Evaluation of Swimmer Exposures Using the SWI MODEL Algorithms and Assumptions

Timothy Leighton
Timothy Dole, CIH
Antimicrobials Division
EPA Office of Pesticide Programs

Presented to
Pesticide Management Regulatory Agency (PMRA)

October 6, 2015

Lane Designations

1) Introduction to the SWIMODEL
2) General Exposure Assumptions
3) Calculation Methods

- Incidental Oral Exposure
- Dermal Exposure
- Buccal, Aural, Nasal Orbital Exposures
- Inhalation Exposures

4) Toxicological Endpoint Considerations
5) Comparison of Exposure Routes

The Swimmer Exposure Assessment Model (SWI MODEL) I ntroduction

$>$ Used to develop screening exposure estimates for swimmers exposed to pool chemicals and breakdown products in swimming pools/spas.
> Modification of a study used by Beech (1980) for estimating exposure to trihalomethanes (THMs) in swimming pools.
> Computerized as the SWI MODEL program. Last updated in 2003. Can only be run on Windows XP. Not compatible with Windows 7 or higher.

SWI MODEL Assumptions for Competitive Swimmers

Age	Body Weight	Exposure Duration (hours/ day)	
		Short Term	Intermediate/ Long Term
Adult	80 kg	3	1.83
11 to <16	57 kg	2	1.65
6 to <11	32 kg	1	1

$>$ The competitive exposure durations in the SWI MODEL are derived from ACC's swim coach survey.
$>$ The body weights are updates from the 2011 EFH.

SWI MODEL Assumptions for Non-Competitive Swimmers

| Age | Body
 Weight | Exposure Duration (hours/ day) | Short Term |
| :--- | :---: | :---: | :---: |$|$| Intermediate |
| :---: |

The durations have been revised to reflect the time spent in the water swimming rather than just being at the pool (e.g., pool deck).

I ncidental Oral Exposure Algorithm

Dose $(\mathrm{mg} / \mathrm{kg} /$ day $)=(\mathrm{CW} \times \mathrm{IGR} \times$ ED) $/$ BW

CW = Chemical Concentration in Water (mg/ liter)
IGR = Water Ingestion Rate (liters/ hour)
ED = Exposure Duration (Hours/ Day)
BW = Body Weight (Kg)

Water I ngestion Rate

Age	Water Ingestion Rate (liters/ hour)	
	Competitive	Non-Competitive
Adult	0.0125	0.025
11 to <16	0.025	0.05
6 to <11	0.050	0.05

$>$ These values are from SWI MODEL (EPA, 2003)
> Research published after 2003 has confirmed these values and ingestion rates are included in the 2011 EFH.

Dermal Exposure Algorithm

Dose $=C W \times K p \times S A \times E T \times C F$ BW

Where:
CW = Chemical Concentration in Water (mg/ liter)
$\mathrm{Kp}=$ Permeability Constant ($\mathrm{cm} / \mathrm{hr}$)
SA = Surface Area (cm²)
ET = Exposure Time (hours/ day)
CF $=$ Conversion Factor (0.001 Liter/ cm^{3})
BW = Body Weight (Kg)

Calculation of the

 Permeability Constant (Kp)$$
\begin{aligned}
& \log K p=-2.72+[0.71 \times \log (\text { Now })]-0.0061 \times \mathrm{MW} \\
& \mathrm{Kp}=10^{\log K p}
\end{aligned}
$$

Where:
Kow $=$ Octanol/ water partition coefficient (unites)
MW = Molecular Weight ($\mathrm{g} / \mathrm{mole}$)

Note 1- The Kp algorithm is only valid for organic chemicals Note 2 -The default Kp is $0.001 \mathrm{~cm} /$ hour (US EPA, 1992)

Kp Example (Cyanuric Acid)

Where:
Kow $=89.1$ (unitless)
MW = 129 grams $/$ mole
$\log K p=-2.72+[0.71 \times \log (89.1)]-0.0061 \times 129$
$\log K p=-2.72+[0.71 \times 1.95]-0.787$
$\operatorname{LogKp}=-2.12$
$\mathrm{Kp}=10^{-2.12}=0.0076 \mathrm{~cm} /$ hour

> These are updated values from the 2011 EFH.

SWI MODEL Supplemental Exposure Routes

> Buccal/Sublingual - Water taken into the mouth but not ingested (spit out)
> Orbital/Nasal - Eye and nose exposure
> Aural - Ear exposure
> Inhalation Exposure

At this time, EPA/OPP/AD is not including these routes of exposure in our swimming assessments (inhalation on a case-by-case basis).

Buccal/ Sublingual Exposures

Exposure (mg/event) $=\mathrm{CW} \times \mathrm{WI} \times \mathrm{AR} \times \mathrm{ET}$

Where:
CW = Chemical Concentration in Water (mg/liter)
WI = Water Intake Rate that is not ingested (liters/hour)
$A R=$ Absorption factor (0.01 based on nitroglycerin)
ET = Exposure Time (hours/event assuming 1 event/day)

 Buccal/ Sublingual Water I ntake Rate

Age	Water Intake Rate (Iters/ hour)	
	Competitive	Non-Competitive
Adult	1.25	2.5
11 to <16	2.5	5.0
6 to <11	2.5	5.0

> The water intake rate represents water that enters the mouth but is not swallowed.

- Non-Competitive Orbital/Nasal exposures calculated the same way as buccal/sublingual exposures.
- Competitive Nasal Exposure assumed to be the same as Buccal/Sublingual Exposures.
- Competitive Orbital Exposures assumed to eliminated by the use of swim goggles, thus only Nasal exposures would be assessed for these swimmers.

Aural (Ear) Exposure Algorithm

Dose $=\mathrm{CW} \times \mathrm{OW} \times \mathrm{Kp} \times$ SA \times ET $\times C F$ BW

Where:
CW = Chemical Concentration in Water (mg/ liter)
OW = Octanol/ Water coefficient
Kp = Permeability Constant (cm/hr)
SA =Surface Area ($4 \mathrm{~cm}^{2}$)
ET =Exposure Time (hours/ day)
CF $=$ Conversion Factor (0.001 Liter/ cm^{3})
BW = Body Weight (Kg)

I nhalation (Air Concentration) Algorithm

Cvc $=\mathrm{Cw} \times \mathrm{HLC} \times 1000$ liter $/ \mathrm{m}^{3}$
Where:
Cvc =Chemical vapor concentration (mg/ m³)
$\mathrm{Cw}=$ Chemical concentration in water
HLC = Henry's Law Constant (unitless)

Toxicological Endpoint Considerations

> Dermal exposures are assessed using oral endpoints.
$>$ Exposures primarily short to intermediate term duration for recreational swimmers and long term for competitive swimmer.

Percent Dose by Route of Exposure

	Competitive Swimmer	Non-Competitive Swimmer		
Exposure Route	Dose (mg/kg/day)	$\%$	Dose $(\mathrm{mg} / \mathrm{kg} / \mathrm{day})$	$\%$
Ingestion	0.014	30	0.0094	29
Dermal	0.011	24	0.0037	12
Buccal/Sublingual	0.014	30	0.0094	29
Nasal/Orbital	0.0071	15	0.0094	29
Aural	$4.5 \mathrm{E}-06$	<0.1	$1.5 \mathrm{E}-06$	<0.1
Combined	0.046	100	0.032	100

References

Dang, W. (1996). The Swimmer Exposure Assessment Model (SWIMODEL) and its use in estimating risks of chemical use in swimming pools. EPA Internal Guidance Document.

Richard Reiss, Gerald P. Schoenig \& Gary A. Wright (2006) Development of Factors for Estimating Swimmers' Exposures to Chemicals in Swimming Pools, Human and Ecological Risk Assessment, 12:1, 139-156

US EPA, 1992. Dermal Exposure Assessment: Principles and Applications. Office of Research and Development. Table 5-7, "Predicted Kp Estimates for Common Pollutants," EPA/600/891/011B. Washington, DC.

US EPA, 2003. Use’s Manual - Swimmer Exposure Assessment Model (SWIMODEL) Version 3.0, U.S. EPA/OPP/AD November 2003.

Contact Information

Tim Leighton

 Leighton.Timothy@EPA.Gov Tim Dole Dole.Timothy@EPA.Gov