Harmful Algal Blooms (HABs) Actionable Research for Tribal Communities

- Overview Tammy L Jones-Lepp, ORD, National Exposure Research Laboratory, Las Vegas, NV – Safe and Sustainable Water Research Program 4.01 - Harmful Algal Blooms, Deputy Project Lead
- Toxicology of algal toxins Dr. Neil Chernoff, Dr. Donna Hill, Dr.
 Deacqunita Diggs, ORD, National Health and Environmental Effects
 Research Laboratory, RTP, NC

HABs Overview

 Harmful algal blooms (HABs) from algae, cyanobacteria and golden algae may occur naturally. However, human activities appear to be increasing the frequency of some HABs. HABs can have a variety of ecological, economic and human health impacts.

HABS Overview cont.

Highlights

- Management
- Effects
- Modelling
- Analysis and Monitoring
- Cyanobacteria Assessment Network and Satellite Remote Sensing

HABs Overview cont.

 Management - Research performed will result in a greater understanding of the use of appropriate technologies for the management of HAB risk through monitoring, modeling, and treatment during inland freshwater HAB events.

 Modelling – Temperature impacts on bloom modelling. Our ability to manage and mitigate the expected increase in frequency, duration, and severity of harmful algal bloom events (HABs) is directly linked to our ability to describe the interaction between changing temperature and bloom events

 Analysis and Monitoring - (1) Develop or refine chemical, field instrument and biological methods for detection of cyanobacteria, *Prymensium parvum*, and *Euglena sanguinea* and their toxins. (2) Application of chemical, biological and instrument methods

HAB research to increase capabilities for technical support -

Lower Colorado River Basin - City Lake Havasu – CRIT - microcystins
 Hehlkeek 'We-Roy (Klamath River) – Yurok Tribe – anatoxin-a

Lake Havasu cyanobacterial bloom pictures courtesy of Dr Doyle Wilson, City of Lake Havasu water manager Lower Colorado pictures courtesy of Terry Dock, CRIT, Lake Havasu Cyanobacterial bloom March 2015 01/16/2013 10:40 Unknown algal bloom winter 2013 Hehlkeek 'We-Roy ,CH3 (Klamath River) (+)-Anatoxin-a Homoanatoxin-a Structures courtesy of EPA report Hehlkeek 'We-Roy picture courtesy of NPS website

HABs Overview cont.

- Effects Measures of human and animal exposure to ambient cyanotoxin concentrations and associated effects. (1) The effects of cyanotoxins on human cells and cell lines; (2) Toxicity mechanisms as measured by mammalian (rodent) models; (3) Develop measures of cyanotoxin-associated ecological harm using aquatic test organisms
- Cyanobacteria Assessment Network and Satellite Remote Sensing (CYAN): Cyanobacteria, chlorophyll-a, turbidity and temperature indicators can be monitored with satellites. Cross-agency (EPA, NASA, NOAA, and USGS) research to mainstream satellite capabilities for water quality management decisions. New methods to quantify frequency of occurrence and spatial extent of cyanobacteria HABs. With impacts across any geo-political boundary. Potential to prioritize locations for management actions

Quantifying cyanobacteria frequency using satellite imagery

Review meeting, Sept 20-21, 2016 RTP, NC

The Toxicological Effects of HAB Toxins

Dr. Neil Chernoff – ORD, National Health and Environmental Effects Research Laboratory
 Dr. Donna Hill – ORD, National Health and Environmental Effects Research Laboratory
 Dr. Deacqunita Diggs – ORD, National Health and Environmental Effects Research Laboratory

Harmful Algal Blooms

Harmful effects without toxins

- Unpleasant appearance
- Taste and odor problems
- Block photosynthesis in bottom-dwelling plants
- Deplete dissolved O₂ as bloom material dies
- Physical effects to animals

Harmful Algal Blooms

Harmful Effects Due to Toxins

- Illness and deaths in humans, wildlife, livestock, and pets
- Skin and airway irritation

Exposure is usually through ingestion of contaminated water and shellfish

Fundamentals of Toxicological Research with Cyanotoxins and Algal Toxins

- Animal model
- Available and <u>reliable</u> sources of toxin
- Funding
- Analytical chemistry
- Study design

Study Parameters Used to Evaluate Toxicity

- Behavior and appearance observations
- Body weight/body composition changes
- Organ appearance and weights
- Blood tests
- Histopathology
- Gene expression tests
- Toxin levels in organs

Study Example

organ/body weig	ght ratios					
		No.	Necropsy Wt	Liver Wt	L/BW	Kidney Wt
male		10	40.3±1.3	1.94±0.07	0.048 ±0.002	0.64±0.03
	%cv		3.2	3.5	3.5	5.2
					0.040	
female		9	33.5±1.7	1.64±0.11	<u>0.049±0.001</u>	0.38±0.015
	%cv		5.2	6.5	2.0	3.9
malo		10	10 1+0 9	2 27+0 08ª	0 059 +0 001a	0 88+0 033
Indie	%61	10	2 1	3.3	2.2	3 1
	7000		2.1	5.5	2.2	5.1
female		10	31.8±1.1	1.66±0.07	0.052 ±0.001	0.39±0.01
	%су		3.5	4.0	1.9	1.8
male		8	38.1±0.7	2.36±0.05ª	0.062 ±0.001ª	0.89±0.04ª
	%cv		1.9	2.2	2.3	4.2
female		10	30.5±0.6	1.88±0.09 ^b	0.062±0.003ª	0.40±0.02
	%сv		2.0	5.0	4.8	5.0
male		10	39 3+0 7	2 70+0 06ª	0 069 +0 001ª	0 84+0 05a
indie	%61	10	1.8	2.70±0.00	1 2	63
	7000		1.0	2.1	1.2	0.5
female		10	29.8±0.7 ^b	1.87±0.05 ^b	0.063±0.001ª	0.39±0.01
	%cv		2.4	2.8	1.6	1.5
	organ/body weig male female female female female female	organ/body weight 'ratios male	organ/body weight ratios No.	organ/body weight ratios No. Necropsy Wt male 10 40.3±1.3 %cv 9 33.5±1.7 5.2 female 9 33.5±1.7 5.2 male 10 40.4±0.9 2.1 10 40.4±0.9 2.1 10 31.8±1.1 %cv 10 31.8±1.1 %cv 10 31.8±1.1 %cv 10 31.8±1.1 %cv 10 31.8±1.1 %cv 10 31.8±1.1 1.9 female 1.9 female 1.8 female 1.8	organ/body weight ratios organ/body weight ratios No. Necropsy Wt Liver Wt male 10 40.3±1.3 1.94±0.07 %cv 3.2 3.5 1.64±0.11 6.5 10 40.4±0.9 2.37±0.08 3.3 1 female 10 40.4±0.9 2.37±0.08 3.3 1 female 10 31.8±1.1 1.66±0.07 3.5 4.0 1 male 8 38.1±0.7 2.36±0.05 4.0 1 male 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	organ/body weight ratios No. Necropsy Wt Liver Wt L/BW male No. No. Necropsy Wt Liver Wt L/BW male No. A0.3±1.3 1.94±0.07 0.048±0.002 %cv 9 33.5±1.7 1.64±0.11 0.049±0.001 %cv 9 33.5±1.7 1.64±0.11 0.049±0.001 male $\frac{1}{%cv}$ 10 40.4±0.9 2.37±0.08 ³ 0.059±0.001 ³ male $\frac{1}{%cv}$ 10 31.8±1.1 1.66±0.07 0.052±0.001 ³ female $\frac{1}{%cv}$ 10 31.8±1.1 1.66±0.07 0.052±0.001 ³ female $\frac{1}{%cv}$ 1.9 2.36±0.05 ³ 0.062±0.001 ³ female $\frac{1}{%cv}$ 1.9 2.36±0.05 ³ 0.062±0.001 ³ female $\frac{1}{%cv}$ 1.9 2.36±0.05 ³ 0.062±0.001 ³ female $\frac{1}{%cv}$ 1.9 2.1 1.8 2.1 female $\frac{1}{%cv}$ 1.8 2.70±0.06 ³ 0.069±0.001 ³ female $\frac{1}{%cv}$ 2.4 2.8 0.069±0.001 ⁴ </td