Using *in vitro* and *in vivo* models to inform understanding of developmental neurotoxicity

PAMELA J. LEIN

UNIVERSITY OF CALIFORNIA-DAVIS
Molecular Biosciences, School of Veterinary Medicine
Center for Children’s Environmental Health
MIND Institute
Need to screen environmental chemicals for developmental neurotoxicity (DNT)
Screening for Gene-Environment Interactions for DNT Potential

- Genetic susceptibility
- Environmental Factors
- Timing

NDD risk, severity and treatment outcome
Focus on neuronal connectivity

Axonal, dendritic and synaptic structure are critical determinants of neuronal connectivity, which in turn determines brain function.
Common Pathways for Neurodevelopmental Disorders (NDDs): Altered Neuronal Connectivity and Structural Plasticity

A. Neuronal development stages:
- Fate specified neuron
- Neurite outgrowth
- Dynamic state (critical period)
- Stable state

B. Synapse formation and elimination over time:
1. Synapse formation
2. Synapse elimination
3. Synapse maintenance
4. Critical period

C. Synapse activity and pruning:
- Strong activity
- Weak activity
- Excitatory neuron
- Inhibitory interneuron
- Perineuronal net
- Myelination

Birth to adulthood stages:
- Childhood
- Adolescence
- Adulthood

Stable and dynamic states within the critical period.
Neuronal Connectivity as a Relevant Endpoint for Studying Environmentally-Induced NDDs

Genetic, histological, electrophysiological and functional imaging studies identify altered synaptic connectivity in autism and other neurodevelopmental disorders (NDD)

- Many of the genes implicated as risk factors for ASD influence dendritic morphogenesis and/or synapse formation and stabilization
- Abnormalities in dendritic morphology are the most consistent pathologic correlate of behavioral deficits in ASD
Heritable genetic vulnerabilities amplify adverse effects triggered by environmental exposures *if* genes and environment converge to dysregulate the same signaling system at critical times of neural development resulting in altered patterns of connectivity in the developing brain.

Example of applying this strategy

Calcium Signaling Defects: A point of convergence in G x E interactions in DNT

UC Davis Center for Children’s Environmental Health Project 4 (Pessah and Lein, Co-Leaders)
Hypothesis

CGG trinucleotide repeats in the FMR1 gene (Fragile X premutation) influence susceptibility to non-dioxin-like (NDL) persistent organic pollutants (POPs) identified in plasma of women during pregnancy who are at high risk for having a child with ASD.

We predict that these gene-environment interactions will converge on signaling pathways that regulate patterning of neuronal connections set down in the developing brain.
Why focus on NDL POPs?
NDL PCBs remain a significant concern as NDD risk factors

- *ortho*-substituted NDL PCBs predominate over DL PCBs in environmental samples and human tissues
 - Air in public schools
- Contemporary unintentional sources of NDL PCBs have been identified, most notably commercial paint pigments
- The latest NHANES study confirmed widespread exposure to PCBs among women of childbearing age in the USA
 - NDL PCBs detected routinely in the plasma of women enrolled in the MARBLES (Puschner, unpublished data)
- Analyses of PCB and PBDE levels in brain tissue reveal that individuals with genetic risk factors for NDDs have higher NDL PCB levels in brain tissue compared to neurotypical controls
Why focus on NDL POPs?
NDL PCBs alter endpoints relevant to NDD

Developmental exposure to PCB 95 in the maternal diet throughout gestation and lactation alters dendritic arborization in the brain of weanling rats

Wayman et al. (2012) Environmental Health Perspectives 120:997-1002.
PCB 95 alters dendritic growth in primary cultures of hippocampal neurons

Wayman et al. (2012) *Environmental Health Perspectives* 120:997-1002.
NDL PCBs alter dendritic growth by modulating the Ca$^{2+}$-CaMK-CREB-Wnt2 signaling pathway

Wayman et al. (2012) *Environmental Health Perspectives* 120:1003-1009.
Why focus on FMR1 premutation?

- CGG trinucleotide repeats (expansion mutations) in the FMR1 gene are the most prevalent single gene disorder associated with ASD
 - CGG-repeat expansions within the 5’ non-coding portion of FMR1 in the premutation range (55-200 CGG repeats) give rise to fragile X-associated tremor/ataxia syndrome (FXTAS) and increase the risk of NDD
 - FMR1 expansions >200 CGG repeats give rise to Fragile X syndrome
- FMR1 premutation KI mouse model identified impairments in neurodevelopment long before neuropathology evident*
 - Altered neuronal migration
 - Altered dendritic arborization
 - Aberrant Ca^{2+} oscillations
 - Altered electrical activity

Human iPSC-derived neurons with NDD relevant genotypes
Acknowledgements

Collaborators
Isaac Pessah, University of California, Davis
Gary Wayman, Washington State University

Lein Laboratory
Christopher Barnhart
Donald Bruun
Hao Chen
Dongren Yang
Kim Keil

Funding Sources
NIEHS
USEPA
MIND Institute