

# EPA Methane challenge Blowdown workshop

Steve Martz – Manager, Gas Planning 11/10/2016



### Xcel Energy – Overview

- Gas & Electric Utility operating across 8 states
  - Minnesota, Wisconsin, Michigan, Colorado, North/South Dakota, New Mexico, & Texas
- Gas service to over 2 million customers, mostly Minnesota & Colorado
- 2,200 miles of transmission main, 34,000 miles of distribution main
- Largest generator of wind energy in the US



#### **BMP Commitment - Pipeline Blowdown**

- Blowdown BMP:
  - Pipelines operating greater than 60 psig
  - Non-emergency pipeline blowdown events
- Goal: Reduce total potential emissions by 50% each year
- Ability to leverage existing processes to track blowdown events
- Past reduction performance shows an annual average reduction of 41%
  - Average 60 events per year
  - Use of pressure reduction and line-stop fittings
- Minimal resources needed to achieve goal





### Historical Blowdown Performance



| Year  | # of Planned<br>Events | Total Reduced Methane<br>Emissions (MCF) | Total Methane<br>Emissions Vented to<br>Atmosphere (MCF) | Percent Reduced<br>of Total Gas<br>Volume |
|-------|------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| 2010  | 50                     | 6956                                     | 11982                                                    | 37%                                       |
| 2011  | 70                     | 7294                                     | 5669                                                     | 56%                                       |
| 2012  | 129                    | 2806                                     | 3708                                                     | 43%                                       |
| 2013  | 19                     | 2229                                     | 9944                                                     | 18%                                       |
| 2014  | 17                     | 8356                                     | 6414                                                     | 57%                                       |
| 2015  | 14                     | 4426                                     | 8696                                                     | 34%                                       |
| Total | 299                    | 32,067                                   | 46,413                                                   | 41%                                       |

#### **Implementation Plan**



|                                         |     | 2016 2017 2018 |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------------------------------|-----|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                         | Mar | May            | Jul | Sep | Nov | Jan | Mar | May | Jul | Sep | Nov | Jan | Mar | May |
| Join EPA CH4 Challenge                  |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Develop<br>Implementation Plan          |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Stakeholder Outreach<br>& Communication |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Develop Blowdown<br>Evaluation Tool     |     |                |     |     |     | ~   |     |     |     |     |     |     |     |     |
| Develop BMP & Gas<br>Standard           |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Pilot Flaring Equipment                 |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Pilot Mechanical<br>Capture Equipment   |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Gather Test Data                        |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| BMP Report Out                          |     |                |     |     |     |     |     |     |     |     |     |     |     |     |
| Final Report Filing                     |     |                |     |     |     |     |     |     |     |     |     |     |     |     |

#### **Blowdown Planning Strategies**

- Tipping point analysis indicates that past blowdown events could have achieved 50% goal through use of flaring
- Recommended Reduction Strategies:
  - 1. Primary options of pressure reduction through system use
  - 2. Use flaring equipment to further reduce emissions
  - 3. Mechanically capture through portable compressors (~\$15-30K)
  - Use line stop fittings to reduce the pipeline segment length (~\$5-40K per fitting)
    Only if fittings are necessary for other issues (e.g. bypass, downstream impacts)

|                      | cel Energ                  | iy-        |                       | Methane Challange<br>Blowdown Gas Alternatives Analysis |                          |                 |  |  |  |
|----------------------|----------------------------|------------|-----------------------|---------------------------------------------------------|--------------------------|-----------------|--|--|--|
|                      |                            |            |                       |                                                         |                          |                 |  |  |  |
| late:                | 9/2/2016                   |            |                       |                                                         |                          |                 |  |  |  |
| erson Evaluating:    | Mike Miller                |            |                       |                                                         |                          |                 |  |  |  |
| ocation:             | 414 West Main, Littleon, C | O 80129    |                       |                                                         |                          |                 |  |  |  |
| /ork Order:          | 491328                     |            |                       |                                                         |                          |                 |  |  |  |
| roject Elevation:    | 5280                       |            |                       |                                                         |                          |                 |  |  |  |
| neName:              | Gas Man Exchange           |            |                       | 2                                                       |                          |                 |  |  |  |
| itial Pressure:      | 400                        |            |                       |                                                         |                          |                 |  |  |  |
| as Tempature:        | 60                         |            |                       |                                                         |                          | Required Inputs |  |  |  |
| nal Target Pressure: | 100                        |            |                       |                                                         |                          |                 |  |  |  |
|                      |                            |            | Pipe Segment Inform   | ation                                                   |                          |                 |  |  |  |
|                      | Segment 1 Segme            |            | nt 2 Segment 3        |                                                         | Segment 4                | Segment 5       |  |  |  |
| lame:                | 17                         | in         | in                    | in                                                      | in                       | in              |  |  |  |
| egment Length:       | 1000                       | ft.        | ft.                   | ft.                                                     | ft.                      | ft.             |  |  |  |
|                      | Ontion                     | 1          | Datio                 | n 7                                                     | Ontion                   | 3               |  |  |  |
| Select Method:       | Mech. Redu                 | ≜<br>ction | Pressure Redu         | tion + Flaring                                          | Pressure Reduction       | on + Flaring    |  |  |  |
|                      |                            |            |                       |                                                         |                          |                 |  |  |  |
|                      | Mechanical Heduction       | 100        | Pressure Reduction    | 100                                                     | Pressure Reduction       | 100             |  |  |  |
|                      | Initial Pressure           | 400 psig   | Initial Pressure      | 400 psig                                                | Initial Pressure         | 400 psig        |  |  |  |
|                      | Final Pressure             | 300 pag    | Final Pressure        | ann baið                                                | Final Pressure           | auu psig        |  |  |  |
|                      | % Reduction                | 33%        | % Reduction           | 33%                                                     | % Reduction              | 33%             |  |  |  |
|                      | Venting                    |            | <u>Flaring</u>        |                                                         | <u>Elaring</u>           |                 |  |  |  |
|                      | Initial Pressure           | 300 psig   | Initial Pressure      | 300 psig                                                | Initial Pressure         | 300 psig        |  |  |  |
|                      | Final Pressure             | 100 psig   | Final Pressure        | 150 psig                                                | Final Pressure           | 200 psig        |  |  |  |
|                      |                            |            | No. of Flares         | 1                                                       | No. of Flares            | 1               |  |  |  |
|                      |                            |            | Flare Size            | 12 in                                                   | Flare Size               | 12 in           |  |  |  |
|                      |                            |            | % Paduction           | 50%                                                     | % Peduction              | 2206            |  |  |  |
|                      |                            |            | Flare Time            | 0 hrs                                                   | Flare Time               | 0 hrs           |  |  |  |
|                      |                            |            | 201 122               |                                                         | test and                 |                 |  |  |  |
|                      |                            |            | <u>Ventina</u>        |                                                         | <u>Ventina</u>           |                 |  |  |  |
|                      |                            |            | Initial Pressure      | 150 psig                                                | Initial Pressure         | 200 psig        |  |  |  |
|                      |                            |            | Final Pressure        | 100 psig                                                | Final Pressure           | 100 psig        |  |  |  |
|                      | Method Analysis            |            | Method Analysis       |                                                         | Method Analysis          |                 |  |  |  |
|                      | Baseline Volume            | 19 MSCF    | Baseline Volume       | 19 MSCF                                                 | Baseline Volume          | 19 MSCF         |  |  |  |
|                      | Reduced Volume             | 6 MSCF     | Reduced Volume        | 16 MSCF                                                 | Reduced Volume           | 13 MSCF         |  |  |  |
|                      | % Reduction                | 33%        | % Reduction           | 8.3%                                                    | % Reduction              | 67%             |  |  |  |
|                      | Reduction Target Met       | No         | Reduction Target Met: | Yes                                                     | Reduction Target Met: Ye | 8               |  |  |  |
| Selected Method:     | Option 3                   |            |                       |                                                         |                          |                 |  |  |  |
|                      |                            |            |                       |                                                         |                          |                 |  |  |  |
| Analysis Notes:      | 8                          |            |                       |                                                         |                          |                 |  |  |  |
|                      | 1                          |            |                       |                                                         |                          |                 |  |  |  |



#### Flaring Lessons Learned





#### Fully set up 30 foot portable flare





#### 30 foot portable flare

## Flaring Lessons Learned

- Xcel Energy piloted a flaring trailer operation in multiple locations in Colorado
- Public interest and concern ranged from low to high
  - Vail Residents and fire department extremely concerned
  - Other areas were surprisingly less concerned
- Internal culture also problematic, certain service operating bases were more comfortable than others
- Primary advantages:
  - Ability to choose where to locate flame and heat
  - More control over burn and safer to operate
  - Less noisy
- Disadvantages:
  - Costly compared with traditional methods
  - More set up time
  - Requires approximately 40 feet of clear space to set up
  - Flame draws attention









#### **Questions?**

Steve Martz – Manager, Gas Planning 303-294-2676 Stephen.martz@xcelenergy.com