

EPA's Climate Resilience Evaluation & Awareness Tool: Supporting Utilities Adapting to the Impacts of Climate Change

Steve Fries Zach Rybarczyk, ORISE U.S. Environmental Protection Agency Office of Ground Water and Drinking Water

Michael Copeland Water Security Coordinator EPA Region 8

Introduction

- Intro video
- Mission statement/purpose of CRWU
- Process
- Intro to the tool
- Quick run-though
- Other tools for Water Security/Resilience

Intro video on CRWU

https://www.youtube.com/watch?v=fa0oK_jE8Zw

Climate Ready Water Utilities (CRWU) Mission Statement

To provide the water sector with the practical tools and training to adapt to climate change by promoting a clear understanding of climate science and adaptation options.

CLIMATE READY PROCESS

The Climate Ready Water Utilities initiative offers practical tools and resources to help the water utility sector understand and adapt to climate change impacts.

Climate Resilience Evaluation & Awareness Tool (CREAT)

Assess Risks and Plan Adaptation for your Utility

CREAT

- Web-based tool for conducting risk assessment of potential climate change impacts at your utility
- Multiple climate scenarios provided to help capture uncertainty
- Assessments will help inform adaptation planning
- Results from CREAT help utilities compare monetized risk and adaptation costs

CREAT 3.0 CLIMATE RESILIENCE EVALUA	ATION & AWARENESS TOOL GET	STARTED RESOURCE	S HELP	Login	Register	
Climate Awareness						
Scenario Development	Analysis F	rogress		1	~	
Consequences & Assets	Analysis Name: test			Co	mplete	edback
Adaptation Planning	status: In Progress					Ē
Risk Assessment						
			P	(S)	~	
	CLIMATE AWARENESS	SCENARIO DEVELOPMENT	CONSEQUENCES & ASSETS	ADAPTATION PLANNING	RISK ASSESSM	IENT
		Cor	ntinue Climate Awaren	ess >		

CREAT 3.0

Discover: Find out which extreme weather events pose significant challenges to your utility and build scenarios to identify potential impacts.

Assess: Identify your critical assets and the actions you can take to protect them from the consequences of climate change on utility operations.

Share: Generate reports describing the costs and benefits of your risk reduction strategies for decision-makers and stakeholders

EPA Home Disclaimer Contact Us

CREAT 3.0 Process

DEMO

CREAT 3.0

- Explore local climate data
- View links to publications, models, and other tools
- Catalog data and assumptions
- Understand and assess climate impacts
- Compare adaptation options
- Generate reports to support decisions

Climate Change Impacts: CREAT Data Services

Explore climate change, related hazards and adaptation options at your location

Scenario-Based Climate Change Map

LINK

Provides scenarios that capture the range of projected changes in temperature and precipitation from models

LINK

Data includes changes in average conditions and extreme events (hot days and storms), plus sea level rise

Scenario-Based Climate Change Map

LINK

For the grid cell containing Miami:

Change in Average Annual Temperature

		Scenario	
Period	Hot/ Dry	Central	Warm/ Wet
2035	2.0 °F	1.7 °F	1.5 °F
2060	3.8 °F	3.3 °F	2.8 °F

Change in Average Annual Precipitation

	Scenario			
Period	Hot/ Dry	Central	Warm/ Wet	
2035	-5.0%	-0.9%	2.3%	
2060	-9,8%	-1.7%	4.6%	

Change in 100-Year Storm Intensity

	Scenario		
Period	Stormy	Not as Stormy	
2035	14.4%	2.8%	
2060	28.0%	5.5%	

Sea Level Rise Projections

Storm Surge Inundation Map

- Access current worstcase coastal storm surge scenarios and hurricane strike frequency information
- Layers include FEMA flood zones and inundation from Sea, Lake, and Overland Surge from Hurricanes (SLOSH) model results

Storm Surge Inundation Map

LINK

For Miami-Dade County:

Hurricane Statistics for Miami-Dade Co. FL			
Category	# of strikes	Return period (yr	5)
1	6	18	
2	5	22	
3	8	24	-
4	4	28	
5	2	55	

*Return period is defined as the average recurrence interval of a hurricane of similar magnitude over an extended period of time, e.g., 1900-2009

- Frequency of storms and potential flood depth useful for planning
- <u>Caution:</u> no
 consideration of
 sea level rise or
 more intense
 storm events

Adaptation in Action: CREAT Use at Utilities

Utility Case Study Examples

Case Study and Information Exchange

LINK

Climate Ready Water Utilities 🖪 🛩 🖉 🧇 EPA Adaptation Case Study and Information Exchange Welcome and Case Studies Floods **Ecosystem Changes** Water Quality Drought Service Demand Videos ▲ LEGEND Welcome to the U.S. Environmental Protection + Agency's (EPA) Adaptation Case Study and Utility Type Information Exchange, which has been developed under the Climate Ready Water Utilities (CRWU) **Drinking Water** initiative. This tool allows water sector -- drinking UNITED water, wastewater and stormwater -- utilities to STATES Combined learn about climate change adaptation planning Q efforts from their peers across the United States. Wastewater Water sector utilities are actively planning to Bay address climate change impacts. These efforts and their lessons learned can help to inform other CANADA water sector utilities with their own adaptation planning processes and decision making, EPA encourages utilities to connect with one another for information on how their communities can pursue similar adaptation strategies. How to use this map UNITOD Each point on this map represents a drinking STATES water, wastewater or combined utility. Clicking on a point generates a pop-up box that provides the name, type and applicable climate threats facing a particular utility, as well as the corresponding Atlantic adaptation measures that the utility considered for implementation. Click on the tabs located at MÉXICO the top of the page to filter the utilities by climate threat. Click the link near the bottom of the pop-up to 297 Pacific Esri, HERE, DeLorme, FAO, NOAA, EPA, AAFC, NRCan access a case study that summarizes the utility's

Case Study and Information Exchange

SEPA United States Adaptation Case Study and Information Exchange Climate Ready Water Utilities 🖪 💆 🧷 tal Protection Welcome and Case Studies Drought Add Your Story To The Map encourages utilities to connect with Tone anoth Use this form to share your story. Please fill out as many items in the form as you can. for information on how their communities can pursue similar adaptation strategies. Please provide accurate contact information. EPA will contact you to verify information prior to adding your case study to the map. How to use this map 1. Enter Information Each point on this map represents a drinking water, wastewater or combined utility. Clicking Case Study: Utility Name a point generates a pop-up box that provides th Water and Wastewater Utilities name, type and applicable climate threats facin Planning for Climate Change €EPA particular utility, as well as the corresponding adaptation measures that the utility considered City implementation. Click on the tabs located at the top of the page to filter the utilities by climate **CITY OF BOZEMAN, MONTANA** threat. State Background Click the link near the bottom of the pop-up t The city of Bozeman, Montana provides drinking water services to approximately 38,000 people. Snowpack melt access a case study that summarizes the utili captured in the Sourdough and Hyalite watersheds reaches the 22 million gallons per day (MGD) Sourdough Water adaptation measures and provides contact Utility Type Treatment Plant via local creeks and serves as the city's primary water source. In addition, an infiltration gallery and a 3.5 MGD water treatment plant delivers groundwater from the Lyman Creek Spring. information for the utility. Please enter drinking water, wastewater, stormwater or combined facility **Climate Threats** Drought and wildfire are the two primary climate threats to the city of Bozeman, both of which have the potential to increase with a changing climate. The city of Bozeman is concerned that future droughts will impact management and Have your own climate adaptation story? Utility Size allocation of their local water resources. Droughts also have the potential to impact water quality because of their tendency to increase the occurrence of blue-green algae. Wildfires in the Sourdough and Hyalite watersheds have the Please provide an estimate of the population served potential to negatively impact water quality due to erosion that can increase turbidity, sedimentation and metal Click here to share your case study. concentrations. Direct damage to equipment, specifically the Hyalite Reservoir and its intake, is also a concern related to wildfire Primary Climate-Related Challenges Learn more about climate readiness through Planning Process To better understand the vulnerabilities of its drinking water infrastructure and operations, the city of Bozeman assessed these resources: Primary climate-related challenges may include drought impacts such as lower potential climate change impacts using the U.S. Environmental Protection Agency's (EPA) Climate Resilience quality degradation impacts such as surface water degradation and saline intrus Evaluation and Awareness Tool (CREAT). The CREAT assessment brought together individuals from EPA and various departments within the city of Bozeman to think critically about potential climate impacts, prioritize assets and consider surges; ecosystem changes impacts such as wildfires and wetland loss and ser **Climate Ready Water Utilities Homepage** possible adaptation options. and agricultural needs Adaptation Strategies Guide for Water Utilities Adaptation Measures Climate Resilience Evaluation & Awareness Tool 255 characters remaining The city of Bozeman considered the potential consequences of drought, water quality changes and wildfires on their (CREAT) drinking water assets and operations. To assess each of these potential threats, the city considered how potential adaptive measures would help lower consequences. The table below summarizes how adaptation options were grouped Scenario-Based Projected Changes Map into two packages: those that provided the highest potential return on investment, and those that are included in their Integrated Water Resource Plan (IWRP)

Example Case Studies – Seminole Tribe of Florida

Water Supply Management

- Assessment focused on demand and wildfire after exploration of flooding risk revealed potential impacts lower than other risks
- Planning efforts encompass multiple communities with different needs and potential hazards

	LOCATION	POTENTIAL ADAPTIVE MEASURES
	Brighton Reservation (Wildfire)	Clear tree line near backup generator on the adjacent property at the water treatment plan Improve fire wall by replacing fence near facilities
		Relocate the backup generator away from the tree line
asters	Hollowood	Install meters at isolation valves to track water use
		Adopt of drought-tolerant landscaping at the casino and consider irrigation changes
	Reservation	Implement of a 'Healthy Homes' program to encourage adoption of water-saving devices
	(Increased Demand)	Improve existing groundwater monitoring system
		Conduct community outreach to raise awareness of drought conditions and potential conservation activities

Example Case Studies – Camden County MUA (NJ)

- Assessment focused on improving operations under changing climate conditions as well as addressing potential extreme events
- Planning efforts encompass multiple goals for optimizing energy use and cost along with gains in resilience

GOAL	ADAPTIVE MEASURES
Improve water quality / Reduce CSOs	Capturing excess stormwater using planted trees and rain gardens through the Camden SMART Initiative
	"Daylighting" streams that had previously been paved over using a low interest loan from the New Jersey Environmental Infrastructure Trust
	Converting an abandoned building into a riverside park
	Cleaning inlets to optimize the sewer system's performance through changes in operations and maintenance
	Replacing netting systems to optimize the sewer system's performance through changes in operations and maintenance
Improve air quality	Installing catalytic converters to reduce emissions
	Reducing I&I to minimize energy use and cost throughout the CCMUA system
	Using gravity connections as a replacement to municipal pumping stations
Minimize costs	Implementing electric peak shaving
	Using heating loops and energy-efficient equipment to increase total energy efficiency
	Installing a 1.8 megawatt solar panel array through a purchase agreement at no cost to CCMUA, and buying power from the contractor at a discounted rate
Reduce energy	Implementing a sewage-to-heat facility through a grant from the New Jersey Board of Public Utilities which converts latent heat in sewage into heat at the plant.
	Building a digester facility to produce enough biogas to meet about 50 to 60% of the utility's power needs
	Installing a 1.8 megawatt solar panel array to provide 10% of energy needs at the wastewate treatment plant

Other CRWU resources

Other Water Security tools

https://www.epa.gov/waterresilience

Recognize & Reduce Risk

Risk Assessment Methodologies

Community Based planning

Consequence Analysis

\mathcal{O}

Maintain a Resilient Infrastructure

Water Contaminant Info Tool

Water/Wastewater Agency Response Networks

Agreemen Pending Steering

Workshop 2006/07/08

FedFUNDS

TTX Tools

Steve Fries fries.steve@epa.gov

Thank you!

Curt Baranowski baranowski.curt@epa.gov

Zach Rybarczyk rybarczyk.zachary@epa.gov

Visit us on the web at: <u>www.epa.gov/crwu</u>

....aaaaaaand: Michael Copeland: copeland.michael@epa.gov

Questions?

