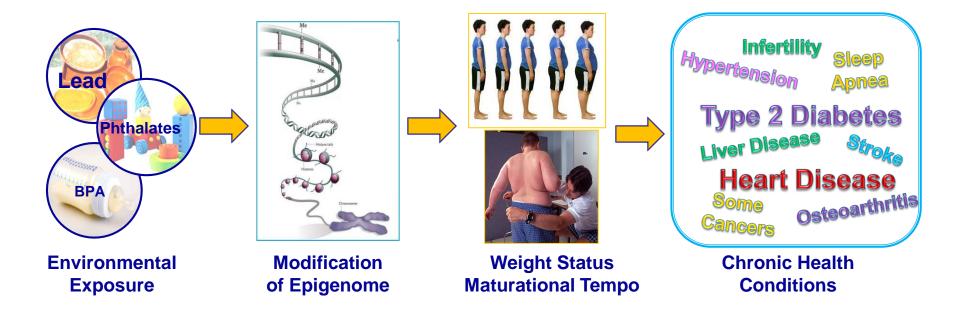


Metals, EDCs and biomarkers of metabolic syndrome risk in adolescence

Karen E. Peterson, ScD

University of Michigan

Children's Environmental Health and Disease Prevention Center EPA Webinar: February 11, 2015


Funding: P20 ES018171/RD 834800 , P30 ES017885 P01 ES02284401/RD 83543601, P30 DK089503

Research Goal

To explore the epigenetic mechanisms by which **perinatal** and **peripubertal** exposures to representative toxicants and interactions with diet affect the **development of obesity**, the tempo of sexual maturation and **metabolic homeostasis** in human and animal models.

Research Setting

<u>Early Life Exposures in Mexico to ENvironmental Toxicants</u> 20-year collaboration with *Instituto Nacional de Salud Pública (INSP)*

Metabolic syndrome affects 30 % of obese adolescents

Risk factors predispose to persons to CVD and T2DM

- Waist circumference > 90th percentile AND > 2 criteria:
 - Systolic Blood Pressure <u>> 90th percentile</u>
 - Triglycerides >110 mg/dL
 - HDL cholesterol < 40mg/dL</p>
 - Fasting glucose ≥ 110 mg/dL
- EDCs have been shown to alter weight, glucose homeostasis, lipid profile, free fatty acid (FFA) balance and transport, adipogenesis and oxidative stress
- Metabolomics reflect cellular biochemistry; could be used as early predictors and/or clinical biomarkers of disease

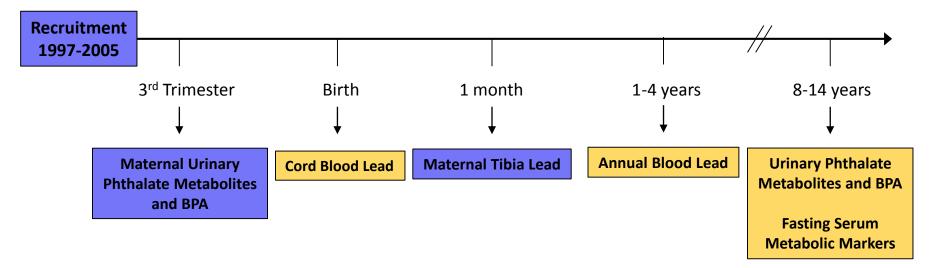
Background: ELEMENT

Lead exposure in GIRLS 8-14 yr

- Maternal patella bone lead (µg/g) associated with -0.037 lower BMI (p=.01) (Peterson ISEE 2011)
- IQR increase in maternal tibia lead (13 µg/g) at 1 mo postpartum associated with 2.11-mmHg increase in SBP (95% CI: 0.69, 3.52) and 1.60-mmHg increase in DBP (95% CI: 0.28, 2.91) (Zhang EHP 2012)

BPA and phthalates

- BOYS: *in utero* exposures associated with increases but concurrent exposure with decreases in fat distribution measures, e.g., waist (WC), triceps skinfold (TSF))
- GIRLS: concurrent BPA and MEP associated with increases but HMW, MBP, MCPP, and MIBP with decreases in WC, TSF (Yang TC, ISEE 2013)


- Examine the impact of *in utero* and peripubertal exposures to BPA, phthalates and lead (Pb) on fasting serum measures of lipid metabolism, glucose and leptin among boys and girls ages 8-14 yr
- Explore the relationship of early childhood Pb exposures with untargeted metabolomic features in adolescence

Study Population

- 248 children whose mothers were recruited from 1997-2005 were re-recruited in 2011-2012 at ages 8-14 yr
- Measures of EDC exposures in utero and pre/adolescence
- Biological samples, anthropometry and questionnaires obtained at recruitment and repeat visits in early childhood (birth-5 yr) and pre/adolescence (8-14 yr)

Exposure Periods

Lead

- Maternal bone lead: 1 month postpartum (cumulative *in utero* exposure) (n=137)
- Cord blood lead (n=78)
- Child blood lead

Cumulative from age 1-4 yr (n=245)

Concurrent (8-14 yr) (n=246)

Phthalate metabolites & BPA (n=248)

- 3rd trimester urine
- Concurrent urine sample (8-14 yr)

Outcomes

- Fasting serum (8-14 yr) (n=248)
 - Total cholesterol
 - LDL cholesterol
 - HDL cholesterol
 - Triglycerides
 - Glucose
 - Leptin

Statistical Analysis

- Multivariable linear regression used to estimate effects of continuous exposures in sensitive developmental periods on serum outcome measures at 8-14 yr
- Covariates
 - Phthalate and BPA models: child age, BMI Z-score, urinary specific gravity
 - Lead (Pb) models: child age, maternal schooling, and cohort; BMI Z-score (girls)
- Outcomes quantified as % change in outcome measure associated with an interquartile range (IQR) increase in exposure

Sample Characteristics

	Males (n=117)	Females (n=131)		
	Mean±SD	Mean±SD		
Age (yr)	10.35±1.61	10.30±1.72		
BMI (kg/m²)	19.09±3.13	19.71±3.94		
BMI Z scpre	0.88±1.19	0.84±1.27		
Maternal schooling (yr)	11.24±2.80	10.83±2.79		
Maternal Bone Lead (ug/g bone)				
Patella	8.43±9.79	9.40±10.59		
Tibia	6.20±10.12	8.57±9.25		
Child's blood lead (ug/dL)				
Umbilical cord	3.39 ± 2.15	4.01±1.99		
Cumulative 1-4 yr	14.50±1.45	14.24±1.49		
Concurrent	3.48±3.07	3.21±2.48		
Lipids at 8-14 yr (mg/dL)				
Total Cholesterol	151 ± 28	159 ± 28		
LDL	76±24	82 <u>+</u> 22		
HDL	60±12	58 ± 12		
Triglycerides	77±38	97 <u>+</u> 47		
Metabolic Measures at 8-14 yr				
Leptin (ng/mL)	8.3±6.4	14±10		
Glucose (mg/dL)	88±7.9	86±10		

Association of Urinary BPA and Serum Metabolic Markers at 8-14 yr

	Total Cholesterol			<u>LDL</u>	Trig	<u>lycerides</u>	<u>Glucose</u>		<u>Leptin</u>	
Exposure Timing	% Chang e	(95% CI)	% Chang e	(95% CI)	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)
Boys										
3 rd Trimester	-0.1	(-5.0, 4.7)	-3.4	(-11.4, 4.5)	1.2	(-10.5, 14.4)	-0.04	(-3.3, 3.3)	-2.4	(-16.8, 14.4)
8-14 years	-0.1	(-5.0, 4.7)	-3.4	(-11.4, 4.5)	1.2	(-10.5, 14.4)	0.2	(-2.4, 2.9)	16.3	(3.8, 30.3)
Girls										
3 rd Trimester	7.3	(0.8, 13.7)	8.1	(-1.9, 18.1)	22.3	(4.0, 43.8)	2.0	(-2.4, 6.6)	7.9	(-5.2, 22.9)
8-14 years	0.0	(-4.5, 4.6)	-0.4	(-7.5, 6.8)	8.0	(-3.5, 20.8)	-0.9	(-3.9, 2.2)	5.3	(-4.0, 15.4)

Percent change per IQR increase in exposure; adjusted for age, BMI Z-score, and urinary specific gravity

Boys: Associations of Urinary Phthalates and Serum Metabolic Markers at 8-14 yr

		Total Cholesterol			LDL	G	ilucose	L	<u>eptin</u>
Exposure Timing		% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)
ΣDEHP	3 rd T	-1.4	(-7.3, 4.5)	-3.6	(-13.4, 6.2)	-0.2	(-3.1, 2.7)	3.8	(-9.9, 19.6)
	8-14	-0.1	(-4.0, 3.8)	-0.6	(-7.1, 5.8)	0.7	(-1.4, 2.9)	5.0	(-4.4, 15.4)
MnBP	3rd T	-2.2	(-7.2, 2.8)	-1.6	(-10.1, 6.8)	-0.5	(-2.9, 2.1)	3.8	(-8.1, 17.2)
	8-14	-7.5	(-12.3, -2.6)	-11.1	(-19.1, -3.1)	-0.9	(-3.6, 1.9)	1.4	(-10.3, 14.5)
MiBP	3 rd T	-0.8	(-5.7, 4.2)	-1.0	(-9.2, 7.3)	0.2	(-2.2, 2.7)	-3.8	(-14.6, 8.3)
	8-14	1.8	(-3.0, 6.6)	2.4	(-5.4, 10.2)	0.6	(-2.0, 3.3)	7.6	(-4.1, 20.6)
MBzP	3 rd T	-1.2	(-5.5, 3.1)	-0.9	(-8.1, 6.3)	-0.7	(-2.8, 1.4)	3.8	(-6.4, 15.2)
	8-14	-0.02	(-5.4, 5.3)	-5.9	(-14.6, 2.8)	0.0	(-2.9, 3.0)	-0.1	(-12.2, 13.7)
МСРР	3 rd T	1.7	(-7.1, 3.6)	-1.4	(-10.4, 7.5)	-1.5	(-4.1, 1.2)	3.7	(-8.9, 17.9)
	8-14	-6.2	(-11.4, -1.0)	-10.5	(-19.1, -2.0)	-1.0	(-3.9, 1.9)	2.3	(-10.1, 16.4)
MEP	3 rd T	-0.2	(-4.7, 4.3)	-0.03	(-7.6, 7.5)	0.8	(-1.4, 3.1)	2.0	(-8.5, 13.7)
	8-14	-5.4	(-9.9, -0.9)	-10.3	(-17.5, -3.0)	-1.6	(-4.0, 0.9)	-1.7	(-12.0, 9.9)

Percent change per IQR increase in exposure; Adjusted for age, BMI Z-score, and urinary specific gravity

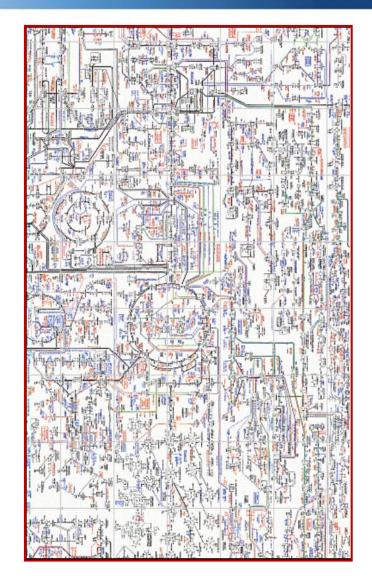
Girls: Associations of Urinary Phthalates and Serum Metabolic Markers at 8-14 yr

		<u>Total Ch</u>	<u>olesterol</u>		LDL	Glucose		<u>Leptin</u>	
Exposure Timing		% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)
ΣDEHP	3 rd T	-0.7	(-5.7, 4.3)	-0.4	(-8.1, 7.3)	2.0	(-1.3, 5.5)	-7.0	(-15.7, 2.6)
	8-14	-4.3	(-9.1, 0.5)	-8.1	(-15.6, -0.7)	0.03	(-3.2, 3.4)	-1.2	(-10.3, 8.9)
MnBP	3rd T	-0.9	(-5.5, 3.7)	0.1	(-7.0, 7.1)	1.0	(-2.0, 4.2)	-2.3	(-10.8, 6.9)
	8-14	-1.1	(-5.3, 3.0)	-5.0	(-11.4, 1.4)	-0.02	(-2.8, 2.8)	-2.5	(-10.2, 5.9)
MiBP	3 rd T	-0.3	(-5.3, 4.7)	0.8	(-6.9, 8.5)	3.6	(0.3, 7.1)	1.9	(-7.7, 12.6)
	8-14	1.5	(-3.1, 6.0)	1.0	(-6.2, 8.1)	1.7	(-1.4, 4.9)	-3.1	(-11.6, 6.2)
MBzP	3 rd T	1.5	(-2.7, 5.7)	3.0	(-3.3, 9.4)	0.1	(-2.6, 2.9)	-2.6	(-10.3, 5.7)
	8-14	-0.8	(-5.5, 3.9)	-0.7	(-8.0, 6.6)	0.2	(-2.9, 3.4)	-5.6	(-14.0, 3.7)
МСРР	3 rd T	-1.6	(-6.9, 3.8)	-0.2	(-8.4, 7.9)	0.8	(-2.7, 4.4)	-6.3	(-15.6, 4.0)
	8-14	-1.1	(-4.9, 2.8)	-3.4	(-9.4, 2.6)	1.5	(-1.1, 4.2)	4.1	(-3.7, 12.4)
MEP	3 rd T	-1.3	(-5.1, 2.5)	-1.6	(-7.4, 4.3)	1.3	(-1.2, 3.9)	8.0	(0.3, 16.4)
	8-14	-1.9	(-5.8, 2.0)	-5.1	(-11.1, 0.9)	-0.2	(-2.8, 2.4)	-5.5	(-12.5, 2.1)

Percent change per IQR increase in exposure; Adjusted for age, BMI Z-score, and urinary specific gravity

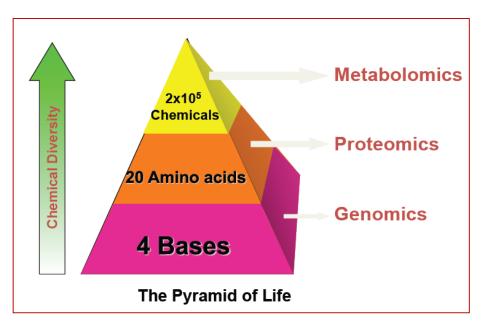
Association of Lead Exposure and Serum Metabolic Markers at 8-14 yr

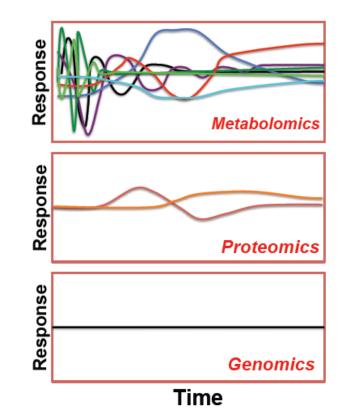
	Total Cholesterol			HDL	<u>Trig</u>	lycerides	G	<u>Glucose</u>	<u> </u>	<u>Leptin</u>
Exposure Timing	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)	% Change	(95% CI)
Boys										
Maternal Tibia	-5.23	(-12.8, 2.99)	-6.42	(-13.2, 0.89)	-2.65	(-20.6, 19.3)	-2.91	(-6.65, 0.97)	1.28	(-28.3, 43.1)
Cord Blood	1.37	(-8.92, 12.8)	3.33	(-6.25, 13.9)	-3.67	(-23.9, 22.0)	-3.60	(-7.89, 0.88)	-15.8	(-44.4, 27.5)
Blood 8-14 yr	0.35	(-3.09, 3.91)	1.87	(-1.77, 5.65)	-2.59	(-10.5, 6.08)	2.47	(0.79, 4.17)	-5.46	(-17.2, 7.95)
Girls										
Maternal Tibia	0.11	(-4.17, 4.57)	2.46	(-2.21, 7.37)	-9.45	(-19.2, 1.53)	1.35	(-1.24, 4.02)	-4.16	(-19.2, 13.7)
Cord Blood	8.90	(-1.84, 20.8)	-2.18	(-12.4, 9.27)	32.4	(1.58, 72.7)	0.89	(-4.41, 6.49)	11.2	(-28.9, 74.0)
Blood 8-14 yr	-0.17	(-3.41, 3.17)	4.25	(0.18, 8.49)	-7.07	(-145, 1.57)	-0.95	(-3.14, 1.28)	-11.2	(-22.4, 1.65)


Percent change per IQR increase in exposure; adjusted for age, maternal schooling, cohort

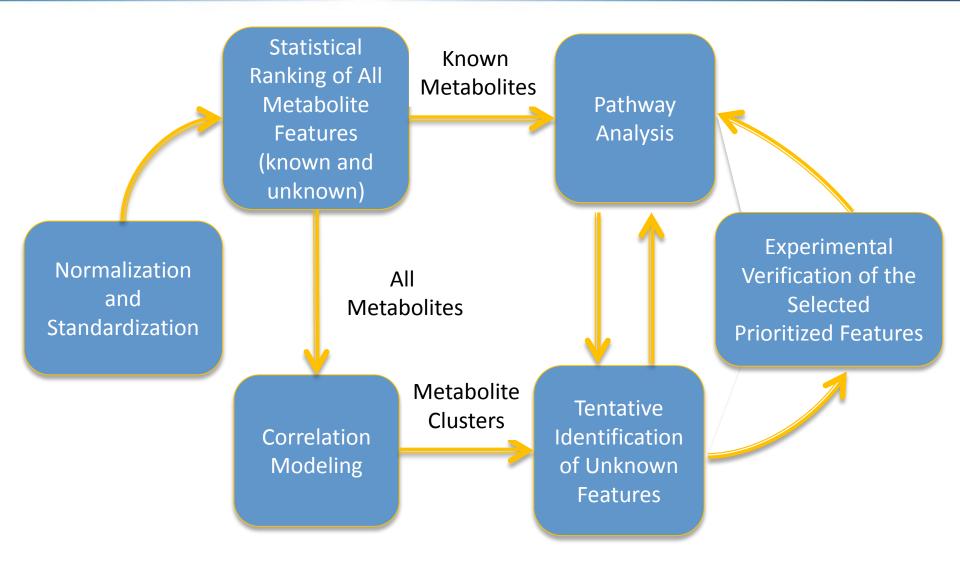
Rationale for Expanding to Metabolomics

- >95% of all diagnostic clinical assays test for small molecules
- 89% of all known drugs are small molecules
- 50% of all drugs are derived from preexisting metabolites
- 30% of identified genetic disorders involve diseases of small molecule metabolism
- Metabolites are cofactors & signaling molecules to 1000's of proteins
- Metabolic pathways are well understood

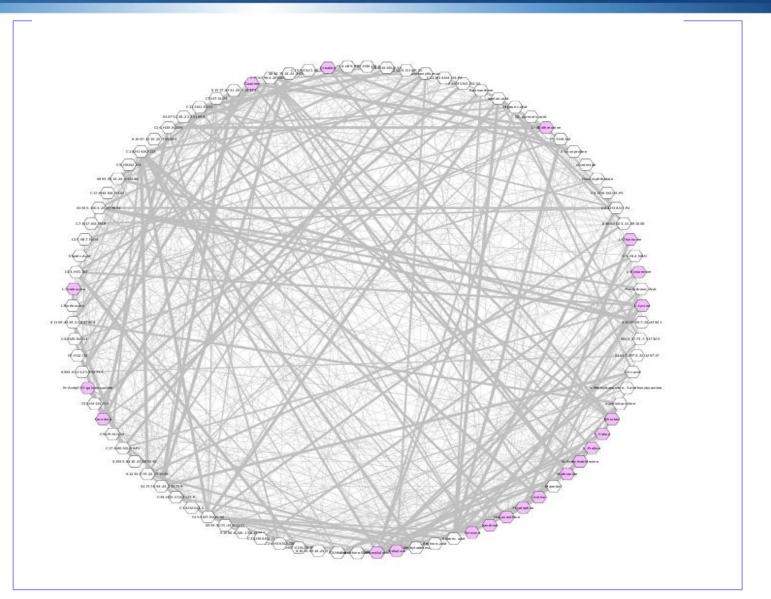


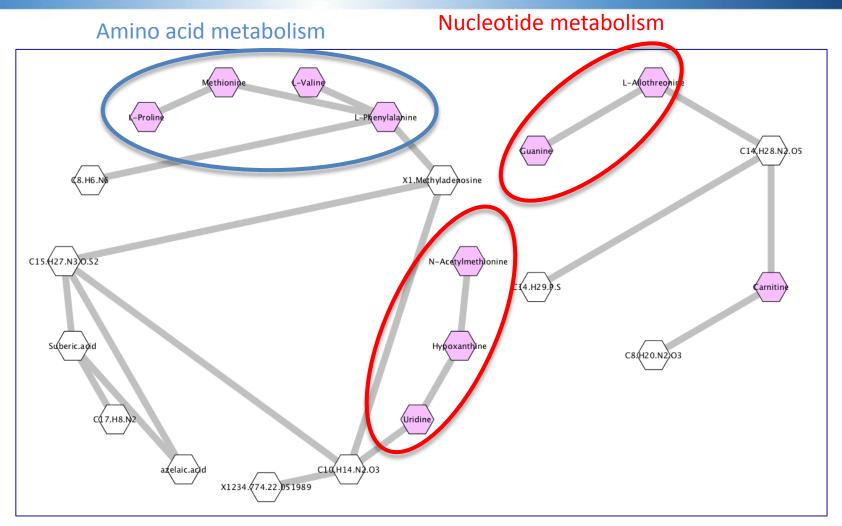

Use of Metabolomics in Environmental Exposure Research

Metabolomes of exposed vs. unexposed groups have not been characterized → benefit of integrating exposure science with metabolomics


Metabolomics is more timesensitive (and environmentally sensitive) than other 'omics

Untargeted Metabolomics Data Analysis Workflow




Using Correlations between Metabolites to Build Networks

Using Correlations between Metabolites to Build Networks

The p values for lead exposure are shown in pink

M SPH

A B C

The partial correlation q values used for the edges are shown outlined in **black** (for the unknown compounds)

N-acetyl galactosamine (GalNAc)

Relevance

Inversely correlated with tibia bone lead levels

Mechanism

 Participates in protein O-glycosylation (added to serine and threonine residues by N-acetylgalactosaminyl transferase)

OH

OH

OH

HO

Function

- Plays an important role in sensory neuron conduction in brain
- Is a proteoglycan core protein component in vascular smooth muscle cells
- Lead and cadmium have been shown to affect the synthesis of these proteins in cultured vascular smooth muscle cells (Fujiwara et al., J Health Sci 01/2003; 49(6):534-540)

- Effects of EDCs on glucose, lipids and leptin in adolescence vary by sex and timing of exposure
- Childhood lead exposure related to higher fasting glucose in boys and higher HDL cholesterol in girls. Cord blood lead related to higher triglycerides in girls, but small sample size.
- In utero BPA associated with elevated total cholesterol and triglycerides in girls; concurrent BPA associated with higher leptin in boys.
- Concurrent but not in utero MCPP, MEP, and MBP exposures associated with lower total and LDL cholesterol in boys.
- In girls, concurrent DEHP metabolites associated with decreased LDL, while in utero MEP was related to higher leptin, and in utero MBP was associated with higher glucose.

Limitations and Future Work

Limitations

- Longitudinal observational design limits causal inferences
- Small sample size within strata, statistical power
- Single spot urine from each developmental period

Future work

- EDC mixtures, repeated measures: Pb, Cd, BPA, phthalates
- Expand sample size, obtain longitudinal measures of metabolic perturbations (metabolomics) and risk factors for metabolic syndrome in adolescence
- Examine role of diet in modifying effect of toxicants on metabolic homeostasis *in utero* and pre/adolescence
- Epigenetic regulation of toxicant and diet exposures
- Test dietary intervention in isogenic mouse model of perinatal/peripubertal exposures

University of Michigan CEHC Team

- **CEHC Directors**: Karen E. Peterson, Vasantha Padmanabhan
- Project/Core Leaders: Dana Dolinoy, John Meeker, Alison Miller, Peter Song
- Instituto Nacional de Salud Pública PI: Mara Tellez-Rojo
- Investigators/Consultants: Alejandra Cantoral, Jorge Chavarro, Adrienne Ettinger, Howard Hu, Joyce Lee, Sub Pennathur, Lourdes Schnaas, Brisa Sánchez
- Center Staff: Seema Jolly, Tamara Jones, Samantha Milewski
- Postdoctoral Fellows: Christopher Faulk, Kelly Ferguson, Jaclyn Goodrich, Deborah Watkins
- Graduate Students: Emily Hector, Joe Kochmanski, Lisa Marchlewicz, Meghan Moynihan, Lu Tang, Zhenzhen Zhang
- INSP Field Staff

Acknowledgements: Lisa Marchlewicz, Lu Tang, Peter Song, Deborah Watkins, Zhenzhen Zhang. Michigan Regional Comprehensive Metabolomics Resource Core: Alla Karnovosky, Charles Burant

