DOES AIR POLLUTION CAUSE CHILDHOOD OBESITY?

Rob McConnell Southern California Children's Environmental Health Center Keck School of Medicine University of Southern California January 13, 2016

Overview of Presentation

- Findings from the Southern California Children's Health Study (CHS)
- Other influential epidemiological studies
- Biological plausibility
- Air pollution, diabetes and metabolic outcomes

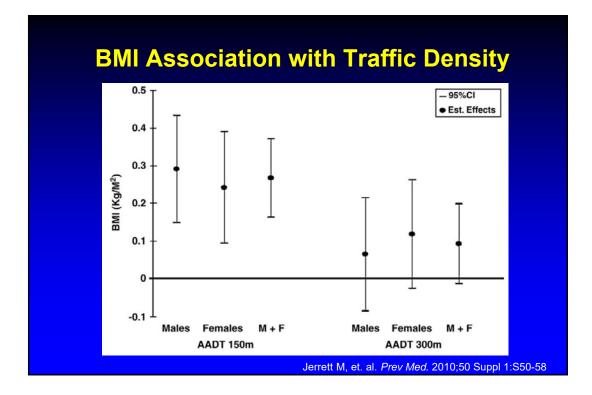
Environmental Risk Factors for Childhood Obesity

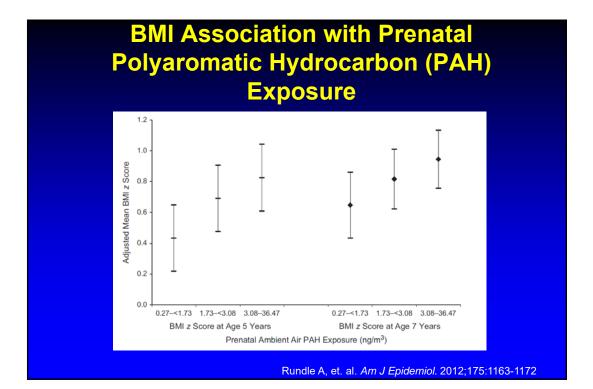
- Chemical exposures are implicated
 - Organochlorines (PCBs, DDT, HCB)
 - Bisphenol A
 - Cigarette smoke (nicotine?)
 - Air pollution?

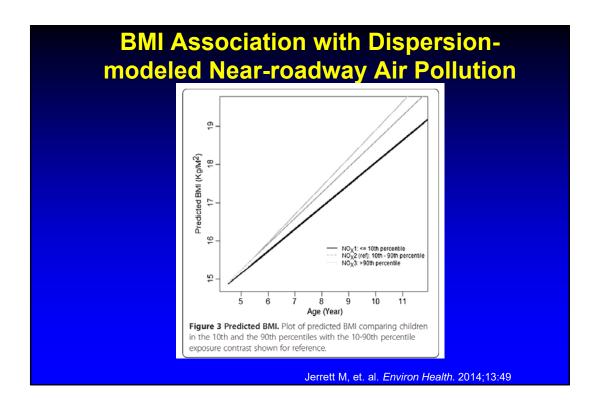
Sharma Am J Epidemiol. 2008; Trasande, JAMA 2012, Valvi EHP 2012, Verhulst EHP 2009,

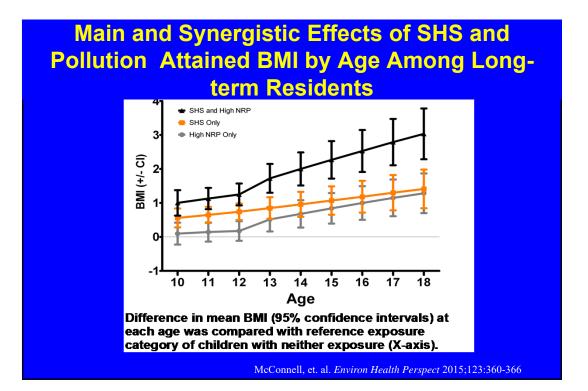
MAIN OUTCOMES

- Currently
 - Asthma
 - Respiratory symptoms (eg. bronchitis)
 - Lung function (spirometry)
 - Exhaled nitric oxide
 - Respiratory school absences
 - Carotid intima medial thickness, arterial stiffness, blood pressure
 - Obesity/BMI trajectory
 - Epigenetic marks
- With Southern California Children's Environmental Health Center (SC-CEHC) support
 - Metabolic outcomes
 - Fat distribution
 - Fat tissue phenotype


Exposure


• Age 5+


- Regional pollutants
- Near-roadway Air Pollution (NRAP)
 - Traffic proximity
 - Traffic density
 - Estimated from land use regression and dispersion modeled NO_x
- Extending back to birth as part of ia Children's Center


Near-Roadway Obesity Associations

- Near-roadway air pollution (NRAP) associated with obesity or increased body mass index trajectory
 - Jerrett M, McConnell R, et. al. Prev Med 2010; 50 Suppl 1: S50-8
 - Rundle A, Hoepner L. et. al. American J Epidemiol 2012; 175:1163-72
 - Jerrett M, McConnell R, et. al. Environ Health 2014;13: 49.
 - McConnell R, Shen E, et. al. Environ Health Perspectives 2015;123: 360-6

Implications

- These are big effects, if causal
 Potentially large public health implications
- No nicotine in near-roadway air pollution

– Are there complementary or overlapping pathways that account for SHS effects?

What Might Cause These Effects?

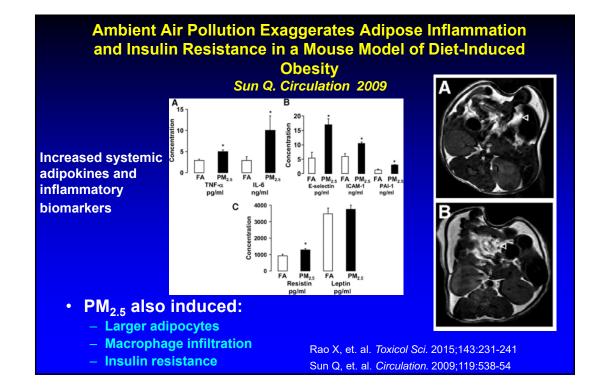
- Near-roadway pollution composition is a complex mixture...
 - Fresh particle and gaseous combustion products
 - Debris from tires and brake wear
 - Metals from engine wear

Tox Studies

- Prenatal diesel exhaust exposure resulted in increased weight in males in early life and primed female adults for weight gain on high fat diet
- Possible mechanism through damage diesel exhaust did to feeding centers in the hypothalamus or to anxietyassociated eating?

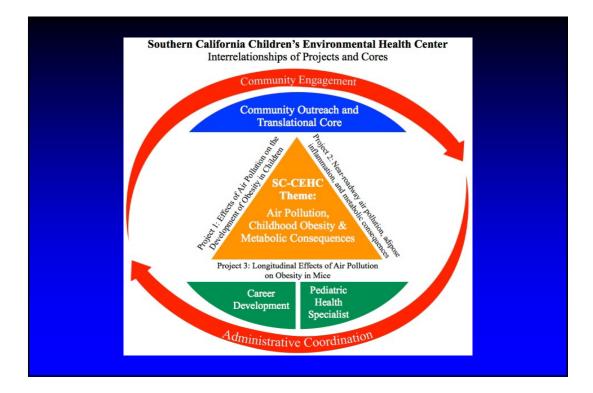
Bolton JL, et. al. Faseb J. 2012; 26: 4743-54. Bolton JL, et al. *Environ Health Perspect*. 2013;121:1075-1082. Bolton JL, et. al. *Behav Immun*. 2014;37:30-44

Potential Mechanisms


- Changes in basal metabolism
 - Polyaromatic hydrocarbons inhibit catecholamineinduced lipolysis
 - Mitochondrial damage from early life urban particle exposure
 - Reduced methylation and increased expression of PPARγ induced by early life particle exposure
 - Estrogenic effects of urban particles
 - Increased visceral adipose tissue (AT) and AT inflammation resulting from *in utero* PM exposure

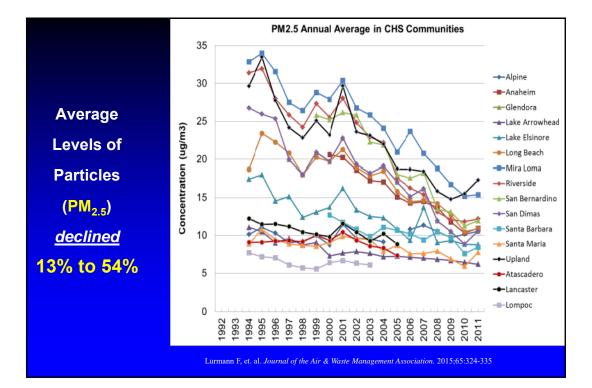
McConnell R, et. al. Peds Obesity 2015

Air Pollution and Diabetes


			Heterogeneity		Heterogeneity
		NO ₂	measures	PM _{2.5}	measures
Analyses	Population	OR (95% CI)	[/² (%); <i>p</i> -value; Tau ²]	OR (95% CI)	[/² (%); <i>p</i> -value; Tau²]
Main model (random effects)	Males	0.99 (0.93, 1.07)	0; 0.744; 0	1.04 (0.93, 1.17)	0; 0.486; 0
	Females	1.15 (1.05, 1.27)	46.1; 0.135; 0.0042	1.14 (1.03, 1.26)	0; 0.405; 0
	Overall	1.08 (1.00, 1.17)	58.4; 0.025; 0.0063	1.10 (1.02, 1.18)	0; 0.473; 0
Studies assessing air pollution before DM diagnosis	Males	1.02 (0.92, 1.13)	NA; NA; O	1.04 (0.93, 1.17)	0; 0.486; 0
	Females	1.20 (1.10, 1.30)	12.5; 0.285; 0.0006	1.13 (1.02, 1.25)	0; 0.344; 0
	Overall	1.12 (1.05, 1.19)	69.8; 0.036; 0.008	1.09 (1.01, 1.18)	0; 0.489; 0
Studies including both men and women	Males	0.99 (0.93, 1.07)	0; 0.744; 0	1.04 (0.93, 1.17)	0; 0.486; 0
	Females	1.11 (1.01, 1.23)	30.2; 0.238; 0.0023	1.13 (1.02, 1.25)	0; 0.344; 0
	Overall	1.05 (0.98, 1.12)	34.9; 0.175; 0.0024	1.09 (1.01, 1.18)	0; 0.489; 0
Only longitudinal studies	Males	1.02 (0.92, 1.13)	NA; NA; 0	1.04 (0.93, 1.17)	0; 0.486; 0
	Females	1.20 (1.10, 1.30)	12.5; 0.285; 0.0006	1.14 (1.03, 1.26)	0; 0.405; 0
	Overall	1.12 (1.05, 1.19)	69.8; 0.036; 0.008	1.10 (1.02, 1.18)	0; 0.473; 0
Meta-analysis using fixed-effects model	Males	1.00 (0.93, 1.07)	0; 0.744	1.04 (0.93, 1.17)	0; 0.486
	Females	1.15 (1.07, 1.23)	46.1; 0.135	1.14 (1.03, 1.26)	0; 0.405
	Overall	1.07 (1.02, 1.13)	58.4; 0.025	1.10 (1.02, 1.18)	0; 0.473
NA, not applicable. I ² is the proportion of total variability explained by heterogeneity. Tau ² is a measure of among-study variance.					

Eze IC, et. al. Environ Health Perspect. 2015;123:381-389

Open Questions


- Does air pollution cause obesity?
- Are there different effects of near-roadway and regional pollutant mixtures?
- What is the mechanism(s) for these effects?
- How do environmental obesogens interact with diet and physical activity?

- Good public policy to reduce ambient levels Lurmann F, et. al. Journal of the Air & Waste Management Association. 2015;65:324-335
- Outdoor activity not coincident with pollution
 - Exercise! ...but not next to a freeway or busy road, or during high pollution times (eg. ozone in mid-day, PM in early morning)
 - Unintended negative consequences from reduced physical activity?
- Park siting, zoning restrictions near freeways
- ?Filters
- ??Chemoprevention, eg antioxidants

Laumbach R, et. al. *Journal of thoracic disease* 2015;7:96-107

CEHC/CHS Acknowledgments

- Omid Akbari
- Hooman Allayee
- Ed Avol
- Britni Belcher
- Kiros Berhane
- Carrie Breton
- Tuck Finch
- Scott Fruin
- Jim Gauderman
- Frank Gilliland
- Michael Goran
- Rima Habre
- Nino Kunzli
- Fred Lurmann
- Todd Morgan
- Fred Sattler
- Duncan Thomas

- National Institute for Environmental Health Sciences
- US Environmental Protection Agency
- South Coast Air Quality
 Management District
- Hastings Foundation

Questions?