

Vitamins, minerals, and metals: Do healthy diets counteract health effects of toxicants?

Karen E. Peterson, ScD

Department of Nutritional Sciences University of Michigan School of Public Health karenep@umich.edu

U.S. EPA Webinar: December 9, 2015

Pathways of Exposure

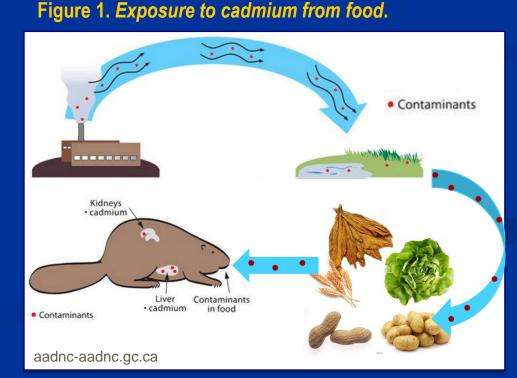
Ingestion

- Foods of all kinds
- Dietary supplements
- Breast milk for infants

• Water as a beverage or in juices, soda, coffee, tea, soup

Uptake

- Absorption of Contaminants: Residues, heavy metals, unintentional additives
- Absorption of Nutrients
 - <u>Bioavailability</u> from different foods
 - <u>Interaction of nutrients</u> in foods to aid or block absorption


Study Population and Measures

Early Life Exposures to Metals and ENvironmental Toxicants (ELEMENT)

- Sample: 250 pregnant mothers and children ages 8-15 years
 Exposures:
 - Cd (urine): 3rd trimester of pregnancy and adolescence
 - Pb (bone): 1 month postpartum; (blood) 8-15 yr
- **FFQs** (mother, child): Estimate dietary Cd and nutrient intakes
- Metabolic syndrome components measured in adolescents:
 - Adiposity (WC, BMI, skinfolds)
 - Blood pressure; fasting glucose and lipid levels

Background: Cadmium

- Ubiquitous metal with modifiable exposure sources: tobacco and diet where take up Cd from soil
- Toxic effects include renal and bone disease, cardiometabolic dysfunction, and cancer
- Pregnant women and children are vulnerable groups in countries undergoing the nutrition transition, but little is known about their exposure

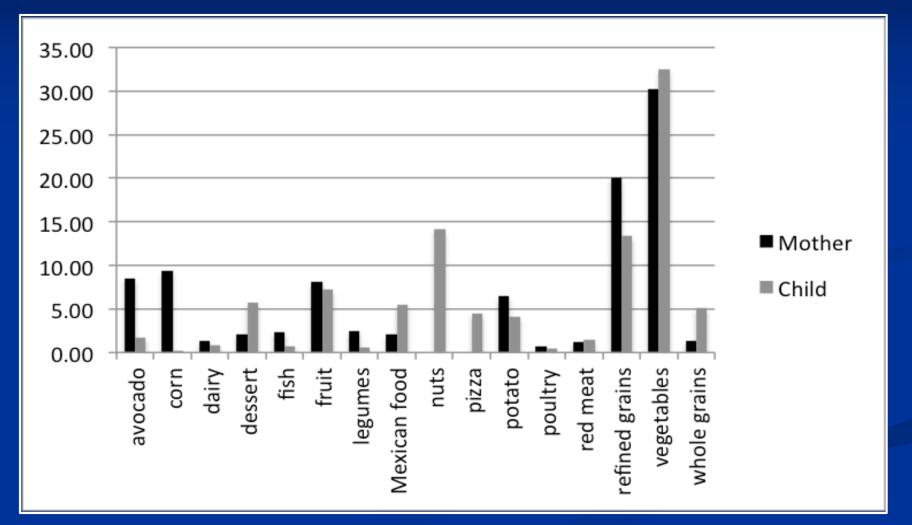
Study Goal and Analysis

Is dietary cadmium (DCd) associated with urinary cadmium (UCd) of mothers during 3rd trimester and children aged 8-15 years, stratified by smoking status?

Statistical Analysis

- DCd estimated from FFQ and US FDA Total Diet Study, energy-adjusted
- UCd, log-transformed; specific gravity adjusted
- Linear regression models estimated association of DCd and UCd for mothers and children, stratified by maternal smoking history
- Covariates: cohort, sex, age, SES level, BMI

Moynihan , et .al. CEHC-PEHSU Annual Meeting, October 2015.


Characteristics of mothers and children by maternal smoking history

Mothers		+ Smoke	– Smoke	Children		+ Smoke	– Smoke
N	192	94	98	N	223	112	111
Sex Female			98 (100)	Sex Female	118 (52.9)	57 (50.9)	61 (55.0)
	192 (100)	94 (100)	28.5±6.3	Sex Male	105 (47.1)	55 (49.1)	50 (45.0)
Age (years)	27.4±5.9	26.4±5.2		Age (years)	10.3 ± 1.6	10.2 ± 1.5	10.4 ± 1.7
SES level	8±3.2	8±3.3	8 ± 3.2	SES level	8 ± 3.3	9 ± 3.3	8 ± 3.3
BMI ²	29.6 ± 4.0	30.2 ± 4.2	29.0 <u>±</u> 3.8	BMI ²	0.85 ± 1.2	0.95 ± 1.3	0.74 ± 1.2
DCd (µg/day)	9.2 ± 3.9	8.6±3. 4	9.9 ± 4.2	DCd (µg/day)	12.1 ± 6.4	12.3 ± 6.8	11.8 ± 5.9
UCd (µg/L)	0.268±0.6	0.206±0.2	0.326±0.8	UCd (µg/L)	0.150±0.1	0.139 ± 0.1	0.161 ± 0.2

 DCd were within average intake ranges (8-25 g/day): Mothers (9.2 µg/day) and children (12.1 µg/day)

 UCd levels were higher in mothers (0.268 µg/L) than children (0.150 µg/L)

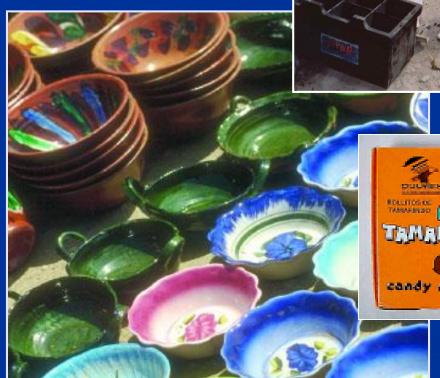
Estimated daily percentage of DCd by food group for mothers and children

Moynihan et al, in preparation

Dietary Predictors of UCd

Associations with log UCd for mothers and their children by maternal smoking history¹

	Mothers				Children			
	+ Smoke		– Smoke		+ Smoke		– Smoke	
	Beta	p-value	Beta	p-value	Beta	p-value	Beta	p-value
Unadjusted								
Dietary cadmium	-18.01	0.431	63.73	0.005	-3.75	0.6989	20.76	0.080
Adjusted ¹								
Dietary cadmium	-34.49	0.139	49.76	0.025	-4.02	0.690	26.12	0.033


¹Multivariable models for mothers and children adjusted for cohort, sex, age, SES level, and BMI.

Associations of intake of selected food groups with log UCd resulting from stepwise regression²

Food groups (g/day)	Beta	p-value				
Mother ²						
Poultry	0.007	0.111				
Fruit	0.001	0.001				
Vegetable	0.002	0.037				
Children ²						
Avocado	0.004	0.068				
Potato	0.014	0.03				
Pizza	-0.007	0.018				
2A maly and limited to mothers and children without a maternal history of amplian						

Analyses limited to mothers and children without a maternal history of smoking.

Lead exposures: Mexico City

FOR USE AS MOTOR FUEL CONTAINS LEAD • (TETRAETHYL) • obilgas

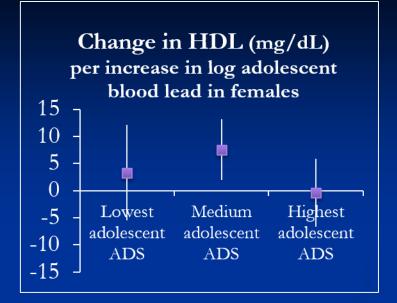
Leaded gasoline phased out in Mexico between 1991 and 1997.

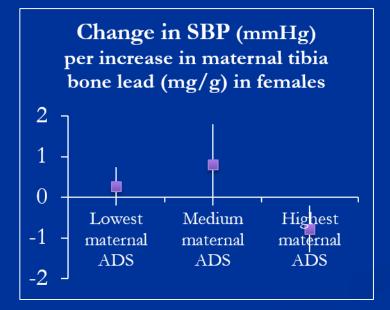
Lead exposure and cardiometabolic risk

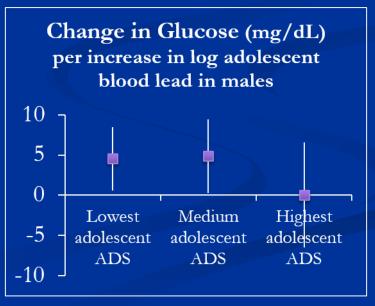
- Metabolic syndrome affects 30 % of obese adolescents
- Life stage Pb exposures in ELEMENT related to:¹
 - Lower BMI and leptin, only in girls
 - Increases in BP and serum lipids in girls
 - Increases in fasting glucose in boys
- Findings suggest relationships that reflect oxidative stress but vary in boys and girls.
- Antioxidant nutrients may have potential to modify effects of Pb on children's cardiometabolic risk²

¹Peterson ISEE 2013; Zhang, et al., in preparation; ²Moynihan, CEHN Conference Feb 2015

Objectives


- Estimate antioxidant intake of pregnant mothers and their children at 8-15 years
 - Antioxidant diet score (ADS)
 - Based on quintile of intake of 14 nutrients calculated by FFQ
 - Sum of nutrient scores
 - Pro-oxidants (saturated fat & cholesterol) inversely scored
- Determine if antioxidant intake modifies the association of *in utero* and concurrent Pb exposure with cardiometabolic outcomes in adolescence


Maternal Antioxidant Diet Score (ADS)


Nutrient	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
Vitamin A, RAE (µg)	504.1	745.8	910.0	1076.8	1627.9
Vitamin C (mg)	85.0	128.0	160.4	200.6	319.5
Vitamin E, α-tocopherol (mg)	6.7	8.0	7.2	8.9	10.1
Selenium (µg)	31.6	41.0	45.8	51.7	63.1
Vitamin B6 (mg)	1.4	1.7	1.9	2.1	2.5
Magnesium (mg)	254.0	292.1	316.0	340.5	385.6
Zinc (mg)	7.7	8.8	9.6	10.5	12.6
Copper (mg)	1.0	1.2	1.3	1.4	1.6
Iron (mg)	8.8	12.0	14.3	17.8	31.6
Monounsaturated fat (g)	12.5	17.2	19.5	22.1	27.7
Polyunsaturated fat (g)	4.5	6.4	7.6	9.0	12.2
Fiber (g)	15.4	19.2	21.6	25.1	30.9
Saturated fat (mg)	83.9	73.9	68.0	61.7	51.8
Cholesterol (mg)	341.1	256.7	219.3	183.8	123.2

• Mean ADS for mother (27.9 ± 8.4) and child (28.0 ± 9.4) .

Change in metabolic outcomes at 8-15 years per unit increase in Pb exposure by Antioxidant Diet Score tertile

Moynihan, CEHN Conference Feb 2015

Summary

- **Foods** are potential sources of **both toxicants and nutrients**; impact on children's health may depend on lifestyle behaviors
- Dietary Cd was positively associated with Urinary Cd only in non-smoking pregnant mothers and their children at 8-15 yr.
 Sources = fruit, vegetables, nuts, refined grains
- Antioxidant nutrients across developmental periods may modify association of Pb with cardiometabolic risk factors
- **Limitations:** sample size, estimated Cd content of foods
- Next steps: Repeated measures (n=400) across puberty; relate metals exposure to metabolomics and lipidomics; explore mediation by DNA methylation

University of Michigan CEHC Team

- Directors: Karen E. Peterson, Vasantha Padmanabhan
- Project/Core Leaders: Dana Dolinoy, John Meeker, Alison Miller, Peter Song
- Instituto Nacional de Salud Pública (INSP) PI: Martha Tellez-Rojo
- Investigators/Collaborators: Alejandra Cantoral, Jorge Chavarro, Adrienne Ettinger, Christopher Faulk, Kelly Ferguson, Howard Hu, Joyce Lee, Alla Karnovsky, Marcela Ortiz, Sub Pennathur, Wei Perng, Maureen Sartor, Lourdes Schnaas, Brisa Sánchez
- Center Staff: Lindsey Mitchell, Tamara Jones, Samantha Milewski
- Postdoctoral Fellows: Jaclyn Goodrich, Luke Montrose, Deb Watkins, Zhenzhen Zhang, Ling Zhou
- Graduate Students: Emily Hector, Joseph Kochmanski, Jen LeBarre, Yun Liu, Carly McCabe,

Lisa Marchlewicz, Meghan Moynihan, Kari Neier, Lu Tang

INSP Staff

Acknowledgements: Meghan Moynihan, Niladri Basu (McGill University), Alejandra Cantoral, Justin Colacino, John Meeker, Zhenzhen Zhang

Acknowledgements

- NSF International Scholarship: Meghan Moynihan
- > P20 ES018171/RD 834800: Formative CEHC (Peterson)
- P01 ES02284401/RD 83543601: Life course exposures & diet: epigenetics, maturation & metabolic syndrome (Peterson/Padmanabhan)
- P01 ES02284403S1: High-dimensional epigenomic and metabolomic responses to metal and EDC exposures (Peterson/Padmanabhan)
- R01 ES024732: Statistical methods to assess environmental exposures on child growth and health(Song)
- ONES R01 ES017524 (Dolinoy)
- > **P30 ES017885**: UM EHS Core Center of Excellence (Loch-Caruso)
- > **P30 DK089503**: Michigan Nutrition Obesity Research Center (Burant)
- DK097153: Michigan Regional Comprehensive Metabolomics Resource Core (Burant)
- 1U2CES026553: NIEHS Children's Health Exposure Analysis Resource (CHEAR) (Meeker)