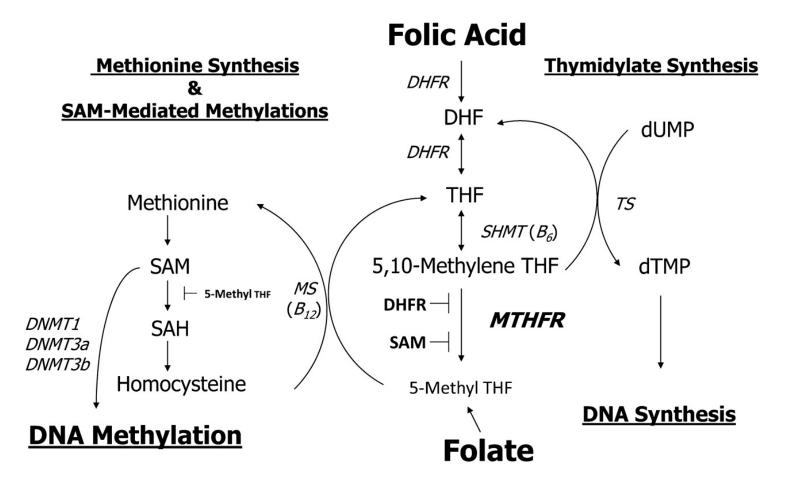
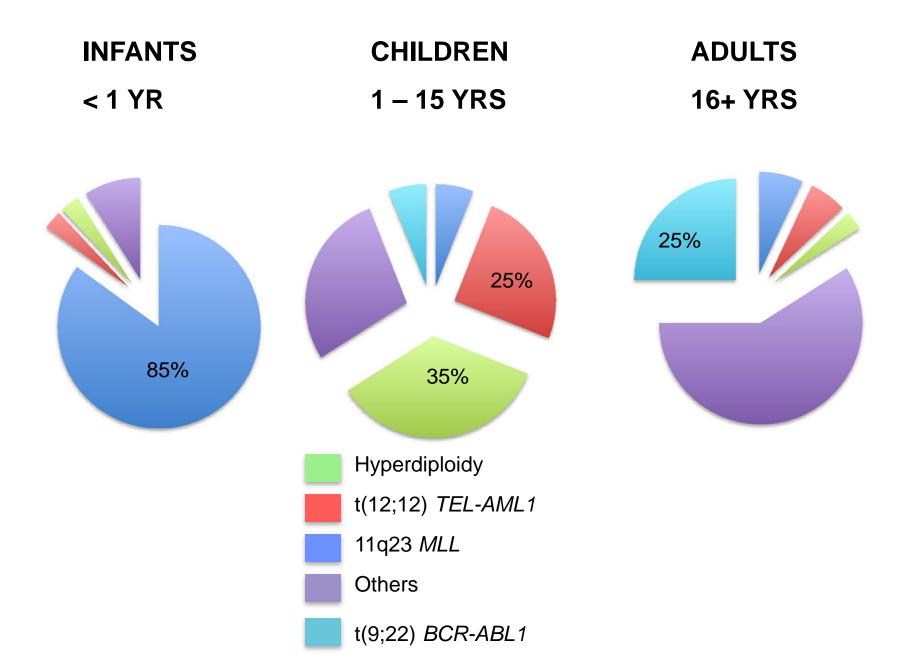
Update on DNA methylation alterations at birth from pregnancy folate intake and smoking from the California Childhood Leukemia Study

Joseph Wiemels

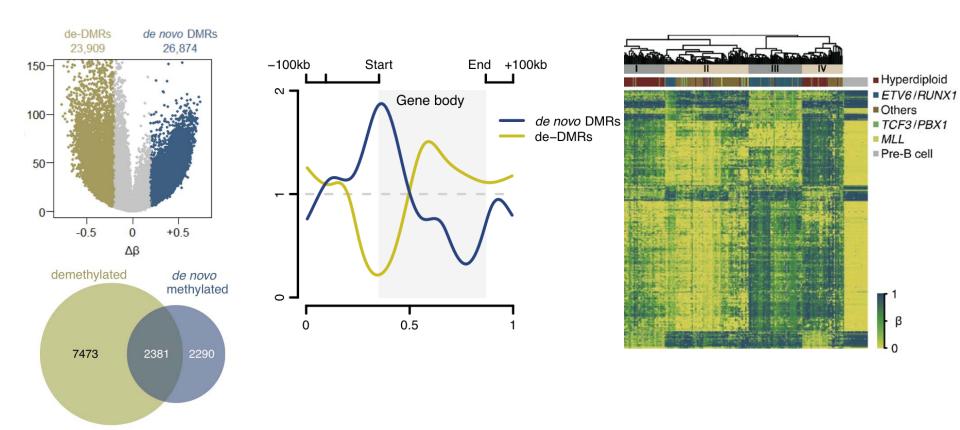
Dept. of Epidemiology & Biostatistics



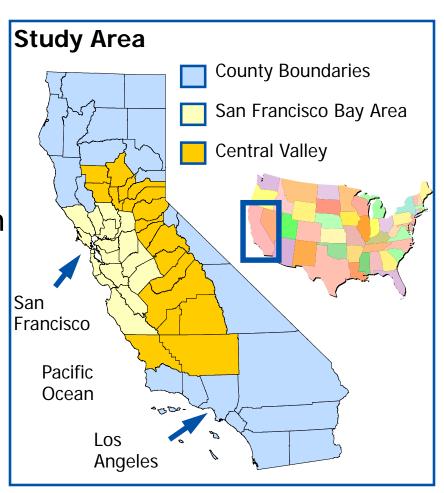
Outline


 Relationship of folic acid and childhood leukemogenesis

 Folate intake in pregnancy and DNA methylation at birth


How might folate influence DNA methylation and leukemia?

Subtypes of childhood acute lymphoblastic leukemia


Leukemia exhibits profound DNA methylation changes

Lee et al, Nucleic Acids Res, 2015

California Childhood Leukemia Study (CCLS)

- Case-control study (1995-2014)
- Ultra-rapid ascertainment of over 1,400 incident cases from 16 hospitals throughout California
- 1,426 controls selected from the California birth registry
- 47% Hispanic children

Maternal Folate and Vitamin Intake

- A modified version of the Block Food Frequency Questionnaire (FFQ) was administered during the in-home interviews to assess the pre/peripregnancy diet of the mother.
- Daily intake in micrograms per day of dietary folate/vitamin equivalents (mcg DFEs) was calculated from supplement use and dietary intake

Total Nutrient Intake from Food and Supplements & Childhood ALL

N= 645 cases, 854 controls

	Odds Ratio (95% CI)	P-value
Principal Componenta	0.91 (0.84-0.99)	0.03
Folate (100 DFE/day)	0.97 (0.94-1.01)	0.09
Vitamin B12 (1 µg/day)	0.96 (0.93-0.99)	0.03
Vitamin B6 (1 mg/day)	0.89 (0.79-0.99)	0.05
Riboflavin (1 mg/day)	0.88 (0.77-0.99)	0.05
Methionine (1 g/day)	0.89 (0.73-1.10)	0.28

Conditional logistic models adjusted for mother's ethnicity, father's education, mother's education, household income, maternal age at child's birth, and energy intake.

^a The principal component represents the combined dietary intake of folate, vitamins B12 and B6, riboflavin and methionine from food and supplements.

Childhood Leukemia International Consortium - CLIC

Vitamins and Risk of Leukemia in Offspring

A Childhood Leukemia International Consortium Study

Catherine Metayer, a Elizabeth Milne, b John D. Dockerty, c Jacqueline Clavel, d Maria S. Pombo-de-Oliveira, e Catharina Wesseling, f Logan G. Spector, g Joachim Schüz, h Eleni Petridou, Sameera Ezzat, Bruce K. Armstrong, Jérémie Rudant, Sergio Koifman, Peter Kaatsch, Maria Moschovi, Wafaa M. Rashed, Steve Selvin, Kathryn McCauley, Rayjean J. Hung, n Alice Y. Kang, a and Claire Infante-Rivardo

Childhood Leukemia International Consortium Pooled Analyses Childhood ALL

	Vitamins (Any Time)						Folic Acid (Any Time)						
	No.	No. Exposed				Test for	No.	No. Exposed				Test for	
	Studies	Controls	Cases	OR	(95% CI)a	Interaction	Studies	Controls	Cases	OR	(95% CI)a	Interaction	
Parental education ^c													
Overall ^b	12	6640	4336	0.85	(0.78-0.92)		8	2164	1228	0.80	(0.71-0.89)		
None/Primary	12	873	447	0.72	(0.60-0.88)	$P = 0.14^{d}$	8	352	132	0.47	(0.33-0.68)	$P = 0.01^{d}$	
Secondary	12	2649	1879	0.78	(0.68-0.88)		8	660	410	0.73	(0.59-0.90)		
Tertiary	12	3118	2010	0.97	(0.86-1.09)		8	1152	686	0.96	(0.82-1.12)		

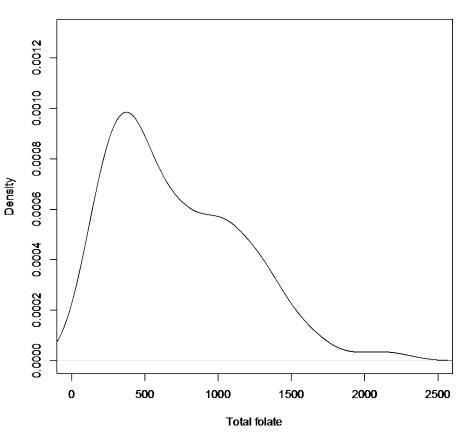
^aAdjusted for age, sex, ethnicity, parental education, and study. OR for parental education is adjusted for age, sex, ethnicity, and study

Neonatal Blood Spots: Guthrie Cards

Sample of blood taken immediately after birth (1-3 days)

Available for children born in California (3+ decades)

Used to trace back leukemia origin to fetal period

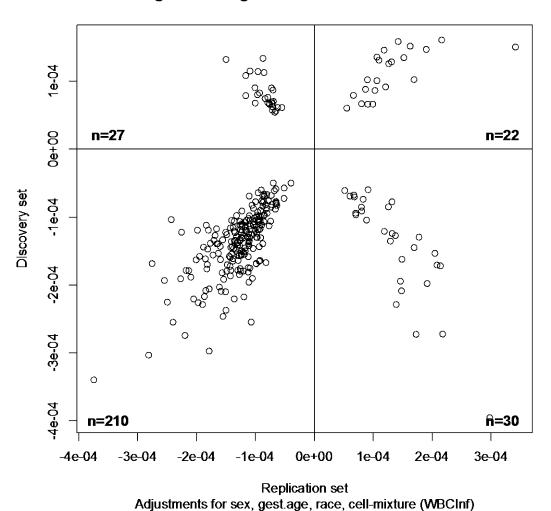

Folate and DNA methylation at birth: methods

- Illuminalnfinum HM450K array:
 - Polymorphic and SNP-related probes excluded
 - Functional Normalization (Fortin et al.)
 - Cell mixture estimation (WBC Inf., Houseman et al.)
- Folate exposure assessed by FFQ of the mothers about the peri-conception period
 - Total folate = food + supplementation
- Statistical analysis: locus-by-locus analysis
 - Logit transformation of beta-values
 - Im(M-value ~ folate + sex + gestational age + cell-mixture estimates + race)
 - data were resampled 1,000 times with replacement (i.e., bootstrapping) in each set, with the locus-by-locus model run on each bootstrap sample
- First discovery set (n=176)
- Replication in independent sample from the same population (n=167)

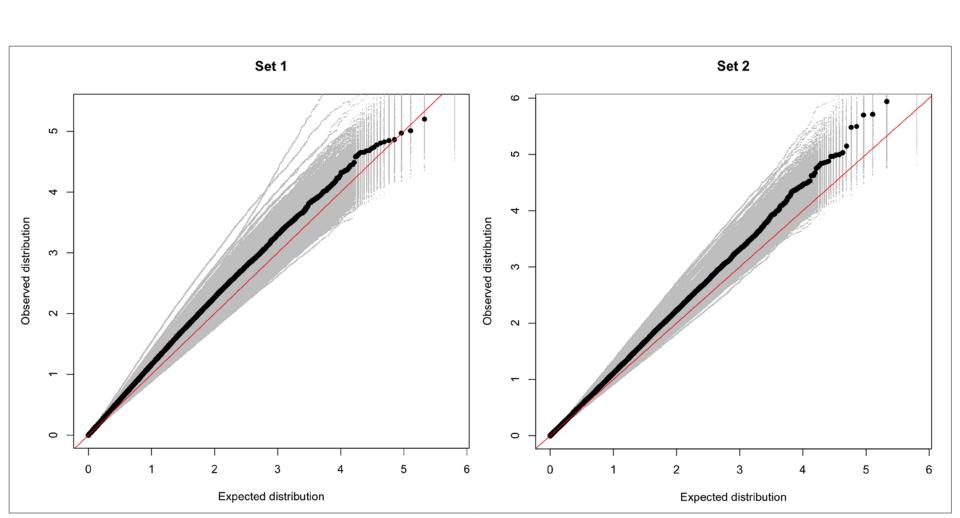
Results

- Clinical characteristics in the discovery set:
 - Folate: range from 54.2 to 2229.0, mean=678.2 and sd=430.4 [mg/d]
 - 57.8% of males
 - Mean gestational age 39 weeks (sd 2.6)
 - Race:
 - Whites: 48.4%;
 - African American: 2.7%;
 - Native American: 0.5%;
 - Asian or Pacific Islander: 8.2%;
 - Mixed or others: 40.2%

Discovery set: total folate



Folate and DNA methylation

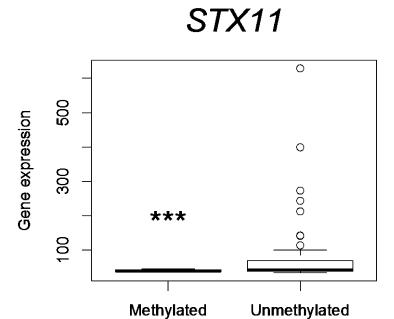

Linear regression reveals inverse relationship between folate intake in pregnancy and DNA methylation at birth

McNemar $p = 10^{-15}$

Significant regression coefficients for folate

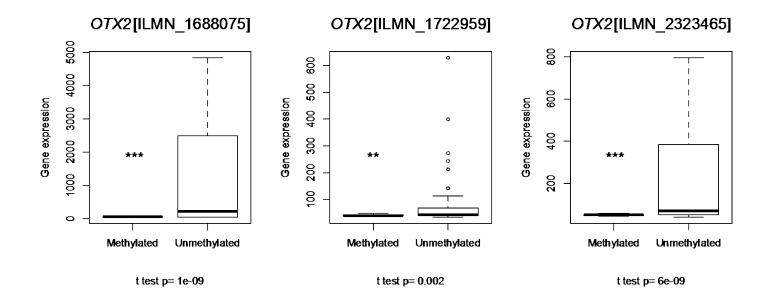
QQ-plots of observed vs. expected p-values in two sample sets, for folic acid intake.

Top four replicated genes in relation to folate intake

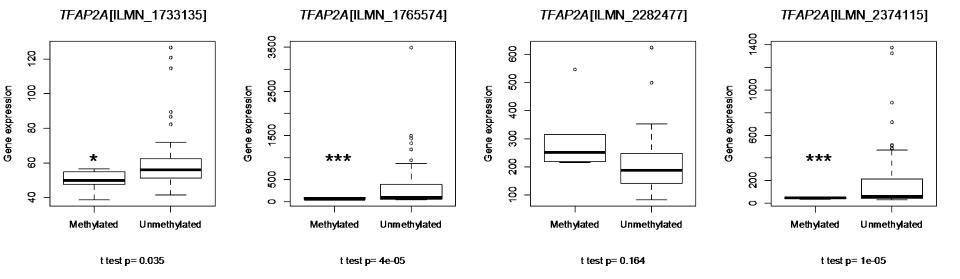

Set 1														
1,000 bootstrap				1,000 bootstrap										
CpG ID	Regression coef.	p-value	Median p-value	IQR 25%	IQR 75%	Regression coef.	p-value	Median p-value	IQR 25%	IQR 75%	Associated gene	Chr.	Chr. location	CpG location
cg22664307	-0.00013	0.00054	0.00722	0.002	0.021	-0.00026	0.00099	0.01127	0.003	0.034	STX11	6	q24.2	89 bp ahead of the promoter
cg21039708	-0.00021	0.00132	0.01178	0.004	0.038	-0.00034	0.00006	0.00191	0.000	0.008	OTX2	14	q22.3	promoter
cg15219145	-0.00016	0.00170	0.01477	0.004	0.043	-0.00023	0.00163	0.01385	0.004	0.041	TFAP2A	6	p24.3	promoter
cg13499966	-0.00012	0.00241	0.01666	0.005	0.049	-0.00021	0.00040	0.00622	0.002	0.020	CYS1	2	p25.1	369 bp ahead of the promoter

Two of these, *OTX2* and *TFAP2A*, are known genes involved in neural crest development

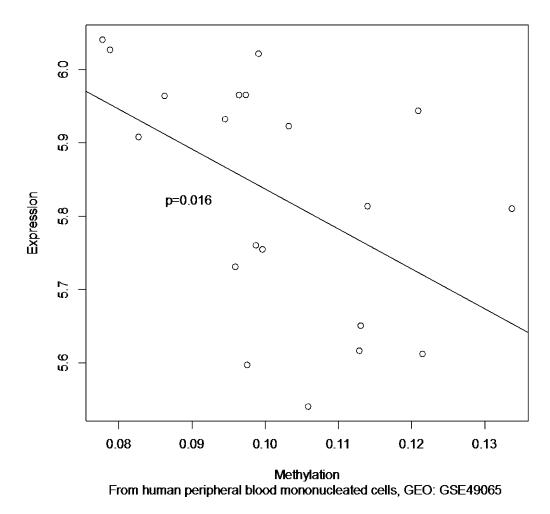
STX11 – associated with lymphocyte/histiocyte overgrowth syndrome


Are DNA methylation alterations functional?

To assess this, compare DNA methylation states to normalized gene expression



t test p= 2e-04


STX11 gene expression in function of DNA methylation in its promoter (*cg22664307*) in 86 pluripotent stem cells and their derivatives (data source: GEO, GSE30654).

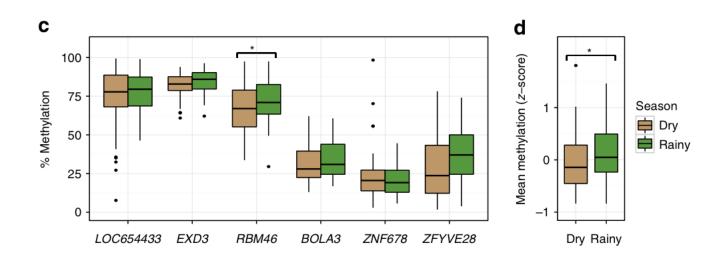
OTX2 gene expression in function of DNA methylation in its promoter (cg21039708) in 86 pluripotent stem cells and their derivatives (data source: GEO, GSE30654).

TFAP2A gene expression in function of DNA methylation in its promoter (cg15219145) in 86 pluripotent stem cells and their derivatives (data source: GEO, GSE30654).

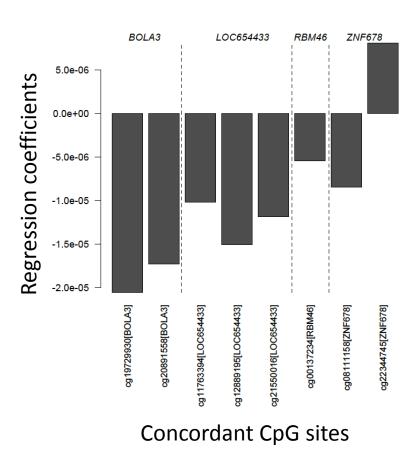
Correlation between DNA methylation at 369 bp ahead of the promoter (cg13499966) of CYS1 and its expression in peripheral mononuclear blood cells of 20 healthy adult men (data source: GEO, GSE49065).

Folic acid is associated with *decreased* DNA methylation?

ARTICLE


Received 27 Nov 2013 | Accepted 26 Mar 2014 | Published 29 Apr 2014

DOI: 10.1038/ncomms4746


OPEN

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

Paula Dominguez-Salas¹, Sophie E. Moore¹, Maria S. Baker², Andrew W. Bergen³, Sharon E. Cox¹, Roger A. Dyer⁴, Anthony J. Fulford¹, Yongtao Guan^{2,5}, Eleonora Laritsky², Matt J. Silver¹, Gary E. Swan⁶, Steven H. Zeisel⁷, Sheila M. Innis⁴, Robert A. Waterland^{2,5}, Andrew M. Prentice¹ & Branwen J. Hennig¹

Replication of Dominguez-Salas CpG sites in CCLS data

Folate and DNA methylation

Folate is inversely related to DNA methylation in a folate replete population

Several primary targets are related to pediatric developmental syndromes affected by pregnancy folate

Folate's effects may result in gene expression alterations

Center for Integrative Research on Childhood Leukemia and the Environment

Thanks to

UCSF

Semira Gonseth-Nussle
Ritu Roy
Adam de Smith
Kyle Walsh
Margaret Wrensch
Shweta Choudhry
Scott Kogan

UC Berkeley

Catherine Metayer
Todd Whitehead
Amanda Wheeler
Steve Francis
Libby Morimoto
Patricia Buffler

