

at the Johns Hopkins Bloomberg School of Public Health

Air Pollution and Autism Spectrum Disorder: What Do We Know and What Is Next?

Heather E. Volk

Assistant Professor Department of Mental Health Bloomberg School of Public Health Johns Hopkins University

EPA / NIEHS Children's Centers 2015 Webinar Series August 12, 2015

Today's Outline

- Review Air Pollution and ASD Findings To Date
- Emerging Areas of Research
 - Phenotypic Severity
 - Gene x Environment Interaction
 - Exposure Timing
- Suggestions for Next Steps

A CENTURY OF SAVING LIVES MILLIONS AT A TIME 1916-2016

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

SOCIAL SKILLS

nonverbal interactions friendship joint attention reciprocity

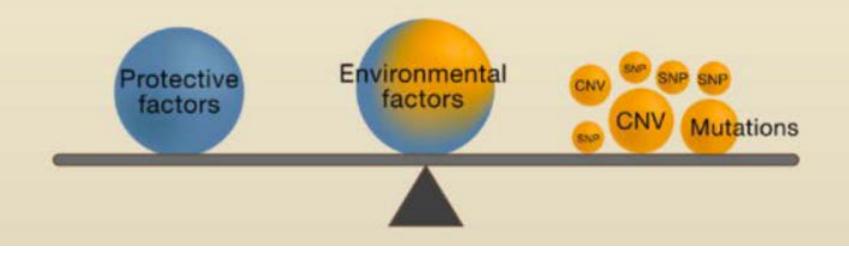
COMMUNICATION language

conversation play

Autism Spectrum Disorder

UNUSUAL BEHAVIORS

obsessive interests rigid rituals preoccupation with parts of objects


ASD Prevalence in the United States

 \bigcirc

Statistics from the Autism and Developmental Disabilities Monitoring Network (ADDM)						
Surveillance Year	Birth Year	Number Locations	Prevalence per 1,000 Children	~ 1 in X children		
2000	1992	6	6.7	1 / 150		
2002	1994	14	6.6	1/150		
2004	1996	8	8.0	1/125		
2006	1998	11	9.0	1/110		
2008	2000	14	11.3	1/88		
2010	2002	11	14.7	1/68		

Simple Model for Gene and Environment Effects

Adapted from Geschwind et al., 2008

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

BOC SEE ME AFTER CLASS! s good I liked it a lo

Air Pollutants and ASD

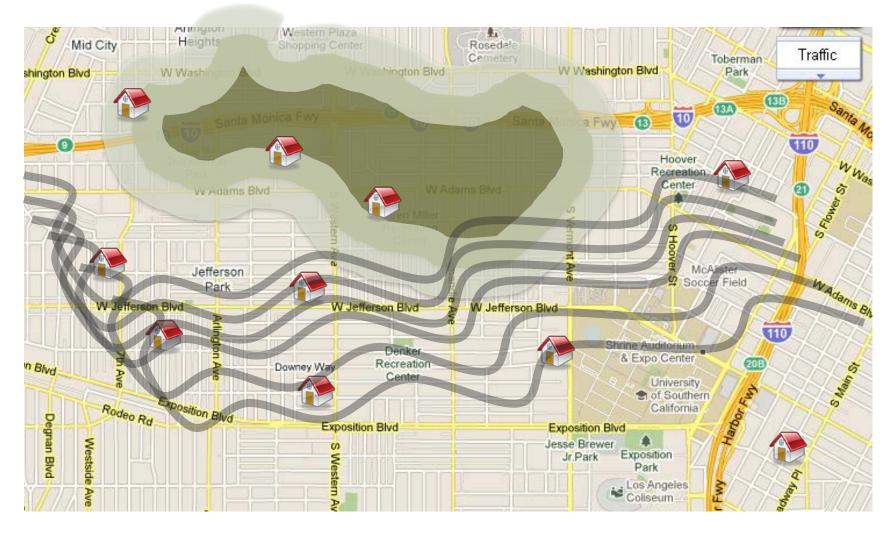
Near Roadway and Regional Pollutants

- Roadway proximity in CA
 - 300m of freeway
 - Volk et al., 2011
- Modeled near roadway and regional pollution in CA
 - NRAP, PM_{2.5}, PM₁₀, NO₂
 - Volk et al., 2013
- Regional pollution across USA
 - PM_{2.5}
 - Raz et al., 2015

Hazardous Air Pollutants

- Mercury, cadmium, nickel, vinyl chloride, DEP in CA
 - Windham et al., 2006
- Methylene chloride, styrene, quinoline in NC and WV
 - Kalkbrenner et al., 2010

- Regional pollution in CA and NC
 - PM₁₀
 - Kalkbrenner et al., 2014
- Regional pollution in PA
 - PM_{2.5}
 - Talbott et al., 2015
- Modeled near roadway and regional pollution in LA County
 - NRAP, PM_{2.5}, NO₂
 - Becerra et al., 2013
- Metals, DEP across USA
 - Roberts et al., 2013
- Traffic and industry emissions in LA County
 - Von Ehrenstein et al., 2014


Study Design

- Childhood Autism Risks From Genetics and the Environment (CHARGE) Study
- Autism Cases
 - First diagnosed by Regional Center (Department of Developmental Services (DDS))or clinical referral
 - Positive for autism on gold standard assessments
- Controls
 - Typically developing children from birth records

NIEHS R01 ES015359 , PI: Hertz-Picciotto

Measures of Air Pollution

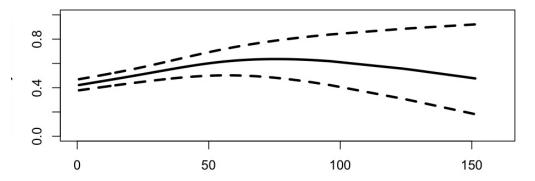
Distance From Freeway at Birth (304 Cases and 259 Controls)

	Crude OR	Adjusted OR*
Birth Address <309m	1.86 (1.04-3.45)	1.86 (1.03-3.45)
Birth Address 309-647m	0.98 (0.60-1.59)	0.96 (0.58-1.56)
Birth Address 647-1419m	1.14 (0.76-1.71)	1.11 (0.73-1.67)
Birth Address >1419	Reference	Reference

*Model adjusted for child male gender, child ethnicity (Hispanic vs. White, Black/Asian/Other vs. White), maximum education in home (college degree or more), maternal age > 35 years, and prenatal smoking


SCEHSC Pilot Project, PI: Volk

Volk, et al., 2011



Near Roadway Air Pollution (279 Cases and 245 Controls)

First Year of Life

All Pregnancy

Probability of ASD Increases as NRAP Increases

A CENTURY OF SAVING LIVES MILLIONS AT A TIME 1916-2016

Regional Pollutant Exposure (279 Cases and 245 Controls)

	First Year of Life OR*	All Pregnancy OR*
PM _{2.5}	2.12 (1.45-3.10)	2.08 (1.93-2.25)
PM ₁₀	2.14 (1.46-3.12)	2.17 (1.49-3.16)
Nitrogen Dioxide	2.06 (1.37-3.09)	1.81 (1.23-2.65)
Ozone	1.15 (0.72-1.86)	1.09 (0.76-1.55)

*Regional pollution effects reflect risk of autism based on 2 standard deviations from the mean value, specifically per increase of 8.8 mg/m3 $PM_{2.5}$, 12.4 mg/m3 PM_{10} , 9.0 ppb NO_2 , and 13.6 ppb ozone. The top TRP quartile refers to estimated exposure levels of 30.4ppb or greater.

Models adjusted for child male gender, child ethnicity (Hispanic vs. White, Black/Asian/Other vs. White), maximum education of parents (parent with highest of four levels: college degree or higher vs. some high school, high school degree, or some college education), maternal age (>35 years vs. 35 years), prenatal smoking, population density.

NIEHS R21 ES19002, PI: McConnell, Co-I: Volk

Is Increasing Air Pollution Exposure Associated with Worse Outcomes?

- Autism and ASD Cases (N=327)
 - Broad Neurodevelopmental Assessments
 - Mullen Scales of Early Learning (MSEL)
 - Vineland Adaptive Behavior Scales (VABS)
 - ASD-specific Assessments
 - ADOS
 - ADI-R
 - Autism Severity Score

A CENTURY OF SAVING LIVES MILLIONS AT A TIME 1916-2016

Increased Language Deficits with Increasing

Prenatal Air Pollution Exposure*

	NO ₂	Ozone	PM ₁₀	PM _{2.5}
MSEL Expressive Language				
High MSEL	Reference	Reference	Reference	Reference
Middle MSEL	2.08(0.96-4.51)	1.07(0.41-2.74)	1.26(0.47-3.41)	1.67(0.67-4.10)
Low MSEL	3.33(1.63-6.80)	0.95(0.41-2.20)	0.72(0.57-3.52)	2.40(1.06-5.37)
MSEL Receptive Language				
High MSEL	Reference	Reference	Reference	Reference
Middle MSEL	3.81(1.66-8.71)	1.03(0.38-2.79)	1.23(0.45-3.41)	4.30(1.62-11.47)
Low MSEL	3.52(1.72-7.31)	1.22(0.52-2.83)	1.23(0.52-2.96)	3.24(1.40-7.51)

*Regional pollution effects reflect risk of autism based on 2 standard deviations from the mean value, specifically per increase of 8.8 mg/m3 $PM_{2.5}$, 12.4 mg/m3 PM_{10} , 9.0 ppb NO_2 , and 13.6 ppb ozone.

Increased Language Deficits with Increasing

Prenatal Air Pollution Exposure*

	NO ₂	Ozone	PM ₁₀	PM _{2.5}
MSEL Expressive Language				
High MSEL	Reference	Reference	Reference	Reference
Middle MSEL	2.08(0.96-4.51)	1.07(0.41-2.74)	1.26(0.47-3.41)	1.67(0.67-4.10)
Low MSEL	3.33(1.63-6.80)	0.95(0.41-2.20)	0.72(0.57-3.52)	2.40(1.06-5.37)
MSEL Receptive Language				
High MSEL	Reference	Reference	Reference	Reference
Middle MSEL	3.81(1.66-8.71)	1.03(0.38-2.79)	1.23(0.45-3.41)	4.30(1.62-11.47)
Low MSEL	3.52(1.72-7.31)	1.22(0.52-2.83)	1.23(0.52-2.96)	3.24(1.40-7.51)

*Regional pollution effects reflect risk of autism based on 2 standard deviations from the mean value, specifically per increase of 8.8 mg/m3 $PM_{2.5}$, 12.4 mg/m3 PM_{10} , 9.0 ppb NO_2 , and 13.6 ppb ozone.

Increased Adaptive Deficits with Increasing Prenatal Air Pollution Exposure*

	NO ₂	Ozone	PM ₁₀	PM _{2.5}
VABS Composite	-11.08%, p=0.02	-3.54%, p=0.55	5.52%, p=0.37	-5.58%, p=0.32
Communication	-14.05%, p=0.01	0.56%, p=0.94	4.19%, p=0.55	-5.43%, p=0.39
Socialization	-8.79%, p=0.06	-3.43%, p=0.56	6.63%, p=0.27	-2.73%, p=0.62

*Regional pollution effects reflect risk of autism based on 2 standard deviations from the mean value, specifically per increase of 8.8 mg/m3 $PM_{2.5}$, 12.4 mg/m3 PM_{10} , 9.0 ppb NO_2 , and 13.6 ppb ozone.

Increased Adaptive Deficits with Increasing Prenatal Air Pollution Exposure*

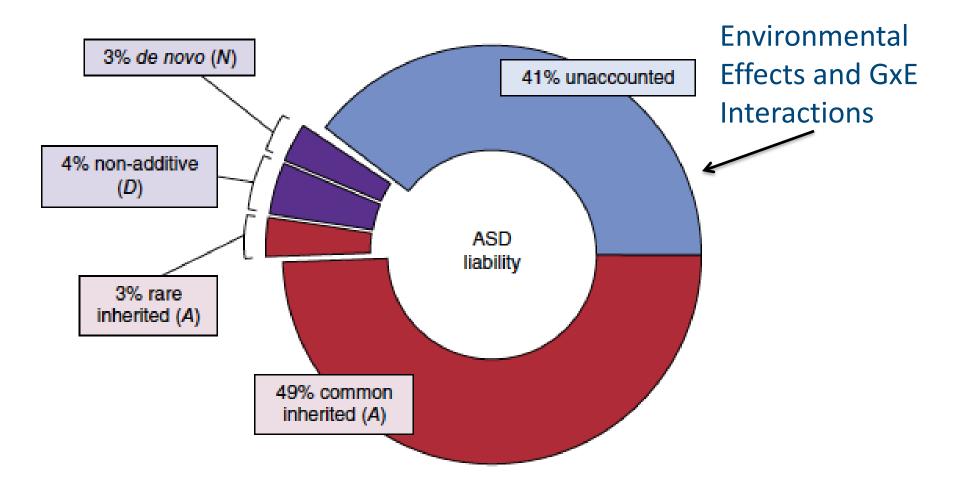
	NO ₂	Ozone	PM ₁₀	PM _{2.5}
VABS Composite	-11.08%, p=0.02	-3.54% <i>,</i> p=0.55	5.52%, p=0.37	-5.58% <i>,</i> p=0.32
Communication	-14.05%, p=0.01	0.56% <i>,</i> p=0.94	4.19%, p=0.55	-5.43%, p=0.39
Socialization	-8.79%, p=0.06	-3.43%, p=0.56	6.63%, p=0.27	-2.73%, p=0.62

*Regional pollution effects reflect risk of autism based on 2 standard deviations from the mean value, specifically per increase of 8.8 mg/m3 $PM_{2.5}$, 12.4 mg/m3 PM_{10} , 9.0 ppb NO_2 , and 13.6 ppb ozone.

No Associations With

Autism Severity Score

	NO ₂	Ozone	PM ₁₀	PM _{2.5}
Autism Severity Score	8.44%,	6.81%,	10.76%,	0.61%,
	p>0.05	p>0.05	p>0.05	p>0.05


Limited Correlation Between Assessments

	MSEL-	MSEL- Exp	MSEL- Rec	VABS	VABS-	VABS-
	Total	Lang	Lang	Total	Comm	Social
Autism Severity Score	-0.22	-0.18	-0.23	-0.12	-0.16	-0.11

A CENTURY OF SAVING LIVES MILLIONS AT A TIME 1916-2016

JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

Where Do Genes Fit In?

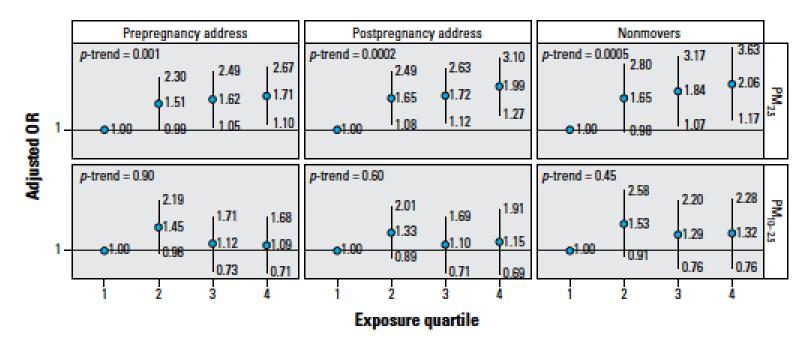
Adapted from Gaugler et al., 2014

Prenatal PAH Exposure Reduces MET Protein **Expression in Mouse Cortex** (Benzo(a)Pyrene) Cpr+/+ 150µg/kg*Cpr*^{+/+} 300µg/kgCpr+/+ PND 15 15 MET → β-Actin→ 1000 2 1.8 1.6 MET/β-Actin 1.4 1.2 PND0 PND5 PND10 0.8 ■ PND15 0.6 0.4 * 0.2 0 150µg/kgCpr+/+ 300µg/kg Cpr+/+ Cpr+/+

Sheng et al., 2010

Replications of *MET* rs1858830 Variant Association with Autism

	<u>Reference</u>	Study Design	Sample Source
1	Campbell et al. 2006. PNAS.	Family-based and case-control	Italy (Rome 1)
2	Campbell et al. 2006. PNAS.	Family-based and case-control	NIMH
3	Campbell et al. 2008. Autism Res.	Family-based	Vanderbilt
4	Sousa et al. 2009. <i>Eur J Hum Genet.</i>	Family-based and case-control	Europe (UK)
5	Sousa et al. 2009. Eur J Hum Genet.	Case-control	Italy (Bologna)
6	Jackson et al. 2009. Autism Res.	Case-control	South Carolina
7	Jackson et al. 2009. Autism Res.	Case-control	Italy (Rome 2)
8	Thanseem et al. 2010. Neurosci Res.	Family-based	Japan
9	Thanseem et al. 2010. Neurosci Res.	Family-based	AGRE
10	Rajamma et al. 2011. SfN poster	Family-based	India


Joint Effect of MET rs1858830 and Air Pollution

Near Roadway Air Pollution						
	MET rs1858830 Genotype					
	C/C	C/G or G/G				
Exposed	2.9 (1.0-10.4)	1.3 (0.73-2.2)				
Unexposed	0.80 (0.47-1.4)	reference				
Regional Nitrog	gen Dioxide					
	MET rs18588	330 Genotype				
	C/C	C/G or G/G				
Exposed	3.6 (1.3-12.7)	1.2 (0.71-2.1)				
Unexposed	0.72 (0.41-1.3)	reference				

Volk et al, 2014

What About Timing?

Figure 1. ORs (95% CIs) for ASD by quartile of PM exposure. ORs are adjusted for child sex, year of birth, month of birth, maternal age at birth, paternal age at birth, and census income. There were 245 cases and 1,522 controls in analyses using pre- and postpregnancy addresses. Prepregnancy address is the last known residential address before conception. Postpregnancy address is the first known residential address after birth. Nonmovers are those participants for whom prepregnancy and postpregnancy addresses were the same [cases = 160 (65%), controls = 986 (65%)]. *p*-Trend, *p*-values from models of exposures as continuous variables. The number of cases (including movers) by quartiles from low to high: 45, 66, 66, 68; controls: 397, 376, 375, 374. PM_{2.5} quartile ranges (µg/m³): 5.24–12.3, 12.4–14.5, 14.6–16.7, 16.7–30.8; PM_{10–2.5} quartile ranges (µg/m³): 1.9–6.7, 6.8–8.9, 9–11.9, 12–49.4.

- Define Specific Air Pollutant ASD Relationships
 - Timing!
 - One pollutant or a mixture?
- Evaluate Air Pollutant Effects on Trajectories
 - Broad Cognitive Phenotypes / Domains of ASD
 - Neuroimaging
- Study the Potential Mechanisms of Air Pollution on the Brain
- Gene-Environment Interaction Studies
 - Consortium for Integrative Research
 - Common Air Pollution Assessment Methods in Epidemiologic Samples (GEWIS)

Acknowledgements

<u>USC</u> Rob McConnell Dan Campbell Tara Kerin Sandy Eckel Duncan Thomas

<u>UC Davis</u> Irva Hertz-Picciotto Lora Delwiche Rebecca Schmidt Sally Ozonoff

Sonoma Technology Fred Lurmann Drexel University

Nora Lee Craig Newschaffer Tony Grubsic

<u>AGRE</u> Eve Landa Shanise Owens

<u>U of Wisconsin Milwaukee</u> Amy Kalkbrenner

Kaiser Permanente Lisa Croen

Sequoia Foundation Gayle Windham

<u>Funding</u>: ES19002, ES013678, ES007048, Autism Speaks 7785 & 8463, ES023780, ES11269, ES015359

Duke University Jim Zhang

<u>Johns Hopkins</u> Dani Fallin