 4, 5, 10, 15, and 20 miles of each 2009 Current site.
- Determined which 2009 Current sites fall in Federal Lands or Indian Lands

- Determined the NHDPlus catchment and 12-digit watershed within which each site falls, calculating downstream attributes, and summarizing presence of certain environmental characteristics downstream of each 2009 Current site. This task is generally known as the Aquatic Areas of Review (AQAOR) process.
- Determined the presence of several types of sensitive environmental areas within 3, 6 and 20-miles of 2009 Current sites, including the combined sites.

This section is structured with each of these tasks as its own sub-section. Each subsection describes the data sources used in each task, the techniques used to evaluate the quality and usability of each data source, the techniques used to perform quality assurance/quality control (QA/QC) on techniques used to generate or enhance the data source, and the QA/QC performed on the techniques used to analyze mine and processor locations in relation to other geographic entities.

Many supporting documents that describe, in detail, processing methods and techniques, and QA/QC actities are referenced and will be referred to in this text to avoid duplication.

All processing of digital data was accomplished using the following applications and versions:

- ArcGIS® 9.3.1 or ArcGIS® 10.0 (WA 2-16): GIS processing and analysis tasks.
- Excel® 2007: Certain data organization, listing, and tabulating tasks.
- MS Access® 2007: Tabular data processing and query tasks.
- Python 2.6: Programming environment for demographic analysis application.

### E.6.1 Developing the List of Commodities of Interest and Creating Lists of Mines

The principal sources of data to develop the list of commodities and the lists of hard rock mines and processors of interest to EPA is the Mine Safety and Health Administration (MSHA, part of the U.S. Department of Labor) and the U.S. Geological Survey (USGS, part of the U.S. Department of the Interior). MSHA was the primary source because MSHA maintains a database of mining operations in the U.S. that includes type of commodity mined, address of the mine, type of mine or processor (surface, underground), and its status (active, inactive, closed, etc.). The MSHA and USGS lists were supplemented with a a list of talc mines.

Details regarding the source date of all data used to develop the 2009 Current Sites list are found in **Attachment E1** and **Appendix B.** The commodities to be included in the 2009 Current Sites list were directly extracted from MSHA data files and USGS Minerals Yearbooks. Queries on the MSHA dataset based on commodity types, mine types (i.e., mine vs. processor), and site status characteristics (e.g., New, Active, Intermittent) were developed to create lists of mines and processors. There are some limitations in the source data, such as incomplete or inconsistent location data (e.g., sometimes only a state was identified, or only a county and state).

### **QA/QC** activities:

• Manual comparison of lists provided by EPA with the resulting lists of sites.

- Extraction of actual text strings present in MSHA data to match 108(b) commodities.
- Comparing resulting lists of mines and processors against various versions of MSHA data bases and other data sources
- Identification of sites that were duplicative between datasets

### **Final products include:**

- List of Commodities (contained in **Appendix B, Table B-4**. "MSHA and USGS Commodities Potentially Subject to CERCLA 108(b) Hard Rock Mining Rule")
- The list of 2009 Current sites, including the combined sites, is provided in **Appendix B**, **Attachment B5** ("2009 Current Sites").

# E.6.2 Geolocating Mines and Processors

A full description of the methods, sources, and procedures used to geolocate, enhance/improve locations, and code all locations with a confidence level are provided in **Attachment E2** ("Geospatial Database Development Process"). In general, the QA/QC activities that were undertaken to ensure accuracy and usability of the locations of 2009 Current sites was based on visual inspection of the locations provided in the MHSA, USGS, and EPA data sources that were used to construct the 2009 Current Sites list.

Some individual 2009 Current mines and processors were combined into new 'sites' depending on proximity, commodity, and name. The process of combining mines and processors is described in Section 6.4 below.

Data sources used for geolocating of mines and processors included:

- The mine or processor address provided by MHSA. GIS address geocoding procedures were used to create a latitude/longitude for each site for which an address was supplied.
- Internet searches based on mine and processor name or other information provided in source lists were used to attempt to map 2009 Current sites with no known address or location. A list of the web-sites accessed and the mine or processor relevant to the search is provided in the References section of **Attachment E2**.

### **QA/QC** activities:

- Visual review of the geocoded location was conducted on 100% of the 2009 Current sites. The visual review was accomplished using Google Earth and ArcGIS software with the highest publically available satellite imagery at each 2009 Current site.
- Mines and processors were coded at the end of visual review to indicate the subjective confidence level for the accuracy of each location. The Loc\_Conf attribute contains the following codes:
  - $\circ$  0 = no location could be found OR the location provided is likely to be inaccurate and no source could be found to improve it.
  - $\circ$  1 = the location may or may not be accurate; further information would be required to assign a higher confidence value.
  - $\circ$  2 = the location seems to be accurate based on the visual inspection of the location.

#### Limitations in source data and QA/QC include:

- Google Earth imagery and imagery available via ArcGIS are of recent, but unknown date in most cases. It is possible that, in some cases, a 2009 Current site could not be located because it was created after the date of the imagery that was consulted.
- The locational accuracy of the imagery in Google Earth and ArcGIS cannot be directly verified, but EPA assumes it to be accurate for the purpose of locating 2009 Current sites. Imagery available from these tools is widely used by government and industry for mapping and geolocating entities.
- Assumptions were made about the actual boundaries of 2009 Current sites. In many cases, mines may have encompassed more than one pit, or the wrong mine (when multiple pits were visible) might have been chosen. There is no way to verify that the location chosen for any 2009 Current site reflects the actual location without contacting each mine or processor.
- EPA did not use a specific quality requirement for the 2009 Current Site locations except to identify the best locations available from the available datasets and internet searches. The Loc\_Conf (location confidence code) assigned to each 2009 Current site is a subjective assessment of the quality of the location.

#### **Final products include:**

- ArcGIS shapefile V8\_Final\_list\_2011\_03\_03.shp of the 2009 Current sites which included individual mines, individual processors, and those mines and processors that were aggregated into "combined sites."
- MS Acccess database file (V8\_Deliverable.mdb) that contains the latitude/longitude coordinates for the 2009 Current sites.
- A cross reference file (V8\_UNIVERSAL\_XREF) in the V8\_Deliverable.mdb database that indicates each individual mine and processor, as well as a new site identifier (SITE\_RNUM) for those mines and processors were aggregated into combined sites.
- A complete list of unique 2009 Current sites (V8\_FINAL\_LIST) in the V8\_Deliverable.mdb database that contains a complete list of final sites along with their SITE\_RNUM IDs and a flag indicating, for each site, if it is a mine, a processor, or a combination.

### E.6.3 Measuring the Geographic Extent of Each Mine

Because the sizes of mines vary greatly, EPA made a general estimate of the size of each mine by measuring the length of the widest part of each mine disturbed area. These measurements are useful in determining the size of a mine and were performed relatively quickly by using existing measurement tools provided with the Google Earth applications.

The methodology employed was to visually examine Google Earth imagry of each mine, and use the interactive measurement tool to establish a rough estimate of the width of the widest part of the mine. The specific measurements are contained in two fields, Long\_Site\_Mile and Long\_Mine\_Mile.

In general, the measurements were made using the following methodology: The measurement is based on a line that transects the mined pit area, within the mine property, connecting the farthest distant and opposite points along a discernable boundary around the mined or excavated area. Conceptually, the line drawn would encompass all of the mined or pit areas if pivoted on its mid-point. This value usually represents the distance across the surface mine excavation area unless otherwise noted. Process and storage areas that are located on the periphery of the mined area were not included in the distance measurement; however, these areas are often located within the pit or excavated area and would be included. This measure does not apply to underground mines unless it is thought that the mine entrance is located inside the pit and then the pit area is used to bound this location. Note that several mine sites have multiple pit locations situated across their site and values provided are for the distance across all mined areas. However, for sites 4300150, 2601842, 2600827, 200134, 301926, and 300715, several values are provided. These values represent a median value or the measurement for the significantly larger pit area as noted. The measurements for each individual pit is also given in the comments for reference. This value is only a longest axis distance measurement and not a 2-or 3-dimensional aspect ratio of the excavated area.

All values are recorded in miles.

### Data sources used for measuring the widest part of each mine:

- The 2009 Current Mines shapefile converted to KMZ format.
- Google Earth Version 5 and the imagery that is accessible via Google Earth.

### QA/QC activities:

• Independent spot checks of 10% of the measurements were made to verify that the measurements were reasonable.

### Limitations:

• The measurements are made interactively, using professional judgment. Different professionals may make different decisions as the shape and extent of the mines from the identical imagery.

### E.6.4 Combining Selected Mines and Processors into Single 'Sites'

EPA identified which 2009 Current sites were within five kilometers of each other and also shared the same name, owner name, or operator name. The purpose of this procedure was to eliminate duplicate entities when these individual sites could reasonably be assumed to be in essence a single 'site' for regulatory purposes.

As described in detail in **Attachment E2**, EPA used a two-stage process. The first stage involved combining mines with other mines and combining processors with other processors. The second stage combined mines (or previously combined mines) with processors (or previously combined processors). When combined, a new location was chosen for the combined site that was generally between the original locations, or otherwise seemed to fall in the middle of the disturbed area encompassed by the combined sites.

New site IDs (SITE\_RNUM) were assigned to all remaining sites (individual mines, individual processors, and combinations). The SITE\_RNUM identifiers were coded to aid in identifying which sites were the product of the combining process and which were not. The SITE\_RNUMs were coded as follows:

< 1000: Mines combined with other mines or processors combined with other processors. None of which were subsequently re-combined.

1000 – 1999: Mines (or combined mines) and processors (or combined processors) that were combined with each other. In other words, these sites are the product of combining both mines and processors.

2000 – 2999: New identifiers for individual processors that were not combined. 3000-3999: New identifiers for individual mines that were not combined.

### **QA/QC** activities:

- A new table was created to hold a cross-reference between the original mine ID (MINE\_RNUMs), original processor IDs (FAC\_RNUM) and the new site IDs (SITE\_RNUM) based on which mines and processors were combined.
- The cross reference table was used to examine each decision regarding which mines and processors should be combined. An analyst visually examined aerial photography of each combined site to ensure that the individual sites were within five kilometers of each other and that the owner name, operator name, and/or controller name were the same (or substantially similar).
- Based on the above QA/QC procedure minor modifications were made to the cross reference list.
- The cross reference table also contains a code to indicate which mines and/or processors were combined twice. This can occur where two mines, for example, were combined based on the criteria and then were subsequently combined with one or more processors.
- It is important to note that in many cases subjective judgments were made regarding the similarity of names, owner names, and operator names. In addition, the geographic terrain (satellite imagery) played a role in decisions depending on the extent of disturbed areas and how these areas related to the site point locations.

### **Final products include:**

• A list of all 2009 Current sites, including individual mines, individual processors, and combined mines/processors. There are a total of 491 sites in the 2009 Current Sites list.

# E.6.5 Estimating Population Demographics

As described in detail in **Attachment E1** ("Demographic Analysis Methods"), EPA estimated counts of populations by various demographic characteristics within 1, 2, 3, 4, 5, 10, 15, and 20 miles of each 2009 Current site. This procedure was first run for individual sites, and subsequently for combined sites.

A total of 48 different demographic characteristics (e.g., population counts by age group, race/ethnic group, income, etc.) were estimated for each of the eight buffer distances for each site. Due to the volume of data to be used and the potential for errors if done manually, EPA

developed an ArcGIS macro program to run the analysis and construct the output files. Complete documentation on the methods, techniques, application programs, queries, and results of the demographic analysis are provided in Attachment E1. Details regarding the specific source of each input database, any limitations of those data, assessment of the usability is included in that document. The following summarizes the sources, QA/QC activities, limitations and deliverables.

#### **Data sources:**

- 2009 Current Sites shapefile.
- 2000 Census Block Group polygons provided in the ArcGIS 9.3 datasets.
- Census demographic data from the U.S. Census Summary File 3 (SF3) files available from the U.S. Census Bureau.

### **QA/QC** activities:

- The queries that EPA developed to generate the demographic input data (for example, to combine gender-specific population data into a total for each 5-year age group) were independently checked by a second analyst to ensure that the variables selected, equations used, and calculation results for each query were correct.
- The application program developed to run the analysis was developed and tested to completion. A second GIS analyst performed a code review to ensure that the program was taking the appropriate actions and using appropriate methods to produce accurate results.
- Visual review of some output data identified a bug or error in the ArcGIS processing which resulted in the disappearance of some polygons in the output shapefiles. EPA decided to place a check on the outputs of each buffer zone to sum up the area of all output polygons for each mine and compare the sum to the area of the original buffer. This check would automatically identify cases where random polygons were dropped by ArcGIS. When problems were identified, EPA re-ran the demographic program until the check ran without identifying errors.
- Each buffer zone distance was output to its own database table. EPA checked each resulting table to ensure that each table contained the correct number of records the correct fields.
- Spot checks of demographic calculations were made on randomly selected files.
- Mines or processors having poor or no locations (Loc\_Conf = 0) were coded with a value of '-99999' for all demographic variables because any demographic results for these mines or processors would be incorrect since the input location of the mine or processor was most likely incorrect.

### **Final products include:**

Sixteen demographic analysis files were generated based on: eight buffer zone distances to be analyzed; both mines and processors were run through each buffer zone analysis. The demographic analysis for Alaska was run separately because a different map projection had to be used to accurately handle buffer distances in Alaska as compared to the contiguous U.S. There are no demographics results for processors in Alaska because no processors are located in Alaska. A list of the demographics tables is provided below:

- V8\_Combined\_20110412\_1Mile\_CONUS\_final
- V8\_Combined\_20110412\_2Mile\_CONUS\_final
- V8\_Combined\_20110412\_3Mile\_CONUS\_final
- V8\_Combined\_20110412\_4Mile\_CONUS\_final
- V8\_Combined\_20110412\_5Mile\_CONUS\_final
- V8\_Combined\_20110412\_10Mile\_CONUS\_final
- V8\_Combined\_20110412\_15Mile\_CONUS\_final
- V8\_Combined\_20110412\_20Mile\_CONUS\_final
- V8\_Combined\_20110412\_1Mile\_AK\_final
- V8\_Combined\_20110412\_2Mile\_AK\_final
- V8\_Combined\_20110412\_3Mile\_AK\_final
- V8\_Combined\_20110412\_4Mile\_AK\_final
- V8\_Combined\_20110412\_5Mile\_AK\_final
- V8\_Combined\_20110412\_10Mile\_AK\_final
- V8\_Combined\_20110412\_15Mile\_AK\_final
- V8\_Combined\_20110412\_20Mile\_AK\_final

# E.6.6 Identifying Which Mines and Processors Fall on Indian Lands and Federal Lands

To determine which 2009 Current sites are located on Indian Lands and Federal Lands, EPA used a GIS overlay point-in-polygon technique to identify the Indian Land or Federal Land polygon in which each point falls.

### Indian Lands

The ArcGIS Identity tool was used to overlay mine and processor points into a GIS layer of Indian Lands to identify whether or not each point falls on Indian Lands.

#### **Data sources:**

- 2009 Current Sites shapefile
- Indian Lands boundary layer from the United States Department of the Interior, Bureau of Indian Affairs (BIA), downloaded as a component of the USA Federal Lands layer package from <a href="https://www.arcgis.com/home/item.html?id=26c2a38f94c54ad880ff877f884ff931">https://www.arcgis.com/home/item.html?id=26c2a38f94c54ad880ff877f884ff931</a>.

The definition of "Indian Lands" can differ, depending on the purpose for the definition. This analysis required a nationwide layer containing broad definitions of what constitutes Indian Lands produced by a U.S. agency that has the relevant knowledge to produce such a dataset. For this reason, EPA chose the data layer from the BIA. However, exact boundaries are sometimes disputed, and detailed maps are often not generated in order to avoid raising issues of jurisdiction or interpretation.

Because of the different definitions of what constitutes Indian Lands, the lack of consensus on on boundaries and considerations such as those listed above, EPA carefully
examined the exact type of Indian Land that included a 2009 Current site, and used the results of this analysis with care.

### **QA/QC** activities:

- EPA had no specific data requirements for data quality of the Indian Lands analysis. Based on this, and the lack of agreement on any particular nationwide layer, the quality of the data being used and the results are unknown.
- EPA ensured that all 2009 Current sites with location data were included in the outputs of the overlay analysis. For 2009 Current that did not fall on Indian Lands, all Indian Land attributes are blank.

#### Final data products inlcude:

• The Indianlands\_V8.mdb file contains the results of the Indian Lands analysis. Specifically, the database query 'ON\_IndianLands' was used to list the 2009 Current sites that are physically located on Indian lands.

#### Federal Lands

The ArcGIS Identity tool was used to overlay 2009 Current Site point locations with a GIS layer of Federal Lands to identify which sites fall on Federal Lands.

#### Data sources:

- 2009 Current Sites shapefile.
- U.S. National Atlas Federal and Indian Land Areas layer. This layer was chosen because it is national in scale and is a recognized and widely used source of polygon delineations of lands that are controlled by the U.S. Government.

### **QA/QC** activities:

- EPA had no specific data requirements for data quality of the Federal Lands analysis. Based on this and the lack of an official government standard layer, the quality of the Federal Lands layer is unknown.
- EPA ensured that all 2009 Current sites with location points were included in the outputs of the overlay analysis. For 2009 Current sites that did not fall on Federal Lands, all Federal Land attributes are blank.

#### Final data products include:

• The Mines\_V7\_FedLands, and Processors\_V7\_FedLands data tables included in the V7\_Deliverables.mdb file contains the results of the Federal Lands analysis.

## E.6.7 Aquatic Areas of Review (AQAORs)

This analysis was conducted to determine the hydrologic setting and potential downstream areas that might be impacted by releases from 2009 Current sites. This procedure is described in detail in Appendix H ("Ecological Receptors"). The information that follows below is a summary of the data sources, analyses, and QA/QC procedures used on this task.

The analytical method first identified the twelve digit hydrologic catalog unit (HUC-12) that each site falls in. All catchments within the HUC-12 were then identified, and downstream flow navigation was run to select all catchments downstream of the HUC12 catchments that were estimated to be within an estimated 24-hour downstream travel distance. These areas are known as the Aquatic Areas of Review (AQAORs). A series of overlay operations were then run to determine how the AQAORs intersected with a variety of additional layers (such as major dams of the U.S., Safe Drinking Water Source Protection Areas, etc.) to identify which AQAORs might have downstream areas with sensitive environmental conditions.

Because the 2009 Current Sites universe contains combined sites, the methodology involved evaluating individual mine and processor locations, and then combining and summarizing the results for the combined sites.

#### Data aources:

- 2009 Current Sites shapefile
- NHDPlus surface hydrography database.
- National Wild and Scenic Rivers System from <a href="http://www.rivers.gov/maps.html">http://www.rivers.gov/maps.html</a>

   The National Wild and Scenic Rivers System was created by Congress in 1968

   (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve certain rivers with
   outstanding natural, cultural, and recreational values in a free-flowing condition.
   These river systems are typically viewed as Outstanding Resource Waters (Tier 3
   waters) in EPA-approved State Water Quality Standards under the Clean Water Act.
- Major Dams of the United States from the NID available from https://www2.usgs.gov/science/cite-view.php?cite=244

This map layer from the USGS National Atlas portrays major dams of the United States, including Puerto Rico and the U.S. Virgin Islands. The map layer was created by extracting dams 50 feet or more in height, or with a normal storage capacity of 5,000 acre-feet or more, or with a maximum storage capacity of 25,000 acre-feet or more, from the 79,777 dams in the U.S. Army Corps of Engineers National Inventory of Dams. Descriptive information includes the dam name and location, the risk level associated with the dam, and the purposes (beneficial uses) for which the dam was constructed. Purpose codes include the following "beneficial uses", which will correlate with CWA WQS designated uses: 'F' Fish and Wildlife; 'R' Recreation; and 'S' Water Supply.

• FEMA Q3 Special Flood Hazard Areas selected for use from the EPA Drinking Water Mapping Application. Background and metadata is available at <a href="https://www.fema.gov/flood-map-definition">https://www.fema.gov/flood-map-definition</a>

A vector polygon GIS layer showing Special Flood Hazard Area (SFHA) polygons in the FEMA Q3 flood data GIS layers. The land area covered by the floodwaters of the base flood is the Special Flood Hazard Area (SFHA) on official FEMA National Flood Insurance Program (NFIP) maps. The SFHA is the area where the NFIP's floodplain management regulations must be enforced and the area where the mandatory purchase of flood insurance applies. Flood hazard areas identified on the Flood Insurance Rate Map are identified as a Special Flood Hazard Area (SFHA). SFHA are defined as the area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The 1-percent annual chance of flood is also referred to as the base flood or 100-year flood. Q3 Flood Data is a digital representation of certain features of FEMA's Flood Insurance Rate Maps, intended for use with desktop mapping and Geographic Information Systems technology. The Q3 Flood Data are produced for counties that have flood risk impacts around 70% of the population of the Untied States. This means that FEMA Q3 GIS products are not available for all counties. Materials are available for the contiguous United States, Hawaii, Alaska, Puerto Rico, and the Virgin Islands. The separate county-level Q3 GIS layers are combined into a seamless national GIS layer for polygons that are within Special Flood Hazard Areas. FEMA 100 year floodplains are likely to contain important aquatic habitats, including riverine or other wetland types.

- Surface Drinking Water Source Protection Areas available via the EPA Drinking Water Mapping Application (available at <a href="https://www.epa.gov/sourcewaterprotection/dwmaps">https://www.epa.gov/sourcewaterprotection/dwmaps</a>). Data represent Source Protection Area (SPA) polygons for coastal and inland surface waters – based on NHDPlus catchments for the continental US (CONUS) and convex hulls for Alaska. In the CONUS, NHDPlus coastal catchments are used as SPAs for public water system facility surface sources on NHD coastal shorelines. For inland surface sources, 24 hour upstream time of travel navigation is applied to select NHDPlus catchments and define watershed-based SPAs. Information is available to identify community versus non-community public water systems related to these SPAs, but this information is not included with this dataset. The SPAs and other primary materials are EPA Sensitive Drinking Water Information. Only the "indicator" results of geospatial proximity checks with the AqAORs will be made publically available.
- Groundwater Source Protection Areas available via the EPA Drinking Water Mapping Application

Data represent Source Protection Area (SPA) polygons for groundwater. 1-mile circular buffers were created around groundwater well facilities to create the SPAs. Information is available to identify community versus non-community public water systems related to these SPAs, but this information is not included with this dataset. The SPAs and other primary materials are EPA Sensitive Drinking Water Information. Only the "indicator" results of geospatial proximity checks with the AqAORs will be made publically available.

• Tribal Drinking Water Sources available via the EPA Drinking Water Mapping Application

Data represent facility source points (predominantly groundwater wells) from SDWIS/FED latitude/longitude coordinates. Source Protection Areas (SPAs) have not been developed for the Drinking Water Mapping Application (DWMA) – so the coordinate points are used to determine proximity to Aq-AORs. Information is available to identify community versus non-community public water systems related to these facility points but this information is not included with this dataset. These tribal facility points and other primary materials are EPA Sensitive Drinking Water Information. Only the "indicator" results of geospatial proximity checks with the AqAORs will be made publically available.

• Federal Lands of the United States available from the National Atlas (from <a href="https://www.arcgis.com/home/item.html?id=26c2a38f94c54ad880ff877f884ff931">https://www.arcgis.com/home/item.html?id=26c2a38f94c54ad880ff877f884ff931</a>.)

This publicly available GIS layer provides polygons for various "agency or bureau" (AGBUR) federal public lands. Federally-owned and managed public lands include National Parks, National Forests, and National Wildlife Refuges. This layer is included in the EPA OW RAD ancillary National Atlas GIS layers.

• Clean Water Act Section 303(d) Impaired Waters available from EPA's WATERS Expert Query Tool

A data table that documents "metals" impairments was taken from the WATERS ATTAINS database in a pull for October, 2010, for all waters showing impairments (EPA's Integrated Reporting categories 4a, 4b, 4c and 5). For GIS mapping, the most comprehensive and publicly available mapping layer is EPA's "2002 Impaired Waters Baseline National Geospatial Dataset" (released in March, 2010).

• NPDES Major Permitted Processors available from EPA at

www.epa.gov/enviro/geo\_data.html

Information is from the EPA OEI Geospatial Data Download Service. At the time of this evaluation the GDDS had last been updated on January 30, 2011. NPDES "majors" selected from the full set of facility locations for numerous EPA programs. Information based on ICIS/PCS NAICS/SIC codes is provided to be able to tell WWTP (SIC code of 4952 for SEWERAGE SYSTEMS) from other industrial/commercial (IC) facilities.

• RCRA Large Quantity Generator Processors available from EPA at <u>www.epa.gov/enviro/geo\_data.html</u>

Information is from the EPA OEI Geospatial Data Download Service. At the time of this evaluation the GDDS had last been updated on January 30, 2011. LQG facilities were selected from the full set of facility locations for numerous EPA programs where the contents of RCRA1\_INT through RCRA6\_INT contained the string "LQG."

• Alluvium Layer from USGS Generalized Geologic Map available from the National Atlas at <a href="https://pubs.usgs.gov/atlas/geologic/">https://pubs.usgs.gov/atlas/geologic/</a> (CONUS only)

Alluvium layer from USGS Generalized Geologic Map of the United States in the National Atlas. For parts of the CONUS not covered by the FEMA Q3 floodplain GIS layer, alluvial deposits (alluvium) provide a proxy to identify areas that may be flood prone.

- Indian/Tribal Lands for Native American Groups available from the National Atlas at http:/nationalatlas.gov/mld/indlanp.html (CONUS only) From the USGS National Atlas layer on Indian (Tribal) Lands.
- Anadromous Waters Catalog (Alaska only) available from https://www.adfg.alaska.gov/sf/SARR/AWC/
- Alaska Native Village Statistical Area (ANVSA) (Alaska only) available from <u>http://www.epa.gov/waters/doc/auxiliary/tiger.html</u>

These data layers were chosen because they are the only national (or Alaska-based) source of GIS data containing the types of information required for the analysis. All of these data sets and layers are either nationally recognized and readily available GIS data sources, or they are in use in official EPA data management systems and applications (for example, the layers available from within the Drinking Water Mapping Application.

### **QA/QC** activities:

The specific data quality of each of these datasets is provided (if available) in the metadata that is attached to each layer. For the most part, the data quality is unknown because of the lack of independent verification of these layers and because EPA had no specific data quality requirements for these layers.

### Final products include:

The output tables for the AQAOR analysis are provided in the V8\_AQAORs.mdb database in the following tables:

- V8\_Mines\_Catchments\_withInfo\_final
- V8\_Processors\_Catchments\_withinfo\_final
- V8\_Mines\_Processors\_Catchments\_withINFO
- V8\_Final\_List
- V8\_Universal\_Xref

## E.6.8 Sensitive Environmental Lands

EPA identified those 2009 Current sites that may affect sensitive ecological areas if releases were to occur to land or water. EPA first identified a series of readily available, nationwide data layers that contain the boundaries of potentially sensitive areas.

#### Data sources:

- Coastal Barrier Resources System (CBRS) boundaries (contains areas designated as underveloped coastal barriers in accordance with the Coastal Barrier Resources Act)
- Critical Habitat boundaries (Areas where critical habitat exist for species listed as endangered or threatened. Produced by the FWS)
- Fish and Wildlife Service (FWS) Approved Areas (Areas approved for purchased by FWS)
- FWS Interest Areas (areas administered by the FWS)
- FWS Special Designation Areas (areas on which 'special designations' have been placed by FWS under the direction of the U.S. Congress)
- Protected Areas Database (PAD) (Contains areas of publically-owned lands; private conservation lands, and UNEP-World Conservation Monitoring Center's World Database for Protected Areas.)

Detailed information on these layers was collected in a memo dated November 22, 2010.

The analytical process involved defining buffer zones around each 2009 Current site at 3miles, 6-miles, and 20-miles and then overlaying each buffer zone onto each of the sensitive environmental lands layers noted above. The results show which 2009 Current sites touch sensitive lands for each buffer distance.

### QA/QC activities:

Visual spots checks using GIS were made to examine selected V8 sites, the buffer zones created around them and the locations of sensitive areas in relation to the buffers. Spot checks ensured that the procedure was working correctly and that the output layer and tables accurately reflected the overlay process. (Note, however, that EPA requested lists of those sites that had sensitive environmental areas and therefore, only those sites whose buffers interested sensitive environmental areas were included in the output table provided to EPA.)

All V8 sites, even those with a location confidence code of '0' (meaning there is no location for the site or it is presumed to be incorrect) were included in the analysis.

# **Attachment E1. Demographic Analysis Methods**

## E1-1 Introduction

This document describes the Geographic Information System (GIS) tools and methods developed to calculate demographic summary information associated with 2009 Current sites. This document describes datasets and methods to characterize the demographics within eight buffer zone areas surrounding each location, including:

- background for this work,
- data sources used in generating the demographic datasets,
- inputs of spatial and supporting data,
- process methods, and
- data limitations.

EPA developed a series of demographic datasets for the 2009 Current sites, to assess the likelihood for potential impacts to human health from 2009 Current sites. The demographics data alone are not adequate for use in a Superfund risk assessment, and it is expected that other methods and data would be needed to further refine the data for that purpose.

# E1-2 Background

The 2009 Current Sites geodatabases used for this analysis were prepared for the CERCLA 108(b) hardrock mining rulemaking. The point location data 2009 Current sites are described in **Attachment E2** ("Geospatial Database Development Process").

EPA developed a set of GIS queries about the demographic profile of human receptors near 2009 Current sites to estimate the following:

- The total population within zones extending out to a 1, 2, 3, 4, 5, 10, 15 and 20 mile distance from each identified site coordinate point;
- The number of children in the following age categories for each zone: <1 year old, 1 to <2 years old, 2 to <3 years old, 3 to <6 years old, 6 to <11 years old, 11 to <16 years old, and 16 to <21 years old;
- The number of residents in each of the narrowest household income ranges provided by the census for each zone;<sup>1</sup>
- The number of residents by race for each zone;
- The number of residents by ethnicity for each zone.

# E1-3 Data Sources

EPA used the following data sources as inputs to the demographics analysis.

<sup>&</sup>lt;sup>1</sup> EPA used income by household, rather than by individual resident, because the census data doesn't include income by resident.

### Census demographic data:

Source: Geolytics Inc. 2000 U.S. Census Long Form SF3 DVD.

Geolytics is a company that publishes U.S. Census data on CD-ROM, DVD, and Online (www.geolytics.com). The data from Geolytics is relatively easy to query and produces easy to use tables.

## Census block group boundaries:

Source: ESRI Block Groups for 2000 U.S. Census

Environmental Systems Research Institute (ESRI) is a Geographic Information Systems software company based in Redlands, CA. With each software release ESRI provides up-to-date spatial data on a 'data disk'. EPA used version 9.3.1 and, specifically used the *census block group* boundary layer in the demographics analysis. Although *census block* polygons are smaller than *census block group* polygons, meaning more precise estimates of population counts could be determined from them, EPA chose to use *census block groups* because not all variables of interest in environmental justice analyses (such as income, poverty and educational attainment) are available at the *census block* level. *Census block groups* provide the smallest level of census geography for which all significant census demographic variables are available.

### 2009 Current Sites Locations:

The 2009 Current Sites locations file used for this particular demographic study was developed as described in Attachment E2. The list of mines and processors contained in this dataset was originally obtained from the *Mine Safety and Health Administration* (MSHA). Coordinate locations were determined from various sources and through a variety of methods with varying degrees of confidence.

### Intermediate Datasets:

During the demographics processing, the following two types of intermediate data layers were generated:

- Buffer zones around each mine at 1, 2, 3, 4, 5, 10, 15, 20 mile distances (produced by 'Buffer Tool' in ArcMap as part of the analysis process)
- Intersected Block Groups and Buffer zones (produced by 'Identity Tool' in ArcMap as part of the analysis process)

# E1-4 Processing Methods

## **Creation of Input Demographics Data Table**

EPA queried the Geolytics census DVD by census block group for the entire U.S. to select the 87 variables needed for the analysis. The variables are listed in **Appendix E1-2: 2000 SF3 Census Variables Used in Demographic Analysis**. For total population, income, race and ethnicity, the census data were already organized sufficiently for the analysis. For age however, the demographic census data were separated by sex and individual years, so further queries were

performed to create a table that mirrored the needed age groups. EPA summed counts of 'males' and 'females' values together, when necessary grouping several year fields. For example, to produce the age group of "11 to < 16 years," EPA summed both the 'males' and 'females' values for '11 years', '12 years', '13 years', '14 years' and '15 years'. (The 'make table' query that was used to format the demographics data table is included in **Appendix E1-3: "Make Table" Query for Demographic Data Table.**)

The final table contained one record for each census block group in the U.S. and a column for each demographic field.

### **GIS Processing**

A program was developed in the Python programming language to process each of the 2009 Current site locations for demographic characteristics (see **Appendix 4**: Python Code for Summary Statistics Calculation). This program was created due to the large number of variables that needed to be calculated and the need to complete the calculations for all of the needed distances. Automation of this repetitive task lead to a reduced likelihood of calculation errors and saved substantial amounts of time. Automation also means that tasks can easily be repeated and replicated. The program was developed to run on an individual input file with a specified buffer distance and so was run separately for each input dataset and distance. To run a new file the name of the input shapefile and the numeric distance in miles was added to the code in the indicated locations before the code was activated. The processes that the Python program ran are explained below.

Before running the code a field named "SQME" was added to the census block group's attribute table and was calculated to be the area<sup>2</sup> in square meters of each of the census block group polygons.

The first process the code called was the ArcMap Buffer tool to create a buffer at the required distance from each mine/facility in the input dataset. The dissolve option was set to 'NONE' so that mines within close proximity to one another maintained their own individual buffers as opposed to having overlapping buffers merged into one (as shown in **Figure E1-1**).

<sup>&</sup>lt;sup>2</sup> EPA used the Albers Equal Area Conic, North America projection, for all of the locations within the contiguous United States, and the Albers Equal Area Conic, Alaska projection for the Alaska sites. These projections primarily preserve area but at large scales distance is also well preserved. These projections were used for all data frames inputs and outputs during the processing. Due to this difference in necessary projections, the contiguous U.S. and Alaska were processed separately, with results being created independently for the two datasets.



Figure E1-1: Difference between dissolved buffers (left) and individual buffers (right). RTI used the individual buffers (right) method so that each mine could be summarized independently.

The ArcMap Identify tool was then used to calculate the geometric intersections between the census block groups and the buffer zones. This tool computes the intersection of polygons in two different polygon layers and creates new polygons where polygons overlap. The new polygons consist of information from the original census block group and the identifier of the buffer zones for all intersections. Intersecting polygons for an example mine are shown in **Figure E1-2**; these polygons all have both the buffer's mine information and the census block group's information attributed to them.



Figure E1-2: An Example of a five mile buffer zone intersected with census block group boundaries. The labels illustrate how block group areas are split by the buffer zone.

The result of the identity process was a new GIS layer and its associated data table. To properly make area-weighted calculations, the area of each original census block group and the area of the new intersected polygon are needed. To provide the new polygon areas the code called the geoprocessing tool named "Calculate Areas" which added a new field, named "F\_AREA" to the new shapefile and calculated the area of each polygon in square meters.

### **Area-weighted Calculations**

A field named "Prop" was added to the intersected layer to store the calculated value of the proportion of the new polygon's area compared to the original census block group polygon. The equation to calculate the Prop field value is as follows:

$$F_AREA/SQME = Prop$$

Where

F\_AREA = the size of the intersected census block group polygon;

SQME = the size of the original census block group polygon; and

Prop = the proportion of the original census block group present in the intersected polygon.

The value in the Prop field was then used to apportion the demographic values from the original census block groups into the intersected census blocks. This was done by multiplying the value in each variable field by the value in "Prop":

#### Entire block group's variable value x Prop = block group's segment variable value

Note on rounding of decimals: The nature of the area-weighted calculations and the rounding of decimals during apportioning of values can lead to expected values and actual results varying by 1 or 2.

The result of this calculation is shown in **Figure E1-4** with the intersected values from **Figure E1-3** being summed to produce the total population for the entire buffer's area.



Figure E1-3: Population counts for block groups in 5 mile buffer

Once all of the calculations were completed, the ArcGIS 'Summary Statistics Tool' was called by the Python program to summarize the final values for each individual site. The tool achieved this by summing the values for all of the intersected polygons in each mine's buffer area. The final value for each mine was rounded to the nearest whole number and exported to a new table.

**Figure E1-4** illustrates the summed total population within the 5 mile buffer of a mine calculated by summing the apportioned population of each block group that intersected the buffer.



Figure E1-4: Total population for the 5-mile buffer zone calculated by summing apportioned polygons from each intersected polygon.

After testing to ensure that the sum of the areas of each site's new census tract polygons equaled the expected area for the buffer's size, a summary table containing the summarized results for each site was exported as a .dbf file, named to show whether the data were for mines or processors, along with the distance from the facility that the buffer used in the analysis represented and which area of the United States was studied. For example, the file named "mines\_V7\_demographicsUS(5miles)" contains analysis results for the 5 mile buffer around mines in the contiguous U.S. Likewise, the file named "mines\_V7\_demographicsAK(5miles)" contains analysis results for the same size buffer but for the mines located in Alaska. **Appendix E1-1** lists all of the demographics tables so produced. These files were subsequently imported into a Microsoft Access database as individual data tables.

Once the results tables were loaded into the Access database, the 2009 Current sites that had a location confidence of "0" or "1" had their demographics values calculated to "-9999". This was done because mines and facilities with these confidence codes have either unknown locations or have locations that may not be accurate. Demographic results for those mines and facilities would have been misleading.

The 2009 Current Sites location data tables contained several fields (Mine\_Name (or FACNAME for the facilities table), COMMODITY, STATE\_FIPS, STATE\_Abbr, CNTY\_FIPS, FIPS, ZIP, ad PO\_NAME) noting the general location of each site based on best available coordinates. These fields were added to each of the demographics output tables.

Appendix E1-5 lists all the variables and their contents for each demographic table.

## E1-5 Limitations

Providing accurate demographic information is a challenge. Populations are constantly changing due to births, deaths, ageing and migration. The demographic analysis that is described here has attempted to provide an accurate description of the population around each 2009 Current site despite any limitations of the input data. Difficulties encountered with compiling accurate coordinate data for 2009 Current site locations, and an indication of confidence for the coordinate pairs, is discussed in Attachment E2. In addition, the use of a point location for each 2009 Current site will likely skew the demographic summary results. This is particularly a concern when a site area covers several square miles. It cannot be known if the placement of the point necessarily represents the center of the mine or facility. Rather, the point was positioned somewhere on what was perceived as the mine or part of the mine lands. The census data used was collected in 2000, meaning it reflects the population distribution of fifteen years ago. While the representativeness of these data is unknown, they were the best available data at the time for this type of demographic analysis. Changes that may have occurred through time include population totals in general, but also how the characteristics of each census block group's composition may have changed through time.

All characteristics of a census block group's population were assumed to be distributed uniformly across the area, without consideration of land uses that might limit population, such as water bodies, farmland, uninhabitable slopes or industrial land uses. It is likely that within a census block group the inhabitants would be located in clusters near housing developments, not in a uniform pattern. This means for example, if a buffer covers 50 percent of a census block group with a population of 100, it is possible that all 100 of those people live outside the buffer rather than the 50/50 split that is assumed by the methods described above. Furthermore, the characteristics such as race, age and income are rarely uniformly distributed. With the same 100 person block group being split down the middle it is possible that 100 percent of all members of a racial group live inside the buffer as opposed to there being an even distribution across the block group.

## **Appendix E1-1: Generated Tables**

The following list of tables was generated, and stored within the Microsoft Access database file:

- mines\_V7\_demographicsUS(1mile) mines\_V7\_demographicsUS(2miles) mines\_V7\_demographicsUS(3miles) mines\_V7\_demographicsUS(4miles) mines\_V7\_demographicsUS(5miles) mines\_V7\_demographicsUS(10miles) mines\_V7\_demographicsUS(15miles) mines\_V7\_demographicsUS(20miles)
- mines\_V7\_demographicsAK(1mile) mines\_V7\_demographicsAK(2miles) mines\_V7\_demographicsAK(3miles) mines\_V7\_demographicsAK(4miles) mines\_V7\_demographicsAK(5miles) mines\_V7\_demographicsAK(10miles) mines\_V7\_demographicsAK(15miles) mines\_V7\_demographicsAK(20miles)
- facilities\_V7\_demographicsUS(1mile)
- facilities \_V7\_demographicsUS(2miles)
- facilities \_V7\_demographicsUS(3miles)
- facilities \_V7\_demographicsUS(4miles)
- facilities \_V7\_demographicsUS(5miles)
- facilities \_V7\_demographicsUS(10miles)
- facilities \_V7\_demographicsUS(15miles)
- facilities \_V7\_demographicsUS(20miles)

# Appendix E1-2: 2000 SF3 Census Variables Used in Demographic Analysis

Below is the list of original variables from the Census SF3 tables that contained the demographic data of interest.

| Counts | Short Name | : 1 | Description           |
|--------|------------|-----|-----------------------|
| 1.     | AreaKey    | :   | Geography Key Code    |
| 2.     | STATE      | :   | State (FIPS)          |
| 3.     | TRACT      | :   | Census Tract          |
| 4.     | BLKGRP     | :   | Block Group           |
| 5.     | P006001    | :   | Total: population     |
| б.     | P006002    | :   | White alone           |
| 7.     | P006003    | :   | Black alone           |
| 8.     | P006004    | :   | Native American alone |
| 9.     | P006005    | :   | Asian alone           |
| 10.    | P006006    | :   | Pacific alone         |
| 11.    | P006007    | :   | Other alone           |
| 12.    | P006008    | :   | 2+ races              |
| 13.    | P007002    | :   | Not Hispanic:         |
| 14.    | P007003    | :   | White alone           |
| 15.    | P007004    | :   | Black alone           |
| 16.    | P007005    | :   | Native American alone |
| 17.    | P007006    | :   | Asian alone           |
| 18.    | P007007    | :   | Pacific alone         |
| 19.    | P007008    | :   | Other alone           |
| 20.    | P007009    | :   | 2+ races              |
| 21.    | P007010    | :   | Hispanic:             |
| 22.    | P007011    | :   | White alone           |
| 23.    | P007012    | :   | Black alone           |
| 24.    | P007013    | :   | Native American alone |
| 25.    | P007014    | :   | Asian alone           |
| 26.    | P007015    | :   | Pacific alone         |
| 27.    | P007016    | :   | Other alone           |
| 28.    | P007017    | :   | 2+ races              |
| 29.    | P008003    | :   | Male Under 1 year     |
| 30.    | P008004    | :   | Male 1 year           |
| 31.    | P008005    | :   | Male 2 years          |
| 32.    | P008006    | :   | Male 3 years          |
| 33.    | P008007    | :   | Male 4 years          |
| 34.    | P008008    | :   | Male 5 years          |
| 35.    | P008009    | :   | Male 6 years          |
| 36.    | P008010    | :   | Male 7 years          |
| 37.    | P008011    | :   | Male 8 years          |
| 38.    | P008012    | :   | Male 9 years          |
| 39.    | P008013    | :   | Male 10 years         |
| 40.    | P008014    | :   | Male 11 years         |
| 41.    | P008015    | :   | Male 12 years         |
| 42.    | P008016    | :   | Male 13 years         |
| 43.    | P008017    | :   | Male 14 years         |
| 44.    | P008018    | :   | Male 15 years         |
| 45.    | P008019    | :   | Male 16 years         |

| : | Male 17 years       |
|---|---------------------|
| : | Male 18 years       |
| : | Male 19 years       |
| : | Male 20 years       |
| : | Female Under 1 year |
| : | Female 1 year       |
| : | Female 2 years      |
| : | Female 3 years      |
| : | Female 4 years      |
| : | Female 5 years      |
| : | Female 6 years      |
| : | Female 7 years      |
| : | Female 8 years      |
| : | Female 9 years      |
| : | Female 10 years     |
| : | Female 11 years     |
| : | Female 12 years     |
| : | Female 13 years     |
| : | Female 14 years     |
| : | Female 15 years     |
| : | Female 16 years     |
| : | Female 17 years     |
| : | Female 18 years     |
| : | Female 19 years     |
| : | Female 20 years     |
| : | Total: HH           |
| : | under \$10,000      |
| : | \$10,000-\$14,999   |
| : | \$15,000-\$19,999   |
| : | \$20,000-\$24,999   |
| : | \$25,000-\$29,999   |
| : | \$30,000-\$34,999   |
| : | \$35,000-\$39,999   |
| : | \$40,000-\$44,999   |
| : | \$45,000-\$49,999   |
| : | \$50,000-\$59,999   |
| : | \$60,000-\$74,999   |
| : | \$75,000-\$99,999   |
| : | \$100,000-\$124,999 |
| : | \$125,000-\$149,999 |
| : | \$150,000-\$199,999 |
| : | \$200,000+          |
|   |                     |

## Appendix E1-3: "Make Table" Query for Demographic Data Table

The following SQL query statement was used to summarize the original SF3 variables into the final variables used in the analysis. These summaries were necessary, for example, to add counts of females and males by age group into total population by age groups fields.

SELECT MINEDAT1.[AreaKey ], MINEDAT1.[STATE ], MINEDAT1.[TRACT ], MINEDAT1.P006001 AS TOT POP, MINEDAT1.P006002 AS White, MINEDAT1.P006003 AS Black, MINEDAT1.P006004 AS Nat Am, MINEDAT1.P006005 AS Asian, MINEDAT1.P006006 AS Pac Is, MINEDAT1.P006007 AS Other, MINEDAT1.P006008 AS 2\_plus, MINEDAT1.P007002 AS NotHisp, MINEDAT1.P007003 AS WnotHisp, MINEDAT1.P007004 AS BnotHisp, MINEDAT1.P007005 AS NAnotHisp, MINEDAT1.P007006 AS AnotHisp, MINEDAT1.P007007 AS PnotHisp, MINEDAT1.P007008 AS OnotHisp, MINEDAT1.P007009 AS 2notHisp, MINEDAT1.P007010 AS Hisp, MINEDAT1.P007011 AS WHisp, MINEDAT1.P007012 AS BHisp, MINEDAT1.P007013 AS NAHisp, MINEDAT1.P007014 AS AHisp, MINEDAT1.P007015 AS PHisp, MINEDAT1.P007016 AS OHisp, MINEDAT1.P007017 AS 2Hisp, [P008003]+[P008042] AS 0\_1yr, [P008004]+[P008043] AS 1\_2yr, [P008005]+[P008044] AS 2\_3yr, [P008006]+[P008007]+[P008008]+[P008045]+[P008046]+[P008047] AS 3\_6yr, [P008009]+[P008010]+[P008011]+[P008012]+[P008013]+[P008048]+[P008049]+[P008050]+[ P008051]+[P008052] AS 6\_11yr, [P008014]+[P008015]+[P008016]+[P008017]+[P008018]+[P008053]+[P008054]+[P008055]+[ P008056]+[P008057] AS 11 16yr, [P008019]+[P008020]+[P008021]+[P008022]+[P008023]+[P008058]+[P008059]+[P008060]+[ P008061]+[P008062] AS 16\_21yr, MINEDAT1.P052001 AS TotHH, MINEDAT1.P052002 AS Less10k, MINEDAT1.P052003 AS 10K 14999, MINEDAT1.P052004 AS 15K 19999, MINEDAT1.P052005 AS 20K\_24999, MINEDAT1.P052006 AS 25K\_29999, MINEDAT1.P052007 AS 30K 34999, MINEDAT1.P052008 AS 35K 39999, MINEDAT1.P052009 AS 40K\_44999, MINEDAT1.P052010 AS 45K\_49999, MINEDAT1.P052011 AS 50K 59999, MINEDAT1.P052012 AS 60K 74999, MINEDAT1.P052013 AS 75K\_99999, MINEDAT1.P052014 AS 100K\_124999, MINEDAT1.P052015 AS 125K 149999, MINEDAT1.P052016 AS 150K 199999, MINEDAT1.P052017 AS [200K+] INTO POP DATA FROM MINEDAT1;

## Appendix E1-4: Python Code for Summary Statistics Calculation

The following Python program code was used to generate all of the demographic statistics within each buffer zone around the mines.

# Import system modules import sys, string, os, arcgisscripting

# Create the Geoprocessor object gp = arcgisscripting.create(9.3)

# Set the necessary product code
gp.SetProduct("ArcInfo")

# Load required toolboxes... gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Statistics Tools.tbx") gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")

# Must have a directory on local drive called C:\\test

workpath = "C:\\test\\"

print "workpath is " + workpath

gp.workspace = workpath

# Need Input from User Distance = 10 # What number of miles to buffer? print "Distance is " + str(Distance) InputFile = "Facilities\_V7\_20101215\_alb" # What is the input file name in the test directory (Do not include .shp)? print "Input File is called " + InputFile

```
# Local variables...
BufferedPoints = workpath + InputFile + str(Distance) + "_Buffer.shp" # Buffers from mines
InputPoints = workpath + InputFile + ".shp" # Mines to be buffered
IntBuffBlock = workpath + InputFile + str(Distance) + "_Buffer_Intersect.shp" # Output from intersect.
BlockArea = workpath + InputFile + str(Distance) + "_demo.shp" # Output of Calculate Area
BlockGroups = "bgp_al_meters.shp"
DEMOGRAP = "\\\\RTIFILE02\\ehe\\Projects\\0212041-ERAS_(Opt_1)\\0212041.001.016-
CERCLA108b\\Data_and_Tools\\GIS\\Mine_locations\\DEMOGRAP.dbf"
BufDist = str(Distance) + " miles"
AreaTestTable = workpath + InputFile + str(Distance) + "_AreaTest.dbf"
```

# Process: Buffer...
gp.Buffer\_analysis(InputPoints, BufferedPoints, BufDist, "FULL", "ROUND", "NONE", "", "")
print "Buffered"

# Process: Identity...
gp.identity\_analysis(BufferedPoints, BlockGroups, IntBuffBlock, "ALL", "")
print "Identified"

# Process: Calculate Areas...

gp.CalculateAreas\_stats(IntBuffBlock, BlockArea) print "Calculated"

# Process: Add Field... gp.AddField\_management(BlockArea, "Prop", "DOUBLE", "", "", "", "", "NULLABLE", "NON\_REQUIRED", "") print "Field Added"

# Process: Calculate Field...
gp.CalculateField\_management(BlockArea, "Prop", "[F\_AREA] / [SQME]", "VB", "")
print "Field Calculated"

# Process: Join Field...
gp.JoinField\_management(BlockArea, "FIPS", DEMOGRAP, "AREAKEY\_\_", "")
print "Joined"

BlockAreaTable = workpath + InputFile + str(Distance) + "\_demo.dbf" Output\_Table = workpath + InputFile + str(Distance) + "\_demo\_final.dbf"

# Make a list of all fields that need to be calculated by area FieldList = gp.ListFields(BlockAreaTable, "\*", "ALL")

def get\_fields(FieldList):

return esri field list into python list for 9.3

return [x.name for x in FieldList] fields\_list = get\_fields(gp.listfields(BlockAreaTable))

print len(fields\_list)

print ",".join(fields\_list)

# Add Fields and calculate new demographic totals
for Field in fields\_list:
 print "Field is " + str(Field)

if Field == "OID" or Field == "FID\_Mines1" or Field == "FID\_bgp\_al" or Field == "FID\_Mine\_1" or Field == "F\_AREA" or Field == "Mine\_ID\_2" or Field == "FAC\_RNUM" or Field == "RNUM" or Field == "FID\_" + InputFile[0:6] or Field == "FID" or Field == "FID\_bgp\_me" or Field == "FAC\_ID" or Field == "FACNAME" or Field == "Comodity\_M" or Field == "FID\_Facili" or Field == "FID\_Mines\_" or Field == "OBJECTID" or Field == "FID\_bgp\_al" or Field == "Shape" or Field == "FID\_Alaska" or Field == "Mine\_ID" or Field == "Mine\_Name" or Field == "FIPS" or Field == "SQMI" or Field == "OID\_" or Field == "AREAKEY\_\_" or Field == "STATE\_\_\_" or Field == "Prop" or Field == "NEW\_SQME" or Field == "BUFF\_DIST" or Field == "SQME" or Field == "ObjectID" or Field == "FID\_bgp\_na" or Field == "MINE\_RNUM" or Field == "MINE\_ID":

print "ignored" + Field

else:

# Process: Add Field ...

gp.AddField\_management(BlockAreaTable, Field + "INT", "DOUBLE", "", "", "", "", "NULLABLE", "NON\_REQUIRED", "")

print "Added " + Field

```
#Calculate the proportion of the variable that is in the intersected polygon
Calculation = "[" + Field + "] * [Prop]"
print Calculation
```

# Process: Calculate Field...
gp.CalculateField\_management(BlockAreaTable, Field + "INT", Calculation, "", "")

#Make list of all fields to be used in the summary statistics table creation
FieldString = ""
for Field in fields list:

if Field == "OID" or Field == "FID\_Mines1" or Field == "FID\_bgp\_al" or Field == "FID\_Mine\_1" or Field == "F\_AREA" or Field == "Mine\_ID\_2" or Field == "RNUM" or Field == "FAC\_RNUM" or Field == "FID" or Field == "FID\_" + InputFile[0:6] or Field == "FID\_Facili" or Field == "FID\_bgp\_me" or Field == "FAC\_ID" or Field == "Comodity\_M" or Field == "FACNAME" or Field == "FID\_Mines\_" or Field == "OBJECTID" or Field == "Shape" or Field == "FID\_Alaska" or Field == "Mine\_ID" or Field == "Mine\_Name" or Field == "FIPS" or Field == "SQMI" or Field == "OID\_" or Field == "AREAKEY\_\_" or Field == "STATE\_\_\_\_" or Field == "Prop" or Field == "NEW\_SQME" or Field == "SQME" or Field == "BUFF\_DIST" or Field == "ObjectID" or Field == "FID\_al\_bkg" or Field == "FID\_bgp\_na" or Field == "MINE\_ID" or Field == "MINE\_RNUM" : print "ignored" + Field

else: FieldString = FieldString + Field + "INT sum;" print FieldString

print FieldString

gp.Statistics(BlockAreaTable, Output\_Table, FieldString,"FAC\_RNUM") # Made sure you are using the right unique identifier for the facilities/mines

# Convert all fields in the summary table to int FieldList2 = gp.ListFields(Output\_Table, "\*", "ALL")

def get\_fields(FieldList):

return esri field list into python list for 9.3

return [x.name for x in FieldList2]

fields\_as\_python\_list2 = get\_fields(gp.listfields(Output\_Table))

for Field2 in fields\_as\_python\_list2: print "Field2 is " + str(Field2)

```
if Field2 == "OID" or Field2 == "Mine_ID" or Field2 == "RNUM" or Field2 == "MINE_RNUM" or
Field2 == "MINE_ID" or Field2 == "FAC_RNUM" or Field2 == "Mine_Name" or Field2 ==
"FREQUENCY" or Field2 == "FACNAME" or Field2 == "FAC_ID":
    print "ignored" + Field2
else:
    #Calculate the value in the field as an integer
    Calculation = "CLng([" + Field2 + "])"
    print Calculation
    # Process: Calculate Field...
    gp.CalculateField_management(Output_Table, Field2, Calculation, "", "")
```

# !!!!Test the output to make sure the buffers and intersect have worked correctly!!!

gp.Statistics(BlockArea, AreaTestTable, "F\_AREA sum", "FAC\_RNUM")

gp.AddField\_management(AreaTestTable, "TEST", "TEXT", "", "10", "", "NULLABLE", "NON\_REQUIRED", "")

if Distance == 1: TrueArea = 8136046.95978 print "1TrueArea" if Distance == 2: TrueArea = 32545535.5312 print "2TrueArea" if Distance == 3: TrueArea = 73228466.4858 print "3TrueArea" if Distance == 4: TrueArea = 130184829.795 print "4TrueArea" if Distance == 5: TrueArea = 203414642.649 print "5TrueArea" if Distance == 10: TrueArea = 813665288.08 print "10TrueArea" if Distance == 15: TrueArea = 1830751935.91 print "15TrueArea" if Distance == 20: TrueArea = 3254674599.36 print "20TrueArea"

print "Distance is " + str(Distance)
print "TrueArea is " + str(TrueArea)

AreaTestTable\_View = "AreaTestTable\_View" gp.AddField\_management(AreaTestTable, "TESTAR", "DOUBLE", "", "", "", "NULLABLE", "NON\_REQUIRED", "") gp.CalculateField\_management(AreaTestTable, "TESTAR", TrueArea)

gp.delete\_management(BufferedPoints)

# Appendix E1-5: Field Names and Definitions for Demographics Tables

## Mines Tables

| Row | Field Name | Field Description                                                      |
|-----|------------|------------------------------------------------------------------------|
|     | MINE_ID    | Mine_ID provided for any mine that was obtained in any list from MHSA. |
| 1   |            | Mine_ID of NA indicates that the mine could not be found in any MHSA   |
|     |            | database.                                                              |
| 2   | Mine_Name  | Current Mine Name assigned by MSHA                                     |
| 3   | Commodity  | Description of the primary commodity mined according to MSHA           |
| 4   | STATE_FIPS | State FIPS code                                                        |
| 5   | STATE_Abbr | Two letter state abbreviation                                          |
| 6   | CNTY_FIPS  | County FIPS code                                                       |
| 7   | FIPS       | Concatenated state and county FIPS code                                |
| 8   | ZIP        | Zip code                                                               |
| 9   | PO_NAME    | Post office name associated with zip code                              |
| 10  | County     | County name                                                            |
| 11  | MINE_RNUM  | Unique mine ID assigned by RTI, to remain unchanged with each          |
|     |            | subsequent version of this dataset                                     |
| 12  | SUM_POPINT | Total population                                                       |
| 13  | SUM_WHITIN | White alone                                                            |
| 14  | SUM_BLACIN | Black alone                                                            |
| 15  | SUM_NATAIN | Native American alone                                                  |
| 16  | SUM_ASIAIN | Asian alone                                                            |
| 17  | SUM_PACIN  | Pacific Islander alone                                                 |
| 18  | SUM_OTHEIN | Other alone                                                            |
| 19  | SUM_XPLUIN | 2+ races                                                               |
| 20  | SUM_NOTHIN | Not Hispanic                                                           |
| 21  | SUM_WNOTIN | White not Hispanic                                                     |
| 22  | SUM_BNOTIN | Black not Hispanic                                                     |
| 23  | SUM_NNOTIN | Native American not Hispanic                                           |
| 24  | SUM_ANOTIN | Asian not Hispanic                                                     |
| 25  | SUM_PNOTIN | Pacific Islander not Hispanic                                          |
| 26  | SUM_ONOTIN | Other not Hispanic                                                     |
| 27  | SUM_XNOTIN | 2+ races Not Hispanic                                                  |
| 28  | SUM_HISINT | Hispanic                                                               |
| 29  | SUM_WHISIN | White Hispanic                                                         |
| 30  | SUM_BHISIN | Black Hispanic                                                         |
| 31  | SUM_NAHISI | Native America Hispanic                                                |
| 32  | SUM_AHISIN | Asian Hispanic                                                         |
| 33  | SUM_PHISIN | Pacific Islander Hispanic                                              |
| 34  | SUM_OHISIN | Other Hispanic                                                         |
| 35  | SUM_XHISIN | 2+ races Hispanic                                                      |
| 36  | SUM_X_1INT | < 1 year olds                                                          |
| 37  | SUM_X_2INT | 1 to 2 year olds                                                       |
| 38  | SUM_X_3INT | 2 to 3 year olds                                                       |
| 39  | SUM_X_6INT | 3 to 6 year olds                                                       |
| 40  | SUM_X_11IN | 6 to 11 year olds                                                      |
| 41  | SUM_X1_16I | 11 to 16 year olds                                                     |
| 42  | SUM_X6_211 | 16 to 21 year olds                                                     |
| 43  | SUM TOTHIN | Total households                                                       |

| Row | Field Name  | Field Description                      |
|-----|-------------|----------------------------------------|
| 44  | SUM_L10KIN  | Household income < \$10,000            |
| 45  | SUM_X015IN  | Household income \$10,000 - \$14,999   |
| 46  | SUM_X_520IN | Household income \$15,000 - \$19,999   |
| 47  | SUM_X025IN  | Household income \$20,000 - \$24,999   |
| 48  | SUM_X530IN  | Household income \$25,000 - \$29,999   |
| 49  | SUM_X035IN  | Household income \$30,000 - \$34,999   |
| 50  | SUM_X540IN  | Household income \$35,000 - \$39,999   |
| 51  | SUM_X045IN  | Household income \$40,000 - \$44,999   |
| 52  | SUM_X550IN  | Household income \$45,000 - \$49,999   |
| 53  | SUM_X060IN  | Household income \$50,000 - \$59,999   |
| 54  | SUM_X075IN  | Household income \$60,000 - \$74,999   |
| 55  | SUM_X510IN  | Household income \$75,000 - \$99,999   |
| 56  | SUM_X125IN  | Household income \$100,000 - \$124,999 |
| 57  | SUM_X255IN  | Household income \$125,000 - \$149,999 |
| 58  | SUM_X502IN  | Household income \$150,000 - \$199,999 |
| 59  | SUM_X00_IN  | Household income \$200,000             |

### **Facilities Tables**

| Row | Field Name | Field Description                                                      |
|-----|------------|------------------------------------------------------------------------|
|     | MINE_ID    | Mine_ID provided for any mine that was obtained in any list from MHSA. |
| 1   |            | Mine_ID of NA indicates that the mine could not be found in any MHSA   |
|     |            | database.                                                              |
| 2   | FACNAME    | Current Facility or Processor Name assigned by MSHA                    |
| 3   | COMMODITY  | Description of the primary commodity mined according to MSHA           |
| 4   | STATE_FIPS | State FIPS code                                                        |
| 5   | STATE_Abbr | Two letter state abbreviation                                          |
| 6   | CNTY_FIPS  | County FIPS code                                                       |
| 7   | FIPS       | Concatenated state and county FIPS code                                |
| 8   | ZIP        | Zip code                                                               |
| 9   | PO_NAME    | Post office name associated with zip code                              |
| 10  | County     | County name                                                            |
| 11  | FAC_RNUM   | Unique facility ID assigned by RTI, to remain unchanged with each      |
|     |            | subsequent version of this dataset                                     |
| 12  | SUM_POPINT | Total population                                                       |
| 13  | SUM_WHITIN | White alone                                                            |
| 14  | SUM_BLACIN | Black alone                                                            |
| 15  | SUM_NATAIN | Native American alone                                                  |
| 16  | SUM_ASIAIN | Asian alone                                                            |
| 17  | SUM_PACIN  | Pacific Islander alone                                                 |
| 18  | SUM_OTHEIN | Other alone                                                            |
| 19  | SUM_XPLUIN | 2+ races                                                               |
| 20  | SUM_NOTHIN | Not Hispanic                                                           |
| 21  | SUM_WNOTIN | White not Hispanic                                                     |
| 22  | SUM_BNOTIN | Black not Hispanic                                                     |
| 23  | SUM_NNOTIN | Native American not Hispanic                                           |
| 24  | SUM_ANOTIN | Asian not Hispanic                                                     |
| 25  | SUM_PNOTIN | Pacific Islander not Hispanic                                          |
| 26  | SUM_ONOTIN | Other not Hispanic                                                     |
| 27  | SUM_XNOTIN | 2+ races Not Hispanic                                                  |
| 28  | SUM_HISINT | Hispanic                                                               |
| 29  | SUM_WHISIN | White Hispanic                                                         |
| 30  | SUM_BHISIN | Black Hispanic                                                         |

| Row | Field Name  | Field Description                      |
|-----|-------------|----------------------------------------|
| 31  | SUM_NAHISI  | Native America Hispanic                |
| 32  | SUM_AHISIN  | Asian Hispanic                         |
| 33  | SUM_PHISIN  | Pacific Islander Hispanic              |
| 34  | SUM_OHISIN  | Other Hispanic                         |
| 35  | SUM_XHISIN  | 2+ races Hispanic                      |
| 36  | SUM_X_1INT  | < 1 year olds                          |
| 37  | SUM_X_2INT  | 1 to 2 year olds                       |
| 38  | SUM_X_3INT  | 2 to 3 year olds                       |
| 39  | SUM_X_6INT  | 3 to 6 year olds                       |
| 40  | SUM_X_11IN  | 6 to 11 year olds                      |
| 41  | SUM_X1_16I  | 11 to 16 year olds                     |
| 42  | SUM_X6_21I  | 16 to 21 year olds                     |
| 43  | SUM_TOTHIN  | Total households                       |
| 44  | SUM_L10KIN  | Household income < \$10,000            |
| 45  | SUM_X015IN  | Household income \$10,000 - \$14,999   |
| 46  | SUM_X_520IN | Household income \$15,000 - \$19,999   |
| 47  | SUM_X025IN  | Household income \$20,000 - \$24,999   |
| 48  | SUM_X530IN  | Household income \$25,000 - \$29,999   |
| 49  | SUM_X035IN  | Household income \$30,000 - \$34,999   |
| 50  | SUM_X540IN  | Household income \$35,000 - \$39,999   |
| 51  | SUM_X045IN  | Household income \$40,000 - \$44,999   |
| 52  | SUM_X550IN  | Household income \$45,000 - \$49,999   |
| 53  | SUM_X060IN  | Household income \$50,000 - \$59,999   |
| 54  | SUM_X075IN  | Household income \$60,000 - \$74,999   |
| 55  | SUM_X510IN  | Household income \$75,000 - \$99,999   |
| 56  | SUM_X125IN  | Household income \$100,000 - \$124,999 |
| 57  | SUM_X255IN  | Household income \$125,000 - \$149,999 |
| 58  | SUM_X502IN  | Household income \$150,000 - \$199,999 |
| 59  | SUM_X00_IN  | Household income \$200,000             |

# **Attachment E2. Geospatial Database Development Process**

# E2-1 Introduction

This Attachment describes data sources and methods that EPA used to develop a geospatial data layer of locations for hard rock mines and mineral processors (as defined in the July 2009 Federal Register notice [74 FR 37213-37219]) that potentially may be regulated under the CERCLA 108(b). As described in **Appendix B** ("Defining the Universes of 108(b) Historical CERCLA and 2009 Current Sites"), the most current data available for this report to define the universe of currently operating mines and mineral processors was from 2009. The list of sites developed from those data is referred to as the "2009 Current Sites" list.

The 2009 Current Sites geodatabase was prepared to support EPA's CERCLA 108(b) hardrock mining rulemaking. As introduced in **Section 1 of the report** ("Introduction and Problem Formulation"), the purpose of this report is, in part, to summarize data regarding the potential for human and ecological exposures to CERCLA hazardous substances and resulting potential human health and ecological impacts from current and future mining and mineral processing sites.

Comparisons of some aspects of the Case Study Historical sites and 2009 Current sites (e.g., potential to impact endangered species) required identifying the actual locations of the 2009 Current sites, and formatting these locations in a GIS data layer which could then be combined with other data layers (e.g., U.S. census data).

Section E2.2 describes the principal sources of information EPA used to update the 2009 Current site list and assign a location data (referred to as "geolocating") each site. s list The sections below In addition, the accuracy of the data continues to improve as more information becomes available or is discovered by EPA. There have been several previous versios of the mines database along with various comparative datasets. Each version has been produced to reflect EPA's developing policies and/or to take advantage of new sources of information. The changes made from version 6 to create version 7 are noted in Section 4.0.

# E2-2 Geolocating 2009 Current Sites

Geospatial data are not included in the MSHA and USGS data sources that EPA used to develop the 2009 Current Sites list, and therefore each site on the list had to be geolocated. Geolocating the 2009 Current sites involved deriving locations from address geocoding, the use of internet searches to find sources containing locations of mines, and/or consulting additional data file sources. When each mine location was reviewed, additional sources were consulted in an attempt to either confirm the location or to move the location to a more accurate place.

MSHA had confirmed that the addresses in the MHSA list were not necessarily locations of the mines or processors, but were only used for contacting the responsible party. Recorded addresses were frequently administrative offices, for example, rather than the actual mine or processor site itself. A series of processes (described below) were then used in an attempt to identify or improve locations for each identified 2009 Current site. These processes included the use of other lists of mine sites from federal databases (e.g., TRI, FRS, and USGS) and internet

resources (e.g., company and industry web pages and online environmental documents). The source data used to locate each mine were documented to allow others to review the sources of each location. It should be noted that no information was copied directly from websites but only viewed for information that would lead to the location of the mine/processor site using the aerial imagery of the GIS. Once the mine/processor site was located then a GIS point was recorded on the site, based on best professional judgment that considered factors relevant to using these data for further geospatial analysis. An estimate for the level of confidence associated with each point location was indicated along with the coordinate pairs. Aerial photography from http://services.arcgisonline.com/v92 was used to aid in the identification of the mine.

### E2-2.1 Data Sources Examined to Provide or Improve Locations

EPA used several mine datasets to help identify the ground location for each site. These datasets included coordinate data for some of the mine locations, but there was often a significant variance between the geospatial data contained in each of the datasets. The accuracy of point locations provided also varied significantly.

MSHA's 2009 end-of-year dataset (a principal data source – see Appendix B, Section B.3.2) contains coordinate point location data. A comparison was made between these coordinate data and existing locations previously found for data records in the geospatial database. The comparison revealed some of the same problems found with the other datasets used and did not curtail the need for geolocating most of the mines that did not have coordinates, however, overall the MSHA 2009 end-of-year coordinate data was of better quality than other datasets used.

Used together, all the datasets narrowed the areas searched to locate a site. The other mining site data sources that were used to aid in locating mine, are listed and described below.

#### EPA Facility Registry System (FRS) Data

EPA compared two sources of mine locations: a database of hard rock mine sites queried from the FRS (05/17/10), and a spreadsheet (06/03/10) of mines that had been queried and downloaded from the MHSA database. The resulting combined spreadsheet table of mine locations with latitude/longitude was called "*Matchup MSHA Facs to FRS Data\_WIP Draft\_060310.xls*". A subset (5 sites) of mines from the list was examined to determine confidence in the location of the mines from this source. Based on the sample of 5 mines, it was determined that the latitudes/longitudes from this source were reasonably accurate and so any of the mines that appeared in both the "*Matchup MSHA Facs to FRS Data\_WIP Draft\_060310.xls*" source and the MSHA data (identified by matching MSHA IDs) were given "ICF/FRS" as their source in the "LOC\_SOURCE" field and the latitudes/longitudes from the "*Matchup MSHA Facs to FRS Data\_WIP Draft\_060310.xls*" file were used<sup>3</sup>. Where neither the MHSA list nor the FRS list had provided a reasonable or viable location then the master list of USGS mines dataset (see below) was used.

<sup>&</sup>lt;sup>3</sup> Even though the 5 mines in the sample from the FRS source were accurate, it was later determined that many of the FRS locations were not accurate and, therefore, RTI reviewed all of the FRS locations and in RTI's final deliverable, only used those FRS-provided locations that appeared to be accurate were used.

### Master List of USGS Mines

A spreadsheet called "*March 12 2010 ICF MASTER LIST OF MINES.xls*" contains mine sites compiled from various sources including USGS commodity reports and mineral year books. The spreadsheet included latitude/longitude coordinates.

This list was also based primarily on the U.S. Department of Labor's Mine Safety and Health Administration (MSHA) data from January 2010, supplemented with data from the United States Geological Survey Minerals Yearbooks, and data from 19 state agencies with readily available information on mining operations. The data contained in the '*March 12 2010 ICF MASTER LIST OF MINES.xls*' came from the following sources:

- 1) MSHA's Mine Data Retrieval System, found at <u>http://www.msha.gov/drs/drshome.htm</u>. The query retrieved records relating to 1,154 mines.
- 2) Data from 18 states and the U.S. Geological Survey (USGS 2008a; Alabama 2008; Arizona undated; California undated; Colorado 2010; Georgia 2009; Missouri undated; North Carolina undated; Nevada 2008; New Mexico 2001; New York, 2010; Oregon undated; South Carolina undated; South Dakota 2010; Utah 2009; Virginia 2005; Virginia 2008; Washington undated; Wyoming 2010).
- 3) When mining operations were found in both the MSHA list and data from a state source, the state source was used to provide data not provided by MSHA, such as latitude and longitude. Where EPA identified a mining operation in a state source which was not identified by MSHA, an additional entry was made for that mining activity. In some cases data from USGS 2005 were used for mining operations already identified by MSHA or a state source. Differences in company and operation names between data sources sometimes precluded integrating data from different data sources.

The latitude/longitude coordinates contained in the *March 12 2010 ICF MASTER LIST OF MINES.xls* spreadsheet were in a variety of formats. Inconsistencies were corrected and the latitude/longitude coordinates were standardized. Standardized coordinates were then converted to a shapefile called "*ICF\_Master.shp*" using ArcMap. This shapefile was compared to the MSHA list. If the MSHA list contained a poor location or no location, the latitude/longitude was replaced with a more accurate location from the ICF\_Master.shp file.

If the locations in the *Master List of Mines* were not useful, then the following references (listed in order of preference) were used in the same way:

### Active Mines and Mineral Plants in the US (USGS)

USGS (shapefile) – Downloaded from <u>http://tin.er.usgs.gov/mineplant/</u> on 05/12/10 (mineplant.shp). The dataset contains an extensive list of mines and their locations.

### Homeland Security Infrastructure Program (HSIP) Gold 2007

HSIP Gold (geodatabase) was compiled by the USGS Minerals Information Team (MIT) and is comprised of various mining facility types including "FerrousMetalMines" and "MinesManufacturing."

### EPA Toxic Release Inventory Data for Hard Rock Mines

A table from TRI containing lat/long information that was generated on 05/17/10 (*CERCLA 108(b) Hardrock Facility Classes\_041510.mdb*). The latitude/longitudes provided in this table were compared to the MSHA latitude/longitudes to see if the TRI location was more accurate. If so, then the coordinates in the MSHA list were updated with those from the TRI list.

### EPA Report: Population Studies of Mines and Mineral Processing Sites

The 1997 EPA report titled "Population Studies of Mines and Mineral Processing Sites" was originally prepared by EPA's Office of Solid Waste. Location data were incorporated into a database file (newpop1.dbf) to allow mapping of the coordinate locations. It was necessary to reformat coordinate data since the data were recorded in various formats. This data source was found after the initial process of identifying and improving mine locations had been completed. This source was used to attempt to find any mine/processor locations that had received confidence level of "0" or "1" during the geolocating process.

## E2-2.2 Methodology to Identify Site Locations

Whenever possible a mine/processor location was identified using a comparison of the shapefiles created using the data sources discussed above. Otherwise more general and open sources of information were used to attempt to locate either the actual mine or the general local area where the mine site is located. The quality of these general sources is reflected in the confidence assigned to the point location. If visual testing of a mine/processor location (i.e., by visual inspection of an aerial photograph) observed an obvious ground signature at the found mine location, the point location was placed either on the mine pit or in a centralized area between pit locations of apparent excavated areas. The source that was used to locate the mine was noted in the Location Comments (LocCom) field in the shapefile's attribute table. The general sources and methods used in combination with point locations available from created shapefiles described in the previous section are described below.

### Address Matching

Address matching was attempted for the subset of MSHA mine records obtained from the 2009 end-of-year dataset. The file was imported into ArcMap where the addresses were geocoded using ESRI's Business Analyst extension.

In examining the accuracy of the geocoding results for addresses obtained from the MSHA database, it was possible to determine if the geocoded addresses represented the administrative address of the company (e.g. the location was in an urban area) rather than the actual mine/processor location (e.g. in an area of disturbed land resembling a surface mine). It was found that the MSHA-provided address rarely represented the actual site location. Due to this shortcoming it was usually necessary to consult additional sources (noted above) to locate a more accurate latitude/longitude for each mine.

### Visual Inspection

Generally, visual inspection of the mine locations provided by MSHA or the alternative sources using imagery available from ESRI and/or Google Maps was the method of determining the accuracy of the locations from the various sources.

The geocoded location contained in the MHSA list was compared to the aerial photography to see if it showed the expected representation of land use (either surface, underground or processing mine facility). If a large mine was seen in the imagery, then it was assumed that the location was accurate. If the location did not seem to fall on or near a disturbed area, then additional sources (ICF, FRS etc.) were consulted.

#### Internet Search

If a mine location could not be confidently determined from any of the above data sources or through address matching, Google Maps and a general internet search was used as an alternative source of information that would lead to locating the mine. Government internet pages and the various reports they contained (e.g., NPDES fact sheets, RODs, RI/FS, NEPA-related documents, etc.) were relied on as a first source of information. Some combination of the facility name, owner/operator and address were used as general search criteria to discover location information for the mines. Examples of data discovered and used from general internet searches include mine location maps and articles describing the sites from company websites and mining information websites.

### E2-2.3 Location Confidence Coding

A subjective confidence value was assigned to the final identified point location (i.e., original point or a relocated point location) with a description of the source that was used to identify corrected locations, if necessary.

The list of fields below was added to the MSHA list to provide information on the latitude/longitude coordinates. These added fields indicate the source of the information used to select a latitude/longitude and code a subjective accuracy assessment of the location for the mine. The added fields are defined as follows:

**Loc\_Conf:** This field was used to assign an overall accuracy value of the final location for each mine, after going through the review steps noted above. The codes were:

- 0 = no location could be found OR the location provided is likely to be inaccurate and no source could be found to improve it.
- 1 = the location may or may not be accurate; further information would be required to assign a higher confidence value.
- 2 = the location seems to be accurate based on the visual inspection of the location or corroborating evidence from other sources.

**Loc\_Com:** This field has notes referring to how the enhanced location was chosen from all of the sources available.

### E2-2.4 Reverse Geocoding of 2009 Current Site Locations

EPA ran a process to identify the actual zipcode, city, county, and state for each of the 2009 Current sites based on its actual location (based on EPA's geolocating procedures). This process resulted in several additional fields added to the data tables to provide EPA with contextual information for each site. The additional fields added for each site were:

- **STATE\_FIPS**: the 2-digit Federal Information Processing System (FIPS) code for the state in which the site is located.
- **STATE\_Abbr**: The 2-digit state abbreviation for the state in which the site is located.
- **CNTY\_FIPS**: The 3-digit county FIPS code for the county in which the site is located.
- **County**: The name of the county in which the site is located.
- **FIPS**: the 5-digit state and county FIPS code created by concatenating the CNTY\_FIPS and STATE\_FIPS codes.
- **ZIP**: the 5-digit zipcode in which the site is located.
- **PO\_NAME**: the name of the post office associated with the 5-digit zipcode in which the site is located.

For sites having a location confidence of zero ( $Loc_Conf = 0$ ) all of these reverse geocoding fields were left blank to indicate that these data cannot accurately be derived for facilities for which we have no confidence in their location.

## E2-2.5 Summary of the Final 2009 Current Site List

The geolocating process resulted in all 2009 Current sites being assessed a location confidence value to indicate the potential accuracy of the final location. The following table summarizes the results of the geolocating process.

| 0:4 × T === | Total | Location Confidence Codes |    |     |  |
|-------------|-------|---------------------------|----|-----|--|
| Site Type   |       | 0                         | 1  | 2   |  |
| Mines       | 293   | 54                        | 38 | 201 |  |
| Processors  | 271   | 27                        | 72 | 172 |  |

# E2-3 Quality Assurance/Quality Control

After the 2009 Current site locations were reviewed, updated (where possible), and enhanced, a 100% QA/QC review was performed. The QA/QC process involved an independent review in Google Earth of every 2009 Current site's final location. For each mine and processor, the reviewer checked the location against the source information and reviewed the Loc\_Conf code to ensure that the Loc\_Conf accurately reflected the subjective confidence that the location was accurate. The QA/QC review resulted in minor changes to Loc\_Conf coding (usually to change a Loc\_Conf value of '2' to Loc\_Conf value of '1') and in some cases, adjusting the location slightly to better match the visual imagery. The QA/QC was conducted by a qualified geologist who used professional judgment when deciding proper locations and coding.

# E2-4 Final Shapefile Creation

Separate shapefiles were created from the updated and enhanced 2009 Current Site coordinates; one shapefile for mines and one for processors. These shapefiles were named with the date of creation to allow tracking of future changes to the dataset. Maps of the contiguous

United States and Alaska is provided in Figures E2-1 and E2-2, that show the general point locations of mines and processors, respectively, contained in the geospatial database.



Figure E2-1. Generalized Map of 108(b) Processor Locations



Figure E2-2. Generalized Map of 108(b) Processor Locations

# E2-5 Limitations

The primary limitations in using the geolocated list of 2009 Current sites is in the uncertainty in the accuracy of some locations and in the limitations of representing very large mines with a single point.

## E2-5.1 Accuracy of Site Locations

Without the ability to verify site locations by contacting site operators directly, all the locations ultimately selected for the 2009 Current sites should be considered unverified. In many cases source data were available that allowed EPA to locate the mine with a high level of confidence. But, ultimately, without contacting site operators or accessing and reviewing land records data, there is still the possibility of locational errors.

## E2-5.2 Representation of Large Mines with Points

Many of the 2009 Current mines are very large (several square miles in area). Representing their location using a single latitude/longitude coordinate (even located at the center of the mine) necessarily introduces some imprecision to further analyses, especially distance-based analyses of demographics and nearby environmental indicators.

# E2-6 Data Dictionary

The following is a list of the data columns in the final shapefile and description and source of each column.

| MINE_RNUM:    | Unique ID created by RTI.                                                                                                                |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|
| MINE_ID:      | Identification number assigned to the site by MSHA. The Mine_ID field is blank for any site that was not contained in the MSHA database. |
| Mine_Name:    | Current site Name assigned by MSHA                                                                                                       |
| Mine_Type:    | Facility, Surface or Underground according to MSHA                                                                                       |
| Mine_Statu:   | Current Site Status (i.e; Active, Intermittent, NonProducing) according to MSHA                                                          |
| FRS_ID:       | Unique ID field assigned to processors by FRS (if applicable)                                                                            |
| COMMODITY:    | Description of the primary commodity mined according to MSHA or FRS                                                                      |
| Arc_Address:  | Street Address of Record according to MSHA                                                                                               |
| Arc_City:     | City of Record according to MSHA                                                                                                         |
| Arc_State:    | Standard state abbreviation code for MSHA location                                                                                       |
| Arc_ZIP:      | Standard postal zip code according to MSHA                                                                                               |
| USGS_Fac_N: F | Processor name as assigned by USGS (if applicable)                                                                                       |
| Operator_N:   | Current Operator Name according to MSHA                                                                                                  |
| Controll_1:   | Current controlling company name according to MSHA                                                                                       |
| Source:       | Where the initial site location information was acquired from.                                                                           |
| Lat:          | Latitude assigned by RTI to locate site after QA/QC                                                                                      |
| Long:         | Longitude assigned by RTI to locate site after QA/QC                                                                                     |
| Loc_Conf:     | Confidence in the new site location assigned by RTI                                                                                      |
| Loc_Com:      | Notes describing how improved location was found                                                                                         |
| Com_MNM:      | Notes describing how the MNM09 points differed from the rtiMSHA points and whether they were used to improve the site location           |
| STATE_FIPS:   | The 2-digit Federal Information Processing System (FIPS) code for the state in which the site is located.                                |
| STATE_Abbr:   | The 2-digit state abbreviation for the state in which the site is located.                                                               |
| CNTY_FIPS:    | The 3-digit county FIPS code for the county in which the site is located.                                                                |
| FIPS:         | The 5-digit state and county FIPS code created by concatenating the CNTY_FIPS and STATE_FIPS codes.                                      |
| ZIP:          | The 5-digit zipcode in which the site is located.                                                                                        |
| PO_NAME       | The name of the post office associated with the 5-digit zipcode in which the site is located.                                            |
| County:       | The name of the county in which the site is located.                                                                                     |

# E2-7 References

The following list of references were those used to check and verify the locations of the 2009 Current sites. The identifier of the site that each reference supported is provided at the end of each reference.

- Arizona Department of Environmental Quality (internet). c2010 [accessed November 2016]. Iron King Mine and Humboldt Smelter, EPA National Priorities List (NPL) Site, December, 2009; Available from: <u>http://static.azdeq.gov/sup/ironkingmap.pdf</u> [MSHA site 202445].
- Atlanta Gold Inc. (Internet). Toronto, Ontario, Canada and Boise, Idaho, USA: [data last modified unknown. c.June 3, 2010; accessed November 2016]. Internet resource available from: <u>http://www.atgoldinc.com/index.php/projects/atlanta-gold-property</u> [for MSHA Site 1002144].
- Augusta Resource Corporation (internet). Vancouver, BC, Canada; c2009 [accessed November 2016]. *Rosemont Project, Claim Boundary Map*, 2008; Available from: <u>http://rosemonteis.us/files/references/westand-2007a.pdf</u> [MSHA site 0203256].
- Bureau of Land Management. 2005. *Barrick Proposes the Storm Underground Mine*. US Department of the Interior (Internet), Elko Field Office. April 22. [accessed November 2016]. Available from: <u>http://www.blm.gov/nv/st/en/fo/elko\_field\_office/blm\_information/newsroom/2005/Barri ck\_Proposes\_Storm\_Underground\_Project.html</u> [for MSHA Site 2602300].
- Bureau of Land Management. 2010. US Department of the Interior, Henry Mountains Field Station, Hanksville, UT: *Environmental Assessment to Commence Mining Operations at the Tony M Underground Uranium Mine*; 35 pages, Appendix A (Internet); [revised July 9, 2007; accessed November 2016]. Available from: <u>http://www.uraniumwatch.org/tonymmine/tonym\_ph1EAblm070709.pdf</u> [MSHA site 4202426].
- Bureau of Land Management. 2011. US Department of the Interior, Monticell Field Office; Decision Record, Finding of No Significant Impact, and Environmental Assessment for Daneros Mine Project; Appendices A through M (Internet); Available from: <u>https://www.blm.gov/ut/enbb/files/Daneros\_EA\_FONSI\_DR\_revised.pdf</u> [MSHA Site 4202525].
- Bureau of Land Management. 2012. HB In-Situ Project Environmental Impact Statement. US Department of the Interior (Internet). Santa Fe, NM; [accessed November 2016]. Available from: <u>http://www.nm.blm.gov/cfo/HBIS/index.html</u> [for MSHA Site 2900173].
- Campbell, Jonathan (Internet). Roslindale, MA; [accessed November 2016]: New Mexico Superfund sites; Available from: <u>http://www.cqs.com/super\_nm.htm</u> [MSHA Site 2902356].
- Carmeuse Lime & Stone (Internet). Pittsburg, PA; c2010 [accessed November 2016]. Available from: <u>http://www.carmeusena.com/locations/maysville-operation</u> [MSHA sites 1509740 and 2000362].
- Cheney Lime & Cement Company (Internet), Allgood, AL; [accessed November 2016]. Main Page, Quicklime and Hydrated Lime Products; Available from: <u>http://www.cheneylime.com/</u> [MSHA site 100008]
- Coeur (Internet). Coeur d'Alene, ID; c2008. [accessed November 2016]. United States, USA-Kensington; Available from: <u>http://www.coeur.com/mines-projects/mines/kensington-</u> <u>alaska#.WDMyy000Pcs</u> [MSHA site 5001544].
- Colorado Department of Public Health and Environment (Internet). [Accessed November 2016]: Available from: <u>http://www.cdphe.state.co.us/hm/cotter/index.htm</u> [MSHA Site 501732].
- Cooksley Geophysics Inc, Redding, CA. Ore Reserves of Heritage Mines, Inc., in the Knownothing Mining District Eight Miles South of Forks Salmon Siskiyou County, California (Internet); [November 1996; accessed November 2016]. Available from <u>http://www.americansierragold.com/\_resources/reports/DiscoveryDayReport1996.pdf</u> [MSHA site 405222].
- Coronado Resources Ltd (Internet). Vancouver, BC, Canada; cMarch 1, 2006 [accessed November 2016]: Projects: Madison Gold Property; Available from: <u>http://www.coronadoresourcesltd.com/properties.htm</u> [MSHA Site 2402467].
- Davis, David A., 2002. Active Metal and Industrial Mineral Mines in Nevada 2002 (Map), NBMG Open-File Report 03-30 (Internet); 1 page [accessed November 2016]: Nevada Bureau of Mines and Geology, University of Nevada, Reno; Available from: <u>http://pubs.nbmg.unr.edu/Active-mines-NV-2002-color-p/of2003-30c.htm</u> [MSHA Site 2600734].
- Demand Media Sports, Trails.com, Inc. (Internet). Santa Monica, CA; c2009-2010 [accessed November 2016]; Available from: <u>http://www.trails.com/</u> :
  - Norwegian Mine Madison County, MT USGS topographic map; Available from: <u>http://www.trails.com/usgs-topo-norwegian-mine-topographic-map-804125.html</u> [MSHA Site 12401784].
  - Coy Mine USGS Jefferson City Quad, Tennessee, Topographic Map <u>http://www.topozone.com/map.asp?lat=36.1225&lon=-83.4778&s=50&size=s</u> [MSHA Site 4000166].
- Denison Mines Corp. (Internet). Toronto, Ontario, Canada; c2007 [accessed November 2016]. U.S. Mining, Colorado Plateau; Available from: <u>http://denisonmines.com/s/Home.asp</u> [MSHA sites 202286 and 501197].

- Department of Business & Industry, Division of Industrial Relations, State of Nevada, Carson City, NV: *Directory of Nevada Mine Operations*; 185 pages (Internet); [accessed November 2016]. Available from: <u>http://epubs.nsla.nv.gov/statepubs/epubs/728580-</u> 2010.pdf [MSHA site 2602666]
- Energy Fuels Inc. (Internet). Toronto, Ontario, Canada; c2010 [accessed November 2016]. Whirlwind Mine; Available from: <u>http://www.energyfuels.com/operations/</u> [MSHA site 504816].
- Findthedata.com. (Internet). [accessed November 2016]. Jerritt Canyon; Available from: <u>http://mines.findthedata.com/l/8565/Mayday-Idaho-Mine</u> [MSHA site 2602299]
- Geody (Internet); [c2010]: Alum Mine, NV, USA Spot Image; [accessed November 2016]; Available from: <u>http://www.geody.com/geospot.php?world=terra&map=col&ufi=100850238&alc=lmm</u> [MSHA Site 2602599].
- Gilbert Development Corporation (Internet). Hurricane UT; c2009 [accessed November 2016]. Available from: <u>http://www.gilbertdevelopment.com/projects-3/</u> [MSHA Site 4201927].
- Graymont Ltd. (Internet). Richmond, BC, Canada; c2010. [accessed November 2016]. Tacoma Plant (Tacoma, Washington); Available from: <u>http://www.graymont.com/en/locations/lime-plants/western-us/lime-plant/tacoma</u> [MSHA site 4503290] and <u>http://www.graymont.com/en/locations/lime-plants/great-lakes/lime-plant/superior</u> [MSHA site 4700587].
- Heatherdale Resources Ltd. (Internet). Vancouver, BC, Canada; c2010. [accessed November 2016]. Location & Maps; Available from: http://www.heatherdaleresources.com/hdr/Location.asp [MSHA site 5001857].
- Idaho Geological Survey (Internet): Search Results: The Idaho Geological Survey's Mines and Prospects Database; [accessed November 2016]; Available from: <u>http://www.idahogeology.org/Services/MinesAndMinerals/results.asp?switch=Reference</u> <u>&value=3560</u> [MSHA Site 1001918].
- Kansas Geological Society (Internet). Lawrence, KS; cAugust 12, 2003 [accessed November 2016]. Industrial Mineral—Chase County; Both Active and Abandoned Quarries; Available from: <u>http://chasm.kgs.ku.edu/ords/minerals.pqd3.mainCounty?cnty=17</u> [MSHA site 1400060].
- JR Simplot Company, Smoky Canyon Phosphate Resources (Internet). Afton, WY; c2007-09 [accessed November 2016]; Available from: <u>http://www.simplot.com/pdf/us\_operations/SmokyCanyon.pdf</u> [MSHA Site 1001590].
- Macky School of Earth Sciences and Engineering, College of Sciences, University of Nevada, Reno; *The Nevada Mineral Industry 2008: Metals, Industrial Minerals, Oil and Gas, Geothermal, Exploration, Development, Mining, and Processing*; Nevada Bureau of Mines and Geology Special Publication MI-2008; 178 pages [accessed November 2016]:

NBMG, University of Nevada, Reno; Available from: <u>http://pubs.nbmg.unr.edu/The-NV-mineral-industry-2008-p/mi2008.htm</u> [MSHA Site 2602522].

- Nash, J. Thomas, 2005. Hydrogeochemical Studies of Historical Mining Areas in the Humboldt River Basin and Adjacent Areas, Northern Nevada: Appendix 5. Location and description of mill and tailings sites, northern Nevada; 180 pages; United States Geological Survey Scientific Investigations Report 2004-5236; [page updated Monday November 7, 2005; accessed November 2016]; Available from: http://pubs.usgs.gov/sir/2004/5236/pdf/SIR\_2004-5236.pdf [MSHA Site 2600078].
- Nevada Commission on Mineral Resources (Internet), Nevada Division of Minerals (NDM) Home Page. Carson City, NV and Las Vegas, NV: [Updated 05/10/10]. Internet resource available from: <u>http://minerals.state.nv.us/</u>; The DVM; Major Mines of Nevada 1997: Mineral Industries in Nevada's Economy; 1997 [accessed November 2016]. Available from: <u>http://data.nbmg.unr.edu/public/freedownloads/p/p009.zip</u> [MSHA Site 2602300].
- New Jersey Mining Company (Internet). Kellogg, ID; c2005 [accessed November 2016]. Gold Properties, Golden Chest Mine (Gold); Available from: <u>http://www.newjerseymining.com/golden\_chest.html</u> [MSHA site 1002050].
- NV HomeTownLocator (internet). [accessed November 2016]. Available from: <u>http://nevada.hometownlocator.com/maps/feature-</u> <u>map,ftc,2,fid,854059,n,fencemaker%20mine.cfm</u> [MSHA site 2601650].
- Oregon Water Resources Department (Internet); Well Log Query Results [accessed November 2016]; Available from: <u>http://apps.wrd.state.or.us/apps/gw/well\_log/</u> [MSHA Site 3503733].
- Peraltra, Joe, The SingleCylinder Gazzette (Internet). c1999-2009; *A New Life For A Mine With 9 Lives*; [accessed November 2016]: Available from: <u>http://www.gazette9.com/rt66/anewlife.htm</u> [MSHA Site 202620].

Ralph, Jolyon and Ida Chau, Mindat.org (Internet); c1993-2010 [accessed November 2016]; Mineral and Locality Database; Available from: <u>http://www.mindat.org/index.php</u> :

- [MSHA Site 2602599]: <u>http://www.mindat.org/index.php</u>
- [MSHA Site 3503237]: http://www.mindat.org/maps.php?id=147970
- [MSHA Site 4000166]: <u>http://www.mindat.org/loc-10373.html</u>
- [MSHA Site 4000864]
- [MSHA Site 403828]: http://www.mindat.org/loc-7768.html
- [MSHA Site 5001571]: <u>http://www.mindat.org/maps.php?id=197302</u>
- [MSHA Site 5001754]: http://www.mindat.org/loc-197671.html

Rayle, Christopher E., Scott Solliday, and Victoria D. Vargas, Archeological Consulting Services, Ltd. (Internet); Tempe, AZ. 2008. A Cultural Resource and Historic Building Survey for a Remedial Investigation/Feasibility Study at the Iron King-Humbolt Smelter Superfund Site, Dewy Humbolt, Yavapai County, Arizona. November. Available from: http://yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/3dc283e6c5d6056f88257426007417a2/7b e6add78caec55288257553007b557c/\$FILE/08\_151\_02\_Report.pdf [MSHA Site 202445].

- Reti e Sistemi, Usa.indettaglio.it (Internet): c2010; Peterson Mine (Gogebic): [accessed November 2016]; Available from: <u>http://usa.indettaglio.it/eng/26/053/634724.html</u> [for MSHA Site 2003372].
- Rosemont Cooper (Internet). Tucson, AZ; c2009 [accessed November 2016]: Available from: <u>http://www.rosemontcopper.com/mpo.html</u> [MSHA Site 203256].
- Seattle Times (Internet); Seattle WA.: [accessed November 2016]. Available from: <u>http://seattletimes.nwsource.com/ABPub/zoom/html/2004357396.html</u> [MSHA Site 4503615].
- Szumigala, D.J., R.C. Swainbank, M.W. Henning, and F.M. Pillifant; *Alaska's Mineral Industry* 2000; [accessed November 2016]. Alaska Department of Natural Resources, Division of Geological & Geophysical Surveys (Internet). Fairbanks, AK: DGGS; c2009. Available from: <u>http://www.dggs.alaska.gov/webpubs/dggs/sr/text/sr055.PDF</u> [MSHA Site 5001837]
- Timberline Resources Corporation (Internet). Coeur d'Alene, ID; c2010 [accessed November 2016]; Butte highlands Satellite Map; Available from: <u>http://www.timberline-resources.com/main.php?page=84</u> [MSHA Site 2402563].
- Topoquest (internet). [accessed November 2016]. Available from: <u>http://www.topoquest.com/find/place.php?state=NV&search\_type=start&name=fencema</u> <u>ker&class=mine</u> [MSHA site 2601650].
- U.S. Forest Service, Payette National Forest, McCall, ID: *Walla Walla Mine Project Project Description Summary*, 4 pages (Internet); [accessed November 2016]. Available from <a href="http://data.ecosystem-management.org/nepaweb/nepa\_project\_exp.php?project=27107">http://data.ecosystem-management.org/nepaweb/nepa\_project\_exp.php?project=27107</a> [MSHA site 100217]
- Wade Agricultural Products, Inc. (Internet). La Cygne, KS; c2010. [accessed November 2016]. Available from: <u>http://wadequarries.com/</u> [MSHA site 1401658]
- Zaidliez, Mike; May 14, 2008. Administrative Determination and Documentation of NEPA Adequacy Mining Operation, 43 CFR 3809; 12 pages (Internet); U.S Department of the Interior, Bureau of Land Management, Anchorage Field Office, Alaska. [accessed November 2016] Available from: <u>https://www.blm.gov/style/medialib/blm/ak/afo/afo\_nepa\_docs/afo\_fy2008\_nepa\_docs.P</u> <u>ar.54506.File.dat/AK-010-08-DNA-025.pdf</u> [MSHA Site 5001689].

## **Attachment E3. Evaluation Process Flow Diagrams**

Figure E3-1. Overview of Evaluation Process Flow

Figure E3-2. Process Flow for Subtask 2: Identifying, Evaluating, and Documenting Data Elements and Sources

Figure E3-3. Process Flow for Subtask 3: Obtain and Process Datasets Meeting Quality Criteria

Figure E3-4. Process Flow for Subtask 4: Identification of Factors Regarding Potential for Expsoure to CERCLA Hazardous Substances (Questions) and Data Analysis



Figure E3-1. Overview of Evaluation Process Flow



Figure E3-2. Process Flow for Subtask 2 – Identifying, Evaluating, and Documenting Data Elements and Sources



### Figure E3-3. Process Flow for Subtask 3 – Obtain and Process Datasets Meeting Quality Criteria

#### Figure E3-4. Process Flow for Subtask 4 – Identification of Potential for Exposure to CERCLA Hazardous Substances Questions and Data Analysis



### Attachment E4. Example Exposure Scenario and Related Questions

**Exposure Senario**: Will mining activities in any way jeopardize the continued existence of species listed as threatened and endangered under the Endangered Species Act, or destroy or adversely modify critical habitat?

### Exposure Factor and Exposure Factor Questions (rQ):

Probability that endangered or threatened species will be exposed?

rQ1: Is the mine located in a county, or across county areas, where threatened and endangered species have been identified?

*GIS Output*: County-level data layer(s) showing the number of endangered and/or threatened species by type (e.g., bird, reptile, mammal, fish, and insect).

rQ2: How many areas are designated as critical habitat on the mine site, within 1-mile of the site boundary (or centroid), 5-miles of the site boundary (or centroid), 10-miles of the site boundary (or centroid), and 25-miles of the site boundary (or centroid)?

*GIS Output*: Data layer relating the delineation of critical (possibly sensitive) habitat on the mine site, within 1-mile of the site boundary (or centroid), 5-miles of the site boundary (or centroid), 10-miles of the site boundary (or centroid), and 25-miles of the site boundary (or centroid).

### Severity Questions (sQ):

- sQ1: What mine type (e.g., underground or surface mine) exists or is proposed? A surface mine might be expected to have more impact on threatened and endangered species than an underground mine?
- sQ2: What type(s) of animal(s) are threatened and endangered; could they easily move to other habitat areas (e.g., birds versus amphibian)?
- sQ3: What is the distance or buffer area between the mine site and the habitat?
- sQ4: What type of land cover lies within the buffer area between the habitat and the mine?
- sQ5: Do any critical or sensitive habitat areas occur within the same drainage area as watershed as the mine?
- sQ6: Do any critical or sensitive habitat areas occur downstream of the mine site?

[This page intentionally left blank.]

### **Attachment E5. Potential Data Sources**

- Figure E5-1. Potential Data Sources for Generalizing Environmental Baseline within Region / Watershed
- Figure E5-2. Potential Data Sources for Terrestrial Ecosystem Services Used to Estimate Exposure
- Figure E5-3. Potential Data Sources for Aquatic Ecosystem Services Used to Estimate Exposure

Figure E5-4. Potential Environmental Impact of Existing Mines and Mine Plant Sites

### Figure E5-1.

-

\_--

### Potential Data Sources for Generalizing Environmental Baseline within Region/Watershed



### Figure E5-2.

### Potential Data Sources for Terrestrial Ecosystem Services Used to Estimate Potential Exposures



#### Figure E5-3.

#### Potentially Points/Areas of Exposed Ecosystem Values and Services Populations Potential Data Sources Ecosystem Resource Downstream Community Human Surface-Water Intakes State and Federal Safe Drinking Water Information System Community Human Drinking-Water Wells Consumptive Uses 1990 Census Data -Domestic Households on Domestic Drinking Human Septic Systems Water Wells EPA WATERS Data System Human Fishable Waterbodies (Designated Uses) Aquatic Flora/Fauna (Subsistence Fishers) National Survey of Human Fishing, Hunting, and **Recreational Use Areas** Wildlife-Associated Flora/Fauna Recreation Non-Consumptive Uses Habitat Support USFWS Threatened, (At risk, unique, socially Flora/Fauna Endangered. Sensitive valued ecological Species Database settings/flora/fauna)

#### Potential Data Sources for Aquatic Ecosystem Services Used to Estimate Potential Exposures



### Figure E5-4.

**Potential Environmental Impact of 2009 Current Sites** 

[This page intentionally left blank.]

## Appendix F Evidence of CERCLA Hazardous Substances at 2009 Current Sites

EPA collected available data from existing Federal government data sources pertaining to the release of CERCLA hazardous substances from mines and mineral processors. The focus of the data collection for 2009 Current sites included the following four EPA data sources:

- Toxics Release Inventory (TRI)
- Discharge Monitoring Reports (DMRs) from the National Pollutant Discharge Elimination System (NPDES); includes the Integrated Compliance Information System (ICIS) and Permit Compliance System (PCS)—NPDES Majors
- National Emissions Inventory (NEI)

These data sources are generally described in this appendix. The TRI, DMR, and NEI data presented are limited to the priority contaminants of concern (Priority COCs) as defined in report **Section 2.4** ("CERCLA Contaminants of Concern (COCs)") and **Appendix D**.

## F.1 TRI Data

The TRI is administered under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) that was enacted in 1986. The TRI is primarily a public resource to inform citizens about releases of certain toxic chemicals to the air, water, and soils in their community. EPA and States are required by EPCRA to collect and publish data annually on releases and transfers of certain toxic chemicals from industrial facilities. In addition to reporting the release or transfer of chemicals, facilities are required to report on waste management and source reduction activities; these data are available after 1990 when required by the Pollution Prevention Act. In 1997, the TRI reporting was expanded to include seven additional industries including metal mining operations.

According to the TRI Program Guidance (U.S. EPA, 2011), in general a facility must report to TRI if it:

- Is in a specific industrial sector (e.g., manufacturing, mining, electric power generation)
- Employs 10 or more full-time equivalent employees
- Manufactures or processes more than 25,000 lbs of a TRI-listed chemical or otherwise uses more than 10,000 lbs of a listed chemical in a given year.

Additionally, persistent, bioaccumulative, toxic chemicals (PBTs) listed under TRI have lower reporting thresholds for mass quantities manufactured or used annually than those specified above. For mines and mineral processors, such PBTs include lead, lead compounds, mercury, mercury compounds, polychlorinated biphenyls (PCBs), and dioxin and dioxin-like compounds.

If a facility meets these criteria, it must:

• Submit a TRI Form R (long form) or Form A (short form) for each TRI-listed chemical it manufactures, processes, or otherwise uses in quantities above the reporting threshold

• Submit each TRI form to both EPA and the State in which the facility is located.

A facility is eligible to submit a Form A if:

- The chemical being reported is NOT a PBT chemical
- The chemical has not been manufactured, processed, or otherwise used in excess of 1,000,000 lbs
- The total annual waste management (i.e., releases including disposal, recycling, energy recovery, and treatment) of the chemical does not exceed 500 lbs.

Mine processors use a wide variety of chemicals that require management. Mineral processors can also produce raw chemicals (e.g., sulfuric acid) for use in mineral recovery from the mined rock. Many gold, silver, and copper mine processors report to the TRI program because of the volume of chemicals used in the commonly employed metal leaching process to liberate metals from the ore rock and ore minerals. Although ore extraction processes typically do not use many chemicals, reporting may be required because metals and metal compounds accumulate from rock waste piles. TRI data extracted from EPA data systems are provided below for currently active mine and processor sites.

Linking the individual 2009 Current sites to facilities in the TRI reveals that 55 of the mines (10%) and 109 of the processors (19%) have reported releases in TRI for the period 2005 to 2009. These mining facilities engage in the removal of naturally occurring materials from the earth. EPA had considered naturally occurring materials to be manufactured by natural processes. A recent court order set aside EPA's interpretation of manufacturing in the mining context, stating that naturally occurring ores *in situ* have not been manufactured within the meaning of EPCRA section 313. EPA is considering clarifying how the definitions of manufacturing and processing under EPCRA section 313 apply to the mining-sector processes of extraction and beneficiation.

Attachment F1 shows the cross-walk between the 2009 Current sites and the TRI reporting facilities.

Releases of COCs from 2009 Current sites total approximately 828,111 tons to the land surface, 3,894 tons emitted into air, and 16,774 tons discharged into waters, as estimated using available data. Dioxin and dioxin-like compounds released from 2009 Current sites totals approximately 69 grams emitted to air, 36 grams to land, and 0.32 grams discharged to waters. **Attachment F2** shows TRI releases by year and COC for each 2009 Current site. **Attachment F3** shows releases for the 2009 Current sites averaged over the years reported for air (**Table F3-1**), surface water (**Table F3-2**), and on-site releases to land (**Table F3-3**).

## F.2 DMR Data

The Clean Water Act (CWA) defines provisions for granting National Pollutant Discharge Elimination System (NPDES) permits in programs administered either by EPA or by State agencies where NPDES authority has been delegated by EPA. The NPDES program was introduced in 1972, under Section 402 of the CWA for regulation of pollutant discharges from point sources to waters of the United States. Point source discharges are illegal unless authorized by an NPDES permit. A point source is defined by EPA's NPDES Program as any discernible, confined, and discrete conveyance, including (among other things) any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, or landfill leachate collection system from which pollutants are or may be discharged. In most cases the NPDES permit program is administered by authorized States. Regulation for the NPDES permit program is defined in the Code of Federal Regulations, Title 40, Parts 122 - 124 (40 CFR122.1 and subsequent sections).

The NPDES program Discharge Monitoring Reports (DMRs) are prepared by industrial facilities (including some mines and mine processors) that are point source dischargers into surface waters of the United States. Point source discharges from a mine or mine processor can be from stormwater runoff, discharge of treated process effluent, or other sources. Both stormwater and process discharges are permitted under the NPDES, as authorized by the CWA. Although the CWA requires all point source dischargers to obtain an NPDES permit and monitor their wastewater, not all permits require the submittal of DMRs.

However, these reports are usually stipulated for major dischargers, and EPA places greater priority on the major facilities and requires authorized States to provide more information about the compliance status of these dischargers. Any NPDES facility or activity can be classified as "major" by the EPA Regional Administrator, or in the case of approved State programs, the Regional Administrator in conjunction with the State Director. Therefore, for many general (non-major) permits that are not water quality effluent based, pollutant discharge and loading information reporting is not required. These CWA releases, that are also not reported but may be applicable to mines and mine processors, could include:

- Wastewater releases from industrial facilities that are connected to a publicly owned treatment works (POTW) sewerage system, regulated through the CWA Pretreatment Program;
- Discharges related to wet-weather events, such as stormwater runoff from industrial facilities, discharges from construction activities, combined sewer overflows, and sanitary sewer overflows.

Data provided by regulated dischargers were obtained from EPA's publically available DMR Pollutant Loading Tool (<u>http://cfpub.epa.gov/dmr/</u>). EPA's DMR Pollutant Loading Tool is a web-based tool designed to help identify permitted discharges, what pollutants are being discharged and the quantity, and where discharges are occurring. The tool uses pollutant DMR data from EPA's PCS and Integrated Compliance Information System for the National Pollutant Discharge Elimination System (ICIS-NPDES).

Though not a complete inventory of all CWA releases, the EPA DMR Loading Tool, as of June 2011, contained discharge information for more than 20,000 industrial and municipal point source facilities. The completeness of the DMR database is summarized below. Although the data presented in **Figure F-1** are for 2009, only limited updates had occurred as of the writing of this report.



From: http://cfpub.epa.gov/dmr/ Figure F-1. Completeness of CWA Discharge Monitoring Data by State

Mining or processing operations may have general permits related to retention ponds that in most cases do not require DMR tracking. Pollutant loadings are presented in the DMR as pounds per year where such reporting is required as part of an NPDES discharge permit. Data for reportable discharges associated with mining and mining processor sites was found to be limited.

The specific procedure used to identify data in the DMR that are linked to 2009 Current sites included first determining which of these had TRI identifiers, then determining which of these TRI facilities were linked with an NPDES identifier. For each 2009 Current site that has an NPDES ID, a query was entered into the DMR system to retrieve relevant data relating to the release of CERCLA hazardous substances. All other chemical releases were also noted. Those releases that included chemicals that are defined as CERCLA hazardous substances were then indicated by including the standardized name of the chemical and its CAS registry numbers.

An individual 2009 Current site may be associated with more than one TRI and NPDES identifier. Of the 2009 Current mines, 13 were linked with an NPDES ID. Of the 2009 Current processors, 44 were linked with one or more NPDES IDs; the total mine and processor counts reflects the number of ungrouped individual mines and processors. **Table F-1** shows the crosswalk between the 2009 Current mines, their corresponding TRI ID#s and TRI reporting facility names, and the NPDES permit numbers and NPDES discharger name on record in either the PCS or ICIS database. **Table F-2** shows the same crosswalk but for 2009 Current processors. **Attachment F-4** shows the results, by 2009 Current site and COC, and for phosphorus, ammonia, and cyanide.

|--|

| Row | Mine_ID | TRI_ID          | NPDES_ID  | FRS_Facility                 |
|-----|---------|-----------------|-----------|------------------------------|
| 1   | 13      | 83837SNSHN1176B | ID0000060 | Essential Metals Corporation |
| 2   | 124     | 83227THMPSSQUAW | ID0025402 | Thompson Creek Mining Co.    |

| 3  | 125 | 83873SLVRVLAKEG | ID0025429 | Us Silver - Idaho Inc                 |
|----|-----|-----------------|-----------|---------------------------------------|
| 4  | 125 | 83873SLVRVLAKEG | ID0000027 | Us Silver - Idaho Inc                 |
| 5  | 153 | 63629BRSHYHWYKK | MO0001848 | Brushy Creek Mine/Mill                |
| 6  | 154 | 63629FLTCHHWYTT | MO0001856 | Fletcher Mine/Mill                    |
| 7  | 155 | 65440BCKMNHWYKK | MO0002003 | Buick Resource Recycling Facility Llc |
| 8  | 155 | 65440BCKMNHWYKK | MO0000337 | Buick Resource Recycling Facility Llc |
| 9  | 163 | 59759GLDNS453MO | MTR300012 | Golden Sunlight Mines Incorporated    |
| 10 | 163 | 59759GLDNS453MO | MTR300199 | Golden Sunlight Mines Incorporated    |
| 11 | 190 | 89414NWMNT35MIL | NV0021725 | Newmont Gold Company Twin Creeks Mine |
| 12 | 240 | 57754WHRFRTROJA | SD0025852 | Wharf Resources U S A Incorporated    |
| 13 | 267 | 99153PNDRL1382P | WA0001317 | Pend Oreille Mine                     |
| 14 | 291 | 99752RDDGP90MIL | AK0038652 | Red Dog Operations Mine Facility      |
| 15 | 313 | 80438CLMXM9MILE | CO0041467 | Climax Molybdenum Henderson Mine      |
| 16 | 118 | 32096CCDNTSTATE | FL0000655 | PCS Phosphate White Springs           |

### Table F-2. Crosswalk Between 2009 Current Processors and DMR/NPDES Sites

| Row | Fac_ID | TRI_ID          | NPDES_ID  | FRS_Facility                             |
|-----|--------|-----------------|-----------|------------------------------------------|
| 1   | 3      | 42420LCNNGKENTU | KY0004278 | Alcan Primary Metal Sebree Works         |
| 2   | 4      | 76567LMNMCSANDO | TX0000876 | Alcoa                                    |
| 3   | 6      | 98248NTLCL4050M | WA0002950 | Alcoa Intalco Works                      |
| 4   | 7      | 47630LMNMCHIGHW | IN0001155 | Alcoa Warrick Operations                 |
| 5   | 13     | 21701STLCL5601M | MD0002429 | Eastalco Aluminum Company                |
| 6   | 14     | 63869NRNDLSTJUD | MO0105732 | Noranda Aluminum Incorporated            |
| 7   | 35     | 78410CCPCC1501M | TX0076996 | Equistar Corpus Christi Plant            |
| 8   | 48     | 77978LMNMCSTATE | TX0004715 | Alcoa World Alumina Atlantic             |
| 9   | 50     | 43416BRSHWSOUTH | OH0002518 | Brush Wellman Inc *                      |
| 10  | 56     | 71730GRTLKRT7BO | AR0000680 | Great Lakes South                        |
| 11  | 62     | 18848GTPRDHAWES | PA0009024 | Global Tungsten & Powders Corp           |
| 12  | 68     | 84006KNNCT8362W | UT0000051 | Kennecott Corporation-Smelter & Refinery |
| 13  | 74     | 74363GLPCHHIGHW | OK0001261 | Umicore Optical Materials Usa            |
| 14  | 87     | 13413SPCLMMIDDL | NY0007129 | Special Metals Corporation               |
| 15  | 92     | 46304NRTHR246BA | IN0000132 | Nipsco Bailly Generating Station         |
| 16  | 93     | 41105RMCSHUSROU | KY0000485 | AK Steel Corp Ashland Works - Coke Plant |
| 17  | 93     | 41105RMCST4000E | KY0000485 | AK Steel Corp Ashland Works - Coke Plant |
| 18  | 93     | 41105RMCST4000E | KY0000558 | AK Steel Corp Ashland Works - Coke Plant |
| 19  | 94     | 45043RMCNC1801C | OH0009997 | AK Steel Corp                            |
| 20  | 95     | 44901MPRDT913BO | OH0006840 | AK Steel Corp Mansfield Wo Rks           |
| 21  | 97     | 26037WHLNGROUTE | WV0023281 | Mountain State Carbon Follansbee Plant   |
| 22  | 97     | 43952WHLNGSOUTH | OH0011347 | Severstal Wheeling Inc                   |
| 23  | 103    | 44481WRRNW1040P | OH0101079 | Severstal Warren Inc.                    |
| 24  | 104    | 15034SSRVNPOBOX | 0         | US Steel Irvin Works                     |
| 25  | 105    | 35064SSFRFVALLE | AL0003646 | US Steel Fairfield Works                 |
| 26  | 105    | 35064SSFRFVALLE | AL0065773 | US Steel Fairfield                       |
| 27  | 106    | 15104SSDGRBRADD | 0         | Edgar Thomson Plt                        |
| 28  | 107    | 46402SSGRYONENO | IN0000281 | US Steel Corporation Gary Works          |

| Row | Fac_ID | TRI_ID          | NPDES_ID  | FRS_Facility                                     |
|-----|--------|-----------------|-----------|--------------------------------------------------|
| 29  | 107    | 46402SSGRYONENO | IN0061077 | US Steel Corporation Gary Works                  |
| 30  | 108    | 62040GRNTC20THS | IL0000329 | National Steel Corporation Granite City Division |
| 31  | 109    | 48229GRTLKNO1QU | MI0002313 | US Steel Corporation                             |
| 32  | 113    | 46312LTVST3001D | IN0000205 | LTV Steel Rws 7                                  |
| 33  | 113    | 46312LTVST3001D | IN0000205 | LTV Steel Rws 8                                  |
| 34  | 116    | 48121FRDM23001M | MI0043524 | Rouge Steel Co                                   |
| 35  | 126    | 21219BTHLHDUALH | MD0001201 | ISG Sparrows Point Incorporated                  |
| 36  | 151    | 63048HRCLN881MA | MO0000281 | Doe Run Company                                  |
| 37  | 181    | 37134CHMTLFOOTE | TN0001686 | Erachem Comilog, Inc.                            |
| 38  | 182    | 21226CHMTL711PI | MD0001775 | Erachem Comilog, Inc.                            |
| 39  | 184    | 25265FLMNPUSRT6 | WV0000426 | Felman Production Inc.                           |
| 40  | 184    | 25265MNTNRRTE33 | WV0048500 | American Electric Power Mountaineer Plant        |
| 41  | 201    | 77501MBLMN2001J | TX0007285 | Agrifos Fertilizer Pasadena                      |
| 42  | 201    | 77501PHLLP100JE | TX0108332 | Conocophillips Pipe Line Pasadena<br>Terminal    |
| 43  | 201    | 77503LBMRL2500N | TX0004731 | Albemarle Corporation Houston Plant              |
| 44  | 204    | 39568NSTHNPOBOX | MS0003115 | Mississippi Phosphates Corp                      |
| 45  | 205    | 70057CCDNTLAHWY | LA000598  | Occidental Chemical Corp                         |
| 46  | 206    | 70792GRCCHEASTB | LA0004847 | Mosaic Fertilizer Llc - Uncle Sam Plant          |
| 47  | 210    | 32096CCDNTSTATE | FL0000655 | Pcs Phosphate White Springs                      |
| 48  | 221    | 70663WRGRCDAVIS | LA0001333 | W. R. Grace & CoConn. Davison Catalysts          |
| 49  | 231    | 36701GLBMTOLDMO | AL0025216 | Globe Metallurgical                              |
| 50  | 243    | 35806TLDYN7300H | AL0025585 | Tdy Industries Inc (Dba Ati Alldyne)             |
| 51  | 249    | 29335CLNSM14355 | SC0038229 | Celanese Emulsions Enoree Plant                  |
| 52  | 265    | 37871SRCNC1977W | TN0001741 | Etzc Young Mine & Mill                           |
| 53  | 267    | 37040SVGZN1800Z | TN0027677 | Etzc Young Mine & Mill                           |
| 54  | 268    | 97321TLDYN1600O | OR0001112 | Wah Chang                                        |

## F.3 NEI Data

The EPA reviewed the content of the National Emissions Inventory (NEI) database for the list of 2009 Current sites. Limited data for the Selected COCs were found in the NEI database. Manganese and mangnese compounds were the only Selected COCs found in the NEI that exceeded a regulatory threshold. The data compiled for the 2009 Current sites is presented below.

The EPA's National Emissions Inventory (NEI) database contains information about stationary and mobile sources that emit criteria air pollutants and their precursors, and hazardous air pollutants (HAPs). HAPs are substances that are known or suspected to cause serious health problems such as cancer. The Clean Air Act defined an initial list of substances, and EPA currently identifies 188 HAPs. All HAPs are CERCLA hazardous substances, while criteria pollutants are not, so the remainder of this NEI analysis focuses on HAPs reported in the 2005 version of the NEI.

The database includes estimates of annual air pollutant emissions from point, nonpoint, and mobile sources in the 50 States, the District of Columbia, Puerto Rico, and the Virgin Islands.

Some of the sources from which EPA compiles the NEI database include:

- Emissions inventories compiled by State and local environmental agencies
- Databases related to EPA's Maximum Achievable Control Technology (MACT) programs to reduce emissions of HAPs
- TRI data
- For nonroad sources, EPA's NONROAD computer model
- Previous emissions inventories, if States do not submit current data.

NEI data extracted for the Selected COCs are provided below.

**Table F-3** shows the cross walk between the 2009 Current sites and their respective Facility Registry System (FRS) facility name used in the NEI database.

| Site<br>RNUM | Processor<br>RNUM | Processor Name                  | FRS ID       | FRS Facility Name               |
|--------------|-------------------|---------------------------------|--------------|---------------------------------|
| 28           | 180               | Elkem Metals Co.                | 110000741966 | Elkem Metals Co.                |
| 3181         | 181               | Erachem Comilog<br>Incorporated | 110000370508 | Erachem Comilog<br>Incorporated |
| 3232         | 232               | Globe Metallurgical Inc.        | 110000591994 | Globe Metallurgical Inc.        |

Table F-3. Cross Walk between 2009 Current and NEI Sites (Selected COCs only)

 Table F-4 shows the estimated NEI HAP (CERCLA hazardous substance) releases in tons, by site.

# Table F-4. Summary of Collected NEI Data by Site and Selected COC with Aggregated Annual Emissions of > 10 Tons per Year

| Processor<br>RNUM | FRS ID       | FRS Facility Name               | Pollutant<br>Code | HAP Category<br>Name   | Annual<br>Emissions<br>(Tons) |
|-------------------|--------------|---------------------------------|-------------------|------------------------|-------------------------------|
| 180               | 110000741966 | Elkem Metals Co.                | 7439965           | Manganese<br>compounds | 258                           |
| 181               | 110000370508 | Erachem Comilog<br>Incorporated | 198               | Manganese<br>compounds | 90                            |
| 232               | 110000591994 | Globe Metallurgical<br>Inc      | 7439965           | Manganese<br>compounds | 299                           |

### F.4 Streams Exceeding TMDLs for Regulated Contaminants in Surface Waters—2009 Current Sites

The aquatic areas of review (AqAORs) of 133 sites overlap a CWA 303(d) impaired water polygon. **Figure F-2** shows the 2009 Current mine sites and **Figure F-3** shows the 2009 Current processor sites. **Table F-5** lists the streams with exceeded TMDLs and the length of

stream for which a TMDL is exceeded. The GIS analysis also revealed 177 currently active sites (42%) are affected by RCRA Large Quantity Generator Facilities.



Figure F-2. 2009 Current Mines with TMDL Waters within 24 Hours Downstream



Figure F-3. 2009 Current Processors with TMDL Waters within 24 Hours Downstream

| Table F-5. Streams/Rivers with Exceeded TN | IDLS |
|--------------------------------------------|------|
|--------------------------------------------|------|

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                               | ТҮРЕ                  | TMDL Stream/River Name | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|-----------------------------------------|-----------------------|------------------------|---------------------------------------|
| 1   | 1       | 2          |                 | Copperco LLC                            | Mine Combination      | Not named              | 29                                    |
| 2   | 1       | 90         |                 | Copper Queen Branch                     | Mine Combination      | Not named              | 29                                    |
| 3   | 9       | 319        |                 | C-100 Jaw Plant Nordberg #42165100B     | Mine Combination      | Connecticut River      | 5                                     |
| 4   | 9       | 320        |                 | Screener-Warrior Power Screen #12203097 | Mine Combination      | Connecticut River      | 5                                     |
| 5   | 12      | 347        |                 | Three Forks Mill                        | Mine Combination      | Madison River          | 40                                    |
| 6   | 12      | 326        |                 | Yellowstone Mine                        | Mine Combination      | Madison River          | 40                                    |
| 7   | 27      |            | 108             | US Steel Granite City                   | Processor Combination | Not named              | 27                                    |
| 8   | 27      | -          | 110             | Beelman Truck Co.                       | Processor Combination | Not named              | 27                                    |
| 9   | 27      | -          | 135             | Stein, Inc.                             | Processor Combination | Not named              | 27                                    |
| 10  | 28      | -          | 180             | Elkem Metals Co.                        | Processor Combination | Ohio River             | 172                                   |
| 11  | 28      |            | 183             | Eveready Battery Co. inc.               | Processor Combination | Ohio River             | 172                                   |
| 12  | 29      |            | 106             | US Steel Braddock                       | Processor Combination | Turtle Creek           | 10                                    |
| 13  | 29      | -          | 142             | Tube City IMS, LLC                      | Processor Combination | Turtle Creek           | 10                                    |
| 14  | 30      |            | 103             | Severstal Warren                        | Processor Combination | Mahoning River         | 169                                   |
| 15  | 30      |            | 124             | Lafarge North America Inc.              | Processor Combination | Mahoning River         | 169                                   |
| 16  | 30      | -          | 132             | MultiServ Pit 6                         | Processor Combination | Mahoning River         | 169                                   |
| 17  | 32      |            | 92              | Arcelor Mittal Burns Harbor             | Processor Combination | Not named              | 28                                    |
| 18  | 32      |            | 139             | The Levy Co., Inc.                      | Processor Combination | Not named              | 28                                    |
| 19  | 33      |            | 98              | Arcelor Mittal USA Indiana Harbor       | Processor Combination | Not named              | 97                                    |
| 20  | 33      |            | 107             | US Steel Gary Works                     | Processor Combination | Not named              | 97                                    |
| 21  | 33      |            | 111             | Beemsterboer Slag Corp.                 | Processor Combination | Not named              | 97                                    |
| 22  | 33      |            | 112             | Beemsterboer Slag Corp.                 | Processor Combination | Not named              | 97                                    |
| 23  | 33      |            | 113             | Edward C. Levy Co.                      | Processor Combination | Not named              | 97                                    |
| 24  | 33      |            | 119             | Holcim (US) Inc./Mercier Corp.?         | Processor Combination | Not named              | 97                                    |
| 25  | 33      |            | 122             | Lafarge North America Inc.              | Processor Combination | Not named              | 97                                    |
| 26  | 33      |            | 128             | MultiServ                               | Processor Combination | Not named              | 97                                    |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                                                   | TYPE                       | TMDL Stream/River Name | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|-------------------------------------------------------------|----------------------------|------------------------|---------------------------------------|
| 27  | 33      |            | 140             | The Levy Co., Inc.                                          | Processor Combination      | Not named              | 97                                    |
| 28  | 33      |            | 141             | Tube City IMS, LLC                                          | Processor Combination      | Not named              | 97                                    |
| 29  | 33      |            | 144             | U.S. Aggregates, Inc.                                       | Processor Combination      | Not named              | 97                                    |
| 30  | 34      |            | 96              | Arcelor Mittal Riverdale                                    | Processor Combination      | Calumet Sag Channel    | 70                                    |
| 31  | 34      |            | 127             | MultiServ                                                   | Processor Combination      | Calumet Sag Channel    | 70                                    |
| 32  | 34      |            | 134             | Phoenix Services LLC/listed as Hasarco<br>MultiServ Pit 27? | Processor Combination      | Calumet Sag Channel    | 70                                    |
| 33  | 1002    | 325        |                 | Barretts Mill                                               | Mine Processor Combination | Beaverhead River       | 116                                   |
| 34  | 1002    |            | 274             | Specialty Minerals Inc. (Barretts Minerals)                 | Mine Processor Combination | Beaverhead River       | 116                                   |
| 35  | 1005    | 78         |                 | Freeport-McMoRan Miami Inc.                                 | Mine Processor Combination | Pinto Creek            | 54                                    |
| 36  | 1005    |            | 67              | Copper Cities Unit                                          | Mine Processor Combination | Pinto Creek            | 54                                    |
| 37  | 1011    | 308        |                 | Freeport McMoRan Morenci Inc.                               | Mine Processor Combination | San Francisco River    | 36                                    |
| 38  | 1011    |            | 199             | Phelps-Dodge Morenci                                        | Mine Processor Combination | San Francisco River    | 36                                    |
| 39  | 1013    | 84         |                 | Hayden Concentrator                                         | Mine Processor Combination | Gila River             | 0.07                                  |
| 40  | 1013    |            | 66              | Asarco, LLC - Hayden                                        | Mine Processor Combination | Gila River             | 0.07                                  |
| 41  | 1017    | 175        |                 | Chukar                                                      | Mine Processor Combination | Humboldt River         | 68                                    |
| 42  | 1017    | 210        |                 | SOUTH AREA                                                  | Mine Processor Combination | Humboldt River         | 68                                    |
| 43  | 1017    |            | 82              | Mill 6                                                      | Mine Processor Combination | Humboldt River         | 68                                    |
| 44  | 2007    | 7          |                 | Sixteen To One Mine                                         | Mine                       | Kanaka Creek           | 15                                    |
| 45  | 2013    | 13         |                 | Sunshine Mine                                               | Mine                       | Big Creek              | 4                                     |
| 46  | 2014    | 14         |                 | BUNKER HILL MINE                                            | Mine                       | Coeur d'Alene River    | 38                                    |
| 47  | 2016    | 16         |                 | Golden Chest Project                                        | Mine                       | Prichard Creek         | 21                                    |
| 48  | 2029    | 29         |                 | Montana Tunnels Mining Inc                                  | Mine                       | Prickly Pear Creek     | 36                                    |
| 49  | 2031    | 31         |                 | Montanore Project                                           | Mine                       | Libby Creek            | 15                                    |
| 50  | 2052    | 52         |                 | Resolution Mine                                             | Mine                       | Queen Creek            | 14                                    |
| 51  | 2079    | 79         |                 | Freeport-McMoRan Bagdad Inc                                 | Mine                       | Boulder Creek          | 4                                     |
| 52  | 2080    | 80         |                 | Ray                                                         | Mine                       | Mineral Creek          | 14                                    |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                       | ТҮРЕ | TMDL Stream/River Name            | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|---------------------------------|------|-----------------------------------|---------------------------------------|
| 53  | 2082    | 82         |                 | Pinto Valley Operations         | Mine | Pinto Creek                       | 52                                    |
| 54  | 2086    | 86         |                 | Carlota Copper Company          | Mine | Pinto Creek                       | 52                                    |
| 55  | 2105    | 105        |                 | Jerico Products Incorporated    | Mine | Montezuma Slough                  | 33                                    |
| 56  | 2114    | 114        |                 | Cresson Project                 | Mine | Cripple Creek                     | 8                                     |
| 57  | 2115    | 115        |                 | Alma Placer Mine                | Mine | Middle Fork South Platte<br>River | 5                                     |
| 58  | 2117    | 117        |                 | Hardee Phosphate Complex        | Mine | Peace River                       | 18                                    |
| 59  | 2124    | 124        |                 | Thompson Creek Mining Co        | Mine | Thompson Creek                    | 11                                    |
| 60  | 2125    | 125        |                 | Galena                          | Mine | South Fork Coeur d'Alene<br>River | 12                                    |
| 61  | 2126    | 126        |                 | Lucky Friday                    | Mine | South Fork Coeur d'Alene<br>River | 7                                     |
| 62  | 2127    | 127        |                 | Enoch Valley & South Rass Mines | Mine | Blackfoot River                   | 24                                    |
| 63  | 2129    | 129        |                 | Smoky Canyon Mine               | Mine | Sage Creek                        | 7                                     |
| 64  | 2152    | 152        |                 | Viburnum #29 Mine               | Mine | Indian Creek                      | 3                                     |
| 65  | 2158    | 158        |                 | Genesis IncTroy Mine            | Mine | Lake Creek                        | 20                                    |
| 66  | 2161    | 161        |                 | Norweigen                       | Mine | Jefferson River                   | 16                                    |
| 67  | 2162    | 162        |                 | Drumlummon Mine                 | Mine | Silver Creek                      | 19                                    |
| 68  | 2163    | 163        |                 | Golden Sunlight Mine Inc        | Mine | Jefferson River                   | 39                                    |
| 69  | 2166    | 166        |                 | EAST BOULDER MINE               | Mine | Boulder River                     | 8                                     |
| 70  | 2168    | 168        |                 | Butte Highlands                 | Mine | Fish Creek                        | 29                                    |
| 71  | 2169    | 169        |                 | Indian Creek                    | Mine | Missouri River                    | 43                                    |
| 72  | 2171    | 171        |                 | Victoria / Madison Gold         | Mine | Jefferson Slough                  | 0.3                                   |
| 73  | 2172    | 172        |                 | Black Butte Mine                | Mine | Missouri River                    | 27                                    |
| 74  | 2179    | 179        |                 | Nevada Barth Iron Mine and Mill | Mine | Humboldt River                    | 60                                    |
| 75  | 2185    | 185        |                 | Jerritt Canyon Mill             | Mine | North Fork Humboldt River         | 7                                     |
| 76  | 2186    | 186        |                 | Lone Tree Mine                  | Mine | Humboldt River                    | 92                                    |
| 77  | 2194    | 194        |                 | Spring Valley Mine              | Mine | Carson River                      | 54                                    |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                           | ТҮРЕ      | TMDL Stream/River Name    | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|-------------------------------------|-----------|---------------------------|---------------------------------------|
| 78  | 2200    | 200        |                 | Sunrise Gold Placer Mine            | Mine      | Humboldt River            | 87                                    |
| 79  | 2202    | 202        |                 | Florida Canyon Mine                 | Mine      | Humboldt River            | 96                                    |
| 80  | 2206    | 206        |                 | Esmeralda Mine                      | Mine      | East Walker River         | 24                                    |
| 81  | 2209    | 209        |                 | Lee Smith Mine                      | Mine      | North Fork Humboldt River | 28                                    |
| 82  | 2218    | 218        |                 | Questa Mine & Mill                  | Mine      | Red River                 | 23                                    |
| 83  | 2229    | 229        |                 | Tripoli                             | Mine      | Spring River              | 17                                    |
| 84  | 2243    | 243        |                 | Coy Mine                            | Mine      | Mossy Creek               | 6                                     |
| 85  | 2255    | 255        |                 | Bingham Canyon Mine                 | Mine      | Jordan River              | 28                                    |
| 86  | 2265    | 265        |                 | Luzenac America Inc                 | Mine      | Not named                 | 8                                     |
| 87  | 2275    | 275        |                 | Reiss Viking Div of C Reiss Coal    | Mine      | Ohio River                | 2                                     |
| 88  | 2313    | 313        |                 | Henderson Operations                | Mine      | Clear Creek               | 9                                     |
| 89  | 2317    | 317        |                 | New Jersey Mine & Mill              | Mine      | Coeur d'Alene River       | 38                                    |
| 90  | 2330    | 330        |                 | Mosaic Potash Carlsbad, Inc.        | Mine      | Pecos River               | 13                                    |
| 91  | 2344    | 344        |                 | Арех                                | Mine      | Big Hole River            | 30                                    |
| 92  | 3015    |            | 15              | ORMET Aluminum Mill Products Corp   | Processor | Ohio River                | 75                                    |
| 93  | 3016    |            | 16              | United State Antimony Corporation   | Processor | Prospect Creek            | 24                                    |
| 94  | 3023    |            | 23              | Elementis Pigments                  | Processor | Mississippi River         | 27                                    |
| 95  | 3026    |            | 26              | Halliburton Energy Services         | Processor | Greens Bayou              | 14                                    |
| 96  | 3027    |            | 27              | M-I LLC                             | Processor | Galveston Bay             | 69                                    |
| 97  | 3029    |            | 29              | Ambar Drilling Fluids               | Processor | Not named                 | 6                                     |
| 98  | 3036    |            | 36              | Amelia Barite Plant                 | Processor | Chene, Bayou              | 15                                    |
| 99  | 3040    |            | 40              | De Quincy Plant                     | Processor | West Fork Calcasieu River | 16                                    |
| 100 | 3042    |            | 42              | Halliburton                         | Processor | Pearl River               | 2                                     |
| 101 | 3043    |            | 43              | Galveston GBT Barite Grinding Plant | Processor | Galveston Bay             | 69                                    |
| 102 | 3044    |            | 44              | Argenta Mine And Mill               | Processor | Humboldt River            | 162                                   |
| 103 | 3056    |            | 56              | Chemtura                            | Processor | Bayou de Loutre           | 6                                     |
| 104 | 3057    |            | 57              | Albemarle                           | Processor | Dorcheat, Bayou           | 7                                     |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                                    | ТҮРЕ      | TMDL Stream/River Name | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|----------------------------------------------|-----------|------------------------|---------------------------------------|
| 105 | 3068    |            | 68              | Kennecott Corp-Smelter & Refinery            | Processor | Coon Creek             | 2                                     |
| 106 | 3069    |            | 69              | Copperton Concentrator                       | Processor | Jordan River           | 28                                    |
| 107 | 3071    |            | 71              | Rosiclare Facility Hastie Mining             | Processor | Ohio River             | 76                                    |
| 108 | 3072    |            | 72              | Hastie Mining and Trucking Co                | Processor | Ohio River             | 68                                    |
| 109 | 3074    |            | 74              | UMICORE Optical Materials USA                | Processor | Spring River           | 31                                    |
| 110 | 3076    |            | 76              | Prospect Mine                                | Processor | Ruby River             | 28                                    |
| 111 | 3083    |            | 83              | Clarkdale Metals Corp                        | Processor | Verde River            | 1                                     |
| 112 | 3086    |            | 86              | Umicore Indium Products                      | Processor | Providence River       | 12                                    |
| 113 | 3094    |            | 94              | AK Middletown Works                          | Processor | Dicks Creek            | 19                                    |
| 114 | 3095    |            | 95              | AK Steel Corp. Mansfield                     | Processor | Rocky Fork             | 33                                    |
| 115 | 3097    |            | 97              | Severstal Wheeling                           | Processor | Ohio River             | 43                                    |
| 116 | 3099    |            | 99              | Arcelor Mittal Weirton                       | Processor | Ohio River             | 60                                    |
| 117 | 3102    |            | 102             | Severstal Sparrows Point                     | Processor | Bear Creek             | 6                                     |
| 118 | 3118    |            | 118             | Fritz Enterprises, Inc.                      | Processor | Back River             | 13                                    |
| 119 | 3121    |            | 121             | Lafarge North America Inc.                   | Processor | Not named              | 14                                    |
| 120 | 3123    |            | 123             | Lafarge North America Inc.                   | Processor | Skinners Run           | 15                                    |
| 121 | 3125    |            | 125             | Lafarge North America Inc.                   | Processor | Ohio River             | 5                                     |
| 122 | 3126    |            | 126             | Lafarge North America Inc./Maryland Slag Co. | Processor | Bear Creek             | 6                                     |
| 123 | 3129    |            | 129             | MultiServ                                    | Processor | Bear Creek             | 6                                     |
| 124 | 3130    |            | 130             | MultiServ                                    | Processor | Rocky Fork             | 33                                    |
| 125 | 3131    |            | 131             | MultiServ Plt 4                              | Processor | Mahoning River         | 56                                    |
| 126 | 3133    |            | 133             | Phoenix Services LLC                         | Processor | Bear Creek             | 6                                     |
| 127 | 3136    |            | 136             | Stein, Inc.                                  | Processor | Ohio River             | 0.5                                   |
| 128 | 3137    |            | 137             | Stein, Inc.                                  | Processor | Cuyahoga River         | 1                                     |
| 129 | 3143    |            | 143             | Tube City IMS, LLC dba Olympic Mill Service  | Processor | Dicks Creek            | 19                                    |
| 130 | 3145    |            | 145             | Quality Magnetite LLC                        | Processor | Big Sandy River        | 16                                    |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name                                | TYPE      | TMDL Stream/River Name | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|------------------------------------------|-----------|------------------------|---------------------------------------|
| 131 | 3147    |            | 147             | Densimix Incorporated                    | Processor | Greens Bayou           | 14                                    |
| 132 | 3151    |            | 151             | Doe Run Resources Corp.                  | Processor | Mississippi River      | 35                                    |
| 133 | 3171    |            | 171             | FMC Corp. Lithium Division Bayport Texas | Processor | Vince Bayou            | 0.09                                  |
| 134 | 3176    |            | 176             | Martin Marietta Magnesia Specialties LLC | Processor | Packer Creek           | 8                                     |
| 135 | 3181    |            | 181             | Erachem Comilog Inc.                     | Processor | Curtis Creek           | 4                                     |
| 136 | 3184    |            | 184             | Felman Production Inc.                   | Processor | Ohio River             | 37                                    |
| 137 | 3185    |            | 185             | Tronox LLC                               | Processor | Colorado River         | 12                                    |
| 138 | 3191    |            | 191             | A-1 Grit Co                              | Processor | Angeles River, Los     | 11                                    |
| 139 | 3193    |            | 193             | Kittanning Plant                         | Processor | Allegheny River        | 3                                     |
| 140 | 3194    |            | 194             | Lake Charles Plant                       | Processor | Bayou d'Inde           | 12                                    |
| 141 | 3198    |            | 198             | Climax Molybdenum Co. Henderson Mill     | Processor | Williams Fork          | 41                                    |
| 142 | 3201    |            | 201             | Agrifos Fertilizer Pasadena              | Processor | Buffalo Bayou          | 33                                    |
| 143 | 3202    |            | 202             | Innophos - Rhodia Geismar Facility       | Processor | Amite River            | 9                                     |
| 144 | 3204    |            | 204             | Mississippi Phosphates Corp.             | Processor | Casotte, Bayou         | 10                                    |
| 145 | 3208    |            | 208             | PCS NITR FERT                            | Processor | Amite River            | 9                                     |
| 146 | 3211    |            | 211             | SF Phosphates Limited Company            | Processor | Mahoning River         | 56                                    |
| 147 | 3218    |            | 218             | Boulder Scientific Co.                   | Processor | South Platte River     | 1                                     |
| 148 | 3220    |            | 220             | Santoku America                          | Processor | Gila River             | 17                                    |
| 149 | 3221    |            | 221             | W.R. Grace & Co Conn. Davison Catalysts  | Processor | Calcasieu River        | 7                                     |
| 150 | 3230    |            | 230             | Elkem Metals Company?                    | Processor | Kanawha River          | 9                                     |
| 151 | 3233    |            | 233             | Globe Metallurgical Inc.                 | Processor | Ohio River             | 16                                    |
| 152 | 3237    |            | 237             | IMI FABI Benwood Plant                   | Processor | Ohio River             | 43                                    |
| 153 | 3238    |            | 238             | Laws Mill                                | Processor | Owens River            | 1                                     |
| 154 | 3250    |            | 250             | J.P. Austin Associates, Inc.             | Processor | Ohio River             | 33                                    |
| 155 | 3256    |            | 256             | Whittemore Co., Inc.                     | Processor | Merrimack River        | 18                                    |
| 156 | 3261    |            | 261             | W.R. Grace & Co.                         | Processor | Gila River             | 17                                    |
| 157 | 3268    |            | 268             | ATI Wah Chang                            | Processor | Willamette River       | 69                                    |

| Row | Site ID | Mine<br>ID | Processor<br>ID | Site Name           | ТҮРЕ      | TMDL Stream/River Name | Stream/<br>River<br>Length<br>(miles) |
|-----|---------|------------|-----------------|---------------------|-----------|------------------------|---------------------------------------|
| 158 | 3269    |            | 269             | Magnesium Elektron  | Processor | Delaware River         | 36                                    |
| 159 | 3273    |            | 273             | Sappington Mill     | Processor | Jefferson River        | 46                                    |
| 160 | 3277    |            | 277             | Iluka Resources Inc | Processor | Saint Johns River      | 18                                    |
| 161 | 3283    |            | 283             | Granusol, Inc.      | Processor | Ohio River             | 76                                    |

## References

U.S. EPA (U.S. Environmental Protection Agency). 2011. Toxics Release Inventory (TRI) Program "Basic Information" Webpage: [Available at: <u>https://www.epa.gov/toxics-release-inventory-tri-program</u>]. Last updated: Wednesday, October 26, 2011.

## Attachment F1 Cross-walk between 2009 Current Sites and TRI Sites

| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM | Mine Name                                  | TRI FID         | TRI Facility Name                                | Commodity                                            | City/Town    | County       | State |
|--------------|--------------|-------------------|--------------------------------------------|-----------------|--------------------------------------------------|------------------------------------------------------|--------------|--------------|-------|
| 1            | 2            |                   | Copper Queen Branch                        | 85603PHLPS36WHW | Copper Queen                                     | Copper Ore NEC                                       | Bisbee       | Cochise      | AZ    |
| 7            | 198          |                   | Turquoise Ridge Mine                       | 89414GTCHL28MIN | Barrick Turquoise Ridge Inc.                     | Gold Ore                                             | Golconda     | Humboldt     | NV    |
| 14           |              | 291               | Sherwin Alumina                            | 78359RYNLDHIGHW | Sherwin Alumina LP                               | Alumina                                              | Portland     | San Patricio | ТΧ    |
| 15           |              | 48                | Alcoa World Alumina<br>Atlantic            | 77978LMNMCSTATE | Alcoa World Alumina LLC                          | Bauxite and alumina                                  | Port Lavaca  | Calhoun      | тх    |
| 21           |              | 59                | Nyrstar NV                                 | 37040SVGZN1800Z | Nyrstar Clarksville INC                          | Cadmium                                              | Clarksville  | Montgomery   | TN    |
| 21           |              | 267               | Plasminco (probably<br>should be Pasminco) | 37040SVGZN1800Z | Nyrstar Clarksville Inc                          | Zinc                                                 | Clarksville  | Montgomery   | TN    |
| 27           |              | 108               | US Steel Granite City                      | 62040GRNTC20THS | US Steel Granite City Works                      | Iron and steel                                       | Granite City | Madison      | IL    |
| 28           |              | 180               | Elkem Metals Co.                           | 45750LKMMTROUTE | Eramet Marietta Inc                              | Manganese                                            | Marietta     | Washington   | ОН    |
| 28           |              | 183               | Eveready Battery Co.<br>Inc.               | 45750VRDYBCOUNT | Energizer Battery Manufacturing                  | Manganese                                            | Marietta     | Washington   | он    |
| 29           |              | 106               | US Steel Braddock                          | 15104SSDGRBRADD | USS Mon Valley Works - Edgar T<br>Homson Plant   | Iron and steel                                       | Braddock     | Allegheny    | PA    |
| 29           |              | 142               | Tube City IMS, LLC                         | 15104MSDVT13BRA | Tube City IMS                                    | Iron and steel<br>slag (non-electric<br>arc furnace) | Braddock     | Allegheny    | PA    |
| 30           |              | 103               | Severstal Warren                           | 44481WRRNW1040P | Severstal Warren Inc                             | Iron and steel                                       | Warren       | Trumbull     | ОН    |
| 30           |              | 132               | MultiServ Plt 6                            | 44482HRSCCCOLTV | Heckett Multiserv Plant 6                        | Iron and steel<br>slag (non-electric<br>arc furnace) | Warren       | Trumbull     | он    |
| 31           |              | 100               | Republic Engineered<br>Products Inc        | 44055SSLRN1807E | Republic Engineered Products Inc<br>Lorain Plant | Iron and steel                                       | Lorain       | Lorain       | он    |
| 33           |              | 107               | US Steel Gary Works                        | 46402SSGRYONENO | USS Gary Works                                   | Iron and steel                                       | Gary         | Lake         | IN    |
| 33           |              | 113               | Edward C. Levy Co.                         | 48217DWCLV13800 | Edw C Levy Co - Plant 6                          | Iron and steel<br>slag (non-electric<br>arc furnace) | East Chicago | Lake         | IN    |

| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM | Mine Name                        | TRI FID         | TRI Facility Name                                       | Commodity                                            | City/Town    | County    | State |
|--------------|--------------|-------------------|----------------------------------|-----------------|---------------------------------------------------------|------------------------------------------------------|--------------|-----------|-------|
|              |              |                   |                                  |                 |                                                         | Iron and steel                                       |              |           |       |
| 33           |              | 140               | The Levy Co., Inc.               | 46401LVYND1NBUC | Edw. C. Levy Co Indiana Slag Co                         | arc furnace)                                         | Gary         | Lake      | IN    |
|              |              |                   |                                  |                 |                                                         | Iron and steel                                       |              |           |       |
| 33           |              | 141               | Tube City IMS, LLC               | 46401MSDVT1NBRA | Tube City Ims                                           | arc furnace)                                         | Gary         | Lake      | IN    |
| 34           |              | 96                | Arcelor Mittal Riverdale         | 60627CMSTL13500 | Arcelormittal Riverdale Inc                             | Iron and steel                                       | Riverdale    | Cook      | IL    |
| 34           |              | 127               | MultiServ                        | 60627HRSCC135TH | Harsco Co Multiserv Plant 27                            | Iron and steel<br>slag (non-electric<br>arc furnace) | Riverdale    | Cook      | IL    |
|              |              |                   |                                  |                 | Chino Mines Co Mine                                     |                                                      |              | _         |       |
| 1006         | 38           |                   | Chino Mines Co Mine              | 88043CHNMN210CO | Concentrator-Sxew Plants                                | Copper Ore NEC                                       | Bayard       | Grant     | NM    |
| 1007         | 315          |                   | Du Pont Florida Mine & Plant     | 32091DPNTCSTATE | Dupont Chemicals - Starke<br>Facility                   | Titanium Ore                                         | Starke       | Clay      | FL    |
| 1007         |              | 271               | E.I. Dupont de Nemours           | 32091DPNTCSTATE | Dupont Chemicals - Starke facility                      | Zirconium and<br>hafnium                             | Starke       | Clay      | FL    |
| 1008         |              | 207               | P4 Production LLC                | 83276MNSNTHIGHW | P4 Production LLC                                       | Phosphate rock                                       | Soda Springs | Caribou   | ID    |
| 1011         | 308          |                   | Freeport-McMoRan<br>Morenci Inc. | 85540PHLPS4521U | Freeport-McMoran Morenci Inc                            | Copper Ore NEC                                       | Morenci      | Greenlee  | AZ    |
| 1011         |              | 199               | Phelps-Dodge Morenci             | 85540PHLPS4521U | Freeport-McMoran Morenci Inc                            | Molybdenum                                           | Morenci      | Greenlee  | AZ    |
| 1013         |              | 66                | Asarco, LLC - Hayden             | 85235SRCNC64ASA | Asarco LLC Ray Complex<br>Hayden Smelter & Concentrator | Copper                                               | Winkelman    | Gila      | AZ    |
| 1018         | 190          |                   | Twin Creeks Mine                 | 89414NWMNT35MIL | Newmont Mining Corp Twin<br>Creeks Mine                 | Gold Ore                                             | Golconda     | Humboldt  | NV    |
| 1022         | 310          |                   | Mission/San<br>Xavier/Eisenhower | 85629SRCNC4201W | Asarco LLC Mission Complex                              | Copper Ore NEC                                       | Sahuarita    | Pima      | AZ    |
| 1022         |              | 197               | Asarco LLC Mission<br>Complex    | 85629SRCNC4201W | Asarco LLC Mission Complex                              | Molybdenum                                           | Sahuarita    | Pima      | AZ    |
| 2029         | 29           |                   | Montana Tunnels<br>Mining Inc    | 59638MNTNT5MILE | Montana Tunnels Mining Inc                              | Gold Ore                                             | Clancy       | Jefferson | мт    |
| 2039         | 39           |                   | Balmat Mine No. 4 & mill         | 13642ZCMNS408SY | St Lawrence Zinc Co Balmat 4<br>Mine & Mill             | Lead-Zinc Ore                                        |              |           |       |
| 2079         | 79           |                   | Freeport-McMoRan<br>Bagdad Inc   | 86321CYPRS1MAIN | Freeport-Mcmoran Bagdad Inc                             | Copper Ore NEC                                       | Bagdad       | Yavapai   | AZ    |
| 2080         | 80           |                   | Ray                              | 85237SRCNCHWY17 | Asarco LLC ray Mine Operations                          | Copper Ore NEC                                       | Kearny       | Pinal     | AZ    |
| 2083         | 83           |                   | Freeport-McMoRan<br>Sierrita Inc | 85614CYPRS6200W | Freeport-Mcmoran Sierrita Inc                           | Copper Ore NEC                                       | Green Valley | Pima      | AZ    |

| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM | Mine Name                   | TRI FID         | TRI Facility Name                           | Commodity             | City/Town     | County            | State |
|--------------|--------------|-------------------|-----------------------------|-----------------|---------------------------------------------|-----------------------|---------------|-------------------|-------|
|              |              |                   | Freeport-McMoRan            |                 |                                             |                       | <b>.</b>      |                   |       |
| 2091         | 91           |                   | Safford Inc                 | 85548FRPRT85NFR | Freeport Mcmoran Safford Inc                | Copper Ore NEC        | Safford       | Graham            | AZ    |
| 2101         | 101          |                   | Mt Pass Mine & Mill         | 92366MLYCRI15AN | Molycorp Minerals LLC Mountain<br>Pass Mine | Rare Earths Ore       | Nipton        | San<br>Bernardino | CA    |
| 2103         | 103          |                   | Mesquite                    | 92227NWMNT6502E | Mesquite Mine                               | Gold Ore              | Winterhaven   | Imperial          | CA    |
| 2104         | 104          |                   | CR Briggs                   | 93562CRBRGWINGA | CR Briggs Corp                              | Gold Ore              | Death Valley  | Inyo              | CA    |
| 2114         | 114          |                   | Cresson Project             | 80860CRPPL2755S | Cripple Creek & Victor Gold<br>Mining Co    | Gold Ore              | Florissant    | Teller            | со    |
| 2118         | 118          |                   | Swift Creek Mine            | 32096CCDNTSTATE | PCS Phosphate White Springs                 | Phosphate Rock        | Jasper        | Hamilton          | FL    |
| 2124         | 124          |                   | Thompson Creek<br>Mining Co | 83227THMPSSQUAW | Thompson Creek Mining Co                    | Molybdenum Ore        | Stanley       | Custer            | ID    |
| 2125         | 125          |                   | Galena                      | 83873SLVRVLAKEG | US Silver - Idaho Inc                       | Silver Ore            | Wallace       | Shoshone          | ID    |
| 2126         | 126          |                   | Lucky Friday                | 83846LCKYFI90EX | Hecla Ltd Lucky Friday Mine Unit            | Silver Ore            | Mullan        | Shoshone          | ID    |
| 2153         | 153          |                   | Brushy Creek Mine/Mill      | 63629BRSHYHWYKK | Brushy Creek Mine/Mill                      | Lead-Zinc Ore         | Bunker        | Reynolds          | МО    |
| 2154         | 154          |                   | Fletcher Mine and Mill      | 63629FLTCHHWYTT | Fletcher Mine/Mill                          | Lead-Zinc Ore         | Bunker        | Reynolds          | МО    |
| 2155         | 155          |                   | Buick Mine/Mill             | 65440BCKMNHWYKK | Buick Mine/Mill                             | Lead-Zinc Ore         | Bixby         | Iron              | МО    |
| 2156         | 156          |                   | Sweetwater Mine/Mill        | 63638SWTMMHIGHW | Sweetwater Mine/Mill                        | Lead-Zinc Ore         | Ellington     | Reynolds          | МО    |
| 2159         | 159          |                   | Continental Mine            | 59701MNTNR600SH | Montana Resources Llp                       | Copper Ore NEC        | Butte         | Silver Bow        | MT    |
| 2163         | 163          |                   | Golden Sunlight Mine<br>Inc | 59759GLDNS453MO | Golden Sunlight Mines Inc                   | Gold Ore              | Whitehall     | Jefferson         | МТ    |
| 2164         | 164          |                   | Stillwater Mine             | 59061SMCNY5MILE | SMC NYE Mine Site                           | Platinum Group<br>Ore | Nye           | Stillwater        | мт    |
| 2182         | 182          |                   | Denton-Rawhide Mine         | 89406KNNCT55MIL | Kennecott Rawhide Mining Co                 | Gold Ore              | Hawthorne     | Mineral           | NV    |
| 2185         | 185          |                   | Jerritt Canyon Mill         | 89801JRRTT50MIL | Jerritt Canyon Mine                         | Gold Ore              | Elko          | Elko              | NV    |
| 2186         | 186          |                   | Lone Tree Mine              | 89438NWMNTSTONE | Newmont Mining Corp Lone Tree<br>Mine       | Gold Ore              | Golconda      | Humboldt          | NV    |
| 2187         | 187          |                   | Bald Mountain Mine          | 89803BLDMN70MIL | Bald Mountain Mine                          | Gold Ore              | Ely           | White Pine        | NV    |
| 2192         | 192          |                   | Midas Mine                  | 89414KNSNY60MIL | Newmont Midas Operations                    | Gold Ore              | Mountain City | Elko              | NV    |
| 2196         | 196          |                   | Hollister Mine              | 89446HLLSTTWNSH | Hollister Mine                              | Gold Ore              | Tuscarora     | Elko              | NV    |
| 2204         | 204          |                   | Hycroft Mine                | 89446HYCRF52MIL | Hycroft Mine                                | Gold Ore              | Winnemucca    | Humboldt          | NV    |
| 2215         | 215          |                   | Tyrone Mine                 | 88065PHLPSHWY90 | Freeport Mcmoran Tyrone Inc                 | Copper Ore Nec        | Silver City   | Grant             | NM    |
| 2227         | 227          |                   | Lee Creek Mine              | 27806TXSGLHIGHW | PCS Phosphate Co Inc Aurora<br>Div          | Phosphate Rock        | Aurora        | Beaufort          | NC    |
| 2240         | 240          |                   | The Wharf Mine              | 57754WHRFRTROJA | Wharf Resources                             | Gold Ore              | Lead          | Lawrence          | SD    |
| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM                         | Mine Name                           | TRI FID         | TRI Facility Name                           | Commodity              | City/Town                    | County                  | State |
|--------------|--------------|-------------------------------------------|-------------------------------------|-----------------|---------------------------------------------|------------------------|------------------------------|-------------------------|-------|
| 2242         | 242          |                                           | CF & I PIT                          | 57702PTLNS3401U | Pete Lien & Sons Inc                        | Iron Ore               |                              |                         |       |
| 2253         | 253          |                                           | Brush Mine                          | 84624BRSHW10MIL | Brush Resources Inc Mill                    | Beryl-Beryllium<br>Ore | Delta                        | Millard                 | UT    |
| 2262         | 262          |                                           | Lisbon Valley Mining Co             | 84530LSBNV92SCU | Lisbon Valley Mining Co LLC                 | Copper Ore Nec         | Monticello                   | San Juan                | UT    |
| 2267         | 267          |                                           | Pend Oreille Mine                   | 99153PNDRL1382P | NDRL1382P Pend Oreille Mine                 |                        | Metaline Falls               | Pend Oreille            | WA    |
| 2271         | 271          |                                           | Kettle River Mill Site              | 99166KTTLR363FI | Kettle River Operations Mill                | Gold Ore               | Republic                     | Ferry                   | WA    |
| 2280         | 280          |                                           | Fort Knox Mine                      | 99707FRTKN1FORA | Fort Knox Mine                              | Gold Ore               | Fairbanks                    | Fairbanks<br>North Star | AK    |
| 2309         | 309          |                                           | Silver Bell Mining LLC              | 85653SLVRB25000 | Silver Bell Mining LLC                      | Copper Ore Nec         | Marana                       | Pima                    | AZ    |
| 2311         | 311          |                                           | Stratcor, Inc.                      | 71901SVNDM5911M | Stratcor Inc                                | Vanadium Ore           | Hot Springs<br>National Park | Garland                 | AR    |
| 2313         | 313          |                                           | Henderson Operations                | 80438CLMXM9MILE | Climax Molybdenum Co -<br>Henderson Mine    | Molybdenum Ore         | Idaho Springs                | Clear Creek             | со    |
| 2327         | 327          |                                           | Smoky Valley Common<br>Operations   | 89045SMKYV1SMOK | Smoky Valley Common Operation               | Gold Ore               | Round<br>Mountain            | Nye                     | NV    |
| 3003         |              | 3                                         | Alcan Primary Metal<br>Sebree Works | 42420LCNNGKENTU | Alcan Primary Products Corp<br>Sebree Works | Aluminum               | Robards                      | Henderson               | KY    |
| 3004         |              | 4                                         | Alcoa                               | 76567LMNMCSANDO | Alcoa Inc                                   | Aluminum               | Thorndale                    | Milam                   | ТΧ    |
| 3005         |              | 5                                         | Alcoa Inc Wenatchee<br>Works        | 98807WNTCHMALAG | Alcoa Wenatchee Works                       | Aluminum               | Malaga                       | Chelan                  | WA    |
| 3006         |              | 6                                         | Alcoa Intalco Works                 | 98248NTLCL4050M | Intalco Aluminum Corp                       | Aluminum               | Ferndale                     | Whatcom                 | WA    |
| 3007         |              | 7                                         | Alcoa Warrick<br>Operations         | 47630LMNMCHIGHW | Alcoa Inc - Warrick Operations              | Aluminum               | Newburgh                     | Warrick                 | IN    |
| 3009         |              | 9                                         | Alumax of SC<br>Incorporated        | 29445LMXFSHIGHW | Alumax of South Carolina Inc                | Aluminum               | Moncks<br>Corner             | Berkeley                | SC    |
| 3010         |              | 10                                        | Aluminum Co of<br>America Badin     | 28009LMNMCHWY74 | Alcoa Badin Works                           | Aluminum               | Albemarle                    | Stanly                  | NC    |
| 3011         |              | 11                                        | Century Aluminum of<br>Kentucky     | 42348CNTRY1627S | Century Aluminum of Kentucky                | Aluminum               | Hawesville                   | Hancock                 | KY    |
| 3012         |              | Columbia Falls<br>12 Aluminum Company, II |                                     | 59912CLMBF2000A | Columbia Falls Aluminum Co LLC              | Aluminum               | Columbia<br>Falls            | Flathead                | мт    |
| 3013         |              | 13                                        | Eastalco Aluminum<br>Company        | 21701STLCL5601M | Eastalco Aluminum Co                        | Aluminum               | Frederick                    | Frederick               | MD    |
| 3014         |              | 14                                        | Noranda Aluminum<br>Incorporated    | 63869NRNDLSTJUD | Noranda Aluminum Inc                        | Aluminum               | Marston                      | New Madrid              | мо    |

| Site<br>RNUM | Mine<br>RNUM                         | Processor<br>RNUM | Mine Name                            | TRI FID         | TRI Facility Name                                     | Commodity                                                | City/Town    | County    | State |
|--------------|--------------------------------------|-------------------|--------------------------------------|-----------------|-------------------------------------------------------|----------------------------------------------------------|--------------|-----------|-------|
|              |                                      |                   | Ormet Primary                        |                 |                                                       | Bauxite and                                              |              |           |       |
| 3047         |                                      | 47                | Aluminum Corp                        | 70737RMTCRLAHWY | Ormet Primary Aluminum Corp                           | Alumina                                                  | Darrow       | Ascension | LA    |
| 3049         |                                      | 49                | Brush Resources Inc                  | 84624BRSHW10MIL | Brush Resources Inc mill                              | Beryllium                                                | Delta        | Millard   | UT    |
| 3050         |                                      | 50                | Brush Wellman Inc                    | 43416BRSHWSOUTH | Brush Wellman Inc                                     | Beryllium                                                | Elmore       | Ottawa    | ОН    |
| 3057         |                                      | 57                | Albemarle                            | 71753THYLCHIGHW | Albemarle Corp West Plant                             | Bromine                                                  | Magnolia     | Columbia  | AR    |
| 3062         |                                      | 62                | Global Tungsten &<br>Powders Corp.   | 18848GTPRDHAWES | Global Tungsten & Powders Corp                        | Cobalt                                                   | Towanda      | Bradford  | PA    |
| 3063         |                                      | 63                | Umicore Cobalt &<br>Energy Products  | 28352CRLMTAIRPO | Umicore Cobalt & Specialty<br>Materials North America | Cobalt                                                   | Laurinburg   | Scotland  | NC    |
| 3064         | 64 Chino Mine - Hurley<br>Facility   |                   | Chino Mine - Hurley<br>Facility      | 88043CHNMN210CO | Chino Mines Co Mine<br>Concentrator-Sxew Plants       | Copper                                                   | Hurley       | Grant     | NM    |
| 3065         | 65 White Pine Copper<br>Refinery Inc |                   | White Pine Copper<br>Refinery Inc    | 49971BHPCPPOBOX | White Pine Copper Refinery Inc                        | Copper                                                   | Ontonagon    | Ontonagon | МІ    |
| 3068         |                                      | 68                | Kennecott Corp-Smelter<br>& Refinery | 84006KNNCT8362W | Kennecott Utah Copper Smelter & Refinery              | Copper                                                   | Magna        | Salt Lake | UT    |
| 3093         |                                      | 93                | AK Ashland                           | 41105RMCSHUSROU | AK Steel Corp                                         | Iron and Steel                                           | Ashland      | Boyd      | KY    |
| 3094         |                                      | 94                | AK Middletown Works                  | 45043RMCNC1801C | AK Steel Corp                                         | Iron and Steel                                           | Middletown   | Butler    | ОН    |
| 3095         |                                      | 95                | AK Steel Corp.<br>Mansfield          | 44901MPRDT913BO | AK Steel Corp Mansfield Works                         | Iron and Steel                                           | Mansfield    | Richland  | ОН    |
| 3097         |                                      | 97                | Severstal Wheeling                   | 43952WHLNGSOUTH | Severstal Wheeling Inc                                | Iron and Steel                                           | Steubenville | Jefferson | ОН    |
| 3099         |                                      | 99                | Arcelor Mittal Weirton               | 26062RCLRM1PENN | Arcelormittal Weirton Inc                             | Iron and Steel                                           | Weirton      | Hancock   | WV    |
| 3101         |                                      | 101               | Severstal Dearborn                   | 48121RGSTL3001M | Severstal Dearborn Inc                                | Iron and Steel                                           | Dearborn     | Wayne     | MI    |
| 3105         |                                      | 105               | US Steel Birmingham<br>(Fairfield)   | 35064SSFRFVALLE | USS Fairfield Works                                   | Iron and Steel                                           | Fairfield    | Jefferson | AL    |
| 3109         |                                      | 109               | US Steel Great Lakes<br>Works        | 48229GRTLKNO1QU | US Steel Corp Great Lakes Works                       | Iron and Steel                                           | Ecorse       | Wayne     | мі    |
| 3114         |                                      | 114               | Edward C. Levy Co.                   | 4820WDWCLV88DIX | Edw C Levy Co- Plant 1                                | Iron and Steel<br>Slag (Non-<br>Electric Arc<br>Furnace) | Detroit      | Wayne     | MI    |
| 3116         |                                      | 116               | Edward C. Levy Co.                   | 46312DWCLV31DIC | Edw C Levy Co (Ecl- Indiana<br>Harbor)                | Iron and Steel<br>Slag (Non-<br>Electric Arc<br>Furnace) | Detroit      | Wayne     | MI    |

| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM                            | Mine Name                                               | TRI FID         | TRI Facility Name                                 | Commodity                                                | City/Town           | County       | State |
|--------------|--------------|----------------------------------------------|---------------------------------------------------------|-----------------|---------------------------------------------------|----------------------------------------------------------|---------------------|--------------|-------|
| 3121         |              | 121                                          | Lafarge North America<br>Inc.                           | 60633LFRGN2150E | Lafarge North America Inc                         | Iron and Steel<br>Slag (Non-<br>Electric Arc<br>Furnace) | Chicago             | Cook         | IL    |
| 3130         |              | 130                                          | MultiServ                                               | 21219HRSCCCNSTR | Harsco Co Multiserv Plant 80                      | Iron and Steel<br>Slag (Non-<br>Electric Arc<br>Furnace) | Mansfield           | Richland     | он    |
| 3151         |              | 151                                          | Doe Run Resources<br>Corp.                              | 63048HRCLN881MA | Doe Run Co Herculaneum<br>Smelter                 | Lead                                                     | Herculaneum         | Jefferson    | МО    |
| 3171         |              | 171                                          | FMC Corp. Lithium<br>Division Bayport Texas<br>facility | 77507FMCCR12000 | Fmc Corp Bayport Plant                            | Lithium                                                  | Pasadena            | Harris       | тх    |
| 3176         |              | 176                                          | Martin Marietta<br>Magnesia Specialties<br>LLC          | 43469MRTNM755LI | Martin Marietta Magnesia<br>Specialties Woodville | Magnesium<br>Compounds                                   | Woodville           | Sandusky     | он    |
| 3181         |              | 181                                          | Erachem Comilog Inc.                                    | 37134CHMTLFOOTE | Erachem Comilog                                   | Manganese                                                | Curtis Bay          | Anne Arundel | MD    |
| 3182         |              | 182                                          | Erachem Comilog Inc.                                    | 21226CHMTL711PI | Erachem Comilog Inc - Baltim Ore<br>Plant         | Manganese                                                | New<br>Johnsonville | Humphreys    | TN    |
| 3184         |              | 184                                          | Felman Production Inc.                                  | 25265FLMNPUSRT6 | Felman Production Inc                             | Manganese                                                | Letart              | Mason        | WV    |
| 3185         |              | 185                                          | Tronox LLC                                              | 89015KRRMC8000L | Tronox LLC                                        | Manganese                                                | Henderson           | Clark        | NV    |
| 3186         |              | 186                                          | Wilmington Plant                                        | 19720MRCNM301PI | Prince Minerals Inc                               | Manganese Ore                                            | New Castle          | New Castle   | DE    |
| 3198         |              | 198                                          | Climax Molybdenum<br>Co. Henderson Mill                 | 80468CLMXM19302 | Climax Molybdenum Co<br>Henderson Mill            | Molybdenum                                               | Parshall            | Grand        | со    |
| 3201         |              | 201                                          | Agrifos Fertilizer<br>Pasadena                          | 77501MBLMN2001J | Agrifos Fertilizer LLC                            | Phosphate Rock                                           | Pasadena            | Harris       | тх    |
| 3203         |              | 203                                          | J R Simplot Co<br>Pocatello                             | 83201JRSMPDONSI | J R Simplot Co Don Sid Ing                        | Phosphate Rock                                           | Pocatello           | Power        | ID    |
| 3204         |              | 204                                          | Mississippi Phosphates<br>Corp.                         | 39568NSTHNPOBOX | Mississippi Phosphates Corp                       | Phosphate Rock                                           | Pascagoula          | Jackson      | MS    |
| 3206         |              | Mosaic Fertilizer, LLC   206 Uncle Sam Plant |                                                         | 70792GRCCHEASTB | Mosaic Fertilizer LLC Uncle Sam<br>Plant          | Phosphate Rock                                           | Convent             | St. James    | LA    |
| 3208         |              | 208                                          | PCS Nitr Fert                                           | 70734RCDNCHIGHW | Pcs Nitrogen Fertilizer Lp                        | Phosphate Rock                                           | Saint Gabriel       | Ascension    | LA    |
| 3210         |              | 210                                          | PCS Phosphate White Springs                             | 32096CCDNTSTATE | Pcs Phosphate White Springs                       | Phosphate Rock                                           | Jasper              | Hamilton     | FL    |
| 3211         |              | 211                                          | SF Phosphates Limited<br>Company                        | 82901CHVRN525SH | Simplot Phosphates LLC                            | Phosphate Rock                                           | Warren              | Trumbull     | он    |

| Site<br>RNUM | Mine<br>RNUM | Processor<br>RNUM | Mine Name                   | TRI FID         | TRI Facility Name                       | Commodity                 | City/Town     | County  | State |
|--------------|--------------|-------------------|-----------------------------|-----------------|-----------------------------------------|---------------------------|---------------|---------|-------|
| 3223         |              | 223               | Amarillo Copper<br>Refinery | 79120SRCNCHWY13 | Asarco LLC Amarillo Copper Re<br>Finery | Selenium and<br>Tellurium | Amarillo      | Potter  | тх    |
| 3230         |              | 230               | Elkem Metals<br>Company?    | 25002LKMMTBOX61 | Wv Alloys Inc                           | Silicon                   | Montgomery    | Fayette | wv    |
| 3231         |              | 231               | Globe Metallurgical         | 36701GLBMTOLDMO | Globe Metallurgical                     | Silicon                   | Selma         | Dallas  | AL    |
| 3232         |              | 232               | Globe Metallurgical Inc.    | 45786GLBMTCOUNT | Globe Metallurgical Inc                 | Silicon                   | Niagara Falls | Niagara | NY    |
| 3233         |              | 233               | Globe Metallurgical Inc.    | 14305SKWLL3801H | Globe Metallurgical Inc                 | Silicon                   | Waterford     | Morgan  | OH    |

## Attachment F2 TRI Data on Releases from 2009 Current Sites: By COC

Table F2-1 shows total releases of COCs. Table F2-2 shows total releases of dioxin and dioxin-like compounds.

|            |                                          |                         |                        | Tatal                          | Tatal                           |                             |                                      | . ,                                    |                            |                                          |
|------------|------------------------------------------|-------------------------|------------------------|--------------------------------|---------------------------------|-----------------------------|--------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Surface<br>Water<br>Discharges | RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Subtitle C<br>Suface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|            |                                          | Zinc                    |                        | _                              |                                 | _                           |                                      |                                        | _                          |                                          |
| 21         | Nyrstar NV                               | compounds               | 4.73E+02               | 2.12E+01                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 3.28E+04                               | 0.00E+00                   | 3.33E+04                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Copper<br>compounds     | 1.81E+02               | 0.00E+00                       | 0.00E+00                        | 1.16E+01                    | 0.00E+00                             | 0.00E+00                               | 2.44E+04                   | 2.46E+04                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Copper<br>compounds     | 1.49E+02               | 6.42E-01                       | 0.00E+00                        | 7.03E+02                    | 0.00E+00                             | 1.84E+04                               | 1.30E-01                   | 1.93E+04                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Zinc<br>compounds       | 7.37E+01               | 0.00E+00                       | 0.00E+00                        | 5.95E-01                    | 0.00E+00                             | 0.00E+00                               | 1.60E+04                   | 1.61E+04                                 |
| 3151       | Doe Run<br>Resources Corp.               | Zinc<br>compounds       | 1.09E+01               | 9.60E-01                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 0.00E+00                               | 1.50E+04                   | 1.51E+04                                 |
| 21         | Nyrstar NV                               | Lead<br>compounds       | 9.47E-01               | 8.57E-01                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 1.50E+04                               | 0.00E+00                   | 1.50E+04                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Zinc<br>compounds       | 2.19E+00               | 4.80E-01                       | 0.00E+00                        | 3.20E+00                    | 0.00E+00                             | 1.39E+04                               | 3.00E-04                   | 1.39E+04                                 |
| 33         | Edward C. Levy<br>Co.                    | Manganese<br>compounds  | 5.75E-01               | 0.00E+00                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 0.00E+00                               | 9.58E-01                   | 1.53E+00                                 |
| 33         | The Levy Co.,<br>Inc.                    | Manganese<br>compounds  | 7.30E-02               | 0.00E+00                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 0.00E+00                               | 0.00E+00                   | 7.30E-02                                 |
| 33         | Tube City IMS,<br>LLC                    | Manganese<br>compounds  | 9.13E-01               | 0.00E+00                       | 0.00E+00                        | 0.00E+00                    | 0.00E+00                             | 0.00E+00                               | 0.00E+00                   | 9.13E-01                                 |
| 33         | US Steel Gary<br>Works                   | Manganese<br>compounds  | 8.60E+01               | 3.95E+01                       | 5.00E-04                        | 1.23E+04                    | 0.00E+00                             | 0.00E+00                               | 0.00E+00                   | 1.24E+04                                 |
| 33         | Total                                    | Manganese<br>compounds  | 8.75E+01               | 3.95E+01                       | 5.00E-04                        | 1.23E+04                    | 0.00E+00                             | 0.00E+00                               | 9.58E-01                   | 1.24E+04                                 |

Table F2-1. Total COCs Released to Air, Surface Water, and Land for 2009 Current Sites (tons)

| Site<br>ID | Site Name                                  | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|--------------------------------------------|-------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 27         | US Steel Granite<br>City                   | Zinc<br>compounds       | 5.79E+01               | 3.13E+00                                | 0.00E+00                                 | 1.07E+04                    | 0.00E+00                                            | 1.42E+02                               | 0.00E+00                   | 1.09E+04                                 |
| 33         | US Steel Gary<br>Works                     | Zinc<br>compounds       | 1.96E+02               | 2.00E+01                                | 7.50E+00                                 | 9.45E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.67E+03                                 |
| 28         | Elkem Metals<br>Co.                        | Manganese<br>compounds  | 6.69E+02               | 2.66E+02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 7.89E+03                               | 0.00E+00                   | 8.83E+03                                 |
| 28         | Eveready Battery<br>Co. Inc.               | Manganese<br>compounds  | 2.41E+01               | 5.01E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.46E+01                                 |
| 28         | Total                                      | Manganese<br>compounds  | 6.93E+02               | 2.67E+02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 7.89E+03                               | 0.00E+00                   | 8.85E+03                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery   | Arsenic<br>compounds    | 8.34E+00               | 2.21E+00                                | 0.00E+00                                 | 4.29E+01                    | 0.00E+00                                            | 8.24E+03                               | 1.43E-02                   | 8.29E+03                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery   | Lead<br>compounds       | 1.93E+01               | 1.51E-01                                | 0.00E+00                                 | 7.95E+01                    | 0.00E+00                                            | 8.02E+03                               | 9.04E-03                   | 8.12E+03                                 |
| 3181       | Erachem<br>Comilog Inc.                    | Manganese<br>compounds  | 4.27E+01               | 6.89E+00                                | 0.00E+00                                 | 7.09E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.14E+03                                 |
| 3198       | Climax<br>Molybdenum Co.<br>Henderson Mill | Lead<br>compounds       | 4.14E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 6.90E+03                               | 0.00E+00                   | 6.90E+03                                 |
| 1008       | P4 Production<br>LLC                       | Zinc<br>compounds       | 1.74E+02               | 2.71E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 6.65E+03                   | 6.83E+03                                 |
| 1011       | Phelps-Dodge<br>Morenci                    | Lead<br>compounds       | 2.09E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.57E+03                               | 3.30E+03                   | 5.87E+03                                 |
| 1022       | Asarco LLC<br>Mission Complex              | Lead<br>compounds       | 3.95E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 5.07E+03                               | 0.00E+00                   | 5.07E+03                                 |
| 3151       | Doe Run<br>Resources Corp.                 | Lead<br>compounds       | 1.11E+02               | 3.78E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 4.63E+03                   | 4.75E+03                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield)      | Zinc<br>compounds       | 1.33E+01               | 4.23E+00                                | 0.00E+00                                 | 4.44E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.46E+03                                 |
| 1013       | Asarco, LLC -<br>Hayden                    | Lead<br>compounds       | 1.59E+01               | 0.00E+00                                | 0.00E+00                                 | 5.91E+00                    | 0.00E+00                                            | 0.00E+00                               | 4.31E+03                   | 4.33E+03                                 |
| 1011       | Phelps-Dodge<br>Morenci                    | Copper<br>compounds     | 2.95E+00               | 2.80E+01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.99E+03                               | 1.95E+03                   | 3.97E+03                                 |

| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------|-------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
|            | US Steel                                 | Managara                |                        |                                         |                                          |                             |                                                     |                                        |                            |                                          |
| 3105       | (Fairfield)                              | compounds               | 1.02E+01               | 1.48E+00                                | 0.00E+00                                 | 3.14E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.15E+03                                 |
| 30         | MultiServ Plt 6                          | Manganese<br>compounds  | 5.75E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.75E-01                                 |
| 30         | Severstal<br>Warren                      | Manganese<br>compounds  | 1.52E+01               | 0.00E+00                                | 0.00E+00                                 | 3.07E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.09E+03                                 |
| 30         | Total                                    | Manganese<br>compounds  | 1.58E+01               | 0.00E+00                                | 0.00E+00                                 | 3.07E+03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.09E+03                                 |
| 14         | Sherwin Alumina                          | Zinc<br>compounds       | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.95E+03                               | 0.00E+00                   | 2.95E+03                                 |
| 21         | Nyrstar NV                               | Copper<br>compounds     | 2.87E-01               | 5.55E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.87E+03                               | 0.00E+00                   | 2.87E+03                                 |
| 27         | US Steel Granite<br>City                 | Manganese<br>compounds  | 1.80E+01               | 1.10E+01                                | 0.00E+00                                 | 1.80E+03                    | 0.00E+00                                            | 3.32E+01                               | 0.00E+00                   | 1.86E+03                                 |
| 21         | Nyrstar NV                               | Manganese<br>compounds  | 2.51E-02               | 1.08E+02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.66E+03                               | 0.00E+00                   | 1.77E+03                                 |
| 3064       | Chino Mine -<br>Hurley Facility          | Lead<br>compounds       | 9.44E-02               | 1.00E-04                                | 0.00E+00                                 | 4.38E-01                    | 0.00E+00                                            | 9.81E+01                               | 1.50E+03                   | 1.60E+03                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Antimony<br>compounds   | 5.48E-01               | 1.00E+00                                | 0.00E+00                                 | 3.39E+00                    | 0.00E+00                                            | 1.08E+03                               | 3.00E-04                   | 1.08E+03                                 |
| 1011       | Phelps-Dodge<br>Morenci                  | Manganese<br>compounds  | 2.81E-01               | 1.25E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 5.07E+02                               | 5.50E+02                   | 1.06E+03                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Nickel<br>compounds     | 7.38E-01               | 1.20E+00                                | 0.00E+00                                 | 3.20E+00                    | 0.00E+00                                            | 1.03E+03                               | 4.85E-01                   | 1.04E+03                                 |
| 3271       | E.I. Dupont de<br>Nemours                | Manganese<br>compounds  | 0.00E+00               | 1.73E+01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 4.80E-02                               | 1.01E+03                   | 1.02E+03                                 |
| 1011       | Phelps-Dodge<br>Morenci                  | Zinc<br>compounds       | 2.55E-01               | 3.75E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 7.57E+02                               | 0.00E+00                   | 7.58E+02                                 |
| 1008       | P4 Production<br>LLC                     | Cadmium<br>compounds    | 1.17E+01               | 1.22E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 7.29E+02                   | 7.41E+02                                 |
| 3064       | Chino Mine -<br>Hurley Facility          | Copper<br>compounds     | 2.02E+00               | 1.15E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.78E+01                               | 5.98E+02                   | 6.39E+02                                 |

| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------|-------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 14         | Sherwin Alumina                          | Lead<br>compounds       | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 6.24E+02                               | 0.00E+00                   | 6.24E+02                                 |
| 3151       | Doe Run<br>Resources Corp.               | Copper<br>compounds     | 1.44E+00               | 9.86E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 5.68E+02                   | 5.70E+02                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Arsenic<br>compounds    | 8.68E+00               | 0.00E+00                                | 0.00E+00                                 | 1.04E-01                    | 0.00E+00                                            | 0.00E+00                               | 5.48E+02                   | 5.56E+02                                 |
| 15         | Alcoa World<br>Alumina Atlantic          | Lead<br>compounds       | 1.91E-02               | 9.48E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 5.45E+02                               | 0.00E+00                   | 5.45E+02                                 |
| 21         | Nyrstar NV                               | Cadmium<br>compounds    | 3.30E+00               | 1.26E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 5.24E+02                               | 0.00E+00                   | 5.28E+02                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Manganese<br>compounds  | 6.00E-02               | 0.00E+00                                | 0.00E+00                                 | 6.48E-01                    | 0.00E+00                                            | 0.00E+00                               | 4.64E+02                   | 4.64E+02                                 |
| 3151       | Doe Run<br>Resources Corp.               | Cobalt<br>compounds     | 9.78E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 4.55E+02                   | 4.55E+02                                 |
| 3007       | Alcoa Warrick<br>Operations              | Zinc<br>compounds       | 6.28E+00               | 1.74E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.74E+02                               | 3.10E-01                   | 3.82E+02                                 |
| 3007       | Alcoa Warrick<br>Operations              | Copper<br>compounds     | 2.28E+00               | 9.42E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.41E+02                               | 8.95E-02                   | 3.44E+02                                 |
| 3004       | Alcoa                                    | Manganese<br>compounds  | 4.19E+00               | 0.00E+00                                | 0.00E+00                                 | 3.26E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.31E+02                                 |
| 3151       | Doe Run<br>Resources Corp.               | Arsenic                 | 5.08E-01               | 1.56E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 3.30E+02                   | 3.31E+02                                 |
| 3007       | Alcoa Warrick<br>Operations              | Manganese               | 5.47E+00               | 5.61E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.18E+02                               | 1.75E-01                   | 3.29E+02                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Thallium<br>compounds   | 4.41E-01               | 1.00E+00                                | 0.00E+00                                 | 1.25E-01                    | 0.00E+00                                            | 3.23E+02                               | 3.00E-04                   | 3.24E+02                                 |
| 33         | Edward C. Levy<br>Co.                    | Lead<br>compounds       | 5.35E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.35E-04                                 |
| 33         | Tube City IMS,<br>LLC                    | Lead<br>compounds       | 2.29E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.29E-03                                 |
| 33         | US Steel Gary<br>Works                   | Lead<br>compounds       | 6.43E+00               | 4.34E+00                                | 4.32E+00                                 | 2.70E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.85E+02                                 |
| 33         | Total                                    | Lead<br>compounds       | 6.43E+00               | 4.34E+00                                | 4.32E+00                                 | 2.70E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.85E+02                                 |

| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3007       | Alcoa Warrick<br>Operations              | Nickel<br>compounds                 | 4.16E+00               | 2.63E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.66E+02                               | 1.22E-01                   | 2.72E+02                                 |
| 27         | US Steel Granite<br>City                 | Lead<br>compounds                   | 1.38E+00               | 7.38E-01                                | 0.00E+00                                 | 2.28E+02                    | 0.00E+00                                            | 3.11E+01                               | 0.00E+00                   | 2.62E+02                                 |
| 1013       | ASARCO, LLC -<br>HAYDEN                  | Antimony<br>compounds               | 3.36E-01               | 0.00E+00                                | 0.00E+00                                 | 1.20E-01                    | 0.00E+00                                            | 0.00E+00                               | 2.51E+02                   | 2.51E+02                                 |
| 3151       | Doe Run<br>Resources Corp.               | Nickel<br>compounds                 | 3.49E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 2.50E+02                   | 2.51E+02                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Selenium<br>compounds               | 9.21E-01               | 2.17E+00                                | 0.00E+00                                 | 9.64E-01                    | 0.00E+00                                            | 2.18E+02                               | 3.50E-04                   | 2.22E+02                                 |
| 1008       | P4 Production<br>LLC                     | Selenium<br>compounds               | 1.06E+01               | 5.00E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 2.07E+02                   | 2.17E+02                                 |
| 3050       | Brush Wellman<br>Inc                     | Copper<br>compounds                 | 4.58E+00               | 2.62E-01                                | 0.00E+00                                 | 2.12E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.17E+02                                 |
| 1008       | P4 Production<br>LLC                     | Manganese<br>compounds              | 3.15E-01               | 8.30E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 2.07E+02                   | 2.07E+02                                 |
| 30         | MultiServ Plt 6                          | Lead<br>compounds                   | 3.00E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.00E-04                                 |
| 30         | Severstal<br>Warren                      | Lead<br>compounds                   | 1.87E+00               | 2.09E-01                                | 0.00E+00                                 | 2.01E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.03E+02                                 |
| 30         | Total                                    | Lead<br>compounds                   | 1.87E+00               | 2.09E-01                                | 0.00E+00                                 | 2.01E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.03E+02                                 |
| 3049       | Brush Resources<br>Inc.                  | Zinc<br>compounds                   | 4.95E-03               | 0.00E+00                                | 0.00E+00                                 | 6.86E-01                    | 0.00E+00                                            | 1.98E+02                               | 0.00E+00                   | 1.99E+02                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena           | Zinc<br>compounds                   | 1.35E-01               | 1.00E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.88E+02                               | 0.00E+00                   | 1.88E+02                                 |
| 3007       | Alcoa Warrick<br>Operations              | Lead<br>compounds                   | 5.94E+00               | 5.95E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.76E+02                               | 4.26E-01                   | 1.83E+02                                 |
| 3003       | Alcan Primary<br>Metal Sebree<br>Works   | Polycyclic<br>aromatic<br>compounds | 1.77E+02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.77E+02                                 |
| 3184       | Felman<br>Production Inc.                | Manganese<br>compounds              | 1.65E+02               | 4.28E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.65E+02                                 |
| 1008       | P4 Production<br>LLC                     | Nickel<br>compounds                 | 1.53E+00               | 1.82E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.47E+02                   | 1.49E+02                                 |

| Site<br>ID | Site Name                             | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|---------------------------------------|-------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
|            | Mosaic Fertilizer,                    |                         |                        |                                         |                                          |                             |                                                     |                                        |                            |                                          |
| 3206       | Plant                                 | compounds               | 8.00E-04               | 1.63E-02                                | 0.00E+00                                 | 1.32E+02                    | 0.00E+00                                            | 7.21E-03                               | 0.00E+00                   | 1.32E+02                                 |
| 33         | US Steel Gary<br>Works                | Thallium<br>compounds   | 1.13E+00               | 7.65E-02                                | 0.00E+00                                 | 1.23E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.24E+02                                 |
| 3007       | Alcoa Warrick<br>Operations           | Arsenic<br>compounds    | 3.32E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.20E+02                               | 3.08E-01                   | 1.24E+02                                 |
| 1008       | P4 Production<br>LLC                  | Copper<br>compounds     | 7.69E-01               | 1.03E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.23E+02                   | 1.24E+02                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield) | Lead<br>compounds       | 4.88E-01               | 2.93E-01                                | 0.00E+00                                 | 1.22E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.23E+02                                 |
| 1013       | Asarco, LLC -<br>Hayden               | Nickel<br>compounds     | 7.65E-02               | 0.00E+00                                | 0.00E+00                                 | 5.73E-01                    | 0.00E+00                                            | 0.00E+00                               | 1.22E+02                   | 1.22E+02                                 |
| 3049       | Brush Resources<br>Inc                | Manganese<br>compounds  | 1.06E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.22E+02                               | 0.00E+00                   | 1.22E+02                                 |
| 1008       | P4 Production<br>LLC                  | Arsenic<br>compounds    | 1.04E+00               | 6.35E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.20E+02                   | 1.21E+02                                 |
| 3185       | Tronox LLC                            | Manganese<br>compounds  | 2.66E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 9.42E+01                               | 0.00E+00                   | 1.21E+02                                 |
| 33         | US Steel Gary<br>Works                | Copper<br>compounds     | 1.70E+00               | 1.29E+00                                | 2.75E+00                                 | 1.09E+02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.15E+02                                 |
| 3109       | US Steel Great<br>Lakes Works         | Zinc<br>compounds       | 1.10E+02               | 1.76E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.11E+02                                 |
| 3093       | AK Ashland                            | Manganese<br>compounds  | 9.15E+01               | 9.51E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 5.83E+00                   | 1.07E+02                                 |
| 1013       | Asarco, LLC -<br>Hayden               | Cobalt<br>compounds     | 7.50E-03               | 0.00E+00                                | 0.00E+00                                 | 1.04E-01                    | 0.00E+00                                            | 0.00E+00                               | 1.01E+02                   | 1.01E+02                                 |
| 1008       | P4 Production<br>LLC                  | Lead<br>compounds       | 1.57E+00               | 8.00E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 9.90E+01                   | 1.01E+02                                 |
| 3101       | Severstal<br>Dearborn                 | Zinc<br>compounds       | 9.61E+01               | 1.94E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.81E+01                                 |
| 3050       | Brush Wellman<br>Inc                  | Beryllium<br>compounds  | 1.55E-01               | 5.80E-02                                | 0.00E+00                                 | 8.58E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.60E+01                                 |
| 3007       | Alcoa Warrick<br>Operations           | Cobalt<br>compounds     | 1.42E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 8.43E+01                               | 4.90E-02                   | 8.57E+01                                 |

| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3201       | Agrifos Fertilizer<br>Pasadena           | Copper<br>compounds                 | 1.80E-02               | 2.85E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 8.48E+01                               | 0.00E+00                   | 8.48E+01                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Cadmium<br>compounds                | 4.82E-01               | 3.69E-01                                | 0.00E+00                                 | 6.93E-01                    | 0.00E+00                                            | 8.03E+01                               | 3.00E-04                   | 8.19E+01                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Manganese<br>compounds              | 4.64E-01               | 1.00E+00                                | 0.00E+00                                 | 1.26E-01                    | 0.00E+00                                            | 7.50E+01                               | 1.50E+00                   | 7.81E+01                                 |
| 3004       | Alcoa                                    | Copper<br>compounds                 | 9.25E-01               | 0.00E+00                                | 0.00E+00                                 | 7.21E+01                    | 0.00E+00                                            | 3.30E-02                               | 0.00E+00                   | 7.30E+01                                 |
| 3208       | PCS Nitr Fert                            | Lead<br>compounds                   | 0.00E+00               | 6.28E-01                                | 0.00E+00                                 | 7.22E+01                    | 0.00E+00                                            | 0.00E+00                               | 1.50E-02                   | 7.29E+01                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena           | Nickel<br>compounds                 | 1.09E-01               | 8.30E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 6.69E+01                               | 0.00E+00                   | 6.71E+01                                 |
| 33         | US Steel Gary<br>Works                   | Nickel<br>compounds                 | 1.50E+00               | 3.80E+00                                | 2.30E+00                                 | 5.50E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.26E+01                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Cadmium<br>compounds                | 3.30E-01               | 0.00E+00                                | 0.00E+00                                 | 8.15E-02                    | 0.00E+00                                            | 0.00E+00                               | 6.05E+01                   | 6.09E+01                                 |
| 33         | US Steel Gary<br>Works                   | Antimony<br>compounds               | 4.10E-01               | 1.18E+00                                | 0.00E+00                                 | 5.85E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.01E+01                                 |
| 21         | Nyrstar NV                               | Antimony<br>compounds               | 1.55E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 5.77E+01                               | 0.00E+00                   | 5.77E+01                                 |
| 3223       | Amarillo Copper<br>Refinery              | Copper<br>compounds                 | 5.68E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.68E+01                                 |
| 1013       | Asarco, LLC -<br>Hayden                  | Selenium<br>compounds               | 2.14E+00               | 0.00E+00                                | 0.00E+00                                 | 7.95E-02                    | 0.00E+00                                            | 0.00E+00                               | 4.84E+01                   | 5.06E+01                                 |
| 3211       | SF Phosphates<br>Limited<br>Company      | Lead<br>compounds                   | 3.60E-06               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 4.81E+01                               | 0.00E+00                   | 4.81E+01                                 |
| 29         | US Steel<br>Braddock                     | Zinc<br>compounds                   | 7.09E+00               | 4.10E+01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.80E+01                                 |
| 3210       | PCS Phosphate<br>White Springs           | Polycyclic<br>aromatic<br>compounds | 2.18E-05               | 0.00E+00                                | 0.00E+00                                 | 4.73E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.73E+01                                 |
| 3271       | E.I. Dupont de<br>Nemours                | Lead<br>compounds                   | 7.23E-03               | 4.22E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.15E-04                               | 4.64E+01                   | 4.65E+01                                 |

| Site<br>ID | Site Name                              | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|----------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3151       | Doe Run<br>Resources Corp.             | Antimony<br>compounds               | 4.06E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 4.46E+01                   | 4.50E+01                                 |
| 3203       | J R Simplot Co<br>Pocatello            | Lead<br>compounds                   | 1.11E-02               | 0.00E+00                                | 0.00E+00                                 | 4.48E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.48E+01                                 |
| 3004       | Alcoa                                  | Selenium<br>compounds               | 1.86E+00               | 0.00E+00                                | 0.00E+00                                 | 3.93E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.12E+01                                 |
| 3007       | Alcoa Warrick<br>Operations            | Selenium<br>compounds               | 2.14E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.97E+01                               | 0.00E+00                   | 4.11E+01                                 |
| 33         | US Steel Gary<br>Works                 | Polycyclic<br>aromatic<br>compounds | 1.19E+00               | 7.90E-02                                | 3.92E+01                                 | 2.29E-03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.05E+01                                 |
| 1011       | Phelps-Dodge<br>Morenci                | Mercury<br>compounds                | 1.24E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.00E+01                               | 1.63E+01                   | 3.64E+01                                 |
| 3004       | Alcoa                                  | Zinc<br>compounds                   | 4.30E-01               | 0.00E+00                                | 0.00E+00                                 | 3.35E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.40E+01                                 |
| 3223       | Amarillo Copper<br>Refinery            | Lead<br>compounds                   | 3.27E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.27E+01                                 |
| 3223       | Amarillo Copper<br>Refinery            | Selenium<br>compounds               | 3.22E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.22E+01                                 |
| 34         | Arcelor Mittal<br>Riverdale            | Zinc<br>compounds                   | 2.54E+01               | 6.31E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.17E+01                                 |
| 3007       | Alcoa Warrick<br>Operations            | Beryllium<br>compounds              | 6.81E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.96E+01                               | 1.19E-01                   | 3.04E+01                                 |
| 3004       | Alcoa                                  | Nickel<br>compounds                 | 3.73E-01               | 0.00E+00                                | 0.00E+00                                 | 2.91E+01                    | 0.00E+00                                            | 3.30E-02                               | 0.00E+00                   | 2.95E+01                                 |
| 31         | Republic<br>Engineered<br>Products Inc | Zinc<br>compounds                   | 2.98E+00               | 2.42E+01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.72E+01                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena         | Cadmium<br>compounds                | 6.00E-03               | 5.50E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.54E+01                               | 0.00E+00                   | 2.54E+01                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena         | Beryllium<br>compounds              | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.52E+01                               | 0.00E+00                   | 2.52E+01                                 |
| 30         | Severstal<br>Warren                    | Zinc<br>compounds                   | 3.40E-01               | 2.28E+00                                | 0.00E+00                                 | 2.16E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.42E+01                                 |

| Site<br>ID | Site Name                                  | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|--------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
|            | Century                                    | Polycyclic                          |                        |                                         |                                          |                             |                                                     |                                        |                            |                                          |
| 3011       | Kentucky                                   | compounds                           | 2.30E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.30E+01                                 |
| 33         | US Steel Gary<br>Works                     | Arsenic<br>compounds                | 2.20E-01               | 6.00E-01                                | 5.00E-01                                 | 2.15E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.28E+01                                 |
| 1011       | Phelps-Dodge<br>Morenci                    | Selenium<br>compounds               | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.25E+01                               | 0.00E+00                   | 2.25E+01                                 |
| 3012       | Columbia Falls<br>Aluminum<br>Company, LLC | Polycyclic<br>aromatic<br>compounds | 1.08E+01               | 0.00E+00                                | 0.00E+00                                 | 5.16E+00                    | 0.00E+00                                            | 5.58E+00                               | 3.67E-01                   | 2.19E+01                                 |
| 3182       | Erachem<br>Comilog Inc.                    | Manganese<br>compounds              | 1.53E+01               | 3.06E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.29E+00                               | 0.00E+00                   | 1.89E+01                                 |
| 3004       | Alcoa                                      | Lead<br>compounds                   | 1.59E-01               | 0.00E+00                                | 0.00E+00                                 | 1.87E+01                    | 0.00E+00                                            | 2.85E-02                               | 0.00E+00                   | 1.89E+01                                 |
| 30         | Severstal<br>Warren                        | Nickel<br>compounds                 | 1.61E-01               | 0.00E+00                                | 0.00E+00                                 | 1.81E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.83E+01                                 |
| 3095       | AK Steel Corp.<br>Mansfield                | Zinc<br>compounds                   | 1.77E+01               | 5.17E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.82E+01                                 |
| 1011       | Phelps-Dodge<br>Morenci                    | Cobalt<br>compounds                 | 1.28E-01               | 1.25E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.73E+01                               | 2.00E-01                   | 1.77E+01                                 |
| 3064       | Chino Mine -<br>Hurley Facility            | Mercury<br>compounds                | 1.01E-03               | 0.00E+00                                | 0.00E+00                                 | 8.50E-03                    | 0.00E+00                                            | 2.05E+00                               | 1.46E+01                   | 1.66E+01                                 |
| 3049       | Brush Resources<br>Inc                     | Beryllium<br>compounds              | 2.52E-01               | 0.00E+00                                | 0.00E+00                                 | 2.75E-01                    | 0.00E+00                                            | 1.61E+01                               | 0.00E+00                   | 1.66E+01                                 |
| 3204       | Mississippi<br>Phosphates<br>Corp.         | Lead<br>compounds                   | 3.17E-04               | 0.00E+00                                | 0.00E+00                                 | 1.56E+01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.56E+01                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery   | Silver<br>compounds                 | 8.36E-01               | 1.00E+00                                | 0.00E+00                                 | 8.39E-01                    | 0.00E+00                                            | 1.21E+01                               | 3.00E-04                   | 1.48E+01                                 |
| 3094       | AK Middletown<br>Works                     | Zinc<br>compounds                   | 1.43E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.43E+01                                 |
| 29         | Tube City IMS,<br>LLC                      | Manganese<br>compounds              | 1.86E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.86E-01                                 |
| 29         | US Steel<br>Braddock                       | Manganese<br>compounds              | 3.99E+00               | 9.90E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.39E+01                                 |

| Site<br>ID | Site Name                              | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|----------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 29         | Total                                  | Manganese<br>compounds              | 4.18E+00               | 9.90E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.41E+01                                 |
| 3009       | Alumax Of Sc<br>Incorporated           | Polycyclic<br>aromatic<br>compounds | 1.28E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.28E+01                                 |
| 3151       | Doe Run<br>Resources Corp.             | Cadmium<br>compounds                | 2.18E+00               | 3.42E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.02E+01                   | 1.27E+01                                 |
| 1011       | Phelps-Dodge<br>Morenci                | Cadmium<br>compounds                | 2.50E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.10E+01                               | 0.00E+00                   | 1.10E+01                                 |
| 3003       | Alcan Primary<br>Metal Sebree<br>Works | Manganese<br>compounds              | 1.05E+01               | 3.08E-01                                | 0.00E+00                                 | 7.80E-04                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.08E+01                                 |
| 3101       | Severstal<br>Dearborn                  | Manganese<br>compounds              | 1.01E+01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.01E+01                                 |
| 94         | AK Middletown<br>Works                 | Manganese<br>compounds              | 9.67E+00               | 3.75E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.00E+01                                 |
| 34         | Arcelor Mittal<br>Riverdale            | Manganese<br>compounds              | 9.10E+00               | 6.54E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.76E+00                                 |
| 34         | MultiServ                              | Manganese<br>compounds              | 1.72E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.72E-01                                 |
| 34         | Total                                  | Manganese<br>compounds              | 9.28E+00               | 6.54E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.93E+00                                 |
| 3014       | Noranda<br>Aluminum<br>Incorporated    | Polycyclic<br>aromatic<br>compounds | 9.67E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.67E+00                                 |
| 95         | AK Steel Corp.<br>Mansfield            | Manganese<br>compounds              | 1.20E+00               | 8.24E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.44E+00                                 |
| 3223       | Amarillo Copper<br>Refinery            | Arsenic<br>compounds                | 9.08E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.08E+00                                 |
| 1013       | Asarco, LLC -<br>Hayden                | Silver<br>compounds                 | 4.30E-01               | 0.00E+00                                | 0.00E+00                                 | 2.30E-02                    | 0.00E+00                                            | 0.00E+00                               | 8.22E+00                   | 8.67E+00                                 |
| 3007       | Alcoa Warrick<br>Operations            | Polycyclic<br>aromatic<br>compounds | 8.46E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.46E+00                                 |
| 3109       | Lakes Works                            | compounds                           | 7.77E+00               | 6.50E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.84E+00                                 |

| Site<br>ID | Site Name                                      | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 1022       | Asarco LLC<br>Mission Complex                  | Copper<br>compounds                 | 7.43E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.93E-01                               | 0.00E+00                   | 7.73E+00                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena                 | Lead<br>compounds                   | 1.50E-03               | 5.00E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 7.53E+00                               | 0.00E+00                   | 7.53E+00                                 |
| 3099       | Arcelor Mittal<br>Weirton                      | Zinc<br>compounds                   | 5.88E-01               | 6.83E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.41E+00                                 |
| 3109       | US Steel Great<br>Lakes Works                  | Manganese<br>compounds              | 5.79E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.79E+00                                 |
| 3176       | Martin Marietta<br>Magnesia<br>Specialties LLC | Lead<br>compounds                   | 8.95E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 5.33E+00                   | 5.33E+00                                 |
| 27         | US Steel Granite<br>City                       | Nickel<br>compounds                 | 8.30E-02               | 8.20E-01                                | 0.00E+00                                 | 4.39E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.29E+00                                 |
| 3050       | Brush Wellman<br>Inc                           | Nickel<br>compounds                 | 2.14E-01               | 6.45E-02                                | 0.00E+00                                 | 4.91E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.19E+00                                 |
| 94         | AK Middletown<br>Works                         | Lead<br>compounds                   | 4.65E+00               | 1.92E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.84E+00                                 |
| 1011       | Phelps-Dodge<br>Morenci                        | Nickel<br>compounds                 | 1.50E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 4.65E+00                   | 4.67E+00                                 |
| 3006       | Alcoa Intalco<br>Works                         | Polycyclic<br>aromatic<br>compounds | 4.29E+00               | 6.05E-06                                | 7.99E-02                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.37E+00                                 |
| 3004       | Alcoa                                          | Polycyclic<br>aromatic<br>compounds | 4.19E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.19E+00                                 |
| 15         | Alcoa World<br>Alumina Atlantic                | Mercury<br>compounds                | 2.65E+00               | 3.84E-03                                | 0.00E+00                                 | 5.75E-03                    | 0.00E+00                                            | 1.19E+00                               | 3.18E-02                   | 3.88E+00                                 |
| 3099       | Arcelor Mittal<br>Weirton                      | Manganese<br>compounds              | 4.73E-02               | 3.83E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.88E+00                                 |
| 3005       | Alcoa Inc<br>Wenatchee<br>Works                | Polycyclic<br>aromatic<br>compounds | 3.86E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.86E+00                                 |
| 3181       | Erachem<br>Comilog Inc.                        | Lead<br>compounds                   | 4.50E-03               | 0.00E+00                                | 0.00E+00                                 | 3.72E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.72E+00                                 |
| 1011       | Phelps-Dodge<br>Morenci                        | Antimony<br>compounds               | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.29E-03                               | 3.65E+00                   | 3.65E+00                                 |

| Site<br>ID | Site Name                                | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 1011       | Phelps-Dodge<br>Morenci                  | Arsenic<br>compounds                | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 3.65E+00                   | 3.65E+00                                 |
| 3062       | Global Tungsten<br>& Powders Corp.       | Nickel<br>compounds                 | 6.25E-02               | 3.53E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.25E-02                   | 3.60E+00                                 |
| 3047       | Ormet Primary<br>Aluminum Corp           | Lead<br>compounds                   | 2.80E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.54E+00                               | 0.00E+00                   | 3.54E+00                                 |
| 34         | Arcelor Mittal<br>Riverdale              | Lead<br>compounds                   | 2.94E+00               | 3.90E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.33E+00                                 |
| 34         | MultiServ                                | Lead<br>compounds                   | 8.50E-05               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.50E-05                                 |
| 34         | Total                                    | Lead<br>compounds                   | 2.94E+00               | 3.90E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.33E+00                                 |
| 3223       | Amarillo Copper<br>Refinery              | Antimony<br>compounds               | 3.32E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.32E+00                                 |
| 3064       | Chino Mine -<br>Hurley Facility          | Cobalt<br>compounds                 | 0.00E+00               | 1.15E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 3.20E+00                   | 3.31E+00                                 |
| 33         | US Steel Gary<br>Works                   | Selenium<br>compounds               | 2.86E-01               | 1.59E-01                                | 4.65E-02                                 | 2.49E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.98E+00                                 |
| 3184       | Felman<br>Production Inc.                | Zinc<br>compounds                   | 2.88E+00               | 1.39E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.89E+00                                 |
| 14         | Sherwin Alumina                          | Mercury<br>compounds                | 1.48E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.78E+00                               | 0.00E+00                   | 2.79E+00                                 |
| 3186       | Wilmington Plant                         | Manganese<br>compounds              | 2.41E+00               | 2.95E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.71E+00                                 |
| 3068       | Kennecott Corp-<br>Smelter &<br>Refinery | Mercury<br>compounds                | 1.16E-01               | 3.23E-03                                | 0.00E+00                                 | 8.25E-01                    | 0.00E+00                                            | 1.74E+00                               | 0.00E+00                   | 2.69E+00                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield)    | Antimony<br>compounds               | 3.25E-02               | 2.25E-01                                | 0.00E+00                                 | 2.25E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.51E+00                                 |
| 3184       | Felman<br>Production Inc.                | Lead<br>compounds                   | 2.34E+00               | 1.35E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.35E+00                                 |
| 3013       | Eastalco<br>Aluminum<br>Company          | Polycyclic<br>aromatic<br>compounds | 2.29E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.29E+00                                 |

| Site<br>ID | Site Name                              | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|----------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3062       | Global Tungsten<br>& Powders Corp.     | Cobalt<br>compounds                 | 4.75E-01               | 1.74E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.25E-02                   | 2.22E+00                                 |
| 29         | Tube City IMS,<br>LLC                  | Lead<br>compounds                   | 3.50E-05               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.50E-05                                 |
| 29         | US Steel<br>Braddock                   | Lead<br>compounds                   | 2.41E-01               | 1.94E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.18E+00                                 |
| 29         | Total                                  | Lead<br>compounds                   | 2.41E-01               | 1.94E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.18E+00                                 |
| 3093       | AK Ashland                             | Lead<br>compounds                   | 1.58E+00               | 1.95E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 5.67E-01                   | 2.17E+00                                 |
| 3003       | Alcan Primary<br>Metal Sebree<br>Works | Nickel<br>compounds                 | 2.07E+00               | 6.04E-02                                | 0.00E+00                                 | 3.50E-05                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.13E+00                                 |
| 1008       | P4 Production<br>LLC                   | Mercury<br>compounds                | 1.50E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 6.21E-01                   | 2.12E+00                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield)  | Nickel<br>compounds                 | 8.00E-02               | 1.93E-01                                | 0.00E+00                                 | 1.60E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.87E+00                                 |
| 21         | Nyrstar NV                             | Mercury<br>compounds                | 1.11E-03               | 9.50E-05                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 1.84E+00                               | 0.00E+00                   | 1.84E+00                                 |
| 3232       | Globe<br>Metallurgical Inc.            | Polycyclic<br>aromatic<br>compounds | 1.82E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.82E+00                                 |
| 3203       | J R Simplot Co<br>Pocatello            | Mercury<br>compounds                | 1.76E-03               | 0.00E+00                                | 0.00E+00                                 | 1.61E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.62E+00                                 |
| 3230       | Elkem Metals<br>Company?               | Polycyclic<br>aromatic<br>compounds | 1.55E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.55E+00                                 |
| 3101       | Severstal<br>Dearborn                  | Lead<br>compounds                   | 1.35E+00               | 1.17E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.47E+00                                 |
| 3101       | Severstal<br>Dearborn                  | Copper<br>compounds                 | 2.91E-01               | 1.12E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.41E+00                                 |
| 3232       | Globe<br>Metallurgical Inc.            | Manganese<br>compounds              | 1.33E+00               | 3.75E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.33E+00                                 |
| 3050       | Brush Wellman<br>Inc                   | Lead<br>compounds                   | 1.79E-01               | 0.00E+00                                | 0.00E+00                                 | 1.07E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.24E+00                                 |

| Site<br>ID | Site Name                                      | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 1022       | Asarco LLC<br>Mission Complex                  | Zinc<br>compounds                   | 1.19E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.19E+00                                 |
| 3206       | Mosaic Fertilizer,<br>LLC - Uncle Sam<br>Plant | Mercury<br>compounds                | 0.00E+00               | 7.30E-04                                | 0.00E+00                                 | 1.14E+00                    | 0.00E+00                                            | 1.45E-06                               | 0.00E+00                   | 1.14E+00                                 |
| 28         | Elkem Metals<br>Co.                            | Mercury<br>compounds                | 8.67E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.56E-01                               | 0.00E+00                   | 1.12E+00                                 |
| 3223       | Amarillo Copper<br>Refinery                    | Silver<br>compounds                 | 9.66E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 9.66E-01                                 |
| 3007       | Alcoa Warrick<br>Operations                    | Mercury<br>compounds                | 5.35E-01               | 2.00E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 3.44E-01                               | 7.50E-02                   | 9.54E-01                                 |
| 3049       | Brush Resources<br>Inc                         | Lead<br>compounds                   | 3.00E-03               | 0.00E+00                                | 2.00E-04                                 | 0.00E+00                    | 0.00E+00                                            | 9.26E-01                               | 0.00E+00                   | 9.30E-01                                 |
| 95         | AK Steel Corp.<br>Mansfield                    | Lead<br>compounds                   | 6.97E-01               | 1.96E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.93E-01                                 |
| 3063       | Umicore Cobalt<br>& Energy<br>Products         | Cobalt<br>compounds                 | 7.50E-01               | 1.30E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.80E-01                                 |
| 21         | Nyrstar NV                                     | Thallium<br>compounds               | 0.00E+00               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 8.40E-01                               | 0.00E+00                   | 8.40E-01                                 |
| 3004       | Alcoa                                          | Mercury<br>compounds                | 5.03E-01               | 0.00E+00                                | 0.00E+00                                 | 2.56E-01                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.59E-01                                 |
| 3109       | US Steel Great<br>Lakes Works                  | Copper<br>compounds                 | 1.93E-01               | 4.97E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.89E-01                                 |
| 3130       | MultiServ                                      | Manganese<br>compounds              | 6.86E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.86E-01                                 |
| 3223       | Amarillo Copper<br>Refinery                    | Nickel<br>compounds                 | 6.31E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.31E-01                                 |
| 28         | Elkem Metals<br>Co.                            | Polycyclic<br>aromatic<br>compounds | 6.25E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.25E-01                                 |
| 3062       | Global Tungsten<br>& Powders Corp.             | Zinc<br>compounds                   | 1.65E-02               | 5.65E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.82E-01                                 |
| 3099       | Arcelor Mittal<br>Weirton                      | Lead<br>compounds                   | 2.53E-02               | 5.24E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.49E-01                                 |

| Site<br>ID | Site Name                              | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|----------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3062       | Global Tungsten<br>& Powders Corp.     | Copper<br>compounds                 | 0.00E+00               | 5.23E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.25E-02                   | 5.35E-01                                 |
| 3003       | Alcan Primary<br>Metal Sebree<br>Works | Lead<br>compounds                   | 5.02E-01               | 1.37E-02                                | 0.00E+00                                 | 5.00E-06                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.15E-01                                 |
| 1013       | Asarco, LLC -<br>Hayden                | Mercury<br>compounds                | 3.30E-02               | 0.00E+00                                | 0.00E+00                                 | 5.01E-03                    | 0.00E+00                                            | 0.00E+00                               | 4.69E-01                   | 5.07E-01                                 |
| 27         | US Steel Granite<br>City               | Polycyclic<br>aromatic<br>compounds | 4.72E-01               | 2.44E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.96E-01                                 |
| 3006       | Alcoa Intalco<br>Works                 | Lead<br>compounds                   | 3.97E-01               | 0.00E+00                                | 4.39E-02                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.41E-01                                 |
| 29         | US Steel<br>Braddock                   | Nickel<br>compounds                 | 4.31E-01               | 8.00E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.39E-01                                 |
| 3099       | Arcelor Mittal<br>Weirton              | Nickel<br>compounds                 | 3.03E-01               | 8.15E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.85E-01                                 |
| 3232       | Globe<br>Metallurgical Inc.            | Lead<br>compounds                   | 3.77E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.77E-01                                 |
| 3109       | US Steel Great<br>Lakes Works          | Selenium<br>compounds               | 3.60E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.60E-01                                 |
| 94         | AK Middletown<br>Works                 | Nickel<br>compounds                 | 3.58E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.58E-01                                 |
| 3109       | US Steel Great<br>Lakes Works          | Arsenic<br>compounds                | 2.45E-01               | 9.60E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.41E-01                                 |
| 3062       | Global Tungsten<br>& Powders Corp.     | Manganese<br>compounds              | 1.50E-03               | 3.15E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.25E-02                   | 3.29E-01                                 |
| 1011       | Phelps-Dodge<br>Morenci                | Polycyclic<br>aromatic<br>compounds | 8.30E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 3.07E-01                   | 3.16E-01                                 |
| 3223       | Amarillo Copper<br>Refinery            | Zinc<br>compounds                   | 3.00E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.00E-01                                 |
| 95         | AK Steel Corp.<br>Mansfield            | Copper<br>compounds                 | 1.49E-01               | 1.40E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.89E-01                                 |
| 3109       | US Steel Great<br>Lakes Works          | Antimony<br>compounds               | 2.82E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.82E-01                                 |

| Site<br>ID | Site Name                                      | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|------------------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3062       | Global Tungsten<br>& Powders Corp.             | Lead<br>compounds                   | 1.50E-03               | 2.69E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.70E-01                                 |
| 3230       | Elkem Metals<br>Company?                       | Lead<br>compounds                   | 2.56E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.56E-01                                 |
| 34         | Arcelor Mittal<br>Riverdale                    | Copper<br>compounds                 | 1.60E-01               | 8.80E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.48E-01                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield)          | Polycyclic<br>aromatic<br>compounds | 1.00E-05               | 2.36E-01                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.36E-01                                 |
| 3047       | Ormet Primary<br>Aluminum Corp                 | Mercury<br>compounds                | 1.40E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 2.21E-01                               | 0.00E+00                   | 2.22E-01                                 |
| 3101       | Severstal<br>Dearborn                          | Mercury<br>compounds                | 1.73E-01               | 7.85E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.74E-01                                 |
| 34         | Arcelor Mittal<br>Riverdale                    | Cobalt<br>compounds                 | 1.69E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.69E-01                                 |
| 3097       | Severstal<br>Wheeling                          | Manganese<br>compounds              | 1.54E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.54E-01                                 |
| 1013       | Asarco, LLC -<br>Hayden                        | Polycyclic<br>aromatic<br>compounds | 1.50E-01               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.50E-01                                 |
| 33         | US Steel Gary<br>Works                         | Mercury<br>compounds                | 2.24E-02               | 1.79E-03                                | 3.30E-02                                 | 7.98E-02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.37E-01                                 |
| 95         | AK Steel Corp.<br>Mansfield                    | Nickel<br>compounds                 | 6.65E-02               | 5.70E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.24E-01                                 |
| 3208       | PCS Nitr Fert                                  | Mercury<br>compounds                | 0.00E+00               | 9.85E-03                                | 0.00E+00                                 | 1.06E-01                    | 0.00E+00                                            | 0.00E+00                               | 1.50E-04                   | 1.16E-01                                 |
| 3013       | Eastalco<br>Aluminum<br>Company                | Lead<br>compounds                   | 1.10E-01               | 1.50E-05                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.10E-01                                 |
| 3201       | Agrifos Fertilizer<br>Pasadena                 | Mercury<br>compounds                | 0.00E+00               | 5.00E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 9.30E-02                               | 0.00E+00                   | 9.35E-02                                 |
| 3176       | Martin Marietta<br>Magnesia<br>Specialties LLC | Mercury<br>compounds                | 6.01E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 7.98E-02                   | 8.58E-02                                 |
| 3184       | Felman<br>Production Inc.                      | Arsenic<br>compounds                | 3.54E-02               | 4.44E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.98E-02                                 |

| Site<br>ID | Site Name                             | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|---------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3109       | US Steel Great<br>Lakes Works         | Nickel<br>compounds                 | 7.60E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.60E-02                                 |
| 29         | US Steel<br>Braddock                  | Copper<br>compounds                 | 2.80E-02               | 3.15E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.95E-02                                 |
| 3101       | Severstal<br>Dearborn                 | Nickel<br>compounds                 | 5.55E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.55E-02                                 |
| 94         | AK Middletown<br>Works                | Polycyclic<br>aromatic<br>compounds | 5.25E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.25E-02                                 |
| 30         | Severstal<br>Warren                   | Mercury<br>compounds                | 4.17E-02               | 0.00E+00                                | 0.00E+00                                 | 1.05E-03                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.28E-02                                 |
| 3105       | US Steel<br>Birmingham<br>(Fairfield) | Mercury<br>compounds                | 7.65E-03               | 7.50E-03                                | 0.00E+00                                 | 2.71E-02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.22E-02                                 |
| 34         | Arcelor Mittal<br>Riverdale           | Nickel<br>compounds                 | 3.90E-02               | 3.00E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.20E-02                                 |
| 27         | US Steel Granite<br>City              | Mercury<br>compounds                | 6.17E-03               | 1.31E-02                                | 0.00E+00                                 | 1.57E-02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.50E-02                                 |
| 3116       | Edward C. Levy<br>Co.                 | Manganese<br>compounds              | 3.05E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.05E-02                                 |
| 3231       | Globe<br>Metallurgical                | Lead<br>compounds                   | 4.28E-03               | 0.00E+00                                | 0.00E+00                                 | 2.38E-02                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.80E-02                                 |
| 3130       | MultiServ                             | Nickel<br>Compounds                 | 2.60E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.60E-02                                 |
| 3231       | Globe<br>Metallurgical                | Polycyclic<br>aromatic<br>compounds | 2.37E-02               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.37E-02                                 |
| 29         | US Steel<br>Braddock                  | Antimony<br>compounds               | 0.00E+00               | 1.55E-02                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.55E-02                                 |
| 3062       | Global Tungsten<br>& Powders Corp.    | Antimony<br>compounds               | 0.00E+00               | 2.50E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 1.25E-02                   | 1.50E-02                                 |
| 3097       | Severstal<br>Wheeling                 | Lead<br>compounds                   | 6.50E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.50E-03                                 |
| 3233       | Globe<br>Metallurgical Inc.           | Polycyclic<br>aromatic<br>compounds | 6.50E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.50E-03                                 |

| Site<br>ID | Site Name                              | TRI<br>Chemical<br>Name             | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|------------|----------------------------------------|-------------------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3109       | US Steel Great<br>Lakes Works          | Mercury<br>compounds                | 4.50E-03               | 1.50E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.00E-03                                 |
| 3186       | Wilmington Plant                       | Lead<br>compounds                   | 3.53E-04               | 2.70E-03                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.05E-03                                 |
| 31         | Republic<br>Engineered<br>Products Inc | Polycyclic<br>aromatic<br>compounds | 1.78E-03               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.78E-03                                 |
| 3049       | Brush Resources<br>Inc                 | Mercury<br>compounds                | 1.90E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 9.53E-04                               | 0.00E+00                   | 1.14E-03                                 |
| 29         | US Steel<br>Braddock                   | Mercury<br>compounds                | 9.85E-04               | 1.45E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.13E-03                                 |
| 3271       | E.I. Dupont de<br>Nemours              | Mercury<br>compounds                | 5.43E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 5.00E-04                   | 1.04E-03                                 |
| 3010       | Aluminum Co Of<br>America Badin        | Polycyclic<br>aromatic<br>compounds | 0.00E+00               | 7.50E-04                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.50E-04                                 |
| 28         | Eveready Battery<br>Co. Inc.           | Lead<br>compounds                   | 7.10E-04               | 1.00E-05                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 7.20E-04                                 |
| 3101       | Severstal<br>Dearborn                  | Beryllium<br>compounds              | 5.65E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.65E-04                                 |
| 3121       | Lafarge North<br>America Inc.          | Lead<br>compounds                   | 4.45E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 4.45E-04                                 |
| 3184       | Felman<br>Production Inc.              | Mercury<br>compounds                | 3.95E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.95E-04                                 |
| 3130       | MultiServ                              | Lead<br>compounds                   | 3.85E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 3.85E-04                                 |
| 3186       | Wilmington Plant                       | Nickel<br>compounds                 | 2.91E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 2.91E-04                                 |
| 3182       | Erachem<br>Comilog Inc.                | Lead<br>compounds                   | 1.52E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.52E-04                                 |
| 3233       | Globe<br>Metallurgical Inc.            | Lead<br>compounds                   | 1.50E-04               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 1.50E-04                                 |
| 3116       | Edward C. Levy<br>Co.                  | Lead<br>compounds                   | 8.00E-05               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 8.00E-05                                 |
| 3114       | Edward C. Levy<br>Co.                  | Lead<br>compounds                   | 6.50E-05               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 6.50E-05                                 |

| Site<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Site Name                     | TRI<br>Chemical<br>Name | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | <sup>1</sup> Total<br>Onsite<br>Releases |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------|
| 3121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lafarge North<br>America Inc. | Mercury<br>compounds    | 5.00E-11               | 0.00E+00                                | 0.00E+00                                 | 0.00E+00                    | 0.00E+00                                            | 0.00E+00                               | 0.00E+00                   | 5.00E-11                                 |
| <sup>1</sup> Note that the table is sorted (from largest to smallest) by total tons of onsite releases. Individual sites that are part of site groups are shown in the table, along with their contribution of pollutant releases, but individual grouped site are only considered as contributors to the total volume for the grouped site. Individual sites are shown in the table for clarity but only the "totaled" record for the site group is considered in the table order. |                               |                         |                        |                                         |                                          |                             |                                                     |                                        |                            |                                          |

| SITE<br>RNUM | MINE NAME                                      | Site Type | Total Air<br>Emissions | Total<br>Surface<br>Water<br>Discharges | Total<br>RCRA<br>Subtitle C<br>Landfills | Total<br>Other<br>Landfills | Total RCRA<br>Subtitle C<br>Surface<br>Impoundments | Total Other<br>Surface<br>Impoundments | Total<br>Other<br>Disposal | Total<br>Onsite<br>Releases |
|--------------|------------------------------------------------|-----------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|----------------------------|-----------------------------|
| 107          | US Steel Gary Works                            | Processor | 38.79                  | 0                                       | 0.06                                     | 0                           | 0                                                   | 0                                      | 0                          | 38.85                       |
| 176          | Martin Marietta<br>Magnesia Specialties<br>LLC | Processor | 3.87                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 14.40                      | 18.27                       |
| 7            | Alcoa Warrick<br>Operations                    | Processor | 13.03                  | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 13.03                       |
| 271          | E.I. Dupont de<br>Nemours                      | Processor | 0.12                   | 0.16                                    | 0                                        | 0                           | 0                                                   | 10.90                                  | 0                          | 11.18                       |
| 1007         | Du Pont Florida Mine<br>& Plant                | Mine      | 0.12                   | 0.16                                    | 0                                        | 0                           | 0                                                   | 10.90                                  | 0                          | 11.18                       |
| 4            | Alcoa                                          | Processor | 7.37                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 7.37                        |
| 2114         | Cresson Project                                | Mine      | 2.36                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 2.36                        |
| 199          | Phelps-Dodge<br>Morenci                        | Processor | 0.96                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.96                        |
| 1011         | Freeport-McMoRan<br>Morenci Inc.               | Mine      | 0.96                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.96                        |
| 2327         | Smoky Valley<br>Common Operations              | Mine      | 0.81                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.81                        |
| 2227         | Lee Creek Mine                                 | Mine      | 0.36                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.36                        |
| 6            | Alcoa Intalco Works                            | Processor | 0.21                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.21                        |
| 68           | Kennecott Corp-<br>Smelter & Refinery          | Processor | 0.01                   | 0                                       | 0                                        | 0                           | 0                                                   | 0                                      | 0                          | 0.01                        |

Table F2-2. Total Dioxin and Dioxin-Like Compounds Released to Air, Surface Water, and Land for Current Sites (grams)

## Attachment F3 TRI Data on Releases from 2009 Current Sites: By Medium

Table F3-1 shows average of total air emissions; Table F3-2 shows average total surface water releases; and Table F3-3 shows average total on-site releases to land.

| Site ID | Mine Name                         | Site Type | <sup>1,2</sup> Average of Total Air<br>Emissions (ton) |
|---------|-----------------------------------|-----------|--------------------------------------------------------|
| 28      | Elkem Metals Co.                  | Processor | 134.08                                                 |
| 28      | Eveready Battery Co. Inc.         | Processor | 4.83                                                   |
| 28      | Total                             |           | 138.91                                                 |
| 21      | Nyrstar NV                        | Processor | 95.51                                                  |
| 1013    | Asarco, LLC - Hayden              | Processor | 60.84                                                  |
| 33      | US Steel Gary Works               | Processor | 59.49                                                  |
| 33      | Tube City IMS, LLC                | Processor | 0.23                                                   |
| 33      | Edward C. Levy Co.                | Processor | 0.19                                                   |
| 33      | The Levy Co., Inc.                | Processor | 0.07                                                   |
| 33      | Total                             |           | 59.98                                                  |
| 3184    | Felman Production Inc.            | Processor | 42.53                                                  |
| 1008    | P4 Production LLC                 | Processor | 42.33                                                  |
| 3003    | Alcan Primary Metal Sebree Works  | Processor | 37.97                                                  |
| 3068    | Kennecott Corp-Smelter & Refinery | Processor | 36.71                                                  |
| 3223    | Amarillo Copper Refinery          | Processor | 27.19                                                  |
| 3151    | Doe Run Resources Corp.           | Processor | 25.42                                                  |
| 3109    | US Steel Great Lakes Works        | Processor | 24.90                                                  |
| 3101    | Severstal Dearborn                | Processor | 21.62                                                  |
| 3093    | AK Ashland                        | Processor | 18.61                                                  |
| 27      | US Steel Granite City             | Processor | 15.79                                                  |
| 3007    | Alcoa Warrick Operations          | Processor | 14.36                                                  |
| 2155    | Buick Mine/Mill                   | Mine      | 13.49                                                  |
| 3181    | Erachem Comilog Inc.              | Processor | 8.54                                                   |
| 2039    | Balmat Mine No. 4 & Mill          | Mine      | 8.23                                                   |
| 34      | Arcelor Mittal Riverdale          | Processor | 7.57                                                   |
| 34      | MultiServ                         | Processor | 0.06                                                   |
| 34      | Total                             |           | 7.63                                                   |
| 2311    | Stratcor, Inc.                    | Mine      | 6.29                                                   |
| 3094    | AK Middletown Works               | Processor | 5.80                                                   |
| 3185    | Tronox LLC                        | Processor | 5.32                                                   |
| 2154    | Fletcher Mine and Mill            | Mine      | 4.95                                                   |
| 3105    | US Steel Birmingham (Fairfield)   | Processor | 4.89                                                   |
| 3011    | Century Aluminum of Kentucky      | Processor | 4.59                                                   |
| 2080    | Ray                               | Mine      | 4.46                                                   |
| 2153    | Brushy Creek Mine/Mill            | Mine      | 4.23                                                   |
| 3004    | ALCOA                             | Processor | 4.13                                                   |
| 3095    | AK Steel Corp. Mansfield          | Processor | 3.96                                                   |
| 30      | Severstal Warren                  | Processor | 3.53                                                   |

| Table F3-1. | . Total Average     | Air Releases | for 2009 Current | t Sites |
|-------------|---------------------|--------------|------------------|---------|
|             | i i otai / ti orago | /            |                  | . 0     |

|         | ···· ··                                    | <b>.</b>  | <sup>1,2</sup> Average of Total Air |
|---------|--------------------------------------------|-----------|-------------------------------------|
| Site ID | Mine Name                                  | Site Type | Emissions (ton)                     |
| 30      | MultiServ Plt 6                            | Processor | 0.14                                |
| 30      | Total                                      |           | 3.67                                |
| 3182    | Erachem Comilog Inc.                       | Processor | 3.07                                |
| 3009    | Alumax of SC Incorporated                  | Processor | 2.57                                |
| 29      | US Steel Braddock                          | Processor | 2.38                                |
| 29      | Tube City IMS, LLC                         | Processor | 0.05                                |
| 29      | Total                                      |           | 2.43                                |
| 3012    | Columbia Falls Aluminum Company, LLC       | Processor | 2.16                                |
| 2156    | Sweetwater Mine/Mill                       | Mine      | 1.95                                |
| 3014    | Noranda Aluminum Incorporated              | Processor | 1.93                                |
| 2029    | Montana Tunnels Mining Inc                 | Mine      | 1.91                                |
| 1022    | Mission/San Xavier/Eisenhower              | Mine      | 1.80                                |
| 2267    | Pend Oreille Mine                          | Mine      | 1.23                                |
| 2079    | Freeport-McMoRan Bagdad Inc                | Mine      | 1.19                                |
| 1011    | <sup>1</sup> Phelps-Dodge Morenci          | Processor | 1.15                                |
| 1011    | <sup>1</sup> Freeport-McMoRan Morenci Inc. | Mine      | 1.15                                |
| 3050    | Brush Wellman Inc                          | Processor | 1.03                                |
| 1018    | Twin Creeks Mine                           | Mine      | 0.95                                |
| 3006    | Alcoa Intalco Works                        | Processor | 0.94                                |
| 3005    | Alcoa Inc Wenatchee Works                  | Processor | 0.77                                |
| 3232    | Globe Metallurgical Inc.                   | Processor | 0.76                                |
| 31      | Republic Engineered Products Inc           | Processor | 0.75                                |
| 2240    | The Wharf Mine                             | Mine      | 0.72                                |
| 2185    | Jerritt Canyon Mill                        | Mine      | 0.58                                |
| 15      | Alcoa World Alumina Atlantic               | Processor | 0.53                                |
| 3186    | Wilmington Plant                           | Processor | 0.48                                |
| 3013    | Eastalco Aluminum Company                  | Processor | 0.48                                |
| 1006    | Chino Mines Co Mine                        | Mine      | 0.42                                |
| 3064    | Chino mine - Hurley Facility               | Processor | 0.42                                |
| 2083    | Freeport-McMoRan Sierrita Inc              | Mine      | 0.38                                |
| 3230    | Elkem Metals Company?                      | Processor | 0.36                                |
| 2186    | Lone Tree Mine                             | Mine      | 0.33                                |
| 3099    | Arcelor Mittal Weirton                     | Processor | 0.32                                |
| 3063    | Umicore Cobalt & Energy Products           | Processor | 0.25                                |
| 3130    | MultiServ                                  | Processor | 0.18                                |
| 2159    | Continental Mine                           | Mine      | 0.18                                |
| 2163    | Golden Sunlight Mine Inc                   | Mine      | 0.17                                |
| 3201    | Agrifos Fertilizer Pasadena                | Processor | 0.16                                |
| 2215    | Tyrone Mine                                | Mine      | 0.13                                |
| 2187    | Bald Mountain Mine                         | Mine      | 0.13                                |
| 2126    | Lucky Friday                               | Mine      | 0.12                                |
| 3062    | Global Tungsten & Powders Corp.            | Processor | 0.11                                |
| 2114    | Cresson Project                            | Mine      | 0.11                                |
| 2101    | Mt Pass Mine & Mill                        | Mine      | 0.11                                |
| 2125    | Galena                                     | Mine      | 0.10                                |
| 2313    | Henderson Operations                       | Mine      | 0.10                                |
| 2164    | Stillwater Mine                            | Mine      | 0.06                                |
| 2253    | Brush Mine                                 | Mine      | 0.05                                |

| Site ID           | Mine Name                                | Site Type | <sup>1,2</sup> Average of Total Air<br>Emissions (ton) |
|-------------------|------------------------------------------|-----------|--------------------------------------------------------|
| 3049              | Brush Resources Inc                      | Processor | 0.05                                                   |
| 3097              | Severstal Wheeling                       | Processor | 0.05                                                   |
| 2227              | Lee Creek Mine                           | Mine      | 0.05                                                   |
| 2182              | Denton-Rawhide Mine                      | Mine      | 0.04                                                   |
| 2262              | Lisbon Valley Mining Co                  | Mine      | 0.03                                                   |
| 2204              | Hycroft Mine                             | Mine      | 0.03                                                   |
| 2091              | Freeport-McMoRan Safford Inc             | Mine      | 0.03                                                   |
| 2309              | Silver Bell Mining LLC                   | Mine      | 0.03                                                   |
| 7                 | Turquoise Ridge Mine                     | Mine      | 0.02                                                   |
| 2327              | Smoky Valley Common Operations           | Mine      | 0.02                                                   |
| 2192              | Midas Mine                               | Mine      | 0.02                                                   |
| 2280              | Fort Knox Mine                           | Mine      | 0.02                                                   |
| 3116              | Edward C. Levy Co.                       | Processor | 0.01                                                   |
| 3198              | Climax Molybdenum Co. Henderson Mill     | Processor | 0.008                                                  |
| 1007              | Du Pont Florida Mine & Plant             | Mine      | 0.004                                                  |
| 1007              | E.I. Dupont de Nemours                   | Processor | 0.004                                                  |
| <sup>3</sup> 1007 | Total                                    |           | 0.008                                                  |
| 3233              | Globe Metallurgical Inc.                 | Processor | 0.007                                                  |
| 3231              | Globe Metallurgical                      | Processor | 0.006                                                  |
| 2103              | Mesquite                                 | Mine      | 0.003                                                  |
| 14                | Sherwin Alumina                          | Processor | 0.003                                                  |
| 3203              | J R Simplot Co Pocatello                 | Processor | 0.003                                                  |
| 2124              | Thompson Creek Mining Co                 | Mine      | 0.003                                                  |
| 2242              | CF & I PIT                               | Mine      | 0.002                                                  |
| 2271              | Kettle River Mill Site                   | Mine      | 0.002                                                  |
| 3047              | Ormet Primary Aluminum Corp              | Processor | 0.002                                                  |
| 3176              | Martin Marietta Magnesia Specialties LLC | Processor | 0.001                                                  |
| 3206              | Mosaic Fertilizer, LLC - Uncle Sam Plant | Processor | 0.0007                                                 |
| 2104              | CR Briggs                                | Mine      | 0.0002                                                 |
| 3121              | Lafarge North America Inc.               | Processor | 0.00009                                                |
| 3204              | Mississippi Phosphates Corp.             | Processor | 0.00006                                                |
| 3114              | Edward C. Levy Co.                       | Processor | 0.00003                                                |
| 2118              | Swift Creek Mine                         | Mine      | 0.000004                                               |
| 3210              | PCS Phosphate White Springs              | Processor | 0.000004                                               |
| 3211              | SF Phosphates Limited Company            | Processor | 0.0000007                                              |

<sup>1</sup>TRI data for total air releases at currently active sites averaged from 2005-2009; Note that some sites did not have recorded values for the full five year period

<sup>2</sup>Note that table is sorted (from largest to smallest) by total tons of onsite releases. Individual sites that are part of site groups are shown in the table, along with their contribution of pollutant releases, but individual grouped site are only considered as contributors to the total volume for the grouped site. Individual sites are shown in the table for clarity but only the "totaled" record for the site group is considered in the table order.

<sup>3</sup>The two sites in SITE ID 1007 are listed as both a mine and a processor; the average total air emissions values are identical

| Site ID | Mine Name                         | Site Type | <sup>2</sup> Average of Total Surface<br>Water Discharges (tons) |
|---------|-----------------------------------|-----------|------------------------------------------------------------------|
| 33      | US Steel Gary Works               | Processor | 775.91                                                           |
| 3050    | Brush Wellman Inc                 | Processor | 727.22                                                           |
| 3062    | Global Tungsten & Powders Corp.   | Processor | 643.20                                                           |
| 3208    | PCS Nitr Fert                     | Processor | 304.47                                                           |
| 3182    | Erachem Comilog Inc.              | Processor | 299.57                                                           |
| 27      | US Steel Granite City             | Processor | 133.00                                                           |
| 2311    | Stratcor, Inc.                    | Mine      | 74.77                                                            |
| 3094    | AK Middletown Works               | Processor | 63.10                                                            |
| 28      | Elkem Metals Co.                  | Processor | 53.29                                                            |
| 28      | Eveready Battery Co. Inc.         | Processor | 0.10                                                             |
| 28      | Total                             |           | 53.39                                                            |
| 3105    | US Steel Birmingham (Fairfield)   | Processor | 42.03                                                            |
| 31      | Republic Engineered Products Inc  | Processor | 32.93                                                            |
| 3099    | Arcelor Mittal Weirton            | Processor | 30.58                                                            |
| 2313    | Henderson Operations              | Mine      | 28.60                                                            |
| 21      | Nyrstar NV                        | Processor | 26.33                                                            |
| 3109    | US Steel Great Lakes Works        | Processor | 25.15                                                            |
| 2186    | Lone Tree Mine                    | Mine      | 19.91                                                            |
| 2155    | Buick Mine/Mill                   | Mine      | 14.51                                                            |
| 2240    | The Wharf Mine                    | Mine      | 11.29                                                            |
| 29      | US Steel Braddock                 | Processor | 11.18                                                            |
| 3093    | AK Ashland                        | Processor | 9.41                                                             |
| 1011    | Freeport-McMoRan Morenci Inc.     | Mine      | 5.73                                                             |
| 1011    | Phelps-Dodge Morenci              | Processor | 5.73                                                             |
| 3007    | Alcoa Warrick Operations          | Processor | 4.57                                                             |
| 1007    | Du Pont Florida Mine & Plant      | Mine      | 4.11                                                             |
| 2153    | Brushy Creek Mine/Mill            | Mine      | 3.57                                                             |
| 3068    | Kennecott Corp-Smelter & Refinery | Processor | 2.84                                                             |
| 2154    | Fletcher Mine and Mill            | Mine      | 2.52                                                             |
| 2126    | Lucky Friday                      | Mine      | 2.52                                                             |
| 3095    | AK Steel Corp. Mansfield          | Processor | 1.83                                                             |
| 34      | Arcelor Mittal Riverdale          | Processor | 1.49                                                             |
| 3181    | Erachem Comilog Inc.              | Processor | 1.38                                                             |
| 2156    | Sweetwater Mine/Mill              | Mine      | 1.38                                                             |
| 2039    | Balmat Mine No. 4 & Mill          | Mine      | 1.21                                                             |
| 1008    | P4 Production LLC                 | Processor | 0.76                                                             |
| 3101    | Severstal Dearborn                | Processor | 0.64                                                             |
| 2125    | Galena                            | Mine      | 0.54                                                             |
| 30      | Severstal Warren                  | Processor | 0.50                                                             |
| 3151    | Doe Run Resources Corp.           | Processor | 0.34                                                             |
| 2309    | Silver Bell Mining LLC            | Mine      | 0.34                                                             |
| 1006    | Chino Mines Co Mine               | Mine      | 0.25                                                             |
| 3064    | Chino Mine - Hurley Facility      | Processor | 0.25                                                             |
| 2267    | Pend Oreille Mine                 | Mine      | 0.16                                                             |
| 3184    | Felman Production Inc.            | Processor | 0.12                                                             |
| 3201    | Agrifos Fertilizer Pasadena       | Processor | 0.12                                                             |
| 2215    | Tyrone Mine                       | Mine      | 0.08                                                             |

## Table F3-2. Total Average Surface Water Releases for 2009 Current Sites

| Site ID | Mine Name                                | Site Type | <sup>2</sup> Average of Total Surface<br>Water Discharges (tons) |
|---------|------------------------------------------|-----------|------------------------------------------------------------------|
| 3003    | Alcan Primary Metal Sebree Works         | Processor | 0.08                                                             |
| 1018    | Twin Creeks Mine                         | Mine      | 0.07                                                             |
| 2079    | Freeport-McMoRan Bagdad Inc              | Mine      | 0.06                                                             |
| 3186    | Wilmington Plant                         | Processor | 0.06                                                             |
| 3206    | Mosaic Fertilizer, LLC - Uncle Sam Plant | Processor | 0.05                                                             |
| 3063    | Umicore Cobalt & Energy Products         | Processor | 0.04                                                             |
| 2080    | Ray                                      | Mine      | 0.03                                                             |
| 2124    | Thompson Creek Mining Co                 | Mine      | 0.02                                                             |
| 3232    | Globe Metallurgical Inc.                 | Processor | 0.01                                                             |
| 2104    | CR Briggs                                | Mine      | 0.005                                                            |
| 15      | Alcoa World Alumina Atlantic             | Processor | 0.003                                                            |
| 3010    | Aluminum Co of America Badin             | Processor | 0.0008                                                           |
| 3013    | Eastalco Aluminum Company                | Processor | 0.000003                                                         |
| 3006    | Alcoa Intalco Works                      | Processor | 0.000001                                                         |

<sup>1</sup>TRI data for total water discharges at currently active sites, averaged from 2005-2009; Note that some sites did not have recorded values for the full five year period

<sup>2</sup>Note that table Table F.3-2 is sorted (from largest to smallest) by total tons of onsite releases. Individual sites that are part of site groups are shown in the table, along with their contribution of pollutant releases, but individual grouped site are only considered as contributors to the total volume for the grouped site. Individual sites are shown in the table for clarity but only the "totaled" record for the site group is considered in the table order.

| Site ID | Mine Name                            | Site Type | <sup>1,2</sup> Average of Total Land<br>Placement* (tons) |
|---------|--------------------------------------|-----------|-----------------------------------------------------------|
| 1018    | Twin Creeks Mine                     | Mine      | 26000                                                     |
| 2155    | Buick Mine/Mill                      | Mine      | 12000                                                     |
| 21      | Nyrstar NV                           | Processor | 11000                                                     |
| 3068    | Kennecott Corp-Smelter & Refinery    | Processor | 10000                                                     |
| 2159    | Continental Mine                     | Mine      | 10000                                                     |
| 1013    | Asarco, LLC - Hayden                 | Processor | 9400                                                      |
| 2126    | Lucky Friday                         | Mine      | 8300                                                      |
| 2186    | Lone Tree Mine                       | Mine      | 6700                                                      |
| 2154    | Fletcher Mine and Mill               | Mine      | 6400                                                      |
| 2153    | Brushy Creek Mine/Mill               | Mine      | 6200                                                      |
| 2267    | Pend Oreille Mine                    | Mine      | 4700                                                      |
| 33      | US Steel Gary Works                  | Processor | 4600                                                      |
| 33      | Edward C. Levy Co.                   | Processor | 0.32                                                      |
| 33      | Total                                |           | 4600                                                      |
| 3151    | Doe Run Resources Corp.              | Processor | 4300                                                      |
| 2029    | Montana Tunnels Mining Inc           | Mine      | 3600                                                      |
| 27      | US Steel Granite City                | Processor | 2600                                                      |
| 1008    | P4 Production LLC                    | Processor | 2600                                                      |
| 2215    | Tyrone Mine                          | Mine      | 2500                                                      |
| 1011    | Freeport-McMoRan Morenci Inc.        | Mine      | 2400                                                      |
| 2125    | Galena                               | Mine      | 2300                                                      |
| 2156    | Sweetwater Mine/Mill                 | Mine      | 1900                                                      |
| 28      | Elkem Metals Co.                     | Processor | 1600                                                      |
| 2280    | Fort Knox Mine                       | Mine      | 1500                                                      |
| 3105    | US Steel Birmingham (Fairfield)      | Processor | 1500                                                      |
| 2114    | Cresson Project                      | Mine      | 1500                                                      |
| 3181    | Erachem Comilog Inc.                 | Processor | 1400                                                      |
| 3198    | Climax Molybdenum Co. Henderson Mill | Processor | 1400                                                      |
| 2039    | Balmat Mine No. 4 & Mill             | Mine      | 1200                                                      |
| 2103    | Mesquite                             | Mine      | 1100                                                      |
| 2185    | Jerritt Canyon Mill                  | Mine      | 1000                                                      |
| 1022    | Mission/San Xavier/Eisenhower        | Mine      | 1000                                                      |
| 2124    | Thompson Creek Mining Co             | Mine      | 990                                                       |
| 2327    | Smoky Valley Common Operations       | Mine      | 860                                                       |
| 2311    | Stratcor, Inc.                       | Mine      | 820                                                       |
| 2240    | The Wharf Mine                       | Mine      | 810                                                       |
| 2083    | Freeport-McMoRan Sierrita Inc        | Mine      | 800                                                       |
| 14      | Sherwin Alumina                      | Processor | 720                                                       |
| 2079    | Freeport-McMoRan Bagdad Inc          | Mine      | 690                                                       |
| 30      | Severstal Warren                     | Processor | 660                                                       |
| 3007    | Alcoa Warrick Operations             | Processor | 590                                                       |
| 2163    | Golden Sunlight Mine Inc             | Mine      | 590                                                       |
| 2192    | Midas Mine                           | Mine      | 530                                                       |
| 2187    | Bald Mountain Mine                   | Mine      | 470                                                       |
| 1006    | Chino Mines Co Mine                  | Mine      | 460                                                       |
| 3064    | Chino Mine - Hurley Facility         | Processor | 460                                                       |
| 7       | Turquoise Ridge Mine                 | Mine      | 360                                                       |

| Site ID | Mine Name                                | Site Type | <sup>1,2</sup> Average of Total Land<br>Placement* (tons) |
|---------|------------------------------------------|-----------|-----------------------------------------------------------|
| 2091    | Freeport-McMoRan Safford Inc             | Mine      | 310                                                       |
| 3201    | Agrifos Fertilizer Pasadena              | Processor | 290                                                       |
| 3004    | Alcoa                                    | Processor | 230                                                       |
| 2313    | Henderson Operations                     | Mine      | 230                                                       |
| 1007    | Du Pont Florida Mine & Plant             | Mine      | 210                                                       |
| 2080    | Ray                                      | Mine      | 210                                                       |
| 2227    | Lee Creek Mine                           | Mine      | 160                                                       |
| 15      | Alcoa World Alumina Atlantic             | Processor | 110                                                       |
| 2271    | Kettle River Mill Site                   | Mine      | 93                                                        |
| 2253    | Brush Mine                               | Mine      | 68                                                        |
| 3049    | Brush Resources Inc                      | Processor | 68                                                        |
| 3050    | Brush Wellman Inc                        | Processor | 61                                                        |
| 2164    | Stillwater Mine                          | Mine      | 28                                                        |
| 3206    | Mosaic Fertilizer, LLC - Uncle Sam Plant | Processor | 27                                                        |
| 1       | Copper Queen Branch                      | Mine      | 25                                                        |
| 3185    | Tronox LLC                               | Processor | 19                                                        |
| 3208    | PCS Nitr Fert                            | Processor | 14                                                        |
| 3203    | J R Simplot Co Pocatello                 | Processor | 11                                                        |
| 3211    | SF Phosphates Limited Company            | Processor | 9.6                                                       |
| 2118    | Swift Creek Mine                         | Mine      | 9.5                                                       |
| 3210    | PCS Phosphate White Springs              | Processor | 9.5                                                       |
| 2196    | Hollister Mine                           | Mine      | 6.2                                                       |
| 3182    | Erachem Comilog Inc.                     | Processor | 5.9                                                       |
| 3204    | Mississippi Phosphates Corp.             | Processor | 3.1                                                       |
| 3012    | Columbia Falls Aluminum Company, LLC     | Processor | 2.2                                                       |
| 3047    | Ormet Primary Aluminum Corp              | Processor | 1.9                                                       |
| 2309    | Silver Bell Mining LLC                   | Mine      | 1.4                                                       |
| 3093    | AK Ashland                               | Processor | 1.3                                                       |
| 3176    | Martin Marietta Magnesia Specialties LLC | Processor | 1.1                                                       |
| 2204    | Hycroft Mine                             | Mine      | 0.20                                                      |
| 2262    | Lisbon Valley Mining Co                  | Mine      | 0.06                                                      |
| 3006    | Alcoa Intalco Works                      | Processor | 0.02                                                      |
| 3062    | Global Tungsten & Powders Corp.          | Processor | 0.02                                                      |
| 3231    | Globe Metallurgical                      | Processor | 0.005                                                     |
| 3003    | Alcan Primary Metal Sebree Works         | Processor | 0.0002                                                    |

\*Footnote = Values rounded to 2 significant figures.

<sup>1</sup>TRI data for total release to land at currently active sites, averaged from 2005-2009; Note that some sites did not have recorded values for the full five year period

<sup>2</sup>Note that table Table F.3-3 is sorted (from largest to smallest) by total tons of onsite releases. Individual sites that are part of site groups are shown in the table, along with their contribution of pollutant releases, but individual grouped site are only considered as contributors to the total volume for the grouped site. Individual sites are shown in the table for clarity but only the "totaled" record for the site group is considered in the table order.

## Attachment F4 DMR Data on Releases from 2009 Current Sites: By COC

**Table F4-1** shows DMR data for all COCs. Table F4-2 shows DMR data forphosphorus, ammonia, and cyanide.

| Fac ID | Mine ID | Mine Name                | Pollutant | Release<br>(pounds) |
|--------|---------|--------------------------|-----------|---------------------|
| 0      | 13      | Sunshine Mine            | Antimony  | 47.1                |
| 0      | 13      | Sunshine Mine            | Arsenic   | 9.59                |
| 0      | 13      | Sunshine Mine            | Copper    | 66.6                |
| 0      | 13      | Sunshine Mine            | Lead      | 42.06               |
| 0      | 13      | Sunshine Mine            | Manganese | 1303                |
| 0      | 13      | Sunshine Mine            | Nickel    | 4.43                |
| 0      | 13      | Sunshine Mine            | Silver    | 1.26                |
| 0      | 13      | Sunshine Mine            | Zinc      | 54.6                |
| 0      | 124     | Thompson Creek Mining Co | Cadmium   | 0.36                |
| 0      | 124     | Thompson Creek Mining Co | Copper    | 0.706               |
| 0      | 124     | Thompson Creek Mining Co | Lead      | 1.043               |
| 0      | 124     | Thompson Creek Mining Co | Mercury   | 0.0011              |
| 0      | 124     | Thompson Creek Mining Co | Zinc      | 51.3                |
| 0      | 125     | Galena                   | Cadmium   | 0.025               |
| 0      | 125     | Galena                   | Copper    | 0.53                |
| 0      | 125     | Galena                   | Copper    | 83.1                |
| 0      | 125     | Galena                   | Lead      | 1.31                |
| 0      | 125     | Galena                   | Lead      | 26.01               |
| 0      | 125     | Galena                   | Manganese | 1687                |
| 0      | 125     | Galena                   | Zinc      | 7.709               |
| 0      | 153     | Brushy Creek Mine/Mill   | Cadmium   | 58.5                |
| 0      | 153     | Brushy Creek Mine/Mill   | Copper    | 44.5                |
| 0      | 153     | Brushy Creek Mine/Mill   | Lead      | 701                 |
| 0      | 153     | Brushy Creek Mine/Mill   | Mercury   | 0.65                |
| 0      | 153     | Brushy Creek Mine/Mill   | Zinc      | 3320                |
| 0      | 154     | Fletcher Mine and Mill   | Cadmium   | 77                  |
| 0      | 154     | Fletcher Mine and Mill   | Copper    | 138                 |
| 0      | 154     | Fletcher Mine and Mill   | Lead      | 1417                |
| 0      | 154     | Fletcher Mine and Mill   | Zinc      | 590                 |
| 0      | 155     | Buick Mine/Mill          | Antimony  | 829                 |
| 0      | 155     | Buick Mine/Mill          | Arsenic   | 164                 |
| 0      | 155     | Buick Mine/Mill          | Cadmium   | 134                 |
| 0      | 155     | Buick Mine/Mill          | Copper    | 17.9                |
| 0      | 155     | Buick Mine/Mill          | Copper    | 181                 |
| 0      | 155     | Buick Mine/Mill          | Lead      | 517                 |
| 0      | 155     | Buick Mine/Mill          | Lead      | 647                 |
| 0      | 155     | Buick Mine/Mill          | Mercury   | 1.14                |
| 0      | 155     | Buick Mine/Mill          | Selenium  | 288                 |

Table F4-1. Summary of Collected DMR Data by 2009 Current Site and COC

| Fac ID | Mine ID | Mine Name                        | Pollutant | Release<br>(pounds) |
|--------|---------|----------------------------------|-----------|---------------------|
| 0      | 155     | Buick Mine/Mill                  | Silver    | 1240                |
| 0      | 155     | Buick Mine/Mill                  | Zinc      | 31.5                |
| 0      | 155     | Buick Mine/Mill                  | Zinc      | 8305                |
| 0      | 163     | Golden Sunlight Mine Inc         | Arsenic   | 14.8                |
| 0      | 163     | Golden Sunlight Mine Inc         | Arsenic   | 28.8                |
| 0      | 163     | Golden Sunlight Mine Inc         | Copper    | 20.9                |
| 0      | 163     | Golden Sunlight Mine Inc         | Copper    | 693                 |
| 0      | 163     | Golden Sunlight Mine Inc         | Lead      | 7.63                |
| 0      | 163     | Golden Sunlight Mine Inc         | Lead      | 669                 |
| 0      | 163     | Golden Sunlight Mine Inc         | Manganese | 67.8                |
| 0      | 163     | Golden Sunlight Mine Inc         | Manganese | 3412                |
| 0      | 163     | Golden Sunlight Mine Inc         | Zinc      | 21.8                |
| 0      | 163     | Golden Sunlight Mine Inc         | Zinc      | 2031                |
| 0      | 190     | TWIN CREEKS MINE                 | Antimony  | 157                 |
| 0      | 190     | TWIN CREEKS MINE                 | Fluoride  | 4150                |
| 0      | 240     | THE WHARF MINE                   | Arsenic   | 229                 |
| 0      | 240     | THE WHARF MINE                   | Copper    | 11.7                |
| 0      | 240     | THE WHARF MINE                   | Selenium  | 8.033               |
| 0      | 240     | THE WHARF MINE                   | Zinc      | 116                 |
| 0      | 267     | Pend Oreille Mine                | Lead      | 145                 |
| 0      | 267     | Pend Oreille Mine                | Zinc      | 171                 |
| 0      | 291     | Red Dog                          | Copper    | 1.19                |
| 0      | 291     | Red Dog                          | Manganese | 11.1                |
| 0      | 291     | Red Dog                          | Selenium  | 0.58                |
| 0      | 291     | Red Dog                          | Zinc      | 14.9                |
| 0      | 313     | HENDERSON OPERATIONS             | Cadmium   | 3.19                |
| 0      | 313     | HENDERSON OPERATIONS             | Copper    | 39.7                |
| 0      | 313     | HENDERSON OPERATIONS             | Lead      | 0.83                |
| 0      | 313     | HENDERSON OPERATIONS             | Mercury   | 0.0045              |
| 0      | 313     | HENDERSON OPERATIONS             | Zinc      | 316                 |
| 210    | 118     | Swift Creek Mine                 | Fluoride  | 2655                |
| 3      | 0       | ALCAN PRIMARY METAL SEBREE WORKS | Fluoride  | 871                 |
| 3      | 0       | ALCAN PRIMARY METAL SEBREE WORKS | Nickel    | 36.9                |
| 3      | 0       | ALCAN PRIMARY METAL SEBREE WORKS | Zinc      | 145                 |
| 4      | 0       | ALCOA                            | Fluoride  | 18043               |
| 6      | 0       | ALCOA INTALCO WORKS              | Fluoride  | 9768                |
| 7      | 0       | ALCOA WARRICK OPERATIONS         | Antimony  | 560                 |
| 7      | 0       | ALCOA WARRICK OPERATIONS         | Copper    | 527                 |
| 7      | 0       | ALCOA WARRICK OPERATIONS         | Fluoride  | 34461               |
| 7      | 0       | ALCOA WARRICK OPERATIONS         | Nickel    | 448                 |
| 7      | 0       | ALCOA WARRICK OPERATIONS         | Zinc      | 1309                |
| 13     | 0       | EASTALCO ALUMINUM COMPANY        | Fluoride  | 23759               |
| 14     | 0       | NORANDA ALUMINUM INCORPORATED    | Antimony  | 4.51                |
| 14     | 0       | NORANDA ALUMINUM INCORPORATED    | Fluoride  | 57279               |
| 14     | 0       | NORANDA ALUMINUM INCORPORATED    | Nickel    | 42.7                |
| 35     | 0       | Corpus Christi Grinding Plant    | Copper    | 40.7                |

| Fac ID | Mine ID | Mine Name                         | Pollutant            | Release<br>(pounds) |
|--------|---------|-----------------------------------|----------------------|---------------------|
| 35     | 0       | Corpus Christi Grinding Plant     | Zinc                 | 67.1                |
| 48     | 0       | ALCOA WORLD ALUMINA ATLANTIC      | Copper               | 195                 |
| 48     | 0       | ALCOA WORLD ALUMINA ATLANTIC      | Fluoride             | 21413               |
| 48     | 0       | ALCOA WORLD ALUMINA ATLANTIC      | Mercury              | 0.79                |
| 48     | 0       | ALCOA WORLD ALUMINA ATLANTIC      | Zinc                 | 60.1                |
| 50     | 0       | Brush Wellman Inc                 | Beryllium            | 46.4                |
| 50     | 0       | Brush Wellman Inc                 | Copper               | 66.5                |
| 50     | 0       | Brush Wellman Inc                 | Fluoride             | 372                 |
| 50     | 0       | Brush Wellman Inc                 | Nickel               | 18.04               |
| 50     | 0       | Brush Wellman Inc                 | Silver               | 0.81                |
| 50     | 0       | Brush Wellman Inc                 | Zinc                 | 16.7                |
| 56     | 0       | Chemtura                          | Lead                 | 2.28                |
| 62     | 0       | Global Tungsten & Powders Corp.   | Fluoride             | 6410                |
| 62     | 0       | Global Tungsten & Powders Corp.   | Zinc                 | 2375                |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Arsenic              | 746                 |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Cadmium              | 106                 |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Copper               | 752                 |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Mercury              | 0.00029             |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Selenium             | 395                 |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY | Zinc                 | 708                 |
| 74     | 0       | UMICORE OPTICAL MATERIALS USA     | Zinc                 | 2.81                |
| 87     | 0       | Indium Corp of America            | Nickel               | 260                 |
| 92     | 0       | Arcelor Mittal Burns Harbor       | Copper               | 5108                |
| 92     | 0       | Arcelor Mittal Burns Harbor       | Mercury              | 113                 |
| 93     | 0       | AK Ashland                        | Lead                 | 8.98                |
| 93     | 0       | AK Ashland                        | Manganese            | 1.53                |
| 93     | 0       | AK Ashland                        | Zinc                 | 451                 |
| 94     | 0       | AK Middletown Works               | Chromium, Hexavalent | 0.55                |
| 94     | 0       | AK Middletown Works               | Copper               | 11.3                |
| 94     | 0       | AK Middletown Works               | Lead                 | 6.99                |
| 94     | 0       | AK Middletown Works               | Selenium             | 0.25                |
| 94     | 0       | AK Middletown Works               | Zinc                 | 1574                |
| 95     | 0       | AK Steel Corp. Mansfield          | Cadmium              | 0.0000061           |
| 95     | 0       | AK Steel Corp. Mansfield          | Copper               | 0.27                |
| 95     | 0       | AK Steel Corp. Mansfield          | Lead                 | 0.00022             |
| 95     | 0       | AK Steel Corp. Mansfield          | Silver               | 0.32                |
| 97     | 0       | Severstal Wheeling                | Lead                 | 0.26                |
| 97     | 0       | Severstal Wheeling                | Lead                 | 1.43                |
| 97     | 0       | Severstal Wheeling                | Zinc                 | 4.56                |
| 97     | 0       | Severstal Wheeling                | Zinc                 | 5.901               |
| 103    | 0       | Severstal Warren                  | Lead                 | 29.06               |
| 103    | 0       | Severstal Warren                  | Mercury              | 0.000041            |
| 103    | 0       | Severstal Warren                  | Zinc                 | 396                 |
| 104    | 0       | US Steel (ET Works)               | Lead                 | 215                 |
| 104    | 0       | US Steel (ET Works)               | Nickel               | 8.46                |
| 104    | 0       | US Steel (ET Works)               | Zinc                 | 56.8                |

| Fac ID | Mine ID | Mine Name                                           | Pollutant | Release<br>(pounds) |
|--------|---------|-----------------------------------------------------|-----------|---------------------|
| 105    | 0       | US Steel Birmingham (Fairfield)                     | Lead      | 200                 |
| 105    | 0       | US Steel Birmingham (Fairfield)                     | Manganese | 446                 |
| 105    | 0       | US Steel Birmingham (Fairfield)                     | Zinc      | 8416                |
| 106    | 0       | US Steel Braddock                                   | Lead      | 37.08               |
| 106    | 0       | US Steel Braddock                                   | Manganese | 619502              |
| 106    | 0       | US Steel Braddock                                   | Zinc      | 2094737             |
| 107    | 0       | US Steel Gary Works                                 | Chromium  | 1.26                |
| 107    | 0       | US Steel Gary Works                                 | Copper    | 0.98                |
| 107    | 0       | US Steel Gary Works                                 | Fluoride  | 78467               |
| 107    | 0       | US Steel Gary Works                                 | Manganese | 15.5                |
| 107    | 0       | US Steel Gary Works                                 | Nickel    | 5.53                |
| 107    | 0       | US Steel Gary Works                                 | Thallium  | 5.52                |
| 107    | 0       | US Steel Gary Works                                 | Zinc      | 80.3                |
| 108    | 0       | US Steel Granite City                               | Lead      | 222                 |
| 108    | 0       | US Steel Granite City                               | Zinc      | 1103                |
| 109    | 0       | US Steel Great Lakes Works                          | Copper    | 158                 |
| 109    | 0       | US Steel Great Lakes Works                          | Lead      | 0.44                |
| 109    | 0       | US Steel Great Lakes Works                          | Zinc      | 159                 |
| 113    | 0       | Edward C. Levy Co.                                  | Lead      | 1406                |
| 113    | 0       | Edward C. Levy Co.                                  | Zinc      | 5729                |
| 116    | 0       | Edward C. Levy Co.                                  | Cadmium   | 24.4                |
| 116    | 0       | Edward C. Levy Co.                                  | Copper    | 820                 |
| 116    | 0       | Edward C. Levy Co.                                  | Lead      | 44.3                |
| 116    | 0       | Edward C. Levy Co.                                  | Mercury   | 1.707               |
| 116    | 0       | Edward C. Levy Co.                                  | Zinc      | 4028                |
| 126    | 0       | Lafarge North America Inc./Maryland Slag<br>Company | Zinc      | 11250               |
| 151    | 0       | Doe Run Resources Corp.                             | Arsenic   | 71.8                |
| 151    | 0       | Doe Run Resources Corp.                             | Cadmium   | 284                 |
| 151    | 0       | Doe Run Resources Corp.                             | Copper    | 5.63                |
| 151    | 0       | Doe Run Resources Corp.                             | Lead      | 250                 |
| 151    | 0       | Doe Run Resources Corp.                             | Silver    | 76.1                |
| 151    | 0       | Doe Run Resources Corp.                             | Zinc      | 797                 |
| 181    | 0       | Erachem Comilog Inc.                                | Manganese | 2837                |
| 182    | 0       | Erachem Comilog Inc.                                | Copper    | 2.43                |
| 182    | 0       | Erachem Comilog Inc.                                | Nickel    | 2.4007              |
| 184    | 0       | Felman Production Inc.                              | Manganese | 845                 |
| 184    | 0       | Felman Production Inc.                              | Zinc      | 1579                |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Arsenic   | 33.5                |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Cadmium   | 0.29                |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Copper    | 26.4                |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Fluoride  | 51518               |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Lead      | 35.1                |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Lead      | 474                 |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Nickel    | 52.04               |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Zinc      | 94.05               |
| 201    | 0       | Agrifos Fertilizer Pasadena                         | Zinc      | 606                 |

| Fac ID | Mine ID | Mine Name                                | Pollutant | Release<br>(pounds) |
|--------|---------|------------------------------------------|-----------|---------------------|
| 204    | 0       | Mississippi Phosphates Corp.             | Fluoride  | 40108               |
| 205    | 0       | Mosaic Fertilizer, LLC - Taft Plant      | Copper    | 613                 |
| 205    | 0       | Mosaic Fertilizer, LLC - Taft Plant      | Nickel    | 735                 |
| 206    | 0       | Mosaic Fertilizer, LLC - Uncle Sam Plant | Fluoride  | 27739729            |
| 210    | 118     | PCS Phosphate White Springs              | Fluoride  | 2655                |
| 221    | 0       | W.R. Grace & Co Conn. Davison Catalysts  | Copper    | 130                 |
| 221    | 0       | W.R. Grace & Co Conn. Davison Catalysts  | Mercury   | 1.37                |
| 231    | 0       | Globe Metallurgical                      | Chromium  | 0.98                |
| 231    | 0       | Globe Metallurgical                      | Copper    | 7.22                |
| 231    | 0       | Globe Metallurgical                      | Zinc      | 74.6                |
| 243    | 0       | ATI Alldyne                              | Copper    | 15.1                |
| 243    | 0       | ATI Alldyne                              | Nickel    | 363                 |
| 243    | 0       | ATI Alldyne                              | Zinc      | 113                 |
| 249    | 0       | Palmetto Vermiculite Co., Inc.           | Zinc      | 29.1                |
| 265    | 0       | Maintenance and Supply                   | Zinc      | 583                 |
| 267    | 0       | Plasminco (probably should be Pasminco)  | Cadmium   | 0.22                |
| 267    | 0       | Plasminco (probably should be Pasminco)  | Copper    | 7.0702              |
| 267    | 0       | Plasminco (probably should be Pasminco)  | Lead      | 2.016               |
| 267    | 0       | Plasminco (probably should be Pasminco)  | Mercury   | 0.0201              |
| 267    | 0       | Plasminco (probably should be Pasminco)  | Zinc      | 44.3                |
| 268    | 0       | ATI Wah Chang                            | Fluoride  | 2407                |
| 268    | 0       | ATI Wah Chang                            | Nickel    | 481                 |
| Fac ID | Mine ID | Mine Name                                    | Pollutant  | Released<br>(pounds) |
|--------|---------|----------------------------------------------|------------|----------------------|
| 0      | 81      | Mineral Park Inc                             | Ammonia    | 9322                 |
| 0      | 93      | Saint-Gobain Proppants                       | Ammonia    | 38.01                |
| 0      | 163     | Golden Sunlight Mine Inc                     | Phosphorus | 123                  |
| 0      | 163     | Golden Sunlight Mine Inc                     | Phosphorus | 185                  |
| 0      | 164     | STILLWATER MINE                              | Ammonia    | 419                  |
| 0      | 164     | STILLWATER MINE                              | Phosphorus | 17.5                 |
| 0      | 190     | TWIN CREEKS MINE                             | Ammonia    | 242                  |
| 0      | 190     | TWIN CREEKS MINE                             | Phosphorus | 120                  |
| 0      | 240     | THE WHARF MINE                               | Ammonia    | 242                  |
| 0      | 240     | THE WHARF MINE                               | Phosphorus | 523                  |
| 0      | 267     | Pend Oreille Mine                            | Ammonia    | 7147                 |
| 0      | 291     | Red Dog                                      | Ammonia    | 1033                 |
| 0      | 311     | Stratcor, Inc.                               | Ammonia    | 246375               |
| 0      | 311     | Stratcor, Inc.                               | Phosphorus | 6335                 |
| 210    | 118     | Swift Creek Mine                             | Ammonia    | 4719                 |
| 11     | 0       | CENTURY ALUMINUM OF KENTUCKY                 | Cyanide    | 157                  |
| 13     | 0       | EASTALCO ALUMINUM COMPANY                    | Cyanide    | 1.808                |
| 26     | 0       | Halliburton Energy Services                  | Ammonia    | 41.2                 |
| 35     | 0       | Corpus Christi Grinding Plant                | Ammonia    | 1609                 |
| 48     | 0       | ALCOA WORLD ALUMINA ATLANTIC                 | Cyanide    | 0.00077              |
| 50     | 0       | Brush Wellman Inc                            | Ammonia    | 2879                 |
| 50     | 0       | Brush Wellman Inc                            | Phosphorus | 272                  |
| 56     | 0       | Chemtura                                     | Ammonia    | 50.6                 |
| 62     | 0       | Global Tungsten & Powders Corp.              | Ammonia    | 170998               |
| 62     | 0       | Global Tungsten & Powders Corp.              | Phosphorus | 2028                 |
| 68     | 0       | KENNECOTT CORP-SMELTER & REFINERY            | Cyanide    | 69.4                 |
| 93     | 0       | AK Ashland                                   | Ammonia    | 14258                |
| 93     | 0       | AK Ashland                                   | Ammonia    | 23152                |
| 93     | 0       | AK Ashland                                   | Cyanide    | 63.9                 |
| 93     | 0       | AK Ashland                                   | Cyanide    | 672                  |
| 94     | 0       | AK Middletown Works                          | Ammonia    | 2117                 |
| 103    | 0       | Severstal Warren                             | Ammonia    | 15020                |
| 105    | 0       | US Steel Birmingham (Fairfield)              | Ammonia    | 8525                 |
| 105    | 0       | US Steel Birmingham (Fairfield)              | Cyanide    | 2.73                 |
| 105    | 0       | US Steel Birmingham (Fairfield)              | Cyanide    | 40.5                 |
| 107    | 0       | US Steel Gary Works                          | Ammonia    | 4072                 |
| 107    | 0       | US Steel Gary Works                          | Ammonia    | 49848                |
| 108    | 0       | US Steel Granite City                        | Ammonia    | 49286                |
| 108    | 0       | US Steel Granite City                        | Cyanide    | 449                  |
| 109    | 0       | US Steel Great Lakes Works                   | Phosphorus | 215                  |
| 112    | 0       | Beemsterboer Slag Corp.                      | Ammonia    | 14.9                 |
| 113    | 0       | Edward C. Levy Co.                           | Cyanide    | 571                  |
| 116    | 0       | Edward C. Levy Co.                           | Ammonia    | 4625                 |
| 126    | 0       | Lafarge North America Inc./Maryland Slag Co. | Ammonia    | 151159               |
| 126    | 0       | Lafarge North America Inc./Maryland Slag Co. | Phosphorus | 30839                |

# Table F4-2. Summary of Collected DMR Phosphorus, Ammonia, and Cyanide Data by 2009 Current Site and by CERCLA Hazardous Substance

| Fac ID | Mine ID | Mine Name                                | Pollutant  | Released<br>(pounds) |
|--------|---------|------------------------------------------|------------|----------------------|
| 145    | 0       | Quality Magnetite LLC                    | Ammonia    | 64.3                 |
| 181    | 0       | Erachem Comilog Inc.                     | Ammonia    | 81.9                 |
| 182    | 0       | Erachem Comilog Inc.                     | Ammonia    | 380                  |
| 182    | 0       | Erachem Comilog Inc.                     | Phosphorus | 11.3                 |
| 184    | 0       | Felman Production Inc.                   | Ammonia    | 7652                 |
| 184    | 0       | Felman Production Inc.                   | Phosphorus | 557                  |
| 185    | 0       | Tronox LLC                               | Ammonia    | 17.1                 |
| 185    | 0       | Tronox LLC                               | Phosphorus | 2.37                 |
| 201    | 0       | Agrifos Fertilizer Pasadena              | Ammonia    | 5928                 |
| 201    | 0       | Agrifos Fertilizer Pasadena              | Ammonia    | 26356                |
| 201    | 0       | Agrifos Fertilizer Pasadena              | Phosphorus | 65769                |
| 204    | 0       | Mississippi Phosphates Corp.             | Ammonia    | 30888                |
| 204    | 0       | Mississippi Phosphates Corp.             | Phosphorus | 205278               |
| 205    | 0       | Mosaic Fertilizer, LLC - Taft Plant      | Ammonia    | 12841                |
| 205    | 0       | Mosaic Fertilizer, LLC - Taft Plant      | Phosphorus | 5751                 |
| 205    | 0       | Mosaic Fertilizer, LLC - Taft Plant      | Phosphorus | 384345               |
| 206    | 0       | Mosaic Fertilizer, LLC - Uncle Sam Plant | Phosphorus | 1374931              |
| 208    | 0       | PCS NITR FERT                            | Phosphorus | 3955                 |
| 210    | 118     | PCS Phosphate White Springs              | Ammonia    | 4719                 |
| 221    | 0       | W.R. Grace & Co Conn. Davison Catalysts  | Ammonia    | 283721               |
| 243    | 0       | ATI Alldyne                              | Ammonia    | 380                  |
| 249    | 0       | Palmetto Vermiculite Co., Inc.           | Ammonia    | 649                  |
| 249    | 0       | Palmetto Vermiculite Co., Inc.           | Phosphorus | 85.9                 |
| 268    | 0       | ATI Wah Chang                            | Ammonia    | 107888               |

### Appendix G Potential for Human Drinking Water Exposures from 2009 Current Sites

For security reasons data on the locations of drinking water intakes are not publically available. However, source protection areas (SPAs) can be used to estimate potential impacts of mining and mineral processing CERCLA hazardous substance releases on drinking water supplies. SPAs encompass areas around drinking water intakes and are used to approximate locations of intakes without specifying their precise locations. In this report, surface drinking water intake locations are represented by SPA polygons rather than as individual, explicit points. SPAs are separated into those around surface water intakes (i.e., on lakes and streams) and those around ground water intakes (i.e., wells). EPA analyzed the locations of drinking water and ground water SPAs to estimate the 2009 Current sites' potential to impact drinking water supplies. To do this EPA estimated a 24-hour downstream travel distance from each 2009 Current site, and the 12-digit watershed boundary dataset hydrologic unit codes (National Geospatial Management Center, *12-Digit HUC Subwatershed Lists<sup>1</sup>*) for watershed areas encompassed by the estimated 24-hour downstream travel distance. The *Drinking Water HUC 12-Based Indicators* database maintained by EPA Office of Ground Water and Drinking Water was the source for the SPA data.

Of the 2009 Current sites with verifiable locations, 208 have surface drinking water SPAs that intersect with their estimated 24-hour downstream travel distance. **Figures G-1** and **G-2** show the geographic distribution of the sites where surface drinking water supplies might be affected by hazardous substance releases from 2009 Current mining and mineral processing sites, respectively.

A small number of the 2009 Current sites (3%) have tribal drinking water SPAs intersecting with their estimated 24-hour downstream travel distance. (Tribal drinking water SPAs are not included within the other surface water and groundwater drinking water SPA data, but are identified as a separate category within the database that contains the SPA information.)

Groundwater SPAs are areas that protect drinking water wells. In some instances, the aquifer from which a drinking water well is supplied is located near a surface water body (and may be recharged by the surface water body). In these instances, discharges from 2009 Current sites into surface water could affect the aquifers from which the drinking water wells draw their water. Of the 2009 Current sites with verifiable locations, 295 (71%) have groundwater drinking water SPAs that intersect with their 24-hour estimated downstream travel distance. Of these, 149 are associated with mines, 160 are associated with processors, and 16 are associated with sites containing combined mines and processors. **Figures G-3** and **G-4** show the geographic distribution of the sites where groundwater drinking water supplies might be impacted by CERCLA hazardous substance releases from 2009 Current mines, and 2009 Current processors, respectively.

<sup>&</sup>lt;sup>1</sup> Available at <u>http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/home/?&cid=nrcsdev11\_024117</u>.



Figure G-1. 2009 Current Mines with Surface Drinking Water SPAs within 24 Hours Downstream



Figure G-2. 2009 Current Processors with Surface Drinking Water SPAs within 24 Hours Downstream



Figure G-3. 2009 Current Mines with Ground Water SPAs within 24 Hours Downstream



Figure G-4. 2009 Current Processors with Groundwater SPAs within 24 Hours Downstream

### Appendix H Presence of Ecological Receptors near Case Study Historical and 2009 Current Sites

EPA studied the potential presence of ecological receptors near the Case Study Historical sites and 2009 Current sites. For the Case Study Historical sites, EPA evaluated the site's proximity to "sensitive environments," including critical habitat for federally designated threatened or endangered species (U.S. EPA 1989b).

This study used the 12-digit Hydrologic Unit Code (HUC12) polygon within which each site exists as the starting point to determine watershed catchments that are within 24-hours downstream of the HUC12. All individual catchments within the HUC12s were used as initial starting points and the total set of resulting catchments was established as the Aquatic Area of Review (AqAoR) for each site. **Figure H-1** provides an example of an Aquatic Area of Review (AqAoR) developed for this analysis. The AqAoR, in summary, encompasses the HUC12, and sometimes more than one HUC12 if the site has drainage into multiple HUC12 subbasins, as well as downstream catchments within an estimated 24-hour travel distance from the site. EPA then performed a geographic information system analysis of the AqAoR for each site, together with other data layers, to determine which sites have AqAoRs that intersect with habitat for various potential receptors such as threatened and endangered species, wild and scenic rivers, communities or populations of aquatic organisms, etc.



Figure H-1. Example Aquatic Area of Review Showing Portions with Significant Aquatic Beneficial Uses

# H.1 Case Study Historical Sites

**Figure H-2** relates the sources, pathways, exposure routes, and ecological receptors (e.g., red-tailed hawk, raccoon) considered in Superfund risk assessments of the Case Study Historical sites.

Ecological receptors at the Case Study Historical sites included species identified as federally designated threatened or endangered species at the time the site was investigated, as well as state-designated threatened or endangered, and federal and/or state-designated species of concern. The identified federally designated endangered species included birds (e.g., Bald Eagle), mammals (e.g., Gray Wolf), and one reptile species (i.e., Bog turtles). The identified federally designated threatened species included birds (e.g., Upland Sandpiper), fish (e.g., Bull Trout), mammals (e.g., Lynx), and plants (e.g., Ute Ladies'-Tresses). **Attachment H1** shows the federally listed threatened/endangered species identified in Case Study Historical site documents; the species' status listed in the table reflects what their status was at the time the site documents were prepared and not necessarily their status at the time of this evaluation.

| CONTAMINANT RELEASE EXPOSURE PATHWAYS WILDLIFE RECEPTORS                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adit Drainage<br>Adits<br>Airborne Emissions<br>ARD<br>Calcine Leachate<br>Residue<br>Calcium Silicate<br>Slag Piles<br>Coke Dust Slurry<br>Coke Stockpiles<br>Condenser Waste<br>Cryolite Disposal<br>Debris<br>Exposed Mineralized<br>Bedrock<br>Fuel/Oil<br>Fugitive Dust<br>Leachate<br>Manual/Aerial<br>Deposition<br>Mine Waste<br>Municipal Waste<br>Nodule Stockpiles<br>Non-Contacting Cool<br>Water Effluent | CES<br>Ore Stockpiles<br>Overburden<br>Phossy Water<br>Potliners<br>Process Residues<br>Process Residues<br>Process Stacks<br>Air Emissions<br>Quartzite Dust<br>Slury<br>Run-off<br>Slag<br>Slag Piles<br>Sludge<br>Spent Mineral<br>Waste<br>Spent Ore<br>Tailings<br>Treater Dust<br>Stock Piles<br>Underflow Solids<br>Piles<br>Vat Leachate<br>Tailings<br>Waste Drums<br>Waste Drums<br>Waste Drums<br>Waste Rock<br>Waste Water Drainage | EXPOSURE PATHWAYS<br>Groundwater<br>Sediment<br>Soil<br>Subsurface Soil<br>Surface Soil<br>Surface water<br>Water<br>COMPARTMENTS<br>Aquatic Invertebrates<br>Aquatic Invertebrates<br>Benthic Invertebrates<br>Birds<br>Fish<br>Mammals<br>Plants<br>Terrestrial Invertebrates<br>Terrestrial Plants<br>Plants<br>Soil Invertebrates | ROUTES<br>Dermal Contact<br>Ingestion<br>Inhalation<br>Combined Routes | Birds         American Dipper         American Robbin         Barn Owl         Belted Kingfisher         Bobwhite Quail         Carnivorous Birds         Cliff Swallow         Great blue heron         Horned Lark         King Fisher         Mallard         Mammals         Carnivorous Mammals         Coyote         Deer         Deer Mouse         Field Mice         Herbivorous Mammals         Long-tailed Weasel         Masked Shrew         Meadow Vole         Other-Terrestrial         Benthic Invertebrates         Benthic Corganisms         Deepwater Habitats         Fish | Migratory Birds<br>Mountain Chickadee<br>Northern Harrier<br>Omnivorous Birds<br>Pine Grosbeak<br>Red-tailed Hawk<br>Sage Grouse<br>song sparrow<br>spotted sandpiper<br>Waterfowl<br>Woodcock<br>Mink<br>Montane Vole<br>Omnivorous Mammals<br>Piscivorous Mammals<br>Piscivorous Mammals<br>Piscivorous Mammals<br>Rabbits<br>Rabbits<br>Raccoon<br>Red Fox<br>Small mammals<br>Soil Invertebrate-<br>feeding Mammals<br>White-tailed Deer<br><b>Other-Aquatic</b><br>Sagebrush<br>Soil Invertebrates<br>Terrestrial Invertebrates<br>Terrestrial Invertebrates<br>Terrestrial Invertebrates<br>Terrestrial Plant<br>Community |  |
| * This graphic contain:<br>** Receptors are cons                                                                                                                                                                                                                                                                                                                                                                       | s exposures of Ecolo<br>idered current unless                                                                                                                                                                                                                                                                                                                                                                                                   | gical receptors for both NPL and R<br>otherwise stated.                                                                                                                                                                                                                                                                               | emoval case study sties.                                               | Future-Nutation Invertebrates<br>Periphyton Community<br>Predatory Fish<br>Rainbow Trout<br><b>Other-Generic</b><br>Amphibians<br>Future-Wildlife                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pets<br>Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

#### Figure H-2. Exposures of Current and Future Ecological Receptors for Case Study Historical Sites

For the nine Case Study Historical sites that had natural resource damage assessments performed as part of CERCLA natural resource damage cases that resulted in finalized

settlements as of 2013, there were various types of ecological receptors and natural resource injuries. **Attachment H2** indicates the specific injuries.

## H.2 2009 Current Sites

To understand the relationship between the locations of 2009 Current sites and sensitive environmental areas, EPA analyzed the 2009 Current sites' proximity to various kinds of sensitive environments. These data are in the form of GIS layers and were used to assess the spatial relationships (proximity and overlap) between the 2009 Current sites and potentially sensitive environmental areas. Descriptions of the data used in identifying potential ecological receptors are presented below, as well as in **Appendix E**:

- Major Dams: This geospatial datalayer from the USGS National Atlas portrays major dams of the United States, including Puerto Rico and the U.S. Virgin Islands. The map layer was created by extracting dams 50 feet or more in height, or with a normal storage capacity of 5,000 acre-feet or more, or with a maximum storage capacity of 25,000 acrefeet or more, from the 79,777 dams in the U.S. Army Corps of Engineers National Inventory of Dams. Descriptive information includes the dam name and location, the risk level associated with the dam, the purposes (beneficial uses) for which the dam was constructed. Purpose codes include the following "beneficial uses" which will correlate with Clean Water Act Water Quality Standards designated uses: 'F' Fish and Wildlife; 'R' Recreation; and 'S' Water Supply. Data are available from https://www2.usgs.gov/science/cite-view.php?cite=244
- 2. Federal Lands of the United States: a publicly available GIS layer providing polygons for various federally-owned and managed public lands. These lands include National Parks, National Forests, and National Wildlife Refuges. This layer is included in the EPA Office of Water's Reach Address Database ancillary National Atlas GIS layers. Data are available from
  https://www.eresis.com/heres/item.html?id.262228604546482066977688466021

https://www.arcgis.com/home/item.html?id=26c2a38f94c54ad880ff877f884ff931.

- **3.** Indian/Tribal Lands for Native American Groups: From the USGS National Atlas layer on Indian (Tribal) Lands. Suggests areas where habitat may be relied upon for tribal lifeways.
- 4. Critical Habitat Polygons: These data identify, in general, the areas where final critical habitat exist for species listed as endangered or threatened. Data are available from <a href="https://www.fws.gov/gis/data/national/index.html">https://www.fws.gov/gis/data/national/index.html</a>
- 5. **Marine Sanctuaries:** The National Marine Sanctuary Program manages a system of sanctuaries and other managed areas around the country. The legal boundaries of these sanctuaries are defined within the Code of Federal Regulations, at 15 C.F.R. Part 922 and the subparts for each national marine sanctuary. The GIS compatible digital boundary files for each national marine sanctuary are representations of those legal boundaries and are based on the best available data. Data are available from <a href="http://sanctuaries.noaa.gov/library/imast\_gis.html">http://sanctuaries.noaa.gov/library/imast\_gis.html</a>

- 6. **Coastal Barrier Resources System:** This data set contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act, as amended. This boundary data set was digitized between 04/01/2007 and 04/01/2010 from the official John H. Chafee Coastal Barrier Resources System (CBRS) maps enacted by law. This data set complies with the National Spatial Data Infrastructure (NSDI) and other standards established by the Federal Geographic Data Committee (FGDC). The U.S. Fish and Wildlife Service (FWS) endorses this data set as having been compiled to meet forty feet horizontal accuracy at the ninety-five percent confidence level relative to the boundaries shown on the official CBRS maps. However, these digital boundaries are only representations of the official CBRS boundaries and are not to be considered authoritative.
- 7. **Fish and Wildlife Service (FWS) Areas:** There are three individual datasets that comprise the designated Fish and Wildlife Service Areas (FWS Approved areas, FWS Interest areas and FWS Special Designation areas). Some examples of lands that fall under these three FWS Areas designations include National Wildlife Refuges, National Fish Hatcheries, Wildlife Management Areas and Waterfowl Production Areas. A brief description of the information included in each of these datasets is included here:
  - FWS Approved: This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North America, U.S. Trust Territories and Possessions. The primary source for this information is the USFWS Realty program.
  - Interest: This data layer depicts lands and waters administered by the U.S. Fish and Wildlife Service (USFWS) in North America, U.S. Trust Territories and Possessions. It may also include inholdings that are not administered by USFWS.
  - Special Designation This data layer depicts the Special Designations that have been placed upon the lands and waters administered by the U.S. Fish and Wildlife Service (USFWS) in North America, U.S. Trust Territories and Possessions. These special areas, such as wilderness, are primarily designated by the U.S. Congress.
- Protected Areas Database of the United States (version 1): The Protected Areas Database of the United States (PAD-US) is a digital map of steward boundaries that combines attributes of ownership, management, and a measure of intent to manage for biodiversity. The map includes (1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); (2) Combination of land owner/ manager, management designation descriptor, parcel name, and source of geographic information of each mapped land unit; (3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which are intended to provide a measurement of management plans or land manager interviews; (4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and

cultural values" and are categorized following a classification scheme available through USGS GAP.

Table H-1 lists the potentially sensitive environments and how many sites are near them.

| Туре                                           | Count of Sites | Percent of<br>All Sites | Total Sites |
|------------------------------------------------|----------------|-------------------------|-------------|
| Major Dams of the United States                | 153            | 37                      | 417         |
| Federal Lands of the United States             | 230            | 55                      | 417         |
| FEMA Q3 Special Flood Hazard Areas             | 236            | 57%                     | 417         |
| Indian/Tribal Lands for Native American Groups | 38             | 9%                      | 417         |
| RCRA large Quantity Generator Facilities       | 177            | 42%                     | 417         |
| NPDES Major Permitted Facilities               | 204            | 49%                     | 417         |
| Clean Water Act Section 303(d) Impaired Waters | 133            | 32%                     | 417         |
| National Wild and Scenic Rivers System         | 19             | 5%                      | 417         |
| Coastal Barrier Resources System               | 1              | <1%                     | 417         |
| Critical Habitat boundaries                    | 24             | 6%                      | 417         |
| Fish and Wildlife Service (FWS) Approved Areas | 32             | 8%                      | 417         |
| FWS Interest Areas                             | 13             | 3.%                     | 417         |
| FWS Special Designation Areas                  | 0              | <1%                     | 417         |
| Protected Areas Database                       | 294            | 70%                     | 417         |

 Table H-1. Potential Sensitive Environments

The AqAoRs of 19 sites overlap with a Wild and Scenic River polygon where releases to the aquatic environment might cause an impact to these downstream important habitat areas; see **Figures H-2** (mines and processors. Sites where there is critical habitat for federally listed threatened or endangered species within a radial distance of 3 miles, around the site point locations are shown in **Figures H-3** (mines) and **H-4** (processors). A listing of the threatened and endangered species located within a radial distance of 3 miles, 6 miles, and 10 miles of the mines and processors is presented in **Attachment H3**.



Figure H-2. 2009 Current Sites with Wild and Scenic Rivers within 24 Hours Downstream



Figure H-3. 2009 Current Mine Sites Within 3 Miles of Critical Habitat for Federally Listed Threatened or Endangered Species



Figure H-4. 2009 Current Processor Sites within 3 Miles of Critical Habitat for Federally Listed Threatened or Endangered Species

### H3. References

- National Oceanic and Atmospheric Administration *et al.* 2006. *FINAL Damage Assessment and Restoration Plan/Environmental Assessment for the DuPont Newport Superfund Site, Newport, Delaware.* National Oceanic and Atmospheric Administration/Delaware Department of Natural Resources and Environmental Control/The United States Fish and Wildlife Service on behalf of the U.S. Department of the Interior.
- New Mexico Office of the Natural Resources Trustee *et al.*1996. *Final Natural Resource Restoration Plan for the Cleveland Mill Site, Grant County, New Mexico*. New Mexico Office of the Natural Resources Trustee/U.S. Department of Interior Fish and Wildlife Service/U.S. Department of Interior Bureau of Land Management/U.S. Department of Agriculture Forest Service.
- Texas Natural Resource Conservation Commission. 2001. *Restoration Plan and Environmental Assessment for the Tex Tin Corporation Superfund Site Texas City, Galveston County, Texas.* Texas Natural Resource Conservation Commission/Texas General Land Office/Texas Parks and Wildlife Department/U.S. Department of Commerce National Oceanic and Atmospheric Administration/U.S. Department of the Interior Fish and Wildlife Service.
- Trustees of the Palmerton Zinc Pile Superfund Site. 2011. *Palmerton Zinc Pile Superfund Site Natural Resource Damage Assessment Final Restoration Plan and Environmental Assessment*. Trustees of the Palmerton Zinc Pile Superfund Site: U.S. Department of the Interior Fish and Wildlife Service/U.S. Department of the Interior National Park Service/U.S. Department of Commerce

National Oceanic and Atmospheric Administration/Pennsylvania Department of Conservation and Natural Resources/Pennsylvania Department of Environmental Protection/Pennsylvania Fish and Boat Commission/Pennsylvania Game Commission. March 31.

- U.S. Department of Commerce. 2013. *Remedial/Injury Assessment Case: Macalloy, SC.* U.S. Department of Commerce National Oceanic and Atmospheric Administration website http://www.darrp.noaa.gov/southeast/macalloy/injury.html accessed November 7, 2013.
- U.S. Department of Interior. 2009. *Trustee Resolution and Phase 1 Restoration Plan to Compensate for Past Lost Use of Groundwater Natural Resource*. United States of America and Tohono O'odham Nation v. Cyprus Tohono Corporation.
- U.S. Department of Interior. 2012. Fact Sheet *Draft Wetland Restoration Plan/Environmental Assessment*. U.S. Fish and Wildlife Service, U.S. Department of Interior.
- U.S. Department of Interior *et al.* 2007. *Coeur d'Alene Basin Final Interim Restoration Plan and Environmental Assessment*. U.S. Department of the Interior, Fish and Wildlife Service/U.S. Department of the Interior, Bureau of Land Management/U.S. Department of Agriculture, Forest Service/Coeur d'Alene Indian Tribe.
- U.S. District Court District of Idaho, 1995. *Consolidated Case No.* 83-4179(*R*), *Consent Decree dated September 1, 1995, Appendix B Blackbird Mine Biological Restoration and Compensation Plan.*
- U.S. EPA (Environmental Protection Agency). 1989. CERCLA Compliance with Other Laws Manual, Part II. Clean Air Act and Other Environmental Statutes and State Requirements. EPA 540/G-89/009. U.S. Environmental Protection Agency, Washington, DC. August.
- U.S. EPA (Environmental Protection Agency). 1989. *Record of Decision: East Helena Smelter Site, Process Ponds Operable Unit, East Helena, Montana.* U.S. Environmental Protection Agency, Region 8, Helena, MT. November.
- U.S. EPA (Environmental Protection Agency). 1990. Volume 2: Comprehensive Remedial Investigation/Feasibility Study – ASARCO, Inc., East Helena, Montana. Prepared by Hydrometrics, Inc., Helena, MT, for U.S. Environmental Protection Agency, Region 8, Helena, MT. March 30.
- U.S. EPA (Environmental Protection Agency). 1994. EPA Superfund Record of Decision: Ormet Corp., EPA ID: OHD004379970, OU 01, Hannibal, OH, 09/12/1994. EPA/ROD/R05-94/259. U.S. Environmental Protection Agency, Region 5, Chicago, IL. September 12.
- U.S. EPA (Environmental Protection Agency). 1995. *Ecological Risk Assessment, Eastern Michaud Flats, Pocatello, Idaho*. Prepared by Ecology and Environment, Inc., Lancaster, NY, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. July.
- U.S. EPA (Environmental Protection Agency). 1995. *Revised Final Baseline Risk Assessment Part A and B for Stauffer Chemical Company, Tarpon Springs, Florida*. Prepared by Black & Veatch Waste Science, Inc., Atlanta, GA, for U.S. Environmental Protection Agency, Region 4, Waste Management Division, Atlanta, GA. July 21.
- U.S. EPA (Environmental Protection Agency). 1997. *Record of Decision, Monsanto Chemical Company Superfund Site, Caribou County, Idaho.* U.S. Environmental Protection Agency Region 10, Seattle, WA. April.

- U.S. EPA (Environmental Protection Agency). 1998. Li Tungsten, Glen Cove, New York, Draft Final Remedial Investigation (Rl) Report, Volume II of IV (Tables, Figures, Plates). U.S. Environmental Protection Agency, Region 2, New York, NY. May.
- U.S. EPA (Environmental Protection Agency). 1998. Record of Decision: Declaration, Decision Summary, and Responsiveness Summary for Eastern Michaud Flats Superfund Site, Pocatello, Idaho. U.S. Environmental Protection Agency, Region 10, Seattle, WA. June.
- U.S. EPA (Environmental Protection Agency). 1999. Record of Decision: Li Tungsten Corporation Superfund Site, EPA ID: NYD986882660, OU 01, 02, Glen Cove, Nassau County, New York. EPA/ROD/R02-99/158. U.S. Environmental Protection Agency, Region 2, New York, NY. September 30.
- U.S. EPA (Environmental Protection Agency). 2000. *EPA Superfund Record of Decision: National Southwire Aluminum Co. EPA ID: KYD049062375 OU 00 Hawesville, KY 07/06/2000.* EPA/ROD/R04-00/079. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. July.
- U.S. EPA (Environmental Protection Agency). 2001. Early Action Interim Record of Decision, OU2 Water Treatment Operations, Gilt Edge Mine NPL Site, Lawrence County, South Dakota. EPA/ROD/R08-01/611. U.S. Environmental Protection Agency, Denver, CO. April 23.
- U.S. EPA (Environmental Protection Agency). 2001. *Final Ecological Risk Assessment, Volume 1, Coeur d'Alene Basin Remedial Investigation/Feasibility Study.* Prepared by CH2M HILL, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. May 18.
- U.S. EPA (Environmental Protection Agency). 2002. EPA Superfund Record of Decision: Bunker Hill Mining & Metallurgical Complex EPA ID: IDD048340921 OU 3 Smelterville, ID. EPA/ROD/R10-02/032. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 12.
- U.S. EPA (Environmental Protection Agency). 2002. Superfund Record of Decision: Macalloy Corporation, EPA ID: SCD003360476, OU 01, North Charleston, SC, 8/21/2002. EPA/ROD/R04-02/084. U.S. Environmental Protection Agency, Region 4, Atlanta, GA. August 21.
- U.S. EPA (Environmental Protection Agency). 2004. EPA Superfund Record of Decision: Omaha Lead Site, EPA ID: NESFN0703481, OU 01, Omaha, NE, 12/15/2004. EPA/ROD/R07-05/053. U.S. Environmental Protection Agency, Region 7, Kansas City, KS. December 15.
- U.S. EPA (Environmental Protection Agency). 2005. *Final Remedial Investigation Report for Midnite Mine Stevens County, Washington*. Prepared by URS Corporation, Seattle, WA, for U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 30.
- U.S. EPA (Environmental Protection Agency). 2006. *Reynolds Metals Company Superfund Site, Troutdale, Oregon, Record of Decision for Final Remedial Action*. U.S. Environmental Protection Agency, Region 10, Seattle, WA. September 29.
- U.S. EPA (Environmental Protection Agency). 2009. *Omaha Lead Site, Operable Unit 02, Final Record of Decision*. U.S. Environmental Protection Agency, Region 7, Kansas City, KS. May 13.

US EPA & Montana DEQ. 1998. U.S. Environmental Protection Agency and Montana Department of Environmental Quality. *EPA Superfund Record of Decision: Anaconda Regional Water, Waste, and Soils Operable Unit, Anaconda Smelter NPL Site, Anaconda, MT.* U.S. Environmental Protection Agency, Region 8, Helena, MT, and Montana Department of Environmental Quality, Helena, MT. September.

# Attachment H1 Threatened and Endangered Species Within 3 miles of Case Study Historical Sites

| Species Common Name               | Federal Status                       | State Status       | Source<br>Documents |
|-----------------------------------|--------------------------------------|--------------------|---------------------|
| Anaconda Co. Smelter, MT, Regi    | on 10, MTD093291656                  |                    |                     |
| Birds                             |                                      |                    | ROD 1998 OU4        |
| Bald Eagle                        | Endangered                           |                    |                     |
| Peregrine Falcon                  | Endangered                           |                    |                     |
| Fish                              |                                      |                    |                     |
| Bull Trout                        | Threatened                           | Species of special |                     |
|                                   |                                      | concern            |                     |
| Mammals                           |                                      |                    |                     |
| Gray Wolf                         | Endangered                           |                    |                     |
| Bunker Hill Mining & Metallurgic  | al Complex, ID, Region 10, IDD0      | 48340921           |                     |
| Birds                             |                                      | r                  | Ecological Risk     |
| Bald eagle                        | Threatened                           |                    | Coeur d'Alene       |
| Upland sandpiper                  |                                      | S1B[1], SZ         | Basin RI/FS         |
| Fish                              | Γ                                    |                    | 2001; ROD 2002      |
| Bull trout                        | Threatened                           |                    | 000                 |
| Mammals                           |                                      | Γ                  |                     |
| Gray Wolf                         | Endangered                           |                    |                     |
| Lynx                              | Threatened                           |                    |                     |
| Merriam's shrew                   |                                      | S2[2]              |                     |
| Plants                            |                                      | ſ                  |                     |
| Ute ladies'tresses                | Threatened                           |                    |                     |
| Rush aster                        |                                      | S1                 |                     |
| Bourgeou's milkvetch              |                                      | S1                 |                     |
| Deer-fern                         |                                      | S1                 |                     |
| Hall's lungwort                   |                                      | S1                 |                     |
| Many-fruit false-loosestrife      |                                      | S1                 |                     |
| River bulrush                     |                                      |                    |                     |
| Tuckermann's ball-bearing lichen  |                                      |                    |                     |
| Taper grass; wild celery          |                                      |                    |                     |
| Captain Jack Mill, Ward, CO, Reg  | gion 8, COD981551427                 |                    |                     |
| No data                           |                                      |                    |                     |
| Cimarron Mining Corp., Carrizoz   | o,NM, Region 6, NMD980749378         |                    |                     |
| No endangered species or habitats | have been identified in the vicinity | y of the site      | RI/FS VOL.<br>1990  |
| Eagle Mine, Minturn/Redcliff, CO  | , Region 8, COD081961518             |                    |                     |
| No data                           |                                      |                    |                     |

| Species Common Name                                  | Federal Status                    | State Status          | Source<br>Documents                   |
|------------------------------------------------------|-----------------------------------|-----------------------|---------------------------------------|
| Eastern Michaud Flats Contamir                       | ation, Pocatello, ID, Region 10,  | IDD984666610          |                                       |
| Birds                                                |                                   |                       | ROD 1998;                             |
| Bald eagle                                           | Threatened                        |                       | Ecological Risk                       |
| Bald eagle (wintering population)                    | Endangered                        | Endangered            | 1995                                  |
| Peregrine falcons                                    | Endangered                        |                       |                                       |
| Trumpeter Swan                                       | Candidate species for listing     |                       |                                       |
| Black Tern                                           | Candidate species for listing     |                       |                                       |
| Townsend's western big eared bat                     |                                   |                       |                                       |
| Mammals                                              |                                   |                       |                                       |
| Wolverine                                            | Candidate species for listing     |                       |                                       |
| Pygmy rabbit                                         | Candidate species for listing     |                       |                                       |
| Plants                                               |                                   |                       |                                       |
| Ute Ladies-tresses                                   | Threatened                        |                       |                                       |
| Slick spot peppergrass                               | Candidate Species for listing     |                       |                                       |
| Birds                                                |                                   |                       | ROD 1990 OU                           |
| Bald Eagle                                           | Endangered                        |                       | 1;                                    |
| Peregrine falcons                                    | Endangered                        |                       | RI/FS Volume 2                        |
| Plants                                               |                                   | ·                     | 1990                                  |
| No endangered plants identified                      |                                   |                       |                                       |
| Foote Mineral Co., East Whitelar                     | d Township, PA, Region 3, PAD     | 077087989             |                                       |
| Reptiles                                             |                                   |                       | Phase II                              |
| Bog turtles                                          | Endangered                        | Endangered            | Ecological Risk<br>Assessment<br>2001 |
| Gilt Edge Mine, Lead, SD, Region                     | n 8, SDD987673985                 |                       |                                       |
| Birds                                                |                                   |                       | ROD 2001 OU 2                         |
| American dipper                                      |                                   | Species of concern    |                                       |
| Townsends big-eared bat                              |                                   | Species of concern    |                                       |
| Fish                                                 | •                                 | •                     |                                       |
| Long nose sucker                                     |                                   | Species of concern    |                                       |
| Mountain sucker                                      |                                   | Species of concern    |                                       |
| Longnose dace                                        |                                   | Species of concern    |                                       |
| Reptiles                                             | •                                 |                       |                                       |
| Red-belly snake                                      |                                   | Species of concern    |                                       |
| Homestake Mining Co., Milan, N                       | M, Region 6, NMD007860935         | •                     |                                       |
| No Data                                              |                                   |                       |                                       |
| Li Tungsten Corp., Glen Cove, N                      | Y, Region 2, NYD986882660         |                       |                                       |
| No threatened or endangered birds inhabit this area. | s, mammals, reptiles, amphibians, | fish or invertebrates | ROD 1998 OU-<br>1, OU-2               |
| Plants                                               |                                   |                       | Draft final RI                        |
| Orange fringed orchis                                |                                   | Threatened            | 1998 vol. 1                           |
| White milkweed                                       |                                   | Threatened            | 1                                     |

| Species Common Name                  | Federal Status                      | State Status             | Source<br>Documents       |
|--------------------------------------|-------------------------------------|--------------------------|---------------------------|
| Macalloy Corporation, North Cha      | rleston, SC, Region 4, SCD0033      | 60476                    |                           |
| No Endangered/threatened species     | s flagged in the area               |                          | Final RODs<br>August 2002 |
| Midnite Mine, Wellpinit, WA, Reg     | ion 10, WAD980978753                |                          |                           |
| Amphibians                           |                                     |                          | RI/FS 2005                |
| Northern leopard frog                |                                     | Endangered               |                           |
| Oregon spotted frog                  |                                     | Endangered               |                           |
| Birds                                |                                     |                          |                           |
| Bald eagles                          | Threatened                          |                          | ROD 2006                  |
| American white pelican               |                                     | Endangered               | RI/FS 2005                |
| Peregrine falcon                     |                                     | Endangered               |                           |
| Sandhill crane                       |                                     | Endangered               |                           |
| Upland sandpiper                     |                                     | Endangered               |                           |
| Fish                                 |                                     |                          | ROD 2006                  |
| Bull trout                           | Threatened                          |                          |                           |
| Mammals                              |                                     |                          |                           |
| Canada lynx                          | Threatened                          |                          | ROD 2006                  |
| Gray wolf                            | Endangered                          | Endangered               |                           |
| Grizzly bear                         | Threatened                          | Endangered               | RI/FS 2005                |
| Pygmy rabbit                         |                                     | Endangered               |                           |
| Woodland caribou                     |                                     | Endangered               |                           |
| Plants                               |                                     |                          |                           |
| Ute-ladies-tresses                   | Threatened                          |                          | ROD 2006                  |
| Other: 25 plants and animals         | Species of concern (U.S. FWS)       |                          | RI/FS 2005                |
| Monsanto Chemical Co. (Soda S        | prings Plant), Soda Springs, ID,    | Region 10, IDD08183099   | 4                         |
| Birds                                |                                     |                          |                           |
| Bald eagle                           | Endangered                          | Endangered               | ROD 1997                  |
| National Southwire Aluminum Co       | o., Hawesville, KY, Region 4, KY    | D049062375               |                           |
| No federal or state threatened or er | ndangered species                   |                          | ROD 2000                  |
| Bullhead Mussel                      | Species of concern                  |                          |                           |
| Orange-footed drive pearly mussel    | Species of concern                  |                          |                           |
| Omaha Lead, Omaha, NE, Regior        | n 7, NESFN0703481                   |                          |                           |
| No federal threatened and endange    | ROD 2005 OU-<br>1; ROD 2009<br>OU-2 |                          |                           |
| Ormet Corp., Hannibal, OH, Regi      | on 5, OHD004379970                  |                          |                           |
| Fish                                 |                                     |                          | ROD 1994 OU-              |
| Ohio Lamprey                         |                                     | Endangered               | 01                        |
| Channel Darter                       |                                     | Endangered               |                           |
| Ghost Shiner                         |                                     | Special interest species |                           |
| Palmerton Zinc Pile, Palmerton, I    | PA, Region 3, PAD002395887          |                          |                           |
| No Data                              |                                     |                          |                           |

| Species Common Name             | Federal Status                  | State Status                       | Source<br>Documents |
|---------------------------------|---------------------------------|------------------------------------|---------------------|
| Reynolds Metals Company, Trou   | Itdale, OR, Region 10, ORD0094  | 12677                              |                     |
| Amphibians                      |                                 |                                    | ROD 2006            |
| Northern red-legged frog        | Species of concern              | Sensitive<br>(undetermined status) |                     |
| Birds                           |                                 |                                    |                     |
| Bald eagle                      | Threatened                      | Threatened                         |                     |
| American peregrine falcon       | Endangered                      | Endangered                         |                     |
| Plants                          | •                               |                                    |                     |
| Columbia cress                  | Species of concern              | Sensitive<br>(undetermined)        |                     |
| Reptiles                        | I                               |                                    |                     |
| Northwestern pond turtle        | Species of concern              |                                    |                     |
| Silver Mountain Mine, Loomis, W | A, Region 10, WAD980722789      |                                    |                     |
| No Data                         |                                 |                                    |                     |
| Stauffer Chemical Co. (Tarpon S | prings), Tarpon Springs, FL, Re | gion 4, FLD010596013               | •                   |
| Birds <sup>[3]</sup>            |                                 |                                    | Baseline Risk       |
| Brown pelican                   |                                 |                                    | Assessment          |
| Reddish Egret                   |                                 |                                    | 1995                |
| Little blue heron               |                                 |                                    |                     |
| Peregrine falcon                |                                 |                                    |                     |
| American oystercatcher          |                                 |                                    |                     |
| Piping plover                   |                                 |                                    |                     |
| Snowy Plover                    |                                 |                                    |                     |
| Roseate Tern                    |                                 |                                    |                     |
| American Kestrel                |                                 |                                    |                     |
| Red-cocaded Woodpecker          |                                 |                                    |                     |
| Bald eagle                      |                                 |                                    |                     |
| Snowy                           |                                 |                                    |                     |
| Mammals <sup>[4]</sup>          | r                               | 1                                  |                     |
| Florida Black Bear              |                                 | Threatened                         |                     |
| Florida Panther                 |                                 | Endangered                         | -                   |
| Bobcats                         |                                 |                                    | -                   |
| Florida Mouse                   |                                 |                                    | -                   |
| Sherman's Fox Squirrel          |                                 |                                    | -                   |
| West Indian Manatee River Otter | Threatened                      | Threatened                         | -                   |
| Everglades Mink                 |                                 |                                    | -                   |
| Reptiles                        | I                               | I                                  |                     |
| Gopher Tortoise                 |                                 |                                    |                     |
| Short-tailed Snake              |                                 | Threatened                         |                     |
| Eastern indigo snake            |                                 |                                    |                     |
| Florida ribbon snake            |                                 |                                    |                     |

| Species Common Name                                   | Federal Status                                                  | State Status | Source<br>Documents |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------|--------------|---------------------|--|--|--|--|
| Summitville Mine, Rio Grande Co                       | Summitville Mine, Rio Grande County, CO, Region 8, COD983778432 |              |                     |  |  |  |  |
| Birds                                                 | Interim ROD                                                     |              |                     |  |  |  |  |
| Bald eagle                                            | Endangered                                                      |              | OU-4 1994           |  |  |  |  |
| Peregrine falcon                                      | Endangered                                                      |              |                     |  |  |  |  |
| Whooping crane                                        | Endangered                                                      | Endangered   |                     |  |  |  |  |
| Teledyne Wah Chang, Albany, Ol                        | R, Region 10, ORD050955848                                      |              |                     |  |  |  |  |
| No threatened or endangered plant                     | RI/FS 1992                                                      |              |                     |  |  |  |  |
| Tex-Tin Corp., Texas City, TX, Region 6, TXD062113329 |                                                                 |              |                     |  |  |  |  |
| No data                                               |                                                                 |              |                     |  |  |  |  |

# Attachment H2 Natural Resource Damages Found at Case Study Historical Sites

The following are Case Study Historical sites at which CERCLA natural resource trustees have claimed natural resource damages under CERCLA. The descriptions were developed based on case documents posted on the Interior Department's website at <u>https://www.cerc.usgs.gov/orda\_docs/</u> and on the Commerce Department's website at <u>http://www.gc.noaa.gov/natural-office1.html</u> as of Fall 2012. Additional natural resource damage sites were found via a search of the Westlaw® Federal Register database using the search terms 'QUERY - PR(JUSTICE) & "NATURAL RESOURCE DAMAGES" & MINE\* MINING & SETTLEMENT' or from documents in EPA's Superfund Enterprise Management System (SEMS) or other sources.

• Coeur D'Alene Bunker Hill Mining and Metallurgical Complex [EPA Site Name: BUNKER HILL MINING CO INC]

"widespread distribution of mining-related contamination throughout the Basin and resulting natural resource injuries"

SOURCE: U.S. Department of Interior et al. 2007.

• BLACKBIRD MINE [EPA Site Name: BLACKBIRD MINE]

Apparent degraded water quality and resulting habitat destruction for two threatened/endangered species, from mine drainage.

SOURCE: U.S. District Court District of Idaho Consolidated Case No. 83-4179(R). 1995.

#### • CLEVELAND MILL [EPA Site Name: CLEVELAND MILL]

"Natural resources for which the State of New Mexico, DOI, and USDA are trustee and which have been affected or potentially affected by releases of hazardous substances from the site include, but are not limited to, the following: wildlife including small mammals and big game species, birds, invertebrates, amphibians, and reptiles; state and federally-listed endangered and threatened species; vegetation including upland, riparian, and wetland vegetation; surface water including waters in Little Walnut Creek, the mill creek tributary to Little Walnut Creek, the creek near the Cleveland mine, the reservoir near the mill site, and sediments associated with these surface waters[;] ground water including the alluvial aquifer and bedrock aquifer; soils including lowland and floodplain soils, as well as upland areas affected by aerial deposition."

SOURCE: New Mexico Office of the Natural Resources Trustee et al. 1996.

#### • CYPRUS TOHONO MINE [EPA Site Name: CYPRUS TOHONO COPPER MINE]

"Groundwater injury includes, but is not limited to, impairment of the North Komelik community and residential water distribution system, resulting in contamination and loss of groundwater natural resource services" "... primary resources affected were wetland migratory birds...which died as a result of alleged exposure to hazardous substances and low pH levels in ponds on the mine site."

SOURCE: U.S. Department of Interior 2009; U.S. Department of Interior 2012.

#### • DUPONT NEWPORT [EPA Site Name: EI DUPONT DE NEMOURS & CO.]

"Several metals were historically used on-site in the manufacturing of pigments. Cadmium, lead, and zinc were found to be the most prevalent and the focus of post-ROD activities to delineate areas for sediment removal. The Trustees determined that these and others associated with the manufacturing activities might have potentially injured the trust natural resources at the DuPont Newport Superfund Site. These metals were found in the wetland and river sediments at or near the Site at elevated concentrations (i.e., exceeding ecological benchmark concentrations.)"

SOURCE: National Oceanic and Atmospheric Administration et al. 2006.

#### MACALLOY SITE [EPA Site Name: MACALLOY CORPORATION]

"Waste materials generated during ferrochromium alloy production (slag, ash, dust, sludge and wastewater) were stored on-site in landfills and storage piles. These wastes were contaminated with heavy metals such as chromium, lead, nickel and zinc. Surface water infiltrated through these waste materials into underlying soils and groundwater and/or flowed overland discharging to Shipyard Creek, a tidal creek flowing into the Cooper River, Charleston, SC....The trustees have determined that the following resources have potential natural resource injuries: Benthic resources and their habitat. Benthic species in Shipyard Creek and the Cooper River were likely adversely impacted due to the chronic release of heavy metals from the Macalloy site. Surface water resources. Fish inhabiting surface waters were potentially impacted by the contamination."

SOURCE: U.S. Department of Commerce 2013.

#### • REYNOLDS METALS [EPA Site Name: REYNOLDS METALS COMPANY]

"Large quantities of wastes were produced at the Reynolds facility during the production of aluminum....Soil in areas of the site are contaminated with polynuclear aromatic hydrocarbons (PAHs), trace elements, fluoride, and cyanide at concentrations several orders of magnitude above local background concentrations. Waste streams were treated on site at a wastewater treatment plant and discharged to...South Ditch...which flows to...Company Lake...[that] discharges...to the Columbia River. Sediments within South Ditch and Company Lake are contaminated with PAHs and trace elements at concentrations several orders of magnitude above NOAA screening guidelines, and...substantially above those shown to elicit toxic responses in aquatic organisms. Such sediments have also been detected in the outfall ditch just prior to discharge to the Columbia, and in the Sandy River....The primary threat posed by the Reynolds Metals Company site to NOAA trust resources is the potential for site releases to cause adverse ecological impacts to anadromous species that utilize the Columbia and Sandy Rivers and to their supporting habitat. The Columbia River watershed is the most important anadromous salmonid basin on the west coast of the United States. The Columbia and Sandy Rivers near the site provide nursery and foraging habitat as well as a migratory corridor for five anadromous salmonid species (including three runs which are threatened and/or endangered), plus American shad and white sturgeon."

SOURCE: U.S. Department of Commerce 1996.

#### • TEX-TIN [EPA Site Name: TEX-TIN CORP]

"The trace metals aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, tin, vanadium, and zinc and polycyclic aromatic hydrocarbons (PAHs) detected at the Site are hazardous substances covered by...CERCLA....[C]ontamination, originating from the Site, has been detected or is predicted to occur in [local surface water bodies]. Subsequent to construction of the HPL, Site contaminants only reach the Swan Lake system by aerial deposition and through storm events, floods, and extreme tidal excursions. Existing data indicate that trace metals are the primary contaminants at this Site. PAHs were frequently encountered; however, the levels of PAHs were not as high relative to levels of concern as the trace metals....1.2 Natural Resource Injuries Trace metals, particularly chromium, copper, lead, tin, and zinc, are the primary contaminants of concern at the Site.....The Swan Lake ecosystem, part of the greater Galveston Bay ecosystem, is an important habitat for numerous recreational and commercial fish and shellfish species....Trustees were able to identify the types of habitats, their component resources, and the habitat or resources services with the greatest potential to have been injured by historic and ongoing releases of metals from the Site. These include subtidal unvegetated soft-bottom benthic habitats....Some animals living in these habitats, such as shellfish, fish, and birds, may have suffered lethal effects (increased mortality) or sublethal effects (reduced growth, reduced fecundity, etc.) as a result of exposure to metals."

SOURCE: Texas Natural Resource Conservation Commission 2001.

#### • PALMERTON ZINC [EPA Site Name: ZINC CORPORATION OF AMERICA]

"The East and West Plants of the former New Jersey Zinc Company, a primary zinc smelting facility, discharged metals to the surrounding environment via air emissions and through the release of liquid and solid wastes. A secondary metals processing and reclamation facility has operated in the East Plant area since the shutdown of the primary zinc smelting facility in 1980. Metals, including arsenic, cadmium, chromium, copper, lead, manganese, and zinc were released to the environment from these facilities, adversely affecting Aquashicola Creek, the Lehigh River, Blue Mountain, and Stony Ridge."

SOURCE: Trustees of the Palmerton Zinc Pile Superfund Site 2011.

# Attachment H3 Threatened and Endangered Species Found Near 2009 Current Sites

| Row | Site<br>ID | Туре           | Site Name                           | Scientific Name                      | Common Name                    | Species<br>Status* |
|-----|------------|----------------|-------------------------------------|--------------------------------------|--------------------------------|--------------------|
| 1   | 1005       | Mine/Processor | Freeport McMoRan Miami Inc.         | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 2   |            | Combination    | Copper Cities Unit                  | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 3   | 1010       | Mine/Processor | Excalibar Minerals                  | Ursus americanus luteolus            | Louisiana black bear           | Т                  |
| 4   |            | Combination    | Excalibar Minerals of Louisiana LLC | Ursus americanus luteolus            | Louisiana black bear           | Т                  |
| 5   | 1013       | Mine/Processor | Hayden Concentrator                 | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 6   |            | Combination    | ASARCO LLC - Hayden                 | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 7   | 2100       | Mine           | Baxter Mine                         | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 8   | 2103       | Mine           | Mesquite                            | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 9   | 2105       | Mine           | Jerico Products Incorporated        | Hypomesus transpacificus             | Delta smelt                    | Т                  |
| 10  | 2106       | Mine           | Silverlake Mine                     | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 11  | 2109       | Mine           | Ocean View Mine                     | Bufo californicus (=microscaphus)    | Arroyo toad                    | E                  |
| 12  | 2109       | Mine           | Ocean View Mine                     | Polioptila californica californica   | Coastal California gnatcatcher | Т                  |
| 13  | 2109       | Mine           | Ocean View Mine                     | Vireo bellii pusillus                | Least Bell's vireo             | E                  |
| 14  | 2109       | Mine           | Ocean View Mine                     | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 15  | 2141       | Mine           | Northshore Mine                     | Canis lupus                          | Gray wolf                      | E                  |
| 16  | 2158       | Mine           | Genesis IncTroy Mine                | Salvelinus confluentus               | Bull Trout                     | Т                  |
| 17  | 2272       | Mine           | D D One                             | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 18  | 2312       | Mine           | Lompoc Plant                        | Rana aurora draytonii                | California red-legged frog     | Т                  |
| 19  | 2312       | Mine           | Lompoc Plant                        | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 20  | 2324       | Mine           | PolyMet                             | Canis lupus                          | Gray wolf                      | E                  |
| 21  | 3006       | Processor      | ALCOA INTALCO Works                 | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 22  | 3027       | Processor      | M-I LLC                             | Charadrius melodus                   | Piping Plover                  | Т                  |

#### Table H3-1. Threatened and Endangered Species Found within 3 Miles of 2009 Current Sites

| Row   | Site<br>ID | Туре                | Site Name                                      | Scientific Name                             | Common Name                    | Species<br>Status* |
|-------|------------|---------------------|------------------------------------------------|---------------------------------------------|--------------------------------|--------------------|
| 23    | 3037       | Processor           | Morgan City Grinding Plant                     | Ursus americanus luteolus                   | Louisiana black bear           | Т                  |
| 24    | 3042       | Processor           | Halliburton                                    | Acipenser oxyrinchus desotoi                | Gulf sturgeon                  | Т                  |
| 25    | 3083       | Processor           | Clarkdale Metals Corp                          | Xyrauchen texanus                           | Razorback sucker               | E                  |
| 26    | 3148       | Processor           | Mesabi Nugget Delaware, LLC                    | Canis lupus                                 | Gray wolf                      | E                  |
| 27    | 3204       | Processor           | Mississippi Phosphates Corp.                   | Acipenser oxyrinchus desotoi                | Gulf sturgeon                  | Т                  |
| 28    | 3209       | Processor           | PCS Phosphate Co. Inc Morehead<br>City         | Charadrius melodus                          | Piping Plover                  | Т                  |
| 29    | 3212       | Processor           | Moab Salt/Salt & Potash Production<br>Facility | Ptychocheilus lucius                        | Colorado pikeminnow            | E                  |
| 30    | 3212       | Processor           | Moab Salt/Salt & Potash Production<br>Facility | Strix occidentalis lucida                   | Mexican spotted owl            | Т                  |
| 31    | 3212       | Processor           | Moab Salt/Salt & Potash Production<br>Facility | Xyrauchen texanus                           | Razorback sucker               | E                  |
| 32    | 3234       | Processor           | American Soda, LLP / Solvay<br>Chemicals, Inc. | Ptychocheilus lucius                        | Colorado pikeminnow            | E                  |
| 33    | 3234       | Processor           | American Soda, LLP / Solvay<br>Chemicals, Inc. | Xyrauchen texanus                           | Razorback sucker               | E                  |
| 34    | 3238       | Processor           | Laws Mill                                      | Astragalus lentiginosus var.<br>piscinensis | Fish Slough milk-vetch         | Т                  |
| 35    | 3272       | Processor           | Protech Minerals, Inc                          | Empidonax traillii extimus                  | Southwestern willow flycatcher | E                  |
| 36    | 3276       | Processor           | COTTER MILL                                    | Strix occidentalis lucida                   | Mexican spotted owl            | Т                  |
| * T = | Threat     | ened, E = Endangere | d                                              | ·                                           |                                |                    |

| Row | Site<br>ID | Туре           | Site Name                                    | Scientific Name              | Common Name                    | Species<br>Status* |
|-----|------------|----------------|----------------------------------------------|------------------------------|--------------------------------|--------------------|
| 1   | 10         | Processor      | Corpus Christi Grounding Plant               | Charadrius melodus           | Piping Plover                  | Т                  |
| 2   | 13         | Combination    | Battle Mountain Grinding Plant               | Charadrius melodus           | Piping Plover                  | Т                  |
| 3   | 1.1        | Processor      | Sherwin Alumina Co.                          | Charadrius melodus           | Piping Plover                  | Т                  |
| 4   | 14         | Combination    | Sherwin Alumina                              | Charadrius melodus           | Piping Plover                  | Т                  |
| 5   | 10         | Processor      | Searles Valley Minerals Inc.                 | Pipilo crissalis eremophilus | Inyo California towhee         | Т                  |
| 6   | 10         | Combination    | IMC Chemicals Incorporated                   | Pipilo crissalis eremophilus | Inyo California towhee         | Т                  |
| 7   |            | Mine Processor | Boron Operations                             | Gopherus agassizii           | Desert tortoise                | Т                  |
| 8   | 1003       | Combination    | US Borax waste pile from Boron<br>Operations | Gopherus agassizii           | Desert tortoise                | Т                  |
| 9   | 1005       | Mine Processor | Freeport McMoRan Miami Inc.                  | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 10  | 1005       | Combination    | Copper Cities Unit                           | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 11  | 1010       | Mine Processor | Excalibar Minerals                           | Ursus americanus luteolus    | Louisiana black bear           | Т                  |
| 12  | 1010       | Combination    | Excalibar Minerals of Louisiana LLC          | Ursus americanus luteolus    | Louisiana black bear           | Т                  |
| 13  | 1011       | Mine Processor | Freeport McMoRan Morenci Inc.                | Xyrauchen texanus            | Razorback sucker               | Е                  |
| 14  | 1011       | Combination    | Phelps-Dodge Morenci Inc.                    | Xyrauchen texanus            | Razorback sucker               | E                  |
| 15  | 1012       | Mine Processor | Hayden Concentrator                          | Empidonax traillii extimus   | Southwestern willow flycatcher | E                  |
| 16  | 1013       | Combination    | ASARCO LLC - Hayden                          | Empidonax traillii extimus   | Southwestern willow flycatcher | E                  |
| 17  | 2003       | Mine           | Pinenut                                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 18  | 2004       | Mine           | North American Industries                    | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 19  | 2005       | Mine           | Rosemont Copper Project                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 20  | 2052       | Mine           | Resolution Mine                              | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 21  | 2052       | Mine           | Resolution Mine                              | Gila intermedia              | Gila chub                      | E                  |
| 22  | 2080       | Mine           | Ray                                          | Gila intermedia              | Gila chub                      | E                  |
| 23  | 2080       | Mine           | Ray                                          | Empidonax traillii extimus   | Southwestern willow flycatcher | E                  |
| 24  | 2082       | Mine           | Pinto Valley Operations                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 25  | 2086       | Mine           | Carlota Copper Company                       | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 26  | 2099       | Mine           | Dredge 17                                    | Branchinecta lynchi          | Vernal pool fairy shrimp       | Т                  |
| 27  | 2099       | Mine           | Dredge 17                                    | Lepidurus packardi           | Vernal pool tadpole shrimp     | Е                  |

Table H3-2. Threatened and Endangered Species Found within 6 Miles of 2009 Curent Sites

| Row | Site<br>ID | Туре      | Site Name                           | Scientific Name                      | Common Name                    | Species<br>Status* |
|-----|------------|-----------|-------------------------------------|--------------------------------------|--------------------------------|--------------------|
| 28  | 2100       | Mine      | Baxter Mine                         | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 29  | 2101       | Mine      | Mt Pass Mine & Mill                 | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 30  | 2103       | Mine      | Mesquite                            | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 31  | 2105       | Mine      | Jerico Products Incorporated        | Hypomesus transpacificus             | Delta smelt                    | Т                  |
| 32  | 2106       | Mine      | Silverlake Mine                     | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 33  | 2109       | Mine      | Ocean View Mine                     | Vireo bellii pusillus                | Least Bell's vireo             | E                  |
| 34  | 2109       | Mine      | Ocean View Mine                     | Bufo californicus (=microscaphus)    | Arroyo toad                    | E                  |
| 35  | 2109       | Mine      | Ocean View Mine                     | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 36  | 2109       | Mine      | Ocean View Mine                     | Polioptila californica californica   | Coastal California gnatcatcher | Т                  |
| 37  | 2109       | Mine      | Ocean View Mine                     | Ceanothus ophiochilus                | Vail Lake ceanothus            | Т                  |
| 38  | 2114       | Mine      | Cresson Project                     | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 39  | 2141       | Mine      | Northshore Mine                     | Canis lupus                          | Gray wolf                      | E                  |
| 40  | 2158       | Mine      | Genesis IncTroy Mine                | Salvelinus confluentus               | Bull Trout                     | Т                  |
| 51  | 2217       | Mine      | St Cloud Surface                    | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 52  | 2272       | Mine      | D D One                             | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 53  | 2312       | Mine      | Lompoc Plant                        | Deinandra increscens ssp. villosa    | Gaviota Tarplant               | E                  |
| 54  | 2312       | Mine      | Lompoc Plant                        | Rana aurora draytonii                | California red-legged frog     | Т                  |
| 55  | 2312       | Mine      | Lompoc Plant                        | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 56  | 2324       | Mine      | PolyMet                             | Canis lupus                          | Gray wolf                      | E                  |
| 57  | 3006       | Processor | ALCOA INTALCO Works                 | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 58  | 3025       | Processor | Halliburton Energy Services         | Charadrius melodus                   | Piping Plover                  | Т                  |
| 59  | 3027       | Processor | M-I LLC                             | Charadrius melodus                   | Piping Plover                  | Т                  |
| 60  | 3037       | Processor | Morgan City Grinding Plant          | Ursus americanus luteolus            | Louisiana black bear           | Т                  |
| 61  | 3042       | Processor | Halliburton                         | Acipenser oxyrinchus desotoi         | Gulf sturgeon                  | Т                  |
| 62  | 3043       | Processor | Galveston GBT Barite Grinding Plant | Charadrius melodus                   | Piping Plover                  | Т                  |
| 63  | 3083       | Processor | Clarkdale Metals Corp               | Xyrauchen texanus                    | Razorback sucker               | E                  |
| 64  | 3083       | Processor | Clarkdale Metals Corp               | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |

| Row   | Site<br>ID | Туре              | Site Name                                      | Scientific Name                             | Common Name                    | Species<br>Status* |
|-------|------------|-------------------|------------------------------------------------|---------------------------------------------|--------------------------------|--------------------|
| 65    | 3148       | Processor         | Mesabi Nugget Delaware, LLC                    | Canis lupus                                 | Gray wolf                      | E                  |
| 66    | 3149       | Processor         | Northshore Mining Company                      | Canis lupus                                 | Gray wolf                      | E                  |
| 67    | 3174       | Processor         | Giles Chemical                                 | Alasmidonta raveneliana                     | Appalachian elktoe             | E                  |
| 68    | 3191       | Processor         | A-1 Grit Co                                    | Astragalus brauntonii                       | Braunton's milk-vetch          | E                  |
| 69    | 3195       | Processor         | ZEOX Corp Ash Meadows Plant &<br>Mine          | Grindelia fraxino-pratensis                 | Ash Meadows gumplant           | Т                  |
| 70    | 3195       | Processor         | ZEOX Corp Ash Meadows Plant &<br>Mine          | Centaurium namophilum                       | Spring-loving centaury         | Т                  |
| 71    | 3204       | Processor         | Mississippi Phosphates Corp.                   | Charadrius melodus                          | Piping Plover                  | Т                  |
| 72    | 3204       | Processor         | Mississippi Phosphates Corp.                   | Acipenser oxyrinchus desotoi                | Gulf sturgeon                  | Т                  |
| 73    | 3209       | Processor         | PCS Phosphate Co. Inc Morehead<br>City         | Charadrius melodus                          | Piping Plover                  | Т                  |
| 74    | 3212       | Processor         | Moab Salt/Salt & Potash Production<br>Facility | Strix occidentalis lucida                   | Mexican spotted owl            | Т                  |
| 75    | 3212       | Processor         | Moab Salt/Salt & Potash Production<br>Facility | Ptychocheilus lucius                        | Colorado pikeminnow            | E                  |
| 76    | 3212       | Processor         | Moab Salt/Salt & Potash Production<br>Facility | Xyrauchen texanus                           | Razorback sucker               | E                  |
| 77    | 3234       | Processor         | AMERICAN SODA, LLP / SOLVAY<br>CHEMICALS, INC. | Ptychocheilus lucius                        | Colorado pikeminnow            | E                  |
| 78    | 3234       | Processor         | AMERICAN SODA, LLP / SOLVAY<br>CHEMICALS, INC. | Xyrauchen texanus                           | Razorback sucker               | E                  |
| 79    | 3238       | Processor         | Laws Mill                                      | Astragalus lentiginosus var.<br>piscinensis | Fish Slough milk-vetch         | Т                  |
| 80    | 3272       | Processor         | Protech Minerals, Inc                          | Empidonax traillii extimus                  | Southwestern willow flycatcher | E                  |
| 81    | 3276       | Processor         | COTTER MILL                                    | Strix occidentalis lucida                   | Mexican spotted owl            | Т                  |
| 82    | 3292       | Processor         | Standard Mineral Co., Inc.                     | Notropis mekistocholas                      | Cape Fear shiner               | E                  |
| * T = | = Threat   | ened, E = Endange | red                                            |                                             |                                |                    |

| Row | Site<br>ID | Туре                            | Site Name                                    | Scientific Name              | Common Name                    | Species<br>Status* |
|-----|------------|---------------------------------|----------------------------------------------|------------------------------|--------------------------------|--------------------|
| 1   | 10         | Processor                       | Corpus Christi Grounding Plant               | Charadrius melodus           | Piping Plover                  | Т                  |
| 2   | 13         | Combination                     | Battle Mountain Grinding Plant               | Charadrius melodus           | Piping Plover                  | Т                  |
| 3   | 14         | Processor                       | Sherwin Alumina Co.                          | Charadrius melodus           | Piping Plover                  | Т                  |
| 4   | 14         | Combination                     | Sherwin Alumina                              | Charadrius melodus           | Piping Plover                  | Т                  |
| 5   | 10         | Processor                       | Searles Valley Minerals Inc.                 | Pipilo crissalis eremophilus | Inyo California towhee         | Т                  |
| 6   | 10         | Combination                     | IMC Chemicals Incorporated                   | Pipilo crissalis eremophilus | Inyo California towhee         | Т                  |
| 7   |            | Mine Processor                  | Boron Operations                             | Gopherus agassizii           | Desert tortoise                | Т                  |
| 8   | 1003       | Combination                     | US Borax waste pile from Boron<br>Operations | Gopherus agassizii           | Desert tortoise                | Т                  |
| 9   | 1005       | Mine Processor                  | Freeport McMoRan Miami Inc.                  | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 10  | 1005       | Combination                     | Copper Cities Unit                           | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 11  | 1010       | Mine Processor                  | Excalibar Minerals                           | Ursus americanus luteolus    | Louisiana black bear           | Т                  |
| 12  |            | Combination                     | Excalibar Minerals of Louisiana LLC          | Ursus americanus luteolus    | Louisiana black bear           | Т                  |
| 13  | 1011       | 1 Mine Processor<br>Combination | Freeport McMoRan Morenci Inc.                | Xyrauchen texanus            | Razorback sucker               | E                  |
| 14  | 1011       |                                 | Phelps-Dodge Morenci Inc.                    | Xyrauchen texanus            | Razorback sucker               | E                  |
| 15  | 1012       | Mine Processor                  | Hayden Concentrator                          | Empidonax traillii extimus   | Southwestern willow flycatcher | Ш                  |
| 16  | 1013       | Combination                     | ASARCO LLC - Hayden                          | Empidonax traillii extimus   | Southwestern willow flycatcher | E                  |
| 17  | 2003       | Mine                            | Pinenut                                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 18  | 2004       | Mine                            | North American Industries                    | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 19  | 2005       | Mine                            | Rosemont Copper Project                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 20  | 2052       | Mine                            | Resolution Mine                              | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 21  | 2052       | Mine                            | Resolution Mine                              | Gila intermedia              | Gila chub                      | Е                  |
| 22  | 2080       | Mine                            | Ray                                          | Gila intermedia              | Gila chub                      | Е                  |
| 23  | 2080       | Mine                            | Ray                                          | Empidonax traillii extimus   | Southwestern willow flycatcher | E                  |
| 24  | 2082       | Mine                            | Pinto Valley Operations                      | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 25  | 2086       | Mine                            | Carlota Copper Company                       | Strix occidentalis lucida    | Mexican spotted owl            | Т                  |
| 26  | 2099       | Mine                            | Dredge 17                                    | Branchinecta lynchi          | Vernal pool fairy shrimp       | Т                  |
| 27  | 2099       | Mine                            | Dredge 17                                    | Lepidurus packardi           | Vernal pool tadpole shrimp     | E                  |

Table H3-3. Threatened and Endangered Species Found within 20 Miles of 2009 Current Sites

| Row | Site<br>ID | Туре      | Site Name                           | Scientific Name                      | Common Name                    | Species<br>Status* |
|-----|------------|-----------|-------------------------------------|--------------------------------------|--------------------------------|--------------------|
| 28  | 2100       | Mine      | Baxter Mine                         | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 29  | 2101       | Mine      | Mt Pass Mine & Mill                 | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 30  | 2103       | Mine      | Mesquite                            | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 31  | 2105       | Mine      | Jerico Products Incorporated        | Hypomesus transpacificus             | Delta smelt                    | Т                  |
| 32  | 2106       | Mine      | Silverlake Mine                     | Gopherus agassizii                   | Desert tortoise                | Т                  |
| 33  | 2109       | Mine      | Ocean View Mine                     | Vireo bellii pusillus                | Least Bell's vireo             | E                  |
| 34  | 2109       | Mine      | Ocean View Mine                     | Bufo californicus (=microscaphus)    | Arroyo toad                    | E                  |
| 35  | 2109       | Mine      | Ocean View Mine                     | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 36  | 2109       | Mine      | Ocean View Mine                     | Polioptila californica californica   | Coastal California gnatcatcher | Т                  |
| 37  | 2109       | Mine      | Ocean View Mine                     | Ceanothus ophiochilus                | Vail Lake ceanothus            | Т                  |
| 38  | 2114       | Mine      | Cresson Project                     | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 39  | 2141       | Mine      | Northshore Mine                     | Canis lupus                          | Gray wolf                      | E                  |
| 40  | 2158       | Mine      | Genesis IncTroy Mine                | Salvelinus confluentus               | Bull Trout                     | Т                  |
| 51  | 2217       | Mine      | St Cloud Surface                    | Strix occidentalis lucida            | Mexican spotted owl            | Т                  |
| 52  | 2272       | Mine      | D D One                             | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 53  | 2312       | Mine      | Lompoc Plant                        | Deinandra increscens ssp. villosa    | Gaviota Tarplant               | E                  |
| 54  | 2312       | Mine      | Lompoc Plant                        | Rana aurora draytonii                | California red-legged frog     | Т                  |
| 55  | 2312       | Mine      | Lompoc Plant                        | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |
| 56  | 2324       | Mine      | PolyMet                             | Canis lupus                          | Gray wolf                      | E                  |
| 57  | 3006       | Processor | ALCOA INTALCO Works                 | Oncorhynchus (=Salmo)<br>tshawytscha | Chinook salmon                 | Т                  |
| 58  | 3025       | Processor | Halliburton Energy Services         | Charadrius melodus                   | Piping Plover                  | Т                  |
| 59  | 3027       | Processor | M-I LLC                             | Charadrius melodus                   | Piping Plover                  | Т                  |
| 60  | 3037       | Processor | Morgan City Grinding Plant          | Ursus americanus luteolus            | Louisiana black bear           | Т                  |
| 61  | 3042       | Processor | Halliburton                         | Acipenser oxyrinchus desotoi         | Gulf sturgeon                  | Т                  |
| 62  | 3043       | Processor | Galveston GBT Barite Grinding Plant | Charadrius melodus                   | Piping Plover                  | Т                  |
| 63  | 3083       | Processor | Clarkdale Metals Corp               | Xyrauchen texanus                    | Razorback sucker               | E                  |
| 64  | 3083       | Processor | Clarkdale Metals Corp               | Empidonax traillii extimus           | Southwestern willow flycatcher | E                  |

| Row   | Site<br>ID | Туре               | Site Name                                      | Scientific Name                                  | Common Name                    | Species<br>Status* |
|-------|------------|--------------------|------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------|
| 65    | 3148       | Processor          | Mesabi Nugget Delaware, LLC                    | Canis lupus                                      | Gray wolf                      | E                  |
| 66    | 3149       | Processor          | Northshore Mining Company                      | Canis lupus                                      | Gray wolf                      | E                  |
| 67    | 3174       | Processor          | Giles Chemical                                 | Alasmidonta raveneliana                          | Appalachian elktoe             | E                  |
| 68    | 3191       | Processor          | A-1 Grit Co                                    | Astragalus brauntonii                            | Braunton's milk-vetch          | E                  |
| 69    | 3195       | Processor          | ZEOX Corp Ash Meadows Plant & Mine             | Grindelia fraxino-pratensis Ash Meadows gumplant |                                | Т                  |
| 70    | 3195       | Processor          | ZEOX Corp Ash Meadows Plant & Mine             | Centaurium namophilum                            | Spring-loving centaury         | Т                  |
| 71    | 3204       | Processor          | Mississippi Phosphates Corp.                   | Charadrius melodus                               | Piping Plover                  | Т                  |
| 72    | 3204       | Processor          | Mississippi Phosphates Corp.                   | Acipenser oxyrinchus desotoi                     | Gulf sturgeon                  | Т                  |
| 73    | 3209       | Processor          | PCS Phosphate Co. Inc Morehead<br>City         | Charadrius melodus                               | Piping Plover                  | Т                  |
| 74    | 3212       | Processor          | Moab Salt/Salt & Potash Production<br>Facility | Strix occidentalis lucida                        | Mexican spotted owl            | Т                  |
| 75    | 3212       | Processor          | Moab Salt/Salt & Potash Production<br>Facility | Ptychocheilus lucius                             | Colorado pikeminnow            | E                  |
| 76    | 3212       | Processor          | Moab Salt/Salt & Potash Production<br>Facility | Xyrauchen texanus                                | Razorback sucker               | E                  |
| 77    | 3234       | Processor          | American Soda, LLP / SOLVAY<br>Chemicals, INC. | Ptychocheilus lucius                             | Colorado pikeminnow            | E                  |
| 78    | 3234       | Processor          | American Soda, LLP / SOLVAY<br>Chemicals, INC. | Xyrauchen texanus                                | Razorback sucker               | E                  |
| 79    | 3238       | Processor          | Laws Mill                                      | Astragalus lentiginosus var.<br>piscinensis      | Fish Slough milk-vetch         | Т                  |
| 80    | 3272       | Processor          | Protech Minerals, Inc                          | Empidonax traillii extimus                       | Southwestern willow flycatcher | E                  |
| 81    | 3276       | Processor          | Cotter Mill                                    | Strix occidentalis lucida                        | Mexican spotted owl            | Т                  |
| 82    | 3292       | Processor          | Standard Mineral Co., Inc.                     | Notropis mekistocholas                           | Cape Fear shiner               | E                  |
| * T = | Threate    | ned, E = Endangere | d                                              |                                                  |                                |                    |

# Appendix I Flooding and Runoff Potential for 108(b) Historical CERCLA and 2009 Current Sites

# I.1 108(b) Historical CERCLA Sites

**Table I-1** lists the 108(b) Historical CERCLA sites with documented flooding or erosion (of soil or sediment) impacts. Those sites that are also Case Study Historical sites are bolded. **Table I-2** lists details of flooding and erosion at the 108(b) Historical CERCLA sites.

| Row | Site                                      | Cause of Contamination | Additional Flood Data |
|-----|-------------------------------------------|------------------------|-----------------------|
| 1   | Anaconda Co. Smelter                      | Flood                  | 100 year              |
| 2   | Bunker Hill Mining & Metallurical Complex | Flood                  |                       |
| 3   | Calahan Mining Corp.                      |                        |                       |
| 4   | Carson River Mercury                      | Sediment Erosion       |                       |
| 5   | Flat Creek IMM                            | Flood                  |                       |
| 6   | Gilt-Edge                                 | Sediment Erosion       |                       |
| 7   | Iron Mountain                             | Flood                  |                       |
| 8   | Maccalloy Corp                            | Flood                  | 100 year              |
| 9   | Milltown Reservoir                        | Flood                  |                       |
| 10  | National Southwire Aluminum Co.           | Flood                  |                       |
| 11  | Ormet Corp                                | Flood                  | 100 year              |
| 12  | Palmerton Zinc Pile                       | Soil Erosion           |                       |
| 13  | Reynolds Metals Company                   | Flood                  | 100 year              |
| 14  | Silver Mountain Mine                      | Erosion                |                       |
| 15  | Stauffer Chemical Co.                     | Soil Erosion           |                       |
| 16  | Summitville Mine                          | Sediment Erosion       |                       |
| 17  | Teledume Web Cheng                        | Sediment Erosion       |                       |
| 18  |                                           | Flood                  | 100 year, 500 year    |
| 19  | Tex-Tin Corp.                             | Erosion                |                       |

Table I-1. 108(b) Historical CERCLA Sites with Flooding or Erosion/Runoff Impacts

|                        |                                                                                                                                                                                                                                                                                      |                                                                                                                         |                    |                                   | ·                                       |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------------------------------------|--|
| ANAC<br>SM             | ONDA CO.<br>IELTER                                                                                                                                                                                                                                                                   | ANACONDA                                                                                                                | МТ                 | REGION 8                          | MTD093291656                            |  |
|                        | Excerpt from R                                                                                                                                                                                                                                                                       | ODs regarding floods/erosion and waste disposal practices                                                               |                    |                                   | Sources                                 |  |
| -                      | Potential loadin areas of contan                                                                                                                                                                                                                                                     | g sources for metals to Warm Springs Creek include runoff ninated soils, and erosion of floodplain wastes.              | of contaminated    | storm water from poorly vegetated | ROD 1998 OU4 (page<br>24-25, & page 75) |  |
|                        | Potential loading sources for metals to surface water and bed sediment of Willow Creek include runoff of contaminated storm water from areas of contaminated soil, and runoff of contaminated storm water and erosion of floodplain tailings adjacent to Willow Creek.               |                                                                                                                         |                    |                                   |                                         |  |
|                        | Remedial action source pathway                                                                                                                                                                                                                                                       | ns are required within the 100-year floodplain due to<br>vs from fluvially deposited tailings found within the stream b | anks on Warm Sp    | prings and Willow Creeks          |                                         |  |
| BUNKER<br>& META<br>CO | HILL MINING<br>LLURGICAL<br>MPLEX                                                                                                                                                                                                                                                    | SMELTERVILLE                                                                                                            | ID                 | REGION 10                         | IDD048340921                            |  |
|                        | Excerpt from R                                                                                                                                                                                                                                                                       | ODs regarding floods/erosion and waste disposal practices                                                               |                    |                                   | Sources                                 |  |
|                        | In the Lower Basin, erosion of river banks and beds is a major source of metals, particularly lead, entering the Coeur d'Alene River.                                                                                                                                                |                                                                                                                         |                    |                                   |                                         |  |
|                        | A 100-year floo<br>single day.                                                                                                                                                                                                                                                       | d event in February 1996, an estimated 1,400,000 pounds                                                                 | of lead were discl | harged to Coeur d'Alene Lake in a |                                         |  |
| CAPTAIN                | N JACK MILL                                                                                                                                                                                                                                                                          | WARD                                                                                                                    | СО                 | REGION 8                          | COD981551427                            |  |
|                        | Excerpt from R                                                                                                                                                                                                                                                                       | ODs regarding floods/erosion and waste disposal practices                                                               |                    |                                   | Sources                                 |  |
|                        | No mentioning                                                                                                                                                                                                                                                                        | of surface contamination resulting from erosion process or                                                              | flood events.      |                                   |                                         |  |
| CIMARF                 | Ron Mining<br>Corp.                                                                                                                                                                                                                                                                  | CARRIZOZO                                                                                                               | NM                 | REGION 6                          | NMD980749378                            |  |
|                        | Excerpt from R                                                                                                                                                                                                                                                                       | ODs regarding floods/erosion and waste disposal practices                                                               |                    |                                   |                                         |  |
|                        | RODs did not m                                                                                                                                                                                                                                                                       | nention the dispersion of site-related contaminants due to fl                                                           | oods or erosion.   |                                   |                                         |  |
| EAG                    | LE MINE                                                                                                                                                                                                                                                                              | MINTURN/<br>REDCLIFF                                                                                                    | СО                 | REGION 8                          | COD081961518                            |  |
|                        | Excerpt from R                                                                                                                                                                                                                                                                       | ODs regarding floods/erosion and waste disposal practices                                                               |                    |                                   | Sources                                 |  |
|                        | Over the last 100 years, zinc mining resulted in the deposition of about 8 to 10 million tons of mine wastes and mill tailings along the Eagle River.                                                                                                                                |                                                                                                                         |                    |                                   |                                         |  |
|                        | Prior to the 1940's Rex Flats was a wetland in the Eagle River flood plain, (CH2M Hill, 1984b). After the old tailings pond was filled in 1942, Rex Flats was used for tailings disposal of 75,000 tons of tailings (Kelly, 1979) while the new tailings pond was being constructed. |                                                                                                                         |                    |                                   |                                         |  |

#### Table I-2. Flooding and Erosion at or near CERCLA Cleanup Site

| The Cross Cree<br>mobilized durin<br>Agency, 1983).                                                           | The Cross Creek wetland and Rex Flats contains high levels of metals due to mining activities. These metals could become mobilized during flood conditions since the areas are located in the 100-year flood plain (Federal Emergency Management Agency, 1983).                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                                          |                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| EASTERN MICHAUD<br>FLATS<br>CONTAMINATION                                                                     | POCATELLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID                                   | REGION 10                                                                | IDD984666610                                           |  |  |
| Excerpt from R                                                                                                | ODs regarding floods/erosion and waste disposal practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es                                   |                                                                          | Sources                                                |  |  |
| RODs/RI did no                                                                                                | ot mention the dispersion of site-related contaminants due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to floods or erosio                  | n.                                                                       |                                                        |  |  |
| EAST HELENA SITE                                                                                              | EAST HELENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | МТ                                   | REGION 8                                                                 | MTD006230346                                           |  |  |
| Excerpt from R                                                                                                | Excerpt from RODs regarding floods/erosion and waste disposal practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                                          |                                                        |  |  |
| Two historic flo<br>adjacent proper                                                                           | od channels of Prickly Pear Creek, north of East Helena, rties during flood events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | were cleaned up to                   | prevent recontamination of                                               | ROD 1990 OU 1;<br>Comprehensive RI/FS<br>Volume 2 1990 |  |  |
| Periodic floodin<br>smelter site, an                                                                          | g and overflow of Prickly Pear Creek also caused contan<br>d deposited in areas within East Helena and downstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ninants in sediments<br>to the north | s to be carried away from the                                            | ROD 2009 page 5-1                                      |  |  |
| Ditches and cha<br>surface soils ar<br>smelter ground                                                         | annels, which extend 2 to 3 miles to the north of East Hel<br>Id sediments. This contamination is thought to have been<br>s during flood events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ena, have elevated                   | levels of lead and arsenic in their butdoor piles of concentrates on the | ROD 2009 page 5-20                                     |  |  |
| Numerous irriga<br>concentrates fre                                                                           | ation channels that extend into the Grandview area, many<br>om the plant site during floods, had recently been cleaned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / of which were kno<br>d up.         | own to have transported                                                  | ROD 2009 page 7-7                                      |  |  |
| FOOTE MINERAL CO.                                                                                             | EAST WHITELAND TOWNSHIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA                                   | REGION 3                                                                 | PAD077087989                                           |  |  |
| Excerpt from R                                                                                                | ODs and RI/FS regarding floods/waste disposal practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                    |                                                                          | Sources                                                |  |  |
| RODs did not n                                                                                                | nention the dispersion of site-related contaminants due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | floods or erosion.                   |                                                                          |                                                        |  |  |
| GILT EDGE MINE                                                                                                | LEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SD                                   | REGION 8                                                                 | SDD987673985                                           |  |  |
| Excerpt from R                                                                                                | ODs and RI/FS regarding floods/waste disposal practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;                                    |                                                                          | Sources                                                |  |  |
| The remaining<br>mixture of tailin<br>the late 1930s a<br>tailings and taili<br>Hoodoo Gulch.<br>BMC(Brohm Mi | The remaining tailings are present in over bank deposits located adjacent to Strawberry Creek. The overbank deposits are a mixture of tailings and alluvial sediments. The tailings are fine sand-sized particles of rock that were treated to remove gold in the late 1930s and early 1940s. The estimated volume of the tailings in Strawberry Creek is 44,000 cy. This volume includes tailings and tailings-impacted alluvial sediments located along the banks of Strawberry Creek between Cabin Creek and Hoodoo Gulch.<br>BMC(Brohm Mining Compay) utilized heavy equipment to excavate a slot through the tailings to the approximate depth of the |                                      |                                                                          |                                                        |  |  |
| alluvium-bedroo<br>repositories. Ta<br>source of acidit                                                       | alluvium-bedrock interface. Tailings excavated from this slot were hauled to the site, amended with fly ash, and placed into repositories. Tailings that were located along the banks of this slot were not disturbed. These tailings represent a potential source of acidity and metals to Strawberry Creek.                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                          |                                                        |  |  |

| HOMESTAKE MINING<br>CO.                                                 | MILAN                                                                                                                                                                                                                                                                                                                                                                                                   |                         | NM                 | REGION 6                           | NMD007860935      |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|------------------------------------|-------------------|--|--|
| Excerpt from F                                                          | ODs regarding floods and erosions ne                                                                                                                                                                                                                                                                                                                                                                    | ar NPL sites            |                    |                                    | Sources           |  |  |
| Flood plain det<br>(HEC-2). The of<br>the tailing emb<br>tailing embank | Flood plain determinations were calculated using the U.S. Army Corps of Engineer's water surface profile computer program (HEC-2). The calculated 100-year flood of 5,981 cfs will reach the current flood protection berm that protects the west end of the tailing embankment. The berm is at such an elevation that it is high enough to prevent water from encroaching upon the tailing embankment. |                         |                    |                                    |                   |  |  |
| LI TUNGSTEN CORP.                                                       | GLE                                                                                                                                                                                                                                                                                                                                                                                                     | N COVE                  | NY                 | REGION 2                           | NYD986882660      |  |  |
| Excerpt from F                                                          | Excerpt from RODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                          |                         |                    |                                    |                   |  |  |
| The southernm<br>Creek.                                                 | ost portions of the site are located with                                                                                                                                                                                                                                                                                                                                                               | nin both the 100-year   | and 500-year floc  | odplains associated with Glen Cove | RI 1998 PAGE 3-15 |  |  |
| MACALLOY<br>CORPORATION                                                 | NORTH CHARLEST                                                                                                                                                                                                                                                                                                                                                                                          | ON                      | SC                 | REGION 4                           | SCD003360476      |  |  |
| Excerpt from R                                                          | ODs regarding floods and erosions ne                                                                                                                                                                                                                                                                                                                                                                    | ar NPL sites            |                    |                                    | Sources           |  |  |
| The Macalloy s<br>Surface water<br>surface water s                      | The Macalloy site is located within a 100-year floodplain and abuts wetlands areas.<br>Surface water samples collected pursuant to the NPDES permit indicated the chromium (VI) limit was exceeded in three surface water sampling locations associated with the storm water management system. Other metals including arsenic, copper.                                                                 |                         |                    |                                    |                   |  |  |
| lead, and zinc                                                          | were identified as being a concern due                                                                                                                                                                                                                                                                                                                                                                  | to offsite discharge to | o Shipyard Creek   |                                    |                   |  |  |
| MIDNITE MINE                                                            | WELLPINIT                                                                                                                                                                                                                                                                                                                                                                                               |                         | WA                 | REGION 10                          | WAD980978753      |  |  |
| Excerpt from R                                                          | ODs regarding floods and erosions ne                                                                                                                                                                                                                                                                                                                                                                    | ar NPL sites            |                    |                                    | Sources           |  |  |
| Contaminants<br>migration, inter<br>flow through de<br>groundwater, a   | Contaminants are transported away from the MA (Mining Area) and into the PIA via overland surface water flow, sediment migration, interflow (shallow groundwater flow) in unconsolidated waste rock piles and subsurface material, and in groundwater flow through deeper rock fractures. The drainage areas surrounding the MA receive the contaminated surface water, groundwater, and sediment.      |                         |                    |                                    |                   |  |  |
| MONSANTO<br>CHEMICAL CO. (SODA<br>SPRINGS PLANT)                        | SODA SPRINGS                                                                                                                                                                                                                                                                                                                                                                                            |                         | ID                 | REGION 10                          | IDD081830994      |  |  |
| Excerpt from R                                                          | ODs regarding floods and erosions ne                                                                                                                                                                                                                                                                                                                                                                    | ar NPL sites            |                    |                                    | Sources           |  |  |
| RODs did not                                                            |                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                    |                                    |                   |  |  |
| NATIONAL<br>SOUTHWIRE<br>ALUMINUM CO.                                   | NATIONAL HAWESVILLE KY REGION 4<br>SOUTHWIRE<br>ALUMINUM CO.                                                                                                                                                                                                                                                                                                                                            |                         |                    |                                    | KYD049062375      |  |  |
| Excerpt from R                                                          | Excerpt from RODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                          |                         |                    |                                    |                   |  |  |
| The Site is an                                                          | active facility located in Hancock Coun                                                                                                                                                                                                                                                                                                                                                                 | ty, Kentucky, on the fl | oodplain of the so | outh side of the Ohio River.       | ROD 2000 page 1.  |  |  |
| Much of the Si                                                          | Much of the Site lies within the 100-year floodplain of the Ohio River.                                                                                                                                                                                                                                                                                                                                 |                         |                    |                                    |                   |  |  |

| Flooding up to t<br>Disposal Area.<br>this is the easte<br>floodway.                                                                                             | Flooding up to the predicted level of the 100 year flood, would affect low-lying areas of the site, particularly the Refractory Brick<br>Disposal Area. However, the ground surface elevations of waste disposal units are generally above flood level. An exception to<br>this is the eastern portions of Taylors Wash, outside of the clay barrier, which would be exposed to fast moving waters in the<br>floodway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |           |                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|------------------|--|--|
| OMAHA LEAD                                                                                                                                                       | ОМАНА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NE             | REGION 7  | NESFN0703481     |  |  |
| Excerpt from R                                                                                                                                                   | ODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |           | Sources          |  |  |
| The Omaha Lea                                                                                                                                                    | ad Site is located outside the 500-year flood plain of the M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lissouri River |           | RI 2009 PAGE 3-1 |  |  |
| Modification of<br>contamination.<br>contamination w<br>the observed di                                                                                          | Modification of residential yards resulting from filling, grading, or other activities can either cover or dilute surface lead contamination. Erosion of surface soils during rain events can relocate lead-contaminated soils. Flood events can cover surface contamination with silt or transport contaminated material downstream. It is likely that a combination of factors has resulted in the observed distribution of contamination at the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |           |                  |  |  |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |           | 0110004020020    |  |  |
| ORMET CORP.                                                                                                                                                      | HANNIBAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OH             | REGION 5  | OHD004379970     |  |  |
| Excernt from R                                                                                                                                                   | ODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |           | Sources          |  |  |
| From about 196<br>capacitors and<br>area is designa<br>wasteas possib<br>dualbarrier cap<br>100-year flood.<br>Because a port<br>OAC 3745-57-1<br>materials away | <ul> <li>The Ormet Site is located in an area known as Buck Hill Bottom, a portion of the Ohio River Floodplain that formed as river sediments were deposited on the inside of a meander bend.</li> <li>From about 1966 until mid-1979, Ormet deposited waste construction materials and other miscellaneous plant debris, including capacitors and spent potliner, in the southeastern corner of the Site, adjacent to Pond 5 and the Ohio River. This 4 to 5 acre area is designated as the Construction Material Scrap Dump (CMSD). The CMSD shall be re-contoured to remove as much wasteas possible from below the 100-year flood level. Although RCRASubtitle C does not require a dual-barrier cap a priori, a dualbarrier cap shall be installed over the CMSD to ensure maximum protection from the effects of inundation in the event of a 100-year flood.</li> <li>Because a portion of the CMSD is located within a 100-year floodplain, design and construction of the final cover pursuant to OAC 3745-57-10 must include measures sufficient to meet the above requirements, and prevent transport of hazardous materials away from the landfill, during a 100-year flood.</li> </ul> |                |           |                  |  |  |
| PALMERTON ZINC                                                                                                                                                   | PALMERION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA             | REGION 3  | PAD002395887     |  |  |
| Excerpt from R                                                                                                                                                   | Excerpt from RODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                  |  |  |
| The Palmerton<br>Water flowing a<br>contained in the                                                                                                             | The Palmerton Zinc Site is located within a floodplain and contains several wetland area.<br>Water flowing across the defoliated portions of blue mountain has eroded the surface and become contaminated with metals contained in the soil. The runoff and erosion has carried the metal laden soil into Aguashicola creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |           |                  |  |  |
| REYNOLDS METALS<br>COMPANY                                                                                                                                       | TROUTDALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR             | REGION 10 | ORD009412677     |  |  |
| Excerpt from R                                                                                                                                                   | Excerpt from RODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                  |  |  |
|                              | The area Outside the Dike refers to the portion of the RMC site that is to the north and east outside of the US Army Corps of<br>Engineers dike. This area is within the flood plain of the Columbia River, and includes Company Lake, East Lake and the<br>western portion of the north landfill. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                 |                                                                                                            |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                              | The areas north                                                                                                                                                                                                                                                                                    | a and Sandy Rivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RI 2006 page 2-1                                                                                                               |                                                                                                                                                                                                 |                                                                                                            |  |  |  |  |  |
|                              | North landfill is located in a wooded area north of the U.S. Army Corps of Engineers dike Most of the landfill lies within the 10-<br>year floodplain of the Columbia River.                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                 |                                                                                                            |  |  |  |  |  |
|                              | For north landfil events                                                                                                                                                                                                                                                                           | I and Company Lake there would be a greater likelihood o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of washout of conta                                                                                                            | iminants during severe flooding                                                                                                                                                                 | Interim ROD Remedial action 2002 page 18                                                                   |  |  |  |  |  |
|                              | The Preferred A from the floodpl                                                                                                                                                                                                                                                                   | Iternative adds another measure of long-term protectivene<br>ain of the Columbia and Sandy Rivers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ess by removing a                                                                                                              | dditional north landfill waste material                                                                                                                                                         |                                                                                                            |  |  |  |  |  |
| SILVER                       | MOUNTAIN<br>MINE                                                                                                                                                                                                                                                                                   | LOOMIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WA                                                                                                                             | REGION 10                                                                                                                                                                                       | WAD980722789                                                                                               |  |  |  |  |  |
|                              | Excerpt from RC                                                                                                                                                                                                                                                                                    | ODs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                                                                                                                                 | Sources                                                                                                    |  |  |  |  |  |
|                              | Prevention of er designated loca                                                                                                                                                                                                                                                                   | osion mentioned during a discussion of remedial action re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equired the placem                                                                                                             | ent of contaminated material in one                                                                                                                                                             |                                                                                                            |  |  |  |  |  |
| STAUFFE<br>CO.               | FLD010596013                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                 |                                                                                                            |  |  |  |  |  |
| SP                           | 'RINGS)                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                 |                                                                                                            |  |  |  |  |  |
| SP                           | RINGS)<br>Excerpt from RC                                                                                                                                                                                                                                                                          | DDs regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                                                                                                                                 | Sources                                                                                                    |  |  |  |  |  |
| SF                           | PRINGS)<br>Excerpt from R(<br>Potential Migrat<br>mechanisms ind<br>Anclote River.                                                                                                                                                                                                                 | DDs regarding floods and erosions near NPL sites<br>ion PathwayOnce in the surface soils, these constituent<br>cluding rainwater infiltration and percolation, surface water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts are mobilized by<br>• runoff and erosior                                                                                    | several primary release<br>a, as well as the tidal action from the                                                                                                                              | Sources<br>Final RI 1993 page 6-3                                                                          |  |  |  |  |  |
| SUMMIT                       | PRINGS)<br>Excerpt from R(<br>Potential Migrat<br>mechanisms inc<br>Anclote River.<br>TVILLE MINE                                                                                                                                                                                                  | DDs regarding floods and erosions near NPL sites<br>ion PathwayOnce in the surface soils, these constituent<br>cluding rainwater infiltration and percolation, surface water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts are mobilized by<br>runoff and erosior                                                                                      | several primary release<br>n, as well as the tidal action from the<br><b>REGION 8</b>                                                                                                           | Sources<br>Final RI 1993 page 6-3<br>COD983778432                                                          |  |  |  |  |  |
| SUMMI                        | PRINGS)<br>Excerpt from R(<br>Potential Migrat<br>mechanisms inc<br>Anclote River.<br>TVILLE MINE<br>Excerpt from RC                                                                                                                                                                               | DDs regarding floods and erosions near NPL sites<br>ion PathwayOnce in the surface soils, these constituent<br>cluding rainwater infiltration and percolation, surface water<br><b>RIO GRANDE COUNTY</b><br>DDs/RI regarding floods and erosions near NPL sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ts are mobilized by<br>r runoff and erosior<br><b>CO</b>                                                                       | several primary release<br>n, as well as the tidal action from the<br><b>REGION 8</b>                                                                                                           | Sources<br>Final RI 1993 page 6-3<br>COD983778432<br>Sources                                               |  |  |  |  |  |
| SUMMIT                       | PRINGS)<br>Excerpt from RC<br>Potential Migrat<br>mechanisms inc<br>Anclote River.<br>TVILLE MINE<br>Excerpt from RC<br>RODs/RI did no                                                                                                                                                             | DDs regarding floods and erosions near NPL sites<br>tion PathwayOnce in the surface soils, these constituent<br>cluding rainwater infiltration and percolation, surface water<br><b>RIO GRANDE COUNTY</b><br>DDs/RI regarding floods and erosions near NPL sites<br>t mention the dispersion of site-related contaminants due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ts are mobilized by<br>r runoff and erosior<br><b>CO</b><br>to floods or erosion                                               | r several primary release<br>n, as well as the tidal action from the<br><b>REGION 8</b><br>1.                                                                                                   | Sources<br>Final RI 1993 page 6-3<br>COD983778432<br>Sources                                               |  |  |  |  |  |
| SUMMIT                       | PRINGS)<br>Excerpt from R(<br>Potential Migrat<br>mechanisms inc<br>Anclote River.<br>TVILLE MINE<br>Excerpt from R(<br>RODs/RI did no<br>DYNE WAH<br>HANG                                                                                                                                         | DDs regarding floods and erosions near NPL sites         tion PathwayOnce in the surface soils, these constituent         cluding rainwater infiltration and percolation, surface water <b>RIO GRANDE COUNTY</b> DDs/RI regarding floods and erosions near NPL sites         t mention the dispersion of site-related contaminants due <b>ALBANY</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts are mobilized by<br>r runoff and erosion<br>CO<br>to floods or erosion<br>OR                                                | n. REGION 10                                                                                                                                                                                    | Sources<br>Final RI 1993 page 6-3<br>COD983778432<br>Sources<br>ORD050955848                               |  |  |  |  |  |
| SUMMI"                       | PRINGS)<br>Excerpt from R(<br>Potential Migrat<br>mechanisms inc<br>Anclote River.<br>TVILLE MINE<br>Excerpt from R(<br>RODs/RI did no<br>DYNE WAH<br>HANG<br>Excerpt from R(                                                                                                                      | DDs regarding floods and erosions near NPL sites         ion PathwayOnce in the surface soils, these constituent         cluding rainwater infiltration and percolation, surface water <b>RIO GRANDE COUNTY</b> DDs/RI regarding floods and erosions near NPL sites         t mention the dispersion of site-related contaminants due for the dispersion of sit | ts are mobilized by<br>r runoff and erosion<br>CO<br>to floods or erosion<br>OR                                                | r several primary release<br>n, as well as the tidal action from the<br>REGION 8<br>n.<br>REGION 10                                                                                             | Sources<br>Final RI 1993 page 6-3<br>COD983778432<br>Sources<br>ORD050955848<br>Sources                    |  |  |  |  |  |
| SUMMI<br>SUMMI<br>TELEI<br>C | PRINGS)         Excerpt from R(         Potential Migrat         mechanisms inc         Anclote River.         TVILLE MINE         Excerpt from R(         RODs/RI did no         DYNE WAH         HANG         Excerpt from R(         Portions of the The ground surf (sludge is within)         | ODs regarding floods and erosions near NPL sites         ion PathwayOnce in the surface soils, these constituent         cluding rainwater infiltration and percolation, surface water <b>RIO GRANDE COUNTY</b> ODs/RI regarding floods and erosions near NPL sites         it mention the dispersion of site-related contaminants due for the dispersion of the dispersion of site-related contaminants due for th | ts are mobilized by<br>r runoff and erosion<br>CO<br>to floods or erosion<br>OR<br>ur and 500-year floo<br>river with agradien | r several primary release<br>n, as well as the tidal action from the<br><b>REGION 8</b><br>n.<br><b>REGION 10</b><br>Dd plains of the Willamette River.<br>t of approximately 11 feet per mile. | Sources<br>Final RI 1993 page 6-3<br>COD983778432<br>Sources<br>ORD050955848<br>Sources<br>ROD 1989 Page 1 |  |  |  |  |  |

|      | According to an investigation by a THCA contractor (Dames and Moore) in1981, the existing LRSP dikes would be unstable during a major flood. Therefore, this alternative incorporates measures for stabilizing the dikes. |                                                               |                    |                         |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|-------------------------|--|--|--|--|--|
|      | This work would be accomplished by conventional earth-moving and compacting equipment Dike stabilization will reduce the risk of contaminant dispersal by flooding.                                                       |                                                               |                    |                         |  |  |  |  |  |
| TEX- | TEX-TIN CORP. TEXAS CITY TX REGION 6                                                                                                                                                                                      |                                                               |                    |                         |  |  |  |  |  |
|      | Excerpt from RODs regarding floods and erosions near NPL sites                                                                                                                                                            |                                                               |                    |                         |  |  |  |  |  |
|      | Past incidents of                                                                                                                                                                                                         | of flood or the presence of waste materials in a floodplain v | were not mentioned | d in the ROD documents. |  |  |  |  |  |

## I.2 2009 Current Sites

**Table I-3** lists the 199 individual 2009 Current sites that are located within catchments that include a FEMA Q3 designated flood area.

| Row | Mine Name                            | Site ID | Mine ID | Processor ID |
|-----|--------------------------------------|---------|---------|--------------|
| 1   | A-1 Grit Co                          | 3191    |         | 191          |
| 2   | Ak Ashland                           | 3094    |         | 93           |
| 3   | Ak Middletown Works                  | 3094    |         | 94           |
| 4   | Alabama Mine                         | 2095    | 95      |              |
| 5   | Albemarle                            | 3057    |         | 57           |
| 6   | Alberene Soapstone Co.               | 3257    |         | 275          |
| 7   | Alcan Primary Metal Sebree Works     | 3003    |         | 3            |
| 8   | Alcoa                                | 3004    |         | 4            |
| 9   | Alcoa Inc Wenatchee Works            | 3005    |         | 5            |
| 10  | Alcoa Intalco Works                  | 3006    |         | 6            |
| 11  | Alcoa Warrick Operations             | 3007    |         | 7            |
| 12  | Alumax Of Sc Incorporated            | 3009    |         | 9            |
| 13  | Amarillo Copper Refinery             | 3223    |         | 223          |
| 14  | Ambar Drilling Fluids                | 3029    |         | 29           |
| 15  | Amelia Barite Plant                  | 3036    |         | 36           |
| 16  | American Tripoli Inc.                | 2343    | 343     |              |
| 17  | Arcelor Mittal Minorca Mine Inc      | 2144    | 144     |              |
| 18  | Arcelor Mittal Weirton               | 3099    |         | 99           |
| 19  | Arkansas Operations Mill             | 3281    |         | 281          |
| 20  | ATI Alldyne                          | 3243    |         | 243          |
| 21  | ATI Wah Chang                        | 3268    |         | 268          |
| 22  | Baxter Mine                          | 2100    | 100     |              |
| 23  | Bethlehem Apparatus Co. Inc.         | 3187    |         | 187          |
| 24  | Big Island Mine & Refinery           | 2337    | 337     |              |
| 25  | Bingham Canyon Mine                  | 2255    | 255     |              |
| 26  | Black Butte Mine                     | 2172    | 172     |              |
| 27  | Boulder Scientific Co.               | 3218    |         | 218          |
| 28  | Brown # 2                            | 2239    | 239     |              |
| 29  | Brush Wellman Inc                    | 3050    |         | 50           |
| 30  | Buckhorn Mine                        | 2274    | 274     |              |
| 31  | Bunker Hill Mine                     | 2014    | 14      |              |
| 32  | Cabot                                | 3060    |         | 60           |
| 33  | Carlota Copper Company               | 2086    | 86      |              |
| 34  | Century Aluminum Of Kentucky         | 3011    |         | 11           |
| 35  | Chemetall Foote                      | 3168    |         | 168          |
| 36  | Chemetall Foote                      | 3169    |         | 169          |
| 37  | Chemtura                             | 3056    |         | 56           |
| 38  | Clark Mill                           | 3290    |         | 290          |
| 39  | Clark Mine                           | 2328    | 328     |              |
| 40  | Clarkdale Metals Corp                | 3083    |         | 83           |
| 41  | Colorado Quartz                      | 2098    | 98      |              |
| 42  | Columbia Falls Aluminum Company, LLC | 3012    |         | 12           |
| 43  | Copperton Concentrator               | 3069    |         | 69           |
| 44  | Corpus Christi Grinding Plant        | 3035    |         | 35           |
| 45  | Corpus Christi Plant                 | 3039    |         | 39           |
| 46  | Cotter Mill                          | 3276    |         | 276          |
| 47  | CR Briggs                            | 2104    | 104     |              |
| 48  | Cyprus Tohono Corporation            | 2049    | 49      |              |
| 49  | I De Quincy Plant                    | 3040    |         | 40           |

Table I-3. 2009 Current Sites within FEMA 100-year Flood Areas

| Row | Mine Name                                         | Site ID | Mine ID | Processor ID |
|-----|---------------------------------------------------|---------|---------|--------------|
| 50  | Doe Run Resources Corp.                           | 3151    |         | 151          |
| 51  | Dredge 17                                         | 2099    | 99      |              |
| 52  | East Boulder Mine                                 | 2166    | 166     |              |
| 53  | Eastalco Aluminum Company                         | 3013    |         | 13           |
| 54  | Edward C. Levy Co.                                | 3114    |         | 114          |
| 55  | Edward C. Levy Co                                 | 3115    |         | 115          |
| 56  | Edward C. Levy Co                                 | 3115    |         | 116          |
| 57  | Electron Epergy Magnet Mfg                        | 3210    |         | 210          |
| 59  |                                                   | 2022    |         | 213          |
| 50  | Elementis Fightents                               | 3023    |         | 23           |
| 09  |                                                   | 3230    |         | 230          |
| 00  | Erachem Conniog Inc.                              | 3101    |         | 101          |
| 61  |                                                   | 3182    |         | 182          |
| 62  | Eufaula Plant                                     | 3280    |         | 280          |
| 63  | Excalibar Minerals LLC                            | 3020    |         | 20           |
| 64  | Felman Production Inc.                            | 3184    |         | 184          |
| 65  | Fmc Corp. Lithium Division                        | 3170    |         | 170          |
| 66  | FMC Corp. Lithium Division Bayport Texas Facility | 3171    |         | 171          |
| 67  | Four Corners                                      | 2119    | 119     |              |
| 68  | Freeport-Mcmoran Bagdad Inc                       | 2079    | 79      |              |
| 69  | Freeport-Mcmoran Sierrita Inc                     | 2083    | 83      |              |
| 70  | Fritz Enterprises, Inc.                           | 3117    |         | 117          |
| 71  | Fritz Enterprises, Inc.                           | 3118    |         | 118          |
| 72  | Galena                                            | 2125    | 125     |              |
| 73  | Galveston GBT Barite Grinding Plant               | 3043    |         | 43           |
| 74  | Genesis Inc. Troy Mine                            | 2158    | 158     |              |
| 75  | Germanium Corporation Of America                  | 3073    |         | 73           |
| 76  | Giles Chemical                                    | 3172    |         | 172          |
| 77  | Giles Chemical                                    | 3174    |         | 172          |
| 79  | Global Tungeton & Powders Corp                    | 2062    |         | 62           |
| 70  | Global Tuligstell & Fowders Corp.                 | 2002    |         | 02           |
| 79  |                                                   | 2221    |         | 201          |
| 00  | Globe Metallurgical Inc.                          | 3232    |         | 232          |
| 01  |                                                   | 3233    |         | 233          |
| 82  |                                                   | 2087    | 87      |              |
| 83  | Golden Chest Project                              | 2016    | 16      |              |
| 84  | Golden Eagle                                      | 2135    | 135     |              |
| 85  | Golden Sunlight Mine Inc                          | 2163    | 163     |              |
| 86  | Gramercy Facility                                 | 3002    |         | 2            |
| 87  | Granusol, Inc.                                    | 3283    |         | 83           |
| 88  | Halliburton                                       | 3042    |         | 42           |
| 89  | Hardee Phosphate Complex                          | 2117    | 117     |              |
| 90  | Hastie Mining And Trucking Co                     | 3072    |         | 72           |
| 91  | Hemlock Semiconductor Corp.                       | 3229    |         | 229          |
| 92  | Hillsborough Mine                                 | 2331    | 331     |              |
| 93  | Holcim (US) Inc./Vulcan Construction Materials    | 3120    |         | 120          |
| 94  | Hookers Prairie Mine                              | 2116    | 116     |              |
| 95  | Hopewell                                          | 2123    | 123     |              |
| 96  | Iluka Resources Inc                               | 3277    |         | 277          |
| 97  | IMI FABI Benwood Plant                            | 3237    |         | 237          |
| 98  | Indian Creek                                      | 2169    | 169     |              |
| 90  | Indium Corp Of America                            | 3087    |         | 87           |
| 100 | Innonhos - Rhodia Geismar Facility                | 3202    |         | 202          |
| 100 | I D Simplet Co Decetello                          | 2202    |         | 202          |
| 101 | D Austin Associates Inc.                          | 3203    |         | 203          |
| 102 | J.F. AUSIIII ASSOCIATES, INC.                     | 3250    |         | 200          |
| 103 | Jenco Products incorporated                       | 2105    | 105     |              |
| 104 |                                                   | 2088    | 88      |              |
| 105 | Keewatin Laconite                                 | 2150    | 150     |              |
| 106 | Kennecott Corp-Smelter & Refinery                 | 3068    |         | 68           |
| 107 | Kettle River Mill Site                            | 2271    | 271     |              |

| Row | Mine Name                                        | Site ID | Mine ID | Processor ID |
|-----|--------------------------------------------------|---------|---------|--------------|
| 108 | Kittanning Plant                                 | 3193    |         | 193          |
| 109 | Lafarge North America Inc.                       | 3121    |         | 121          |
| 110 | Lafarge North America Inc./Maryland Slag Company | 3126    |         | 126          |
| 111 | Lake Charles Plant                               | 3194    |         | 194          |
| 112 | Laws Mill                                        | 3238    |         | 238          |
| 113 | Lee Creek Mine                                   | 2227    | 227     |              |
| 114 | Lompoc Plant                                     | 2312    | 312     |              |
| 115 | Little Rock Plant                                | 3282    |         | 282          |
| 116 |                                                  | 2126    | 126     | 202          |
| 117 | Luzanaa Amarica Ina                              | 2120    | 120     |              |
| 110 | Luzenac America inc                              | 2205    | 205     |              |
| 110 | Magnesium Elektron                               | 3269    |         | 209          |
| 119 | Manko Co Sec 5 Mine/Phos                         | 2120    | 120     |              |
| 120 | Martin Marietta Chemical Corp                    | 2175    |         | 175          |
| 121 | Martin Marietta Magnesia Specialties LLC         | 3176    |         | 1/6          |
| 122 | Mesabi Nugget Delaware, LLC                      | 3148    |         | 148          |
| 123 | M-I LLC                                          | 3027    |         | 27           |
| 124 | Mineral Park Inc                                 | 2081    | 81      |              |
| 125 | Mississippi Phosphates Corp.                     | 3204    |         | 204          |
| 126 | Mockingbird Mine                                 | 2108    | 108     |              |
| 127 | Montanore Project                                | 2031    | 31      |              |
| 128 | Morgan City Grinding Plant                       | 3037    |         | 37           |
| 129 | Mosaic Fertilizer, LLC - Taft Plant              | 3205    |         | 205          |
| 130 | Mosaic Fertilizer, LLC - Uncle Sam Plant         | 3206    |         | 206          |
| 131 | Multiserv                                        | 3129    |         | 129          |
| 132 | Multiserv                                        | 3130    |         | 130          |
| 133 | Multiserv Plt 4                                  | 3131    |         | 131          |
| 134 | New Acers                                        | 2131    | 131     |              |
| 135 | New Jersey Mine & Mill                           | 2317    | 317     |              |
| 136 | New Biverside Ochre                              | 3028    | 517     | 28           |
| 127 | North American Industrias                        | 2004    |         | 20           |
| 107 | Northabara Mina                                  | 2004    | 4       |              |
| 130 |                                                  | 2141    | 141     |              |
| 139 | Norweigen                                        | 2101    | 101     |              |
| 140 | Oregon Belle Mine                                | 2232    | 232     |              |
| 141 |                                                  | 3015    |         | 15           |
| 142 |                                                  | 3047    |         | 47           |
| 143 | P.V.P. Industries, Inc.                          | 3251    |         | 251          |
| 144 | Palmetto Vermiculite Co., Inc.                   | 3249    |         | 249          |
| 145 | Pcs Nitr Fert                                    | 3208    |         | 208          |
| 146 | Pcs Phosphate Co. Inc Morehead City              | 3209    |         | 209          |
| 147 | Pcs Phosphate White Springs                      | 3210    |         | 210          |
| 148 | Pend Oreille Mine                                | 2267    | 267     |              |
| 149 | Phoenix Services LLC                             | 3133    |         | 133          |
| 150 | Pinto Valley Operations                          | 2082    | 82      |              |
| 151 | PolyMet                                          | 2324    | 324     |              |
| 152 | Protech Minerals, Inc                            | 3272    |         | 272          |
| 153 | Quality Magnetite LLC                            | 3145    |         | 145          |
| 154 | R. E. Sansom Mine & Mill                         | 2266    | 266     |              |
| 155 | Reiss Viking Div Of C Reiss Coal                 | 2275    | 275     |              |
| 156 | Robins Shop                                      | 2137    | 137     |              |
| 157 | Rosemont Copper Project                          | 2005    | 5       |              |
| 158 | Rosiclare Facility Hastie Mining                 | 3071    |         | 71           |
| 150 | Santoku America                                  | 3220    |         | 220          |
| 160 | Sannington Mill                                  | 3272    |         | 220          |
| 161 | Sayago Diant                                     | 2061    |         | 61           |
| 101 | Savaye Fidill<br>Sabundlar Co. The               | 2050    |         | 01           |
| 102 | Schundler CO., The                               | 3258    |         | 258          |
| 163 | Seversial Dearborn                               | 3101    |         | 101          |
| 164 | Severstal Sparrows Point                         | 3102    |         | 102          |
| 165 | Severstal Wheeling                               | 3097    |         | 97           |

| Row | Mine Name                                   | Site ID | Mine ID | Processor ID |
|-----|---------------------------------------------|---------|---------|--------------|
| 166 | Sf Phosphates Limited Company               | 3211    |         | 211          |
| 167 | Silver Bell Mining LLC                      | 2309    | 309     |              |
| 168 | Sixteen To One Mine                         | 2007    | 7       |              |
| 169 | South Fort Meade Mine                       | 2121    | 121     |              |
| 170 | Standard Mineral Co., Inc.                  | 3292    |         | 292          |
| 171 | Stein, Inc.                                 | 3137    |         | 137          |
| 172 | Sterling Mine                               | 2032    | 32      |              |
| 173 | Summit Mine Site                            | 2219    | 219     |              |
| 174 | Sunshine Mine                               | 2013    | 13      |              |
| 175 | Swift Creek Mine                            | 2118    | 118     |              |
| 176 | Teague Mineral Products                     | 3190    |         | 190          |
| 177 | The Wharf Mine                              | 2240    | 240     |              |
| 178 | Therm-O-Rock East, Inc.                     | 3252    |         | 252          |
| 179 | Thompson Creek Mining Co                    | 2124    | 124     |              |
| 180 | Tripoli                                     | 2229    | 229     |              |
| 181 | Tronox LLC                                  | 3185    |         | 185          |
| 182 | Tube City IMS, LLC Dba Olympic Mill Service | 3143    |         | 143          |
| 183 | Tungsten Joint Venture                      | 3242    |         | 242          |
| 184 | Umicore Cobalt & Energy Products            | 3063    |         | 63           |
| 185 | Umicore Indium Products                     | 3086    |         | 86           |
| 186 | Umicore Optical Materials Usa               | 3074    |         | 74           |
| 187 | Unimin Corporation-Emmett Plant             | 3196    |         | 196          |
| 188 | United State Antimony Corporation           | 3016    |         | 16           |
| 189 | US Steel (ES Works)                         | 3104    |         | 104          |
| 190 | US Steel Birmingham (Fairfield)             | 3105    |         | 105          |
| 191 | US Steel Great Lakes Works                  | 3109    |         | 109          |
| 192 | Verlite Co.                                 | 3259    |         | 259          |
| 193 | W.R. Grace & Co.                            | 3261    |         | 261          |
| 194 | W.R. Grace & Co.                            | 3262    |         | 262          |
| 195 | W.R. Grace & Co Conn. Davison Catalysts     | 3221    |         | 221          |
| 196 | White Rock Quarry                           | 2273    | 273     |              |
| 197 | Whittemore Co., Inc.                        | 3256    |         | 256          |
| 198 | Wingate Creek Mine                          | 2122    | 122     |              |
| 199 | Zeox Corp Ash Meadows Plant & Mine          | 3195    |         | 195          |

In addition to the individual mines and processors listed above there are approximately 31 combination sites (comprising 50 total mines and processors) which are located at least partially within catchments that include a FEMA Q3 designated flood area. The list of 50 individual mines and processors from these 31 combination sites are listed below:

| 1.41 |                                   |         |         |              |  |  |  |  |
|------|-----------------------------------|---------|---------|--------------|--|--|--|--|
| Row  | Mine Name                         | Site ID | Mine ID | Processor ID |  |  |  |  |
| 1    | Alcoa World Alumina Atlantic      | 15      |         | 48           |  |  |  |  |
| 2    | Arcelor Mittal Burns Harbor       | 32      |         | 92           |  |  |  |  |
| 3    | Arcelor Mittal Riverdale          | 34      |         | 96           |  |  |  |  |
| 4    | Arcelor Mittal Usa Indiana Harbor | 33      |         | 98           |  |  |  |  |
| 5    | Asarco LLC Mission Complex        | 1022    |         | 197          |  |  |  |  |
| 6    | Asarco, LLC - Hayden              | 1013    |         | 66           |  |  |  |  |
| 7    | Baroid Drilling Fluids            | 1015    |         | 22           |  |  |  |  |
| 8    | Battle Mountain Grinding Plant    | 13      |         | 45           |  |  |  |  |
| 9    | Bayer Alumina Plant               | 15      |         | 1            |  |  |  |  |
| 10   | Beelman Truck Co.                 | 27      |         | 110          |  |  |  |  |

Table I-3. 2009 Current Combined Site Members within FEMA 100-year Flood Areas

| Row | Mine Name                                               | Site ID | Mine ID | Processor ID |
|-----|---------------------------------------------------------|---------|---------|--------------|
| 11  | Beemsterboer Slag Corp.                                 | 33      |         | 111, 112     |
| 12  | Copper Cities Unit                                      | 1005    | 36      |              |
| 13  | Corpus Christi Grinding Plant                           | 13      |         | 38           |
| 14  | Dyersburg Plant                                         | 19      |         | 41           |
| 15  | E.I. Dupont De Nemours                                  | 1007    |         | 271          |
| 16  | Edward C. Levy Co.                                      | 33      |         | 113          |
| 17  | Elkem Metals Co.                                        | 3230    |         | 230          |
| 18  | Eveready Battery Co. Inc.                               | 28      |         | 183          |
| 19  | Excalibar Minerals                                      | 19      |         | 24           |
| 20  | Excalibar Minerals Of Louisiana LLC                     | 1010    | 139     | 30           |
| 21  | Holcim (Us) Inc./Mercier Corp.?                         | 33      |         | 119          |
| 22  | IMC Chemicals Incorporated                              | 18      |         | 235          |
| 23  | Lafarge North America Inc.                              | 30      |         | 124          |
| 24  | Lafarge North America Inc.                              | 33      |         | 122          |
| 25  | Milwhite                                                | 1004    |         | 32           |
| 26  | Minntac Plant                                           | 1014    |         | 146          |
| 27  | Multiserv                                               | 34      |         | 127          |
| 28  | Multiserv Plt 6                                         | 30      |         | 132          |
| 29  | Nyrstar NV                                              | 21      |         | 59           |
| 30  | Phelps-Dodge Morenci                                    | 1011    |         | 199          |
| 31  | Phoenix Services LLC/Listed As Harsco Multiserv Plt 27? | 34      |         | 134          |
| 32  | Plasminco (Probably Should Be Pasminco)                 | 21      |         | 267          |
| 33  | R.T.Vanderbilt Company                                  | 1001    |         | 263          |
| 34  | Searles Valley Minerals Inc                             | 18      |         | 55           |
| 35  | Severstal Warren                                        | 30      |         | 124          |
| 36  | Sherwin Alumina                                         | 14      |         | 291          |
| 37  | Sherwin Alumina Co.                                     | 14      |         | 46           |
| 38  | Stein, Inc.                                             | 27      |         | 135          |
| 39  | Stein, Inc.                                             | 31      |         | 138          |
| 40  | Strategic Resource Acquisition Corp                     | 21      |         | 75           |
| 41  | The Levy Co., Inc.                                      | 32      |         | 139          |
| 42  | The Levy Co., Inc.                                      | 33      |         | 140          |
| 43  | Tube City IMS, LLC                                      | 33      |         | 141          |
| 44  | Tube City IMS, LLC                                      | 29      |         | 142          |
| 45  | U.S. Aggregates, Inc.                                   | 33      |         | 144          |
| 46  | US Borax Waste Pile From Boron CA Operations            | 1003    |         | 53           |
| 47  | Us Steel Braddock                                       | 29      |         | 106          |
| 48  | Us Steel Gary Works                                     | 33      |         | 107          |
| 49  | Us Steel Granite City                                   | 27      |         | 108          |
| 50  | W.R. Grace & Co.                                        | 17      |         | 260          |

In the aquatic area of review studies, point locations for sites that are not identified in a catchment area (e.g., initial catchment) are either

• in Alaska (no NHD catchment or HUC data were available for Alaska) and have a location confidence of 0 (many of these are listed as Lat/Long 0/0 thus in the middle of the ocean), or

• are located in a catchment that has no flow direction associated with it.

For catchments that have no flow direction associated with them, the following conditions were assumed: (1) there are no flow lines running in or out of the catchment and it is considered to be a topographic basin or 'contained' catchment; (2) in some very arid regions, no water associated with the catchment (e.g., streams, irrigation ditches and any rain water) would leave the catchment area; (3) all drainage in many of these areas is channeled to irrigation, resulting in no downstream flow lines; or (4) the catchments are located along a Coastline and since these flowlines merge with a large waterbody within a short distance there is no associated downstream flow.

## Appendix J Toxicity of Priority Contaminants of Concern (COCs)

This appendix presents the estimated magnitudes of the toxic effects for those COCs for which toxicity data are available. Human health benchmarks are used to quantify and characterize potential hazards and risks resulting from exposures to chemical substances. Superfund risk assessments use reference doses (RfDs) and reference concentrations (RfCs) to evaluate noncancer risk from oral and inhalation exposures, respectively. Oral cancer slope factors (CSFos) and inhalation unit risk factors (URFs) are used to evaluate risk for carcinogens.

RfDs and RfCs are the primary benchmarks used to evaluate noncarcinogenic hazards posed by environmental exposures to chemical constituents. RfDs and RfCs are estimates (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. However, an average lifetime exposure above the RfD (or RfC) does not imply that an adverse health effect would necessarily occur.

The CSF is an upper bound estimate (approximating a 95 percent confidence limit) of the increased human cancer risk from a lifetime exposure to an agent. This estimate is usually expressed in units of proportion (of a population) affected per milligram of agent per kilogram body weight per day (mg/kg-d). The URF is the preferred cancer benchmark for inhalation exposures, where the air concentrations inhaled are used as the measure of dose. The unit risk is the upper bound lifetime excess cancer risk estimated to result from continuous exposure to an agent at a concentration of 1  $\mu$ g/m<sup>3</sup> in air. That is, if the unit risk =  $1.5 \times 10^{-6}$  per  $\mu$ g/m<sup>3</sup>, then 1.5 excess cancer cases would be expected to develop per 1,000,000 people if exposed daily to a concentration of 1  $\mu$ g of the chemical agent in 1 m<sup>3</sup> of air for a lifetime. Unlike RfDs and RfCs, CSFs and URFs do not represent "safe" exposure levels; rather, they relate levels of exposure to a probability of developing cancer.

To identify human health benchmarks, Superfund risk assessments use the hierarchy of sources as described in the Office of Solid Waste and Emergency Response 2003 Directive 9285.7-53. This heirarchy encourages priority to those sources that are most current, those for which the basis is transparent and publicly available, and those that have been peer reviewed. To make best use of the currently available health benchmark data, this report used the following order of preference for sources of human health benchmarks:

- EPA's Integrated Risk Information System (IRIS)
- Superfund Provisional Peer-Reviewed Toxicity Values (PPRTVs)
- Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs)
- California EPA (CalEPA) reference exposure levels (RELs) and cancer potency factors
- Various other health benchmark sources (e.g., other State sources)
- EPA's 1997 Health Effects Assessment Summary Tables (HEAST).

The highest priority chronic human health benchmarks available for the Selected COCs are summarized in **Table J-1**, which provides the constituent name, CASRN, CSFo, inhalation

URF, reference for each benchmark, RfD, and RfC. These human health benchmarks represent the highest quality benchmark currently available (2011). However, these values may or may not differ from those used in Superfund risk assessments at NPL sites for two main reasons. Human health benchmarks may be revised over time as new toxicological data become available. Also, the Superfund risk assessor may have used a different source hierarchy (e.g., HEAST instead of ATSDR).

Radionuclide slope factors were obtained from the HEAST—Radionuclides Table (formerly Table 4). EPA, other Federal agencies, States, and contractors who are responsible for identifying, characterizing, and remediating sites contaminated with radioactive materials use radionuclide slope factors in risk assessments to calculate potential risks to the general public. EPA calculates radionuclide slope factors to assist risk assessors with risk-related evaluations and decision making at various stages of the remediation process. **Table J-2** presents the ingestion, inhalation, and external exposure cancer slope factors for radionuclide Priority COCs predominantly in units of picocuries (pCi). The cancer slope factors may differ from those used to assess risk at NPL sites because this table has changed over time; it was most recently updated in 2001.

Soil, water, and sediment ecological benchmarks are used to assess risks to ecological receptors. Ecological soil screening levels (Eco-SSLs) for avian, mammalian, plant, and soil invertebrate receptors and acute and chronic freshwater Ambient Water Quality Criteria (AWQC) are presented in **Table J-3** for Priority COCs. These ecological benchmarks represent the highest quality benchmark currently available (2011). However, these values may or may not differ from those used to assess ecological hazard at NPL sites because values may have changed since the Superfund risk assessment or the Superfund risk assessor may have used an alternative source.

### References

- ATSDR (Agency for Toxic Substances and Disease Registry). 2011. Minimal Risk Levels. Agency for Toxic Substances and Disease Registry. Atlanta, Georgia. Available at <a href="https://www.atsdr.cdc.gov/mrls/pdfs/atsdr\_mrls.pdf">https://www.atsdr.cdc.gov/mrls/pdfs/atsdr\_mrls.pdf</a>. Last updated March 3, 2011, and accessed July 2011.
- CalEPA (California Environmental Protection Agency). 2011. Air Toxics Hot Spots Program Risk Assessment Guidelines: OEHHA Acute, 8-hour, and Chronic Reference Exposure Levels (RELs). Office of Environmental Health Hazard Assessment, Berkeley, CA. Available at <u>http://oehha.ca.gov/air/allrels.html</u>. Accessed July 2011.
- NOAA (National Oceanic and Atmospheric Administration). 2008. Screening Quick Reference Tables. National Oceanic and Atmospheric Administration, Office of Response and Restoration. Silver Spring, Maryland. Available at <u>http://response.restoration.noaa.gov/sites/default/files/SQuiRTs.pdf</u> updated November 13, 2008 and accessed July 2011.
- NJDEP (New Jersey Department of Environmental Protection). 2009. Derivation of Ingestion-Based Soil Remediation Criterion for Cr+6 Based on the NTP Chronic Bioassay Data for Sodium Dichromate Dihydrate. New Jersey Department of Environmental Protection, Trenton, NJ. Available online at <u>www.state.nj.us/dep/dsr/chromium/soil-cleanupderivation.pdf</u>.

- U.S. EPA, 2011a. US EPA. Integrated Risk Information System. U.S. Environmental Protection Agency, Office of Research and Development. Washington, D.C. Available at <u>https://www.epa.gov/iris</u> last updated July 26, 2011 and accessed July 2011.
  - 2011a1- IRIS Chemical Assessment Summary Antimony
  - 2011a2- IRIS Chemical Assessment Summary Arsenic
  - 2011a3- IRIS Chemical Assessment Summary Benz[a]anthracene
  - 2011a4- IRIS Chemical Assessment Summary Benzo[a]pyrene
  - 2011a5- IRIS Chemical Assessment Summary Benzo[b]fluoranthene
  - 2011a6- IRIS Chemical Assessment Summary Beryllium
  - 2011a7- IRIS Chemical Assessment Summary Cadmium
  - 2011a8- IRIS Chemical Assessment Summary Chromium III
  - 2011a9- IRIS Chemical Assessment Summary Chromium VI
  - 2011a10- IRIS Chemical Assessment Summary Dibenz[a,h]anthracene
  - 2011a11- IRIS Chemical Assessment Summary Fluorine
  - 2011a12- IRIS Chemical Assessment Summary Manganese
  - 2011a13- IRIS Chemical Assessment Summary Mercury
  - 2011a14- IRIS Chemical Assessment Summary Nickel
  - 2011a15- IRIS Chemical Assessment Summary Polychlorinated Biphenyls (PCBs)
  - 2011a16- IRIS Chemical Assessment Summary Selenium
  - 2011a17- IRIS Chemical Assessment Summary Silver
  - 2011a18- IRIS Chemical Assessment Summary Uranium
  - 2011a19- IRIS Chemical Assessment Summary Zinc

U.S. EPA, 2011b. US EPA. Interim Ecological Soil Screening Levels. U.S. Environmental Protection Agency, Office of Research and Development. Washington, D.C. Available at <a href="https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents">https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents</a>.

- 2011b1- Eco Soil Screening Levels Antimony
- 2011b2- Eco Soil Screening Levels Arsenic
- 2011b3- Eco Soil Screening Levels Beryllium
- 2011b4- Eco Soil Screening Levels Cadmium
- 2011b5- Eco Soil Screening Levels Chromium III and VI
- 2011b6- Eco Soil Screening Levels Cobalt
- 2011b7- Eco Soil Screening Levels Copper
- 2011b8- Eco Soil Screening Levels Lead
- 2011b9- Eco Soil Screening Levels Manganese
- 2011b10- Eco Soil Screening Levels Nickel
- 2011b11- Eco Soil Screening Levels Polycyclic Aromatic Hydrocarbons (PAHs)
- 2011b12- Eco Soil Screening Levels Selenium
- 2011b13- Eco Soil Screening Levels Silver
- 2011b14- Eco Soil Screening Levels Zinc

|--|

| Priority COC                            | CASRN      | CSF₀ (per<br>mg/kg-day) | CSF₀<br>Ref | URF (per<br>ug/m <sup>3</sup> ) | IUR Ref | RfD<br>(mg/kg-<br>day) | RfD Ref | RfC<br>(mg/m <sup>3</sup> ) | RfC Ref | General Comments                                                    |
|-----------------------------------------|------------|-------------------------|-------------|---------------------------------|---------|------------------------|---------|-----------------------------|---------|---------------------------------------------------------------------|
| Antimony                                | 7440-36-0  |                         |             |                                 |         | 4.0E-04                | IRIS    |                             |         |                                                                     |
| Arsenic                                 | 7440-38-2  | 1.5E+00                 | IRIS        | 4.3E-03                         | IRIS    | 3.0E-04                | IRIS    | 1.5E-05                     | CalEPA  |                                                                     |
| Benz[a]anthracene                       | 56-55-3    | 7.3E-01                 | IRIS        | 1.1E-04                         | CalEPA  |                        |         |                             |         | Benzo(a)pyrene cancer<br>potency values with TEF<br>applied         |
| Benzo[a]pyrene                          | 50-32-8    | 7.3E+00                 | IRIS        | 1.1E-03                         | CalEPA  |                        |         |                             |         |                                                                     |
| Benzo[b]fluoranthene                    | 205-99-2   | 7.3E-01                 | IRIS        | 1.1E-04                         | CalEPA  |                        |         |                             |         | Benzo(a)pyrene cancer<br>potency values with TEF<br>applied         |
| Beryllium                               | 7440-41-7  |                         |             | 2.4E-03                         | IRIS    | 2.0E-03                | IRIS    | 2.0E-05                     | IRIS    |                                                                     |
| Cadmium                                 | 7440-43-9  |                         |             | 1.8E-03                         | IRIS    | 1.0E-03                | IRIS    | 1.0E-05                     | ATSDR   | RfD for food and soil; RfD for<br>H <sub>2</sub> O = 5E-4 mg/kg-day |
| Chromium (III)                          | 16065-83-1 |                         |             |                                 |         | 1.5E+00                | IRIS    |                             |         |                                                                     |
| Chromium (VI)                           | 7440-47-3  | 5.0E-01                 | NJDEP       | 1.2E-02                         | IRIS    | 3.0E-03                | IRIS    | 1.0E-04                     | IRIS    |                                                                     |
| Cobalt                                  | 7440-48-4  |                         |             | 9.0E-03                         | PPRTV   | 3.0E-04                | PPRTV   | 6.0E-06                     | PPRTV   |                                                                     |
| Copper                                  | 7440-50-8  |                         |             |                                 |         | 4.0E-02                | HEAST   |                             |         |                                                                     |
| Dibenz[a,h]anthracene                   | 53-70-3    | 7.3E+00                 | IRIS        | 1.2E-03                         | CalEPA  |                        |         |                             |         | Benzo(a)pyrene cancer<br>potency values with TEF<br>applied         |
| Fluorine (soluble fluoride)             | 7782-41-4  |                         |             |                                 |         | 6.0E-02                | IRIS    |                             |         |                                                                     |
| Lead                                    | 7439-92-1  |                         |             |                                 |         |                        |         |                             |         | Blood lead level = 10 µg/dL                                         |
| Manganese                               | 7439-96-5  |                         |             |                                 |         | 1.4E-01                | IRIS    | 5.0E-05                     | IRIS    | RfD for food; H <sub>2</sub> O and soil = 4.7E-2 mg/kg-day          |
| Mercury                                 | 7439-97-6  |                         |             |                                 |         | 3.0E-04                | IRIS    | 3.0E-04                     | IRIS    | RfD is for mercuric chloride                                        |
| Nickel soluble salts                    | 7440-02-0  |                         |             | 2.6E-04                         | CalEPA  | 2.0E-02                | IRIS    | 9.0E-05                     | ATSDR   |                                                                     |
| Polychlorinated biphenyls (high risk)   | 1336-36-3  | 2.0E+00                 | IRIS        | 5.7E-04                         | IRIS    |                        |         |                             |         |                                                                     |
| Polychlorinated biphenyls (low risk)    | 1336-36-3  | 4.0E-01                 | IRIS        | 1.0E-04                         | IRIS    |                        |         |                             |         |                                                                     |
| Polychlorinated biphenyls (lowest risk) | 1336-36-3  | 7.0E-02                 | IRIS        | 5.7E-04                         | IRIS    |                        |         |                             |         |                                                                     |
| Selenium                                | 7782-49-2  |                         |             |                                 |         | 5.0E-03                | IRIS    | 2.0E-02                     | CalEPA  |                                                                     |

| Priority COC | CASRN     | CSF₀ (per<br>mg/kg-day) | CSF₀<br>Ref | URF (per<br>ug/m <sup>3</sup> ) | IUR Ref | RfD<br>(mg/kg-<br>day) | RfD Ref | RfC<br>(mg/m³) | RfC Ref | General Comments |
|--------------|-----------|-------------------------|-------------|---------------------------------|---------|------------------------|---------|----------------|---------|------------------|
| Silver       | 7440-22-4 |                         |             |                                 |         | 5.0E-03                | IRIS    |                |         |                  |
| Thallium     | 7440-28-0 |                         |             |                                 |         | 1.0E-05                | PPRTV   |                |         |                  |
| Uranium      | 7440-61-1 |                         |             |                                 |         | 3.0E-03                | IRIS    | 3.0E-04        | IRIS    |                  |
| Zinc         | 7440-66-6 |                         |             |                                 |         | 3.0E-01                | IRIS    |                |         |                  |

Table J-2. Ingestion, Inhalation, and External Exposure Cancer Slope Factors for Radionuclide COCs

| 302_4 List   | ICRP_LungType | WaterIngestion<br>(Risk/pCi) | FoodIngestion<br>(Risk/pCi) | SoilIngestion<br>(Risk/pCi) | Inhalation<br>(Risk/pCi) | ExternalExposure<br>(Risk/y per pCi/g) |
|--------------|---------------|------------------------------|-----------------------------|-----------------------------|--------------------------|----------------------------------------|
| Lead-210     | М             | 8.81E-10                     | 1.18E-09                    | 1.84E-09                    | 2.77E-09                 | 1.41E-09                               |
| Radium-226Ф  | М             | 3.86E-10                     | 5.15E-10                    | 7.30E-10                    | 1.16E-08                 | 8.49E-06                               |
| Radon-222    |               |                              |                             |                             |                          | 1.74E-09                               |
| Thorium-228  | S             | 1.07E-10                     | 1.48E-10                    | 2.89E-10                    | 1.32E-07                 | 5.59E-09                               |
| Uranium-238φ | М             | 8.71E-11                     | 1.21E-10                    | 2.10E-10                    | 9.35E-09                 | 1.14E-07                               |

#### Table J-3. Ecological Soil Screening Levels (Eco-SSLs) and Acute and Chronic Freshwater Ambient Water Quality Criteria (AWQC)

| Priority COC            | CASRN      | Eco-SSL<br>Avian (mg/kg<br>dry wt soil) | Eco-SSL<br>Mammalian<br>(mg/kg dry<br>wt soil) | Eco-SSL Plant<br>(mg/kg dry wt<br>soil) | Eco-SSL Soil<br>Invertebrates<br>(mg/kg dry wt soil) | Freshwater Criteria<br>Maximum<br>Concentration<br>(CMC) - Acute (ug/L) | Freshwater<br>Criterion<br>Continuous<br>Concentration<br>(CCC) - Chronic<br>(ug/L) |
|-------------------------|------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Antimony and compounds  | 7440-36-0  |                                         | 0.27                                           |                                         | 78                                                   |                                                                         |                                                                                     |
| Arsenic and compounds   | 7440-38-2  | 43                                      | 46                                             | 18                                      |                                                      | 340                                                                     | 150                                                                                 |
| Benz[a]anthracene       | 56-55-3    |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Benzo[a]pyrene          | 50-32-8    |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Benzo[b]fluoranthene    | 205-99-2   |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Beryllium and compounds | 7440-41-7  |                                         | 21                                             |                                         | 40                                                   |                                                                         |                                                                                     |
| Cadmium and compounds   | 7440-43-9  | 0.77                                    | 0.36                                           | 32                                      | 140                                                  | 2                                                                       | 0.25                                                                                |
| Chromium (III)          | 16065-83-1 | 26                                      | 34                                             |                                         |                                                      | 570                                                                     | 74                                                                                  |
| Chromium (VI)           | 18540-29-9 |                                         | 130                                            |                                         |                                                      | 16                                                                      | 11                                                                                  |

| Priority COC                 | CASRN      | Eco-SSL<br>Avian (mg/kg<br>dry wt soil) | Eco-SSL<br>Mammalian<br>(mg/kg dry<br>wt soil) | Eco-SSL Plant<br>(mg/kg dry wt<br>soil) | Eco-SSL Soil<br>Invertebrates<br>(mg/kg dry wt soil) | Freshwater Criteria<br>Maximum<br>Concentration<br>(CMC) - Acute (ug/L) | Freshwater<br>Criterion<br>Continuous<br>Concentration<br>(CCC) - Chronic<br>(ug/L) |
|------------------------------|------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Chromium and compounds       | 7440-47-3  |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Cobalt compounds             | 7440-48-4  | 120                                     | 230                                            | 13                                      |                                                      |                                                                         |                                                                                     |
| Copper and compounds         | 7440-50-8  | 28                                      | 49                                             | 70                                      | 80                                                   | Freshwater criteria<br>calculated using the<br>BLM mm - See<br>Document |                                                                                     |
| Dibenz[a,h]anthracene        | 53-70-3    |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Fluorine                     | 7782-41-4  |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Lead and compounds           | 7439-92-1  | 11                                      | 56                                             | 120                                     | 1700                                                 | 65                                                                      | 2.5                                                                                 |
| Lead-210                     | 14255-04-0 |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Manganese and compounds      | 7439-96-5  | 4300                                    | 4000                                           | 220                                     | 450                                                  |                                                                         |                                                                                     |
| Nickel and compounds         | 7440-02-0  | 210                                     | 130                                            | 38                                      | 280                                                  | 470                                                                     | 52                                                                                  |
| PAHs (high molecular weight) | NA         |                                         | 1.1                                            |                                         | 18                                                   |                                                                         |                                                                                     |
| PAHs (low molecular weight)  | NA         |                                         | 100                                            |                                         | 29                                                   |                                                                         |                                                                                     |
| Polychlorinated biphenyls    | 1336-36-3  |                                         |                                                |                                         |                                                      |                                                                         | 0.014                                                                               |
| Radionuclides                | NA         |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Radium-226                   | 13982-63-3 |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Radon-222                    | 14859-67-7 |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Selenium and compounds       | 7782-49-2  | 1.2                                     | 0.63                                           | 0.52                                    | 4.1                                                  |                                                                         | <u>5</u>                                                                            |
| Silver and compounds         | 7440-22-4  | 4.2                                     | 14                                             | 560                                     |                                                      | 3.2                                                                     |                                                                                     |
| Thallium and compounds       | 7440-28-0  |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Thorium-228                  | 14274-82-9 |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Uranium-238                  | 7440-61-1  |                                         |                                                |                                         |                                                      |                                                                         |                                                                                     |
| Zinc and compounds           | 7440-66-6  | 46                                      | 79                                             | 160                                     | 120                                                  | 120                                                                     | 120                                                                                 |

## Appendix K Conceptual Site Model for Mining or Mineral Processing Sites

The purpose of a conceptual site model (CSM) is to provide perspective on what is known about the release, transport, and fate of contaminants at a mine or processor site to support various stages of the Superfund risk assessment process. It describes contaminant sources, contaminant release mechanisms, pathways for contaminant transport, and the resulting potential for human and ecological exposure. Sources, exposure routes, and receptors that were reported for the Historical sites are provided in other appendices.

The CSM provided in **Figure K-1**, adapted from a CSM prepared for a mining NPL site, shows a generic mining and ore processing site of nonspecific location, climate, or physical setting. Site-specific conditions, ore geochemistry, geologic, physiographic and hydrogeologic settings where the mine or mineral processor is located define many of the factors that influence the likelihood and potential severity of Superfund ecological risks associated with a specific site. The main part of the figure shows the site, and the individual receptor types are shown in smaller boxes, connected to the general location where they would be exposed. These smaller receptor boxes show the specific pathways (e.g., inhalation of particulates and vapors) by which each type of receptor might be exposed. This CSM is provided for general perspective and to orient the reader who is unfamiliar with the site features and conditions that could be found at a mining or mineral processing areas (e.g., milling operation), tailings and waste piles. Some of the common wastes from a mine site are generally discussed in the sections that follow.

Mineral processing operations that do not occur at mining sites frequently take place in a more urban or densely populated setting. A CSM for a mineral processing operation in an urban setting would show site features, contaminant sources, receptors, and likely transport pathways from contaminant source to receptor. Mineral processing that takes place within enclosed buildings may present a different potential contaminant transport setting, although outdoor waste management practices could be similar to those found at mineral processing operations located at mining sites.

## K.1 Surface Water and Groundwater Pathways

Water is an important environmental pathway for contaminant releases from mines and processors (for example, in Figure K-1, contaminants leach from surface water to groundwater, and the on-site resident has contact with or ingests contaminated surface or ground water). Transport of hazardous substances may occur by surface water movement, or by infiltration into the subsoil and ensuing groundwater movement. Human exposure to contaminated groundwater and surface water can occur from ingestion and dermal contact. Ecological receptor exposure can occur from direct contact with contaminated surface water bodies or contaminated groundwater.

A discussion of EPA's National Pollutant Discharge Elimination System (NPDES) program that regulates point source discharges (including discharges from mines and mineral processors) to surface water bodies is provided in **Section 2.4.2** and **Appendix F**, along with data from EPA's water discharges databases regarding hazardous substance releases to surface water from currently active mining and mineral processing sites.



Figure K-1. Generic Hardrock Mine Conceptual Site Model and Exposure Pathways

## K.2 Stormwater Runoff

Hazardous substances released directly to surface soils may be transported by surface water runoff to other areas of a site. Erosion of surface mine units (e.g., stockpiles, leach piles, waste rock piles, mine slope, etc.) by surface water runoff may result in transfer and deposition of acidic water, metals, and other chemicals onto exposed surface soil in down-gradient areas (see, for example, runoff in Figure K-1 from hills on left onto site and then back off to surface water). Organic chemicals and other hazardous substances that are used in maintenance and process areas at the mine site can also be transported by precipitation runoff. Local anthropogenic topographic features such as steep slopes in waste rock or tailings piles may cause increased rates of stormwater runoff and therefore increase the amounts of material transported. However, the presence of berms or ditches around mine units or interior collection areas such as ponds and topographically low areas will reduce the potential for stormwater to leave a site. Stormwater runoff control is generally required to prevent direct discharge of contaminants from mine sites into creeks and streams where aquatic habitat or downstream drinking water quality can be impacted.

## K.3 Groundwater

Groundwater can flow into mining pit lakes or evaporation ponds, or recharge from surface mine units (see, for example, percolation of surface water to groundwater in Figure K-1). Pit water is generally removed to evaporation ponds or treated and discharged to surface waters or injected into the aquifer. It is often used in milling processes. Water may flow out of, and transport chemicals from, pit lakes into alluvial and bedrock groundwater flow systems, particularly during periods of high precipitation. Groundwater inflow to pit lakes, streams, buried trenches, or surface ditches may also result in the transport of chemicals from subsurface environments to surface waters, including the transfer of chemicals into sediments.

Pumpback Well Systems (PWS) are sometimes used to extract a portion of mineralized groundwater or pit seepage water that could migrate off-site and impact neighboring or nearby human or ecological receptors. The effluent is then pumped and released to evaporation ponds, resulting in an accumulation of potentially contaminated sediment as the water evaporates. Chemical precipitate accumulations can also occur in active PWS and evaporation ponds. Losses of dewatering effluent from leaking pipelines carrying water from mine pits, holding ponds, or from PWS can also be a potential source of soil and groundwater contamination.

## K.4 Air Pathway

#### K.4.1 Fugitive Dust

Direct human exposure can occur from inhalation of fine dusts (i.e., particulates) or by ingestion or dermal contact of contaminated dusts (see, for example, wind erosion and exposure to on-site worker in Figure K-1). Particulates or fugitive dust from waste rock or tailings piles, conveyor systems, site roads, or other areas can be transported by wind and deposited and accumulated in downwind areas including surface soils, surface water bodies (e.g., ponds, pit lakes), or be inhaled by site workers and nearby residents. Dust can be an irritant, toxic, or a carcinogen depending on the particle's properties. However, the presence of physical barriers,

such as vegetation or structural foundations, may reduce wind-blown transport of particles. Accumulated mine sediments or dust may become secondary sources of chemicals transported to groundwater via leaching and percolation.

#### K.4.2 Aerosols and Chemical Vapors

Mine workers can be exposed to aerosols from numerous processes including comminution, re-entrainment, and combustion sources. Aerosols are airborne mixtures of dust and/or chemicals sometimes referred to as gases, mists or vapors. Cutting, drilling, and blasting of the parent rock, and ore crushing and beneficiation processes creates aerosols with a composition similar to the parent rock, particularly if comminuting the ore underground is practiced for efficient transport out of the mine. Aeration ponds are sometimes used to treat waste waters on a mine site, and the aerators used to disturb the surface of the water can create aerosols; the problem can become worse if surfactants are used and not managed properly.

#### K.5 Radioactivity

Naturally occurring radioactive materials (NORMs) such as thorium and uranium can be present in ore materials. As target commodities are removed from ores, and waste rock or gangue materials are produced, NORMs can concentrate in dusts and sediments. Transport of NORMs may occur by any of the transport pathways described above. Acidic groundwater and surface water and low concentrations of organic material in soils can contribute to the mobility and transport of radioactive materials. Accumulations of sediments deposited by runoff and dusts can also concentrate radioactive materials. External exposure to naturally occurring radiation is often limited to soil or waste materials that are within several inches of the ground or pile surface; radioactive materials found deeper in the soil column or accumulated sediments are generally shielded by the top layer of soil. Geometric attenuation generally limits the external radiation from unshielded NORMs to within a few meters (i.e., less than 5 meters and often less than 1 to 2 meters from the source). Radioactivity can become concentrated in mineral scales that develop in PWS, holding tanks, aeration ponds, and milling process areas. Inhalation of contaminated dusts is generally of greatest concern for NORMs.

EPA's NEI data is described in **Appendix F**. Data on hazardous substance releases to air from the 2009 Current sites is provided in **Section 2.4.2** and **Appendix F**; data for historical sites is provided in **Section 2.4.1**.

### K.6 Direct Exposure

Direct exposure can occur as a result of direct contact with solid phase mine or process wastes (see, for example, the on-site worker in Figure K-1). It can also occur under a future residential use scenario where housing is built directly on top of waste rock piles (as has been documented at one site in Colorado). In that scenario, direct exposure may be both to direct contact with or ingestion of soil, or to radiation if the waste rock had elevated radionuclide levels (see, for example, the on-site resident in Figure K-1).

## K.7 Indirect Exposure

Indirect exposure to humans encompasses a variety of pathways that can occur when contaminants are transported off the site before exposure occurs. Transport may be via air (e.g., particulates may become airborne and disperse off site, where they then redeposit on agricultural or residential land, or via runoff and soil erosion to either land or surface water. Contaminants that reach surface water can bioaccumulate in the aquatic foodchain, or leach to groundwater. Once off-site, whether in water or on land, contaminants may accumulate in the food chain, either in vegetables or grazing farm animals used for food (e.g., meat, dairy products). Residents may then ingest contaminated soil or food products. Other food chain examples include consumption of contaminated fish, shellfish, and wild game (see on- and off-site resident receptors in Figure K-1).

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 1   | 1                       | 567              | 2,249            | 3,633            | 4,855            | 5,475            | 8,480             | 13,290            | 23,440            |
| 2   | 3                       | 1,385            | 5,950            | 14,492           | 25,991           | 38,439           | 87,338            | 197,818           | 324,377           |
| 3   | 4                       | 2,547            | 3,708            | 4,280            | 5,051            | 6,002            | 12,601            | 32,871            | 47,062            |
| 4   | 5                       | 1                | 5                | 10               | 19               | 29               | 115               | 276               | 496               |
| 5   | 7                       | 4                | 14               | 33               | 58               | 90               | 361               | 750               | 1,404             |
| 6   | 8                       | 5                | 19               | 43               | 76               | 118              | 655               | 4,391             | 11,749            |
| 7   | 9                       | 10,810           | 32,708           | 60,286           | 104,525          | 173,496          | 418,872           | 592,566           | 739,003           |
| 8   | 12                      | 813              | 1,825            | 1,892            | 1,960            | 2,046            | 3,781             | 7,004             | 18,100            |
| 9   | 13                      | 212              | 6,302            | 22,514           | 42,170           | 64,503           | 215,548           | 320,265           | 357,867           |
| 10  | 14                      | 55               | 328              | 3,839            | 14,236           | 22,493           | 43,783            | 211,547           | 340,198           |
| 11  | 15                      | 206              | 527              | 782              | 1,064            | 3,141            | 16,115            | 19,854            | 29,891            |
| 12  | 17                      | 168              | 691              | 1,633            | 3,180            | 5,221            | 28,046            | 83,264            | 208,124           |
| 13  | 18                      | 29               | 93               | 181              | 278              | 403              | 1,230             | 2,079             | 25,691            |
| 14  | 19                      | 705              | 7,560            | 13,690           | 18,163           | 20,736           | 34,725            | 45,487            | 68,936            |
| 15  | 20                      | 479              | 1,922            | 4,045            | 7,122            | 11,213           | 53,637            | 151,307           | 358,693           |
| 16  | 21                      | 625              | 3,014            | 14,693           | 33,088           | 53,477           | 120,657           | 157,440           | 182,483           |
| 17  | 22                      | 1,802            | 4,304            | 7,492            | 14,733           | 18,470           | 24,403            | 35,598            | 56,860            |
| 18  | 23                      | 44               | 176              | 395              | 706              | 1,151            | 6,316             | 14,577            | 43,383            |
| 19  | 24                      | 118              | 902              | 2,183            | 6,978            | 12,973           | 22,454            | 54,784            | 60,653            |
| 20  | 27                      | 5,712            | 23,959           | 37,301           | 49,539           | 76,033           | 594,892           | 1,253,034         | 1,638,809         |
| 21  | 28                      | 484              | 2,181            | 7,268            | 15,700           | 28,190           | 105,691           | 140,409           | 162,809           |
| 22  | 29                      | 9,150            | 40,083           | 97,402           | 164,528          | 251,677          | 839,849           | 1,273,998         | 1,592,222         |
| 23  | 30                      | 3,902            | 24,633           | 51,329           | 78,029           | 97,048           | 203,947           | 392,163           | 542,478           |
| 24  | 31                      | 6,129            | 28,470           | 59,419           | 84,340           | 107,609          | 258,642           | 434,577           | 789,985           |
| 25  | 32                      | 841              | 2,693            | 8,181            | 20,271           | 37,185           | 144,053           | 356,645           | 683,949           |
| 26  | 33                      | 1,980            | 17,097           | 27,317           | 65,867           | 119,336          | 534,773           | 1,418,904         | 2,432,332         |
| 27  | 34                      | 15,965           | 66,530           | 144,273          | 249,467          | 369,983          | 1,442,948         | 2,511,329         | 3,788,615         |
| 28  | 1001                    | 72               | 338              | 800              | 1,451            | 2,278            | 11,684            | 18,398            | 30,126            |
| 29  | 1002                    | 3                | 12               | 26               | 66               | 262              | 4,660             | 5,618             | 6,802             |
| 30  | 1003                    | 173              | 550              | 967              | 1,615            | 2,558            | 4,696             | 9,561             | 18,480            |
| 31  | 1004                    | 10,681           | 42,393           | 91,309           | 129,615          | 148,199          | 166,377           | 184,009           | 225,933           |
| 32  | 1005                    | 225              | 1,610            | 2,840            | 5,177            | 8,575            | 16,846            | 20,700            | 23,928            |
| 33  | 1006                    | 11               | 48               | 119              | 1,326            | 4,140            | 10,141            | 26,011            | 27,544            |
| 34  | 1007                    | 100              | 708              | 2,087            | 3,994            | 6,278            | 26,630            | 59,820            | 107,234           |
| 35  | 1008                    | 20               | 87               | 231              | 521              | 923              | 3,521             | 5,296             | 7,390             |
| 36  | 1009                    | 110              | 442              | 1,037            | 2,432            | 4,730            | 36,282            | 83,296            | 166,572           |
| 37  | 1010                    | 419              | 1,681            | 4,235            | 12,957           | 29,403           | 68,639            | 108,234           | 177,448           |
| 38  | 1011                    | 29               | 1,470            | 2,778            | 3,294            | 3,746            | 4,808             | 6,264             | 8,127             |
| 39  | 1012                    | -                | 2                | 5                | 10               | 19               | 152               | 458               | 983               |
| 40  | 1013                    | 467              | 1,319            | 1,464            | 1,547            | 1,655            | 4,294             | 5,659             | 9,026             |
| 41  | 1014                    | 42               | 168              | 752              | 2,445            | 9,301            | 23,046            | 35,975            | 56,547            |
| 42  | 1015                    | 314              | 6,280            | 12,559           | 19,592           | 26,442           | 91,993            | 263,260           | 508,712           |

## Appendix L Potential Human Receptors for 2009 Current Sites

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 43  | 1016                    | 228              | 854              | 1,747            | 3,308            | 5,791            | 31,976            | 120,536           | 263,372           |
| 44  | 1017                    | 1                | 4                | 16               | 37               | 66               | 1,664             | 2,140             | 4,836             |
| 45  | 1018                    | 4                | 14               | 33               | 58               | 90               | 331               | 620               | 1,021             |
| 46  | 1019                    | 96               | 356              | 777              | 1,377            | 2,118            | 11,936            | 95,659            | 153,244           |
| 47  | 1020                    | 499              | 1,687            | 3,704            | 6,637            | 10,537           | 51,444            | 127,003           | 342,856           |
| 48  | 1021                    | 4                | 16               | 35               | 62               | 97               | 376               | 777               | 1,317             |
| 49  | 1022                    | 36               | 176              | 517              | 996              | 1,537            | 33,372            | 176,958           | 396,945           |
| 50  | 2003                    | 1                | 4                | 9                | 17               | 26               | 86                | 169               | 334               |
| 51  | 2004                    | 311              | 1,053            | 1,849            | 2,995            | 4,456            | 35,280            | 76,496            | 94,183            |
| 52  | 2005                    | 30               | 119              | 289              | 564              | 901              | 4,269             | 29,083            | 49,088            |
| 53  | 2007                    | 6                | 25               | 61               | 119              | 199              | 1,230             | 6,342             | 24,616            |
| 54  | 2009                    | 16               | 82               | 212              | 397              | 657              | 2,944             | 9,734             | 32,083            |
| 55  | 2012                    | 5                | 23               | 55               | 101              | 160              | 661               | 1,440             | 2,384             |
| 56  | 2013                    | 92               | 730              | 1,659            | 3,267            | 4,905            | 10,790            | 12,912            | 14,636            |
| 57  | 2014                    | 295              | 1,253            | 2,204            | 3,075            | 5,283            | 10,431            | 12,715            | 15,055            |
| 58  | 2015                    | 4                | 14               | 32               | 58               | 93               | 467               | 958               | 1,641             |
| 59  | 2016                    | 3                | 11               | 25               | 44               | 78               | 1,961             | 8,157             | 13,461            |
| 60  | 2025                    | 43               | 165              | 344              | 563              | 857              | 7,248             | 20,725            | 25,747            |
| 61  | 2029                    | 9                | 38               | 85               | 151              | 230              | 2,536             | 9,044             | 43,054            |
| 62  | 2031                    | 16               | 63               | 138              | 217              | 306              | 1,005             | 2,132             | 5,252             |
| 63  | 2032                    | 4                | 17               | 40               | 75               | 120              | 458               | 844               | 1,169             |
| 64  | 2033                    | 2                | 10               | 22               | 40               | 64               | 261               | 557               | 930               |
| 65  | 2037                    | 5                | 22               | 49               | 88               | 138              | 820               | 2,122             | 26,924            |
| 66  | 2042                    | 759              | 2,455            | 3,916            | 5,566            | 6,901            | 16,185            | 33,820            | 76,015            |
| 67  | 2044                    | 1                | 4                | 8                | 14               | 22               | 88                | 197               | 343               |
| 68  | 2048                    | 4                | 17               | 35               | 54               | 78               | 216               | 402               | 651               |
| 69  | 2049                    | 6                | 21               | 45               | 78               | 119              | 502               | 1,212             | 3,033             |
| 70  | 2050                    | 1                | 3                | 5                | 8                | 12               | 52                | 104               | 171               |
| 71  | 2052                    | 36               | 763              | 2,665            | 3,214            | 3,359            | 4,057             | 9,205             | 26,529            |
| 72  | 2068                    | 4                | 14               | 32               | 58               | 88               | 281               | 565               | 1,219             |
| 73  | 2077                    | 511              | 1,826            | 3,616            | 5,895            | 8,436            | 24,734            | 64,629            | 220,013           |
| 74  | 2079                    | 11               | 43               | 97               | 173              | 271              | 983               | 1,819             | 2,508             |
| 75  | 2080                    | 5                | 18               | 39               | 67               | 118              | 3,041             | 8,538             | 22,673            |
| 76  | 2081                    | 8                | 31               | 70               | 129              | 283              | 8,927             | 40,850            | 44,614            |
| 77  | 2082                    | 4                | 17               | 44               | 308              | 590              | 11,105            | 21,727            | 23,361            |
| 78  | 2083                    | 113              | 364              | 701              | 1,162            | 1,916            | 23,017            | 32,570            | 70,083            |
| 79  | 2085                    | 1                | 4                | 9                | 17               | 26               | 101               | 201               | 354               |
| 80  | 2086                    | 4                | 26               | 71               | 202              | 467              | 11,290            | 21,681            | 23,281            |
| 81  | 2087                    | 12               | 48               | 143              | 380              | 675              | 10,199            | 51,614            | 67,789            |
| 82  | 2088                    | 19               | 83               | 203              | 379              | 613              | 2,514             | 5,970             | 16,791            |
| 83  | 2089                    | 592              | 1,691            | 3,822            | 7,902            | 20,059           | 97,835            | 245,625           | 554,896           |
| 84  | 2091                    | 19               | 75               | 165              | 286              | 429              | 7,566             | 21,208            | 25,402            |
| 85  | 2095                    | 518              | 2,482            | 11,657           | 31,958           | 61,052           | 246,314           | 345,408           | 431,187           |
| 86  | 2098                    | 77               | 371              | 989              | 1,619            | 2,414            | 7,461             | 11,597            | 17,887            |
| 87  | 2099                    | 48               | 301              | 761              | 1,419            | 2,237            | 44,496            | 139,929           | 194,490           |
| 88  | 2100                    | 1                | 5                | 14               | 28               | 50               | 261               | 828               | 2,028             |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 89  | 2101                    | 1                | 3                | 7                | 12               | 18               | 65                | 259               | 814               |
| 90  | 2103                    | 1                | 4                | 8                | 15               | 23               | 91                | 205               | 579               |
| 91  | 2104                    | -                | 2                | 5                | 10               | 15               | 66                | 167               | 665               |
| 92  | 2105                    | 70               | 285              | 652              | 1,366            | 6,044            | 149,693           | 549,959           | 937,352           |
| 93  | 2107                    | 1                | 3                | 7                | 13               | 20               | 76                | 362               | 2,218             |
| 94  | 2108                    | 77               | 418              | 981              | 1,609            | 2,385            | 7,181             | 11,442            | 17,515            |
| 95  | 2109                    | 215              | 915              | 1,840            | 4,100            | 7,785            | 74,816            | 182,575           | 592,049           |
| 96  | 2111                    | 19               | 72               | 192              | 408              | 720              | 5,513             | 16,592            | 26,779            |
| 97  | 2113                    | 36               | 144              | 329              | 592              | 923              | 4,293             | 25,364            | 33,118            |
| 98  | 2114                    | 23               | 102              | 299              | 618              | 1,019            | 4,112             | 15,091            | 166,368           |
| 99  | 2115                    | 61               | 240              | 481              | 783              | 1,137            | 2,979             | 12,670            | 18,654            |
| 100 | 2116                    | 18               | 105              | 668              | 878              | 1,236            | 23,903            | 106,196           | 298,906           |
| 101 | 2117                    | 79               | 321              | 736              | 1,320            | 2,040            | 20,290            | 29,730            | 42,022            |
| 102 | 2118                    | 20               | 79               | 175              | 364              | 835              | 6,314             | 20,263            | 46,068            |
| 103 | 2119                    | 50               | 199              | 461              | 824              | 1,297            | 6,768             | 73,219            | 277,550           |
| 104 | 2120                    | 759              | 3,011            | 8,295            | 17,278           | 24,537           | 65,859            | 132,978           | 191,576           |
| 105 | 2121                    | 56               | 287              | 844              | 1,596            | 4,260            | 24,531            | 53,516            | 121,652           |
| 106 | 2122                    | 19               | 75               | 177              | 380              | 726              | 3,896             | 11,566            | 51,415            |
| 107 | 2123                    | 300              | 1,315            | 4,352            | 10,239           | 21,418           | 190,571           | 424,012           | 706,511           |
| 108 | 2124                    | 1                | 4                | 8                | 15               | 24               | 109               | 360               | 817               |
| 109 | 2125                    | 359              | 1,312            | 2,139            | 2,936            | 3,732            | 9,143             | 12,900            | 14,128            |
| 110 | 2126                    | 71               | 284              | 632              | 1,032            | 1,488            | 4,100             | 7,479             | 11,567            |
| 111 | 2127                    | 1                | 4                | 9                | 16               | 25               | 456               | 1,466             | 3,814             |
| 112 | 2128                    | 32               | 112              | 238              | 413              | 636              | 2,425             | 4,551             | 6,260             |
| 113 | 2129                    | 1                | 4                | 9                | 17               | 124              | 2,859             | 6,270             | 9,039             |
| 114 | 2131                    | 67               | 277              | 639              | 2,021            | 5,066            | 26,982            | 50,774            | 81,401            |
| 115 | 2133                    | 1                | 3                | 7                | 13               | 23               | 135               | 459               | 1,063             |
| 116 | 2134                    | -                | 2                | 4                | 8                | 12               | 49                | 152               | 346               |
| 117 | 2135                    | 106              | 355              | 709              | 1,174            | 1,722            | 8,592             | 87,465            | 224,081           |
| 118 | 2136                    | 1                | 4                | 9                | 16               | 36               | 556               | 1,712             | 3,358             |
| 119 | 2137                    | 1,864            | 5,428            | 14,097           | 27,815           | 50,988           | 159,882           | 187,758           | 219,983           |
| 120 | 2141                    | 22               | 89               | 196              | 854              | 1,420            | 2,874             | 5,886             | 15,069            |
| 121 | 2144                    | 72               | 2,235            | 7,686            | 10,803           | 12,351           | 23,802            | 32,712            | 45,932            |
| 122 | 2146                    | 484              | 1,756            | 3,552            | 6,902            | 11,182           | 16,708            | 18,829            | 20,966            |
| 123 | 2150                    | 235              | 1,210            | 1,579            | 2,201            | 3,150            | 23,563            | 31,408            | 38,810            |
| 124 | 2152                    | 58               | 222              | 436              | 703              | 997              | 3,230             | 6,632             | 13,614            |
| 125 | 2153                    | 20               | 81               | 183              | 336              | 581              | 2,905             | 6,476             | 11,024            |
| 126 | 2154                    | 24               | 96               | 210              | 366              | 564              | 2,533             | 6,249             | 10,748            |
| 127 | 2155                    | 58               | 208              | 408              | 672              | 999              | 3,210             | 6,270             | 11,955            |
| 128 | 2156                    | 25               | 96               | 196              | 325              | 534              | 2,668             | 5,258             | 9,688             |
| 129 | 2157                    | 58               | 226              | 483              | 827              | 1,253            | 3,239             | 6,330             | 12,818            |
| 130 | 2158                    | 15               | 58               | 131              | 231              | 352              | 1,376             | 4,422             | 13,010            |
| 131 | 2159                    | 90               | 7,380            | 22,979           | 28,657           | 30,386           | 32,880            | 34,554            | 37,330            |
| 132 | 2160                    | 3                | 13               | 29               | 51               | 79               | 464               | 4,715             | 8,147             |
| 133 | 2161                    | 7                | 26               | 59               | 104              | 163              | 650               | 1,444             | 3,739             |
| 134 | 2162                    | 8                | 32               | 71               | 127              | 198              | 2,024             | 14,913            | 47,061            |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 135 | 2163                    | 4                | 17               | 93               | 422              | 870              | 2,083             | 3,108             | 5,137             |
| 136 | 2164                    | 7                | 26               | 58               | 99               | 150              | 531               | 1,140             | 1,970             |
| 137 | 2166                    | 4                | 14               | 32               | 56               | 88               | 359               | 984               | 1,926             |
| 138 | 2167                    | 3                | 13               | 29               | 51               | 80               | 3,114             | 6,076             | 7,259             |
| 139 | 2168                    | 9                | 36               | 80               | 139              | 215              | 1,457             | 18,087            | 36,281            |
| 140 | 2169                    | 7                | 28               | 62               | 456              | 1,398            | 2,646             | 3,429             | 5,763             |
| 141 | 2171                    | 4                | 18               | 40               | 72               | 120              | 797               | 2,954             | 6,673             |
| 142 | 2172                    | 10               | 39               | 88               | 157              | 1,053            | 4,454             | 7,354             | 18,133            |
| 143 | 2173                    | 1                | 2                | 5                | 9                | 13               | 54                | 120               | 208               |
| 144 | 2176                    | 2                | 7                | 16               | 28               | 44               | 208               | 4,398             | 4,883             |
| 145 | 2177                    | 38               | 281              | 680              | 1,231            | 2,063            | 8,862             | 10,584            | 11,581            |
| 146 | 2179                    | 1                | 4                | 10               | 17               | 27               | 390               | 1,886             | 2,539             |
| 147 | 2180                    | 1                | 3                | 7                | 12               | 19               | 76                | 180               | 387               |
| 148 | 2181                    | 1                | 3                | 7                | 13               | 20               | 78                | 173               | 306               |
| 149 | 2182                    | 1                | 3                | 6                | 11               | 20               | 274               | 727               | 1,383             |
| 150 | 2184                    | 4                | 17               | 38               | 66               | 100              | 375               | 754               | 3,323             |
| 151 | 2185                    | -                | 1                | 3                | 5                | 8                | 112               | 416               | 820               |
| 152 | 2186                    | 4                | 14               | 33               | 58               | 90               | 361               | 793               | 5,286             |
| 153 | 2187                    | 1                | 3                | 7                | 13               | 20               | 79                | 190               | 523               |
| 154 | 2191                    | 8                | 33               | 74               | 132              | 206              | 840               | 2,125             | 5,149             |
| 155 | 2192                    | -                | 1                | 3                | 5                | 8                | 31                | 100               | 339               |
| 156 | 2193                    | 4                | 14               | 33               | 58               | 90               | 347               | 4,617             | 5,151             |
| 157 | 2194                    | 591              | 2,155            | 3,688            | 4,988            | 6,522            | 59,057            | 88,214            | 153,909           |
| 158 | 2196                    | -                | 1                | 3                | 5                | 8                | 40                | 183               | 498               |
| 159 | 2197                    | -                | 1                | 3                | 5                | 8                | 131               | 373               | 835               |
| 160 | 2199                    | 2                | 7                | 15               | 26               | 40               | 143               | 296               | 508               |
| 161 | 2200                    | 205              | 701              | 1,374            | 2,109            | 2,946            | 9,630             | 10,723            | 11,753            |
| 162 | 2201                    | 1                | 16               | 93               | 214              | 348              | 5,182             | 5,389             | 6,707             |
| 163 | 2202                    | 2                | 9                | 19               | 32               | 48               | 176               | 383               | 687               |
| 164 | 2204                    | 1                | 2                | 6                | 11               | 18               | 83                | 191               | 339               |
| 165 | 2206                    | 1                | 3                | 6                | 12               | 23               | 141               | 387               | 747               |
| 166 | 2208                    | 36               | 180              | 657              | 1,747            | 3,246            | 9,004             | 11,315            | 15,382            |
| 167 | 2209                    | -                | 1                | 6                | 20               | 40               | 253               | 602               | 1,021             |
| 168 | 2214                    | 19               | 78               | 175              | 310              | 467              | 1,616             | 4,071             | 30,930            |
| 169 | 2215                    | 19               | 75               | 150              | 246              | 365              | 4,258             | 19,328            | 26,364            |
| 170 | 2216                    | 2                | 25               | 81               | 269              | 559              | 2,808             | 4,724             | 14,258            |
| 171 | 2217                    | 5                | 19               | 43               | 77               | 121              | 483               | 1,057             | 1,723             |
| 172 | 2218                    | 23               | 91               | 273              | 1,131            | 1,882            | 4,976             | 7,601             | 12,095            |
| 173 | 2219                    | 3                | 13               | 30               | 55               | 110              | 739               | 2,267             | 3,937             |
| 174 | 2220                    | 13               | 52               | 116              | 206              | 322              | 1,291             | 2,915             | 4,677             |
| 175 | 2224                    | 37               | 144              | 319              | 540              | 829              | 3,230             | 7,445             | 12,973            |
| 176 | 2227                    | 45               | 182              | 532              | 1,126            | 1,729            | 6,079             | 19,698            | 51,758            |
| 177 | 2229                    | 93               | 373              | 1,149            | 2,463            | 3,931            | 22,595            | 91,890            | 154,298           |
| 178 | 2230                    | 9                | 35               | 81               | 144              | 223              | 797               | 1,610             | 9,180             |
| 179 | 2232                    | 84               | 322              | 735              | 1,381            | 2,545            | 52,835            | 140,619           | 208,462           |
| 180 | 2235                    | 4                | 15               | 33               | 61               | 104              | 521               | 1,244             | 3,292             |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 181 | 2239                    | 486              | 1.777            | 4.953            | 8.256            | 10.812           | 33,228            | 125.807           | 322,580           |
| 182 | 2240                    | 57               | 229              | 505              | 2,552            | 4,195            | 9.821             | 22,470            | 30,729            |
| 183 | 2243                    | 3 446            | 7 188            | 10 211           | 14 092           | 18 650           | 53 310            | 121 086           | 201 830           |
| 184 | 2245                    | 462              | 2.050            | 4.903            | 9.028            | 14.047           | 62,039            | 238,959           | 397,115           |
| 185 | 2246                    | 332              | 1.045            | 2,132            | 3,563            | 5.950            | 17,356            | 33,436            | 82,466            |
| 186 | 2253                    | 9                | 37               | 82               | 146              | 229              | 1.273             | 5.723             | 7.221             |
| 187 | 2254                    | 671              | 1.636            | 2.360            | 3.427            | 4.884            | 14.260            | 34.716            | 103.568           |
| 188 | 2255                    | 62               | 249              | 586              | 1.689            | 3.361            | 92.254            | 459.278           | 800.733           |
| 189 | 2256                    | 4                | 14               | 32               | 58               | 103              | 582               | 1.468             | 4.411             |
| 190 | 2257                    | 2                | 7                | 15               | 27               | 42               | 174               | 511               | 1.242             |
| 191 | 2258                    | 8                | 31               | 116              | 317              | 602              | 3,266             | 11,860            | 26,024            |
| 192 | 2259                    | 29               | 133              | 346              | 832              | 4,940            | 259,201           | 613,357           | 938,834           |
| 193 | 2261                    | 1                | 3                | 6                | 11               | 23               | 1,424             | 1,665             | 1,842             |
| 194 | 2262                    | 2                | 7                | 15               | 27               | 43               | 240               | 609               | 1,180             |
| 195 | 2263                    | 1                | 3                | 7                | 13               | 20               | 80                | 179               | 319               |
| 196 | 2265                    | 130              | 569              | 1,733            | 2,636            | 3,665            | 15,472            | 37,489            | 71,286            |
| 197 | 2266                    | 129              | 518              | 1,169            | 2,158            | 3,556            | 17,431            | 51,533            | 161,949           |
| 198 | 2267                    | 32               | 147              | 328              | 531              | 708              | 1,474             | 2,365             | 3,481             |
| 199 | 2268                    | 49               | 188              | 475              | 1,025            | 1,892            | 9,220             | 24,455            | 47,430            |
| 201 | 2269                    | 126              | 463              | 994              | 1,673            | 2,398            | 17,064            | 55,221            | 80,419            |
| 202 | 2271                    | 12               | 49               | 125              | 322              | 762              | 2,611             | 4,087             | 5,608             |
| 203 | 2273                    | 71               | 235              | 502              | 841              | 1,241            | 6,311             | 11,553            | 23,929            |
| 204 | 2274                    | 6                | 25               | 57               | 99               | 144              | 704               | 1,994             | 5,607             |
| 205 | 2275                    | 580              | 2,943            | 6,104            | 9,396            | 14,456           | 75,285            | 153,867           | 233,545           |
| 206 | 2278                    | -                | 3                | 8                | 16               | 25               | 109               | 220               | 350               |
| 207 | 2280                    | 1                | 54               | 117              | 199              | 306              | 3,867             | 34,840            | 74,270            |
| 208 | 2281                    | 1                | 4                | 10               | 17               | 27               | 234               | 1,342             | 18,769            |
| 209 | 2282                    | 10               | 42               | 310              | 2,031            | 2,094            | 2,485             | 3,116             | 3,782             |
| 210 | 2283                    | -                | 1                | 2                | 4                | 7                | 26                | 63                | 138               |
| 211 | 2284                    | 9                | 30               | 58               | 93               | 129              | 285               | 611               | 19,550            |
| 212 | 2285                    | -                | 1                | 2                | 4                | 7                | 26                | 59                | 105               |
| 213 | 2286                    | 2                | 6                | 14               | 24               | 38               | 312               | 9,133             | 60,444            |
| 214 | 2287                    | -                | 1                | 1                | 3                | 4                | 16                | 35                | 63                |
| 215 | 2291                    | 2                | 8                | 18               | 33               | 51               | 204               | 434               | 650               |
| 216 | 2293                    | -                | 1                | 2                | 4                | 7                | 26                | 59                | 108               |
| 217 | 2294                    | 185              | 1,135            | 2,956            | 5,611            | 7,745            | 56,388            | 67,390            | 76,008            |
| 218 | 2295                    | -                | -                | 1                | 1                | 2                | 8                 | 17                | 30                |
| 219 | 2296                    | 1                | 5                | 11               | 20               | 34               | 233               | 668               | 2,136             |
| 220 | 2298                    | 2,563            | 13,739           | 23,600           | 34,563           | 46,817           | 59,165            | 67,731            | 76,295            |
| 221 | 2299                    | 1                | 3                | 6                | 10               | 15               | 44                | 91                | 174               |
| 222 | 2300                    | 10               | 42               | 311              | 2,031            | 2,094            | 2,485             | 3,116             | 3,782             |
| 223 | 2301                    | 4                | 89               | 364              | 923              | 2,844            | 40,985            | 58,061            | 67,406            |
| 224 | 2302                    | -                | -                | 1                | 1                | 2                | 8                 | 17                | 30                |
| 225 | 2304                    | -                | 1                | 3                | 5                | 8                | 31                | 70                | 126               |
| 226 | 2309                    | 8                | 30               | 64               | 101              | 149              | 1,675             | 8,565             | 18,077            |
| 227 | 2311                    | 357              | 1,640            | 4,396            | 8,055            | 12,970           | 61,238            | 101,358           | 126,215           |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 228 | 2312                    | 15               | 364              | 6.801            | 28.259           | 37.718           | 53.734            | 62.440            | 89.667            |
| 229 | 2313                    | 32               | 128              | 290              | 509              | 806              | 3.950             | 16.309            | 32,175            |
| 230 | 2317                    | 447              | 1.705            | 2.423            | 4.211            | 5.364            | 10.088            | 12.584            | 15.053            |
| 231 | 2323                    | 66               | 352              | 969              | 3.301            | 11.866           | 24.713            | 46.216            | 55.280            |
| 232 | 2324                    | 71               | 284              | 602              | 931              | 1.309            | 6.247             | 11,489            | 24.350            |
| 233 | 2327                    | 1                | 4                | 9                | 15               | 24               | 95                | 213               | 372               |
| 234 | 2328                    | 20               | 79               | 167              | 296              | 481              | 7,564             | 15,017            | 146,077           |
| 235 | 2329                    | 3                | 11               | 26               | 47               | 86               | 596               | 1,488             | 2,690             |
| 236 | 2330                    | 6                | 26               | 61               | 166              | 415              | 16,476            | 29,719            | 31,494            |
| 237 | 2331                    | 2,240            | 6,194            | 10,611           | 14,714           | 18,701           | 100,173           | 340,714           | 472,436           |
| 238 | 2334                    | 50               | 199              | 556              | 1,198            | 2,088            | 8,747             | 22,360            | 38,337            |
| 239 | 2337                    | 5                | 19               | 43               | 76               | 119              | 477               | 1,370             | 8,607             |
| 240 | 2340                    | 1                | 3                | 7                | 13               | 20               | 81                | 186               | 337               |
| 241 | 2343                    | 249              | 848              | 1,836            | 3,186            | 4,744            | 15,236            | 64,592            | 143,895           |
| 242 | 2344                    | 7                | 41               | 73               | 118              | 177              | 749               | 1,862             | 3,292             |
| 243 | 3002                    | 112              | 2,869            | 8,280            | 11,961           | 14,990           | 41,335            | 75,937            | 143,042           |
| 244 | 3003                    | 121              | 444              | 1,018            | 1,855            | 3,099            | 12,789            | 46,814            | 89,075            |
| 245 | 3004                    | 40               | 163              | 369              | 658              | 1,033            | 11,615            | 18,916            | 36,285            |
| 246 | 3005                    | 76               | 461              | 1,379            | 2,616            | 3,923            | 41,706            | 65,034            | 77,136            |
| 247 | 3006                    | 189              | 682              | 1,893            | 3,777            | 11,669           | 44,213            | 135,248           | 161,588           |
| 248 | 3007                    | 170              | 788              | 2,531            | 7,859            | 15,941           | 78,955            | 220,130           | 344,549           |
| 249 | 3009                    | 193              | 6,506            | 20,195           | 37,465           | 56,902           | 174,618           | 277,929           | 401,973           |
| 250 | 3010                    | 717              | 2,136            | 3,774            | 6,513            | 11,137           | 36,186            | 62,535            | 112,992           |
| 251 | 3011                    | 915              | 6,114            | 8,755            | 10,933           | 12,972           | 22,420            | 38,897            | 70,097            |
| 252 | 3012                    | 225              | 1,105            | 4,013            | 6,569            | 8,445            | 22,566            | 37,942            | 61,583            |
| 253 | 3013                    | 439              | 2,093            | 4,548            | 10,989           | 22,252           | 120,119           | 221,046           | 486,071           |
| 254 | 3014                    | 30               | 159              | 778              | 1,427            | 2,060            | 12,436            | 20,369            | 30,691            |
| 255 | 3015                    | 242              | 2,014            | 3,698            | 5,449            | 7,787            | 18,185            | 37,097            | 72,522            |
| 256 | 3016                    | 10               | 41               | 92               | 164              | 258              | 1,596             | 4,623             | 9,036             |
| 257 | 3020                    | 890              | 5,529            | 15,136           | 32,474           | 59,190           | 204,932           | 313,057           | 354,428           |
| 258 | 3023                    | 6,545            | 24,628           | 36,686           | 58,548           | 100,617          | 637,844           | 1,228,931         | 1,667,439         |
| 259 | 3026                    | 711              | 10,420           | 47,578           | 121,594          | 188,859          | 708,492           | 1,440,197         | 2,276,585         |
| 260 | 3027                    | 2,550            | 15,302           | 27,907           | 39,546           | 46,978           | 80,246            | 126,327           | 172,891           |
| 261 | 3028                    | 381              | 6,306            | 12,570           | 19,588           | 26,435           | 92,136            | 263,505           | 509,657           |
| 262 | 3029                    | 524              | 3,232            | 13,238           | 30,434           | 44,307           | 89,526            | 122,989           | 164,020           |
| 263 | 3033                    | 1                | 4                | 10               | 18               | 33               | 177               | 438               | 1,990             |
| 264 | 3034                    | 24               | 283              | 765              | 2,682            | 6,005            | 11,507            | 12,771            | 14,187            |
| 265 | 3035                    | 506              | 2,080            | 6,018            | 11,567           | 22,693           | 197,017           | 295,476           | 341,573           |
| 266 | 3036                    | 438              | 1,827            | 2,438            | 3,118            | 4,917            | 27,551            | 45,458            | 98,748            |
| 267 | 3037                    | 4,668            | 13,508           | 17,644           | 21,580           | 23,006           | 33,255            | 40,854            | 63,943            |
| 268 | 3039                    | 8                | 31               | 63               | 102              | 149              | 518               | 2,668             | 42,351            |
| 269 | 3040                    | 76               | 291              | 653              | 1,242            | 2,130            | 13,354            | 34,350            | 98,210            |
| 270 | 3042                    | 6,817            | 37,829           | 83,190           | 148,298          | 228,116          | 698,433           | 999,860           | 1,038,104         |
| 271 | 3043                    | 1,697            | 19,763           | 41,160           | 50,625           | 55,206           | 102,289           | 133,116           | 184,778           |
| 272 | 3044                    | 4                | 14               | 32               | 57               | 88               | 328               | 4,499             | 4,888             |
| 273 | 3047                    | 145              | 701              | 1,808            | 3,844            | 8,345            | 48,885            | 108,293           | 193,016           |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 274 | 3049                    | 9                | 39               | 89               | 153              | 232              | 1,503             | 6,084             | 6,960             |
| 275 | 3050                    | 273              | 1,102            | 2,593            | 5,562            | 8,856            | 31,513            | 92,879            | 225,754           |
| 276 | 3056                    | 259              | 1,035            | 2,638            | 7,306            | 15,263           | 31,340            | 39,328            | 48,979            |
| 277 | 3057                    | 70               | 314              | 1,410            | 3,404            | 9,805            | 19,672            | 27,220            | 35,479            |
| 278 | 3060                    | 1,748            | 10,740           | 19,326           | 26,888           | 36,541           | 148,107           | 397,572           | 911,856           |
| 279 | 3061                    | 2,246            | 14,538           | 45,224           | 83,814           | 129,410          | 502,222           | 1,064,587         | 1,691,337         |
| 280 | 3062                    | 1,524            | 3,759            | 5,134            | 6,498            | 8,004            | 17,780            | 39,175            | 71,790            |
| 281 | 3063                    | 114              | 739              | 2,059            | 4,805            | 10,897           | 43,294            | 84,762            | 140,688           |
| 282 | 3064                    | 1,434            | 1,452            | 1,500            | 2,018            | 4,087            | 14,353            | 25,627            | 27,395            |
| 283 | 3065                    | 98               | 357              | 619              | 783              | 900              | 1,547             | 4,005             | 5,965             |
| 284 | 3068                    | 2,011            | 9,164            | 19,553           | 28,506           | 40,197           | 244,235           | 689,136           | 988,594           |
| 285 | 3069                    | 45               | 192              | 2,362            | 6,374            | 15,716           | 322,148           | 709,567           | 964,409           |
| 286 | 3071                    | 745              | 1,292            | 1,705            | 2,232            | 2,804            | 6,097             | 13,486            | 25,616            |
| 287 | 3072                    | 50               | 207              | 503              | 943              | 1,476            | 6,872             | 17,753            | 31,140            |
| 288 | 3073                    | 19,068           | 49,026           | 75,049           | 92,374           | 103,256          | 142,239           | 222,978           | 274,555           |
| 289 | 3074                    | 199              | 1,010            | 2,449            | 5,893            | 9,321            | 34,170            | 70,440            | 138,349           |
| 290 | 3076                    | 3                | 13               | 29               | 51               | 79               | 315               | 1,776             | 3,255             |
| 291 | 3080                    | 468              | 1,873            | 4,525            | 8,078            | 12,829           | 36,785            | 68,863            | 135,165           |
| 292 | 3083                    | 310              | 1,390            | 2,925            | 6,787            | 10,491           | 25,273            | 38,646            | 77,413            |
| 293 | 3084                    | 19               | 78               | 175              | 311              | 480              | 1,630             | 4,524             | 31,096            |
| 294 | 3085                    | 20               | 80               | 169              | 273              | 397              | 1,324             | 2,565             | 4,203             |
| 295 | 3086                    | 37,780           | 130,908          | 214,215          | 307,845          | 384,964          | 665,091           | 959,245           | 1,284,862         |
| 296 | 3087                    | 1,272            | 7,020            | 13,389           | 23,172           | 40,930           | 141,174           | 218,416           | 285,899           |
| 297 | 3088                    | 13               | 51               | 130              | 268              | 444              | 1,682             | 3,156             | 7,291             |
| 298 | 3089                    | 3                | 14               | 31               | 55               | 86               | 335               | 738               | 1,325             |
| 299 | 3093                    | 3,515            | 14,934           | 32,943           | 51,807           | 65,330           | 110,274           | 187,554           | 257,412           |
| 300 | 3094                    | 4,523            | 23,041           | 44,868           | 61,211           | 76,404           | 214,875           | 518,194           | 900,667           |
| 301 | 3095                    | 2,371            | 14,393           | 34,815           | 55,389           | 68,803           | 114,412           | 179,962           | 217,290           |
| 302 | 3097                    | 4,664            | 16,924           | 27,956           | 39,173           | 50,514           | 99,129            | 137,911           | 219,101           |
| 303 | 3099                    | 3,599            | 12,673           | 21,832           | 35,504           | 50,993           | 97,060            | 144,695           | 246,644           |
| 304 | 3101                    | 4,713            | 42,205           | 123,373          | 225,467          | 349,195          | 1,219,773         | 2,159,479         | 2,871,609         |
| 305 | 3102                    | 412              | 7,624            | 23,626           | 49,712           | 73,339           | 648,867           | 1,386,411         | 1,926,536         |
| 306 | 3104                    | 5,687            | 21,246           | 51,120           | 105,120          | 163,683          | 739,299           | 1,214,634         | 1,539,265         |
| 307 | 3105                    | 3,912            | 24,089           | 57,798           | 96,350           | 128,184          | 357,196           | 562,971           | 702,528           |
| 308 | 3109                    | 6,301            | 32,892           | 66,222           | 128,951          | 196,504          | 799,802           | 1,725,957         | 2,528,660         |
| 309 | 3114                    | 18,340           | 75,366           | 146,969          | 232,554          | 360,351          | 1,274,564         | 2,235,021         | 2,937,615         |
| 310 | 3115                    | 6,792            | 41,240           | 106,652          | 201,915          | 315,175          | 1,121,036         | 2,064,370         | 2,799,737         |
| 311 | 3116                    | 18,340           | 75,366           | 146,969          | 232,554          | 360,351          | 1,274,564         | 2,235,021         | 2,937,615         |
| 312 | 3117                    | 2,222            | 15,062           | 42,479           | 76,041           | 115,255          | 327,883           | 544,537           | 693,287           |
| 313 | 3118                    | 11,039           | 43,635           | 105,028          | 214,767          | 320,609          | 1,020,692         | 1,518,138         | 1,975,129         |
| 314 | 3120                    | 6,848            | 30,895           | 62,748           | 103,050          | 140,665          | 374,805           | 575,878           | 711,948           |
| 315 | 3121                    | 3,960            | 17,473           | 69,971           | 191,698          | 320,866          | 1,234,825         | 2,339,266         | 3,544,804         |
| 316 | 3123                    | 7,474            | 43,350           | 121,133          | 245,688          | 386,128          | 1,045,514         | 1,451,241         | 1,712,967         |
| 317 | 3125                    | 5,524            | 22,522           | 66,485           | 136,642          | 221,101          | 854,369           | 1,253,348         | 1,574,810         |
| 318 | 3126                    | 1,349            | 6,463            | 11,500           | 28,329           | 61,145           | 530,874           | 1,314,038         | 1,875,142         |
| 319 | 3129                    | 3,961            | 8,723            | 10,059           | 24,043           | 49,010           | 418,288           | 1,234,197         | 1,791,223         |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 320 | 3130                    | 2,371            | 14,393           | 34,815           | 55,389           | 68,803           | 114,412           | 179,962           | 217,290           |
| 321 | 3131                    | 2,989            | 14,278           | 33,129           | 53,126           | 69,059           | 154,764           | 269,137           | 497,885           |
| 322 | 3133                    | 4,350            | 9,581            | 30,884           | 53,312           | 77,663           | 607,101           | 1,359,126         | 1,882,192         |
| 323 | 3136                    | 3,812            | 15,895           | 33,746           | 51,304           | 65,516           | 114,177           | 194,145           | 257,975           |
| 324 | 3137                    | 8,085            | 52,884           | 140,164          | 263,712          | 398,905          | 1,040,345         | 1,443,005         | 1,700,191         |
| 325 | 3143                    | 1,308            | 10,759           | 31,923           | 55,222           | 73,274           | 237,568           | 534,888           | 926,148           |
| 326 | 3145                    | 386              | 1,430            | 3,482            | 6,872            | 14,262           | 96,779            | 196,540           | 267,011           |
| 327 | 3147                    | 907              | 18,031           | 59,402           | 118,717          | 181,289          | 725,499           | 1,451,565         | 2,317,148         |
| 328 | 3148                    | 71               | 282              | 579              | 955              | 1,360            | 6,527             | 12,213            | 30,507            |
| 329 | 3149                    | 817              | 1,095            | 1,371            | 1,653            | 1,942            | 2,930             | 3,392             | 4,144             |
| 330 | 3150                    | 96               | 418              | 1,070            | 2,035            | 3,461            | 25,929            | 58,717            | 105,450           |
| 331 | 3151                    | 1,396            | 6,472            | 13,757           | 21,798           | 26,497           | 66,947            | 181,353           | 359,267           |
| 332 | 3167                    | 1                | 3                | 7                | 13               | 20               | 81                | 184               | 334               |
| 333 | 3168                    | 359              | 1,526            | 2,280            | 3,347            | 4,546            | 15,209            | 27,019            | 41,164            |
| 334 | 3169                    | 1,540            | 6,875            | 12,719           | 17,913           | 24,522           | 114,290           | 240,578           | 379,051           |
| 335 | 3170                    | 907              | 5,518            | 12,377           | 20,989           | 31,679           | 143,704           | 274,173           | 387,377           |
| 336 | 3171                    | 701              | 4,922            | 16,162           | 39,492           | 66,606           | 345,160           | 782,967           | 1,245,787         |
| 337 | 3172                    | 3,704            | 7,575            | 10,589           | 14,623           | 19,985           | 75,702            | 324,038           | 776,626           |
| 338 | 3173                    | 1,228            | 2,257            | 3,208            | 4,422            | 5,434            | 11,353            | 24,568            | 48,467            |
| 339 | 3174                    | 3,567            | 8,584            | 12,465           | 15,945           | 19,641           | 45,469            | 72,609            | 115,635           |
| 340 | 3175                    | 716              | 4,006            | 8,519            | 9,882            | 11,023           | 15,200            | 21,831            | 34,480            |
| 341 | 3176                    | 554              | 2,033            | 3,874            | 6,467            | 9,633            | 34,921            | 153,572           | 459,627           |
| 342 | 3181                    | 344              | 3,073            | 26,548           | 75,342           | 136,615          | 802,037           | 1,583,566         | 2,090,506         |
| 343 | 3182                    | 261              | 1,520            | 2,263            | 3,310            | 4,474            | 15,112            | 26,956            | 41,131            |
| 344 | 3184                    | 251              | 1,141            | 2,748            | 4,819            | 6,547            | 28,407            | 54,102            | 84,813            |
| 345 | 3185                    | 2,096            | 25,763           | 59,166           | 107,487          | 161,301          | 501,313           | 951,593           | 1,283,293         |
| 346 | 3186                    | 4,472            | 14,520           | 63,273           | 135,284          | 169,489          | 424,137           | 712,105           | 1,086,923         |
| 347 | 3187                    | 6,026            | 11,607           | 32,845           | 67,164           | 99,393           | 394,374           | 604,704           | 769,225           |
| 348 | 3189                    | 21               | 118              | 287              | 544              | 883              | 3,611             | 8,334             | 13,844            |
| 349 | 3190                    | 16               | 120              | 313              | 686              | 1,222            | 9,904             | 22,670            | 54,088            |
| 350 | 3191                    | 4,237            | 53,446           | 150,298          | 307,238          | 474,982          | 1,383,085         | 2,886,732         | 5,643,565         |
| 351 | 3193                    | 1,966            | 8,430            | 15,905           | 19,452           | 22,379           | 40,502            | 94,659            | 215,979           |
| 352 | 3194                    | 90               | 1,181            | 9,903            | 24,078           | 47,681           | 138,717           | 162,441           | 183,184           |
| 353 | 3195                    | 4                | 16               | 35               | 61               | 95               | 372               | 912               | 1,751             |
| 354 | 3196                    | 436              | 2,797            | 7,013            | 10,304           | 11,940           | 19,183            | 42,150            | 160,155           |
| 355 | 3198                    | 3                | 13               | 31               | 55               | 88               | 973               | 7,483             | 22,789            |
| 356 | 3200                    | 7                | 33               | 86               | 162              | 261              | 3,370             | 16,179            | 18,755            |
| 357 | 3201                    | 722              | 5,932            | 53,434           | 129,890          | 213,229          | 767,159           | 1,490,452         | 2,374,962         |
| 358 | 3202                    | 125              | 625              | 1,900            | 4,939            | 9,052            | 73,884            | 233,403           | 444,773           |
| 359 | 3203                    | 427              | 4,139            | 11,922           | 25,226           | 45,910           | 66,679            | 72,913            | 85,236            |
| 360 | 3204                    | 57               | 2,099            | 10,160           | 22,835           | 30,603           | 54,007            | 83,845            | 133,731           |
| 361 | 3205                    | 277              | 1,250            | 5,337            | 9,407            | 16,176           | 81,123            | 240,760           | 449,924           |
| 362 | 3206                    | 63               | 271              | 716              | 1,667            | 3,070            | 24,660            | 70,551            | 165,156           |
| 363 | 3208                    | 147              | 826              | 2,624            | 6,610            | 9,539            | 83,777            | 255,877           | 461,134           |
| 364 | 3209                    | 1,154            | 4,413            | 10,352           | 14,979           | 18,202           | 34,021            | 54,821            | 79,307            |
| 365 | 3210                    | 22               | 87               | 196              | 348              | 550              | 5,265             | 17,491            | 54,169            |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 366 | 3211                    | 2,752            | 20,937           | 48,993           | 76,391           | 95,939           | 205,355           | 392,665           | 542,889           |
| 367 | 3212                    | 2                | 6                | 14               | 25               | 39               | 4,707             | 6,010             | 6,445             |
| 368 | 3213                    | 4                | 18               | 39               | 390              | 2,678            | 3,702             | 4,222             | 4,917             |
| 369 | 3214                    | 23               | 94               | 205              | 334              | 479              | 15,656            | 195,619           | 300,479           |
| 370 | 3215                    | 19               | 78               | 175              | 311              | 477              | 1,631             | 4,697             | 31,159            |
| 371 | 3216                    | 176              | 656              | 1,373            | 2,428            | 3,919            | 17,842            | 44,025            | 64,803            |
| 372 | 3217                    | 3,352            | 24,547           | 67,488           | 92,963           | 111,672          | 140,981           | 170,893           | 190,034           |
| 373 | 3218                    | 300              | 1,007            | 2,138            | 3,719            | 7,322            | 102,160           | 194,059           | 385,090           |
| 374 | 3219                    | 3,205            | 15,882           | 27,507           | 43,118           | 71,390           | 272,416           | 427,825           | 743,452           |
| 375 | 3220                    | 1,436            | 11,891           | 42,140           | 99,087           | 172,252          | 674,370           | 1,318,057         | 2,081,747         |
| 376 | 3221                    | 199              | 1,311            | 3,731            | 8,362            | 19,455           | 114,803           | 158,600           | 176,908           |
| 377 | 3223                    | 6                | 304              | 1,485            | 4,198            | 13,795           | 97,706            | 186,636           | 201,513           |
| 378 | 3229                    | 398              | 1,639            | 4,791            | 9,907            | 16,809           | 111,647           | 217,680           | 344,697           |
| 379 | 3230                    | 345              | 1,322            | 3,021            | 5,848            | 7,902            | 21,225            | 53,887            | 90,522            |
| 380 | 3231                    | 924              | 3,417            | 7,429            | 16,694           | 23,581           | 37,137            | 44,406            | 51,932            |
| 381 | 3232                    | 8,074            | 24,856           | 43,506           | 55,773           | 72,874           | 127,596           | 302,101           | 705,205           |
| 382 | 3233                    | 208              | 737              | 1,554            | 2,916            | 4,241            | 13,076            | 37,252            | 82,118            |
| 383 | 3234                    | 3                | 12               | 27               | 206              | 576              | 3,818             | 5,094             | 14,097            |
| 384 | 3237                    | 4,515            | 12,090           | 21,464           | 40,248           | 59,598           | 110,656           | 145,468           | 178,987           |
| 385 | 3238                    | 88               | 278              | 809              | 3,651            | 6,348            | 10,196            | 11,455            | 14,501            |
| 386 | 3239                    | 1                | 5                | 10               | 18               | 28               | 1,269             | 2,453             | 2,960             |
| 387 | 3240                    | 52               | 236              | 574              | 1,047            | 1,662            | 7,834             | 24,857            | 101,078           |
| 388 | 3242                    | 5,575            | 24,921           | 56,465           | 95,677           | 141,691          | 593,722           | 1,301,017         | 1,920,588         |
| 389 | 3243                    | 1,198            | 8,307            | 18,548           | 36,062           | 64,710           | 195,805           | 266,487           | 375,221           |
| 390 | 3244                    | 1                | 3                | 25               | 209              | 602              | 3,542             | 4,423             | 5,061             |
| 391 | 3249                    | 378              | 1,493            | 3,263            | 6,739            | 10,290           | 30,588            | 110,424           | 300,273           |
| 392 | 3250                    | 8,936            | 20,811           | 31,550           | 40,992           | 54,236           | 137,376           | 270,270           | 473,685           |
| 393 | 3251                    | 139              | 775              | 1,897            | 3,266            | 4,969            | 23,691            | 75,417            | 205,739           |
| 394 | 3252                    | 4,306            | 8,629            | 12,983           | 19,574           | 37,981           | 194,998           | 607,963           | 1,215,649         |
| 395 | 3253                    | 273              | 1,087            | 2,485            | 4,380            | 6,508            | 37,317            | 67,491            | 103,376           |
| 396 | 3254                    | 266              | 11,503           | 42,164           | 84,036           | 132,207          | 555,108           | 1,107,149         | 1,682,996         |
| 397 | 3256                    | 16,180           | 55,139           | 116,057          | 142,694          | 167,045          | 498,713           | 881,955           | 1,592,770         |
| 398 | 3257                    | 1,775            | 2,185            | 3,059            | 5,133            | 6,949            | 13,250            | 34,600            | 57,689            |
| 399 | 3258                    | 11,535           | 46,858           | 95,550           | 157,139          | 276,566          | 993,826           | 1,971,396         | 3,404,560         |
| 400 | 3259                    | 5,753            | 31,940           | 71,586           | 126,594          | 195,940          | 604,905           | 924,329           | 1,181,737         |
| 401 | 3261                    | 18,053           | 88,136           | 210,332          | 348,867          | 479,674          | 1,144,650         | 1,908,297         | 2,427,831         |
| 402 | 3262                    | 10,168           | 43,091           | 107,292          | 198,165          | 301,438          | 1,014,495         | 1,377,378         | 1,912,970         |
| 403 | 3268                    | 448              | 5,061            | 18,004           | 35,737           | 43,787           | 68,143            | 155,963           | 274,023           |
| 404 | 3269                    | 352              | 1,405            | 3,513            | 6,497            | 11,852           | 79,439            | 210,891           | 653,322           |
| 405 | 3270                    | 23               | 94               | 211              | 360              | 527              | 20,262            | 216,417           | 311,522           |
| 406 | 3272                    | 4,839            | 14,920           | 32,945           | 53,772           | 78,656           | 187,836           | 225,445           | 247,350           |
| 407 | 3273                    | 8                | 29               | 60               | 105              | 166              | 685               | 3,474             | 6,950             |
| 408 | 3275                    | 64               | 267              | 640              | 1,206            | 1,961            | 8,998             | 21,806            | 62,512            |
| 409 | 3276                    | 55               | 1,491            | 6,511            | 14,533           | 22,446           | 35,930            | 42,496            | 47,088            |
| 410 | 3277                    | 82               | 329              | 719              | 1,268            | 1,994            | 15,074            | 49,653            | 160,503           |
| 411 | 3280                    | 75               | 670              | 2,352            | 4,095            | 5,725            | 17,654            | 24,734            | 35,372            |

| Row | Site<br>ID <sup>1</sup> | 1 Mile<br>Buffer | 2 Mile<br>Buffer | 3 Mile<br>Buffer | 4 Mile<br>Buffer | 5 Mile<br>Buffer | 10 Mile<br>Buffer | 15 Mile<br>Buffer | 20 Mile<br>Buffer |
|-----|-------------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| 412 | 3281                    | 1,558            | 7,336            | 16,780           | 28,173           | 38,667           | 78,997            | 171,454           | 310,673           |
| 413 | 3282                    | 1,581            | 9,396            | 23,595           | 38,255           | 53,887           | 220,406           | 342,138           | 425,451           |
| 414 | 3283                    | 97               | 324              | 782              | 1,922            | 2,543            | 5,745             | 11,547            | 26,798            |
| 415 | 3287                    | 25               | 99               | 214              | 368              | 561              | 2,321             | 18,191            | 26,061            |
| 416 | 3290                    | 16               | 63               | 140              | 243              | 369              | 3,096             | 110,017           | 294,578           |
| 417 | 3292                    | 389              | 1,132            | 2,681            | 4,277            | 5,589            | 17,307            | 43,553            | 92,682            |

<sup>1</sup> The Site ID is not an EPA or Superfund site identifier but was used solely for this report. The Site ID is synonymous with the Site RNUM used in the 108(b) database.Three sets of RNUM site identifiers were used, including (1) Processor IDs for individual processors, (2) Mine IDs for individual mines, and (3) RNUMs for combination sites where one site can include combinations of mines, processors, or mines and processors.

## Appendix M ATSDR Public Health Findings for 108(b) Historical CERCLA Sites

## **M.1** Introduction

Because little information is available on currently active mining and mineral processing sites, this section will use public health-related information associated with 108(b) Historical CERCLA sites to illustrate that the 2009 Current sites might pose adverse health effects.

## M.2 Data Sources

Public health-related information was obtained from the Agency for Toxic Substances and Disease Registry (ATSDR) for historical mining and mineral processing sites that would fit into the scope of the 108(b) mining and mineral processing sector. Created by the 1980 CERCLA statute, ATSDR is mandated to conduct Public Health Assessment (PHA) for every site on or proposed for the NPL. The documentation of ATSDR Public Health Assessments began about 1986-87. An ATSDR Public Health Assessment reviews available information about hazardous substances at a site and evaluates if exposure to them might adversely affect human health.

Upon request from concerned citizens and/or organizations, ATSDR also conducts and issues other types of public health evaluations. For example, a **Public Health Advisory** (PHA) allows ATSDR to respond quickly when CERCLA hazardous substances released into the environment pose an immediate and significant danger to human health. A PHA notice is sent directly from the ATSDR Administrator to EPA's Administrator, which alerts EPA to a public health threat. A PHA reports information available about a release of toxic material, if people might be exposed to it, and what harm exposure might cause. A **Health Consultation** (HC) provides advice on a specific public health issue related to actual or potential human exposure to a toxic material. Anyone can request a HC. ATSDR receives the most requests from EPA and state and local health and environmental departments, and provides about 1,000 HCs per year.

Upon completion of a PHA or a HC for a site, ATSDR makes a public health determination using the following five public health hazard categories:<sup>1</sup>

1. Urgent Public Health Hazard

Applies to sites that have certain physical hazards or evidence of short-term (less than 1 year), site-related *exposure to hazardous substances that could result in adverse health effects and require <u>quick</u> intervention to stop people from being exposed.* 

<sup>&</sup>lt;sup>1</sup> SOURCE: ATSDR Public Health Assessment Guidance Manual, Table 9-1 ("Summary of Conclusion Categories"), available at <u>http://www.atsdr.cdc.gov/HAC/PHAManual/ch9.html</u>.

2. Public Health Hazard

Applies to sites that have certain physical hazards or evidence of chronic (more than 1 year), site-related *exposure to hazardous substances that could result in adverse health effects*.

3. Indeterminate Public Health Hazard

Applies to sites *where critical information is lacking* (missing or has not yet been gathered) to support a judgment regarding the level of public health hazard.

4. No Apparent Public Health Hazard

Applies to sites where exposure to site-related chemicals might have occurred in the past or is still occurring, *but the exposures are not at levels likely to cause adverse health effects*.

5. No Public Health Hazard

Applies to sites where no exposure to site-related hazardous substances exists.

# M.3 Methodology for ATSDR Public Health Finding Analysis of 108(b) Historical CERCLA Sites

#### M.3.1 Initial Inquiry to ATSDR

In order to access the ATSDR public health determinations related to the historical mining and mineral processing site, EPA requested that ATSDR conduct a query of its HazDat and Sequoia databases for any findings by ATSDR that a site may have posed a public health hazard to humans. Specifically, the EPA asked ATSDR to query using the following criteria:

- a) Any PHAs or HCs that concluded either a **public health hazard** or an **urgent public health hazard**, or
- b) A public health advisory was issued.

On April 12, 2010, ATSDR responded to EPA with the query results, including 1,317 records having either a public health hazard or urgent public health hazard associated with them. The results included mines and mineral processors as well as other sectors. The results were sorted manually to find ATSDR findings for the 251 sites in the 108(b) Historical Sites universe. **Attachment M1** lists the 108(b) Historical CERCLA sites that ATSDR classified as a public health hazard or an urgent public health hazard.

#### M.3.2 Additional Inquiry for Missing NPL Sites

A comparison of ATSDR's April, 2010 query results (as listed in Attachment M1) to the universe of 108(b) Historical CERCLA sites (as listed in **Appendix B, Attachment B1**) identified 59 NPL sites from the 108(b) Historical CERCLA Sites universe that were not included in ATSDR's April 2010 query results.

EPA conducted a web search of ATSDR's website to find any information on these 108(b) Historical NPL sites. EPA also requested that ATSDR query their databases specifically for information on the 59 missing 108(b) Historical NPL sites. In this second query ATSDR used EPA's site identification number for each 108(b) Historical NPL site. EPA recieved the query results on September 2, 2010. **Attachment M2** lists the 108(b) Historical NPL sites missing from the April 2010 query results, as well as the results from EPA's web search and ATSDR's September 2010 query. The additional inquiry identified ATSDR public health findings for an additional 44 sites.

The two inquiries (i.e., ATSDR's April 2010 and September 2010 database queries, and EPA's web search) identified ATSDR public health findings for a total of 115 sites in the 108(b) Historical CERCLA Sites universe.

#### M.3.3 ATSDR Public Health Findings for Historical Case Study Sites

In addition to the public health hazard findings information received from ATSDR, available ATSDR documents (i.e. PHAs and HCs) for the subset of randomly selected 24 Case Study sites were closely reviewed. **Attachment M3** includes more detailed information about each site from ATSDR reports, including information about contaminants of concern, exposure pathways, potential receptors and potential health effects.

#### M.3.4 Additional Mining and Mineral Processing Sites from ATSDR Databases (HazDat and Sequoia)

Further examination of the ATSDR's April 2010 query results identified nine additional mining and mineral processing sites that were not included in, but may qualify for, the 108(b) Historical CERCLA Sites universe. These nine sites were identified based on the North America Industrial Classification System (NAICS) code for the mining and processing sector. These additional sites were included in this analysis to illustrate that mining and mineral processing sites that are not listed as NPL sites may also present a public health hazard. **Table M-1** shows the nine additional sites from April 2010 query and the corresponding ATSDR findings. To further investigate the relevance of these sites to 108(b) rule making, available ATSDR (e.g., PHAs and HC) and EPA documents were reviewed and findings were summarized in **Attachment M4**.

| Row | Site Name                                   | City                   | State | EPA Facility ID | NAICS<br>Code | ATSDR Public<br>Health Finding | NPL Status                            | Source<br>ATSDR<br>Document |
|-----|---------------------------------------------|------------------------|-------|-----------------|---------------|--------------------------------|---------------------------------------|-----------------------------|
| 1   | Akzo Salt Inc                               | Retsof                 | NY    | NYD002205607    | 212393        | Public Health Hazard           | Non NPL - Never on the NPL            | HC (1996)                   |
| 2   | Alaska Gold                                 | Nome                   | AK    | AKD038526620    |               | Public Health Hazard           | Non NPL - Never on the NPL            | PHA (1987)                  |
| 3   | Alcoa (Point Comfort)/Lavaca Bay            | Point Comfort          | ТΧ    | TXD008123168    | 331312        | Urgent Public Health<br>Hazard | Final - Currently on the<br>Final NPL | PHA (1995)                  |
| 4   | Cabot-Wrought Prod - Div Of<br>Cabot Corp   | Muhlenberg<br>Township | PA    | PAD044540136    | 331419        | Public Health Hazard           | Non NPL - Never on the NPL            | PHA (1995)                  |
| 5   | Master Metals Incorporation #2              | Detroit                | MI    | MID039108824    | 331419        | Public Health Hazard           | Non NPL - Never on the NPL            | HC (1997)                   |
| 6   | Phelps Dodge Corp Douglas<br>Reduction Wrks | Douglas                | AZ    | AZD008397143    | 331411        | Public Health Hazard           | Non NPL - Never on the NPL            | PHA (1995)                  |
| 7   | Remacor, Inc.                               | West Pittsburg         | PA    | PAD074965096    | 331112        | Public Health Hazard           | Non NPL - Never on the NPL            | HC (2007)                   |
| 8   | Scott O M & Sons Co                         | Marysville             | ОН    | OHD990834483    | 212399        | Public Health Hazard           | Non NPL - Never on the NPL            | HC (2005)                   |
| 9   | St. Louis Smelting & Refining Co            | Collinsville           | IL    | ILD980607006    |               | Public Health Hazard           | Non NPL - Never on the NPL            | HA (2006)                   |

Table M-1. ATSDR Public Health Findings for Mines & Mineral Processors not in the 108(b) Historical CERCLA Sites Universe

# M.4 Discussion of Public Health Hazard Findings by ATSDR for 108(b) Historical CERCLA Sites

This section discusses the ATSDR public health hazard findings for 108(b) Historical CERCLA sites. More detailed discussions of the public health hazard determinations by ATSDR for the Case Study sites are also presented. Finally, this section discusses the public health hazard findings for nine additional mining and mineral processing sites obtained from ATSDR databases, as well as their relevance to the 108(b) rule.

### M.4.1 Public Health Findings Identified by the April 2010 Query

**Figure M-1** presents public health hazard finding for the 108(b) Historical CERCLA sites based on the results of the April 2010 query. The figure presents the results in terms of subsets of NPL sites and non-NPL sites. As shown in Figure M-1, a total number of 71 mining and mineral processing sites (60 NPLs and 11 removals sites) showed up in the April 2010 query having been classified as a public health hazard. This category indicates that either long-term (greater than 1 year) or short-term (less than 1 year) exposures to sufficiently high levels of hazardous substances could result in adverse health effects. Of the 60 NPLs, two sites (Bunker Hill Mining and Metallurgical Complex and Glen Ridge Radium Site) were also designated as an urgent public health hazard. A total of 180 sites (59 NPLs and 121 removals) out the 251 sites did not show up in the April 2010 query of ATSDR HazDat and Sequoia databases.



## Figure M-1: Public health findings for 108(b) Historical CERCLA sites identified by April 2010 query

There are several reasons why NPL sites on the CERCLIS list were not documented as posing a public health hazard by ATSDR. There are differences in timing and scope between ATSDR and Superfund risk and hazard assessments. First, although the ATSDR program started in 1980, it wasn't until 1986 - 1987 that the documentation process was standardized. Therefore,

for many of the earliest sites, ATSDR may not have done a public health assessment or health consultation. Second, ATSDR may investigate a site too early in the NPL process for sufficient data to have been collected. Without sufficient data, they can't conclude an immediate significant public health threat exists. On the other hand, sometimes ATSDR investigates a site after remediation, so the hazard no longer exists. Third, ATSDR is not mandated to conduct public health assessment for non-NPL sites, which might expain why many of the non-NPLs did not appear in the April 2010 query results. The next section will discuss ATSDR's findings for NPL sites that did not appear in the April 2010 query results.

#### M.4.2 Public Health Findings identified by additional inquiry

As discussed above, the April 2010 query did not identify records for 59 NPL sites in the 108(b) Historical CERCLA Sites universe. Further inquiry, including the September 2010 query of ATSDR databases and manual searching of the ATSDR web site, located public health findings documentation for 44 of the 59 NPL sites missing from the April query results.

The September query of ATSDR databases identified 1 site having an ATSDR classification of a public health hazard. In addition, the query results showed 22 sites having "indeterminate public health hazard." This category is used by ATSDR when the available information is insufficient to determine the level of health hazard (see Section M1 for ATSDR definitions). Six sites were classified as a "no apparent public health hazard," which indicates that based on the available data at the time of the PHA or HC, receptors may have been exposed to hazardous substance in the past, at the present time or in the future, but ATSDR concluded that exposures are not expected to cause adverse public health effects. The September 2010 query did not identify records for the remaining 30 sites.

Manual searching of the ATSDR web site for public health findings on the remaining 30 sites was able to locate ATSDR documents for 15 sites. **Table M-2** presents the combined results of the April 2010 and September 2010 ATSDR database queries, as well as the manual search of the ATSDR web site.

|               | Public Health<br>Hazard | Indeterminate<br>Public Health<br>Hazard | No Apparent<br>Public Health<br>Hazard | ATSDR Query<br>Showed not<br>records | Total |
|---------------|-------------------------|------------------------------------------|----------------------------------------|--------------------------------------|-------|
| NPL Sites     | 70                      | 24                                       | 11                                     | 14                                   | 119   |
| Non-NPL Sites | 11                      | N/A                                      | N/A                                    | 121                                  | 132   |
| Total         | 81                      | 24                                       | 11                                     | 135                                  | 251   |

Table M-2. ATSDR Public Health Findings for 108(b) Historical CERCLA Sites, by Finding Type

#### M.4.3 Discussion of ATSDR Public Health Hazard Findings for Historical Case Study Sites

Based on the information from the ATSDR query results and the review of PHA and HC documents from ATSDR for the 24 Historical Case Study sites, the following analysis was performed.

**Figure M-2** presents graphically the findings of ATSDR public health hazard for the Case Study sites. As illustrated in the chart, 16 of 24 sites (i.e., 67%) were categorized as Public Health Hazards, which means either long-term (greater than one year) or short-term (less than one year) exposures are to sufficiently high levels of hazardous substances that adverse health effects could result. In addition, ATSDR categorized six sites (i.e., 25%) as Indeterminate Public Health Hazards, indicating that insufficient information was available to make a health effect determination for past, present or future exposure. ATSDR categorized one site as a No Apparent Public Health Hazard, indicating that at the time of the health assessment, human exposure to contaminated media might be occurring, might have occur in the past or might occur in the future, but the exposures are not expected to cause adverse health effects. Records of ATSDR public health findings for one site were not located. In conclusion, the results indicate that over 2/3 of the randomly selected Historical Case Study sites could pose adverse health hazards to humans.



Figure M-2. ATSDR Public Health Findings for Historical Case Study Sites

The 16 Historical Case Study sites were categorized as public health hazards by ATSDR due to human exposures to site-related contaminants, which may have occurred in the past, may be occurring in the present or might occur in the future. Sites such as Bunker Hill Mining & Metallurgical Complex, Eastern Michaud Flats and National Southwire Aluminum Co, were categorized as public health hazards based on past, present (at the time of the ATSDR evaluation) and future exposure to site related contaminants. A PHA categorized the Foote Mineral Co. site as a public health hazard due to past exposure. In addition, sites such as East Helena and Stauffer Chemical Co. in Florida were categorized as public health hazards because of future exposures – exposures due to the potential for future residential developments on contaminated areas or the potential for future domestic uses of contaminated groundwater.
According to the PHA and HC documents reviewed, the most common type of exposure route for the case study sites are ingestion of soil and groundwater contaminated with site related contaminants. Other common exposure routes indicated in these documents are inhalation of dust; dermal contact to contaminated soils, surface waters and groundwater; consumption fish and other biota; and radiation exposure (alpha, beta and gamma rays) from slags and gypsum.

At the Historical Case Study sites, ATSDR found a public health hazard for receptors including children and adult residents, recreationalists, on-site and off-site construction and maintenance workers, trespassers, and consumers of aquatic and terrestrial animals and plants. For example, the Omaha Lead site and the Palmerton Zinc Pile site were classified as a public health hazard because resident children were exposed to such high levels of lead (Omaha lead), and Zinc (Palmerton Zinc Pile) in the surface soils, that the exposures could result in adverse health effects. Several of the Historical Case Study sites also posed a public health hazard for both current and future residents living in the vicinity. For example, sites such as Bunker Hill, Capitan Jack Mill, Cimarron Mining Corp, Eastern Michaud Flats, Midnite Mine and Monsanto Chemical posed a health hazard for current or future residents. ATSDR also concluded some sites posed health hazards to recreational users of surface waters on or near the sites, including Capitan Jack Mill, Li Tungsten Corp and Reynolds Metals Company.

As of 2011 (i.e., when this analysis was conducted), 7 NPLs are active, while 17 sites are inactive. Of the 7 active sites, 5 sites were classified as a public health hazard, while 1 site is classified as an indeterminate health hazard. Ormet Co. is also an active site, but EPA was unable to locate documentation of a public health finding for this site. The presence of 5 active sites classified as public health hazards may suggest that other currently active sites may pose a public health hazard.

# M.4.4 Results for Nine Additional NPL Sites Identified by April 2010 Query

As discussed above, the April 2010 query results included nine mining or mineral processing sites (identified based on their NAICS code) that were not part of the 108(b) Historical CERCLA Sites universe. Of these nine sites, eight were non-NPL sites and one was an NPL site. In addition, three of the nine sites are currently active. **Figure M-3** summarizes the NPL status and active/inactive status of the nine additional sites.



Figure M-3. NPL and operational status for 9 additional mining and mineral processing sites identified by April 2010 query

For the nine additional sites within the scope of the 108(b) rule, all posed a public health hazard, which was expected as the April 2010 query was structured to find any site that posed a public health hazard. Seven of nine sites are currently inactive, while two sites are operational at the time of this report. Although this is a small and not necessariloy representative sample, this may suggest that historical and current mining and mineral sites pose a public health hazard. Furthermore, eight of the nine sites are non-NPL sites, suggesting that a site need not be on the NPL to pose a public health hazard.

# Attachment M1. ATSDR Public Health Findings for 108(b) Historical CERCLA Sites (from April 12, 2010 query)

| Row | Site Name                                         | City           | State | EPA ID       | NPL<br>Status | ATSDR Public Health Hazard<br>Finding                      | Type of ATSDR<br>Document<br>Referenced |
|-----|---------------------------------------------------|----------------|-------|--------------|---------------|------------------------------------------------------------|-----------------------------------------|
| 1   | Anaconda Co. Smelter                              | Anaconda       | MT    | MTD093291656 | Final         | Poses Public Health Hazard                                 | HC (1987)                               |
| 2   | Anaconda Copper Company                           | Yerrington     | NV    | NVD083917252 | Non-NPL       | Poses Public Health Hazard                                 | HC (2006)                               |
| 3   | Annapolis Lead Mine                               | Annapolis      | MO    | MO0000958611 | Final         | Poses Public Health Hazard                                 | PHA (2006)                              |
| 4   | Asarco Hayden Plant                               | Hayden         | AZ    | AZD008397127 | Non-NPL       | Poses Public Health Hazard                                 | PHA (2002)                              |
| 5   | Asarco Taylor Springs                             | Taylor Springs | IL    | ILN000508170 | Final         | Poses Public Health Hazard                                 | PHA (2005)                              |
| 6   | Asarco, Inc. (Globe Plant)                        | Denver         | CO    | COD007063530 | Proposed      | Poses Public Health Hazard                                 | PHA (1995)                              |
| 7   | Barker Hughesville Mining District                | Great Falls    | MT    | MT6122307485 | Final         | Poses Public Health Hazard                                 | PHA (2004)                              |
| 8   | Basin Mining Area                                 | Basin          | MT    | MTD982572562 | Final         | Poses Public Health Hazard                                 | PHA (2001)                              |
| 9   | Big River Mine Tailings/St. Joe<br>Minerals Corp. | Desloge        | MO    | MOD981126899 | Non-NPL       | Poses Public Health Hazard                                 | PHA (1996)                              |
| 10  | Blackbird Mine                                    | Lemhi County   | ID    | IDD980725832 | Proposed      | Poses Public Health Hazard                                 | PHA (1995)                              |
| 11  | Bunker Hill Mining & Metallurgical<br>Complex     | Smelterville   | ID    | IDD048340921 | Final         | Poses Urgent Public Health Hazard;<br>Public Health Hazard | PHA (1989); HC<br>(2000)                |
| 12  | Captain Jack Mill                                 | Ward           | CO    | COD981551427 | Final         | Poses Public Health Hazard                                 | HC (2006)                               |
| 13  | Carpenter Snow Creek Mining<br>District           | Neihart        | MT    | MT0001096353 | Final         | Poses Public Health Hazard                                 | PHA (2004)                              |
| 14  | Carson River Mercury Site                         | Dayton         | NV    | NVD980813646 | Final         | Poses Public Health Hazard                                 | PHA (1993)                              |
| 15  | Celtor Chemical Works                             | Ноора          | CA    | CAD980638860 | Proposed      | Poses Public Health Hazard                                 | PHA (1987)                              |
| 16  | Central City, Clear Creek                         | Idaho Springs  | CO    | COD980717557 | Final         | Poses Public Health Hazard                                 | PHA (1988)                              |
| 17  | Cherokee County                                   | Galena         | KS    | KSD980741862 | Final         | Poses Public Health Hazard                                 | PHA (1989); HC<br>(1994)                |
| 18  | Circle Smelting Corp.                             | Beckemeyer     | IL    | ILD050231976 | Proposed      | Poses Public Health Hazard                                 | PHA (2003)                              |
| 19  | Commencement Bay, Near<br>Shore/Tide Flats        | Tacoma         | WA    | WAD980726368 | Final         | Poses Public Health Hazard                                 | PHA (1993)                              |
| 20  | Copper Basin Mining District                      | Copperhill     | TN    | TN0001890839 | Non-NPL       | Poses Public Health Hazard                                 | HC (1998)                               |
| 21  | Davenport And Flagstaff Smelters                  | Sandy          | UT    | UTD988075719 | Final         | Poses Public Health Hazard                                 | PHA (2005)                              |
| 22  | Depue/New Jersey Zinc/Mobil<br>Chemical Corp.     | Depue          | IL    | ILD062340641 | Final         | Poses Public Health Hazard                                 | PHA (1999)                              |
| 23  | East Helena Site                                  | East Helena    | MT    | MTD006230346 | Final         | Poses Public Health Hazard                                 | HC (2002)                               |

| Row | Site Name                               | City                      | State | EPA ID       | NPL<br>Status | ATSDR Public Health Hazard<br>Finding | Type of ATSDR<br>Document<br>Referenced |
|-----|-----------------------------------------|---------------------------|-------|--------------|---------------|---------------------------------------|-----------------------------------------|
| 24  | Eastern Michaud Flats<br>Contamination  | Pocatello                 | ID    | IDD984666610 | Final         | Poses Public Health Hazard            | HC (1998); HC<br>(2001)                 |
| 25  | Elizabeth Mine                          | Strafford                 | VT    | VTD988366621 | Final         | Poses Public Health Hazard            | PHA (2004); HC<br>(2000)                |
| 26  | Eureka Mills                            | Eureka                    | UT    | UT0002240158 | Final         | Poses Public Health Hazard            | PHA (2005)                              |
| 27  | Glen Ridge Radium Site                  | Glen Ridge                | NJ    | NJD980785646 | Proposed      | Poses Urgent Public Health Hazard     | PHA (1985); HC<br>(2000)                |
| 28  | Hegeler Zinc                            | Danville                  | IL    | ILN000508134 | Final         | Poses Public Health Hazard            | PHA (2003)                              |
| 29  | Herculaneum Lead Smelter Site           | Herculaneum               | MO    | MOD006266373 | Non-NPL       | Poses Urgent Public Health Hazard     | HC (2001);<br>(2002); (2003)            |
| 30  | International Smelting And<br>Refining  | Tooele                    | UT    | UTD093120921 | Final         | Poses Public Health Hazard            | PHA (2001)                              |
| 31  | Jacobs Smelter                          | Stockton                  | UT    | UT0002391472 | Final         | Poses Public Health Hazard            | HC (1999); PHA<br>(2001)                |
| 32  | Kennecott (South Zone) (SA)             | Copperton                 | UT    | UTD000826404 | Non-NPL       | Poses Public Health Hazard            | PHA (1997)                              |
| 33  | Klau/Buena Vista Mine                   | Paso Robles               | CA    | CA1141190578 | Final         | Poses Public Health Hazard            | HC (2005); (2007)                       |
| 34  | Lava Cap Mine                           | Nevada City               | CA    | CAD983618893 | Final         | Poses Public Health Hazard            | PHA (2001)                              |
| 35  | Le Roi Co. Smelter                      | Northport                 | WA    | WAD988507323 | Non-NPL       | Poses Public Health Hazard            | HC (2005)                               |
| 36  | Leviathan Mine                          | Markleeville              | CA    | CAD980673685 | Final         | Poses Public Health Hazard            | PHA (2003)                              |
| 37  | Li Tungsten Corp.                       | Glen Cove                 | NY    | NYD986882660 | Final         | Poses Public Health Hazard            | PHA (1994);<br>(2001)                   |
| 38  | Libby Asbestos Site                     | Libby                     | MT    | MT0009083840 | Final         | Poses Public Health Hazard            | HC (2000); (2003)                       |
| 39  | Macalloy Corporation                    | North<br>Charleston       | SC    | SCD003360476 | Final         | Poses Public Health Hazard            | HC (1998)                               |
| 40  | Madison County Mines                    | Fredericktown             | MO    | MOD098633415 | Final         | Poses Public Health Hazard            | PHA (2005)                              |
| 41  | Matthiessen And Hegeler Zinc<br>Company | La Salle                  | IL    | IL0000064782 | Final         | Poses Public Health Hazard            | PHA (1999)                              |
| 42  | Midvale Slag                            | Midvale                   | UT    | UTD081834277 | Final         | Poses Public Health Hazard            | PHA (1988); HC<br>(1993)                |
| 43  | Milltown Reservoir Sediments            | Milltown                  | MT    | MTD980717565 | Final         | Poses Public Health Hazard            | HC (2001)                               |
| 44  | Montclair/West Orange Radium Site       | Montclair/<br>West Orange | NJ    | NJD980785653 | Deleted       | Poses Public Health Hazard            | PHA (1985);<br>(1995)                   |
| 45  | Monticello Mill Tailings (USDOE)        | Monticello                | UT    | UT3890090035 | Final         | Poses Public Health Hazard            | PHA (1989),<br>(1997);<br>HC (2006)     |

| Row | Site Name                                           | City                | State | EPA ID       | NPL<br>Status | ATSDR Public Health Hazard<br>Finding | Type of ATSDR<br>Document<br>Referenced |
|-----|-----------------------------------------------------|---------------------|-------|--------------|---------------|---------------------------------------|-----------------------------------------|
| 46  | Monticello Radioactively<br>Contaminated Properties | Monticello          | UT    | UTD980667208 | Deleted       | Poses Public Health Hazard            | PHA (1989),<br>(1997); HC<br>(2006)     |
| 47  | Mouat Industries                                    | Columbus            | MT    | MTD021997689 | Final         | Poses Public Health Hazard            | PHA (1989)                              |
| 48  | National Mine Tailings                              | Park Hills          | MO    | MOD985818228 | Non-NPL       | Poses Public Health Hazard            | HC (2001)                               |
| 49  | National Southwire Aluminum Co.                     | Hawesville          | KY    | KYD049062375 | Final         | Poses Public Health Hazard            | PHA (1994)                              |
| 50  | National Zinc Corp.                                 | Bartlesville        | OK    | OKD000829440 | Proposed      | Poses Public Health Hazard            | PHA (1995)                              |
| 51  | Newton County Mine Tailings                         | Granby              | MO    | MOD981507585 | Final         | Poses Public Health Hazard            | PHA (1999),<br>(2006); HC<br>(2000)     |
| 52  | Omaha Lead                                          | Omaha               | NE    | NESFN0703481 | Final         | Poses Public Health Hazard            | PHA (2005); HC (2004), (2005)           |
| 53  | Oronogo-Duenweg Mining Belt                         | Joplin              | МО    | MOD980686281 | Final         | Poses Public Health Hazard            | PHA(1990);<br>HC(1994)                  |
| 54  | Palmerton Zinc Pile                                 | Palmerton           | PA    | PAD002395887 | Final         | Poses Public Health Hazard            | PHA (1994)                              |
| 55  | Reynolds Metals Company                             | Troutdale           | OR    | ORD009412677 | Final         | Poses Public Health Hazard            | PHA (1997)                              |
| 56  | RSR Corporation                                     | Dallas              | ТΧ    | TXD079348397 | Final         | Poses Public Health Hazard            | HC (2001)                               |
| 57  | Sharon Steel Corp. (Farrell<br>Works)               | Hickory<br>Township | PA    | PAD001933175 | Final         | Poses Public Health Hazard            | PHA (1999);HC<br>(1997)                 |
| 58  | Smeltertown Site                                    | Salida              | CO    | COD983769738 | Proposed      | Poses Public Health Hazard            | PHA (1995)                              |
| 59  | Smuggler Mountain                                   | Aspen               | CO    | COD980806277 | Deleted       | Poses Public Health Hazard            | PHA (1991)                              |
| 60  | Stauffer Chemical Co. (Tarpon<br>Springs)           | Tarpon<br>Springs   | FL    | FLD010596013 | Final         | Poses Public Health Hazard            | PHA(1993)                               |
| 61  | Stephenson – Bennett Mine                           | Organ               | NM    | NMD986684231 | Non-NPL       | Poses Public Health Hazard            | HC (1997),(1998)                        |
| 62  | Sulphur Bank Mercury Mine                           | Clearlake<br>Oaks   | CA    | CAD980893275 | Final         | Poses Public Health Hazard            | PHA (1992)                              |
| 63  | Tex-Tin Corp.                                       | Texas City          | ТΧ    | TXD062113329 | Final         | Poses Public Health Hazard            | HC (2000)                               |
| 64  | Tooele Valley Railroad                              | Tooele              | UT    | UT0011980278 | Non-NPL       | Poses Public Health Hazard            | HC (2006)                               |
| 65  | Torch Lake                                          | Houghton<br>County  | MI    | MID980901946 | Final         | Poses Public Health Hazard            | HC (2006)                               |
| 66  | U.S. Radium Corp.                                   | Orange              | NJ    | NJD980654172 | Final         | Poses Public Health Hazard            | HC (1997)                               |
| 67  | U.S. Smelter And Lead Refinery, Inc.                | East Chicago        | IN    | IND047030226 | Final         | Poses Public Health Hazard            | PHA (1994)                              |
| 68  | Upper Tenmile Creek Mining<br>Area                  | Helena              | MT    | MTSFN7578012 | Final         | Poses Public Health Hazard            | PHA (2001)                              |

| Row | Site Name                  | City                 | State | EPA ID       | NPL<br>Status | ATSDR Public Health Hazard<br>Finding | Type of ATSDR<br>Document<br>Referenced |
|-----|----------------------------|----------------------|-------|--------------|---------------|---------------------------------------|-----------------------------------------|
| 69  | V & V Mining PCB Site      | Big Stone Gap        | VA    | VAN000305626 | Non-NPL       | Poses Public Health Hazard            | HC (2001)                               |
| 70  | Vasquez Boulevard And I-70 | Denver               | СО    | CO0002259588 | Final         | Poses Public Health Hazard            | PHA (2003)                              |
| 71  | WR Grace Hamilton Twp      | Hamilton<br>Township | NJ    | NJD067387472 | Non-NPL       | Poses Public Health Hazard            | HC (2005)                               |

# Attachment M2. ATSDR Public Health Findings from Additional Inquiry for 108(b) Historical NPL Sites

| Row | Site Name                                                                    | City                           | State    | ERA ID       | ATSDP Public Health Hazard Finding                                 | Type of ATSDR<br>Document<br>Referenced |
|-----|------------------------------------------------------------------------------|--------------------------------|----------|--------------|--------------------------------------------------------------------|-----------------------------------------|
| 1   | Alcoa (Vancouver Smelter)                                                    | Vancouver                      |          |              | No documents found                                                 | Referenced                              |
| 2   | Atlas Ashestos Mine                                                          |                                |          | CAD980/96863 | Poses Indeterminate Public Health Hazard                           | PHA (1088)                              |
| 2   | Barite Hill/Nevada Goldfields                                                | Mccormick                      | 50<br>50 | SCN000407714 | Poses Indeterminate Public Health Hazard                           | PHA (2011)                              |
| 3   | Black Butto Mino                                                             | Cotton Grovo                   |          | OP0000515750 | No documento found                                                 | FTIA (2011)                             |
| 4   | Brower Gold Mine                                                             | Lofforcon                      | SC SC    | SCD087577012 | No documents found                                                 |                                         |
| 6   | California Culab                                                             |                                | <u> </u> | COD090717029 | Reason Indeterminate Dublic Health Hezerd                          |                                         |
| 0   |                                                                              | Leadville<br>Brookovillo (Cono | 0.0      | COD960717936 | Poses Indeterminate Public Realth Razard                           | PHA (1900)                              |
| 7   | Callahan Mining Corp                                                         | Rosier)                        | ME       | MED980524128 | Poses Indeterminate Public Health Hazard                           | PHA (2003)                              |
| 8   | Chemet Co.                                                                   | Moscow                         | ΤN       | TND987768546 | Poses No Public Health Hazard                                      | PHA (2000)                              |
| 9   | Cimarron Mining Corp.                                                        | Carrizozo                      | NM       | NMD980749378 | Poses Indeterminate Public Health Hazard                           | PHA (1990)                              |
| 10  | Cleveland Mill                                                               | Silver City                    | NM       | NMD981155930 | Poses Indeterminate Public Health Hazard                           | PHA (1990)                              |
| 11  | Coalinga Asbestos Mine                                                       | Coalinga                       | CA       | CAD980817217 | Poses Indeterminate Public Health Hazard                           | PHA (1988)                              |
| 12  | Denver Radium Site                                                           | Denver                         | CO       | COD980716955 | No documents found                                                 |                                         |
| 13  | Eagle Mine                                                                   | Minturn/Redcliff               | CO       | COD081961518 | Poses Indeterminate Public Health Hazard                           | PHA (1989)                              |
| 14  | Eagle Zinc Co Div T L Diamond                                                | Hillsboro                      | IL       | ILD980606941 | Poses No Apparent Public Health Hazard                             | PHA (2002)                              |
| 15  | Ely Copper Mine                                                              | Vershire                       | VT       | VTD988366571 | Poses No Apparent Public Health Hazard                             | PHA (2008)                              |
| 16  | Flat Creek Imm                                                               | Superior                       | MT       | MT0012694970 | Poses Public Health Hazard                                         | PHA (2010)                              |
| 17  | Foote Mineral Co.                                                            | East Whiteland<br>Township     | PA       | PAD077087989 | Past public health hazard; indeterminate<br>public health hazard * | ATSDR (1994)                            |
| 18  | Formosa Mine                                                                 | Riddle                         | OR       | ORN001002616 | Poses Public Health Hazard                                         | PHA (2010)                              |
| 19  | Franklin Slag Pile (Mdc)                                                     | Philadelphia                   | PA       | PASFN0305549 | Poses Indeterminate Public Health Hazard                           | PHA (2005)                              |
| 20  | Fremont National Forest/White<br>King And Lucky Lass Uranium<br>Mines (Usda) | Lakeview                       | OR       | OR7122307658 | Poses No Apparent Public Health Hazard                             | HC (2007)                               |
| 21  | Gilt Edge Mine                                                               | Lead                           | SD       | SDD987673985 | Poses No Apparent Public Health Hazard                             | HC (2005)                               |
| 22  | Homestake Mining Co.                                                         | Milan                          | NM       | NMD007860935 | Poses Indeterminate Public Health Hazard                           | PHA (1988)                              |
| 23  | International Minerals (E. Plant)                                            | Terre Haute                    | IN       | INT190010876 | No documents found                                                 |                                         |
| 24  | Interstate Lead Co. (IIco)                                                   | Leeds                          | AL       | ALD041906173 | No documents found                                                 |                                         |

| Row | Site Name                                       | City                         | State | EPA ID         | ATSDR Public Health Hazard Finding                                                  | Type of ATSDR<br>Document<br>Referenced |
|-----|-------------------------------------------------|------------------------------|-------|----------------|-------------------------------------------------------------------------------------|-----------------------------------------|
| 25  | Iron King Mine - Humboldt<br>Smelter            | Dewey-Humboldt               | AZ    | AZ0000309013   | Poses Public Health Hazard                                                          | HC (2009)                               |
| 26  | Iron Mountain Mine                              | Redding                      | CA    | CAD980498612   | Poses Indeterminate Public Health Hazard                                            | PHA (1986)                              |
| 27  | Jacks Creek/Sitkin Smelting &<br>Refining, Inc. | Maitland                     | PA    | PAD980829493   | No documents found                                                                  | HC (1991)                               |
| 28  | Kaiser Aluminum (Mead Works)                    | Mead                         | WA    | WAD000065508   | Poses Indeterminate Public Health Hazard                                            | SR (1993)                               |
| 29  | Lincoln Park                                    | Canon City                   | CO    | COD042167858   | Poses Indeterminate Public Health Hazard                                            | PHA (2006)                              |
| 30  | Martin-Marietta Aluminum Co.                    | The Dalles                   | OR    | ORD052221025   | No documents found                                                                  |                                         |
| 31  | Midnite Mine                                    | Wellpinit                    | WA    | WAD980978753   | Poses Indeterminate Public Health Hazard                                            | PHA (2007)                              |
| 32  | Molycorp, Inc.                                  | Questa                       | NM    | NMD002899094   | Poses No Apparent Public Health Hazard                                              | PHA (2005)                              |
| 33  | Monsanto Chemical Co. (Soda<br>Springs Plant)   | Soda Springs                 | ID    | IDD081830994   | No documents found                                                                  |                                         |
| 34  | Murray Smelter                                  | Murray City                  | UT    | UTD980951420   | Poses No Apparent Public Health Hazard                                              | PHA (1997)                              |
| 35  | Nelson Tunnel/Commodore<br>Waste Rock           | Creede                       | со    | CON000802630   | Poses Indeterminate Public Health Hazard                                            | HC (2009); HC<br>(2012)                 |
| 36  | Ore Knob Mine                                   | Ashe County                  | NC    | NCN000409895   | No documents found                                                                  |                                         |
| 37  | Ormet Corp.                                     | Hannibal                     | OH    | OHD004379970   | No documents found                                                                  |                                         |
| 38  | Pike Hill Copper Mine                           | Corinth                      | VT    | VTD988366720   | No documents found                                                                  |                                         |
| 39  | Richardson Flat Tailings                        | Park City                    | UT    | UTD980952840   | Poses Indeterminate Public Health Hazard                                            | PHA (1990)                              |
| 40  | Sharon Steel Corp. (Midvale<br>Tailings)        | Midvale                      | UT    | UTD980951388   | Poses Indeterminate Public Health Hazard                                            | PHA (1986)                              |
| 41  | Shieldalloy Corp.                               | Newfield Borough             | NJ    | NJD002365930   | Poses No Apparent Public Health Hazard                                              | HC (1997)                               |
| 42  | Silver Bow Creek/Butte Area                     | Butte                        | MT    | MTD980502777   | Poses Indeterminate Public Health Hazard                                            | PHA (1987)                              |
| 43  | Silver Mountain Mine                            | Loomio                       | 10/0  | W/A D000700700 | Poses Indeterminate Public Health Hazard                                            | PHA (1988)                              |
| 44  | Silver Mountain Mine                            | Loomis                       | VVA   | WAD960722769   | Poses Public Health Hazard                                                          | PHA (1991)                              |
| 45  | Southwest Jefferson County<br>Mining            | Jefferson County             | МО    | MON000705443   | No documents found                                                                  |                                         |
| 46  | Standard Mine                                   | Gunnison National<br>Forrest | со    | CO0002378230   | Poses Public Health Hazard                                                          | HC (2006); HC<br>(2008)                 |
| 47  | Stibnite/Yellow Pine Mining Area                | Stibnite                     | ID    | IDD980665459   | Poses No Apparent Public Health Hazard;<br>Poses Indeterminate Public Health Hazard | PHA (2003)                              |
| 48  | Summitville Mine                                | Rio Grande County            | CO    | COD983778432   | Poses No Apparent Public Health Hazard                                              | PHA (1997)                              |
| 49  | Tar Creek (Ottawa County)                       | Ottawa County                | OK    | OKD980629844   | Poses Indeterminate Public Health Hazard                                            | PHA (2008)                              |
| 50  | Teledyne Wah Chang                              | Albany                       | OR    | ORD050955848   | Poses No Apparent Public Health Hazard                                              | PHA (2009)                              |

| Row | Site Name                                                    | City           | State | EPA ID       | ATSDR Public Health Hazard Finding       | Type of ATSDR<br>Document<br>Referenced |
|-----|--------------------------------------------------------------|----------------|-------|--------------|------------------------------------------|-----------------------------------------|
| 51  | Tulsa Fuel And Manufacturing                                 | Collinsville   | OK    | OKD987096195 | Poses No Apparent Public Health Hazard   | PHA (2000)                              |
| 52  | U.S. Magnesium                                               | Tooele County  | UT    | UTN000802704 | No documents found                       |                                         |
| 53  |                                                              | Dipov Divor    |       |              | Poses No Apparent Public Health Hazard   | PHA (1989)                              |
| 54  |                                                              | Filley River   | ٧A    | VAD900703404 | Poses Indeterminate Public Health Hazard | PHA (1999)                              |
| 55  | United Nuclear Corp.                                         | Church Rock    | NM    | NMD030443303 | Poses Indeterminate Public Health Hazard | PHA (1988)                              |
| 56  | Uravan Uranium Project (Union<br>Carbide Corp.)              | Uravan         | со    | COD007063274 | Poses Indeterminate Public Health Hazard | PHA (1986)                              |
| 57  | W.R. Grace & Co., Inc./Wayne<br>Interim Storage Site (USDOE) | Wayne Township | NJ    | NJ1891837980 | Poses Indeterminate Public Health Hazard | PHA (1990)                              |
| 58  | Washington County Lead District<br>- Old Mines               | Old Mines      | МО    | MON000705027 | Poses Public Health Hazard               | PHA (2010)                              |
| 59  | Washington County Lead District<br>- Potosi                  | Potosi         | МО    | MON000705023 | Poses Public Health Hazard               | HC (2008); PHA<br>(2010)                |
| 60  | Washington County Lead District<br>- Richwoods               | Richwoods      | МО    | MON000705032 | Poses Public Health Hazard               | PHA (2010)                              |
| 61  | Whitewood Creek                                              | Whitewood      | SD    | SDD980717136 | No documents found                       |                                         |

\* In a 1994 Preliminary PHA (ATSDR, 1994a), the ATSDR and the Pennsylvania Department of Health (PADOH) categorized the Foote Mineral Co. site as a "past public health hazard." The PADOH subsequently classified the site as an "indeterminate public health hazard" due to concerns over long-term exposures to low levels of boron and lithium.

# Attachment M3. Summary of ATSDR Findings for Case Study Historical Sites

| Site Name            | City     | State | EPA ID       |
|----------------------|----------|-------|--------------|
| Anaconda Co. Smelter | Anaconda | MT    | MTD093291656 |

The Anaconda Co. Smelter site was listed on the National Priorities List (NPL) in 1983, and categorized as a **public health hazard** in a 1987 Public Health Assessment (PHA). However, a copy of the 1987 report could not be located. EPA has conducted several cleanup activities on a number of areas of the Anaconda site. In a 1996 Record of Decision (ROD), EPA selected a remedial action for addressing arsenic contamination of residential surface soils (EPA, 1996). The ROD established a residential action level of 250 mg arsenic/ kg soil for remedial action. The remedial action was initiated in 2003 and is still ongoing.

In 2007, ATSDR issued a Health Consultation (HC) after a resident of Anaconda requested ATSDR evaluate the public health impacts of arsenic at residential action level of 250 mg arsenic/kg soil that EPA had determined in the 1996 ROD. After reviewing studies and decisions used to determine the action level, ATSDR concluded that chronic exposures to soil at the residential action level of 250 mg of arsenic/kg soil would not be expected to present any adverse health effects for resident children or adults. However, ATSDR indicated that children with pica behavior (who eat about a teaspoon of soil at a time) may experience adverse health effects if they ingested gram quantities of soil containing arsenic (ATSDR, 2007b).

| Site Name                          | City         | State | EPA ID       |
|------------------------------------|--------------|-------|--------------|
| Bunker Hill Mining & Metallurgical | Smelterville | ID    | IDD048340921 |
| Complex                            |              |       |              |

In a 1989 PHA, ATSDR categorized the Bunker Hill Mining site as an **Urgent Public Health Hazard**. However, a copy of the 1989 PHA could not be located. In 2000, in response to an EPA request, ATSDR conducted an HC for an unpopulated and undeveloped area of the Bunker Hill site (Hillsides property) based on sampling data obtained from EPA. The HC indicated that, while the contaminant of concern was lead, mining and smelting activities also contaminated the property with other metals including arsenic, cadmium and zinc (ATSDR, 2000a). After reviewing the available data, ATSDR determined that the Hillsides site posed a **public health hazard** if the area were used for future development. Furthermore, residents who lived in the vicinity of the undeveloped hillsides of the Bunker Hill site, in the past, had been exposed to site-related metals that can result in adverse health effect in the long term.

In 2007, ATSDR conducted a PHA for the Bunker Hill OU3 area (Coeur d'Alene river basin), which includes areas to the east and west of Bunker Hill Mining site. ATSDR indicated that lead was the contaminant of greatest concern for human health effect in the Bunker Hill OU 3 area. In addition, ATSDR identified seven other contaminants of potential human health concern, including aluminum, antimony, arsenic, cadmium, iron, manganese, and zinc (ATSDR, 2007d). After review of available data, ATSDR concluded that all past, present and future human exposures to high concentrations of lead and other metals in surface soil, household dust, and fish pose a **public health hazard** for residents who live in some areas of

Coeur d'Alene River Basin site (east of Lake Coeur d'Alene). ATSDR also concluded people who lived in the Coeur d'Alene River Basin and who used recreational areas (i.e. beaches, parks, campgrounds) were at a greater risk of exposures and possible cumulative health effects.

| Site Name         | City | State | EPA ID       |
|-------------------|------|-------|--------------|
| Captain Jack Mill | Ward | CO    | COD981551427 |

The Captain Jack Mill site was categorized as a **Public Health Hazard** in a 2006 HC. ATSDR prepared the 2006 HC in cooperation with the Colorado Department of Public Health and Environment (CDPHE). The HC examined the soil and groundwater pathways at the Captain Jack Mill site, and found a significant **public health hazard** to permanent residents and recreational users from exposures to arsenic, copper, lead, manganese and zinc in the soil and groundwater (ATSDR, 2006a). CDPHE's 2007 follow-up HC, which looked at exposure to site-related contaminants in surface water and sediments, also concluded that current and future chronic exposure to iron sediments poses a **public health hazard** to residential and recreational children in the areas of investigation (ATSDR, 2007b). Furthermore, although CDPHE was not able to determine if surface water near the Captain Jack Mill site is being used as a drinking water source, if residents were using surface water for potable purposes, the concentrations of copper, iron, and manganese would pose a **public health hazard**. In 2008, the EPA and CDPHE issued a Record of Decision (ROD) to remediate surface and subsurface contamination. Site cleanup activities were expected to start in the summer of 2010.

| Site Name             | City      | State | EPA ID       |
|-----------------------|-----------|-------|--------------|
| Cimarron Mining Corp. | Carrizozo | NM    | NMD980749378 |

The site was categorized as an **indeterminate public health hazard** in a1990 Preliminary PHA. Although a copy of the full report was not located, an abstract revealed that the site posed a potential public health concern because of possible human exposure to site related-contaminants (chromium, cyanide, lead, and nitrate) present in on-site groundwater (ATSDR, 1990). Cyanide and lead contamination of on-site surface soil, tailings, and wastes were also a concern. The abstract also indicated that the most likely pathways for contaminant transport to off-site areas were groundwater and soil. Humans may be exposed to site-related contaminants with ingestion of contaminated groundwater and soil and inhalation of contaminated dusts.

In 1990 and 1991, the EPA released two RODs for two operable units (OU1 and OU2). The 1990 ROD required extraction of cyanide from the shallow ground water and discharge to the publicly owned treatment works (EPA 1990). The 1991 ROD required solidification and stabilization of contaminated soil and waste pile exceeding 500 ppm lead (EPA, 1991). In 2010, OU-2 was deleted from the NPL list, while OU-1was partially deleted.

| Site Name  | City             | State | EPA ID       |
|------------|------------------|-------|--------------|
| Eagle Mine | Minturn/Redcliff | CO    | COD081961518 |

The Eagle Mine site was categorized as an **Indeterminate Public Health Hazard** in a 1989 PHA. However, a copy of the1989 PHA could not be located. According to the Colorado Department of Public Health (CDPHE), the major contaminants of concern were arsenic, cadmium, lead, manganese and zinc (CDPHE, n.d). The major pathways of concern for public

health were surface water contamination of the Eagle River, groundwater contamination, and ingestion/inhalation of mining wastes.

Beginning in 1988, in cooperation with EPA, the CDPHE implemented several remedial actions. The remediation projects ended in 2001, and in 2008, EPA and CDPHE conducted a third five-year review at the Eagle Mine site. Results of this five-year review showed that the remedies implemented continue to be protective of human health and the environment (EPA, n.d).

| Site Name                           | City      | State | EPA ID       |
|-------------------------------------|-----------|-------|--------------|
| Eastern Michaud Flats Contamination | Pocatello | ID    | IDD984666610 |

The Eastern Michaud Flats site was designated a Public Health Hazard in HCs conducted from 1997 to 2001. ATSDR conducted these HCs to examine the potential for human exposures (past, present, and future) to site-related contaminants, which included arsenic, nitrate/nitrite in groundwater, surface water and sediment; cadmium in surface soil; and particulate matter in ambient air. ATSDR designated the Eastern Michaud Flats (EMF) site as a **public health hazard** because residents and local employees near the site were exposed to arsenic and nitrate/nitrite in groundwater (ATSDR, 1998a); workers at the EMF site were exposed to cadmium in surface soil (ATSDR, 1997a and ATSDR 1998c); slag and gypsum workers were exposed to alpha, beta, and gamma radiation (ATSDR, 1997a); and the general public in the nearby area were exposed to airborne particulate matter and sulfate in the air (ATSDR, 2001). During this period, the EPA issued a ROD to clean up contaminated groundwater and contaminated soils at the EMF site. Since 2006, the EPA has been working with responsible parties to conduct cleanup activities at three Operable Units (OUs).

In 2005, the Idaho Bureau of Community and Environmental Health (BCEH), in cooperation with ATSDR, released a comprehensive PHA for the EMF site. The report classified the EMF site as a "No **Apparent Public Health Hazard**" because 1) residents no longer receive drinking water from contaminated wells; 2) no workers are at contaminated sites; and 3) particulate matter concentrations in the air have gone down (ATSDR, 2005c). However, BCEH identified completed exposure pathways which included, surface soil, surface water and sediment, air and residential exposures to radiation from slag. BCEH also classified the site as an **Indeterminate Public Health Hazard** for future exposures to particulate matter in the air because at the time of the report, although the PM<sub>10</sub> and PM<sub>2.5</sub> in the EMF area met EPA's health-based CVs, BCEH was uncertain about PM levels in the future.

| Site Name        | City        | State | EPA ID       |
|------------------|-------------|-------|--------------|
| East Helena Site | East Helena | MT    | MTD006230346 |

The East Helena site was classified as a **Public Health Hazard** in a 2002 HC. ATSDR conducted the HC after the EPA determined that a known arsenic groundwater plume had migrated off-site from the East Helena historic smelter operation site towards a residential area (ATSDR, 2002). Although at the time of the HC, sampling of residential wells indicated that the plume had not yet reached the residential area; ATSDR concluded that the site presented a potential future **public health hazard** for residents who would draw water from arsenic contaminated wells. Since the site was listed on the NPL, the EPA has issued two Records of

Decision: 1) to reduce groundwater pollution from process ponds at the site (EPA, 1989); and 2) to clean up East Helena residential soils and undeveloped lands (EPA, 2009).

| Site Name         | City           | State | EPA ID       |
|-------------------|----------------|-------|--------------|
| Foote Mineral Co. | East Whiteland | PA    | PAD077087989 |
|                   | Township       |       |              |

A 1994 Preliminary PHA, prepared by the Pennsylvania Department of Health (PADOH) in cooperation with ATSDR, classified the site as a **Past Public Health Hazard**. The PADOH reached that conclusion based on past human exposures to elevated levels of boron and lithium through the use of off-site contaminated groundwater (ATSDR, 1994a). Since then, residents who had drawn water from contaminated private wells were connected to public water supply systems. In addition, contaminated water in the public water supply systems were connected to uncontaminated sources. These measures helped reduce the levels of boron and lithium in drinking water, but at the time of the report, PADOH categorized the site as **Indeterminate Public Health Hazard** due concerns of long-term exposures to low levels of boron and lithium. PADOH indicated that there was no toxicological information in the literature regarding adverse health effects to long-term exposures of low levels of boron and lithium.

| Site Name      | City | State | EPA ID       |
|----------------|------|-------|--------------|
| Gilt Edge Mine | Lead | SD    | SDD987673985 |

The site was categorized as a No Apparent Public Health Hazard in a 2005 HC. ATSDR found that levels of arsenic, cadmium, copper and manganese exceeded environmental comparison values for on-site soil and off-site stream sediments (ATSDR, 2005a). ATSDR also found cadmium levels exceeding environment comparisons values in off-site surface water. The Gilt Edge Mine site was nevertheless classified as a "no apparent public health hazard" because ATSDR did not find complete exposures to on-site soil and on-site surface water: public access to the area was restricted, and on-site surface water was not used for drinking water. In addition, although ATSDR found complete exposure pathways to off-site surface water and stream sediment, ATSDR determined "no apparent public health hazard" based on reasonably expected recreational activities. The Gilt Edge Mine site was unable to determine what future human activities (e.g., residential, agricultural, recreational) could occur at the site, and the final outcome of site remediation.

| Site Name            | City  | State | EPA ID       |
|----------------------|-------|-------|--------------|
| Homestake Mining Co. | Milan | NM    | NMD007860935 |

The site was categorized as an **Indeterminate Public Health Hazard** in a 1988 PHA. In a 2009 HC, ATSDR reviewed the data from private well sampling conducted between September 2005 and May 2007 near the Homestake site. Although, "sampling results indicated several wells had uranium and/or selenium concentration above the Maximum Contaminant Level (MCL), ATSDR concluded no apparent public health hazard." ATSDR made this determination after calculating exposure doses for the contaminants above ATSDR health comparison values and MCLs in well samples, and determined that the concentrations were not at levels to cause adverse health effects (ATSDR, 2009a). However, ATSDR advised owners of residential wells that have selenium or uranim concentrations above the MCL to refrain from using the wells for potable purposes. Furthermore, results of the well sampling

showed that sulfates and total dissolved solids levels exceeded USEPA's drinking water advisory. ATSDR indicated that they may present health problems to the very young, very old and those that are already ill.

| Site Name         | City      | State | EPA ID       |
|-------------------|-----------|-------|--------------|
| Li Tungsten Corp. | Glen Cove | NY    | NYD986882660 |

The Li Tungsten site posed a Public Health Hazard according to a 1994 Preliminary PHA and a 2001 HC. The 1994 Preliminary PHA stated that trespassing onto site properties was occurring, and trespassers may be exposed to on-site surface soils, surface water, and sediments contaminated with elevated levels of site-related contaminants, including PCBs (Aroclors), metals (antimony, arsenic, cadmium, chromium, lead, manganese, mercury, nickel, iron) and gamma radiation from on-site drums and piles of low level radioactive slag/ore (ATSDR, 1994b). In addition, ATSDR indicated off-site surface water (Glen Cove Creek) was contaminated with volatile organic compounds such as tetrachlorethene and metals (iron and manganese) at levels exceeding surface water or drinking water standards. Therefore, people who used nearby surface water (Glen Cove Creek) for recreational purposes may also be exposed to these volatile organic compounds and metals. Sediment in off-site surface water was also contaminated with nickel and zinc at levels of concern for potential exposure pathways. A copy of the 2001 HC could not be located.

| Site Name            | City             | State | EPA ID       |
|----------------------|------------------|-------|--------------|
| Macalloy Corporation | North Charleston | SC    | SCD003360476 |

The Macalloy Corporation site was categorized a Public Health Hazard in a 1998 HC. This HC reviewed EPA's analytical data of contaminated shellfish (i.e., clams, oysters, shrimp and crabs) samples obtained from Shipyard Creek, North Charleston, South Carolina (ATSDR, 1998b). In the report, ATSDR indicated that the Macalloy Corporation facility situated at the headwaters of Shipyard Creek may have been the source of contamination through surface water runoff from the facility. Wastes generated by the facility during the ferro-chrome manufacturing process included arsenic, barium, chromium, lead, manganese, mercury, and zinc. ATSDR found that chromium concentrations detected in shrimp from Shipyard Creek presented a **public health hazard** if people consumed the contaminated shrimp on a frequent basis.

| Site Name    | City      | State | EPA ID       |
|--------------|-----------|-------|--------------|
| Midnite Mine | Wellpinit | WA    | WAD980978753 |

A 2010 PHA categorized the Midnite Mine site as a Public Health Hazard. According to the report, the Midnite Mine site was comprised of a mined area and a mine-affected area. The mined area contained more than 33 million tons of waste rock, unprocessed ore, and low-grade ore. Mine-affected environmental media include sediment, surface water (Blue Creek), soil, and groundwater. According to the report, past site investigations showed that contaminants such as arsenic, cadmium, manganese, uranium, and radioactive isotopes and decay products related to uranium, migrated from mining areas into local groundwater and surface waters as a result of mining activities and environmental processes. ATSDR classified the Midnite Mine site as a public health hazard based on exposures to site-related contaminants (metals and radionuclides) for people who use the mining-affected areas for traditional and subsistence activities (i.e. drinking water from drainage and seeps; breathing water vapor by heating water from drainage and seeps; accidentally ingesting sediments; eating terrestrial plants and roots

from mine-affected areas; eating fish from Blue Creek). In addition, ATSDR categorized the site as an **Indeterminate Public Health Hazard** for exposure to site–related contaminants through consumption of meat from big game (i.e. deer, elk) that graze or live in mined or mine-affected areas. ATSDR also classified the site as an **indeterminate public health** hazard for future exposure to contaminated groundwater from private drinking water wells and to radon in indoor air because at the time of the report ATSDR was unable to determine if there would be a residential development in the mining-affected area or if future residences would use contaminated private wells as a source of drinking water (ATSDR, 2010).

| Site Name                           | City         | State | EPA ID       |
|-------------------------------------|--------------|-------|--------------|
| Monsanto Chemical Co. (Soda Springs | Soda Springs | ID    | IDD081830994 |
| <i>Plant</i> )                      |              |       |              |

In 1992, ATSDR released a Preliminary PHA for the Monsanto Chemical Co. site. A copy of this document could not be located. However, according to an ATSDR Ombudsman report, the 1992 Preliminary PHA classified the Monsanto site as a **public health hazard** because of public exposure to hazardous substances (radioactive slags) produced as a result of Monsanto phosphate ore processes, which were used as aggregate in building and roadbeds (ATSDR, 2000b). The Ombudsman's summary of the Preliminary PHA also indicated that exposure to inorganic compounds (not specified) may have also occurred or may still be occurring through ingestion and inhalation of or dermal contact with contaminated groundwater or plant air/site fugitive dust emissions. But due to limited exposure data, ATSDR did not make health effect determination.

| Site Name                       | City       | State | EPA ID       |
|---------------------------------|------------|-------|--------------|
| National Southwire Aluminum Co. | Hawesville | KY    | KYD049062375 |

The National Southwire Aluminum Co. site was classified as a **public health hazard** in a 1994 Preliminary PHA. ATSDR reached that conclusion based on evidence that past, present and likely future exposures of on-site maintenance workers and workers at waste areas to elevated concentrations of aluminum, arsenic, cobalt, cyanide, fluoride manganese, and nickel (ATSDR, 1994c). The report also indicated that other on-site workers and nearby residents were exposed to these site-related contaminants, though the concentrations were not at levels to cause adverse health effects.

| Site Name  | City  | State | EPA ID       |
|------------|-------|-------|--------------|
| Omaha Lead | Omaha | NE    | NESFN0703481 |

The Omaha lead site was classified as a **public health hazard** in a 2004 HC and 2005 PHA. Acording to the 2005 PHA, the site included residential properties, child care sites, and school contaminated with lead from air emissions from lead refining and other sources. ATSDR found that there was an ongoing exposure to lead which put children 6 years old and younger in or near the Omaha Lead site at risk of lead-related health problems. ATSDR indicated children were exposed to surface soil contaminated with lead emitted from the operation of the ASARCO refinery and lead-based paint. In the report, ATSDR indicated that more than 1600 children in the area had elevated blood lead levels, defined as10 ug/dL or greater from blood sampling conducted from July 2000 through 2003. ATSDR concluded that these exposure levels would result in adverse health effects to children. ATSDR therefore classified the Omaha Lead site as a public health hazard (ATSDR, 2005d).

| Site Name   | City     | State | EPA ID       |
|-------------|----------|-------|--------------|
| Ormet Corp. | Hannibal | ОН    | OHD004379970 |

The ATSDR databases did not include any records for the Ormet Corp. site. In addition, at this time, no HC or PHA document by ATSDR could be located. According to EPA's Record of Decision (ROD) published in 1994, groundwater beneath the site was contaminated in excess of MCLs for contaminants including antimony, arsenic, beryllium, cyanide, fluoride, and teterachloroethene (TCE) (EPA, 1994a). Furthermore, soils and sediments in a backwater area were contaminated with cyanide, fluoride and PCBs.

| Site Name           | City      | State | EPA ID       |
|---------------------|-----------|-------|--------------|
| Palmerton Zinc Pile | Palmerton | PA    | PAD002395887 |

A 1994 PHA classified the site as a **public health hazard**. However, a copy of this document could not be located. In a 1987 PHA by Pennsylvania Department of Health, in cooperation with ATSDR, concluded that the Palmerton area presented a **public health hazard** because people were exposed to site-related contaminates (arsenic, cadmium, lead, and zinc) at levels that may cause adverse health effects (ATSDR, 1987). Particularly, children with pica behavior may be exposed to zinc, if they came in contact to an area with high concentration of zinc. Exposure pathways included ingestion of contaminated surface soils, swallowing of particulates in the air, ingestion of contaminated surface water, groundwater, fish, game animals, and local vegetables.

| Site Name               | City      | State | EPA ID       |
|-------------------------|-----------|-------|--------------|
| Reynalds Metals Company | Troutdale | OR    | ORD009412677 |

The Reynolds Metals site posed a **public health hazard** according to a 1997 PHA. ATSDR concluded that the Reynolds Metals site posed a public health hazard to on-site workers due to exposures to fluoride in surface soils and sediments (ATSDR, 1997b). In addition to fluoride, the report also indicated the presence of metal contaminants such as aluminum, arsenic, and mercury, and organic contaminants such as PAHs and PCBs in on-site surface soils, sediments and shallow groundwater beneath the Reynolds Metals site. People who used nearby surface waters (Columbia river and Sandy river) for recreation purposes as well as those who entered the area near the site to pick blackberries may be exposed to contaminated sediments and soils. However, ATSDR indicated no adverse health effects to recreational users because of the infrequency of their visits.

| Site Name            | City   | State | EPA ID       |
|----------------------|--------|-------|--------------|
| Silver Mountain Mine | Loomis | WA    | WAD980722789 |

The site was classified as an **indeterminate public health hazard** in a 1988 PHA, and as a **public health hazard** in a 1991 PHA. However, copies of neither of these documents could be located. The Silver Mountain Mine site is abandoned silver and gold mine located in Horse Springs Coulee, Washington. According to EPA, during the early part of the 1980s, a sodium cyanide solution was used to extract metal from mine tailings. By 1983, the site was abandoned, and the mine tailings and holding basin containing cyanide contaminated water were left behind. EPA also indicated the presence of arsenic and cyanide in a leachate collection trench associated with ore extraction. Within three miles of this mining site, EPA reported the presence of private wells used for domestic purposes, irrigation and livestock watering. According to EPA, the contaminants of concerns were arsenic and cyanide and

exposure pathways included, on-site soils, on-site surface water, on-site shallower groundwater, and off-site groundwater (EPA, 2010). The site was deleted from NPL in 1997 after EPA completed remedial activities in 1992.

| Site Name                              | City           | State | EPA ID      |
|----------------------------------------|----------------|-------|-------------|
| Stauffer Chemical Co. (Tarpon Springs) | Tarpon Springs | FL    | FLD01059601 |

The Stauffer Chemical Co. posed a **public health hazard** in a 1993 Preliminary PHA. In 1993, ATSDR classified the Stauffer Chemical Co. as a **public health hazard** because on-site workers in the past and on-site workers at the time of report were exposed to arsenic in surface soils, sediments and dust at levels above ATSDR comparison values. Other contaminants of concern at this site were antimony, beryllium, boron, cadmium, chromium, fluoride, lead, radium, radon, sulfur dioxide, thallium, and vanadium. In addition, arsenic concentrations were also detected above EPA's reference dose (RfD) in one off-site drinking water well, in off-site shallow and deep groundwater and in a nearby river. Contaminants known or suspected to cause cancer (arsenic beryllium, cadmium and chromium were also detected in on-site soils and sediments, groundwater (on-site and off-site) and off-site surface water at levels above ATSDR comparison values (ATSDR, 1993).

From 1993 to 2005, ATSDR issued a number of PHAs and HCs for the Stauffer Chemical Co. site. Following a Final Site Remedial Investigation for the Stauffer site in 1998, EPA requested ATSDR conduct a HC to determine if the contamination at the site posed "imminent and substantial endangerment." ATSDR issued the HC in 1999 and after reviewing the data, ATSDR found no acute health hazard despite elevated levels of arsenic and radionuclide were found in the surface soil samples taken from the site. However, ATSDR concluded **public health hazard** for long-term exposures to site-related arsenic and radionuclides (ATSDR, 1999).

In 2005, ATSDR issued a final comprehensive PHA for the Stauffer site. At the time of the report, ATSDR classified the site as a "no apparent public health hazard". ATSDR made this determination because the Stauffer plant had not been in operation since 1981, and access to the site was restricted. In addition, ATSDR indicated buildings, process equipment and chemicals at the site – that posed a health and safety hazard – had been removed from the site. However, because of elevated levels of arsenic in on-site surface soils and gamma radiation from on-site slags, ATSDR concluded that the Stauffer site could pose a **future public health hazard** if the site is used for future residential developments (ATSDR, 2005e).

| Site Name        | City              | State | EPA ID       |
|------------------|-------------------|-------|--------------|
| Summitville Mine | Rio Grande County | CO    | COD983778432 |

The site was classified as an **indeterminate public health hazard** in a 1997 PHA.

The Summitville Mine site was listed on the NPL in 1994. Since its listing, EPA and CDPHE have conducted several removal and remedial actions, which are still ongoing. In 1994, EPA and CDPHE conducted remedial actions for reducing or eliminating acid mine drainage and water containing cyanide from different areas of the site (EPA 1994b, EPA1994c, and EPA 1994d). In 2001, EPA issued a Record of Decision for site-wide remedial action (OU5)

designed to address the threats to the environment that remain at the site after completion of emergency and interim remedial actions (EPA, 2001).

The 1997 PHA did not find any ongoing exposures which would result in adverse health effects; therefore, ATSDR classified the Summitville Mine site as "no apparent public health hazard." However, the PHA reported that cyanide, metals (aluminum, arsenic, cadmium, copper, iron, lead, manganese, and zinc), and sulfate leached into local surface waters from acid mine drainage and release of heap leachate (ATSDR, 1997a). The report indicated potential human exposure to contaminants from the Summitville site could occur through surface water/sediment, groundwater, soil, crops, fish, livestock, and wild game. ATSDR recommended further studies be conducted to identify human exposure pathways.

| Site Name          | City   | State | EPA ID       |
|--------------------|--------|-------|--------------|
| Teledyne Wah Chang | Albany | OR    | ORD050955848 |

A 2009 PHA for the Teledyne Wah Chang site concluded that the site posed "**no apparent public health hazard**." The report noted, however, that the surface soils and groundwater at the site were contaminated with volatile organic compounds, PAHs, PCBs and metals (arsenic, beryllium, cadmium, chromium, and nickel) (ATSDR, 2009b). In addition, solid sludges dumped in an unlined area of the plant were highly contaminated. The conclusion of "no public health hazard" was based on the assessment that the public would not have access to contaminated groundwater or surface water used as drinking water sources, and the public would not come in contact with contaminated media which included, surface water, surface soils and sediments. Since 1990, EPA has taken several cleanup actions, including removal of contaminated sludge from the site (completed1993); pumping and treating contaminated groundwater (ongoing); excavating and disposing contaminated creek sediments(completed 1999); and excavations of radium-contaminated soil which was completed in 1999. (EPA, 2010b)

| Site Name     | City       | State | EPA ID       |
|---------------|------------|-------|--------------|
| Tex-Tin Corp. | Texas City | TX    | TXD062113329 |

The Tex-Tin Corp site posed a **public health hazard** based on a 2000 HC. A copy of this document could not be located. However, a copy of a 1998 HC prepared by the Texas Department of Health (TDH), in cooperation with ATSDR, was located. This HC evaluated the public health threat based on fish data from two off-site ponds near Tex-Tin Corporation site. Fish data included tests for semi-volatile organic compounds such as PCBs and metals which included aluminum, arsenic, barium, copper, lead, manganese, mercury, selenium and zinc. Based on the review of the available data, TDH concluded an **indeterminate public health hazard** from ingestion of fish from two ponds (ATSDR, 1998d). Although TDH concluded there is an **indeterminate public health hazard**, TDH expressed concerns with the concentrations of mercury found in fish, particularly in larger predator species.

# Attachment M4. Summary of ATSDR Findings for Nine Additional Sites

| Site Name       | City   | State | EPA ID       |
|-----------------|--------|-------|--------------|
| AKZO Salt Inc   | Retsof | NY    | NYD002205607 |
| Summary:        |        |       |              |
| No report found |        |       |              |
| Site Name       | City   | State | EPA ID       |
| Alaska Gold     | Nome   | AK    | AKD038526620 |
|                 |        |       |              |

#### Background

The Alaska Gold Company site is located in Nome County, Alaska, approximately 1.5 miles north of the city of Nome. Since 1899, gold placer deposits have been mined around Nome, Alaska. Placer processing produced concentrated arsenic-bearing minerals, and generated arsenic and mercury containing dredge tailings, which were widely used for building foundations, fill, and roadways. In 1986, an EPA Technical Assessment Team conducted sampling of air, water, soil and sediment in the Alaska Gold Mine site area. Results of the sampling indicated that arsenic and mercury were found in air, water, soil and sediments which were directly linked to mining and gold extraction activities.

#### Summary of ATSDR findings

EPA requested that ATSDR conduct a PHA based on data obtained from sampling of air, water, soil and sediments in the Alaska Gold Mine site area. The resulting PHA reported potential exposure routes for arsenic and mercury contaminants associated with Alaska Gold Site for residents in the area included, drinking of water from contaminated groundwater and surface water; ingestion of contaminated sediments and soils; direct contact with contaminated sediments, soil, groundwater, and surface water; consumption of contaminated fish and other aquatic food species; and inhalation of contaminated vapors and particulate matters.

After reviewing a number of reports and available data, ATSDR concluded exposure to siterelated contaminants in drinking water sources pose **minimal impact on human health** because arsenic and mercury levels in drinking water were below Maximum Contaminant Levels. However, concentration of arsenic and mercury in surface soil were at elevated levels and exposures to soil, particularly, ingestion by small children may **pose health risks**. In addition, ATSDR also indicated mercury levels in particulate samples were high enough to **pose a health risk** to local residents.

| Site Name             | City          | State | EPA ID       |
|-----------------------|---------------|-------|--------------|
| ALCOA (Point Comfort) | Point Comfort | TX    | TXD008123168 |
|                       |               |       |              |

#### Background

The ALCOA (Point Comfort)/ Lavaca Bay Plant is located near the city of Point Comfort, in Calhoun County, Texas. The site covers 3,500 acres, and includes the ALCOA Plant, a dredge spoil island associated with ALCOA, and portions of Lavaca Bay, Cox Bay, Cox Creek, Cox Lake and western Matagorda Bay. The site is surrounded by surface water bodies, agricultural area and industrial complex. According to 1990 census figures, approximately 1,100 people lived in the city of Point Comfort. Currently, the site operates as a bauxite refinery. In the past,

ALCOA had operated an aluminum smelter at this site from 1948 until 1980. From 1965 to 1979, operations at the site also included a chlor-alkali production plant that produced chlorine gas and sodium hydroxide through an electrolytic process that used mercury. Operations associated with the chlor-alkali production process were responsible for mercury contamination of on-site surface soil, groundwater, air, sediments, fish and crabs. The contamination occurred as a result of mercury-containing wastewater (67 pounds of mercury per day) that was discharged into Lavaca Bay, and the disposing of dredge spoils contaminated with mercury in several areas of the site. Other contaminants of potential concern identified by EPA were volatile organic compounds and lead in shallow groundwater; polychlorinated biphenyls and polycyclic aromatic hydrocarbons in sediment fish and oysters. In April 1988, Texas Department of Health closed the area of Lavaca Bay contaminated with high levels of mercury for fishing. In April 2001, the EPA issued Record of Decision to conduct remedial actions.

# Summary of ATSDR Finding

In 1995, the Texas Department of Health (TDH) published a PHA for the ALCOA (Point Comfort) site. Based on the elevated levels of mercury found in fish, TDH classified the site as an **Urgent Public Health Hazard** due to the potential health effects on women of childbearing age and developing fetuses (ATSDR, 1995c). The report also indicated that people who consumed fish and crabs from the portion of Lavaca Bay contaminated with mercury may have been exposed to excessive amounts of mercury.

| Site Name                              | City                | State | EPA ID       |
|----------------------------------------|---------------------|-------|--------------|
| Cabot-Wrought Prop - Div of Cabot Cor, | Muhlenberg Township | PA    | PAD044540136 |
| aka NGK Metal Site                     |                     |       |              |

#### Background

The NGK Metal site is located in Muhlenberg Township, Berks County, Pennsylvania. The 65-acre complex is surrounded by several light industries and residential land uses. From 1936 to 1965, manufacturing activities at the site included extraction of beryllium hydroxide from beryl ore, and production of beryllium salts and various types of beryllium metal and alloys. In 1965, the extraction of beryllium hydroxide from beryl ore was discontinued. From 1965 to 1992, the plant engaged in operations that included production of beryllium/aluminum, beryllium/copper, and beryllium/nickel alloys; casting, heat treatment, and rolling of beryllium alloys; and chemical and mechanical cleaning of beryllium alloys. During this period, the facility used a series of unlined ponds for sludge settling and wastewater treatment. More specifically, fluoride waste, spent acids, and acidic rinse waters were neutralized by a lime treatment process and allowed to settle in the pond. As the plant grew, a wastewater treatment facility was constructed, ending the use of the ponds for sludge settling and wastewater treatment facility wastewater treatment. According to the 1990 census, a population of 4,927 lived within 1 mile of the site.

# Summary of ATSDR Findings

According to a 1995 PHA, petitioned by communities surrounding the site, ATSDR found elevated concentrations in various environmental media, on-site and off-site, for contaminants including antimony, arsenic, barium, cadmium, copper, lead, manganese, nickel, nitrate, selenium, thallium, vanadium, and 1,1,1-trichloroethane (ATSDR, 1995a). However, ATSDR could not establish complete exposure pathways for these contaminants. ATSDR also found elevated levels of beryllium, chromium, and 1, 1 dichloroethene with completed exposure

pathways. ATSDR reviewed the available environmental and exposure data, and determined that concentrations detected in the air, water, soil and sediment classified the NGK site as an indeterminate **public health hazard**.

| Site Name                      | City    | State | EPA ID       |
|--------------------------------|---------|-------|--------------|
| Master Metals Incorporation #2 | Detroit | MI    | MID039108824 |
|                                |         | -     | ·            |

#### Background

The Master Metals site is located at 4700 and 4740 East Nevada Street, Detroit, Wayne County, Michigan. The facility operated under several company names as lead smelters from 1955 to 1983. In 1984, Synergy Production Group, Inc. processed ferrous sulfate hyptahydrate on the site. The site is currently abandoned and owned by the state of Michigan. The land use surrounding the site includes industrial, commercial and residential use. The closest residential area is located 100 feet from the site. According a 1997 EPA action Memorandum (as cited in HC, 2005), within a 1-mile radius of the site, 86% of the population were minorities and the median income was \$17,621.

Beginning in 1996, the EPA conducted Site Assessments, which showed levels of lead, antimony and arsenic exceeding the Michigan Department of Environmental Quality generic criteria for industrial, commercial and residential use. The EPA also discovered laboratory chemical and other hazardous waste on-site in marked containers.

# Summary of ATSDR Findings

In 1997, EPA asked the Michigan Department of Community Health (MDCH) to evaluate the associated health risks. In a 1997 HC, MDCH and ATSDR indicated that the abandoned lead smelting site lacked effective restriction from trespassers. Therefore, the (MDCH) and ATSDR concluded the Master Metals site posed a **public health hazard** based on the high concentrations of lead found in the surface soil of the property (ATSDR, 1997). In addition, the report indicated that abandoned buildings on the property posed **physical hazards** from deterioration and partial collapse and from laboratory chemicals left when they were vacated. A follow-up HC published in 2005 concluded that the site poses **no apparent public health hazard** (ATSDR, 2005). MDCH reached that conclusion based on remedial actions taken by responsible parties working under an Administrative Order on Consent with EPA, which removed the lead contaminated soil from the residential properties and from the plant site.

| Site Name                           | City    | State | EPA ID       |
|-------------------------------------|---------|-------|--------------|
| Phelps Dodge Corp Douglas Reduction | Douglas | AZ    | AZD008397143 |
| Works (non-NPL)                     |         |       |              |

#### Background

The Phelps-Dodge Corporation Douglas Reduction Works site is located in Cochise County, Arizona, about 1 mile west of Douglas. The site occupies approximately 2,000 acres of land. The site consisted of two copper smelters: The Calumet and Arizona Company smelter, built in 1902; and the Copper Queen smelter, which had operated from 1904 until 1931. The Calumet and Arizona Company was later purchased by Phelps-Dodge Corporation and operated as the Douglas Reduction Works until 1987. During its operation, copper and other metals were smelted at the facility. As a result of this process sulfur dioxide and particulate matter were released through two 600-foot stacks. Air quality monitoring done by the Arizona Department of Environmental Quality from 1967 to 1987, found elevate levels of sulfates,

arsenic and lead particulate in outdoor air in Douglas. Due to the continued violations of EPA's National Ambient Air Quality Standards (NAAQS), the smelting operation was finally ceased in 1987.

# Summary of ATSDR findings

This site contributed to lead-contaminated surface soils in residential areas of Douglas. ATSDR classified the Phelps Dodge Corp site as a **public health hazard** because of past and present long-term exposure of children to site-related lead contaminated soils (ATSDR, 1995b). Furthermore, ATSDR indicated chronic exposure to lead in the air was an additional source of lead exposure for children and may have resulted in respiratory problems in sensitive sub-populations, such as children and adults with respiratory ailments. The report also indicated that the site may have been responsible for past emissions of contaminants including arsenic, sulfur dioxide, inhalable particulate matter and other heavy metals. (ATSDR, 1995)

| Site Name     | City           | State | EPA ID       |
|---------------|----------------|-------|--------------|
| REMACOR, INC. | West Pittsburg | PA    | PAD074965096 |

#### Background

The Remacor site is located in West Pittsburg, Lawrence County, PA. The closest residential area is located 1/3 mile east of the site. Within a 1 mile radius of the site, the population is about 1,054. Currently the company uses magnesium scrap to produce powders and granules for the steel industry. As a result of this process, the plant generated magnesium and lime waste, magnesium oxide waste, and process wastewater. In 2005, magnesium materials at the plant ignited causing a fire which destroyed a building and processing equipment at the facility. Since then, the company was found in contempt of a court order for failing to perform remedial action outlined in a state consent decree.

In March 2006, results of an EPA site inspection demonstrated the presence of public and sitespecific hazards, which include unsecured facility from trespassers, debris and spills widely dispersed on site, unsecured stored magnesium materials in drums or large super sack containers, chemical storage warehouses with leaky roofs or lacking doors, placarding of hazardous material storage areas was not evident, mislabeled drums, chemical runoff was observed in several locations, and surface runoff was openly entering storm drains. Further site inspection also identified the presence of radioactive materials cesium-137 and thorium-232 on site. EPA conducted removal actions and related actions including securing the Site with 24hour security services, repairing the perimeter fence, establishing runoff controls, marking and covering or excavating areas of elevated radiation, and conducting limited excavations in spill areas.

# Summary of ATSDR Findings

In a 2007 HC, ATSDR indicated that the Remacor site was unsecured, and trespasser or workers at facility would be exposed to radiation beyond the ATSDR Minimum Risk Level of 100 millirem per year in as few as 200 hours (ATSDR, 2007c). In addition to radiation exposures, ATSDR also identified other **public hazards**, including high potential for fire related to magnesium, potential inhalation of smoke containing radioactive material, contaminations of the stream with radioactive materials. Because the site is unsecured and the radiation levels exceed estimated background by as much 25 times, ATSDR concluded that the site posed a **health hazard** to the surrounding community.

|                          | Duite     |             |
|--------------------------|-----------|-------------|
| Scott OM & Sons Co Marys | sville OH | OHD99083448 |

#### Background

The Scotts Company (formerly O.M. Scott and Sons Company) was a Vermiculite beneficiation facility, which used an exfoliation process using vermiculite to produces consumer products. The site is located at Marysville, Union County, Ohio. The facility occupies 830 acres, which includes corporate offices, warehouses and an operating facility that manufactures fertilizers and pesticides. The facility began operation in1957. The area surrounding the facility includes open fields, wooded area, highways and residential area. According to the 1990 census, there were 58 housing units and a total population of 185 people within 1 mile of the site.

According to EPA records, from 1967 to 1980, the Scotts Company facility was the single largest consumer of vermiculite ore from the Libby mines in Montana. During this period receiver and exfoliated over 430,000 tons of Vermiculite from Libby. Vermiculite from Libby was found to contain several types of asbestos fibers, including the amphibole asbestos varieties tremolite and actinolite. After 1980 the facility switched from using Libby ore to using ore from Africa, South Carolina and Virginia, until the company phased-out the use of vermiculite from its products in 2001.

### Summary of ATSDR Findings

According to a 2005 HC, ATSDR classified this site as **a public health hazard** because workers at the site were exposed to airborne levels of Libby asbestos above the existing occupational standard (OSHA PEL) at the time of the report (ATSDR, 2005). In addition, household members of former workers may have been exposed to elevated levels of Libby asbestos through asbestos carried home on workers' hair and clothing. Under these conditions ATDSR concluded **public health hazard** for households of former workers. Current workers at the site are not being exposed to Libby asbestos; therefore, it poses **no public health hazard**. However, current workers may be exposed to asbestos if future disturbances of on-site landfills that may contain asbestos occur.

| Site Name                        | City         | State | EPA ID       |
|----------------------------------|--------------|-------|--------------|
| St. Louis Smelting & Refining Co | Collinsville | IL    | ILD980607006 |
|                                  |              |       |              |

#### Background

The St. Louis Smelting and Refining site is located in a residential area of Collinsville, in Madison County, Illinois. The plant covered as many as 482 acres, with the primary operations covering approximately 40 acres. The Smelter and Refining Company operated a lead smelter at the site from 1904 to 1933. After the facility closed, all of the smelting and refining equipment was shipped to South America and the buildings were razed. The remaining slag and waste piles were either recycled for lead or otherwise moved off the site, with the remainder spread across the site. Residential areas (Pine Lake developments) were built on or near the site in the 1950s, and additional residential developments (Collinwoods subdivision) were built on the site in the 1970s and 1980s, where slags were still visible on the soil surface. Surface soil sample taken from Collinwoods division indicated the presence of contaminants including lead, cadmium, and antimony. Nearby surface water (Pine Lake), which was used by the smelting operations and its sediments, were also contaminated with lead.

# Summary of ATSDR findings

After a request by Illinois Environmental Protection Agency, ATSDR conducted a PHA in 2006. The PHA concluded that the St. Louis Smelting and Refining site posed a **public health hazard** based on exposure to lead in residential soils. Although the public health hazard was only issued for lead contamination, the report indicated residential surfaces soils were also contaminated with elevated concentrations of arsenic, cadmium, and antimony. In addition, the report indicated that residents may be exposed to lead in sediments in nearby surface water (Pine lake), which was used by the smelting operation. (ATSDR, 2006b)