# **Appendix A:** Calculations for Data Quality Assessment (sec. 4-5) aka

### What Is Reality?

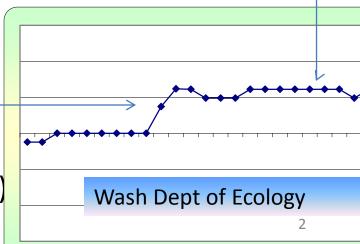
1-pt QC check statistics

- Precision calcs
- Bias calcs



Stats are designed to show us how far from the TRUTH we might be.

#### Measurement Error


Presented as a fraction of the "truth" (e.g., 10% off)

#### Precision

- Random error
- "wiggle" inherent in system
- Estimated by (1) repeated measurements of "known," and/or (2) side-by-side measurements of the same thing
- Some imprecision is unavoidable

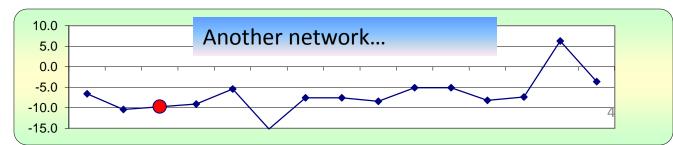
#### Bias

- Systematic error
- "jump" consistently high or low
- bias can be eliminated (in theory)



# 1-pt QC 0<sup>3</sup> check data, in AQS:

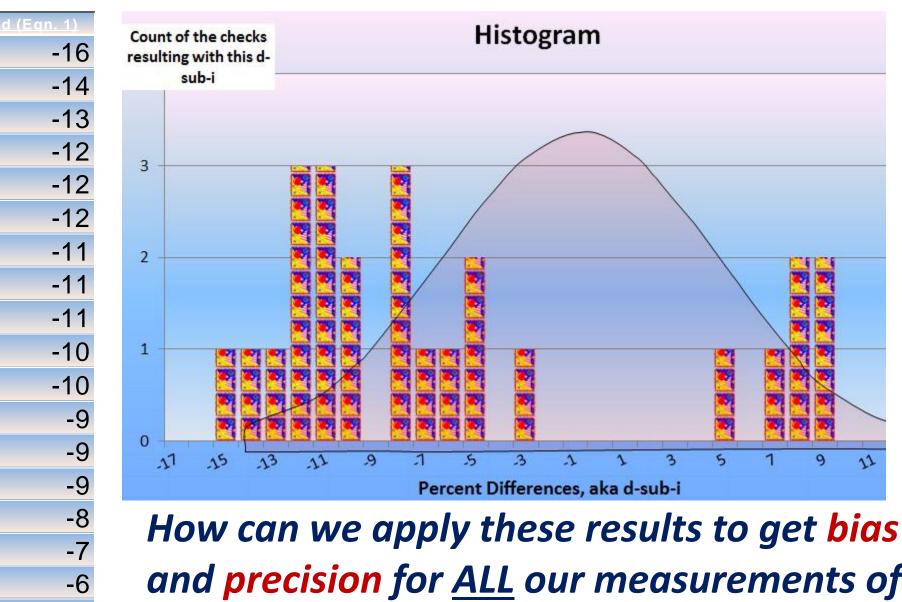
| Meas Val (Y) | Audit Val (X) |
|--------------|---------------|
| 98           | 90            |
| 87           | 90            |
| 79           | 90            |
| 79           | 90            |
| 81           | 90            |
| 80           | 90            |
| 82           | 90            |
| 94           | 90            |
| 96           | 90            |
| 97           | 90            |
| 97           | 90            |
| 98           | 90            |
| 80           | 90            |




# d-sub-i = $d_i$ = diff/known

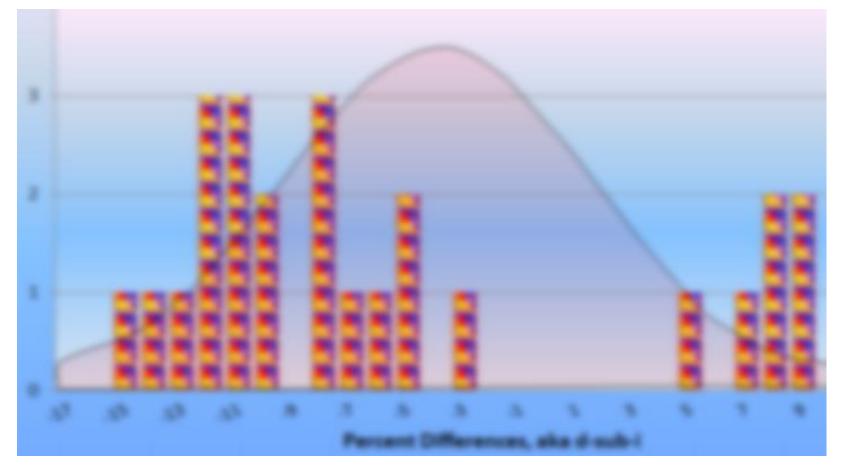
- Routine QC checks used to estimate BOTH
- Both come from d-sub-i




- sometimes it's obvious
- Sometimes it's not:

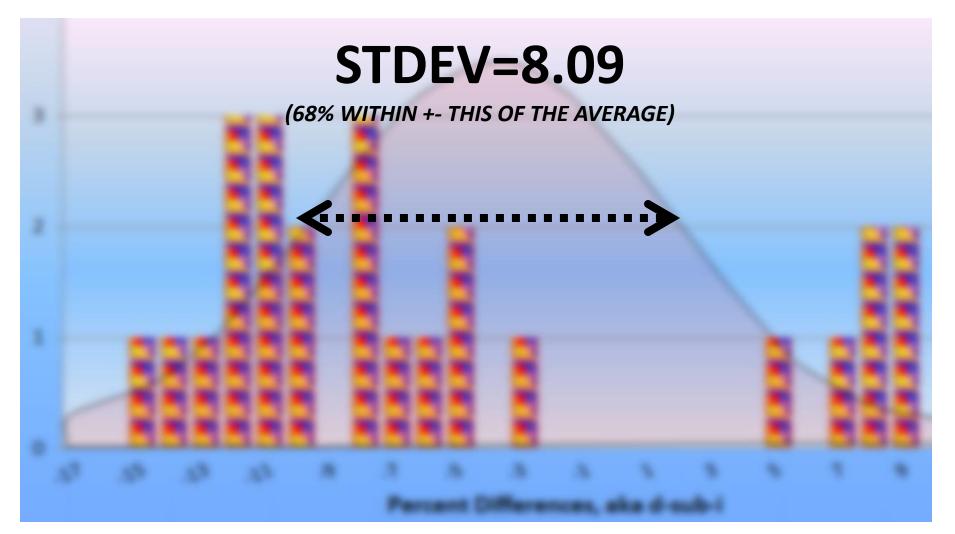


84

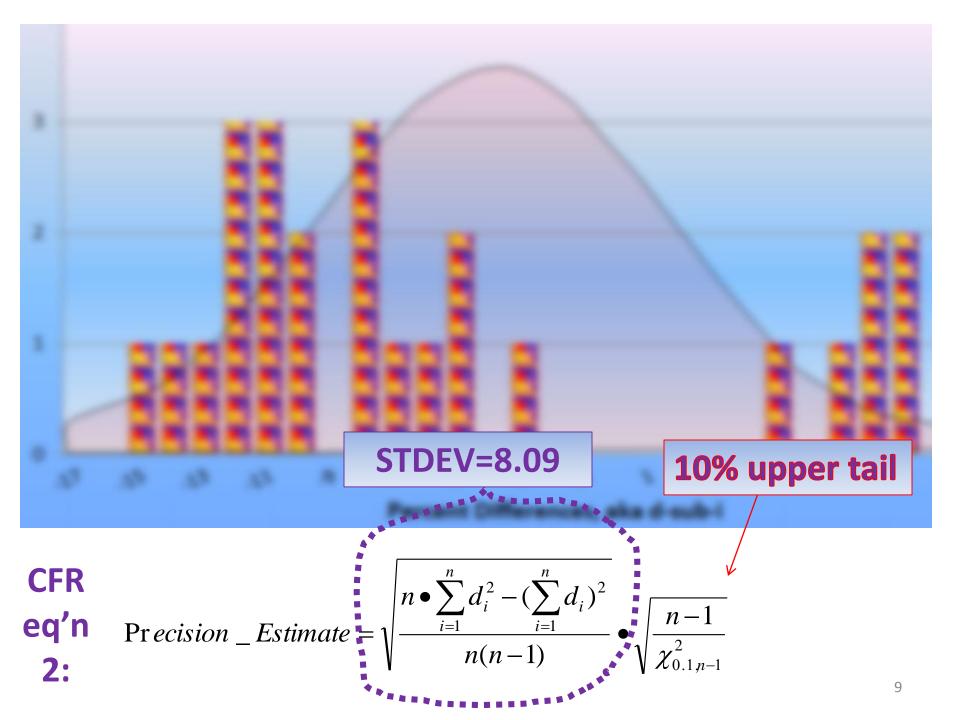

90

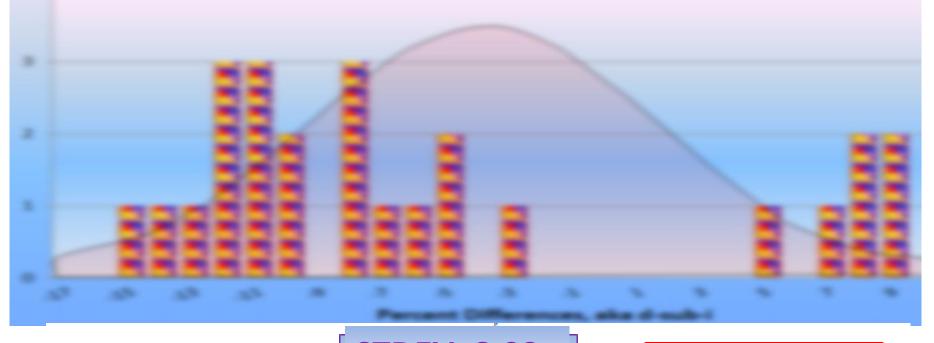
- d-sub-i values represent:
  - All of the measurements' error during that day, week, month, quarter
    - The QC checks are supposed to be "randomized" so that they are a sample, or subset, of the whole universe of possible QC checks (the population), and then represent the population of QC checks you could do at any time
  - As a proportion of the "truth," so "truth" is <u>always on the bottom</u> (diff/known; so error is quantified as a fraction of the truth so we can imagine it, e.g., 10%)
  - "error" = distance from truth at that moment

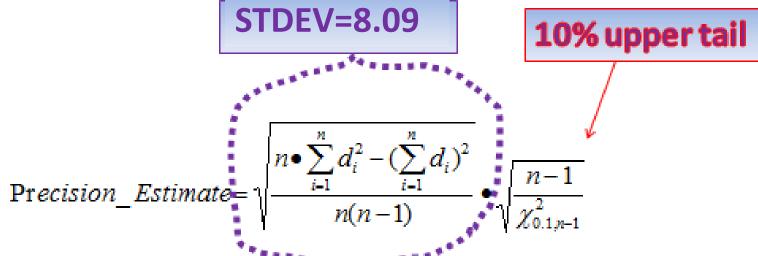



-6 -3 4 How can we apply these results to get bias and precision for <u>ALL</u> our measurements of ozone with this analyzer during this time period?

We assume that these results, and their distribution, is representative of all the QC checks we could have done:



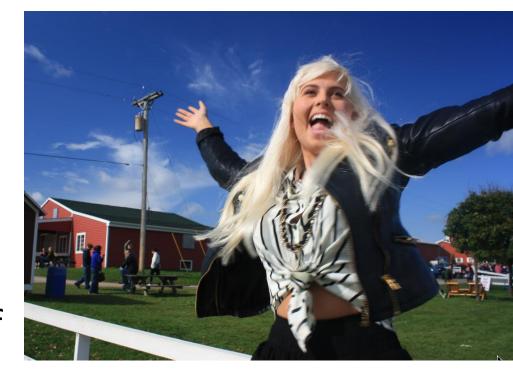


There's a reason no x-axis units


The goal for acceptable measurement uncertainty is defined for O3 precision as an upper 90 percent confidence limit for the coefficient variation (CV) of 7%



- But we do not care about the low-imprecision tail
- •Only care about the extreme tail of high imprecision
- •Want to be able to say "90% confident that your precision is less than this value"








chi-sqrd(90%) = CHIINV(0.9,n) = 15.65 then  $8.09 \times SQRT(n-1/15.65) = 10.01 \%$ 

# Use the DASC Tool to Understand Your QC Checks and Audit Results (like EPA does)

- Calculations of measurement uncertainty are carried out by EPA, and PQAOs should report the data for all measurement quality checks
- YOU do these calculations and charts easily, and save yourself time, money, and embarrassment



# We will review each in both the DASC tool and the AMP256 report

#### First, what is the DASC tool?

- DASC tool was produced specifically for us to calculate the data assessment statistics in CFR in AMTIC Quality Indicator Assessment Reports (AMP256)
- http://www.epa.gov/ttn/amtic/qareport.html
- Easy way to explain and calculate data assessment statistics in CFR
- Excel spreadsheet
- Matches AMP256 (by site)
- Each equation is numbered and matches the numbers in CFR



# **DASC Tool:**

#### O<sub>3</sub> Assessments

|                                                         |               |            |                 | - 0 -                                            |              |                         |     |                                                  |                                                   |                       |                     |
|---------------------------------------------------------|---------------|------------|-----------------|--------------------------------------------------|--------------|-------------------------|-----|--------------------------------------------------|---------------------------------------------------|-----------------------|---------------------|
| Site ID: {Enter Site ID} Pollutant type: O <sub>3</sub> |               |            |                 |                                                  |              |                         |     | CV <sub>ub</sub> (%)                             |                                                   | Bias (%)              |                     |
| Meas Val (Y)                                            | Audit Val (X) | d (Eqn. 1) | 25th Percentile | d <sup>2</sup>                                   | d            | <b>d</b>   <sup>2</sup> |     |                                                  |                                                   |                       |                     |
| 0.098                                                   | 0.09          | 8.889      | -11.111         | 79.012                                           | 8.889        | 79.012                  |     |                                                  |                                                   |                       |                     |
| 0.087                                                   | 0.09          | -3.333     | 75th Percentile | 11.111                                           | 3.333        | 11.111                  | n   | S <sub>d</sub>                                   | S <sub>d2</sub>                                   | ∑ d                   | "AB" (Eqn 4)        |
| 0.079                                                   | 0.09          | -12.222    | -3.333          | 149.383                                          | 12.222       | 149.383                 | 25  | 8.089                                            | 59.010                                            | 233.333               | 9.333               |
| 0.079                                                   | 0.09          | -12.222    |                 | 149.383                                          | 12.222       | 149.383                 | n-1 | ∑d                                               | $\sum d^2$                                        | $\sum  \mathbf{d} ^2$ | "AS" (Eqn 5)        |
| 0.081                                                   | 0.09          | -10.000    |                 | 100.000                                          | 10.000       | 100.000                 | 24  | -144.444                                         | 2404.938                                          |                       |                     |
| 0.08                                                    | 0.09          | -11.111    |                 | 123.457                                          | 11.111       | 123.457                 |     |                                                  |                                                   |                       |                     |
| 0.082                                                   | 0.09          | -8.889     |                 | 79.012                                           | 8.889        | 79.012                  |     |                                                  |                                                   | Bias (%) (Eqn 3)      | Both Signs Positive |
| 0.094                                                   | 0.09          | 4.444      |                 | 19.753                                           | 4.444        | 19.753                  |     |                                                  |                                                   | 10.39                 | FALSE               |
| 0.096                                                   | 0.09          | 6.667      |                 | 44.444                                           | 6.667        | 44.444                  |     | CV (%) (Eqn 2)                                   |                                                   | Signed Bias (%)       | Both Signs Negative |
| 0.097                                                   | 0.09          | 7.778      |                 | 60.494                                           | 7.778        | 60.494                  |     | 10.01                                            |                                                   | -10.39                | TRUE                |
| 0.097                                                   | 0.09          | 7.778      |                 | 60.494                                           | 7.778        | 60.494                  |     |                                                  |                                                   |                       |                     |
| 0.098                                                   | 0.09          | 8.889      |                 | 79.012                                           | 8.889        | 79.012                  |     | Upper Probabilit                                 | ty Limit                                          | Lower Probability     | Limit               |
| 0.08                                                    | 0.09          | -11.111    |                 | 123.457                                          | 11.111       | 123.457                 |     | 10.08                                            |                                                   | -21.63                |                     |
| 0.08                                                    | 0.09          | -11.111    |                 | 123.457                                          | 11.111       | 123.457                 |     |                                                  |                                                   |                       |                     |
| 0.084                                                   | 0.09          | -6.667     |                 | 44.444                                           | 6.667        | 44.444                  |     |                                                  |                                                   |                       |                     |
| 0.085                                                   | 0.09          | -5.556     |                 | 30.864                                           | 5.556        | 30.864                  |     | Retum to Ma                                      | in Menu                                           |                       | Print Worksheet     |
| 0.085                                                   | 0.09          |            |                 | 30.864                                           |              | 30.864                  |     | Retuir to wa                                     | iii wenu                                          |                       | THIR WORKSHOOT      |
| 0.082                                                   | 0.09          |            |                 | 70.012                                           | 0 000        | 70.012                  |     |                                                  |                                                   |                       |                     |
| 0.082                                                   | 0.09          |            |                 |                                                  |              | Per                     | cer | nt Differenc                                     | es                                                |                       |                     |
| 0.078                                                   | 0.09          |            |                 |                                                  |              |                         | ٠٠. | it Dillorone                                     | ,,,,                                              |                       |                     |
| 0.081                                                   | 0.09          |            |                 |                                                  |              |                         |     |                                                  |                                                   |                       |                     |
| 0.077                                                   | 0.09          |            | 15.000          | )                                                |              |                         |     |                                                  |                                                   |                       |                     |
| 0.083                                                   | 0.09          |            | 10.000          |                                                  |              |                         |     |                                                  |                                                   |                       |                     |
| 0.079                                                   | 0.09          |            |                 | <b>T</b>                                         |              |                         |     | **                                               | 1                                                 |                       |                     |
| 0.076                                                   | 0.09          | -15.556    | 5.000           | <del>                                     </del> |              |                         |     | *                                                | _                                                 |                       |                     |
|                                                         |               |            | 0.000           | <del>                                     </del> | <del> </del> | <del></del>             |     | <del>/                                    </del> | <del>- \                                   </del> | <del></del>           | <del></del>         |
|                                                         |               |            | -5.000          | *                                                |              |                         | _/  | '                                                |                                                   |                       |                     |
| 1                                                       |               |            | 0.000           | \                                                |              |                         | _ / |                                                  | \                                                 | *                     |                     |

13

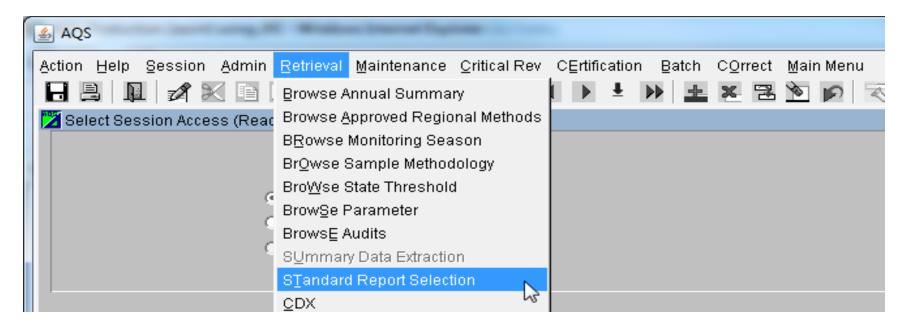
**→** %D

-10.000 --15.000 -

# Precision in DASC = cell i13 = **10.01%**

CV... (%)

Bias


#### O<sub>3</sub> Assessments

ant type: Oa

| ant typ | ·C. U3          |                |        |                  |     | CVub (70)      | <b>I</b>        | Dias  |
|---------|-----------------|----------------|--------|------------------|-----|----------------|-----------------|-------|
| n. 1)   | 25th Percentile | d <sup>2</sup> | d      | $ \mathbf{d} ^2$ |     |                |                 |       |
| 8.889   | -11.111         | 79.012         | 8.889  | 79.012           |     |                | *               |       |
| 3.333   | 75th Percentile | 11.111         | 3.333  | 11.111           | n   | S <sub>d</sub> | S <sub>d2</sub> |       |
| 2.222   | -3.333          | 149.383        | 12.222 | 149.383          | 25  | 8.089          | 59.010          |       |
| 2.222   |                 | 149.383        | 12.222 | 149.383          | n-1 | ∑d             | $\Sigma$ d $^2$ |       |
| 0.000   |                 | 100.000        | 10.000 | 100.000          | 24  | -144.444       | 2404.938        |       |
| 1.111   |                 | 123.457        | 11.111 | 123.457          |     |                |                 |       |
| 8.889   |                 | 79.012         | 8.889  | 79.012           |     |                |                 | Bias  |
| 4.444   |                 | 19.753         | 4.444  | 19.753           |     |                |                 |       |
| 6.667   |                 | 44.444         | 6.667  | 44.444           |     | CV (%) (Eqn 2) | :               | Sign  |
| 7.778   |                 | 60.494         | 7.778  | 60.494           |     | 10.01          |                 | -10.3 |
| 7.778   |                 | 60.494         | 7.778  | 60.494           |     |                | •               |       |
| 8.889   |                 | 79.012         | 8.889  | 79.012           |     | Upper Probabil | ity Limit       | Lowe  |
| 1.111   |                 | 123.457        | 11.111 | 123.457          |     | 10.08          | 1-1             |       |
| 1.111   |                 | 123.457        | 11.111 | 123.457          |     |                | 14              |       |

#### **AMP256**-Data Quality Indicators Report

- AQS Standard Report to Compute the Statistics Outlined on 40 CFR Part 58 Appendix A
- Part of the Annual Certification Process to Verify Submission of QA and routine Data to AQS



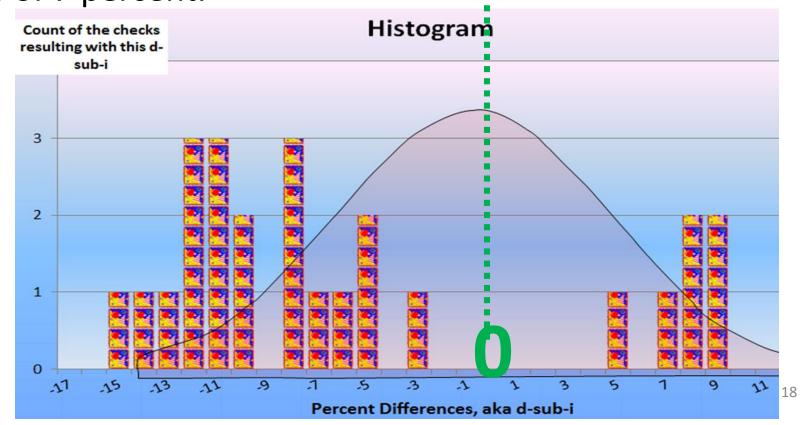
 CORRESPONDS to what you can calculate in the DASC spreadsheet, as we will see.

#### Does our 10.01% match AMP256?

One Point Quality Control

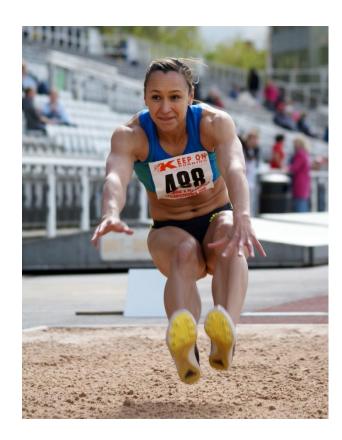
| e)          |     |    | PQAO:         |             |                       |                     |               | 1     |
|-------------|-----|----|---------------|-------------|-----------------------|---------------------|---------------|-------|
| Site<br>IDs | POC | MT | Begin<br>Date | End<br>Date | Intervals<br>Required | Valued<br>Intervals | %<br>Complete | CV UB |
|             | 1   | SP | 01-JAN-14     | 31-DEC-14   | 12                    | 9                   | 75            | 10.01 |
|             | 1   | SP | 01-JAN-14     | 31-DEC-14   | 13                    | 10                  | 77            | 10.01 |
| MARY        |     |    | 01-JAN-14     | 31-DEC-14   | 25                    | 19                  | 76            | 10.01 |
| MARY        |     |    | 01-JAN-14     | 31-DEC-14   | 25                    | 19                  | 76            | 10.01 |

- •90% Confidence Upper Bound of precision is 10.01%
- •"There is a 90% chance that our precision will not be greater than 10%"
- Same as YOU can calculate any time using the DASC


# Summary of precision:

- Calculated from routine QC checks d<sub>i</sub>
- Overall upper bound of CV calculated from d<sub>i</sub>
- you can be 90% sure that your true precision is less than this "upper bound of the CV" (eq'n 2)




# **Bias:**

- FINALLY look at where we are on the x-axis
- (Remember precision only cares about width)
- The goal for acceptable measurement uncertainty for bias is an upper 95 percent confidence limit for the absolute bias of 7 percent.



# Bias statistics (CFR App A, 4.1.3):

- Remember that bias as well as precision starts from the difference between your instrument's indicated value and the known (audit) value, as
- (meas-known)/known= d;
- bias (jump) is calculated from d<sub>i</sub>
- Bias just based on the AVERAGE of the d<sub>i</sub> with the sign taken into account (if your analyzer is always higher than the known, you have a high ( + ) bias



## Bias in CFR eq'n 3:

$$|bias| = AB + t_{0.95, n-1} \cdot \frac{AS}{\sqrt{n}}$$

AB is the mean of the absolute values of the 
$$d_i$$
's = 9.3

$$t_{0.95,n-1}$$
 is the 95th quantile of a t-distribution =**TINV(2\*0.05,n-1)** = **1.71**

AS is the STDEV of the abs value of these 
$$d_i$$
's = 3.08

So Abs value of bias = 9.3 + 1.71 \* (3.08/sqrt of n)

9 -3

d (Egn. 1)

-3 -12

-12

-1

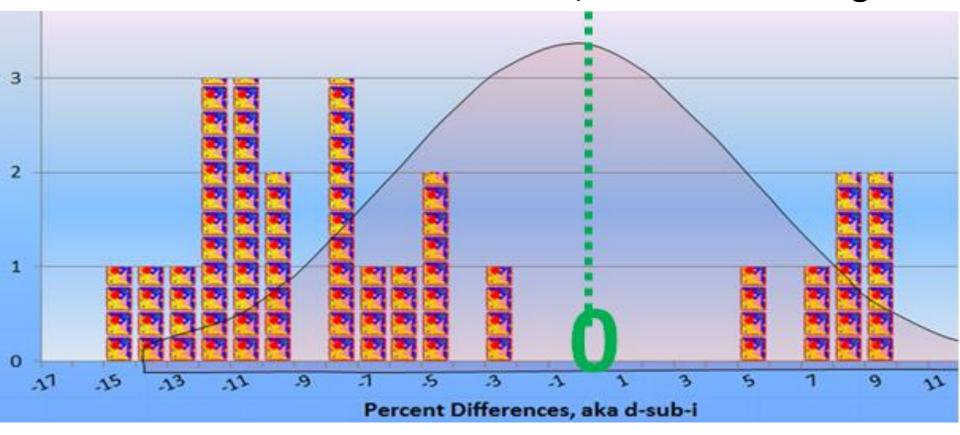
\_Ç

7 o

3

Ğ

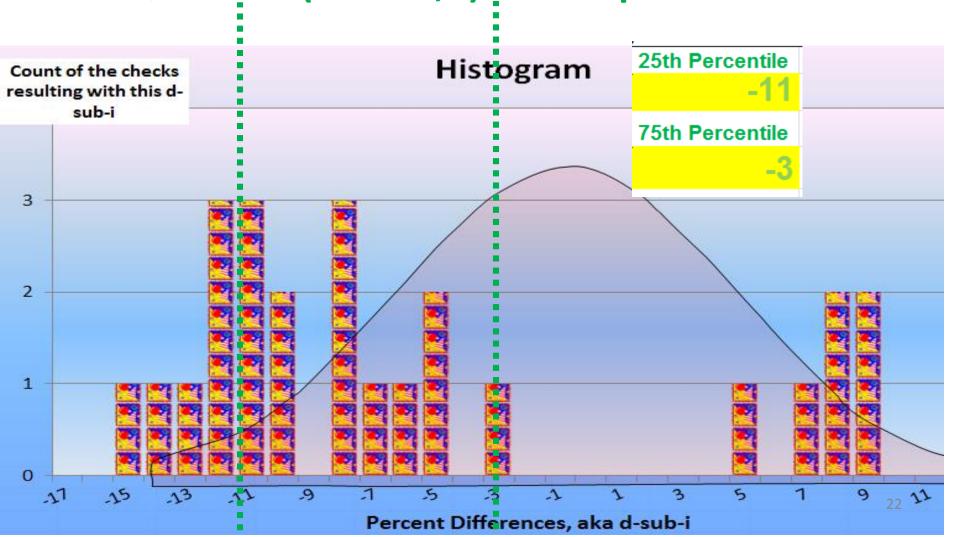
-11


-11 -7

-6

-6

Thanks Shelly \_9 Eberly! \_9


#### That 10.39 is the abs value of bias, now what's its sign?



- Look at 25% quartile and 75% quartile
- If they straddle zero, bias is unsigned
- If they're both negative, bias is negative
- If they're both positive, bias is positive

## Quartiles?

- =QUARTILE(d-sub-i,1) = 25% quartile = -11
- =QUARTILE(d-sub-i,3) = 75% quartile = -3



#### DASC bias in cell k13:

- Both quartiles are negative
- Bias is negative 10.4 = -10.4
- Agrees with DASC:

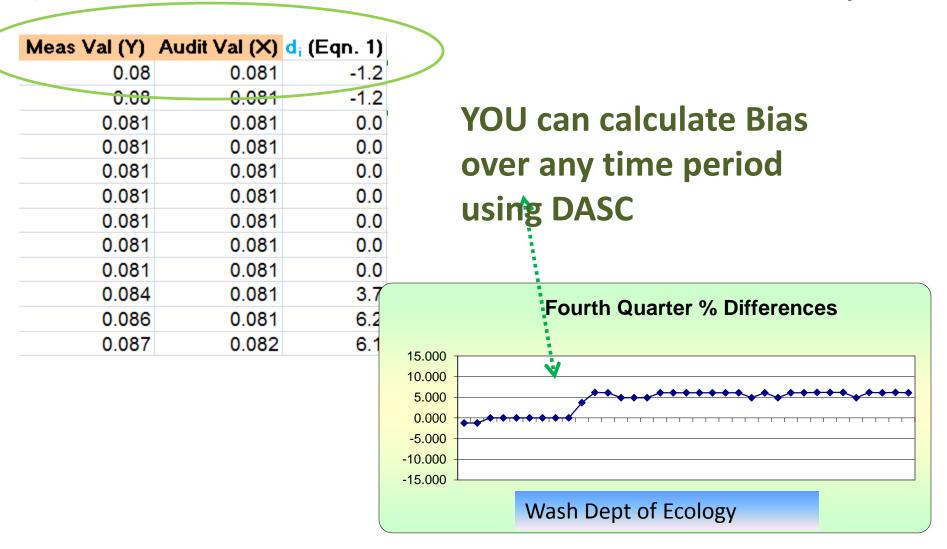
| Pollutant type: O <sub>3</sub> |                 |                |        |                 |     | CV <sub>ub</sub> (%) |                 | Bias (%)              |                     |
|--------------------------------|-----------------|----------------|--------|-----------------|-----|----------------------|-----------------|-----------------------|---------------------|
| <u>d (Eqn. 1)</u>              | 25th Percentile | d <sup>2</sup> | d      | d  <sup>2</sup> |     |                      |                 |                       |                     |
| 9                              | -11.111         | 79.012         | 8.889  | 79.012          |     |                      |                 |                       |                     |
| -3                             | 75th Percentile | 11.111         | 3.333  | 11.111          | n   | $S_d$                | S <sub>d2</sub> | ∑ d                   | "AB" (Eqn 4)        |
| -12                            | -3.333          | 149.383        | 12.222 | 149.383         | 25  | 8.089                | 59.010          | 233.333               | 9.333               |
| -12                            |                 | 149.383        | 12.222 | 149.383         | n-1 | ∑d                   | $\Sigma d^2$    | $\sum  \mathbf{d} ^2$ | "AS" (Eqn 5)        |
| -10                            |                 | 100.000        | 10.000 | 100.000         | 24  | -144.444             | 2404.938        | 2404.938              | 3.077               |
| -11                            |                 | 123.457        | 11.111 | 123.457         |     |                      |                 |                       |                     |
| -9                             |                 | 79.012         | 8.889  | 79.012          |     |                      | 1               | Bias (%) (Eqn 3)      | Both Signs Positive |
| 4                              |                 | 19.753         | 4.444  | 19.753          |     |                      |                 | 10.39                 | FALSE               |
| 7                              |                 | 44.444         | 6.667  | 44.444          |     | CV (%) (Eqn 2)       |                 | Signed Bias (%)       | Both Signs Negative |
| 8                              |                 | 60.494         | 7.778  | 60.494          |     | 10.01                |                 | -10.39                | TRUE <sup>23</sup>  |
|                                |                 |                |        |                 |     |                      |                 |                       |                     |

#### Does this match AQS standard report AMP256?:

#### DATA QUALITY INDICATOR REPORT One Point Quality Control

Aug. 2, 2016

App A? Y


| te | CV UB | BiasUB  |
|----|-------|---------|
|    | 10.01 | 10:30   |
| •  | 10.01 | - 10.39 |

Valued Begin End Intervals Date Date Required Intervals Complet POC MT SP 01-JAN-14 31-DEC-14 12 75 SP 01-JAN-14 31-DEC-14 77 13 10 01-JAN-14 31-DEC-14 25 19 76 10.01 10.39 01-JAN-14 31-DFC-14 25 19 76 10.01 10.39

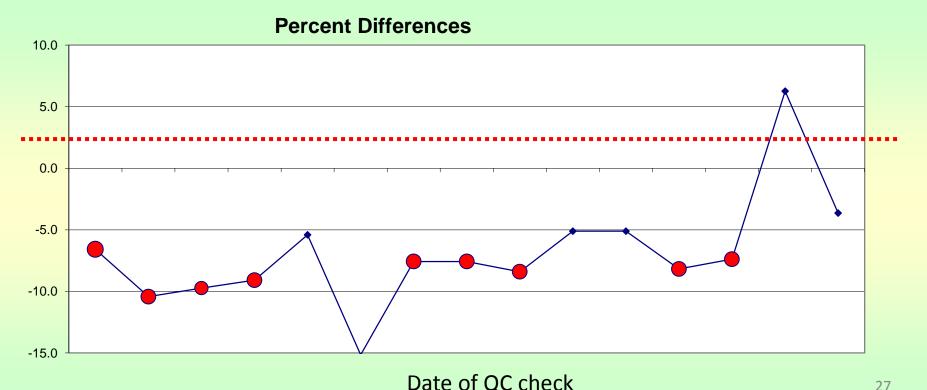
Bias UB (upper bound of bias) = -10.39(goal is upper 95 percent confidence limit for the absolute bias of 7 percent)

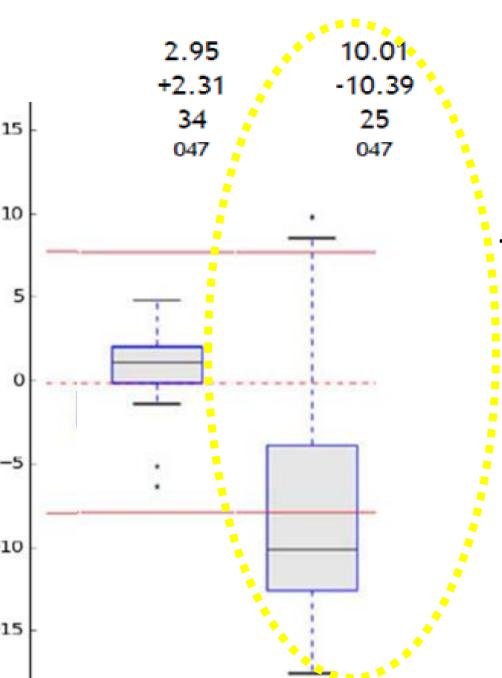


# Both bias and precision are in the same sheet (O3 P&B) in the DASC and use the same input:

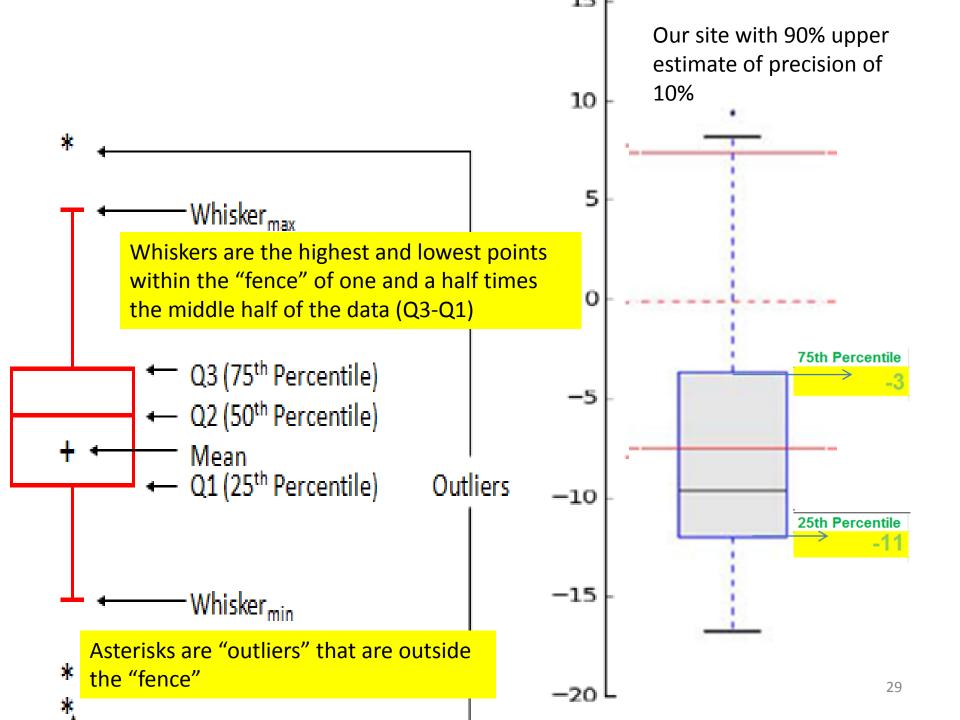


# Summary of gas bias:


- Calculated from routine QC checks d<sub>i</sub>
- Overall upper limit of bias calculated from d<sub>i</sub>
- Then look at the sign (and the chart) for whether your analyzer is biased high (+) or low (-)
- We are 95% confident that our 03 bias is less

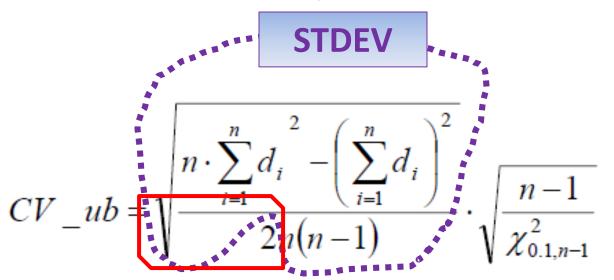

extreme than -10%




#### Do I invalidate pollutant data based on d-sub-i?

- Validation tables in QA Handbook:
  - Critical Measurement Quality Objective O3=7%
  - See problems ahead of time by identifying trends in a control chart:





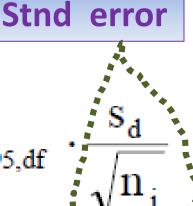

Box and whisker charts show this faster—compare our site on the right with a different CA site



# PM<sub>2.5</sub> Precision

- PM2.5 is the same as gaseous, except:
  - d-sub-i are from COLLOCATED, and the known is the average of the two PM2.5, so d-sub-i is
  - (RO-CO)/(avg of RO & CO)
  - Because the known is the avg of 2 measurements, add SQRT(2) to the denominator (divide by best estimate of truth)

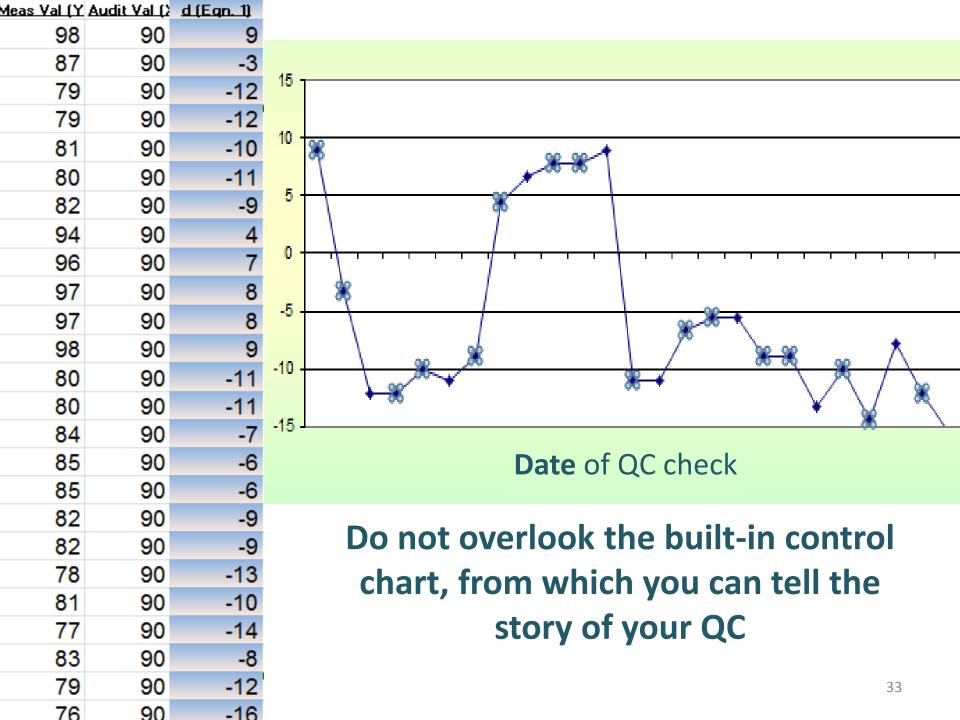



That's the only difference in the precision stat from gas stats

## PM<sub>2.5</sub> Bias

- PM2.5 bias same as gaseous, except:
  - <u>known = PEP</u> audit filter results, so the d-sub-i is the (field-PEP)/PEP
  - Don't take abs value of the d-sub-i
  - D is avg of these d-sub-i values
  - n is # of PEP audits, and if n=3 then t=2.9
    - (as n grows, t<sub>0.95</sub> goes to 1.65)
  - Use the 25% and 75% quartiles → + or -

Upper 90% Confidence Interval = D + t<sub>0.95,df</sub>


(and the lower confidence interval is D minus t\*stnd error!)



#### PM10 statistics:

- Bias confidence intervals based on monthly flow rate (FR) checks:
  - d-sub-i from FR
  - THEN bias statistics are the same as PM2.5
- Flow rate "acceptability" limits are based on 6month FR audits (with FR audit device not the same one you use for the monthly):
  - Limit = D +- 1.96 \* STDEV

d-sub-i = (sampler-audit\_FR)/audit\_FR and D is their average



# Thank you!

- Work with Tribal Air Agencies
- Knowledge = Power; Let's Share
  - -http://datatools.tamscenter.com/
- Melinda Ronca-Battista melinda.ronca-

<u>battista@nau.edu</u>;

https://www.youtube.com/c/melindaroncabattista



