Metadata for Pesticides in Flooded Applications Model Scenarios for Simulating Pesticide Applications to Rice Paddies

Version 1.0

September 2016

By: Katrina White, Melanie Biscoe, Meridith Fry, James Hetrick, Greg Orrick, Charles Peck, Mohammed Ruhman, Andrew Shelby, Nelson Thurman, Dirk Young, Philip Villanueva

> Environmental Fate and Effects Division Office of Pesticide Programs Office of Chemical Safety and Pollution Prevention United States Environmental Protection Agency

Table of Contents

1		Introduction	4
2		Crop, Physical, and Watershed Tabs	4
3		Drinking Water Assessments, Applications and Floods Tabs	5
3	9.1	California, Mixed, Winter Flood, with and without 14-day holding period (DW CA Mixed 14dHholding.PFS; DW CA Mixed noHold.PFS)	6
3	8.2	California, Pre-Flood, Winter Flood, No holding period (DW CA Preflood noHold.PFS)	8
3	.3	California, Post-flood, Winter Flood, with and without a 7-day Holding Period (CA Postflood noHold.PFS; CA Postflood 7dHold.PFS)	9
3	3.4	Missouri/Arkansas, Mixed, No Holding Period, Winter Flood (DW MO Mixed Winter noHold.PFS)	2
3	5.5	Missouri/Arkansas, Mixed, No Holding Period, No Winter Flood (DW MO Mixed noWinter noHold.PFS)	3
3	8.6	Missouri/Arkansas, Pre-flood, No Holding Period, No Winter Flood (DW MO Preflood noWinte noHold.PFS)	
3	3.7	Missouri/Arkansas, Post-flood, No Holding Period, No Winter Flood (DW MO Postflood noWinter noHold.PFS)	7
4		Ecological Risk Assessment, Applications and Floods Tabs	8
4	.1	Arkansas, Winter Flood (ECO AR Winter.PFS)1	9
4	.2	Arkansas, No Winter Flood (ECO AR noWinter.PFS)20	0
4	.3	California, Winter Flood (ECO CA Winter.PFS)	0
4	.4	Louisiana, Winter Flood (ECO LA Winter.PFS)2	1
4	.5	Louisiana, No Winter Flood (ECO LA noWinter.PFS)2	1
4	.6	Mississippi, Winter Flood (ECO MS Winter.PFS)	1
4	.7	Mississippi, No Winter Flood (ECO MS noWinter.PFS)	2
4	.8	Missouri, Winter Flood (ECO MO Winter.PFS)2	2
4	.9	Missouri, No Winter Flood (ECO MO noWinter.PFS)2	3
4	.10	Texas, Winter Flood (ECO TX Winter.PFS)2	3
4	.11	Texas, No Winter Flood (ECO TX noWinter.PFS)2	3
5		PFAM Flood Scenarios for a Single Field Reflecting Typical Agronomic Practices	4
5	5.1	Arkansas Scenario – Dry Seeded Rice (ar_dryseed.PFS)	4
5	5.2	California Scenario – Water Seed, No Hold, Post-flood Application (ca_waterseed_postflood_nohold.PFS)2	5
5	5.3	California Scenario – Water Seed, No Hold, Pre-flood (CA_waterseed_preflood_nohold.PFS). 2	5

	5.4	California Scenario – Water-seeded, Post-flood, Holding Period (ca_waterseed_postflood_hold.PFS)	.26
	5.5	California Scenario – Water-seeded, Pre-flood, Holding Period (ca_waterseed_preflood_hold.PFS)	.27
	5.6	Louisiana Scenario – Water-seeded, Pinpoint Flood (la_pinpointflood.PFS)	.27
	5.7	Louisiana Scenario – Water-seeded, Delayed Flood (Ia_waterseed_pinpointflood.PFS)	. 28
	5.8	Louisiana Scenario – Dry-seeded (la_dryseed.PFS)	. 28
	5.9	Mississippi Scenario – Dry-seeded (ms_dryseed.PFS)	. 29
	5.10	Missouri Scenario – Dry-seeded (mo_dryseed.PFS)	. 29
	5.11	Missouri Scenario – Water-seeded (mo_waterseed.PFS)	. 29
	5.12	Texas Scenario – Dry-seeded (tx_dryseed.PFS)	.30
	5.13	Texas Scenario – Water-seeded (tx_waterseed.PFS)	. 30
	5.14	Texas Scenario – Ratoon Crop (tx_ratoon.PFS)	.31
6		Literature Cited	.31

1 Introduction

This document provides documentation for the scenarios developed to estimate pesticide concentrations in water resulting from applications of pesticides to rice when using the Pesticides in Flooded Applications Model (PFAM). Scenarios include information loaded on the crop, physical, watershed, and crop tabs in PFAM.

2 Crop, Physical, and Watershed Tabs

Parameter	Value	Source/Reference
	5/11 (AR)	
	5/23 (CA)	
Zara haight reference	4/24 (LA)	Son Agronomic Practicos Chanter (USERA 2016)
Zero height reference	5/12 (MS)	See Agronomic Practices Chapter (USEPA, 2016)
	5/15 (MO)	
	4/19 (TX)	
	115 (AR)	
	125 (CA)	
Days from zero height to full height	102 (LA)	See Agronomic Practices Chapter (USEPA, 2016)
Days from zero neight to full neight	111 (MS)	See Agronomic Fractices Chapter (OSEFA, 2010)
	118 (MO)	
	103 (TX)	
	136 (AR)	
	139 (CA)	
Dave from Zaro Height to Romaval	123 (LA)	Son Agronomic Practicos Chapter (USERA 2016)
Days from Zero Height to Removal	132 (MS)	See Agronomic Practices Chapter (USEPA, 2016)
	139 (MO)	
	124 (TX)	
Maximum Fractional Areal Coverage	1.0 (All)	See Agronomic Practices Chapter (USEPA, 2016)

Table 1. Summary of model inputs for the crop tab

Table 2. Summary of model inputs for the physical tab

Parameter	Value	Source/Reference
	AR (w13963)	Meteorological data available at EPA models
	CA (w23232)	web site (SAMSON data). Stations correspond
Mataorological filos	LA (w03937)	to
Meteorological files	MS (w03940)	Little Rock, AR (w13963), Sacramento, CA
	TX (w13958)	(w23232), Lake Charles, LA (w03937), Jackson,
	MO (w13994)	MS (w03940), and Austin, TX (w13958)
	AR 36.2°	
	CA 38.6°	
Latitude	LA 31°	Corresponds to latitude of meteorological
Latitude	MS 32°	station.
	TX 30°	
	MO 39°	

Parameter	Value	Source/Reference		
Area of application (m ²)	Drinking Water Assessment: 2071280629 (CA) 414175280(AR) Ecological Risk Assessment: 100,000 (Ecological Risk Assessment)	Determined from 2012 Rice Cropland Data Layer, 2007 National Agricultural Statistics Service census acres of rice, and the percent cropped area procedure (see conceptual model chapter). This input does not have an impact on the concentration estimated inside the rice paddy and for the ecological risk assessment.		
Weir leakage (m/d)	0	PFAM default		
Benthic leakage (m/d)	0	PFAM default		
Mass transfer coefficient (m/s)	1x10 ⁻⁸	PFAM default		
Reference depth (m)	0.1016	Set to same depth as initial weir height, per PFAM guidance.		
Benthic depth (m)	0.05	PFAM default		
Benthic porosity	0.50	PFAM default		
Dry bulk density (g/cm ³)	1.35	PFAM default		
Foc Water column on SS	0.04	PFAM default		
Foc benthic	0.01	PFAM default		
SS (mg/L)	30	PFAM default		
Water column DOC (mg/L)	5.0	PFAM default		
Chlorophyll CHL (mg/L)	0.005	PFAM default		
Dfac	1.19	PFAM default		
Q10	2	PFAM default		

Table 3. Summary of model inputs for the Watershed tab

Parameter	Value	Source/Reference		
Calculate downstream	Drinking Water Assessment: Yes	Yes for drinking water. No for ecological risk		
waterbody concentrations	Ecological Risk Assessment: No	assessments.		
Area of surrounding	56389517945 (CA)	See Concentual Medial (USEDA 2016)		
watershed (m ²)	12126415684 (AR)	See Conceptual Model (USEPA, 2016)		
Curve number of surrounding watershed	70	See Conceptual Model (USEPA, 2016)		
Base flow (m ³ /s)	220 (CA) 48 (AR)	See Conceptual Model (USEPA, 2016)		
Width of water body (m)	194 (CA) 98 (AR)	See Conceptual Model (USEPA, 2016)		
Depth of water body (m)	5.1 (CA) 2.3 (AR)	See Conceptual Model (USEPA, 2016)		
Length of water body (m)	40 (CA and AR)	See Conceptual Model (USEPA, 2016)		

3 Drinking Water Assessments, Applications and Floods Tabs

For drinking water assessments, applications are simulated for several thousands of acres of rice. Therefore, applications are spread out over time. Because of the large area of rice simulated, it is not expected that all acres of rice would be treated with a single pesticide. Therefore, a percent crop treated (PCT) may be used to refine a drinking water estimate of exposure. The PCT would not be used for ecological risk assessments because the area of interest is the paddy itself, which is entirely treated with pesticide. The application timing recommended in the developed scenarios reflects applications that are expected to occur during the rice growing season when rice paddies are flooded. The timing of application should be adjusted to reflect the specific pesticide being simulated, but the applications should be spread out over time for drinking water assessments. If the number of days over which the pesticide applications is spread out is changed, justification should be provided as to why the change was made. This information is needed because the number of days over which applications are spread out can have a big impact on the estimated drinking water concentration.

For drinking water assessments, estimated drinking water concentrations (EDWC) are evaluated in a receiving water body outside of the rice paddy. Releases from the rice paddy are adjusted to maximize release from the rice paddy. Therefore, a release of a percentage of water in paddies either the day after or after a minimum holding period is simulated. This allows the risk assessment to capture benefits from implementing a holding period.

While the dates of applications are important in determining the estimated drinking water concentrations, application dates are primarily chemical parameters and are not saved in the scenario file. Suggested application dates are provided for the different scenarios. The following application and flooding scenarios were developed for drinking water simulations: mixed, pre-flood, and post-flood. In pre-flood, all applications occur before the flooding of rice paddies begin. For post-flood, all applications may occur pre- or post-flood of the rice paddy.

Currently in California, winter flooding is very common (80% of rice fields; personal communication with rice farmers). Less information is available to characterize whether Arkansas and Missouri use winter floods; however, there is literature describing the use of rice paddies to provide habitat for birds and a place for hunting in the winter, indicating that the practice does occur to some degree. In 2009, 20% of rice paddies were managed with a winter flood (Norman and Moldenhauer, 2009). In California, winter floods were included in the developed scenarios. For Arkansas/Missouri, scenarios were created with and without a winter flood.

Rice growers in California have reported that turnover (at a low rate) is maintained in most rice paddies to prevent algae growth. Therefore, turnover at a low rate was applied in modeling. In the absence of data, a turnover rate of once in 60 days was chosen (0.017). For drinking water assessments, this practice has a low impact on the estimated drinking water concentrations.

3.1 California, Mixed, Winter Flood, with and without 14-day holding period (DW CA Mixed 14dHholding.PFS; DW CA Mixed noHold.PFS)

Table 4. Application Tab: California, Mixed, Winter Flood, with and without 14-day holding period

Parameter	Value	Comment, Source		
Apply Pesticide Over a Yes		Choose for a drinking water assessment		
Distribution of Days				
First Day of Application May 7		Based on CA PUR data, herbicides are commonly		
		applied within a 30- to 60-day time window with a		
		peak application period. Conceptual models for		

Parameter	Value	Comment, Source
		drinking water were developed with applications
		spread over a 46-day period.
Last Day of Application	June 23	See above
Total Mass Applied in kg/ha	Enter the total kg/ha allowed on the label for the entire year.	This may be refined by multiplying by the maximum percent use area for the pesticide class (e.g., herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift factor based on label recommendations	Determined by label recommendations and corresponding spray drift factor
Distribution	٨	Based on CA PUR data.

Table 5	Flood tab: California	Mixed Winter Flo	od with and without	14-day holding period
Table 5.	FIUUU Lay. California	, iviikeu, vviiitei rio	ou, with and without	14-uay noiuing periou

Parameter	Value	Comment, Source		
Reference Date	May 23	This parameter is the day of the typical flood		
Gradual or Sharp Transition	Gradual	This simulates the release of water from approximately		
		500,000 acres of rice, which occurs over time.		
Number of Events	11	Number of events needed to capture flooding and releases		
		over an entire year and simulate the holding period.		

Table 6. Flood Table: California, Mixed, Winter Flood, with and without 14-day holding period

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min Level	Turn	Turn Over
	Day	Level	Level	Days	(m)	Level	(m)	Over	(d ⁻¹)
	,	Days	(m)	,-	(,	Days	(,	Days	(~)
First day of flood	5/23	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded	5/28	5	0.1016	5	0.1016	5	0.1016	5	0.017
after 5 days									
Hold the water until	6/23	31	0.1016	44	0.1016	44	0.1016	44	0.017
after all applications									
and a 1-day default									
holding period*									
Release 50% of	7/26	64	0.0508	72	0.0508	72	0.0508	72	0.017
paddy water over 33									
days*									
Bring water back up	7/27	65	0.1016	73	0.1016	73	0.1016	73	0.017
to full flood*									
Hold water until	9/19	119	0.1016	119	0.1016	119	0.1016	119	0.017
harvest									
Release water for	10/13	143	0	143	0	143	0	143	0
harvest over 24 days									
Winter flood	11/1	162	0.1016	162	0.1016	162	0.1016	162	0.017
Begin winter flood	2/1	252	0.1016	252	0.1016	252	0.1016	252	0.017
release									
Winter flood water	2/24	276	0	276	0	276	0	276	0
released over 24									
days									
Flood in May	5/23	364	0	364	0	364	0	364	0

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.2 California, Pre-Flood, Winter Flood, No holding period (DW CA Preflood noHold.PFS)

Parameter	Value	Comment, Source
Apply Pesticide Over a	Yes	Choose for a drinking water assessment
Distribution of Days		
First Day of Application	April 6	Based on CA PUR data, herbicides are commonly
		applied within a 30- to 60-day time window with a
		peak application period. Conceptual models for
		drinking water were developed with applications
		spread over a 46-day period.
Last Day of Application	May 22	See above
Total Mass Applied in kg/ha	Enter the total kg/ha	This parameter may be refined by multiplying by
	allowed on the label over	the maximum percent use area for the pesticide
	the entire year.	class (e.g., herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift factor	Determined by label recommendations and
	based on label	corresponding spray drift factor
	recommendations	
Distribution	٨	Based on CA PUR data.

Table 7. Applications Tab: California, Pre-Flood, Winter Flood, no holding period

Tak	ole 8. Flood Tab: California, P	Pre-Flood,	Winter Flood, No	o holding period

Parameter	Value	Comment, Source
Reference Date	May 23	This is the day of the typical flood
Gradual or Sharp Transition	Gradual	This simulates the release of water from approximately 500,000 acres of rice, which occurs over time.
Number of Events	11	Number of events needed to capture flooding and releases over an entire year and simulate the holding period.

Comment	Month, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d⁻¹)
First day of flood	5/23	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded after 5 days	5/28	5	0.1016	5	0.1016	5	0.1016	5	0.017
Hold the water at least 1 day after the last application and after all paddies are flooded.*	5/29	6	0.1016	6	0.1016	6	0.1016	6	0.017
Release 50% of paddy water over 33 days*	7/1	39	0.0508	39	0.0508	39	0.0508	39	0.017
Bring water back up to full flood*	7/2	40	0.1016	40	0.1016	40	0.1016	40	0.017
Hold water until harvest	9/19	119	0.1016	119	0.1016	119	0.1016	119	0.017
Release water for harvest over 24 days	10/13	143	0	143	0	143	0	143	0
Winter flood	11/1	162	0.1016	162	0.1016	162	0.1016	162	0.017
Begin winter flood release	1/30	252	0.1016	252	0.1016	252	0.1016	252	0.017
Winter flood water released over 24 days	2/23	276	0	276	0	276	0	276	0
Flood in May	5/23	364	0	364	0	364	0	364	0

Table 9. Flood Table: California, Pre-Flood, Winter Flood, No holding period

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.3 California, Post-flood, Winter Flood, with and without a 7-day Holding Period (CA Postflood noHold.PFS; CA Postflood 7dHold.PFS)

Table 10. Application Tab: California, Post-flood, Winter Flood, with and without a 7-day Holding Period

Parameter	Value	Comment, Source
Apply Pesticide Over a	Yes	Choose for a drinking water assessment
Distribution of Days		
First Day of Application	May 23	Based on CA PUR data, herbicides are commonly
		applied within a 30 to 60 day time window with a
		peak application period. Conceptual models for
		drinking water were developed with applications
		spread over a 46 day period.
Last Day of Application	Jul 8	See above
Total Mass Applied in kg/ha	Enter the total kg/ha	This parameter may be refined by multiplying by
	allowed on the label	the maximum percent use area for the pesticide
	over the entire year.	class (e.g., herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift	Determined by label recommendations and
	factor based on label	corresponding spray drift factor
	recommendations	
Distribution	٨	Based on CA PUR data.

Parameter	Value	Comment, Source
Reference Date	May 23	This parameter is the day of the typical flood
Gradual or Sharp Transition	Gradual	This simulates the release of water from the
		simulated acres of rice, which occurs over time.
Number of Events	11	Number of events needed to capture flooding
		and releases over an entire year and simulate
		the holding period.

Table 11. Flood Tab: California, Post-flood, Winter Flood, with and without a 7-day Holding Period

Table 12: Flood Table without Holding Period

Comment	Month, Day	Fill Level	Fill Level (m)	Wier Days	Wier (m)	Min Level	Min Level (m)	Turn Over	Turn Over (d ⁻¹)
First day of flood	5/23	Days 0	0.0508	0	0.0508	Days 0	0.0508	Days 0	0.017
All fields flooded	5/28	5	0.1016	5	0.1016	5	0.1016	5	0.017
after 5 days	5,20	5	0.1010	5	0.1010	5	0.1010	5	0.017
Hold the water at	7/9	48	0.1016	47	0.1016	47	0.1016	47	0.017
least 1 day after	-,-								
the last									
application and after all paddies									
are flooded.*									
Release 50% of	8/12	81	0.0508	81	0.0508	81	0.0508	81	0.017
paddy water over									
33 days*									
Bring water back	8/13	82	0.1016	82	0.1016	82	0.1016	82	0.017
up to full flood*									
Hold water until harvest	9/19	119	0.1016	119	0.1016	119	0.1016	119	0.017
Release water for	10/13	143	0	143	0	143	0	143	0
harvest over 24									
days									
Winter flood	11/1	162	0.1016	162	0.1016	162	0.1016	162	0.017
Begin winter	1/30	252	0.1016	252	0.1016	252	0.1016	252	0.017
flood release									
Winter flood	2/23	276	0	276	0	276	0	276	0
water released									
over 24 days									
Flood in May	5/23	364	0	364	0	364	0	364	0

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min Level	Turn	Turn
	Day	Level	Level	Days	(m)	Level	(m)	Over	Over
		Days	(m)			Days		Days	(d⁻¹)
First day of flood	5/23	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded	5/28	5	0.1016	5	0.1016	5	0.1016	5	0.017
after 5 days									
Hold the water at	7/9	55	0.1016	55	0.1016	55	0.1016	55	0.017
least 1 day after									
the last									
application and									
after all paddies									
are flooded.*									
Release 50% of	8/12	88	0.0508	88	0.0508	88	0.0508	88	0.017
paddy water over									
33 days*	- 1								
Bring water back	8/13	89	0.1016	89	0.1016	89	0.1016	89	0.017
up to full flood*	- 4								
Hold water until	9/19	119	0.1016	119	0.1016	119	0.1016	119	0.017
harvest									
Release water for	10/13	143	0	143	0	143	0	143	0
harvest over 24									
days Winter flood	11/1	162	0.1016	162	0.1016	162	0.1010	102	0.017
	11/1					-	0.1016	162	
Begin winter	1/30	252	0.1016	252	0.1016	252	0.1016	252	0.017
flood release	a /aa	0.76		0.70		0.76		0.70	
Winter flood	2/23	276	0	276	0	276	0	276	0
water released									
over 24 days	F /22	264	0	264		264		264	
Flood in May	5/23	364	0	364	0	364	0	364	0

Table 13: Flood Table with 7-day Holding Period

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.4 Missouri/Arkansas, Mixed, No Holding Period, Winter Flood (DW MO Mixed Winter noHold.PFS)

Parameter	Value	Comment, Source
Apply Pesticide Over a	Yes	Choose for a drinking water assessment
Distribution of Days		
First Day of Application	April 25	Based on CA PUR data, herbicides are commonly applied
		within a 30 to 60-day time window with a peak
		application period. Conceptual models for drinking
		water were developed with applications spread over a
		46-day period.
Last Day of Application	June 10	See above
Total Mass Applied in	Enter the total kg/ha	This parameter may be refined by multiplying by the
kg/ha	allowed on the label	maximum percent use area for the pesticide class (e.g.,
	over the entire year.	herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift	Determined by label recommendations and
	factor based on label	corresponding spray drift factor
	recommendations	
Distribution	٨	Based on CA PUR data.

Table 14. Application Tab: Missouri/Arkansas, Mixed, No Holding Period, Winter Flood

Table 15. Flood Tab: Missouri/Arkansas, Mixed, No Holding Period, Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 30	This is the day of the typical flood
Gradual or Sharp	Gradual	This simulates the release of water from approximately
Transition		100,000 acres of rice, which occurs over time.
Number of Events	14	Number of events needed to capture flooding and
		releases over an entire year and simulate the holding
		period. After seeding in Arkansas, there are typically a
		couple of flushes of water out of the rice paddy.

Table 16. Flood Table: Missouri/Arkansas, Mixed, No Holding Period, Winter Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
First day of flood	4/30	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded after 4	5/4	5	0.1016	5	0.1016	5	0.1016	5	0.017
days									
In Arkansas, rice is often dry	5/17	17	0.0914	17	0.0914	17	0.0914	17	0.017
seeded and flushed after									
seeding. In Missouri, rice is									
most commonly water									
seeded. This practice									
simulates a small									
percentage of flushing of									
the rice after seeding.									
Bring water back up to full	5/18	18	0.1016	18	0.1016	18	0.1016	18	0.017
flood after flushing									

Comment	Month, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d ⁻¹)
Hold the water until after all applications and a 1-day holding period	6/11	42	0.1016	42	0.1016	42	0.1016	42	0.017
Release 50% of paddy water over 33 days	7/14	75	0.0508	75	0.0508	75	0.0508	72	0.017
Bring water back up to full flood	7/15	76	0.1016	76	0.1016	76	0.1016	73	0.017
Hold water until 14 days before typical harvest dates	8/26	118	0.1016	118	0.1016	118	0.1016	119	0.017
Release water over typical harvest dates minus 14 days	9/26	149	0	149	0	149	0	143	0
Winter flood	11/1	185	0.1016	185	0.1016	185	0.1016	162	0.017
Begin winter flood release	1/30	275	0.1016	275	0.1016	275	0.1016	252	0.017
Winter flood water released over 24 days	2/23	299	0	299	0	299	0	276	0
Flood in April	4/29	364	0	364	0	364	0	364	0

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.5 Missouri/Arkansas, Mixed, No Holding Period, No Winter Flood (DW MO Mixed noWinter noHold.PFS)

Table 17. Application Tab: Missouri/Arkansas, Mixed, No Holding Period, No Winter Flood

Parameter	Value	Comment, Source
Apply Pesticide Over a	Yes	Choose for a drinking water assessment
Distribution of Days		
First Day of Application	April 25	Based on CA PUR data, herbicides are commonly applied
		within a 30 to 60 day time window with a peak application
		period. Conceptual models for drinking water were
		developed with applications spread over a 46 day period.
Last Day of Application	June 10	See above
Total Mass Applied in	Enter the total kg/ha	This parameter may be refined by multiplying by the
kg/ha	allowed on the label	maximum percent use area for the pesticide class (<i>e.g.</i> ,
	over the entire year.	herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift	Determined by label recommendations and corresponding
	factor based on label	spray drift factor
	recommendations	
Distribution	٨	Based on CA PUR data.

Parameter	Value	Comment, Source
Reference Date	April 30	This parameter is the day of the typical flood
Gradual or Sharp	Gradual	This parameter simulates the release of water from
Transition		approximately 100,000 acres of rice, which occurs over time.
Number of Events	14	Number of events needed to capture flooding and releases over an entire year and simulate the holding period. After seeding in Arkansas, there are typically a couple of flushes of water out of the rice paddy.

Table 18. Flood Tab: Missouri/Arkansas, Mixed, No Holding Period, No Winter Flood

Table 19. Flood Table Missouri/Arkansas, Mixed, No Holding Period, No Winter Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
First day of flood	4/30	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded after 4	5/4	5	0.1016	5	0.1016	5	0.1016	5	0.017
days									
In Arkansas, rice is often dry-seeded and flushed after seeding. In Missouri, rice is most commonly water seeded. This simulates a	5/17	17	0.0914	17	0.0914	17	0.0914	17	0.017
small percentage of flushing of the rice after seeding.									
Bring water back up to full flood after flushing	5/18	18	0.1016	18	0.1016	18	0.1016	18	0.017
Hold the water until	6/11	42	0.1016	42	0.1016	42	0.1016	42	0.017
after all applications									
and a 1-day holding									
period									
Release 50% of paddy	7/14	75	0.0508	75	0.0508	75	0.0508	72	0.017
water over 33 days									
Bring water back up to full flood	7/15	76	0.1016	76	0.1016	76	0.1016	73	0.017
Hold water until 14 days before typical harvest dates	8/26	118	0.1016	118	0.1016	118	0.1016	119	0.017
Release water over typical harvest dates minus 14 days	9/26	149	0	149	0	149	0	143	0
Winter flood	11/1	185	0	185	0	185	0	162	0
Begin winter flood release	1/30	275	0	275	0	275	0	252	0
Winter flood water released over 24 days	2/23	299	0	299	0	299	0	276	0
Flood in April	4/29	364	0	364	0	364	0	364	0

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.6 Missouri/Arkansas, Pre-flood, No Holding Period, No Winter Flood (DW MO Preflood noWinter noHold.PFS)

Table 20. Application Tab: Missouri/Arkansas, Pre-flood, No Holding Period, No Winter Flood

Parameter	Value	Comment, Source
Apply Pesticide Over a	Yes	Choose for a drinking water assessment
Distribution of Days		
First Day of Application	March 15	Based on CA PUR data, herbicides are commonly applied
		within a 30- to 60-day time window with a peak application
		period. Conceptual models for drinking water were
		developed with applications spread over a 46-day period.
Last Day of Application	April 30	See above
Total Mass Applied in	Enter the total kg/ha	This parameter may be refined by multiplying by the
kg/ha	allowed on the label	maximum percent use area for the pesticide class (e.g.,
	over the entire year.	herbicide, fungicide, insecticide).
Drift Factor	Enter the spray drift	Determined by label recommendations and corresponding
	factor based on label	spray drift factor
	recommendations	
Distribution	٨	Based on CA PUR data.

Table 21. Flood Tab: Missouri/Arkansas, Pre-flood, No Holding Period, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 30	This parameter is the day of the typical flood
Gradual or Sharp	Gradual	This parameter simulates the release of water from
Transition		approximately 100,000 acres of rice, which occurs over time.
Number of Events	14	Number of events needed to capture flooding and releases over an entire year and simulate the holding period. After seeding in Arkansas, there are typically a couple of flushes of water out of the rice paddy.

Comment	Month,	Fill	Fill Level	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	(m)	Days	(m)	Level	Level	Over	Over
		Days				Days	(m)	Days	(d-1)
First day of flood	4/30	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded after	5/4	5	0.1016	5	0.1016	5	0.1016	5	0.017
4 days									
In Arkansas, rice is	5/17	17	0.0914	17	0.0914	17	0.0914	17	0.017
often dry seeded and									
flushed after seeding.									
In Missouri, rice is									
most commonly water									
seeded. This									
simulates a small									
percentage of flushing									
of the rice after									
seeding.									
Bring water back up to	5/18	18	0.1016	18	0.1016	18	0.1016	18	0.017
full flood after flushing									
Hold the water until	6/11	42	0.1016	42	0.1016	42	0.1016	42	0.017
after all applications									
and a 1-day holding									
period									
Release 50% of paddy	7/14	75	0.0508	75	0.0508	75	0.0508	72	0.017
water over 33 days									
Bring water back up	7/15	76	0.1016	76	0.1016	76	0.1016	73	0.017
to full flood									
Hold water until 14-	8/26	118	0.1016	118	0.1016	118	0.1016	119	0.017
days before typical									
harvest dates									
Release water over	9/26	149	0	149	0	149	0	143	0
typical harvest dates									
minus 14-days									
Winter flood	11/1	185	0	185	0	185	0	162	0
Begin winter flood	1/30	275	0	275	0	275	0	252	0
release									
Winter flood water	2/23	299	0	299	0	299	0	276	0
released over 24 days									
Flood in April	4/29	364	0	364	0	364	0	364	0

Table 22. Flood Tab: Schedule for Missouri/Arkansas, Pre-flood, No Holding Period, No Winter Flood

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14 day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

3.7 Missouri/Arkansas, Post-flood, No Holding Period, No Winter Flood (DW MO Postflood noWinter noHold.PFS)

	-					
Parameter	Value	Comment, Source				
Apply Pesticide Over a Distribution of Days	Yes	Choose for a drinking water assessment				
First Day of Application	April 30	Based on CA PUR data, herbicides are commonly applied within a 30- to 60-day time window with a peak application period. Conceptual models for drinking water were developed with applications spread over a 46-day period.				
Last Day of Application	June 15	See above				
Total Mass Applied in kg/ha	Enter the total kg/ha allowed on the label over the entire year.	This parameter may be refined by multiplying by the maximum percent use area for the pesticide class (<i>e.g.</i> , herbicide, fungicide, insecticide).				
Drift Factor	Enter the spray drift factor based on label recommendations	Determined by label recommendations and corresponding spray drift factor				
Distribution	٨	Based on CA PUR data.				

Table 23. Application Tab: Missouri/Arkansas, Post-flood, No Holding Period, No Winter Flood

Table 24. Flood Tab: Missouri/Arkansas, Post-flood, No Holding Period, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 30	This parameter is the day of the typical flood
Gradual or Sharp	Gradual	This parameter simulates the release of water from
Transition		approximately 100,000 acres of rice, which occurs over time.
Number of Events	14	Number of events needed to capture flooding and releases
		over an entire year and simulate the holding period. In
		Arkansas, when seeding there are typically a couple of
		flushes of water out of the rice paddy.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
connicit	Day	Leve	Level	Days	(m)	Level	Level	Over	Over
	Duy	1	(m)	Days	(,	Days	(m)	Days	(d ⁻¹)
		Days	(,			Days	(,	Days	(~)
First day of flood	4/30	0	0.0508	0	0.0508	0	0.0508	0	0.017
All fields flooded after 4 days	5/4	5	0.1016	5	0.1016	5	0.1016	5	0.017
In Arkansas, rice is often dry-	5/17	17	0.0914	17	0.0914	17	0.0914	17	0.017
seeded and flushed after seeding.									
In Missouri, rice is most									
commonly water seeded. This									
simulates a small percentage of									
flushing of the rice after seeding.									
Bring water back up to full flood	5/18	18	0.1016	18	0.1016	18	0.1016	18	0.017
after flushing									
Hold the water until after all	6/11	42	0.1016	42	0.1016	42	0.1016	42	0.017
applications and a 1-day holding									
period									
Release 50% of paddy water	7/14	75	0.0508	75	0.0508	75	0.0508	72	0.017
over 33 days									
Bring water back up to full flood	7/15	76	0.1016	76	0.1016	76	0.1016	73	0.017
Hold water until 14 days before	8/26	118	0.1016	118	0.1016	118	0.1016	119	0.017
typical harvest dates									
Release water over typical	9/26	149	0	149	0	149	0	143	0
harvest dates minus 14 days									
Winter flood	11/1	185	0	185	0	185	0	162	0
Begin winter flood release	1/30	275	0	275	0	275	0	252	0
Winter flood water released over	2/23	299	0	299	0	299	0	276	0
24 days									
Flood in April	4/29	364	0	364	0	364	0	364	0

Table 25. Flood Tab: Schedule for Missouri/Arkansas, Post-flood, No Holding Period, No Winter Flood

* Bolded items should be adjusted so that the first release occurs after the minimum holding period for the chemical. So for a 14-day holding period, the 3 bolded data items would be shifted by adding 13 to the number of days as the water is held 1 day already by default.

4 Ecological Risk Assessment, Applications and Floods Tabs

For the ecological risk assessment, exposure is evaluated in the rice paddy for organisms that may move (*e.g.*, animals) by comparing toxicity endpoints to estimated exposure in the rice paddy. Exposure estimates are also characterized with concentrations in water that may be released after a specified holding period. The released water estimated environmental concentrations (EECs) may be used to help to characterize risk outside of the rice paddy. Unlike the drinking water assessment where many fields are simulated, in the ecological risk assessment one rice paddy is simulated. Therefore, maximum application rates on the label are simulated, and applications are not spread out over time, unless multiple applications are allowed on the label. Example application inputs for a pesticide applied at 4.5 kg/ha, 2 times, with a five day minimum retreatment interval are provided below.

Parameter	Value	Comment, Source
Apply Pesticide Over Specific Days or a Distribution of Days	Specific Days	Choose for ecological risk assessment
Month, Day	5/4 5/9	Dependent on pesticide, pre-emergence vs post- emergence, pre-flood or post-flood
Mass Applied in kg/ha	4.5 4.5	
Slow Release (1/day)	0	This parameter is used if the formulation slowly releases the pesticide over time.
Drift Factor	0	

Table 26. Applications Tabs: Ecological Assessment

As exposure is estimated in the rice paddy for ecological risk assessment, releases of water after an application could reduce estimated exposure in the paddy, leading the risk assessor to erroneously conclude that risk could be reduced by early paddy releases. The risk, however, would move with the residues in the water after they left the paddy, and it is uncertain to what extent residues in the water would be diluted after the water left the rice paddy. Some canals that receive water may not have much water in them or the water may be coming from releases from rice paddies upstream. Therefore, to follow the residues in the water and to fully capture the potential for risk for ecological organisms, water should be held on the rice paddy after the application and until harvest. Reports of individuals using the canals right next to rice paddies for fishing are common and the canals are often promoted to be a resource for wildlife.

Rice growers in California have reported that a low level of turnover is maintained in most rice paddies to prevent algae growth. Therefore, a low level of turnover was applied in the modeling. In the absence of data, a turnover rate of once in 60 days was chosen (0.017). For ecological risk assessments, this input does reduce estimated 21-day and 60-day average concentrations in the rice paddy.

4.1 Arkansas, Winter Flood (ECO AR Winter.PFS)

Table 27. Flood Tab: Arkansas, Winter Flood

Parameter	Value	Comment, Source
Reference Date		Midpoint of typical plant date is 5/1. First flush occurs Plant + 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an entire year and simulate the holding period.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
Flood field	5/4	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 14 days prior to	9/3	122	0	122	0	122	0	122	0
harvest									
Flood field for winter flood	11/1	181	0.1016	181	0.1016	181	0.1016	181	0.017
Drain field after winter flood	1/30	271	0	271	0	271	0	271	0

Table 28. Flood Tab: Schedule for Ecological Assessment Arkansas, Winter Flood

4.2 Arkansas, No Winter Flood (ECO AR noWinter.PFS)

Table 29. Flood Tab: Arkansas, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	May 4	Midpoint of typical plant date is 5/1. First flush occurs Plant + 3
		days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	2	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 30. Flood Tab: Schedule for Arkansas, No Winter Flood

Comment	Month, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d ⁻¹)
Flood field	5/4	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 14 days prior to harvest	9/3	122	0	122	0	122	0	122	0

4.3 California, Winter Flood (ECO CA Winter.PFS)

Table 31. Flood Tab: California Winter Flood

Parameter	Value	Comment, Source
Reference Date	May 3	Midpoint of typical plant date is 5/13. Flooding occurs at Plant -10 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an entire year.

Table 32. Flood Tab: Schedule for California Winter Flood

Comment	Month, Day	Fill Level	Fill Level	Wier Days	Wier (m)	Min Level	Min Level	Turn Over	Turn Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
Flood field	5/3	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field 14 days prior to	9/25	145	0	145	0	145	0	145	0
harvest		145	0	145	0	145	0	145	0
Winter flood	11/1	182	0.1016	182	0.1016	182	0.1016	182	0
Drain	1/30	272	0	272	0	272	0	272	0

4.4 Louisiana, Winter Flood (ECO LA Winter.PFS)

Parameter	Value	Comment, Source
Reference Date	April 11	Midpoint of typical plant date is 4/14. First flush occurs Plant – 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an entire year and simulate the holding period.

Table 33. Flood Tab: Louisiana, Winter Flood

Table 34. Flood Tab: Schedule for Louisiana, Winter Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
Flood field	4/11	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field	8/11	122	0	122	0	122	0	122	0
Winter flood	11/1	204	0.1016	204	0.1016	204	0.1016	204	0.017
Drain	1/30	294	0	294	0	294	0	294	0

4.5 Louisiana, No Winter Flood (ECO LA noWinter.PFS)

Table 35. Flood Tab: Louisiana, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 11	Midpoint of typical plant date is 4/14. First flush occurs Plant – 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	2	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 36. Flood Tab: Schedule for Louisiana, No Winter Flood

Comment	Month, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d⁻¹)
Flood field	4/11	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field	8/11	122	0	122	0	122	0	122	0

4.6 Mississippi, Winter Flood (ECO MS Winter.PFS)

Table 37. Flood Tab: Mississippi, Winter Flood

Parameter	Value	Comment, Source
Reference Date	May 10	Midpoint of typical plant date is 5/2. First flush occurs Plant + 8 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
Flood field	5/10	0	0.1524	0	0.1524	0	0.1524	0	0.017
Drain field 9 days prior to harvest	9/12	125	0	125	0	125	0	125	0
Winter flood	11/1	175	0.1524	175	0.1524	175	0.1524	175	0.017
Drain	1/30	265	0	265	0	265	0	265	0

Table 38. Flood Tab: Schedule for Mississippi, Winter Flood

4.7 Mississippi, No Winter Flood (ECO MS noWinter.PFS)

Table 39. Flood Tab: Mississippi, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	May 10	Midpoint of typical plant date is 5/2. First flush occurs Plant + 8 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	2	Number of events needed to capture flooding and releases over an entire year and simulate the holding period.

Table 40. Flood Tab: Schedule for Mississippi, No Winter Flood

Comment	Month, Day	Fill Level Davs	Fill Level (m)	Wier Days	Wier (m)	Min Level Davs	Min Level (m)	Turn Over Davs	Turn Over (d⁻¹)
Flood field	5/10	0	0.1524	0	0.1524	0	0.1524	0	0.017
Drain field 9 days prior to harvest	9/12	125	0	125	0	125	0	125	0

4.8 Missouri, Winter Flood (ECO MO Winter.PFS)

Table 41. Flood Tab: Missouri, Winter Flood

Parameter	Value	Comment, Source
Reference Date	May 6	Midpoint of typical plant date is 5/5. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 42. Flood Tab: Schedule for Missouri, Winter Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
Flood field	5/6	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 9 days prior to harvest	9/10	127	0	127	0	127	0	127	0
Winter flood	11/1	179	0.1016	179	0.1016	179	0.1016	179	0.017
Drain	1/30	269	0	269	0	269	0	269	0

4.9 Missouri, No Winter Flood (ECO MO noWinter.PFS)

Parameter	Value	Comment, Source					
Reference Date	May 6	Midpoint of typical plant date is 5/5. First flush occurs Plant + 1 day.					
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.					
Number of Events	2	Number of events needed to capture flooding and releases over an entire					
		year and simulate the holding period.					

Table 43. Flood Tab: Missouri, No Winter Flood

Table 44. Flood Tab: Schedule for Missouri, No Winter Flood

Comment	Month, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d ⁻¹)
Flood field at 4"	5/6	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 21 days prior to harvest	9/10	127	0	127	0	127	0	127	0

4.10 Texas, Winter Flood (ECO TX Winter.PFS)

Table 45. Flood Tab: Texas, Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 10	Midpoint of typical plant date is 4/9. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an entire
		year and simulate the holding period.

Table 46. Flood Tab: Schedule for Texas, Winter Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
Flood field at 4 inches	4/10	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 14 days prior to harvest	8/7	119	0	119	0	119	0	119	0
Winter flood	11/1	205	0.1016	205	0.1016	205	0.1016	205	0.017
Drain	1/30	295	0	295	0	295	0	295	0

4.11 Texas, No Winter Flood (ECO TX noWinter.PFS)

Table 47. Flood Tab: Texas, No Winter Flood

Parameter	Value	Comment, Source
Reference Date	April 10	Midpoint of typical plant date is 4/9. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	2	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment Month, Fill Wier Wier Min Fill Min Turn Turn Day Level Level Days (m) Level Level Over Over Days (m) Days (m) Days (d⁻¹) Flood field at 4 inches 0.1016 4/10 0.1016 0 0.1016 0.017 0 0 0 Drain field 14 days prior to harvest 8/7 119 0 119 0 119 0 119 0

Table 48. Flood Tab: Schedule for Texas, No Winter Flood

5 PFAM Flood Scenarios for a Single Field Reflecting Typical Agronomic Practices

5.1 Arkansas Scenario – Dry Seeded Rice (ar_dryseed.PFS)

Table 49. Flood Tab: Arkansas- Dry Seeded Rice

Parameter	Value	Comment, Source
Reference Date	May 4	Midpoint of typical plant date is 5/1. First flush occurs Plant + 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	6	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 50. Flood Tab: Schedule for Arkansas– Dry Seeded Rice

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 4"	5/4	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field	5/6	2	0	2	0	2	0	2	0
2 nd flush at 4"	5/21	17	0.1016	17	0.1016	17	0.1016	17	0
Drain field	5/23	19	0	19	0	19	0	19	0
Permanent flood at 4"	5/31	27	0.1016	27	0.1016	27	0.1016	27	0
Drain field 14 days prior to harvest	9/3	122	0	122	0	122	0	122	0

5.2 California Scenario – Water Seed, No Hold, Post-flood Application

(ca_waterseed_postflood_nohold.PFS)

Table 51. Post-flood Application of Pesticide (application made after permanent flood, 5/22), no holding time

Parameter	Value	Comment, Source
Reference Date	May 3	Midpoint of typical plant date is 5/13. Flooding occurs at Plant -10 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	6	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 52. Schedule for Post-flood Application of Pesticide (application made after permanent flood,5/22), no holding time

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 4"	5/3	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field	5/15	12	0	12	0	12	0	12	0
Permanent flood at 4"	5/22	19	0.1016	19	0.1016	19	0.1016	19	0
Drain field 14 days prior to harvest	9/25	145	0	145	0	145	0	145	0
Winter flood	10/16	166	0.1016	166	0.1016	166	0.1016	166	0
Drain field	1/31	273	0	273	0	273	0	273	0

5.3 California Scenario – Water Seed, No Hold, Pre-flood

(CA_waterseed_preflood_nohold.PFS)

Table 53. CA Pre-flood Application of Pesticide (application made prior to flooding on 5/3), No HoldingTime

Parameter	Value	Comment, Source				
Reference Date	May 3	Midpoint of typical plant date is 5/13. Flooding occurs at Plant -10 days.				
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.				
Number of Events	4	Number of events needed to capture flooding and releases over an				
		entire year and simulate the holding period.				

Table 54. Schedule for CA Pre-flood Application of Pesticide (application made prior to flooding on5/3), No Holding Time

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
Permanent flood at 4"	5/3	0	0.1016	0	0.1016	0	0.1016	0	0.017
Drain field 14 days prior to harvest	09/25	145	0	145	0	145	0	145	0
Winter flood (10/16)	10/16	166	0.1016	166	0.1016	166	0.1016	166	0.017
Drain (01/31)	1/31	273	0	273	0	273	0	273	0

5.4 California Scenario – Water-seeded, Post-flood, Holding Period (ca_waterseed_postflood_hold.PFS)

Post-flood Application of Pesticide (application made after permanent flood, 5/22), Holding Time Specified.

The user should set the first application to occur on the day after a permanent flood (5/22), with subsequent applications occurring at the label-prescribed retreatment interval (RTI.) The user should modify the "Days after" for Event 4 to reflect the difference in the date of last application plus the holding period and the date of Event 1. The "Days after" for Event 58 should equal the "Days after" for Event 47 plus 1, indicating a re-flooding of the paddy until the rice is ready for harvest.

Below is an example of a pesticide with a 14-day holding period, where the final application occurred on 6/30. For Event 4, the "Days after" reflect the difference in the date of the last application plus the holding period (6/30 + 14 days = 7/14) and the date for Event 1 (5/3), or 72 days.

Table 55. California Scenario – Water-seeded, Post-flood, Holding Period

Parameter	Value	Comment, Source
Reference Date	May 3	Midpoint of typical plant date is 5/13. Flooding occurs at Plant -10 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	8	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d-1)
First flush at 4"	5/3	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field	5/15	12	0	12	0	12	0	12	0
Permanent flood at 4"	5/22	19	0.1016	19	0.1016	19	0.1016	19	0
Assume release of paddy water occurs after holding period (14 days after last application	7/14	72	0	72	0	72	0	72	0
Flood field	7/15	73	0.1016	73	0.1016	73	0.1016	73	0
Drain field 14 days prior to harvest	9/25	145	0	145	0	145	0	145	0
Winter flood	10/16	166	0.1016	166	0.1016	166	0.1016	166	0
Drain	1/31	273	0	273	0	273	0	273	0

Table 56. Schedule for California Scenario – Water-seeded, Post-flood, Holding Period

5.5 California Scenario – Water-seeded, Pre-flood, Holding Period (ca_waterseed_preflood_hold.PFS)

Pre-flood Application of Pesticide (application made prior to flooding on 5/3), Holding Time Specified.

The user should modify the "Days after" for Event 2 to reflect the holding period. The "Days after" for Event 3 should equal the "Days after" for Event 2 plus 1, indicating a re-flooding of the paddy until the rice is ready for harvest.

Below is an example of a pesticide with a 14-day holding period, where the final application occurred before flooding on 5/3. For Event 2, the "Days after" reflect the holding period (14 days).

able 57. Camornia Scenario Water-Sceded, Tre-nood, Holding Ferrou								
Parameter	Value	Comment, Source						
Reference Date	May 3	Midpoint of typical plant date is 5/13. Flooding occurs at Plant -10 days.						
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.						
Number of Events	6	Number of events needed to capture flooding and releases over an entire year and simulate the holding period.						

Table 57. California Scenario – Water-seeded, Pre-flood, Holding Period

Comment	Month, Day	Fill Level	Fill Level	Wier Days	Wier (m)	Min Level	Min Level	Turn Over	Turn Over
	Duy	Days	(m)	Days	(,	Days	(m)	Days	(d ⁻¹)
Permanent flood at 4"	5/3	0	0.1016	0	0.1016	0	0.1016	0	0
Assume release of paddy water occurs after holding period (14 days)	5/17	14	0	14	0	14	0	14	0
Flood field	5/18	15	0.1016	15	0.1016	15	0.1016	15	0
Drain field 14 days prior to harvest	9/25	145	0	145	0	145	0	145	0
Winter flood	10/16	166	0.1016	166	0.1016	166	0.1016	166	0
Drain	1/31	273	0	273	0	273	0	273	0

Table 58. Schedule for California Scenario – Water-seeded, Pre-flood, Holding Period

5.6 Louisiana Scenario – Water-seeded, Pinpoint Flood (la_pinpointflood.PFS)

Table 59. Louisiana Scenario – Water-seeded, Pinpoint Flood

Parameter	Value	Comment, Source
Reference Date	April 11	Midpoint of typical plant date is 4/14. First flush occurs Plant – 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 3"	4/11	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/15	4	0	4	0	4	0	4	0
Permanent flood at 4"	4/18	7	0.1016	7	0.1016	7	0.1016	7	0
Drain field 14 days prior to harvest	8/11	122	0	122	0	122	0	122	0

Table 60. Schedule for Louisiana Scenario – Water-seeded, Pinpoint Flood

5.7 Louisiana Scenario – Water-seeded, Delayed Flood

(la_waterseed_pinpointflood.PFS)

Table 61. Louisiana Scenario – Water-seeded, Delayed Flood

Parameter	Value	Comment, Source
Reference Date	April 11	Midpoint of typical plant date is 4/14. First flush occurs Plant – 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an entire
		year and simulate the holding period.

Table 62. Schedule for Louisiana Scenario – Water-seeded, Delayed Flood

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level Days	Level (m)	Days	(m)	Level Davs	Level (m)	Over Days	Over (d⁻¹)
First flush at 3"	4/11	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/15	4	0	4	0	4	0	4	0
Permanent flood at 4"	5/6	25	0.1016	25	0.1016	25	0.1016	25	0
Drain field 14 days prior to harvest	8/11	122	0	122	0	122	0	122	0

5.8 Louisiana Scenario – Dry-seeded (la_dryseed.PFS)

Table 63. Louisiana Scenario – Dry-seeded

Parameter	Value	Comment, Source
Reference Date	April 15	Midpoint of typical plant date is 4/14. First flush occurs Plant+1
		days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 64. Schedule for Louisiana Scenario – Dry-seeded

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 3"	4/15	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/17	2	0	2	0	2	0	2	0
Permanent flood at 4"	5/12	27	0.1016	27	0.1016	27	0.1016	27	0
Drain field 14 days prior to harvest	8/11	118	0	118	0	118	0	118	0

5.9 Mississippi Scenario – Dry-seeded (ms_dryseed.PFS)

Tuble 05: Mississippi Section	o Diy Secucu	
Parameter	Value	Comment, Source
Reference Date	May 10	Midpoint of typical plant date is 5/2. First flush occurs Plant + 8 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 65. Mississippi Scenario – Dry-seeded

Table 66. Schedule for Mississippi Scenario – Dry-seeded

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d ⁻¹)
First flush at 6"	5/10	0	0.1524	0	0.1524	0	0.1524	0	0
Drain field	5/12	2	0	2	0	2	0	2	0
Permanent flood at 6"	5/29	19	0.1524	19	0.1524	19	0.1524	19	0
Drain field 9 days prior to harvest	9/12	125	0	125	0	125	0	125	0

5.10 Missouri Scenario – Dry-seeded (mo_dryseed.PFS)

Table 67. Missouri Scenario – Dry-seeded

Parameter	Value	Comment, Source
Reference Date	May 6	Midpoint of typical plant date is 5/5. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 68. Schedule for Missouri Scenario – Dry-seeded

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d-1)
First flush at 4"	5/6	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field	5/8	2	0	2	0	2	0	2	0
Permanent flood at 4"	7/4	59	0.1016	59	0.1016	59	0.1016	59	0
Drain field 21 days prior to harvest	9/10	127	0	127	0	127	0	127	0

5.11 Missouri Scenario – Water-seeded (mo_waterseed.PFS)

Table 69. Missouri Scenario – Water-seeded

Parameter	Value	Comment, Source
Reference Date	May 2	Midpoint of typical plant date is 5/5. First flush occurs Plant - 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 4"	5/2	0	0.1016	0	0.1016	0	0.1016	0	0
Drain field	5/6	4	0	4	0	4	0	4	0
Permanent flood at 4"	5/9	7	0.1016	7	0.1016	7	0.1016	7	0
Drain field 14 days prior to harvest	9/17	138	0	138	0	138	0	138	0

Table 70. Schedule for Missouri Scenario – Water-seeded

5.12 Texas Scenario – Dry-seeded (tx_dryseed.PFS)

Table 71. Texas Scenario – Dry-seeded

Parameter	Value	Comment, Source
Reference Date	April 10	Midpoint of typical plant date is 4/9. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 72. Schedule for Texas Scenario – Dry-seeded

Comment	Month,	Fill	Fill	Wier	Wier	Min	Min	Turn	Turn
	Day	Level	Level	Days	(m)	Level	Level	Over	Over
		Days	(m)			Days	(m)	Days	(d⁻¹)
First flush at 3"	4/10	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/11	1	0	1	0	1	0	1	0
Permanent flood at 4"	4/14	4	0.1016	4	0.1016	4	0.1016	4	0
Drain field 14 days prior to harvest	8/7	119	0	119	0	119	0	119	0

5.13 Texas Scenario – Water-seeded (tx_waterseed.PFS)

Table 73. Texas Scenario – Water-seeded

Parameter	Value	Comment, Source
Reference Date	April 6	Midpoint of typical plant date is 4/9. First flush occurs Plant – 3 days.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	4	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Comment	Mont h, Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Days	Min Level (m)	Turn Over Days	Turn Over (d⁻¹)
First flush at 3"	4/6	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/10	4	0	4	0	4	0	4	0
Permanent flood at 4"	4/13	7	0.1016	7	0.1016	7	0.1016	7	0
Drain field 14 days prior to harvest	8/7	123	0	123	0	123	0	123	0

5.14 Texas Scenario – Ratoon Crop (tx_ratoon.PFS)

In a ratoon crop, the crop is harvested twice. However, the crop tab and PFAM assume one long crop. This scenario was only developed for dry seeded rice.

Table 75. Texas Scenario – T	acoon crop	
Parameter	Value	Comment, Source
Reference Date	April 10	Midpoint of typical plant date is 4/9. First flush occurs Plant + 1 day.
Gradual or Sharp Transition	Sharp	This parameter simulates the release of water from the rice paddy.
Number of Events	7	Number of events needed to capture flooding and releases over an
		entire year and simulate the holding period.

Table 75. Texas Scenario – Ratoon Crop

Comment	Month , Day	Fill Level Days	Fill Level (m)	Wier Days	Wier (m)	Min Level Davs	Min Level (m)	Turn Over Days	Turn Over (d ⁻¹)
First flush at 3"	4/10	0	0.0762	0	0.0762	0	0.0762	0	0
Drain field	4/11	1	0	1	0	1	0	1	0
Permanent flood at 4"	4/14	4	0.1016	4	0.1016	4	0.1016	4	0
Drain field 14 days prior to 1 st harvest	8/7	119	0	119	0	119	0	119	0
Shallow flood of 2"	8/25	137	0.0508	137	0.0508	137	0.0508	137	0
Permanent flood at 4"	9/3	148	0.1016	148	0.1016	148	0.1016	148	0
Drain field prior to 2 nd harvest	11/16	222	0	222	0	222	0	222	0

Table 76. Schedule for Texas Scenario – Ratoon Crop

6 Literature Cited

Norman, R. J., & Moldenhauer, K. A. K. 2009. B.R. Wells Rice Research Studies. Research Series 581, 581.

USEPA. 2016. Development of a Conceptual Model to Estimate Pesticide Concentrations for Human Health Drinking Water and Guidance on Conducting Ecological Risk Assessment for the Use of Pesticides on Rice. May 2016. Environmental Fate and Effects Division. Office of Pesticide Programs. Office of Chemical Safety and Pollution Prevention. U.S. Environmental Protection Agency