ЕРА-АА-ТЕВ-511-82-7А

EPA Evaluation of the Energy Gas Saver Under Section 511 of the Motor Vehicle Information and Cost Savings Act

Ъy

John C. Shelton

January 1982

Test and Evaluation Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control U.S. Environmental Protection Agency

ENVIRONMENTAL PROTECTION AGENCY

[40 CFR Part 610]

[FRL]

FUEL ECONOMY RETROFIT DEVICES

Announcement of Fuel Economy Retrofit Device Evaluation

for "Energy Gas Saver"

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice of Fuel Economy Retrofit Device Evaluation.

SUMMARY: This document announces the conclusions of the EPA evaluation of the "Energy Gas Saver" under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. BACKGROUND INFORMATION: Section 511(b)(1) and Section 511(c) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2011(b)) requires that:

(b)(1) "Upon application of any manufacturer of a retrofit device (or prototype thereof), upon the request of the Federal Trade Commission pursuant to subsection (a), or upon his own motion, the EPA Administrator shall evaluate, in accordance with rules prescribed under subsection (d), any retrofit device to determine whether the retrofit device increases fuel economy and to determine whether the representations (if any) made with respect to such retrofit devices are accurate."

(c) "The EPA Administrator shall publish in the <u>Federal Register</u> a summary of the results of all tests conducted under this section, together with the EPA Administrator's conclusions as to -

- (1) the effect of any retrofit device on fuel economy;
- (2) the effect of any such device on emissions of air pollutants; and
- (3) any other information which the Administrator determines to be relevant in evaluating such device."

EPA published final regulations establishing procedures for conducting fuel economy retrofit device evaluations on March 23, 1979 [44 FR 17946]. ORIGIN OF REQUEST FOR EVALUATION: On June 5, 1981, the EPA received a request from the Energy Gas Saver Corporation for evaluation of a fuel saving device known as the "Energy Gas Saver". This device is claimed to reduce exhaust emissions and save fuel.

<u>Availability of Evaluation Report</u>: An evaluation has been made and the results are described completely in a report entitled: "EPA Evaluation of the Energy Gas Saver Under Section 511 of the Motor Vehicle Information and Cost Savings Act". This entire report is contained in two volumes. The discussions, conclusions and list of all attachments are listed in EPA-AA-TEB-511-82-7A, which consists of 11 pag.s. The attachments are contained in EPA-AA-TEB-511-82-7B, which consists of 115 pages. The attachments include correspondence between the appli ant and EPA, and all documents submitted in support of the application.

Copies of this report may be obtained from the National Technical Information Service by using the above report number. Address requests to:

> National Technical Information Service U.S. Department of Commerce Springfield, VA 22161 Telephone: (703) 487-4650 or FTS 737-4650

Summary of Evaluation

EPA fully considered all of the information submitted by the device manufacturer in his application. The description of the device and the supporting text did not indicate that the device would improve combustion efficiency. The test data submitted with the application was inconclusive.

While thorough mixing of fuel and air and even distribution among the cylinders will enhance the combustion process, there is no evidence that the use of this device will result in any improvements over an unmodified induction system. Adjustment of the ignition timing and :dle fuel mixture with an exhaust gas analyzer to achieve the best possible emission readings may cause driveability problems in some v-hicles. Based on EPA's engineering judgment, there is no reason to support any claims for improvements in fuel economy or exhaust emissions due to the use of the Energy Gas Saver.

FOR FURTHEP INFORMATION CONTACT: Merrill W. Korth, Emission Control Technology Division, Office of Mobile Source Air Pollution Control, Environmental Protection Agency, 2565 Plymouth Road, Ann Arbor, Michigan 48105, (313) 668-4299.

> Kathleen Bennett Assistant Administrator for Air, Noise, and Radiation

Date

EPA Evaluation of the "Energy Gas Saver" under Section 511 of the Motor Vehicle Information and Cost Savings Act

The following is a summary of the information on the device as supplied by the Applicant and the resulting EPA analysis and conclusions.

- 1. Marketing Identification of the Device:
 - A. Energy Gas Saver
 - B. Exhaust Extractor

2. Inventor of the Device and Patents:

A. Inventor

Mr. Donald C. Pletts 143 Inlet Way Palm Beach Shores, FL 33404

B. Patent

Patent #4127093

Patent #4216654

3. Manufacturer of the Device:

Energy Insert Systems, Inc. 143 Inlet Way Palm Beach Shores, FL 33404

4. Manufacturing Organization Principals:

Mr. Donald C. Pletts - Principal Officer and Owner

5. Marketing Organization in U.S. making Application:

A. Energy-Insert-System, Inc.

B. Energy Gas Saver, Inc.

Both Located at 143 Inlet Way #5 Palm Beach Shores, FL 33404

6. Applying Organization Principals:

Mr. Donald C. Pletts - Principal Officer and Owner

7. Description of Device (as supplied by Applicant):

"This device is 1 31/32 inches thick and is made out of a high grade of cast aluminum. It contains 4 baffle plates and is used to mix the gas and air (vapor) that comes from a conventional carburetor with exhaust from the exhaust system of the engine. For some models there is available an electric heater for cold starts.

"This mix is vaporized further by heat and the mix is leaned outside of the carburetor as it enters the intake manifold.

"This unit fits under the carburetor and on the intake manifold. The amount of exhaust is controlled by a screw in orifice which is changed for different size engines.

"The extractor is fitted into the exhaust system just behind the catalytic convertor. A $1 \ 1/2$ in. (O.D.) flex tubing connects the extractor to the rear of the Energy Gas Saver which is filtered. The back pressure from the muffler forces the exhaust back into the Energy Gas Saver."

8. Applicability of the Device (as supplied by Applicant):

Thus far eight different units have been designed to fit a 1 known American made automobiles and light trucks:

2	ЪЪ1	for	Ford (all	models)	4	ЪЪl	for	G. 1	lotors	
2	bbl	for	Chrysler	••	4	bbl	for	Ford	l Produ	ucts
2	ЪЪ1	for	Chevrolet		1	ЪЪ1	for	Ford	1	
2	ъъі	for	G. Motors	••	1	bbl	for	al1	other	makes

9. Costs (as supplied by Applicant):

Not supplied.

10. Device Installation - Tools and Expertise Required (as supplied by Applicant):

See attached instructions for installation (Attachment B)

11. Device Operation (as supplied by Applicant):

Not supplied

12. Maintenance (claimed):

"Device filter should be changed every 10,000 miles or 6 months."

13. Effects on Vehicle Emissions (non-regulated) (claimed):

"There is no known reason why exhaust emissions should be increased when properly installed."

14. Effects on Vehicle Safety (claimed):

"The device will not cause any unsafe condition."

15. Test Results (Regulated Emissions and Fuel Economy) (submitted by Applicant):

See Attachment B.

16. Analysis

A. Description of the Device:

The device is judged to be adequately described. A description is contained under Section 8, Description of Device, of the application (Attachment B).

B. Applicability of the Device:

As stated in the application, the device is applicable to gasoline-powered vehicles equipped with carburetors.

C. Costs:

Not supplied.

D. Device Installation - Tools and Expertise Required:

A skilled mechanic with appropriate tools and an exhaust gas analyzer should be able to install the device, although complications could arise due to the alteration of carburetor linkages. The additional height of the carburetor could also prevent the hood from closing properly. Care is required in the installation of the Exhaust Extractor to prevent exhaust leaks and the flexible pipe must be routed in such a way as not to cause heat damage to any components.

E. Device Operation:

No operating instructions are required.

F. Device Maintenance:

It appears that the only maintenance required is the changing of the filter every 10,000 miles or 6 months.

G. Effects on Vehicle Emissions (non-regulated):

The device is claimed to lower emissions, but no data to support these claims were ever submitted.

H. Effects on Vehicle Safety:

One safety problem that might arise is heat damage from the flexible pipe between the Exhaust Extractor and the Energy Gas Saver. There is also the problem that the throttle linkage may not operate correctly.

I. Test Results Supplied by Applicant:

The applicant submitted test data from the Auto Club of Southern California. Unfortunately, this data included only the raw concentrations and not the grams per mile emission numbers. It is not possible to determine how these tests were run or to make valid comparisons from the data.

Test data were also submitted from Olson Engineering, Inc. These results were preliminary and were marked as such. A representative from Olson Engineering stated that this data was invalid for comparison purposes and was only intended for research or development purposes. Our concerns abcut the validity of these data are detailed in our letter to En rgy Gas Saver, Inc. dated June 26, 1981 (Attachment D). Alth ugh the applicant responded to our letter (Attachment E), his response was insufficient to validate the results.

Thus, the applicant did not submit any valid test ata in accordance with the Federal Test Procedure or the Highw.y Fuel Economy Test. The requirement for test data following these procedures is stated in the application test policy documents that EPA sends to potential applicants*. The applican did state that Automotive Environmental Systems, Inc. of Los Angeles, CA would test the device in September 1981 and the results would be furnished to EPA. To our knowledge, this testing was not performed.

* From EPA 511 Application test policy documents:

Test Results (Regulated Emissions and Fuel Economy): Provide all test information which is available on the effects of the device on vehicle emissions and fuel economy.

The Federal Test Procedure (40 CFR Part 86) is the primary test which is recognized by the U.S. Environmental Protection Agency for the evaluation of vehicle emissions. The Federal Test Procedure and the Highway Fuel Economy Test (40 CFR Part 600) are the only tests which are normally recognized by the U.S. EPA for evaluating fuel economy of light duty vehicles. Data which have been collected in accordance with other standardized fuel economy measuring procedures (e.g. Society of Automotive Engineers) are acceptable as supplemental data to the Federal Test Procedure and Highway Fuel Economy Data will be used, if provided, in the preliminary evaluation of the device.

17. Conclusions

While thorough mixing of fuel and air and even distribution among the cylinders will enhance the combustion process, there is no evidence that the use of this device will result in any improvements over an unmodified induction system. Adjustment of the ignition timing and idle fuel mixture with an exhaust gas analyzer to achieve the best possible emission readings may cause driveability problems in some vehicles. Based on EPA's engineering judgment, there is no reason to support any claims for improvements in fuel economy or exhaust emissions due to the use of the Energy Gas Saver.

EPA-AA-TEB-511-82-7B

Attachments to

EPA Evaluation of the Energy Gas Saver Under Section 511 of the Motor Vehicle Information and Cost Savings Act

Ъy

John C. Shelton

January 1982

Test and Evaluation Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control U.S. Environmental Protection Agency

List of Attachments

Attachment A	Letter, EPA to Richard Nelson of Energy Gas Saver, Inc., January 13, 1981
Attachment B	511 Application from Donald C. Pletts to EPA, June, 5, 1981
Attachment C	Letter, EPA to Donald C. Pletts of Energy Gas Saver, Inc., June 23, 1981
Attachment D	Letter, EPA to Donald C. Pletts of Energy Gas Saver, Inc., June 26, 1981
Attachment E	Letter, Donald C. Pletts to EPA, July, 9, 1981
Attachment F	Letter, Donald C. Pletts to EPA, August 21, 1981
Attachment G	Letter, EPA to Donald C. Pletts of Energy Gas Saver, Inc., September 2, 1981
Attachment H	Letter, EPA to Donald C. Pletts of Energy Ga: Saver, Inc., October 29, 1981

January 13, 1981

Hr. Richard Nelson Energy Gas Saver, Inc. 1st American Building, Suite 104 701 U.S. Highway #1 North Palm Beach

Dear Mr. Melson:

This letter is in response to your inquiry of 12/5/80 through the Secretary of State of Texas regarding an EPA evaluation of your device. The Environmental Protection Agency is charged by Congessional mandate to evaluate fuel economy and emission control devices. While the EPA does not actually "approve" such devices, it does conduct evaluations for the purpose of increasing the common knowledge in the area. For this reason, the outcome of any testing v EPA becomes public information. It is this information which may be cited although no claims can be made that any EPA findings constitute "approva" of the device or system.

Enclosed with this letter is a packet of materials which you will need to apply for an EPA evaluation of your device. This packet consists of 1) an application format, 2) a document entitled "EPA Retrofit and Emission Control Device Evaluation Test Policy" and 3) a copy of the applicable Federal Regulations.

In order for the EPA to conduct an evaluation of your device, we must have an application. Once you have reviewed all the documents in the packet, you should prepare an application in accordance with the guidelines of the application format. A critical part of the application is the substantiating test data. The required test results will have to be obtained at a laboratory of your choice. Such testing would be conducted at your expense. A list of laboratories which are known to have the equipment and personnel to perform acceptable tests has been included in the enclosed packet. If you desire, we can assist in the development of a satisfactory test plan.

There are, however, several aspects concerning testing at an outside laboratory which I would like to bring to your attention at this time:

Minisum Test Requirements - Although different types of devices may require a more complex test plan, "the minisum we require involves two vehicles and two test sequences run in duplicate. The vehicles should be selected from those listed in Table 1; if possible. Each vehicle is to be set to manufacturer's tune-up specifications for the baseline tests.

The tests are conducted in a "back-to-back" manner, once with the vehicle in baseline condition and again with the device installed with no vehicle adjustments between tests. If installation of the device also involves some adjustments, e.g. timing, fuel-air mixture, choke or idle speed. another test sequence with only these adjustments should be inserted between the first and last. Also as a minimum, the test sequence shall consist of a hot-start LA-4 portion (bags 1 and 2) of the Federal Test Procedure (FTP) and a Highway Fuel Economy Test (NFET). The details of these tests are contained in the enclosed packet. Although only a hot-start FTP is required to minimize the costs to you, you are encouraged to have the entire cold-start test performed since any testing and evaluation performed by EPA will be based on the complete FTP and you may wish to know how a vehicle with your device performs over this official test. As a final requirement, the personnel of the outside laboratory you select should perform every element of your test plan. This includes preparation of the test vehicle, adjustment of parameters and installation of the device.

Submission of Data - We require that all test data obtained from the outside laboratories in support of your application be submitted to us. This includes any results you have which were declared void or invalid by the laboratory. We also ask that you notify us of the laboratory you have chosen, when testing is scheduled to begin, what tests you have decided to conduct, allow us to maintain contact with the laboratory during the course of the testing, and allow the test laboratory to directly answer any questions at any time about the test program.

Cost of the Testing - The cost of the minimum test plan (two vehicles, two test sequences in duplicate) described above should be less than \$2000 per vehicle and less than \$4000 for the total test at any of the laboratories on the list. You will have to contact them individually to obtain their latest prices.

Outcome of the Tests - Although it is impossible to accurately predict the overall worth of a device from a small amount of testing, we have established some guidelines which will help you determine whether the test results with your device should be considered encouraging. These values have been chosen to assure both of us that a real difference in fuel economy exists and that we are not seeing only the variability in the results. The table below presents the minimum number of cars that need to be tested for varying degrees of fuel economy measurement. For a minimum test plan which was conducted on a fleet of two cars, the average improvement should be at least 8%. If at least an 6% difference in average fuel economy can be shown, then we would be able to say stastically at the 80% confidence level that there is a real improvement. Similarly, we would expect a minimum of 5% improvement for a fleet of 5 vehicles. Test results which display a significant increase in emission levels should be reason for concern.

Minimum Fuel Leonomy Improvements versus Size of Test Fleet

Fleet Size	Average Improvement Required
2	<u>\$</u> ??
3	7%
4	6%
5	5%
10	4%
25	2%

Once we receive your application, it will be reviewed to determine if it meets the requirements listed in the format. If your application is not complete, we will ask you to submit further information or data. After any missing information has been submitted, your application will be reconsidered and once it meets our requirements, you will be advised of our decision whether or not EPA will perform any confirmatory testing. Any EPA testing will be performed at no cost to you and you will be given the opportunity to concur with our test plan. Once this testing is complete, an evaluation report will be written. If no further testing is required, the report will be written solel; on the basis of the test data submitted and our engineering analysis.

Despite the current backlog and increasing number of inquiries regarcing fuel economy device evaluations, the EPA intends to process your application in as empeditious a manner as possible. We have established a goal of twelve weeks from the receipt of a complete application to the announcement of our report. The attainment of this objective requires very precise scheduling and we are depending on the applicant to respond promptly to any questions or to submit any requested data. Failure to respond in a timely manner will unduly delay the process. In the extreme case, we may consider lack of response as a withdrawal of the application.

I hope the information above and that contained in the enclosed documents will aid you in the preparation of an acceptable application for an EPA evaluation of your device. I will be your contact with EPA during this process and any subsequent EPA evaluation. My address is EPA, Motor Vehicle Emission Laboratory, 2565 Plymouth Road, Ann Arbor, Michigan, 43105. The telephone number is (313) 668-4200. Please contact me if you have any questions or require any further information.

Sincerely,

Merrill W. Korth, Device Evaluation Coordinator Emission Control Technology Division

Enclosures

cc: Lucinda Watson, EPA, Region #6

much

3

Attachment B

June 5, 1981

Mr. Merrill W. Korth, Coordinator Emission Control Technology Division U. S. Environmental Protection Agency Ann Arbor, Michigan 48105

Dear Mr. Korth:

Please refer to your letter of January 13, 1981 directed to Mr. Nelson of our company.

I thank you for the time you spent with me on the telephone las week.

As we discussed, I am sending you most of the material trat we sent to the Air Resources Board of California.

In addition to this material, I am sending you an application as required by the E.P.A.

The test data that I am sending you includes the testing on the 1981 Ford Ltd. 302 V-8 with an automatic transmission overdrive with a Fuel Pressure Injector Carburetor. These tests include two (2) Base CVSII cold starts with the Urban Cycle Fuel Economy Test and one CVSII cold start with the Energy Gas Saver installed, including the Urban Cycle Fuel Economy Test. Also included is one (1) Highway Cycle Fuel Economy Base Test and one (1) Highway Cycle Fuel Economy Test with the "Energy Gas Saver" installed.

Also enclosed is a summary and average of all the tests that were done in California. Included in this summary is Ford Motor Company Base line testing for Urban and Highway M.P.G. Just for the record, I did not receive copies of all the print-outs on all the tests that we participated in.

I realize the testing on the 1977 Chev. Caprice (350 cu. in. engine) is obsolete. These tests do however indicate the following:

 That the highway mileage of the base car was approximately 16 M.P.G.

- -2-
- 2. That removal of the catalytic convertor did not increase the gas mileage at all!
- 3. That emissions can substantially change to an extreme unsatisfactory condition with very little modification of the engine.
- 4. With our unit on the car and without the hot exhaust, the car now showed 18.42 M.P.G.
- 5. Also by control of the amount of Exhaust that we mix with the gas and air we were able to fluctuate the NOX a: follow
 - 1. 5.9805 2. 1.741 3. .438
- 5. Also able to take HC from 3.0752 to 0.68 and .139
- 6. CO still remains somewhat high but went from 32.454 t. 24.198 to 4.980.

From this test we also learned how to control the CO percentage within standards

 Exhibit N1 shows how we were able to reduce the CO to .00 Idle and.00/2500 R.P.M. Exhibit N2 shows the same type of tests run by Detroit Testing.

You will note that this test was done in February 1978 and my test took place in Oct. 1978. They were able to reduce the CO from 4% Idle to .02% and CO .05% at 2500 to .04%. Also HC went from 280 P.P.M. at Idle to 110 P.P.M. and at 2500 R.P.M. 30 P.P.M. to .00 P.P.M.

Also at the same time we were able to run this car on the highway with average mileage of 26 M.P.G. We had tests that went as high as 29.1 M.P.G. and this was done with the One gal. bottle of gas type of test.

-3-

8. All the other test data that my companies conducted speak for themselves.

In California I decided not to use the electric heater that is available.

I also intend to conclude our testing in California in the near future. It is also my intention to run more tests on the 1981 Ltd Ford 302 V-8 with the automatic transmission overdrive in order to reduce the CO and eliminate the HC. I also plan to test a 1979 or 1980 Ford with a V8 engine.

When you have had time to absorb the materials I have sent you, I shall discuss with you our future testing. I would have that some representative from E.P.A. might observe our next tests.

Yours very truly, Donald C. Pletts, President

ENERGY GAS SAVER, INC.

Please use this address:

143 Inlet Way #5 Palm Beach Shores, Fl. 33404

Tel: 305-844-3617

MARCH 1981 .

CALIFORNIA TESTING ON A 1981 FORD LTD 302 V-8 ENGINE - OVERDRIVE & FUEL INJECTOR CARBURETOR

			e S	SUMMARY	OF TEST	S						
· · •	HIGHWAY	1		MILES P	ER GAL.				URBAN			
BASE T	EST	WITH EN	ERGY-GAS	SAVER	W I	ТН	ENE	RGY-GAS	SAVER	8	ASE T	EST
1) 22 2) 24 3) 27	.937 .030 .740	1) 2) 3) 4)	27.230 29.213 32.130 38.870			1 2 3) 2) 3)	18.26 18.32 23.09		1) 2) 3)		، - ي
74	.707		127.443					59.67				
Av. 24	.90		31.86					19.89				
	+ 6.9	6 Increa	ase						+ 4.0 I	ncre	อรเ	
			SUMMAF	RY OF BAS	SELINE	Tes	sts					
FORD MI State (DTOR CO. Certifica	"49" ATION		AUTO Southei	MOBILE RN CALI	CLU For	JB C RNIA)F.	ENG	DLSO INEE	N RING	
CO CO2 HC NOXc	1.61 .28 .81			ł	3.372 595.262 .188 .887			•	4	1.3 93.8 .1 .5	72 56 58 98	
Urban I Highway	M.P.G. y M.P.G.	16 26		Urban Highway	14.7 y 22.9	49 37			Urban Highwa	ay 1	17.86 27.74	7 2

-2-

SUMMARY OF HIGHWAY FUEL ECONOMY TESTS (Hot 505 TRNS)_ BASELINE TESTS **BASELINE TESTS** OLSON ENGINEERING AUTO CLUB OF SOUTHERN CALIFORNIA PPM GRAMS PER MILE .432 297.6 CO 318.862 C02 14671.00 .075 ΗС 24.7 .504 NOX 23.6 22.9 M.P.G. (Highway) 27.742 M.P.G. WITH "ENERGY_GAS_SAVER" INSTALLED (Hot 505 TRNS) AUTO CLUB OF SOUTHERN CALIFORNIA OLSON ENGINEERING PPM GRAMS PER MILE Test #1 #3 #2 138 0 0 03 .46 .65 .61 12.1 .07 HC ,06 .05 HC 10.1 .186 .195 .28 NOX NOX 38.87 29.213 M.P.G. Highway 32.3 MPG . 27.23

EMISSION REQUIREMENTS FOR 1981

С	ALIFORNIA		E.P.A.	(49 States)
С 0 НС	7.0 39	Carbon Monoxido Hydrocarbon	3.4	C 0 HC
NOX	.4	Oxides of Nitrogen	1.0	nox

REQUIREMENTS FOR E.P.A. (U.S.) 1978

00	15.0
нс	1.5
NOX	2.0

-3-

SUMMARY AND AVERAGE OF EMISSION TESTING WITH ENERGY-GAS-SAVER INSTALLED

			NOX.		CO
	.220 .294		.251 .340	prod, regional ,	6.163 4.725
Av.	.257	Av.	.295	Av.	5.444
		BA	SELINE TESTS		
ΗC	.280 .188 .158	NOX	.810 .887 .598	CO	2.610 3.372 1.372
Av.	.208	Av.	.765	Av.	2.451

Hydrocarbons (HC)

There is a 24% Increase over Base and 90% Under Requirements Nitrogen Oxides (NOX

There is an improvement of 160% under Base tests and over 300% under EPA and 38% under California

Carbon Monoxide (CO)

There is a 122% increase over Base which can be substantially reduced.

This is still under California Standards and near E.P.A. Standards.

DATE 03-26-8 TIME 0905 TEST # 12239 TEST SE HFET VEHICLE FORD MODEL LTD YEAR 1981 VIN SEE BEL	21 ENG F 5.0C CID 5.0L TRANS AUTO CARB 1X2V CAT NA A/C YES ODO 5848 LOW Vo .281	CC CURB WT INERTIA ARHP IRHP FUEL IYNO EAC 933 VPta	NA 4000 11.9 9.6 GASOLINE 516 1 19.43319	T ADB T AWB REL HUM BARO CVS P DELTA P NOX CF	71.0 58.0 45.0 30.06 51.0 71.0 .896264			
PURPOSEHFET	DEVICE!	n na Suite ann an Anna Anna Anna Anna Anna Anna A			a an			
	HI	GHWAY FUEL ECO	NOMY					
CVS REVS 17709	VMIX 3950.96669	ROLL CTS 24	282 MI	LES 10.414	4			
AMBIENT BAG HC PPM 10.290 CO PPM 2.143 NO× PPM .900 CO2 % .066	SAMP HC PPM CO PPM HOX PRELI HOX PRELI HOX IN EXAC WEIGHTED MASS	LE EAG 16.770 49.974 MINARYODATA TACCORDANC 5.075049 THRU	HC GRI CO GRI HO× GI E WM GI 5'27 ~	SS DATA AMS AMS 6.: RAMS 2.0 RAMS 2326.	177 255 334 162			
HYDROCARBONS GMS/MI .046	CARBON MONOXIDE GMS/MI .610	OXIDES OF NIT GMS/MI .276	ROGEN I	CARBON DIO GMS/MI 227.119	KIDE			
HIGHWAY CYCLE FUEL ECONOMY								

38.87 MILES PER GALLON

22

23 .

DATE 03/26/8: TIME 0810 TEST # 12238 TEST SE CVS II VEHICLE FORD MODEL LTD YEAR 1981 VIN *SEE BEL	ENG F 5.0 CCC CID 5.0L TRANS AUTO CARB 1X2V CAT YES A/C YES ODO 5837 LOW Vo .281536	CURB WT N/A INERTIA 400 ARHP 11. IRHP 9.6 FUEL GAS DYNO 516 EAC 1 VPta 18.	TADB TAWB RELHUI BARO DLINE CVSP DELTAH NOX CF 78625	70.0 59.0 1 52% 30.07 61.2 > 72.0 .919328				
FURPOSECVS II	COLD START WITH DEVI	CE!	، ، مەرىيە ،	, sa				
CVS REVS 11721	COLD VMIX 2610.84636	TRANSIENT ROLL CTS 8311	MILES 3.564	45				
AMBIENT BAG HC PPM 15.500 CO PPM 8.656 NOx PPM 1.200 CO2 % .069	SAMPLE : HC PPM CO PPM 6 NO× PPM CO2 %	BAG 65.100 47.334 9.200 1.284	MASS DATP HC GRAMS CO GRAMS NOX GRAMS CO2 GRAMS 165	2.181 55.052 1.055 53.803				
CVS REVS 20031	COLD : VMIX 4461.89433	STABILIZED ROLL CTS 9173	MILES 3.934	2.				
AMBIENT BAG HC PPM 13.380 CO PPM 1.955 NOx PPM 1.000 CO2 % .060	SAMPLE : HC PPM CO PPM NO× PPM CO2 %	BAG 18.630 39.215 6.900 .687	MASS DATA HC GRAMS CO GRAMS NOX GRAMS CO2 GRAMS 145	.432 5.496 1.322 56.833				
CVS REVS 11806	HOT T VMIX 2629.78006	RANSIENT ROLL CTS 8355	MILES 3.583	34				
AMBIENT BAG HC PPM 11.580 CO PPM 4.567 NO× PPM 1.600 CO2 % .057	SAMPLE HC PPM CO PPM 1 NOX PPM CO2 X PRELIN	BAG 22.320 31.146 11.900 MINARY DATA	MASS DATA HC GRAMS CO GRAMS NOX GRAMS CO2 GRAMS 114	.494 11.001 1.362 44.560				
HYDROCARBONS GMS/MI .220	CARBON MONAULER 854 GMS/MI 4.725	ACCORDANCE 075 05 HITRUU .340	WITH 27 GMS 376.0	DIOXIDE 'MI 349				
URBAN CYCLE FUEL ECONOMY								

23.092 MILES PER GALLON

••••

24

PRÉLIMINARY DATA NOT IN EXACT ACCORDANCE MUTTI 40 CFR 85.075 - 9 THRU 27

DLEDH ENGINEERING INC.

AUTOMOTIVE RESEARCH CENTER HUNTINGTON BEACH CALIFORNIA

DATE 03/25/8 TIME 1430 TEST # 12235 TEST SE CVS II VEHICLE FORD MODEL LTD YEAR 1981 VIN *SEE BE	1 ENG F 5.0 CID 5.0 TRANS AUT CARB 1%2 CAT YES A/C YES ODO 580 LOW ~ Yo .28	CCC CURB-WT N/F INERTIA 400 ARHP 11. V IRHP 9.6 FUEL GAS DYNO 516 2 EAC 1 21315 VPta 18.	A T ADB 70.0 30 T AWB 60.0 .9 REL HUM 53% 5 BARO 30.00 SOLINE CVS P 60.5 5 DELTA P 70.5 NOX CF .924253 .78625						
PURPOSECVS I	I COLD START WITH :	DEVICE VIN# 2FAB	P33F6BB07888!						
CVS REVS 11715	C VMIX 2613.14913	OLD TRANSIENT ROLL CTS 8574	MILES 3.6773						
AMBIENT BAG HC FPM 12.700 CO PPM 2.273 NO× PPM .200 CO2 % .047	SAMI HC PPM CO PFM NO× PPM CO2 %	PLE BAG 74.900 714.577 8.000 1.382	MASS DATA HC GRAMS 2.713 CO GRAMS 61.390 NOX GRAMS 1.023 CO2 GRAMS 18:5.409						
CVS REVS 20121	C VMIX 4488.19237	OLD STABILIZED ROLL CTS 9290	MILES 3.9844						
AMBIENT BAG HC PPM 9.500 CO PPM .084 NO× PPM .100 CO2 % .047	SAM HC PPM CO PPM NO× PPM CO2 %	PLE BAG 16.600 46.573 4.200 .884	MASS DATA HC GRAMS .566 CO GRAMS 6.880 NO× GRAMS .922 CO2 GRAMS 1954.611						
CVS REVS 11778	н үміх 2627.20191	OT TRANSIENT ROLL CTA 8570	TH MILES 3.6756						
AMBIENT BAG HC PPM 8.300 CO PPM 2.081 NOX PPM .100 CO2 % .047	HC FREE NOX EPAA NOT CFR	TAGE 100 TAGE 100 5.075 100 5.071 111 EMISSIONS SUMMARY	MASS DATA HC GRAMS .832 CO GRAMS 22.717 NO× GRAMS .921 CO2 GRAMS 1454.892						
HYDROCARBONS GMS/MI .294	CARBON MONOXIDE GMS/MI 6.163	OXIDES OF NITROO GMS/MI .251	GEN CARBON DIOXIDE GMS/MI 475.270						
URBAN CYCLE FUEL ECONOMY									

18.258 MILES PER GALLON

	HYDROCAREONS GMS/MI .075	AMBIENT BAG HC PPM 5.460 CO PPM .831 NOX PPM .200 CO2 % .047	PURPOSEHFET 1 CVS REVS 17640	DATE -03/27/8 TIME 1740 TEST # 12249 TEST SE HFET VEHICLE FORD VEHICLE FORD VEAR 1981 VIN *SEE BEI	
HIGHWAY CYCLE FUEL 27.742 MILES FER (CARBON MONOXIDE OXIDES (GMS/MI GMS .432 .5	HC FPM 16.770 HC FPM 16.770 HC FPM 16.770 NOX FPM EL INDAUS NOX FPM A A A A A A A A A A A A A A A A A A A	HOT W/O DEVICE BASELINE! HIGHWAY FUB VMIX 3927.87417 ROLL (1 ENG 5 5.0 CCC - CUP CID 5.0 CCC - CUP TRANS AUTO ARD CARE 1X2V ARD CARE 1X2V ARD CARE 1X2V FUE A/C YES DY ODO 05901 EAO Vo .281933 YP	THOTIVE RESEA
GALLON	OF NITROGEN CARBON DIGXIDE S/MI GMS/MI 304 318.862	PLATA HC GRAMS DATA 768 W DATA CO GRAMS 4.433 SRDANCE WATHGRAMS 5.162 9 JAHRY 27	EL ECONOMY CTS 24156 MILES 10.3603	RB WT N/A T ADB 78.0 ERTIA 4000 T AWB 50.0 HP 11.9 REL HUM 34% HP 8.7 BARO 30.01 EL 6ASOLINE CVS P 61.0 NO 288 DELTA P 71.0 ta 24.57420 NOX CF 8880	NH TUN NH

میں ایک دیکھی ہے۔ بر		· · · · ·				
DATE 3/27, TIME 16 TEST # 12248 TEST SE CVS 1 VEHICLE FORD MODEL LTD YEAR 1981 VIN 2FABB	/81 3 II P33F6BB107	ENG F 50CCC CID 5.0 TRANS AUTO CARB 1X2V CAT YES A/C YES ODO 05893 Vo .28153	CURB WT INERTIA ARHP IRHP FUEL DYNO EAC 6 VPta	NA 4000 11.9 8.7 GASOLINE 288 1 21.50526	T ADB T AWB REL HUM BARO CVS P DELTA P NOX CF	74 60 44% 30.024 61 72 .912604
PURPOSECVS	S COLD BASEL	INE W/O DEVI	CE			
CVS REVS 118:	12 VMIX 2	COLD 627.89925	TRANSIENT ROLL CTS 8	408 MIL	ES 3.6061	
AMBIENT BAC HC PPM 4.4 CO PPM 1.0 NO× PPM .2 CO2 X .0	3 400 322 200 344	SAMPLE HC PPM CO PPM NO× PPM CO2 %	BAG 32.300 182.582 20.100 1.440	MA HC GRI CO GR NO× G CO2 G	SS DATA AMS 1 AMS 15 RAMS 2 RAMS 1908	.217 .740 .587 .912
CVS REVS 1999	97 VMIX 4	COLD 448.87415	STABILIZED ROLL CTS 9:	177 MILI	ES 3.9379	
AMBIENT BAC HC PPM 4.5 CO PPM .3 NOX PPM .2 CO2 % .0	3 500 364 200 344	SAMPLE HC PPM CO PPM NOx PPM CO2 %	BAG 9.450 4.121 9.900 .909	MA: HC GRI CO GRI NO× G CO2 GI	SS DATA AMS AMS RAMS 2 RAMS 2001	.381 .554 .135 .550
CVS REVS 1180	34 VMIX 2	HOT 626.11944	TRANSIENT ROLL CTS 8	895 MILI	ES 3.6005	
AMBIENT BAC HC PPM 4.4 CO PPM .8 NOx PPM .3 CO2 % .0	3 440 331 300 341	SAMPLE HC PPM CO PPM NOX PPM CO2 X	BAG 15.780 61.024 17.004 17.004 17.004 17.004	A HATGR GR GR GR GR GR GR GR GR GR GR GR GR G	SS DATA AMS AMS 5 RAMS 2 RAMS 1546	.503 .218 .171 .564
HYDROCARBONS GMS/MI .158	MEIGH CARBON M GM 1.	ONOXIDE CO S/MI 372 01 00 URBAN CYCLE 1	NILES OF NI NILES OF NI GMS/MI .598 FUEL ECONOM	rrogen i K	CARBON DI GMS/M 493.85	OXIDE I S

17.867 MILES PER GALLON

27.

~>

MARCH 1981 CALIFORNIA TESTING ON A 1981 FORD LTD 302 V-8 ENGINE - OVERDRIVE & FUEL INJECTOR CARBURETOR

CLUMMA COV

τC

		r 1515	
HIGHWA	Y MILES PER	R GAL. URBA	N
BASE TEST	WITH ENERGY-GAS SAVER	WITH ENERGY-GAS SAVE	R BASE TEST
$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 74.707 \end{array} $	1) 27.230 2) 29.213 3) 32.130 4) <u>38.870</u> 127.443	1) 18.26 2) 18.32 3) 23.09 59.67	1) 77 2) 3 3) J
Av. 24.90	31.86	19.89	5.8
+ 6.	96 Increase	+ 4.0	Increase

SUMMARY OF BASELINE Tests

FORD MOTOR CO. "49'	AUTOMOBILE CLUB OF	∂LSON		
STATE CERTIFICATION	SOUTHERN CALIFORNIA	ENGI∛EERING		
CO 1.61	3.372 595.262	1.372 493.856		
HC .28	.188	.158		
NDXc .81	.887	.598		
Urban M.P.G. 16	Urban 14.749	Urban	17.867	
Highway M.P.G. 26	Highway 22.937	Highway	27.742	

-2-

SUMMARY OF HIGHWAY FUEL ECONOMY TESTS (Hot 505 TRNS)

BASELINE TESTS

AUTO	CLUB OF S	OUTHERN CALIFO	DRNIA	OLSON ENGINEERING
	PPM	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		GRAMS PER MILE
C 0 C 02 HC N 0X	297.6 14671.00 24.7 23.6			.432 318.862 .075 .504
		22.9 M.P.G.	(Highway)	27.742 M.P.G.

WITH "ENERGY-GAS-SAVER" INSTALLED (Hot 505 TRNS)

AUTO CLUB OF SOUTHERN CALIFORNIA

OLSON ENGINEERING

BASELINE TESTS

	PPM		G	RAMS PER MILE	
CO HC NOX	138 12.1 10.1	CO HC NOX	Test #1 .46 .06 .186	#2 .65 .07 .195	#: .61 .05 .28
	29.213 M.F	.G. Hinhway	32.3 MPG	27.23	38.87

EMISSION REQUIREMENTS FOR 1981

E.P.A. (49 States) CALIFORNIA 03 3.4 03 7.0 Carbon Monoxide .39 .41 1.0 Hydrocarbon HC HC Öxides of Nitrogen NOX .4 nox

REQUIREMENTS FOR E.P.A. (U.S.) 1978

С О	15.0
HC	1.5
NOX	2.0

29

È

-3-

SUMMARY AND AVERAGE OF EMISSION TESTING WITH ENERGY-GAS-SAVER INSTALLED

	HC			0 0
	.220 .294	.251 .340		6.163 4.725
Av.	.257	Av295	Av.	5.444
		BASELINE TESTS		
HC	.280 .188 .158	NOX .810 .887 .598	CO	2.610 3.372 1.372
Av.	.208	Av765	Av.	2.451

Hydrocarbons (HC)

Nitrogen Oxides (NOX

There is a 24% Increase over Base and 90% Under Requirements There is an improvement of 160% under Base tests and over 300% under EPA and 38% under California

Carbon Monoxide (CO)

There is a 122% increase over Base which can be substantially reduced.

This is still under California Standards and near E.P.A. Standards.

· · · . #00 0

.

1.1

1. 1

18 - Q

*** AJTS EXHAUST EMISSIONS 4ND FUEL CONSUNPTION ANALYSIS ***

		,		-+
	LAN USG SAT	A CAS SAVER HPEGG IN 32D	SELTYE STOCK LENERS	COMMENTS COCO : CTNEWNOD
•	IDLEHC=8.0PPM CD=0.07%	REBTOISSAFE98A TENIV METRY	EMISSION CONTROL S	EMISSION CONTROL : STOCK
	1	R CAR W. STIDATION CATALYS	CLASS : PASSENCE	FUEL TYPE : GASOLINE
07 : 18 VI169NI	9 °2 : 9831 8JU8 TAW	DRY BULB TEMP : 69 F	SOAK TEMP (1977) F	ON MASITAT : FETNERDALE
•● : Hak Os faH	8545 : 851-400C	OTLA : CTLA 20087	MOL :FBT2BT	CCON : DN 1021NDC
SEY : GVOD AIA	CARR : 2-BARREL	ENGLYE CID : 332-8	AOH :FEVIFO	6991 : CN 1981 080V
DATE: 01-12-81	CLCEASE NO : JUSHIUS	011 : 19CCW	1801 : AAEY	CECH FERDIERA
				VOITSINCCEG JAPENED

•				×.	1	· · · · · · · · · · · · · · · · · · ·		
	L68 ·	156•2	452°E	166 ° E	499•12	E56*E1	172*67	XCN
•	861.	95U°I	997.	1.22.1	869.85	589 5	172.62	сн.
· · · .	292 • 565	999° 6161	088.5865	2233•610	C19*21291	ESE+71901	522 • 61511	700
	3.372	53°633	1-522	23.952	156+982	£21.01	286+733	C C
•	SKANS PER VILLE	SN01 10H	GBSTJRATS	COLO TR45	ИЗТ ТСН	632174715	SN81 0700	
18710330	A NEISSINA SSAN D.IN .	ZMAAC	NI BSVHA	9∃° 22.4∦ •S	WE NI SVH	A REA PER P	AINEDMOD IEN .	ι
						_ _ -	- YUR TEST RUY -	BRONAWYC

			•			
						389410
			د د د توریخ			
156•2	452°E	760.E	599•12	E£6•EŤ	176*67	XCN

: (CAMINCITANUS/CO JOUR BONAIAS YOSHAD OFE. : AUTUAN FAUTAN CH

> CBIP. : (HA) ROTORA .ARDO YTIUIAUH 18 55 · · · (MEER) ATTUINCE BAILATEM

> > μ

\$45*41 *** GTISC4"00

ENERGY GAS SAVER

TESTING RESULTS

EXHIBITS:

F - Ford Testing Results

G - Detroit Testing Lab, Inc. - letter

H - Detroit Testing Photos

I - Car-Bo-Tech, Inc. Gasoline Mileage Tests - Cadillac

J - Olson Labs, Inc.

K - Car-Bo-Tech, Inc. - Chevrolet

L - Testing Results - Energy Gas Saver and Eliminator

M - Detroit Testing Lab, Inc. - Report of Chemical Analysis

N - Autosense Vehicle Test Report

O - Detroit Mileage Testing

P - Warranty

Q - 1979 Gas Mileage Guide

Z - Installation Instructions

EXHIBIT E

Princeton University school of engineering and applied science

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

JAMES FORRESTAL CAMPUS, PRINCITON, NEW JERSEY 08540

March 10, 1980

Mr. Donald C. Pletts Apt. 203 Country Gardens 120 Sparrow Drive Royal Palm Beach, Florida 33411

Dear Mr. Pletts:

I have reviewed your material. There have been many inventions to improve fuel distribution by preheating the gasoline either electrically or with exhaust gases. A good paper to read on the subject is by:

Hamburg & Hyland: "A vaporized Gasoline Metering System for I-C Engines", Society of Automotive Engineers, 76028

The effect of mixing hot exhaust gas with incoring fuel is to improve the distribution of fuel to the varicus cylinders. This increases horse power at a given throttle setting but reduces maximum horse power available. This reduces HC polution. Better distribution permits leaner operation and can save some fuel. Your must do a fair test (EFA driving cycle) to be credible. With both before and after experiments with properly adjusted carburetors and timeing.

The potential improvemnt of a good mixture lean engine over a normal properly adjusted carbureted engine is about 15%.

/s/ Prof. Enoch J. Durbin

It has long been thought that there was substantial advantages to a vaporized gasoline metering system over the present carburator metering system now found on most automobiles.

One of the major automotive manufacturers through its research and development department confirmed the following advantages of a vaporized gasoline metering system.

- Vapor gasoline metering system provides a very uniform cylinder to cylinder distribution of air - fuel ratio as shown on the chart.
- Essentially eliminates the transit varations in air - fuel ratio due to air flow changes and also load changes.
- Exhibits minimal steady state time flucuations
 in air fuel ratio.

Because of the above three listed facts, the in-line multiple cylinder engine used in automobiles of today can be more substantially leaned with a very much higher air - fuel ration than can the engine with the standard carburator fuel - air mixture. This condition increases gasoline milage.

This more so ideal vapor mixture air - gas ratio improves the exhaust emmission.

£

ω 5

	_ ==== # # #	-][: <u></u> -	INE		-] I <u>-</u>	<u>]]</u> <u>2</u> <u>1</u> t <u></u> _	
		omot Ingt	ive Dhi	ERESE BEACH		i cert il Ifoi	TER Shir	
DATE TIME TEST # TEST SE VEHICLE MODEL YEAR VIN	03-26-81 0905 12239 HFET FORD LTD 1981 SEE BELO	1-1	ENG F CID TRANS CARB, CAT A/C 0D0 Vo	5.00000 5.0L AUTO 1X2V NA YES 5848 .281933	CURB WT INERTIA ARHP IRHP FUEL DYNO EAC VPta	NA 4000 11.9 9.6 GASOLINE 516 1 19.43319	T ADB T AWB REL HUM BARO CVS P DELTA P NOX CF	71.0 58.0 45.0 30.06 61.0 71.0 .896264
PURPOSE.	HFET I	EVICE!		· · ·		• • • • •		. · ·
CVS REV	3 17709	VMIX (3950.96	HIGHWAY 5669 ROI	FUEL EC(LL CTS 24	0NOMY 4282 M1	ILES 10.414	14
AMBIEN HC PPM CO PPM NOX PPM CO2 %	4T BAG 10.290 2.143 .900 .066	. WEIGH		SAMPLE BAN M 16. M 49 RELIMINA XACT ACC	3 974 RY2DATA 10RDAN(20RDAN(20RDAN(20RDAN(HC GF CO GF NOX C E WITH E 27	ASS DETA RAMS 6. RAMS 6. BRAMS 2. BRAMS 2326.	47 25 83 16
HYDROCA GMS/M .0	RBONS I 46	CARBON 1 Gi	MONOXII MS/MI .610	DE OXID	ES OF NI GMS/MI .276	TROGEN	CARBON DI GMS./M 227.11	DXIDE I 9
			нісны	AY CYCLE F	UEL ECONO	2MY		

38.87 MILES PER GALLON
IT DIMOTIVE RESERVE CHUENCE IT INGTON BERCH CENTER IT INGTON BERCH CENTER IT OULD START WITH DEVICE! IT COLD START WITH DEVICE!			HYDROCARBONS GMS/MI .220	AMBIENT BAG HC PPM 11.5 CO PPM 4.5 NO× PPM 1.6 CO2 X .0	CVS REVS 11880	АМЕІЕНТ ВАG НС РРМ 13.3% СО РРМ 1.9% NO× РРМ 1.9% CO2 X .0	CVS REVS 2003	AMBIENT BAG HC PPM 15.50 CO PPM 8.60 NOX PPM 1.20 CO2 X .00	CVS REVS 1172:	PURPOSECVS	VIN VIN VIN VEAR VIN VEAR VIN VIN VIN VIN VIN VIN VIN VIN VIN VIN		
ТОСОЛОЧА ПОСОДА ПОСОДА ПОСОДО ПОСОДА ПОСОДО ПОСО ПОСОДО ПОСОДО ПОСОДО ПОСОДО ПОСО ПОСО ПОСО ПОСО ПОСО ПОСО П	20.492 MILES FER GALLON	UREAN CYCLE FUEL ECONOMY	HEIGHNOT THE EXAMPS ACCORDANCE WITH CHREON MONDOI DER 8500705 05 HILROSEY CHREON DIOXIDE GMS/MI GMS/MI GMS/MI ACCORDING 4.725 . 340 . 340 . 376.049	G SAMPLE EAG MASS DATA 580 HC PPM 22.320 HC GRAMS .494 567 CO PPM 131.146 CO GRAMS 11.001 600 NOX PPM 11.300 NOX GRAMS 11.001 857 CO2.2 DRFI MINION AT. CO2 GRAMS 1144.560	06 VMIX 2629.78006 ROLL CTS 8355 MILES 3.5834	G SAMPLE BAG MASS DATA 380 HC PPM 13.630 HC GRAMS .432 55 CO PPM 39.215 CO GRAMS 5.496 860 NO× PPM 6.900 NO× GRAMS 1.322 660 CO2 % .587 CO2 GRAMS 1456.833	COLD STABILIZED 31 VMIX 4461.89433 ROLL CTS 9173 MILES 3.9042	G SAMPLE BAG MASS DATA 500 HC PPM 65.100 HC GRAMS 2.181 656 CO PPM 647.334 CO GRAMS 55.052 200 NO× PPM 9.200 NO× GRAMS 1.055 669 CO2 X 1.284 CO2 GRAMS 653.803	COLD TRANSIENT 21 VMIX 2610.84636 ROLL CTS 8311 MILES 3.5645	S II COLD START WITH DEVICE!	6,781 ENG F 5.0 CCC CURB WT N/A T ADB 70.0 CID 5.0L INERTIA 4000 T AWB 59.0 TRANS AUTO ARHP 11.9 REL HUM 522 CAT YES FUEL GASOLINE CVS P 61.2 A/C YES INYHO 516 DELTA P 72.0 ODO 5837 EAC 1 NOX CF .91932 We .281536 VPta 18.78625	NTINGTON BEACH CENTER	

ONE OF THE MOST widely accepted techniques for achieving the statutory NO standard of 0.4 gram/mile for automobiles is the "use of a "reduction" catalytic converter. Unfortunately, such devices exhibit a relatively narrow range of air-fuel ratio over which useful conversion efficiency can be realized. This characteristic is illustrated in Figure 1 which shows the conversion efficiency versus air-fuel ratio for a typical noble metal reduction catalyst. It should be pointed out that the so-called three-way catalysts have an even narrower air-fuel ratio range over which efficient operation is possible. To effectively utilize catalytic converters to control NO,, it is therefore necessary to employ a fuel metering system which provides very tight control of air-fuel ratio for both steady state and transient engine operation. A viable approach for obtaining the required tight control is to use feedback from a suitable engine exhaust gas sensor to "trim" an appropriate fuel metering system as

D. R. Hamburg and J. E. Hyland Engineering and Research Stall, Ford Motor Co. EXHIB

TT 31T

မ္တ

Fig. 1-Conversion efficiency versus air-fuel ratio for typical metal reduction catalyst

depicted in Figure 2. (1-3)*

*Numbers in parentheses designate references at end of paper.

-ABSTRACT

A prototype vaporized gasoline metering system is described which utilizes engine exhaust heat to vaporize liquid gasoline prior to being combined with inlet air. It is shown that the system (1) exhibits minimal time fluctuations in air-fuel ratio, (2) essentially eliminates the transient

variations in air-fuel ratio due to load changes, and (3) provides a very uniform cylinder-to-cylinder distribution of air-fuel ratio. The vapor system at the aution of the lean-limit state.

Fig. 2-Block diagram of basic A/F feedback system

BACKGROUND

Ford Motor Company became involved with such a system several years ago during the early development of the TiO, exhaust gas sensor. (4) At that time, the output of a prototype TiO, sensor was used successfully to control the air-fuel ratio produced by a Bendix electronic fuel injection system. As a result of this effort, the feasibility of the feedback concept was established. Because of the inherent complexity and attendant high production costs of fuel injection, however, it was decided to explore feedback using a much simpler fuel metering device. The particular device chosen for this exploration was a modified carburetor having an air-bypass adjustment which could be controlled electronically by the TiO, sensor. A simplified diagram of the basic carburetor showing the air-bypass section is presented in Figure 3. For clarity, actual carburetor details relating to such elements as the main metering system, the idle system, the power enrichment system, etc., are not shown in this diagram.

The air-bypass carburetor was installed on a 351 CID engine in a 1973

MAIN THROTTLE

Fig. 3-Simple air-bypass carburetor

39 Ford Galaxie and evaluated on a chassis dynamometer. A typical recording of the open loop air-fuel ratio versus time as indicated by a TiO₂ exhaust sensor for this configuration operating at a 30 MPH steady-state cruise is shown in Figure 4. When the feedback loop which coupled the exhaust sensor to the air-bypass adjustment was closed and properly compensated to prevent instability, the recording of air-fuel ratio versus time shown in Figure 5 resulted. Examination of this recording reveals that although the long term drift has been eliminated, there is no appreciable reduction in the high-frequency fluctuations in the air-fuel ratio. The reason that feedback is incapable of reducing the highfrequency fluctuations is that the propagation delay through the engine imposes a fundamental limitation on the minimum response time of the closed loop system. To be more explicit, a change in air-fuel ratio occurring at the carburetor takes several engine revolutions befor it can be detected in the engine exhaust

Fig. 4-Open loop air-fuel ratio versus time for air-bypass carburetor operating at 30 mph road load

Fig. 5-Closed loop air-fuel ratio versus time for air-bypass carburetor operating at 30 mph road load

The ability to initiate any trimming of the air-bypass adjustment before several engine revolutions have occurred is therefore impossible, and any attempt to effect the necessary trim too rapidly after the change has been detected will result in an oscillatory condition.

It is thus apparent that since feedback cannot eliminate rapid fluctuations in air-fuel ratio, a fuel metering system should be employed which does not exhibit such fluctuations. Since it is generally believed that these fluctuations are caused to a great extent by random detachment of liquid gasoline from wet manifold and carburetor surfaces (5), it would appear that the difficulty could be circumvented by using a vaporized gasoline metering system such as described below.

GENERAL SYSTEM DESCRIPTION

The basic vaporized gasoline metering system utilizes engine exhaust heat to fully vaporize liquid gasoline entering an exhaust gas heat exchanger. The resulting gasoline vapors pass through a pressure regulating mechanism into the throat of a venturi through which engine intake air flows. The pressure regulating mechanism maintains a zero pressure differential between the gasoline vapors and the intake air at the entry ports to the venturi. This causes the fuel flow to be essentially proportional to airflow and thus produces a nearly constant air-fuel ratio independent of airflow as discussed in the following section. After passing through the venturi, the air and vaporized fuel are homogeneously mixed and subsequently enter the engine intake system through a suitable throttle. In order to compensate for variations in air-fuel ratio arising from changes in temperature, fuel composition, etc., feedback from an exhaust gas sensor is used to vary the area of the fuel metering orifice and thereby automatically maintain the desired air-fuel ratio. Since exhaust heat is generally not available prior to starting the engine, a supplementary heater is employed to vaporize the gasoline required to start and operate the engine until sufficient vapors are available from the exhaust heat exchanger. Provision is made to collect any gasoline condensate which is produced during the warm-up period and recirculate it back to the vaporizer without contaminating the main fuel supply.

EASIC METERING CONCEPT

The basic fuel metering element of

40the vaporized gasoline system is the venturi section shown in Figure 6. Engine intake air flows through this venturi and causes a pressure depression at the throat which draws in vaporized gasoline through the fuel nozzle located in the center of the venturi. When the vaporized gasoline and intake air are properly combined, the resulting homogeneous mixture will flow uniformly to all cylinders of the engine with negligible intake manifold wall-wetting and hence minimal timefluctuations in air-fuel ratio. If properly implemented, the fuel metering venturi will produce an essentially constant air-fuel ratio independent of mass airflow through the venturi, and will thus result in the elimination of air-fuel ratio variations during transient engine operation. The necessary conditions required to produce the constant air-fuel ratio can be determined by examining the following expression which describes the air-fuel ratio for the metering venturi: (6)

The derivation of this equation with definitions of the nomenclature used is given in Appendix A.

Referring to the above expression, if the fuel supply pressure P_{p} is made equal to the air supply pressure P_{A} , then

Fig. 6-Vapor system metering venturi

variations in the air-fuel ratio as a function of the venturi throat pressure P_m (and hence airflow) can be made quite small for the proper choice of the P_{π} range. This is illustrated in Figure 7 which shows air-fuel ratio as a function of airflow for an airflow range of 60 pph to 1200 pph. (This airflow range is typical for a 351 CID engine operating from idle to wide-open throttle.) The venturi cross-sectional area used to derive the plot of Figure 7 was chosen to provide values of P., which were depressed from P_A by 0.1 inches of water at 60 pph and 45 inches of water at 1200 pph. If higher depression values for ${\rm P}_{\rm T}$ were used, the variation in air-fuel ratio would be greater. Before discussing the implications of these small depression values, it should be pointed out that the actual air-fuel ratio established by the metering venturi is a function of the ratio of the air cross-sectional area A_A and the fuel cross-sectional area A_F. Either or both of these areas could thus be used to set the desired air-fuel ratio value as well as to provide a feedback trim mechanism to compensate for temperature variations, etc. In the basic metering venturi shown in Figure 6, adjustment of the fuel cross-sectional area is provided by movement of the tapered pintle rod within the fuel discharge nozzle.

As indicated above, in order for the metering venturi to yield an essentially constant air-fuel ratio independent of airflow, the fuel vapor supply pressure has to equal the air supply pressure, and the venturi throat depression has to be very small for low airflow values. To meet these requirements, a very accurate

Fig. 7-Air-fuel ratio versus mass airflow rate for vapor metering system

fuel pressure regulator is required which is capable of operating at the high temperatures necessary to vaporize gasoline. (A variable area venturi having a constant air-to-fuel area ratio could conceivably be used to relax these requirements, and such a device is being explored.) The pressure regulator selected for use in a laboratory evaluation of the vaporized gasoline metering system is a simple bladder-type regulator whose volume automatically changes to maintain its interior pressure equal to exterior pressure. In use, the bladder would have an input and an output port separated by an appropriate baffle structure, and vaporized gasoline would be supplied to the input port in a coarsely controlled manner so as to keep the bladder partially full. The output port would be connected to the fuel nozzle in the metering venturi and would deliver vaporized gasoline at a pressure equal to that exerted on the bladder. Since the air supply pressure for a conventional internal combustion engine is simply atmospheric pressure (neglecting the cleaner), such a pressure regulating bladder with its exterior surface ex; sed [.]Р_А. to atmospheric pressure will make P_F If an air cleaner is employed, a housing placed over the bladder and reference. to the actual inlet pressure of the metering venturi will insure this condition.

EXPERIMENTAL SYSTEM

41

The basic vaporized gasoline metering concept discussed above has been implemented on a 351W V-8 engine coupled

to a laboratory dynamometer. A diagrammatic representation of the complete system is shown in Figure 8. Referring to this diagram, operation of the system can be described as follows: Fresh gasoline is pressure fed from a main fuel tank to a small holding tank through a conventional float-actuated valve. The liquid gasoline in the holding tank is pumped through an electronically controlled coarse metering valve into a heat exchanger located in the engine exhaust system. The metering valve employed is a conventional electronic fuel injector whose "on" time is automatically controlled to regulate the fuel flow through the heat exchanger and hence the amount of gasoline vapors which are generated. The heat exchanger used is a conically shaped stainless steel tube helix having a total surface area of approximately 70 square inches, and is located inside the normal exhaust pipe just downstream from the "Y".

The gasoline vapors generated in the heat exchanger flow into the variable volume pressure regulator previously discussed and cause the bladder to billow. up. The resulting displacement is sensed by a pickup whose output is fed back to the coarse fuel control and is used to automatically keep the bladder approximately half full of gasoline vapors. The particular bladder employed has a maximum volume of approximately 0.15 cubic foot and is constructed of 1 mil Teflon[®] PFA film which has a melting point of approximately 600° F. Since the gasoline currently being used in the laboratory is completely vaporized at approximately 400° F, the vapor temperature at the pressure regulator outlet is maintained at approximately 420° F by a simple closed-loop exhaust bypass control which regulates the amount of heat supplied to the heat exchanger. Any gasoline which condenses on interior surfaces of the pressure regulator and associated plumbing during warm-up is returned to the small holding tank and is subsequently re-vaporized. In this manner, the heavy gasoline fractions will not build up in the main fuel tank, but will be recirculated through the heat exchanger and finally consumed when the proper operating temperature is reached.

The outlet vapors from the pressure regulator pass through an insulated delivery tube and are discharged coaxially into the throat of the metering venturi. The venturi employed has a throat diameter of 1.3 inches while the fuel discharge nozzle has an orifice diameter of 0.31 inch. The fuel discharge nozzle is heated electrically to prevent cooling by the 42

intake air which would otherwise cause condensation of fuel vapors on the nozzle. A tapered pintle capable of being positioned within the fuel nozzle is used to vary the orifice area and thus the air-fuel ratio. This pintle is connected to a servomechanism which can control the pintle position using feedback from an exhaust gas sensor located in the exhaust system.

The venturi is connected to the engine intake manifold through a mixing/viewing chamber mounted above a conventional butterfly-valve throttle body. The mixing/viewing chamber consists of a seven inch long cylindrical tube attached directly to the venturi exit port and mounted inside a somewhat larger air-tight chamber. The chamber itself, which is physically fastened to both the venturi and the throttle body, contains two viewing windows which make it possible to visually examine the outlet end of the venturi extension tube while the engine is running. At the point where the extens 'n tube connects to the venturi, a circul. swirling section having cant d fins ar ٦đ its circumference and a hole in its ce er is located inside the tube in order to promote mixing of the air and fuel. T particular design allows the pure gaso. he vapors to pass through the center hole avoid condensation on the cool swirling fins*, but imparts sufficient turbulence to the air to encourage downstream mixing of the air and fuel.

In order to expedite the initial fabrication and evaluation of the vaporized gasoline metering system, an electronic fuel injector was installed in the throttle body and is used routinely for cold engine starts. Vapors can be used to start the engine when cold, however, by employing an auxiliary vaporizer such as a battery-powered heater. One such system which was implemented uses a 500 watt electric vaporizer during engine cranking to supply gasoline vapors directly to a metering valve in the throttle body. As soon as the engine starts, a 2 KW electric vaporizer is automatically energized which fills the pressure regulator with gasoline vapors and enables normal fuel metering through the venturi nozzle instead of the throttle body. After approximately 20 seconds of operation using the electric

*At atmospheric pressure, pure gasoline vapor has a dew point of ≈ 400 °F while a mixture of air and gasoline vapor with an air-fuel ratio of 15:1 has a dew point of \approx 125°F. 43

vaporizer, sufficient exhaust heat is available to permit operation of the normal exhaust system vaporizer in place of the electric unit.*

INITIAL EXPERIMENTAL RESULTS

The initial laboratory evaluation of the vaporized gasoline metering system was performed to verify the anticipated system advantages previously noted in this paper. To be specific, it was anticipated that the open loop vaporized gasoline system would (1) exhibit minimal steady state high-frequency** time-fluctuations in air-fuel ratio, (2) essentially eliminate the transient variations in air-fuel ratio due to airflow changes, and (3) provide a very uniform cylinder-to-cylinder distribution of air-fuel ratio. The evaluation, which was performed using a 351W V-8 engine coupled to an absorption dynamometer, did in fact substantiate the expected results. Specifically, the open loop vapor system exhibited steady state time-fluctuations in air-fuel ratio of less than + 1% for a wide range of engine operating loads and air-fuel ratios. Furthermore, the system displayed transient variations in air-fuel ratio of less than + 1% for step changes in airflow exceeding 400%. Finally, the system consistently provided cylinder-to-cylinder air-fuel ratio distributions of within + 0.75% for cylinders fed from each plane of the dual plane manifold used on the 351W engine.

The steady state and transient air-fuel ratio values reported above were measured with a TiO₂ exhaust gas sensor having a time constant of approximately 0.25 seconds. (7) A typical time recording of the air-fuel ratio along with the corresponding engine torque is shown in Figure 9. In an effort to corroborate these results, similar measurements were made using an NDIR CO analyzer to indicate air-fuel ratio variations. Since the response time of the CO analyzer was much slower than the TiO, sensor, the resulting recordings did not reveal the rapid highfrequency fluctuations in air-fuel ratio observed with the TiO, sensor, but did

*The electric vaporizer has been used for "chokeless" cold starts at 70°F ambient temperature and air-fuel ratios near stoichiometry.

**In this context, high-frequency refers to values which are too high to be eliminated by feedback from an exhaust gas sensor.

Fig. 9-Air-fuel ratio and engine torque versus time for 351W engine operating at 2000 rpm with open loop vapor system

show longer term fluctuations due to temperature and airflow variations. typical time recording of such an air characteristic together with the corresponding engine torque is shown Figure 10. The use of feetback from exhaust gas sensor to eliminate the low-frequency fluctuations in air-fue ratio has been successfully demonstra ind with the vapor system, and a detailed discussion of the feedback work will be included in a future paper.

The cylinder-to-cylinder air-fuel ratio distribution values reported were obtained using specially shaped sample probes located just downstream from each exhaust valve and connected through appropriate switching valves to conventional emission monitoring equipment. A typical cylinder-to-cylinder air-fuel ratio distribution achieved with the vapor system is shown in Figure 11. For comparison, a conventional liquid carburetor having the same venturi area and using the same mixing/viewing chamber as the vapor system was substituted for the vapor system, and a cylinder-tocylinder distribution was obtained for the same engine operating condition. The resulting characteristic, shown in Figure 12, clearly illustrates the distribution advantage of a vapor system.

LEAN-LIMIT EXPERIMENTAL RESULTS

The vaporized gasoline metering system was originally devised as a scheme to provide very tight control of air-fuel ratio at values slightly rich of stoichiometry for use with NO_x catalysts. This is a very important application of

Fig. 10-Air-fuel ratio and engine torque versus time for 351W engine operating at 1500 rpm and 2000 rpm with open loop vapor system

the vapor system and should be pursued further. However, the ability of the vapor system to provide a very uniform cylinder-to-cylinder distribution of air-fuel ratio with minimal timefluctuations suggests that the system might also be useful in extending the lean misfire limit of a multi-cylinder engine. This is apparent since the engine operation would not be limited by a single "lean" cylinder as is the usual case. Instead, all cylinders would consistently receive the same air-fuel ratio and hence would be uniformly capable of operating at leaner air-fuel ratios. The use of extended lean-limit operation is an intriguing approach to the control of exhaust emissions, and is based on the relation of such emissions to air-fuel ratio shown qualitatively in Figure 13.

In order to evaluate the potential advantages of lean-limit vapor system operation, a CVS simulation method developed at Ford Motor Company was employed. (8) Basically, this technique utilizes emission and fuel consumption data obtained from steady state engine-dynamometer tests at specific speedtorque points to analytically predict the performance in a complete CVS cycle. The actual speed-torque points used are appropriately chosen to correspond to a particular powertrain-vehicle combination. The fundamental idea behind the simulation technique is that when an actual vehicle is operated over a CVS cycle, a unique trajectory or map is defined in the engine speed-torque-time space. The technique assumes that engine performance along this trajectory can be approximated by steady state operation at discrete speed-torque points for specific intervals of time. The particular speed-torque-time map

Fig. 11-Air-fuel ratio versus cylinder number for 351W engine operating at 2000 rpm, 40 ft-1b with vapor system

Fig. 12-Air-fuel ratio versus cylinder number for 351W engine operating at 2000 rpm, 40 ftlb with conventional carburetor

Fig. 13-Qualitative relationship of HC,NO_x, and CO emissions to air-fuel ratio

The experimental data obtained in the lean-limit evaluation of the vapor system were analytically processed and used to produce individual curves of HC and NO emissions (in grams) and fuel consumption (in pounds) versus air-fuel ratio for each speed-torque-time point explored. (Since the CO emissions were essentially invariant for the lean air-fuel ratios examined, CO emissions were not included in these plots.) A typical curve of HC, NO_, and fuel consumption versus air-fuel ratio obtained in the lean-limit evaluation is shown in Figure 15. The complete set of curves for all the speedtorque-time points explored is presented in Appendix B. It should be emphasized that the emission and fuel consumption values given in each curve are calculated from steady state measurements to correspond to the time expended at each speed-torque point as dictated by the CVS simulation technique.

Each of the curves presented in Appendix B was examined to determine a "lean-limit" air-fuel ratio. In general, the particular air-fuel ratio chosen for each curve was a compromise between decreasing NO values and increasing HC and fuel consumption values. The results of this determination are tabulated in Figure 16 for the MBT situation and in Figure 17 for the retarded spark situation. The values used for the 1000 RPM, - 10 foot-pound point in these tables were estimates based on previous work with other systems.

Fig. 15-HC, NO_{χ} , and fuel consumption versus air-fuel ratio for 351W engine operating at 1400 rpm, 130 ft-1b for 118 s with vapor system and MBT timing

1200 RPM

90 77-18

208 SEC

50 FT-1.8

200

150

100

50

Fig. 14-Speed-torque-time map for CVS simulation of a 351W engine in a 5500 lb vehicle

1200 851 SO FT-LB

43 346

00.8

130 PT L

1800 RPN

66 SEC

employed for the lean-limit evaluation of the vapor system is shown in Figure 14. This map, with the particular segmentation shown, was developed for a 351W engine in a 5500 pound vehicle. Such an enginevehicle combination was chosen for the simulated CVS cycle evaluation of the vaporized fuel metering system because comparable data using both conventional carburetion and electronic fuel injection were available from earlier work performed at Ford.

The previously described vapor system implemented on the 351W engine-dynamometer setup was operated at each of the speedtorque points specified in Figure 14 with the exception of the 1000 RPM, - 10 foot-pound point. This particular point could not be run because it required the use of a motoring dynamometer which was not available for the evaluation. At each speed-torque point explored, measurements of fuel consumption as well as CO, CO,, HC, NO, and O, exhaust concentrations were obtained for various values of air-fuel ratio in the lean region. At each air-fuel ratio, the measurements were made for both MBT ignition timing as well as for a retard from MBT timing. The amount of retard used was arbitrarily chosen to give a torque loss of approximately 7% from the MBT value. The resulting torque loss was compensated for by increasing the throttle opening to give the correct torque value. In order to provide adequate combustion Initiation at the lean air-fuel ratios, a high energy ignition system* with 0.100 in. gap spark

^{*}The particular ignition system employed was a Ferroresonant Capacitive Discharge Ignition System developed at Ford Notor Company. (9)

46

SPEED (HPH)	1040UE (FT-LB)	TINE ISECI	A/F	нс (сж5)	HO1 (GH3)	C0 (CN3)	FUEL (LB3)			
600	30	364	18.0	6 6 0	.24	2.70	.333			
800	10	79	15.7	2.34	. 07	.56	.07 9			
1000	-10	82	15.9	3 49	. 015	5.61	.093			
1000	50	406	20.0	8.10	1.42	5.94	.727			
1200	90	208	22.0	6.60	1.90	5.71	.636			
1400	130	118	21.8	2.95	3.13	4.84	.544			
1800	70	65	215	1.60	.89	3.08	270			
1800	150	49	22.0	230	2.91	2.88	.321			
TOTALS 33.98 10.575 31.32 3.003										

Fig. 16-Emission and fuel consumption values used for CVS cycle simulation of 351W engine with vapor system in 5500 lb vehicle-lean limit with MBT spark

							•
SPEED (RPM)	TOROUE (FTLB)	TIME (SEC)	A/F	HC (GNS)	NO (GM3)	CO (GM3)	FUEL (LBS)
600	30	364	180	4.68	.11	2.70	.379
800	10	79	16.7	.92	. 03	.56	160.
1000	-10	82	15.9	3.49	. 015	5.61	.093
1000	50	406	19.6	7.71	1.02	5.94	.761
1200	90	208	21.0	3.88	1.60	5.71	.664
1400	130	118	21.5	2.50	2.00	4.B4	.560
1800	70	66	21.3	1.30	.70	3.08	275
1800	150	49	22.0	1.71	1.54	2.88	.331
						~	

TOTALS 26.39 7.015 31.32 3154

Fig. 17-Emission and fuel consumption values used for CVS cycle simulation of 351W engine with vapor system in 5500 lb vehicle-lean limit with retarded spark

The complete CVS cycle prediction for the lean-limit vapor system operation was. found by dividing the total HC, NO, CO, and fuel consumption values shown in Figures 16 and 17 by the total distance covered in the CVS cycle. The results of this prediction, which apply to a 351W engine in a 5500 pound vehicle, are shown in Figure 18 for both the MBT timing condition and the retarded timing condition. Also included in this figure for comparison are CVS predictions for the same engine-vehicle combination with (1) a vapor system having a constant air-fuel ratio of 19:1, (2) a conventional carburetor having a 1974 production calibration, and (3) an electronic fuel injection system having air-fuel ratio and timing optimized at each speed-torque point to give best fuel economy consistent with reasonable emission levels. Comparison of the results presented in Figure 18 indicates that lean-limit vapor system operation potentially provides

CONFIGURATION	HC (GM/MI)	NO 1 (GM / MI)	C O (GM/MI)	FUEL (MPG)	
VAPOR SYSTEM (Leon Limit-MBT).	4.6	1.4	4.2	15.3	
VAPOR SYSTEM (Lean Limit-Retard)	3.5	.94	4.2	14.5	
VAPOR SYSTEM {A/F≈19:1-MBT}	3.4	4.7	4.2	15.3	
VAPOR SYSTEM (A/F≈19:1-Retard)	2.7	2.2	4.2	14.6	
BASELINE CARB (Production Colib)	2.2	3.9	5.1	12.4	
EFI (Best Economy)	4.3	3.4	4.4	13.9	ļ

Fig. 18-CVS cycle predictions for various configurations used with a 351W engine in a 5500 1b vehicle

appreciable improvements in fuel economy and NO cmissions, but at the expense of higher HC levels.

SUMMARY

Evaluation of the vaporized gasoline metering system has shown that the system exhibits numerous beneficial characteristics which make it very appealing for use with conventional internal combustion engines. To be specific, it has been demonstrated that the vapor system (1) exhibits minimal steady state high-frequency fluctuations in air-fuel ratio, (2) displays negligible transient variations in air-fuel ratio for changes in engine load, (3) provides very uniform distribution of air-fuel ratio from cylinder to cylinder, and (4) enables cold engine starts at air-fuel ratios close to stoichiometry using vaporized gasoline supplied from an auxiliary electric vaporizer.

The first two characteristics listed above will permit very tight control of air-fuel ratio when coupled with feedback from an exhaust gas sensor. The third characteristic, in addition to the first two, will enable extended lean-limit operation which in turn will result in improvements in fuel economy and NO_x emissions as previously shown. In order for lean-limit operation to be viable, however, a practical method of lowering the HC levels as well as programming the air-fuel ratio as a function of engine load must be provided. The fourth churacteristic listed above should result

in significantly lower emission levels during the warm-up period following a cold engine start.

CONCLUSIONS

The favorable characteristics which have been demonstrated with the vaporized gasoline metering system justify its continued development as an alternative to more conventional fuel metering systems. It should be emphasized that the system described in this paper is an experimental one, however, and many unexplored areas must be investigated before production feasibility can be established. These unexplored areas include actual vehicle emission testing, low and high temperature starting and operation, practical component design and durability, and overall system safety.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance and collaboration in this project of L. R. Foote, W. D. Plensdorf, and J. D. Zbrozek of the Ford Motor Company Engineering and Research Staff.

REFERENCES

- 1. J. Rivard, "Closed Loop Electronic Fuel Injection Control of the Internal Combustion Engine." Paper 73005 presented at the SAE International Automotive Engineering Congress, Detroit, January 1973.
- 2. R. Zechnall, G. Baumann, and H. Eisele, "Closed Loop Exhaust Emission Control System with Electronic Fuel Injection." Paper 730556 presented at the SAE Automobile Engineering Meeting, Detroit, May 1973.
- 3. M. Hubbard, Jr., and J. D. Powell, "Closed Loop Control of Internal Combustion Engine Exhaust Emissions." Stanford University Report, SUDAAR No. 473, February 1974.
- 4. T. Y. Tien, H. L. Stadler, E. F. Gibbons, and P. J. Zacmanidis, "TiO2 as an Air to Fuel Ratio Sensor for Automobile Exhausts." The American Ceramic Society Bulletin, Vol. 54, No. 3, March 1975.
- 5. A. A. Zimmerman, L. E. Furlong, H. F. Shannon, "Improved Fuel Distribution -A New Role for Gasoline Additives." Paper 720082 presented at the SAE International Automotive Engineering Congress, Detroit, January 1972.

- 6. J. E. Hyland, "Venturi Metering Considerations for a Vapor Carburetor." Ford Scientific Research Staff Technical Report (to be published).
- 7. E. F. Gibbons, A. H. Meitzler, L. R. Foote, P. J. Zacmanidis, and G. L. Beaudoin, "Automotive Exhaust Sensors Using Titania Ceramics." Paper 750224 presented at the SAE International Automotive Engineering Congress, Detroit, February 1975.
- P. N. Blumberg, "Powertrain Simulation: A Tool for the Design and 8. Evaluation of Engine Control Strategies." Paper to be presented at the SAE International Automotive Engineering Congress, Detroit, February 1976.
- 9. J. R. Asik and B. Bates, "The Ferroresonant Capacitor Discharge Ignition (FCDI) System: A Multiple Firing CD Ignition with Spark Discharge Sustaining Between Firings." Paper to be presented at the SAE International Automotive Engineering Congress, Detroit, February 1976.

APPENDIX A

VENTURI METERING CONSIDERATIONS FOR A VAPOR CARBURETOR

NOMENCLATURE

- A/F = the air-fuel ratio
- A = the cross-sectional area at the venturi throat
- AA = the air cross-sectional throat area
- A. F = the fuel cross-sectional throat area
- A_O = the cross-sectional area at the zero velocity state
- c_p = the fluid specific heat at constant pressure
- ⁸c = a proportionality constant
- h_o = the enthalpy of the fluid at zero velocity
- the enthalpy of the fluid at the h venturi throat
- = a constant = .2231 for gasoline and ĸ air
- = the mass of the fluid m
- = the fluid mass flow rate Ň
- Ň. = the air mass flow rate
- N_F P = the fuel vapor mass flow rate
- = the pressure at the venturi throat
- = the air pressure at the zero PA
- velocity state (supply pressure) P_{F} = the fuel pressure at the zero
- velocity state (supply pressure) = the pressure at the zero velocity
- state

= the pressure at the venturi throat

48

- = the individual gas constant
- = the gas constant for air

R

- = the gas constant for fuel vapor
- R P.A T = the absolute downstream or throat temperature
 - = the absolute upstream air temperature
- T_F = the absolute upstream fuel vapor temperature
- то = the absolute upstream temperature = the internal energy at the venturi
- throat
- = the internal energy at the zero -; uo velocity state
- ν = the velocity at the venturi throat
- = the velocity at the stagnation point
- = the volume at the venturi throat
- = the volume at the zero velocity vo state
- z = the elevation at the venturi throat = the elevation at the zero velocity
- Ζ, state
- = the specific heat ratio (C_p/C_v) for Υ gas
- YA = the specific heat ratio (C_p/C_v) for air
- = the specific heat ratio (C_p/C_v) for ۲_F fuel vapor
- = the density at the venturi throat ٥
- = the density at the zero velocity ρ n
- state

SUBSONIC MASS FLOW THROUGH A VENTURI METER

The behaviour of the mass flow per unit time of a gas through a venturi meter can be predicted given the following assumptions: 1) the fluid in question is assumed to obey the perfect gas law and 2) the flow may be treated as isentropic one dimensional steady flow of a compressible fluid. Such a system is shown in Figure A-1 where the subscripted quantities refer to conditions in a large reservoir upstream of the venturi and the unsubscripted quantities refer to conditions at the throat of the venturi.

The first law of thermodynamics (conservation of energy) states that

$$u_{o} + P_{o}V_{o} + \frac{v_{o}^{2}}{2g_{c}} + mg_{c}Z_{o} =$$

$$u + PV + \frac{v^2}{2g_c} + mg_c Z$$
 (A-1)

For the system being evaluated,

Fig. A-1-Basic venturi meter

 $Z_{n} = Z$

Using these conditions and the definition of enthalpy (h = u + PV), Equation A-1 reduces to

$$h_{o} = h + \frac{v^{2}}{2g_{c}}$$
 (A-2)

For a perfect gas, the following conditions hold:

$$C_{p} = \frac{h_{o} - h}{T_{o} - T}$$

and

$$C_{p} = \frac{\gamma}{\gamma - 1} R$$

Furthermore, for a perfect gas during an isentropic process, it can be shown that

$$\frac{T}{T_{o}} = \left(\frac{P}{P_{o}}\right)^{\frac{\gamma-1}{\gamma}}$$

Substituting these relationships into Equation A-2 and solving for v yields

$$v = \left\{ \frac{2g_{c} \gamma RT_{o}}{\gamma - 1} \left[1 - \left(\frac{P}{P_{o}} \right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{\frac{1}{2}}$$
 (A-3)

The continuity equation (conservation of mass) states that

Substituting Equation A-3 into Equation A-4 yields

 $\rho_{0}v_{0}A = \rho_{0}vA = \dot{M}$

$$\dot{M} = \rho A \left\{ \frac{2g_{c}\gamma RT_{o}}{\gamma - 1} \left[1 - \left(\frac{P}{P_{o}}\right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{\frac{1}{2}}$$
(A-5)

Again for a perfect gas during an isentropic process, it can be shown that

$$=\frac{\frac{P_{o}}{RT_{o}}\left(\frac{P}{P_{o}}\right)^{\frac{1}{\gamma}}$$

Substituting this relationship into Equation Λ -5 and rearranging gives the desired form of the mass flow rate equation:

$$\tilde{M} = \frac{\frac{P_oA}{T_o} \left[\frac{2g_c\gamma}{(\gamma - 1)R} \right]^{\frac{1}{2}}}{\left[\left(\frac{P}{P_o} \right)^{\frac{2}{\gamma}} - \left(\frac{P}{P_o} \right)^{\frac{\gamma+1}{\gamma}} \right]^{\frac{1}{2}}}$$
(A-6)

Equation A-6 is only valid for subsonic flow; i.e., when the ratio of static to total pressure at the venturi throat (P/P_0) is greater than the critical pressure ratio.* When the critical pressure ratio is reached, the velocity of mass flow at the venturi throat becomes sonic and, by definition of sonic flow, the maximum mass flow rate for fixed area and upstream conditions is attained.

METERING PRINCIPLE APPLIED TO TWO GAS PHASE FLUIDS

From Equation A-6, the mass flow rate equation for air through a venturi meter is

*The critical pressure ratio is defined as

$$\dot{M}_{A} = \frac{P_{\Lambda}A_{A}}{T_{\Lambda}^{1/2}} \left[\frac{2g_{c}Y_{\Lambda}}{(Y_{A} - 1)R_{A}} \right]^{\frac{1}{2}}$$

$$\cdot \left[\left(\frac{P_{T}}{P_{A}} \right) \frac{2}{\gamma_{A}} - \left(\frac{P_{T}}{P_{A}} \right) \frac{\gamma_{A}^{+1}}{\gamma_{A}} \right] \frac{1}{2}$$
 (A-7)

When air flows through a venturi with a constant upstream pressure P_A , Equation A-7 states that a pressure $P_T < P_A$ is experienced at the throat of the venturi. As the mass flow rate \dot{M}_A increases, the pressure at the throat decreases; this is the basis of the metering principle of the venturi. Referring to Figure 6, if a fuel vapor nozzle is placed with its opening at the venturi throat, the throat pressure P_T = f(\dot{I}_A) can be used to meter the mass flow rate of fuel vapor as a function of mass flow rate of air. Accordingly, from Equation A-6, the mass flow rate of fuel vapor is

$$\dot{H}_{F} = \frac{P_{F}A_{F}}{T_{F}^{1/2}} \left[\frac{2g_{C}\gamma_{F}}{(\gamma_{F}^{-1})R_{F}} \right]^{\frac{1}{2}} \cdot \left[\left(\frac{P_{T}}{P_{F}} \right)^{\frac{2}{\gamma}}F - \left(\frac{P_{T}}{P_{F}} \right)^{\frac{\gamma_{F}^{+1}}{\gamma_{F}}} \right]^{\frac{1}{2}}$$
(A-8)

Since the air-fuel ratio at the venturi throat is equal to the ratio of the mass of air to the mass of fuel, it follows from Equations A-7 and A-8 that

$$\frac{A}{F} = \frac{\dot{H}_{A}}{\dot{H}_{F}} = \left(\frac{P_{A}}{P_{F}}\right) \left(\frac{A_{A}}{A_{F}}\right) \left(\frac{T_{F}}{T_{A}}\right)^{\frac{1}{2}} \left[\frac{\gamma_{A}(\gamma_{F}-1)R_{F}}{\gamma_{F}(\gamma_{A}-1)R_{A}}\right]^{\frac{1}{2}}$$
$$\cdot \left[\frac{\left(\frac{P_{T}}{P_{A}}\right)^{\frac{2}{\gamma}}A - \left(\frac{P_{T}}{P_{A}}\right)^{\frac{\gamma_{A}+1}{\gamma_{A}}}}{\left(\frac{P_{T}}{P_{F}}\right)^{\frac{2}{\gamma}}F - \left(\frac{P_{T}}{P_{F}}\right)^{\frac{\gamma_{F}+1}{\gamma_{F}}}}\right]^{\frac{1}{2}}$$

Assuming that γ_A and γ_F are constant over the temperature range of interest, the following constant is defined:

$$K = \left[\frac{\gamma_A(\gamma_F - 1)R_F}{\gamma_F(\gamma_A - 1)R_A}\right]^{\frac{1}{2}}$$

Therefore, the air-fuel ratio for a metering venturi is

$$\frac{\lambda}{F} = \kappa \left(\frac{A_{A}}{\kappa_{F}}\right) \left(\frac{P_{A}}{P_{F}}\right) \left(\frac{T_{A}}{T_{F}}\right)^{-} \frac{1}{2} \left[\left(\frac{\frac{P_{T}}{P_{A}}}{\frac{P_{A}}{P_{F}}}\right)^{\frac{2}{\gamma}} - \left(\frac{\frac{P_{T}}{P_{A}}}{\frac{P_{F}}{P_{F}}}\right)^{\frac{\gamma}{\gamma}} - \left(\frac{\frac{P_{T}}{P_{F}}}{\frac{P_{F}}{P_{F}}}\right)^{\frac{\gamma}{\gamma}} \right]^{\frac{1}{2}}$$

APPENDIX B

The curves of HC, NO_x, and fuel consumption versus air-fuel ratio obtained in the lean limit evaluation of the 351W engine equipped with the vaporized fuel metering system are shown in Figures B-1 through B-14. These figures are presented on the following pages.

Fig. B-1-600 rpm, 30 ft-1b, 364 s operating point with ADT timing

Fig. B-2-600 rpm, 30 ft-1b, 364 s operating point with retarded timing

Fig. B-3-800 rpm, 10 ft-1b, 79 s operating point with MBT timing

Fig. B-4-800 rpm, 10 ft-lb, 79 s operating point with retarded timing

Fig. B-5-1000 rpm, 50 ft-1b, 406 s operating point with NBT timing

ig. B-6-1000 rpm, 50 ft-1b, 406 s operating to int with retarded timing

Fig. B-7- 1200 rpm, 90 ft-lb, 208 s operating point with retarded timing

Fig. B-8-1200 rpm, 90 ft-1b, 208 s operating point with retarded timing

Fig. B-9-1400 rpm, 130 ft-1b, 118 s operating point with MBT timing

Fig. B-10-1400 rpm, 130 ft-1b, 118 s operating point with retarded timing

Fig. B-11-1800 rpm, 70 ft-1b, 66 s operating point with retarded timing

51 .

Fig. B-12-1800 rpm, 70 ft-1b, 66 s operating' point with retarded timing

EXHIBIT G

53. Detroit Cesting Baboratory, Inc.

5-20 NORTHEND AVENUE — ОАК РАЛК, МІСНІGAN 48237 — (313) 398-2100 — ТЕLЕХ 73-5459

. .

May 15, 1978

Car-Bo-Tech, Inc. 145 Ocean Avenue Palm Beach Shores, Florida 33404

Attn: Suzanne Pletts, Executive Vice President

Dear Mrs. Pletts:

In confirmation of our telephone conversation of May 12, 1978, with Mr. Donald Pletts, the Car-Bo-Tech unit submitted by you on a 1977 Chevrolet Caprice for testing was tested as received and was not disassembled or removed from the test car.

The unit does not harm the engine in any way foreseen by us in our testing and inspection.

Yours truly,

Leslie T. Viland

Project Engineer

William R. Martin, Manager Mechanical & Hydraulic Testing

L'IV/WRM/jk

"Energy-Gas-Saver"

CAR-BO-TECH, INC.

Phone 842-8558

145 Ocean Drive #502 Palm Beach Shores, Florida 33404

October 30, 1976

GASOLINE MILEAGE TESTS

1970 Cadillac Fleetwood

Testing was conducted by the Company, and usually with one or more passengers as witnesses, for the purpose of testing gasoline mileage. Since the gas mileage tests may be verified by anyone who would care to ride in one of the test vehicles only significant results are being reported. Over 10,000 miles were driven in the 1970 Cadillac Fleetwood while doing the gasoline tests. The gallon bottle test was deemed by the Company to be the most accurate and was conducted on the highways in actual traffic. The driver turns off the fuel pump line and allows the gas to flow into the carburetor from the gallon bottle. When the gallon is completely used the engine stops and the car rolls to a stop and the mileage is recorded. Tests were conducted in many types of conditions. As the Company's product was improved so was the improvement in gasoline mileage and also better exhaust emission resulted.

On October 14, 1976 the latest casted unit on the 1970 Cadillac obtained 19.4 miles on one gallon of gas. Testing conditions were ideal. This unit is the casted unit that will go into production to be used on General Motors automobiles with 4-barrel carburetors.

The best mileage obtained on the last prototype model (quadrojets) before casting was 19.1 miles on one gallon of gas. The average mileage of tests on this model was 18.6 per gallon.

Regular gas (89 octane) was used on all of the above tests. High octane tests were conducted with no appreciable improvement in the mileage or drive ability on the 1970 Fleetwood Cadillac.

A series of mileage tests were conducted with the Cadillac test car as follows on July 6. 1976.

Auto with original carburetor, coil, wires, but in as near perfect tune as possible but without the Company's product: Regular gas 12.6 miles on one gallon of gas: Unleaded gas 11.8 miles on one gallon of gas.

The original gas mileage test done by the Company in 1975 on this Cadillac Fleetwood with the original equipment produced 12.6 miles on on gallon of gas.

"Energy-Gas-Saver"

CAR-BO-TECH, INC. 145 Ocean Drive #502 Palm Beach Shores, Florida 33404

55 -

Gasoline Mileage Tests October 30, 1976 • Page 2

New radial tires were added to the car as well as new shocks. There was no increase in gasoline mileage. Many tests were conducted which produced 17 to 18 miles per gallon.

Summary of Gasoline Mileage Results using Regular Gasoline on Highway

1970 CADILLAC

Car	with	original	l equipme	ent	12.7	miles	on	one	gallon
									of gas
Car	with	Company	product	installed	19.4	miles	on	one	gallon
									of gas
Car	with	Company	product	installed	19.1	miles	of	one	gallon
		,							of gas

TASK? 75

OLSCN LABS, INC. EXHAUST EMISSIONS HOT 505 1975 MASS TEST SITE 1? 2, . MODEL? CHEVROLET, CLASS? CLASSIC, LIST /? . FUR#? 1, DATE? 2-7-78, CVS#? 407-01,, PROJ#? DTL,, WET BULB? 52, DRY BULB? 72, BAROM-C? 29.54, CVS INPUT VOL/REV? .2816. TRANS COLD PEVS? 10531, INLT PRES? 40.2, INLT TMP? 110, STAB COLD REVS? O, INLT PRES? O, INLT TMP? O, TRANS HOT REVS? O, INLT FRES? O, INLT TMP? 0, ABS. H= 025.30 HUCF= 00.810 VMIX= 00000 . 00000 VMIX= 02440 VMIX= BAG READINGS IN CONC TRANS COLD BACKGROUND HC? 8.10, CO? 4.62, CO2? .054, NOX? 0,, SAMPLE HC? 284.10, CO? 1452.08, CD2? 1.607, NOX? 200.45,, STAB COLD BACKGROUND HC? 0, CO? 0, CO2? 0, NOX? 0,, SAMPLE HC? 0, CO? 0, CO2? 0, NOX? 0,, TRANS HOT BACKGROUND HC? 0, CO? 0, CO2? 0, NOX? 0,, SAMPLE . HC? 0, CO? 0, CO2? 0, NOX? 0,, MASS EMISSIONS IN GM TRAN COLD 01963 NOXC= 01.47 NOX= 026.49 HC= 011.04 CO= 116.51 CO2= TAB COLD HC= 000.00 CO= 000.00 CO2= 00000 NOXC= 000.00 NOX= 00.00 TRANS HOT HC= 00000 CC= 000.00 CO2= 00000 NOXC= 000.00 NOX= 000.00 SJM SUMMARY - EXHAUST EMISSIONS IN GRAMS/MILE CO2=546.80 NOX=5.9805 NOX=7.378 HC=3.0752 CO=32.454 MPG= 16.092

TASK? 75 OLSON LABS, INC. EXHAUST EMISSIONS HOT 505 1975 MASS TEST SITE #? 2, MODEL? CAP., CLASS? CHEV, LIST #? 1, RUN#? 1, DATE? 2/23/78, CVS#? 407-01,, PROJ#? DTL,, WET BULB? 54, DRY BULB? 76, BAROM-C? 29.02, CVS INPUT VOL/REV? .2819, JRANS COLD REVS? 10533, INLT PRES? 39.5, INLT TMP? 111, STAB COLD REVS? , INLT PRES? , INLT TMP?, , TRANS HOT REVS? , INLT PRES? , INLT TMP? AB5. H= 027.53 HUCF= 00.817 VMIX= 02396 VMIX= 00000 VMIX= 00000 BAG READINGS IN CONC TEANS COLD BACKGROUND HC? 10.9, CO? 2.31, CO2? .037, NOX? .1,, SAMPLE HC? 71.7, CO? 1101.56, CO2? 1.618, NOX? 59,, STAB COLD BACKGROUND HC? , CO? , CO2? , NOX? ,, SAMPLE HC? , CD? , CD2? , NOX? ,, TRANS HOT BACKGROUND HC? , CO? , CO2? , NOX?-,, SAMPLE HC? . CO? . CO2? K. NOX? .. MASS EMISSIONS IN GM TRANS COLD HC= 002.43 CO= 086.87 CO2= 01970 NOXC= 006.25 NOX= 007-64 STAB COLD 000.00 NOX= 000.00 HC= 000.00 CO= 000.00 CO2= NOXC= 00000 TRANS HOT 000.00 NOX= 000.00 00000 NOXC= HC= 000.00 CO= 000.00 CO2= SUMMARY - EXHAUST EMISSIONS IN GRAMS/MILE CO = 24.198 $CO_2 = 548.7465$ $NOX_{=} 1.741$ HC= 0.68 MPG = 16.6

HIGHWAY DRIVING CYCLE FOR FUEL ECONOMY

SITE 1? 2, DATE? 2-23-78, MAKE?, MODEL?, YEAR?, LICELSE 1?, STATE?, ODOMETER?, EUNI? 28, CVS1? 407-01, PROJ1? DTL, WET BULB? 54, DEY BULB? 76, BAROM-C? 29.01,

CVS INPUT

VOL/REV? .2818.

REVS? 15921, INLT PRES? 39.9, INLT THP? 111, AB5. H= 027.56 HUCF= 00.817 VMIX= 03535

EAG READINGS IN CONC

BACKGROUND HC? 10.70, CO? 4.20, CO2? .036,

SAMPLE HC? 68.30, CO? 419.70, CO2? 2.619,

MPG= 01/8.42

EXHIBIT J Les and a second

TASK? 2. TASK? 75

3

OLSON LABS, INC.

EXHAUST EMISSIONS 1975 MASS TEST SITE #7 2, NODEL? CAP .. CLASS? CHEV, LIST #? 1. RUN#? 1. DATE? 2/23/78, GUS#? 407-01,, PREJ#? DTL,, VET BULB? 54. DRY BULB? 76. BARCH-C? 29.00. CUS INPUT VOL/REV? .2919, TRANS COLD REVS? 10533, INLT PRES? 39.5, INLT THE? 111, STAB COLU REVS? , IGUT PRES? , INLT THP? , TRANS HOT 5 10 M A REVS? , INLT PRES? , INLT THP? ... AB5. H= 027.53 HUCE= 00.817 00000 =X1MV 00000 =X1MV VMIX= 02396 BAG READINGS IN CONC. TRANS COLD BACKGROUND HC? 10.9, CO? 2.31, CO?? .037, NOX? .1., SAMPLE HC? 71.7, CU? 1101.56, CO2? 1.618, NOX? 59,, STAB CULD BACKGROUND HC? , CO? , CO2? , NOX? ,, SAMPLE HC? , CU? , CU2? , NGX? ,, TRANS HUT BACKGRCUND HC3 ' CO3 ' CO53 ' NOX3 '' SAMPLE HC? , CU? , CO2? K, NUX? ,, MASS EMISSIONS IN GM TRANS COLD HC= 002.43 CO= 086.57 CO2= 01970 NOXE- 005.25 NOX= 007.64 STAB COLD 00.000 NICKE HC# 00-139 CO# 04+980 CO2# 0112+9 NOYC= 00+358 NOY= 00+435

6¹²⁵

59 -

MID-SIZE CARS

	Fue	et i						•	Manuf Stures	Fuel	}
Manufacturers	Econo	my		Vehicle Des	cription	1			Manufacturers	Econom	//
Menulacturer Gar Line	Estimated MPG	Fuel Costs		Engline CCID/Cy! Type	Transmission	Fuel System	Body Type Body Type Interior Spece Passenget/ Trunk or Cargo(Cu. Ft)		Manufacturer Car Line	Estimated VPG Average Annua Fuel Costs	
						-1-	1	•	PONTIAC	1	
FORD	20 55 20 55	25 25	140(2.3L)/4 140(2.3L)/4		M4 A3	2	2DR-95/17 40R-96/17	•	GRAND PRIX	16 \$656 17 \$617	301(4.9L)/8 301(4.9L)/8
	19 55 78 55 76 56	52 84 56	200(3.3L)/6 200(3.3L)/6 302(5.0L)/8		M4 A3 A3	1 1 2		٠	GRAND AM	19 \$552 18 \$584	231(3 8L)/6 301(4.9L)/8
LTD II	14 5 7 13 5 8	50 07	302(5.0L)/8 351(5.8L)/8	(MENG)	A3 A3	2	2DR-93/16 4DR-101/ 16		<u>.</u> .	16 \$656 17 \$617	301(4.9L)/8 301(4.9L)/8
THUNDERBIRD	14 57 13 58 13 58	50 07 07	302(5.0L)/8 351(5.8L)/8 351(5.8L)/8	(WENG) (MENG)	A3 A3 A3	22	2DR-95/16	• ".x	LARGE	CAR	S
LINCOLN- MERCURY CONTINENTAL									Manufacturers	Fuel Econom	,
MARK V	12 58	75	400(6.6L)/8		A3	2	2DR-99/18	.	:		1 .
	13 58	97 97	351(5.8L)/8	(WENG)	A3	2	2DR-92/16 4DR-100/ 16		rutactur Line	maled M rage And	~ · · · -
ZEPHYR	20 55	07 25	351(5.8L)/8 140(2.3L)/4	(MENG)	A3 M4	2	208-95/17		20	E S	
	20. 55	25	140(2.3L)/4		A3	2	4DR-96/17		BUICK		
	19 55	52	200(3.3L)/6		M4	1	1		ELECTRA	15 \$700	350(5.7L)/B
	18 56	56	302(5.0L)/8		A3	2				14 \$750	403(6.6L)/8
OLDSMOBILE					-						
CUTLASS									LESABRE	58 5584	231(3.8L)/6
SALON	19 55	52	231(3.8L)/6		A3	2	2DR-97/16			5617	301(4.9L)/8
		I	LOOLAGENO			ľ	16			5 \$700	35015.7LV8
	19.155	52	260(4.3L)/8		A3	2			CADILLAC	71 1	1
	25, 53	60 75	260(4.3L)/8	(DIESEL)	M5	FI			DEVILLE/		
	15 57	00	305(5.0L)/8	(GM-CHEV)	M4	4			BROUGHAM	20: \$450	350(5.7L)/8
	17 56	17	305(5.QL)/8	(GM-CHEV)	A3	4				4 5750	425(7,0L)/8
CUTLASS SUPREME	19 155	52	231/3.81.)/6	÷	A3	2	208-97/18	ī			105/2 0110
	17 56	17	260(4.3L)/8		M5	2			LINOUSHIE	10 181050	H25(7.0L)/8
	19 \$5	52	260(4.3L)/8		A3 -	2					
	25 - 53	60	260(4.3L)/8	(DIESEL)	M5	FI	1		CHEVROLET		
	24 153	75	260(4.3L)/8	(DIESEL)	A3	FI	Į	· · [IMPALA/		
	17:356	17	305(5.0L)/8	(GM-CHEV)	A3		· ·		CAPHICE	a 5-15700 C 31	250(4,1L)/6
TORONADO	6 156	56	350(5.7L)/8	(GM-OLDS)	A3	4	2DR-101/	~	<u> </u>	15 \$656	305(5.0L)/8
	21054	28	350(5.7L)/8	(DIESEL)	A3	FI	17			16-5658	350(5.7L)/8
PLYMOUTH		.	225/6		M 3	1.	208-89/16		NEWPORT/		
	16 55	84	225/6	-	M4	h	4DR-100/ 16		NEW YORKER	17 \$617	225/6
	P8/\$5	84	225/6		A3	1	1			5656	318/8
	16 456	56	223/0 318/8	÷.,	A3 .	2			DODGE		
PONTIAC					· ·	Γ			ST. REGIS	5617	225/6
GRAND PRIX	19.955	52	231(3.8L)/6	-	A3 -	2	2DR-96/16				
	54 \$5	84	301(4.9L)/8		A3 -	2	1			16 15656	318/8

MID-SIZE CARS

60

Vehicle Description 101551115101 Fuel System Body Type Interior Spec Passanger Trunk or CargorCu 11 Description CIO/Cyt M4 A3 A3 2DR-96/17 4DR-102/ 17 12 12 14 43

Vehicle Description Body Type Interior Space Passenger/ Trunk or Carpo(Cu. Ft.) Transmission Fuel System CID/Cyl 2DR-108/ 20 4DR-111/ (GM-BUICK) A3 ▲3 20 2DR-107/ 21 AЗ 2 4DR-111/ 21 A3 (GM-BUICK) AS (DIESEL) A3 2DR-107/ 20 4DR-109/ 43 A3 FI 4DR-116/ 18 (CALIF) A3 20R-108/ 20 A3 4DR-111/ 20 A3 12 (GM-CHEV) A3 2 4DR-108/ AЗ 2 A3 A3 22 4DR-108/ 43 2 21 43 43 22 06 18656 318/8 24 8750 360/8 13 2

16

GASOLINE MILEAGE TESTS

The mileage tests conducted by the Company on the five (5) test automobiles were done at an average speed of 55 M.P.H. on highways and in traffic. City driving tests were conducted at speeds from 0 to 30 M.P.H.

Detroit Testing Laboratory, Inc., conducted a series of gasoline mileage tests on the Company's 1977 Chevrolet Caprice Classic V8 (350 cu.in.) automobile in cold weather $(25^{\circ} \text{ to } 31^{\circ} \text{ F.})$. Mileage tests results are generally much better in warm temperatures $(70^{\circ} - 90^{\circ})$. The Eliminator (Exhaust Return) was not functioning properly during these tests and had it been, results would have been more favorable, as shown by the recent tests.

The tests in Detroit, Michigan, did however confirm the original mileage tests conducted by the Company, both the original mileage of 16.2 M.P.G. without the "Energy Gas Saver" and 22.9 M.P.G. tests with the "Energy Gas Saver'

The principle purpose of having the tests conducted in Detroit, Michigan, was to aid and assist the Company in its "Engineering" of its product. Upon returning to Florida, corrections and modifications were made on the gas saving system which resulted in additional increases in gasoline milage, (29.1 M.P.G.).

The EPA type of testing was conducted by Olson Laboratories, Lavonia, Michigan, who are approved and accepted by the U.S. Government for this type of work. One of their tests confirmed that the Company's product installed with a catalytic converter did not violate the "Emission Exhaust Standards" as prescribed by the Clean Air Act of 1973 (and as amended in 1978). This means that the Company, or its designated agents, dealers or distributors, may legally install the gas saving system on vehicles that now are equipped with Emission Exhaust Devices. They will be furnished proper documentation from the Company in due time.

The EPA type of gasoline mileage test results were 16.092 M.P.G. 16.6 M.P.G. and 18.42 M.P.G. while the actual road mileage tests ranges from 20.2 M.P.G. to 24.7 M.P.G.

Many more gasoline mileage tests have been conducted by the Company since returning from Detroit, Michigan. The 1977 Chevrolet Caprice Classic test car now has over 12,000 miles of testing. Besides the 1-gallon bottle test and the tank test, the Company has an electronic computer installed in the test car which measures Instant Miles Per Gallon of Gasoline, Average Miles Per Gallon of Gasoline, Amount of Gasoline consumed, Distance in Miles travelled and the Time consumed Per Trip or Per Test.

On a testing trip to the West Coast of Florida, the 1977 Caprice Classic averaged 21.4 M.P.G. on the round trip of 379.3 miles with the air conditioner on, city driving and shopping trips. Individual tests were also conducted during this trip.

1977 Chevrolet Caprice Classic (350 cu. in. V8 Engine)

Catalytic Converter Operating - 52 to 55 Av. Miles Per Hour - 84° to 88° F. 10 M.P.H. Wind South - Tires 28 lbs - Shell No-Lead Gas (91.5 Octame) Driver and One Passenger, luggage, full tank of gas.

	No Air Conditioning	With Air Conditioning
One Gallon Bottle Test (Highway)	25.4 M.P.G.	23.6 M.P.G.
Computer (Highway)*	26.2 M.P.G.	24.4 M.P.G.
One Gallon Bottle Test (Highway)	25.8 M.P.G.	24.0 M.P.G.
Computer (City Driving)	19.6 M.P.G.	17.8 M.P.G.

1977 Chevrolet Caprice Classic (350 cu. in. V8 Engine)

Catalytic Converter <u>Removed</u> - 52 to 55 Av. Miles Per Hour 88^o F, Wind 10 Var. Tires 28 lbs - Shell <u>Regular</u> Gas (90.6 Octame) 800 lbs (driver, 2 passengers luggage, gasoline.)

	<u>No Air</u>	<u>With Air</u>	With E.G.R.	No E.G.R.
One Gallon Bottle Test (Highway)	22.5	21.7	22.3	22.5
Computer Test (Highway)*	23.0	21.8	22.3	22.5

1977 Chevrolet Caprice Classic (350 cu. in. V8 Engine)

Catalytic Converter <u>Removed</u> - 52 to 55 Av. Miles Per Hour, 85^o F, Wind 5 Var. Tires 28 lbs - Shell Regular Gas (90.6 Octame) 450 lbs weight (driver, one passenger & full tank of gas.)

	No Air, No E.G.R.	With Air, With E.G.R.
One Gallon Bottle Test (Highway)	27.9 M.P.G.	22.8 M.P.G.
Computer Test (Highway)*	32.0 Av. M.P.G.*	25.0 M.P.G.
One Gallon Bottle Test (Highway)	29.1 M.P.G.	24.7 M.P.G.
Computer Test (Highway)*	32.7 Av. M.P.G.	25.5 M.P.G.

* No Start Up

September 1978

CAR-BO-TECH., INC. 145 Ocean Avenue #502 Palm Beach Shores, Florida 33404 Tel (305) 842-8558

•

SUMMARY OF THE GASOLINE MILEAGE RESULTS ON THE FIVE TEST CARS

RESULTS OF HIGHWAY DRIVING

E	ST CAR	ORIGINAL MILEAGE	GAS SAVER SYSTEM INSTALLED	NUMBER OF MILES INCREASE	% OF MILES INCREASE	ADDITIONAL MILES PER TANK OF GAS
•	1970 Cadillac Fleetwood	13	19	6	46	144
	(472 cu.in. V8 engine)	• • •	· · · · ·	e in the interview of the second s	in a na pianana in	· · · · · · · · · · · · · · · · · · ·
	1974 Chevrolet Classic Convertible (350 cu. in. V8 engine)	15	22	.7	46	154
•	1976 Oldsmobile Cutlass Supreme (350 cu. in. V8 engine)	15	24	9	64	198
-	1969 Cadillac Coupe de Ville Convertible (472 cu. in. V8 engine)	13	22	9	64	216
•	1977 Chevrolet Caprice Classic (350 cu. in. V8 engine)	17	29	12	70	240
	Average	14.6	23.2	8.6	58	190.4
	Average % inc	crease in Mi	leage			58%
	Average incre	ease in numb	er of miles			8.6 miles
	Average incre	ease in numb	er of miles pe:	r Tank of Gas	oline 19	0.4 miles

**1

September 1978

(

There have been two completely different types of testing conducted on the Company's product "Exhaust GasSaver".

64

The first type of testing is for the purpose of measuring the automobile internal combustion engine exhaust pollutants.

The second type of testing is for the purpose of measuring the actual gasoline mileage obtained by the test automobiles that have an "Exhaust GasSaver" installed.

ENGINE EXHAUST POLLUTANTS TEST RESULTS

The measuring of engine exhaust pollutants, also known as "exhaust emission control standards" for automobiles, were conducted by independent operators who received payment from the Company for their services.

There were many exhaust pollution tests conducted. Every time a major change was made on the "Exhaust GasSaver" the unit was then tested on the test car by one of the indepent shops in the area. Most of the tests were done on a 1970 Cadillac Fleetwood with a 472 cu.in. engine. This test car had 61,473 miles at the beginning of the tests and now has in excess of 76,000 miles. No engine work was done on the car other than changes of the oil, coil, ignition wires, points, plugs, condensor, oil filters, air filters and the changing of 2 rocker arms and 4 lifters. The curb weight of the car is 5,260 lbs. This 1970 Cadillac Fleetwood has a 4-barrel quadrojet Rochester carburetor. Tests were also conducted on a 1974 Chev. Caprice Convertible with a 350 cu.in. engine and a 2-barrel carburetor. The curb weight of this test car is 4,580 lbs. and the vehicle has 74,064 miles.

On February 21, 1976 a most significant exhaust emission pollutants test took place done by the independent shop known as Computerway Automotive Repair Service, Stuart, Florida. The test was conducted by Marc H. Ducote, Shop Manager. This particular test was witnessed by the following people: Marc M. Ducote, Stuart, Florida: Donald R. Findlay, Palm Beach: Kenny Scarborough, West Palm Beach, Florida and Donald C. Pletts from the Company. This test was conducted on a Hamilton Standard Computer. A copy of the test, marked # 1, is attached. The exhaust emissions requirements for a 1970 model automobile are as follows: California (HC) 350, (CO) 4%; Chicago (HC) 500, (CO) 4%. The United States requirements for this vehicle are 275 P.P.M. hydrocarbons (HC) and 1.5% carbon monoxide (CO). As this test shows the maximum amount of CO shown on both idle and at 2500 R.P.M. shows .93% and .02% of carbon monoxide. The requirements for hydrocarbons allowed by the U. S. Government is 275 P.P.M. As can be seen by this test only 150 and 60 P.P.M. of hydrocarbons came from

the exhaust of this car engine. As can be seen on the print out copy of this test there is an emissions check h and an emissions check F. The significance between the emissions check A and b is that emission check F was done after an adjustment was made in the amount of recycled exhaust that was allowed to enter the "Exhaust GasSaver". From many tests, the Company was able to ascertain the best method and proper place to inject the exhaust gases as well as the correct amount of exhaust gases.

-2-

The next test shown is marked $\frac{2}{11}$ 2 and was conducted on Earch 11, 1976 with the same equipment on the same engine when it had 67,000 miles. Computerway Automotive Repair Service also conducted this test. As shown on the print out copy of this test all the exhaust emissions were well below the United States, California and all other State standards.

The test marked # 3 was also conducted by the same operator and took place on August 19, 1975. The significance of this test is that at idle speed (650 R.P.M.) this same 472 cu.i engine showed excellent emission results (80 P.P.M. hydrocarbon and .01% carbon monoxide). This was done on one of the Company's earliest models.

The test marked # 4 is a most significant test done by the same operator on November 14,1975. Section A of the test show the emissions from the engine with the original carburetor on the engine with none of the Company's emission equipment attached. Th hydrocarbon content of this test (620 P.P.M. and 500 P.P.M.) and th carbon monoxide content (2.69 and .15 per cent) of this test is wa above the acceptable requirements level of emissions set by the States and the U.S. Government. Section C of the test is also of extreme importance because it shows that the "Exhaust-Returner" returns to the engine compartment 96% of the same amount of hydrocarbons that goes out of the test shows high content of hydrocarbon and carbon monoxide gases in the engine compartment with the pipe open in the engine compartment from the "Exhaust-Returner".

The test marked # 5 is self-explanatory as it shows the various settings on the test car such as timing, coil available voltage, voltage drop, cylinder head compression, R.P.M. at idle, dwell, timing, spark plug voltage, spark plug load test, battery voltage, etc.

The test marked # 6 shows how bad the exhaust emissions can be from an engine when it is not properly operating. This tes was done by Computerized Automotive Center of Lake Park, Florida. The hydrocarbons are an unbelievable 2,060 and 2,060 P.P.M. and th carbon monoxide at 4.10% and 10.12%. All of this, of course, completely unacceptable by any standards.

Tests marked # 7 and # 8 give all the current engine settings on the 1970 Cadillac Flectwood test car. The Company's latest unit was installed for these tests. This was the first of the casted units made out of an aluminum alloy.

(.

Test # 9 again shows improved lower emission exhaust pollutants:

	Idle (600 R.P.M.	2500 R.F
Hydrocarbons (P.P.M.)	70 90	50
Carbon Monoxide (%)	.44 .46 .67	• 04 • 02

Test # 10 is the chemical analysis of the solid pollutant (particulates) that were collected in the Company's "Exhaust GasSav This test was conducted by Everglades Laboratories, Inc., of West F Leach, Florida.

Test # 11 was conducted on a 1974 model Chevrolette Capri Convertible with a 350 cu.in. engine and a 2-barrel carburetor. This is the first vehicle that the Company built a 2-barrel unit for and also using a 350 cu.in. General Motors engine. This print out test shows all the engine settings and also the satisfactory exhaust pollutants emission check. This test was also-conducted by Compute way Automotive Repair Service.

Chart # 12 gives the exhaust emission standards for the States of Arizona, California, Nevada, New Jersey, New York and the city of Chicago.

<u>Gasoline Mileage Tests</u> The second type of testing was conducted by the Company, and usually with one or more passengers as witnesses, for the purpose of testing gasoline mileage. Since the gas mileage tests may be verified by anyone who would care to ride in one of the test vehicles only significant results are being reported. Over 10,000 miles were driven in the 1970 Cadillac Flee wood while doing the gasoline tests. The gallon bottle test was deemed by the Company to be the most accurate and was conducted on the highways in actual traffic. The driver turns off the fuel pum line and allows the gas to flow into the carburetor from the gallo bottle. When the gallon is completely used the engine stops and the car rolls to a stop and the mileage is recorded. Tests were conducted in many types of conditions. As the Company's product was improved so was the improvement in gasoline mileage and allow better exhaust emission resulted.

On October 14, 1976 the latest casted unit on the 1970 Cadillac obtained 19.4 miles on one gallon of gas. Testing condit were ideal. This unit is the casted unit that will go into production to be used on General Motors aut mobiles with 4-barrel carburetors.

The best mileage obtained on the last prototype model (quadrojets) before casting was 19.1 miles on one gallon of gas. The average mileage of tests on this model was 18.6 miles per gallon.

Regular gas (89 octane) was used on all of the above tests. High octane tests were conducted with no appreciable improvement in the mileage or drive ability on the 1970 Fleetwood Cadillac.

A series of mileage tests were conducted with the Cadillac test car as follows on July 6, 1976.

Auto with original carburetor, coil, wires, but in as near perfect tune as possible but without the Company's product: Regular gas 12.6 miles on one gallon of gas: Unleaded gas 11.8 miles on one gallon of gas.

The original gas mileage test done by the Company in 1975 on this Cadillac Fleetwood with the original equipment produced 12.6 miles on one gallon of gas.

New radial tires were added to the car as well as new shocks. There was no increase in gasoline mileage. Many tests were conducted which produced 17 to 18 miles per gallon.

Summary of Casoline Mileage Results using Regular Gasoline on Highway

1970 CADILLAC

Car	with	original	l equipme	ent	12.7	miles	on	one	gallon
Car	with	Company	product	installed	19.4	miles	on	one	gallon
Car	with	Company	product	installed	19.1	miles	of	one	of gas gallon of gas

1974 CHEVROLET

	• . •						
Car	with	original equipment	14.6	miles	on	one	gallon
							of gas
Car	wi + h	engine modification	16 5	ini lee	on	000	aplion
Car	WI UI	engine modification	10.5	mittee	on	one	garron
							or gas
Car	with	Company product installed	19.4	miles	on	one	gallon
		1 0 1	•				of mag
			20.0	**			01 <u>E</u> 40
			20.0				
		n Maria a su a	20.4	81	•	•	94

Three different gasoline octanes were tested on this car on March 24, 1977 with the following results:

20.6

Regular gas (85.9 octane)	19.0	miles	per	gallon
No-lead gas (88 octane)	21.6	*1	- . ,	••
High Test gas (95 octane)	22.0		•:	

On May 4th, 5th. and 6th. of this year (1977) the spany conducted tests on a 1976 model Oldsmobile Cutlass preme, with a 350 cu.in. engine and a four-barrel quadrot carburetor. The "Energy GasSaver" unit installed on is car is the 2nd. casted model that will go into production.

Test marked # 13 shows the satisfactory emission lock with the 2500 R.P.M. test showing the lowest results any of the previous tests:

llydrocarbons (P.P.M.) 40

Carbon Monoxide (%)

The gasoline mileage tests were as anticipated, substantial improvement over the car before installation the "Energy GasSaver":

76 OLDSMOBILE CUTLASS SUPREME

Car with original equipment (on highway)	14.1 miles on one gallon of gas
Car installed with "Energy GasSaver" (on highway)	26.4 miles on one gallon of gas
Car installed with "Energy GasSaver" (mixed driving)	20.2 miles on one gallon of gas
Car installed with "Energy GasSaver" (City driving)	15.4 miles on one gallon of gas

.01

Bloundry 21.11 21 Jahren

1 1 1 A 59

VEHICLE TE PORT

` ••	TEST NUMBER	ACCEPTARIE		•a2		
ų,		LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST	
Burrot.	01500 AIDN-0008	ANY CAR	Vð		001 002 003 004	BATTERY BATTERY SPARE SPARE
• ¹	£ 933	EMISSION E STO A	S CHECK	tin a serie tito	005 007 008 010 011 012	COIL PRIN DISTRIBU SPARE SPARE CRANKING CRANKING STARTER BATTERY
	933 L.D.E. 767 68	EMISSIONS	5 CHECK × 230 1.39	280	013 014 015 016 017	STARTER BATTERY BATTERY CRANKING SPARE
* **	25. 586 274 87		80	280 2.50	018 019 020 021-028	COIL AVAI
	B. 933	EMISSIONS	5 CHECK ÷)	**	029 030 031-038 039 040	DWELL-CI BASIC TIM RELATIVE SPARE CURB IDLE
	2500 586 2500 586		• 93 60 • 02	280 2•50 280 2•50	041-048 049 050 051-058 059	CYLINDER DWELL BASIC TIM SPARK PL COIL AVAI
	* Enginal Rlindin	Certimontes, meth Schore	on Ferson by	imanter	060 061 032	COIL AVAI ROTOR GA DISTRIBUT
	++ + Sume	- + lent o	fte, adjust	invitori .	064 065 066 067 068 069	FAST IDLI FAST IDLI LOW CURE MANIFOLE HYDROCAI CARBON N SPARE
	Tected Le	y Mark :	+ Duc te		071078 079085 086 087 088	SPARK PL SPARE HYDROCAL CARBON N DWELL
		2. Ken-	e My	croyh root:	089 090 091 092 093 094 095	MECHANIC TOTAL AD SPARE BATTERY COIL AVAI SPARE BATTERY
	1 Blue	1 Dar	ala F	. Nitry	096 097 048 054 100	REGULATO SPARE ALTERNA SPARE SPARE
	1472 7X KTIEM!	HC 17/1 7 -:	(4.	/		
	Ps (10000000)	y studied standing	4. 4. 1	0 0 2		

EST MAER	TEST DESCRIPTION	UNITS
	BATTERY VOLTAGE - PRECONDITIONED	VOLTS
02	BATTERY CURRENT DRAIN	AMPS
03	SPARE	
04	SPARE	
05 	COIL PRIMARY VOLTAGE (+)	VOLTS
06 77	SPADE	VOLTS
O#	SPARE	
09	CRANKING STARTER CURRENT ILOW LIMIT)	AMPS
10	CRANKING STARTER CURRENT (HIGH LIMIT)	AMPS
11	STARTER CABLE VOLTAGE DROP	VOLTS
12	BATTERY TO RELAY VOLTAGE DROP	VOLTS
13	STARTER CONTROL VOLTAGE	VOLTS
14	BATTERY CRANNING VOLTAGE	VOLTS
15	CRANKING RPM	VUL ID
17	SPARE	
18	COIL AVAILABLE VOLTAGE (Ky PROBE IN COLL TOWER)	K VOL TS
19	COIL AVAILABLE VOLTAGE	K VOLTS
20	DISTRIBUTOR ROTOR GAP VOLTAGE	K VOLTS
21-028	SPARK PLUG FIRING VOLTAGE	K VOLTS
29	DWELL-CRANKING	DEGREES
30 31-079	BASIL HIMING-CRANKING (VACUUM DISCONNECTE	DI DEGREES
30	CRAPE CILINDER COMPRESSION	PERCENT
20 29	CURB IDLE	RPM
41-048	CYLINDER POWER CONTRIBUTION	PERCENT
49	DWELL	DEGREES
50	BASIC TIMING (NO VACUUM)	DEGREES
51-058	SPARK PLUG FIRING VOLTAGE	K VOLTS
39	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL TOWER)	K VOLTS
50	COIL AVAILABLE VOLTAGE	K VOLTS
51	ROTOR GAP VOLTAGE	K VOLTS
2	DISTRIBUTOR CAPACITOR TEST	1 EVEL
53 54	EAST IDIE	RPM -
6 5 -		RPM
56		PSIA.
67	HYDROCARBON CONTENT	PPM
68	CARBON MONOXIDE CONTENT	PERCENT
59	SPARE	
70	BATTERY TO COIL VOL TAGE DROP	VOLTS
71078	SPARK PLUG LOAD TEST	K VOLTS
/9085		
	CARDON LOW YOR CONTENT	PENCENT
67 H.A	OWELL	DEGREES
89	MECHANICAL ADVANCE	DEGREES
90	TOTAL ADVANCE	DEGNEES
91	SPARE	
92	BATTERY TO COIL VOLTAGE DROP	VOLTS
93	COIL AVAILABLE VOLTAGE	K VOLTS
94	SPARE	
95	BATTERY VOLTAGE	VOLTS .
70 17	REDULATUR BATTERT VULTAGE	TUL 13
48	ALTERNATOR OUTPUT VOLTAGE	VOLTS
94	SPARE	
00	SPARC	
	·	
	، `	
	1	
	· · · ·	
	1	
	· · · ·	
		-
	•	

* INDICATES OUT OF LIMIT CONDITION IN INDICATES MANUALLY ENTERLD TEST VALUE

.

1970 Cartelian Fluten & 21 Sock 11, 12/6 Las Strike Con 42 con Ensine VEHICLE TEST REPORT 67,000 Miles 19. 1 mel per que ilyrum) N - + + & E+3 15 -ACCEPTABLE TEST ACCYPIABLES TEST NUNSTA TEST DESCRIPTION TEST VALUE . 1041235 NUMBER LOW LUNIT. , HIGH . LIMIT Burrough 1 2 1 ... P01500 BATTERY VOLTAGE - PRECONDITIONED 601 101.75 002 BATTERY CURRENT DRAIN 2425 003 SPARE AIDN-0008 ANY CAR, V8 004 SPARE COL PRIMARY VOLTAGE (+) 005 VOLTS DISTRIBUTOR POINT VOLTAGE DROP VOLTE 254-RH,86 200 70 280 SPARE 🧠 007 SPARE 008 Č87 .02 2.50 009 CHANKING STARTER CURRENT (LOW LIMIT) Idle (67 150 280 -010 CRANKING STARTER CURRENT (HIGH LINIT) AM-5: LIVITY 208 011 STARTER CABLE VOLTAGE DROP VOLTS .90 2.50 BATTERY TO RELAY VOLTAGE DHOP 012 VOL TS STARTER CONTROL VOLTAGE 013 VOLTA BATTERY CRANKING VOLTAGE 014 VOLTA 018 BATTERY TO COIL VOLTAGE DROP VOLTS CRANKING RPM 47 ja ... N 014 017 SPARE . COIL AVAILABLE VOLTAGE (Ny PHODE IN CON 610 5 VOL78 TOWER) R VOL ES COIL AVAILABLE VOLTAGE DISTRIBUTOR ROTOR GAP VOLTAGE X VOLTS K VOLTS. 021-028 SPARK PLUG FIRING YOLTAGE Original Carburetor on Fassenten Converter - Blender (Latest Mindel) will 029 DWELL-CRANKING DEGREES BASIC TIMING CRANKING (VACUUM DISCONNECTED) DEGREES 030 RELATIVE CYLINDER COMPRESSION 031-034 039 SPARE -CURB IDLE RPM 040 041-048 CYLINDER POWER CONTRIBUTION Separate Connected PERCENT DEGREES 049 DWELL . BASIC TIMING (NO VACUUM) DEGREES 051-058 SPARK PLUG FIRING VOLTAGE K VOL TS COIL AVAILABLE VOLTAGE (KV PROBE IN COL 059 . . K VOLITS TOWER) COIL AVAILABLE VOLTAGE 060 K-VOL TE K VOLTS 061 ROTOR GAP VOLTAGE COUNTS 062 DISTRIBUTOR CAPACITOR TEST LEVEL Tested be Mark H. Ducite in the 063 COIL TEST K VOLTS 064 FAST IDLE RPM 065 LOW CURB IDLE RPM presence of 1. Donald Photos 065 MANIFOLD VACUUM POSA 067 HYDROCARBON CONTENT PPM' 4. 068 CARBON MONOXIDE CONTENT PERCENT 2. Kenny Scalnough 063 SPARE " 1.1 VOLTS .T 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPARK FLUG LOAD TEST K VQLT 079-085 SPARE 086 HYDROCARBON CONTENT PPM 017 PERCENT CARBON MONOXIDE CONTENT Ons DWELL. DEGREES 085 MECHANICAL ADVANCE . DEGREES 090 TOTAL ADVANCE DEGREES 091 SPARE 18 092 BATTERY TO COIL VOLTAGE DROP VOLTS COIL AVAILABLE VOLTAGE K VOLTE 093 094 SPARE BATTERY VOLTAGE VOLTS " 095 REGULATOR BATTERY VOLTAGE VOL 75 . 096 097 SPARE **6→8** ALTERNATOR OUTPUT VOLTAGE MOI TS 1049 SPARE SPARE -100

Hamilton Standard INDICATES OUT OF LIMIT CONDITION
 M INDICATES MANUALLY ENTERED TEST VALUE

hEPARK SERVICE, INC. (P 0 Box 2734 1748 Palm Beach Rd. Stuart, FL 33494 287-2044

1 - -, 1

ONY 3.

VEHICLE TEST REPORT

1 TLET NUMBER	ACCEPTABLE	TCCT VALUE	ACCEPTABLE	TEST	-	
, IEST NOMBER	LOW LIMIT	ILSI VALUE	HIGH LIMIT	NUMBER	IEST DESCRIPTION	UNITS
		! 	L		·1	4
1970	Cartiller	472 C	In First	001	BATTERY VOLTAGE - PRECONDITIONED	VOLTS
1775			Con Cristian	002	BATTERY CURRENT DRAIN	AMPS
AIDN-DOD8	ANY CAR.	VB		003	SPARE	-
AIDA 0000		0		004	SPARE.	
				005	DISTRIBUTOR POINT VOLTAGE DEOR	VOLTS
			· ·	006	DISTRIBUTOR POINT VOLTAGE DROP	VOLTS
			والمراجع والمحافظ	007	SPARE -	
933	EMISSIONS	5 CHECK		008	CHANKING STARTER CURRENT (LOW LIMIT)	44405
100 Mg M				010	CRANKING STATER CORRENT (LOW LIMIT)	AMPS
630.1		~ ~	000		STARTER CANLE VOLTAGE DROP	
1016 (01		80	280	012	BATTERY TO RELAY VOLTAGE DROP	V017
· 68 ·	·	0.1	2.50	013	STARTER CONTROL VOLTAGE	VOI TS
		200*	000	014	BATTERY CRANKING VOLTAGE	VOLTS
1500 5000		390-	200	015	BATTERY TO COIL VOLTAGE DROP	VOLT
87		•99	2.50	016	CRANKING RPM	RPM
F 1	•		2.20	· 017	SPARE	
				018	COIL AVAILABLE VOLTAGE (Ky PROBE IN COIL	K VOL
					TOWER)	
				ero •	COIL AVAILABLE VOLTAGE	K VOL
				020	DISTRIBUTOR ROTON GAP VOLTAGE	K VOI
				021-078	SPARK PLUG FIRING VOLTAGE	K VOI
11	Adre .			024	DWELL-CHANKING	DECR
//m	1-0-			010	SIC MMING CRANKING (VACHUM DISCOMMENTED	A DECE
				031-038	RELATIVE CYLINDER COMPRESSION -	PFOC
I sla -	28°			019	SPARE	
				040	CURB IDLE	RPM
				041-048	CYLINDER POWER CONTRIBUTION	PERC
				049	DWELL	DEGR
2000 Apm	- 41			050	BASIC TIMING (NO VACUUM)	DEGR
				051-058	SPARK PLUG FIRING VOLTAGE	K VOL
		-		059	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL	K VOL
		-			TOWER)	
				060	COIL AVAILABLE VOLTAGE	K VOL
				061	ROTOR GAP VOLTAGE	K VOL
	· • • • •			202	DISTRIBUTOR CAPACITOR TEST	COUN
— • - •				11		
			•	063 .	COIL TEST	K VOI
				064	FASTIDLE	RPM
1	•	•		065	LOW CURB IDLE .	RPM
				066	MANIFOLD VACUUM	PSIA
				067	HYDROCARBON CONTENT	PPM
				06.8	CARBON MONOXIDE CONTENT	PERC
· · · -	\mathcal{T}	~ ntf	al of	669	SPARE	
MAR	K and	6 616	ULLE M	070	BATTERY TO COIL VOLTAGE DROP	VOLT
1 11101-19-1		\sim		071-078	SPARK PLUG LOAD TEST	K VOI
	110			079-085	SPARE	
· <i>↓</i> _ /		\sim	1	085	HYDHOCARBON CONTENT	PPM
11. 1. 1.	· · · Lly	Ineson	CP A	087	CARBON MONOXIDE CONTENT	PERC
1 6631 444	5-0		~ 1	085	DWELL	DEGR
INV	~	5	`	089	MECHANICAL ADVANCE	DECH
IV	N)	11)/	11	940	TOTAL ADVANCE	DEGP
Journ	Y Dawn	IN TI	otte	091	SPARE	-
			110	540	BATTERY TO COIL VOLTAGE DROP	VOL
				093	COIL AVAILABLE VOLTAGE	M VO
1				094	SPARE	
1				095	BATTERY VOLTAGE	VOLT
				096	REGULATOR BATTERY VOLTAGE	VUL
	· · ·			097	SPARE	
				D98	ALTERNATOR OUTPUT VOLTAGE	VOL
1				099	, SPARE	-
1		•		100	SPARE	
1				[]		
	•	· · .				
				11 ·	n ·	
ł				11)	
				1		
		•		11	\prec	
		•		11	·	
1				11 . *	\sim .	
l				11	•	
1		•		11	•	
1				11	•	•
1				11 .		
L						
	11				+ INDICATES OUT OF LIMIT CONDITION	
					A LEIDER ATES MANUALLY ENTERLD TEST VALUE	

• • •

۰.

745

11 1:30 - 1:30 P M4

72-172-11-1-

1010 19 11. -

(

ti.			S) v	EHICLE TH	EST REPO	T	
N.				(6.)		
	TEST NUMBER	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	UNITS
301 FOU	01000 1470 C.LL GIDN-0008	ANY CAR.	1 472 (VB 6	i. In .	001 002 003 004 005 006	BATTERY VOLTAGE - PRECONDITIONED BATTERY CURRENT DRAIN SPARE SPARE COIL PRIMARY VOLTAGE (+) DISTRIBUTOR POINT VOLTAGE DROP	VOLTS
	933	EMISSIONS	CHECK		007 008 009	SPARE SPARE CRANKING STARTER CURRENT (LOW LIMIT)	AMPS
Ch.	innet, 677. 685 867. 87.)	エコレニーー	620* 2.69* 500* .15~~	280 2.50 280 2.50	010 011 012 013 014 015 016 017	CRANKING STARTER CURRENT (HIGH LIMIT) STARTER CABLE VOLTAGE DROP BATTERY TO RELAY VOLTAGE DROP STARTER CONTROL VOLTAGE BATTERY CRANKING VOLTAGE BATTERY FO COIL VOLTAGE DROP CRANKING RPM SPARE	AMPS VOLTS VOLTS VOLTS VOLTS RPM
int.	ett 933	EMISSIONS	690 *	280	018 019 020 021-028 029 030	COIL AVAILABLE VOLTAGE (K., PROBE IN COIL TOWER) COIL AVAILABLE VOLTAGE DISTRIBUTOR ROTOR GAP VOLTAGE SPARK PLUG FIRING VOLTAGE DWELL-CRANKING BASIC TIMING CRANKING (VACUUM DISCONNECTED)	K VOLTS K VOLTS K VOLTS K VOLTS DEGREES DEGREES
to Gra	1 685 1 86) ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 2777	3.27* 630* , .15	2.50 280 2.50	031-038 039 040 041-048 049 050 051-058	RELATIVE CYLINDER COMPRESSION SPARE CURB IDLE CYLINDER POWER CONTRIBUTION DWELL BASIC TIMING (NO VACUUM) SPARK PLUG FIRING VOLTAGE	PERCENT RPM PERCENT LEGREES DEGREES K VOLTS
le Junt. Rel	933 67 68 1	ENISSIONS - <u>16559</u> -112 - 22.19, -16.53	600* 2.12	280 2.50	059 060 061 062	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL TOWER) COIL AVAILABLE VOLTAGE ROTOR GAP VOLTAGE DISTRIBUTOR CAPACITOR TEST	K VOLTS K VOLTS K VOLTS COUNTS LEVEL K VOLTS
	873	505 _ <u>79</u> _9,]194	• 1 1	2.50	064 065 066 067 068 069	EAST IDLE LOW CURB IDLE MANIFOLD VACUUM HYDROCARBON CONTENT CARBON MONOXIDE CONTENT SPARE	RPM RPM P51A PPM PERCENT
) J	·-		· · · ·	• ••	070 071-078 075-085 086 087 088 089	BATTERY TO COIL VOLTAGE DROP SPARK PLUG LOAD TEST SPARE HYDROCARBON CONTENT CARBON MONOXIDE CONTENT DWELL MECHANICAL AUVANCE	VOLTS K VOLTS PPM PERCENT DEGREES DEGREES
~					090 091 092 093 094 095	TOTAL ADVANCE SPARE BATTERY TO COIL VOLTAGE DROP COIL AVAILABLE VOLTAGE SPARE BATTERY VOLTAGE	DEGREES VOLTS K VOLTS VOLTS
••			· · · ·	- -	096 097 058 099	REGULATOR BATTERY VOLTAGE SPARE ALTERNATOR OUTPUT VOLTAGE SPARE SHARE	VOLTS
~						· · · · · · · · · · · · · · · · · · ·	
		,				4	
	L	· · · · · · · · · · · · · · · · · · ·	·		11		

Hamilton_____ Standard

U

A.,

INDICATES OUT OF LIMIT CONDITION
 M INDICATES MANUALLY ENTERED TEST VALUE
VEHICLE TEST REPORT

1 1 4 1

. .

.

TEST NUNSER	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST	TEST DESCRIPTION	
1402 197	U Cadellac	Fleetwind	472 CID	001	BATTERY VOLTAGE - PRECONDITIONED	
100-0311	CA 4792.	V3 - 1 2	name	003	SPARE	
10	0/1 -1/2.49	N.C.	0	005	COIL PRIMARY VOLTAGE (+)	
	75	3 Q.	100	006 007	DISTRIBUTOR POINT VOLTAGE DROP SPARE	
32	75	01	100	600 600	SPARE CRANKING STARTER CURRENT (LOW LIMIT)	
33	75	95 67	100	010	CRANKING STARTER CURRENT (HIGH LIMIT)	
<u>२</u> २९	75	100	100	012	BATTERY TO RELAY VOLTAGE DROP	
36	75	97	100	013	STARTER CONTROL VOLTAGE	
37	• 75	97	100	015	BATTERY TO COIL VOLTAGE DROP	
33	75	28	100	017	SPARE	
				018	COIL AVAILABLE VOLTAGE (Ky PHOBE IN COIL TOWER)	
920	PRIMARY I	GNITION		019	COIL AVAILABLE VOLTAGE	
F		• -		021-028	SPARK PLUG FIRING VOLTAGE	
5	0.3	7-5		030	BASIC TIMING-CHAN SIVACUUM DISCONNECTEI	D١
40	540	560	• 3 660	031-038	RELATIVE CYLINDER COMPRESSION	
49	28.0	30.3	32.0	040		
70		5.6	6 - 1)	049	DWELL	
62	6	8	3	051-058	BASIC TIMING (NO VACUUM) SPAHK PLUG FIRING VOLTAGE	
0 7 / 7	00****	• (1) • (5 • -) •		059	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL TOWER)	
URIC	- PRIMART	فنب اللزارا		060	COIL AVAILABLE VOLTAGE	
				062	DISTRIBUTOR CAPACITOR TEST	
921	SECONDARY	IGNITION		063	COIL TEST	
				064 D65		•
40	540	590	660	066	MANIFOLD VACUUM	
50	6.5	28 • 4*	8.5	068	HYDROCARBON CONTENT	
51	7.0	9-3	16.0	069	SPARE 10 BATTERY TO COIL VOLTAGE DROP 34	•
52	7.0	9.0	10.0	0/1-078	SPARK PLUG LOAD TEST	Ę.
~ 54	7.0	9.2	16.0	086	SPARE HYUROCARBON CONTENT	•
័ទទ	7.0	9.2	16.0	087 085	CARBON MONOXIDE CONTENT	
56	7.0	8.8	16.0	0#9	MECHANICAL ADVANCE	
57	7.0	10-1	16.0	051	SPARE	
58	7 - 0	9-7	16.0	092	BATTERY TO COIL VOLTAGE DROP COIL AVAILABLE VOLTAGE	
72	~~~~	• 0	5.0	094	SPARE BATTERY VOLTAGE	
73		1 - 0	8.0	096	REGULATOR BATTERY VOLTAGE	
74	****	1 - 1	3.0	098	ALTERNATOR OUTPUT VOLTAGE	
75		- 3	8 - 0	099 100	SPARE SPARE	
76		1 - 0	3.0			
11		• H 1 - 2	3•0 8 r		· · ·	
61 1 A	00 5	1.0	0.0			
00	56.0	23·0			J	

Hamilton

U • -• • .

Jo,t

INDICATES OUT OF LIMIT CONDITION
 M INDICATES MANUALLY ENTERED TEST VALUE

٠

.

CALLS STATISTICS

· .

VEHICLE TEST REPORT

	TEST NUMBER	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	UniT
	1402	Jl		.i	001	BATTERY VOLTAGE - PRECONDITIONED	VOLT
	IDH-0311				002 003 004	SPARE SPARE	AMP
					005	COL PRIMARY VOL TAGE (+) DISTRIBUTOR POINT VOL TAGE DROP	VOLI
	61		7.3	7.5	007 Dug	SPARE SPARE	
	0 R/C	- SECONDA	RY IGHITI	013	009 010	CRANKING STARTER CURRENT (LOW LIMIT) CRANKING STARTER CURRENT (HKM LIMIT)	амр: Амр:
					011 012	STARTER CABLE VOLTAGE DROP BATTERY TO RELAY VOLTAGE DROP	VOL1
	. 033	THESTONS	CHARCEN		013	STARTER CONTROL VOLTAGE BATTERY CRANKING VOLTAGE	VOLT
	• • • •	•	UNLON S		015	BATTERY TO COIL VOLTAGE DROP	VOL 1
	67			1243 U	017 018	SPARE COIL AVAILABLE VOLTAGE (Ky PHOBE IN COIL	K VO
	933	THISSIONS	CHECK		019	TOWER) COIL AVAILABLE VOLTAGE	K VQ
	\sim		0.112.073		020 021-028	DISTRIBUTOR ROTOR GAP VOLTAGE SPARK PLUG FIRING VOLTAGE	K VO
D	5 67		2060*	28.0	029 030	DWELL-CRANKING BASIC TIMING CRANKING (VACUUM DISCONNECTEI	DEG+
	$\frac{68}{76}$		4•10* 2060*	2.50	031-038	REDATIVE CYLINDER COMPRESSION	PERG
) (3 87	\	0.12*	2.50	040 041-048	CURBIDLE CYLINDER POWER CONTRIBUTION	RPN PCH
					049 050	DWELL BASIC TIMING (NO VACUUM)	DEG
	393 170	- ENISSIO	10 2101.00	1	051-058 059	SPARK PLUG FIRING VOLTAGE COIL AVAILABLE VOLTAGE IKV PROBE IN COIL	. K VO
			•		060	TOWER) .• COIL AVAILABLE VOLTAGE	K VO
		•			061 062	ROTOR GAP VOLTAGE	COU
			. •		063	COIL TEST	LEV:
٠.					064	FAST IDLE LOW CURB IDLE	ЯР М ВРМ
	•				067	MANIFOLD VACUUM HYDROCARBON CONTENT	рын РРм
	•	•			069 069	CARBON MONOXIDE CONTENT SPARE	PER
		•			070 071- 078	BATTERY TO COIL VOLTAGE DROP SPARK PLUG LOAD TEST	NOL.
	·				079-085 0%6	SPARE HYDHOGARBON CONTENT	PPM
	•••		N /#		Cu7 088	CARBON MONOXIDE CONTENT DWELL	PER DEG
	•				0+0 0F8	MÉCHANICAL ADVANCE TOTAL ADVANCE	DEG DEG
	•/ \$/				091 092	SPARE BATTERY TO COIL VOLTAGE DROP	VOL
	· · ·				093	COIL AVAILABLE VOLTAGE SPARE :	K V
					095	BATTERY VOLTAGE A REGULATOR BATTERY VOLTAGE	VOL
					097 098	SPARE ALTERNATOR DUTPUT VOLTAGE	VOI
					· 100	SPARE SPARE	
						/	
					1	· /_	
					1	\bigcirc	

Hamilton Standard

. . . INDICATES OUT OF LIMIT CONDITION

-

M INDICATES MANUALLY ENTENED TEST VALUE

VEHICLE TEST REPORT

75

11

n

¥

6 358

ĺ

U A

.

niltori

ndard

. .

•

c=t

.

т нимаен	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	UNIT
: 0	L	<u> </u>		001	BATTERY VOL TAGE - PRECONDITIONED	VOLT
				002	SPARE	<u>ам</u> ря
3-0008	ANY CAR	. V8		004	SPARE	
				005	COIL PRIMARY VOLTAGE (+)	VOLT
5	5.0	11.0		007	SPARE	VUL1
. (. 3	008	SPARE ·	
31	75	80	100	009	CRANKING STARTER CURRENT (LOW LIMIT)	
30	, 75	0.0	100	011	STARTER CABLE VOLTAGE DROP	VOLT
20	7.5	50	100	012	BATTERY TO RELAY VOLTAGE DROP	VOLT
33	2.2	01	100	013	STARTER CONTROL VOLTAGE	VOLT
3.4	. 75	81	190	015	BATTERY TO COIL VOLTAGE DHOP	VOLT
			. 100	016	CHANKING RPM	RPH
. 36	75	98	100	017	SPARE CONTRACTOR AND	
27	75	100	100	018	TOWER	K VO
38	75	95	100	019	COIL AVAILABLE VOLTAGE	N VO
0 0 4 D	200	250	2000	020	DISTRIBUTOR ROTOR GAP VOLTAGE	K VO
40	100			021-028	SPARK PLUG FIRING VOLTAGE	K VO
49		33+1	90-0	030	BASIC TIMING-CRANKING (VACUUM DISCONNECTE	D) DEG
58		38+2	20-0	031-038	RELATIVE CYLINDER COMPRESSION	PER
51	7.0	11+6	16-0	039	SPARE CURRING C	
52	7 - 0	11.7	16-0	041-048	CYLINDER POWER CONTRIBUTION	PER
53	7.0	11.6	16.0	049	DWELL	DEG
5.4	7.0	10.7	16.0	:050	BASIC TIMING (NO VACUUM)	DE Gi
54	7.0	10.7	10.0	051-058	SPARK PLUG FIRING VOLTAGE	K VC
55	7•6	10.7	16.5		TOWER)	A 70
56	7.0	11-0	10.0	060	COIL AVAILABLE VOLTAGE	. K VO
57	7.0	12.0	16.0	061		K VO
58	7.0	11.2	16.0	002	distribution CAPACITOR TEST	
71		1.3	8.0	063	COIL TEST	KVC
70		1 2	8 1	064	FASTIDLE	#PM
70			0.0	065		RPM
73		• U	8.6	067	HYDROCARBON CONTENT	PPM
74		2•4	8.C	008	CARBON MONOXIDE CONTENT	PER
75		1+6	8.0	069		
76		2.5	8.0	071-078	SPARK PLUG LOAD TEST	K VC
77		2.5	8.0	079-085	SPARE	
78		•€	8.0	056	HYDHOCARBON CONTENT	PPM
05	12.7	1.45.0	15.5	087	CARBON MONOXIDE CONTENT	PER
60	22.0	01 5 #	15.5	D89	MECHANICAL ADVANCE	DEC
20		7.1 • J ··		000	TOTAL ADVANCE	DEG
70		9.4	8.0	091	SPARE	
50		18.0	60.0	093	COIL AVAILABLE VOLTAGE	K V
90		61 • 4*	60.0	094	SPARE	•
49		25.8	90.0	095	BATTERY VOLTAGE	VOL
59	22.0	21-5*		096	REGULATOR BATTENY VOLTAGE	VOL
50		12.6	60.0	DyB	ALTERNATOR OUTPUT VOL TAGE	VOI
1.1		• • •	7.5	ບາຍ	SPARE	
6.1	6	· · · ·	,	100	SPARE	
t, 2°	U U	U **				
49		30.0	96.9	· ·		
50		13.7	ÉC•0	1	—/	
5	5.0	- 0 #			/	
			·	1	/ ·	
					/	
				1	•	
					••	
		•			• .	

* INDICATE: OUT OF LIMIT CONDITION M INDICATES MANUALLY ENTERED TEST VALUE

.

759485 \$

VEHICLE TEST REPORT

76

Ć.

بە بونە

011500 001 <t< th=""><th>TEST NU</th><th>111858</th><th>ACCEPTABLE LOW LIMIT</th><th>TEST VALUE</th><th>ACCEPTABLE HIGH LIMIT</th><th>TEST</th><th>TEST DESCRIPTION</th><th></th></t<>	TEST NU	1 118 58	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST	TEST DESCRIPTION	
000 3 SPARE 001 3 SPARE 002 3 SPARE 003 3 SPARE 004 0 - 11 + 1, 14, 14, 16 005 3 SPARE 005 3 SPARE 006 3 SPARE 007 3 SPARE 008 3 SPARE 009 3 SPARE 009 3 SPARE 000 3 SPARE 001 3 SPARE 002 3 SPARE 003 3 SPARE 004 16.0 005 7.0 10.4 16.0 005 7.0 10.4 16.0 005 7.7.0 10.4 16.0 008 SPARE 009 SPARE 0010 SPARE 0010 SPARE 0010	01500		1 <u>1</u> _	<u></u>		001	BATTERY VOLTAGE - PRECONDITIONED	VC AI
11124-0003 6C CL.S. 37.6 5.1 7.0 11.4 10.6 60 SPARE 5.3 7.0 10.4 16.6 60 SPARE 5.4 7.0 11.4 16.0 60 SPARE 5.3 7.0 10.4 16.0 60 SPARE 5.4 7.0 11.4 16.0 60 SPARE 5.5 .7.0 11.4 16.0 60 SPARE SPARE 5.5 .7.0 11.4 16.0 60 SPARE SPARE SPARE 5.5 .7.0 10.4 16.0 60 SPARE SPARE SPARE 933 LMICSIONS CHECK 61 80 SPARE COLANALABLE VOLTAGE (NO VAGE 67 7.0 280 00 SPARE COLANALABLE VOLTAGE (NO VAGE 933 LMICSIONS CHECK 61 00 SPARE COLANALABLE VOLTAGE (NO VAGE 67 70 280 COLANALABLE VOLTAGE (NO VAGUA COLANALABLE VOLTAGE COLANALABLE VOLTAGE<						003	SPARE	
6C C	HAIDN-C	003				004	SPARE	
6C C1.0 37.6 51 7.0 T1.4 16.0 GP SPARE 53 7.0 10.4 16.0 GP SPARE 53 7.0 10.4 16.0 GP SPARE 54 7.0 11.4 16.0 GP SPARE 55 7.0 11.4 16.0 GP SPARE 56 7.0 11.4 16.0 GP SPARE 56 7.0 11.3 16.0 GP SPARE GP 57 7.0 10.4 16.0 GP SPARE GP GP 58 7.0 10.4 16.0 GP GP <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>005</td> <td>DISTRIBUTOR POINT VOLTAGE DROP</td> <td>- VC</td>	1					005	DISTRIBUTOR POINT VOLTAGE DROP	- VC
51 7.0 11.0 10.0 52 7.3 9.5 10.0 53 7.0 10.4 16.0 54 7.0 11.4 16.0 55 7.0 11.4 16.0 55 7.0 11.4 16.0 55 7.0 11.4 16.0 55 7.0 10.4 16.0 55 7.0 10.4 16.0 55 7.0 10.4 16.0 55 7.0 10.4 16.0 67 70 280 67 70 280 67 70 280 68 CHARCH CONTRECONTROL ONLING CONTRECONTROL 000000000000000000000000000000000000		3.0	C: . 0	32.0		007	SPARE	
5: 7.3 9.5 1.0.0 5: 7.3 1.0.4 16.0 5:3 7.9 1.0.4 16.0 5:4 7.9 1.1.6 16.0 5:5 7.9 1.1.4 16.0 5:5 7.0 1.1.3 16.0 5:6 7.0 1.1.3 16.0 5:7 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:8 7.0 10.4 16.0 5:9 0.0 5.0 10.4 6:10 0.0 5.0 10.4 6:110 0.0 10.0 10.0 6:110 0.0 10.0 10.0 10:100 10.0 10.0 10.0 </td <td></td> <td>5.1</td> <td>7.8</td> <td>ter to see</td> <td></td> <td>008</td> <td>SPARE</td> <td></td>		5.1	7.8	ter to see		008	SPARE	
51: 7-3 9-5 16-0 000 CRANNES TATE CONTRET TO ELLAY TO ELLOW		51		1 1 • • • •		009	CRANKING STARTER CURRENT (LOW LIMIT)	*
53 7.0 10.4 16.0 54 7.0 11.4 16.0 55 7.0 11.4 16.0 50 7.0 11.4 16.0 56 7.0 11.4 16.0 56 7.0 10.4 16.0 56 7.0 10.4 16.0 56 7.0 10.4 16.0 933 LK12510N5 CHEC: 280 67 70 280 67 70 280 67 70 280 67 70 280 68 70 280 933 LK12510N5 CHEC: 250 94 CHECHANGE CHARGE CONTRIBUTOR CONTAGE CONTRIBUTOR 95 CHECHARGE CHARGE CONTRIBUTOR CONTAGE CHARGE CONTRIBUTOR 96 CHECHARGE CONTRIBUTOR CONTAGE CONTRIBUTOR 97 CHECHARGE CONTRIBUTOR CONTAGE CONTRIBUTOR 98 COLL AVAILABLE VOLTAGE CONTRBUTOR 99 CHECHARGE CONTRBUTOR CONTAGE CONTREL COLL 90 COLL A		57	7 - 0	9.5	10+0	010	CRANKING STARTER CURRENT (HIGH LIMIT)	
54 7.0 11.4 16.0 55 7.0 11.3 16.0 57 7.2 10.9 16.0 58 7.0 10.4 16.0 933 LMISSIONS CHECK SAME 67 7.0 280 67 7.0 280 67 7.0 280 67 7.0 280 67 7.0 280 68 7.0 280 69 7.0 280 61 7.0 280 62 7.0 280 63 7.0 280 64 7.0 280 65 7.0 280 66 7.0 280 67 7.0 280 00 68 7.0 280 00 69 7.0 280		53	7.0	10-4	16+0	012	BATTERY TO RELAY VOLTAGE DROP	- W
55. 7.0 11.4 16.0 50 7.0 11.3 16.0 57 7.2 10.9 16.0 58 7.0 10.4 16.0 933 LMIDSIUNS CHECK COLLAVALLABLE VOLTAGE MUPPHOETH COLL 933 LMIDSIUNS CHECK COLLAVALLABLE VOLTAGE Towern 67 70 280 COLLAVALLABLE VOLTAGE Towern 67 70 280 COLLAVALLABLE VOLTAGE Towern 68 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE 69 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE 61 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE 62 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE 63 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE 64 COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE COLLAVALLABLE VOLTAGE	1	54	7.3	11.č	16.0	013	STARTER CONTROL VOLTAGE	v
5.0 7.0 113 10.0 003 BATTERY VOIL YOLTAGE DROP 57 7.0 10.9 16.0 007 SPARE TOWEN 933 LMISSIONS CHECK 00 SSTRBUTCH ROTOR GAP VOLTAGE TOWEN 67 70 280 SSTRBUTCH ROTOR GAP VOLTAGE 001 01-0 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NACUUM DISCONHECTED) 01-0 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NACUUM DISCONHECTED) 01-01 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NACUUM DISCONHECTED) 01-02 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NACUUM DISCONHECTED) 01-03 SPARE HILD CAMAKING (VACUUM DISCONHECTED) 001 BASIC TIMING (NO VACUUM) 03-03 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NO VACUUM DISCONHECTED) 03-03 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NO VACUUM DISCONHECTED) 03-03 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NO VACUUM DISCONHECTED) 03-03 SSTRBUTCH ROTOR GAP VOLTAGE 001 BASIC TIMING (NO VACUUM DISCONTENT) 03-03		5.5.		. +1.4	16.0	014	BATTERY CRANKING VOLTAGE	M
50 7.0 10.9 16.0 56 7.0 10.4 16.0 933 EMISSIONS CHECK 00 COLLAVALLABLE VOLTAGE (MUNCH CONTACT COMPANY) 67 70 280 1.6 70 280 1.6 70 280 1.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.6 70 280 0.7 70 280 0.7		5.7			10.0	015	BATTERY TO COIL VOLTAGE DROP	Ŵ
57 7.3 10.9 16.0 56 7.0 10.4 16.0 933 LHIDSIONS CHECK Total Available VOLTAGE Total Available VOLTAGE 67 70 280 BASIC THING CRANKING (VACUUM DISCONNECTED) 80 JSTNBUTCH ROTOR GAP VOLTAGE BASIC THING CRANKING (VACUUM DISCONNECTED) 81-03 PARK HUNCCARKING (VACUUM DISCONNECTED) BASIC THING CRANKING (VACUUM DISCONNECTED) 81-03 PARK HUNCCARKING (VACUUM DISCONNECTED) BASIC THING CRANKING (VACUUM DISCONNECTED) 81-03 PARK HUNCCARKING (VACUUM DISCONNECTED) BASIC THING CRANKING (VACUUM DISCONNECTED) 81-03 PARK HUNCCARKING (VACUUM DISCONNECTED) BASIC THING (NO VACUUM) 81-03 PARK HUNCCARKING (VACUUM DISCONNECTED) BASIC THING (NO VACUUM) 83-00 FORTAR VOLTAGE BASIC THING (NO VACUUM) 84-10 DISTRIBUTOR CONTRIBUTION * BASIC THING (NO VACUUM) 85-10 COLL AVAILABLE VOLTAGE BASIC THING (NO VACUUM) 86-10 COLL AVAILABLE VOLTAGE BASIC THING (NO VACUUM) 86-10 COLL AVAILABLE VOLTAGE BASIC THING (NO VACUUM) 87 COLL AVAILABLE VOLTAGE BASIC THING (NO VACUUM) <td></td> <td>50</td> <td>7. J</td> <td>11-3</td> <td>10.0</td> <td>016</td> <td>CRANKING RPM</td> <td>· #</td>		50	7. J	11-3	10.0	016	CRANKING RPM	· #
56 7.0 10.4 16.0 Towern 933 LMICSIONS CHECX Distribution rotor can youtage 67 70 280 03 BASIC THING-CHANKING (VACUUM DISCONHECTED) 04 Distribution rotor can youtage 05 Distribution rotor can youtage 06 Coll AVAILABLE VOLTAGE 07 280 08 Distribution rotor can youtage 09 State THING-CHANKING (VACUUM DISCONHECTED) 09 STATE 00 RELETING (NO VACUUM) 01 Distribution rotor can youtage 02 Distribution rotor can youtage 03 State THING (NO VACUUM) 04 Distribution rotor can youtage 05 State THING (NO VACUUM) 06 Coll AVAILABLE VOLTAGE 06 Coll AVAILABLE VOLTAGE 07 Distribution rotor can youtage 08 ROTOR CAN TRUE (NO ROTOR CAN FRESSION) 09 State Youtage 00 Coll AVAILABLE VOLTAGE 01 Coll AVAILABLE VOLTAGE 02 Coll AVAILABLE VOLTAGE		57	7.0	10.9	16.0	017	COIL AVAILABLE VOLTAGE (K., PROBE IN COIL	ĸ
933 EMICSIONS CHEC: 67 70 280 6.6 4.4 2.50 6.7 7.0 280 6.6 4.4 2.50 6.7 7.0 280 6.8 4.4 2.50 6.8 7.0 280 6.9 7.0 280 6.0 7.0 7.0 7.0 7.0 7.0		58	. 7.0	10-4	16-0		TOWER)	
933 EF:1:5:510N5 CHEC:: 67 70 280 0.6 7.0 280 0.7 7.0 280 0.7 7.0 280 0.8 Server Under Converse Outpace 0.9 Outpace 0.9 Server Under Converse Outpace 0.9 Server Outpace 0.9 Server 0.9 Server Outpace 0.9 Server 0.9 Serv	1		<u>k</u>			019	COIL AVAILABLE VOLTAGE	×
67 70 280 63 BASC THINGC-CRANKING 6.8 70 280 6.8 70 280 6.8 70 280 6.8 70 280 6.8 70 280 6.8 70 280 6.9 STATE COLLATIVE CYLINDER CONTRIBUTION* 6.0 COLLAVILABLE VOLTAGE COLLAVILABLE VOLTAGE 6.0 COLLAVILABLE VOLTAGE TOWNO 6.1 COLLAVILABLE VOLTAGE TOWNO 6.2 COLLAVILABLE VOLTAGE TOWNO 6.3 COLLAVILABLE VOLTAGE TOWNO 6.4 FAST IDLE GS COLLAVILABLE VOLTAGE 6.3 COLLAVILABUE VOLTAGE TOWNO TOWNO 6.4 COLLAVILABLE VOLTAGE TOWNO TOWNO 6.5 COLLAVILABLE VOLTAGE TOWNO TOWNO 6.6 MAINFOL VOLTAGE TOWNO TOWNO 6.7 COLLAVILABLE VOLTAGE TOWNO TOWNO		933	LEISSIONS	CHECK		021-028	SPARK PLUG FIRING VOLTAGE	R
67 70 280 1.8 .4.4 2.50 0100 BASE 000 RELATIVE CULINDER COMPRESSION 020 CURB IDLE 000 000 02100 RARE 000 CURB IDLE 02100 CURB IDLE 000 000 02100 SPARE 000 CURB IDLE 02100 SPARE 000 CURB IDLE 02100 SPARE 000 CURB IDLE 02100 SPARE 000 0000 02100 SPARE 000 0000 02100 SPARE 0000 0000 02100 SPARE 0000 0000 02100 SPARE 0000 00000 02100 SPARE 0000 00000 02100 SPARE 0000 00000 021000 SPARE 00000 000000 02100000000000000000000000000000000000	· ·			•••••		029	DWELL-CRANKING	D
67 70 283 (.E		. –				030	BASIC TIMING-CRANKING (VACUUM DISCONNECTED) D
1.6 .1/4 2.50 0.98 SPARE CUHB DIE CUI-OUE CUINDER FORE CONTRIBUTION* CUIDED CUIDED CUIDED CUIDED CUIDED CUIDED COIL AVAILABLE VOLTAGE COIL VOLTAGE ADAPACE COIL AVAILABLE VOLTAGE COIL VOLTAGE ADAPACE COIL VOLTAGE CONTENT COIL COIL VOLTAGE DAPA COIL VOLTAGE COIL AVAILABLE VOLTAGE COIL AVAILABE VOLTAGE COIL	1	67		? 0	280	031-038	RELATIVE CYLINDER COMPRESSION	P
DBU CVLINDER HOWER CONTRIBUTION* CH DWELL DB BASIC TIMING (NO VACUUM) CJI-03 SPARK PLUG FIRMS VOLTAGE CB COLLAVAILABLE VOLTAGE (INV ROBE'IN COLL CB COLLAVAILABLE VOLTAGE CB DISTHIBUTOR CAPACITOR TEST CB CAND CARBON CONTENT CB SPARE CB CAPBON MONONDIDE CONTENT CB SPARE PLUG CONTENT CB SPARE PLUG CONTENT CB SPARE PLUG CONTENT CB SPARE PLUG CONTENT CB CAPBON MONONDIDE CONTENT CB CAPBON MONONDE CONTENT CB CAPBON MONONDE CONTENT CB CAPBON MONONDE CONTENT CB CAPBON MONONDE CONTENT CB CAPARE CANDAN MONONDE CONTENT	ļ	68		- 44	2.50	039	SPARE	_
CH DWELL CH DWELL CH DWELL CH DWELL CH DWARA DI-053 SPARK PLUG FIRMG VQLTAGE CH AVAILABLE VQLTAGE CH CALLAVAILABLE VQLTAGE CH CALLAVAILAVAILAVAILE VQLTAGE CH CALLAVAILAVAILAVAILAVAILE VQLTAGE CH CALLAVAILAVAILAVAILE VQLTAGE CH CALLAVAILAVAILAVAILAVAILAVAILAVAILAVAILA						041-048		R P
00 MASIC TIMING (NO VACUUM) 01-031 SPARE PLUS FINING VOLTAGE 03 COIL AVAILABLE VOLTAGE 04 COIL AVAILABLE VOLTAGE 05 COIL AVAILABLE VOLTAGE 061 COIL AVAILABLE VOLTAGE 062 DISTHIBUTOR CAPACITOR TEST 063 COIL TEST 064 FAST TOLE 065 LOW CUMB IDLE 066 MANIFOLD VACUUM 067 HYDROCARBON CONTENT 068 CARBON MONOLOE CONTENT 069 SPARE 070 BATTERY TO COIL VOLTAGE DROP 071-073 SPANK PLUG LOAD TEST 087 GORAMONADORIDE CONTENT 088 CARBON MONOLIDE CONTENT 089 FORL 089 TOTAL ADVANCE 090 TOTAL ADVANCE 091 TOTAL ADVANCE 092 BATTERY TO COIL VOLTAGE DNDP 091 SPANE 092 BATTERY TO COIL VOLTAGE DNDP 093 COIL AVAILABLE VOLTAGE 094 SPANE 095 SPANE 096 <						049	DWELL	D
0:1-031 SPARK PLUG FIRING VOLTAGE IN COLL 0:0 COIL AVAILABLE VOLTAGE 0:1 COIL AVAILABLE VOLTAGE 0:2 DISTINGUTOR CAPACITOR TEST 0:3 COIL TEST 0:4 FAST IDLE 0:5 LOW CURB IDLE 0:6 COIL TEST 0:4 FAST IDLE 0:5 LOW CURB IDLE 0:6 MAINFOLD VACUUM 0:6 THYDROCAMEDOR CONTENT 0:6 SPARF 0:10 BATTERY TO COLL VOLTAGE DROP 0:11-013 SPARF 0:10 BATTERY TO COLL VOLTAGE DROP 0:11-013 SPARE 0:16 MEDIANICAL ADVANCE 0:17 CORADON CONTOR CONTENT 0:18 DWELL 0:19 MECHANICAL ADVANCE 0:10 SPARE 0:20 BATTERY TO COLL VOLTAGE DINP 0:31 SPARE 0:41 SPARE 0:42 SPARE 0:43 SPARE 0:44 SPARE 0:45 SPARE 0:44 SPA	1					050	BASIC TIMING (NO VACUUM)	D
COLL AVAILABLE VOLTAGE (KV PROBE IN COLL TOWEN) 60 COLL AVAILABLE VOLTAGE 61 ROIS GAP VOLTAGE 62 DISTHIBUTOR CAPACITOR TEST 63 COLL TEST 64 FAST IDLE 65 MAINICOLD VACUUM 66 MAINED VACUUM 66 MAINED VACUUM 66 MAINED VACUUM 66 MAINED VACUUM 66 MAINED VACUUM 66 CAPBON MONAIDE CONTENT 66 SARF TO COLL VOLTAGE DROP 07 DIA BATTERY TO COLL VOLTAGE DROP 07 TOTAL ADVANCE 69 MECHANICAL ADVANCE 69 MECHANICAL ADVANCE 69 MECHANICAL ADVANCE 69 MECHANICAL ADVANCE 69 SPARE 69 SPARE 69 SPARE 60 SARTERY TO COLL VOLTAGE DINAP 69 SPARE 60 SARTERY TO COLL VOLTAGE 60 SARTERY TO COLL AVAILABLE VOLTAGE 60 SARTERY TO COLL AVAILABLE VOLTAGE 60 SARTERY TO COLL VOLTAGE 60 SARTERY TO COLL VOLTAGE 60 SARTERY TO COLL AVAILABLE VOLTAGE 60 SARTERY TO TAGE 60 SARTERY TO TO COLL AVAILABLE VOLTAGE 60 SARTERY TO TAGE ANTOR TO TAGE 60 SARTERY TO TAGE ANTOR TAGE 60 SARTERY TAGE ANTOR TAGE 60 SARTERY TO TAGE ANTOR TAGE 60 SARTERY TAGE ANTOR TAGE ANTOR TAGE ANTOR TAGE ANT						0>1-058	SPARK PLUG FIRING VOLTAGE	ĸ
00 COLLAVALABLE VOLTAGE 01 ROTOR GAP VOLTAGE 02 DISTHIBUTOR CAPACITOR TEST 041 ROTOR GAP VOLTAGE 042 DISTHIBUTOR CAPACITOR TEST 043 COLL YEST 044 FAST IDLE 053 LOW CURB IDLE 054 MANIFOLD VACUUM 057 HYDROCAMBON CONTENT 058 CARBON MONOXIDE CONTENT 059 SPARF 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPARE NLUG LOAD TEST 079-085 SPARE 064 HYDROCARBON CONTENT 065 HURDOCARBON CONTENT 066 HYDROCARBON CONTENT 067 HYDROCARBON CONTENT 068 MECHANICAL ADVANCE 069 TOTAL ADVANCE 061 SPARE 062 BATTERY TO COIL VOL TAGE DHOP 063 COLLAVAILABLE VOL TAGE 064 RECHANICAL ADVANCE 065 BATTERY VOLTAGE 066 RECILLATOR DUTPUT VOLTAGE 075 BARE 076 SP						059	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL TOWEN)	<
061 MOING GAPACITOR TEST 062 DISTHIBUTOR CAPACITOR TEST 063 COIL TEST 064 FAST IDLE 065 LOW CUBB IDLE 066 MANIFOLD VACUUM 067 HYDROCARBON CONTENT 068 CAPBON MONOXIDE CONTENT 069 SPANF 070 BATTERY TO COIL VOLTAGE DROP 071-107 SPANK PLUG LOAD TEST 079-105 SPANK PLUG LOAD TEST 079-105 SPANK PLUG LOAD TEST 081 MVOROCARBON CONTENT 082 BATTERY TO COIL VOLTAGE DROP 091 TOTAL ADVANCE 090 TOTAL ADVANCE 091 COTAL ADVANCE 092 BATTERY TO COIL VOLTAGE DINOP 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 096 SPARE 097 SPARE 098 SPARE 099 SPARE 091 COIL AVAILABLE VOLTAGE 093 SPARE 094 SPARE 0		•				060	COIL AVAILABLE VOLTAGE	K
G1 DISTRIBUTOR CAPACITION TEST G3 COLL TEST G4 FASTIDLE G5 LOW CURB IDLE G6 MANIFOLD VACUUM G67 HYDROCARBON CONTENT G68 SPARE D07 BATTERY TO COIL VOLTAGE DROP D71-D78 SPARE D70 BATTERY TO COIL VOLTAGE DROP D71-D78 SPARE D64 HYDROCARBON CONTENT G8 SPARE D64 HYDROCARBON CONTENT G8 MECHANICAL ADVANCE D94 US SPARE D95 DSATERY TO COIL VOLTAGE DROP D96 US SPARE D97 US SPARE D98 MECHANICAL ADVANCE D99 TOTAL ADVANCE D90 TOTAL ADVANCE D91 SPARE D92 BATTERY TO COIL VOLTAGE D93 BATTERY TO COIL VOLTAGE D94 SPARE D95 BATTERY VOLTAGE D96 SPARE D97 SPARE D98 METERY TO COIL VOLTAGE D94 SPARE D95 SPARE D96 SPARE D97 SPARE D98 SPARE			•			061	ROTOR GAP VOLTAGE	- K
063 COIL TEST 064 FAST IDLE 065 LOW CURB IDLE 066 MANIFOLD VACUUM 067 HYDROCARHON CONTENT 068 CARBON MONOXIDE CONTENT 069 SFARF 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPARK PLUG LOAD TEST 072 SPARK PLUG LOAD TEST 084 DWELL 085 DWELL 086 MECHANICAL ADVANCE 087 TOTAL ADVANCE 088 DWELL 089 TOTAL ADVANCE 091 TOTAL ADVANCE 092 BATTERY TO COIL VOLTAGE DHOP 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY TO COIL VOLTAGE 096 SPARE 097 SPARE 098 ALTERNATOR DUTPUT VOLTAGE 099 SPARE 095 SPARE 096 SPARE 097 SPARE 098 SPARE								Ē
04 FAST IDLE 05 LOW CURB IDLE 05 MANIFOLD VACUUM 057 HYDROCARIBON CONTENT 059 SPAHF 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPAHK PLUG LOAD TEST 079-085 SPARE 086 HYDROCARBON CONTENT 087 HYDROCARBON CONTENT 087 HYDROCARBON CONTENT 087 HYDROCARBON CONTENT 088 DWELL 089 SPARE 080 MECHANICAL ADVANCE 091 TOTAL ADVANCE 092 BATTERY TO COIL VOLTAGE DHXP 081 SPARE 082 BATTERY TO COIL VOLTAGE DHXP 083 MECHANICAL ADVANCE 094 SPARE 095 SPARE 094 SPARE 095 SPARE 096 ALTERNATOR DUTPUT VOLTAGE 097 SPARE 100 SPARE					•	063	COIL TEST	ĸ
663 LOW CURB IDLE 663 MANIFOLD VACUUM 667 HYDROCA/IBON CONTENT 68 CARBON MONOXIDE CONTENT 68 SPAAF 070 BATTERY TO COLL VOLTAGE DROP 071-078 SPAAF 071-078 SPAAF 071-078 SPAAF 071-078 SPAAF 071-078 SPAARE 074 SPAARE 075 US5 079 US5 079 US5 071 SPAARE 072 CARBON MONOXIDE CONTENT 081 MECHANICAL ADVANCE 092 TOTAL ADVANCE 093 COLL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY TO COLL VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 099 SPARE 091 SPARE 093 COLLAVAILABLE VOLTAGE 094 SPARE 095 SPARE </td <td>]</td> <td></td> <td></td> <td></td> <td></td> <td>064</td> <td>FAST IDLE</td> <td></td>]					064	FAST IDLE	
066 MANIFOLD VACUUM 067 HYDROCARBON CONTENT 068 CARBON MONOXIDE CONTENT 069 SPANF 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPANK PLUG LOAD TEST 070 CARBON MONOXIDE CONTENT 081 CARBON MONOXIDE CONTENT 083 DWELL 084 DWELL 085 SPARE 090 TOTAL ADVANCE 091 COTAL ADVANCE 092 BATTERY TO COIL VOLTAGE 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 090 SPARE 091 SPARE 092 SPARE					· · · · · ·	065	LOW CURB IDLE	A
Ger Arbon MONOXIDE CONTENT Ges CARBON MONOXIDE CONTENT Ges SPARE O70 BATTERY TO COIL VOLTAGE DROP O71-078 SPARE PLUG LOAD TEST O75-UES SPARE D48 HVDROCARBON CONTENT O87 CARBON MONOXIDE CONTENT O88 DWELL O89 MECHANICAL ADVANCE O90 TOTAL ADVANCE O91 SPARE O92 BATTERY TO COIL VOLTAGE DHOP O93 COIL AVAILABLE VOLTAGE O94 SPARE O95 BATTERY VOLTAGE O96 REGULATOR BATTERY VOLTAGE O97 SPARE O98 ALTERNATOR OUTPUT VOLTAGE O99 SPARE O98 ALTERNATOR OUTPUT VOLTAGE O99 SPARE						066		
059 SPANE 070 BATTERY TO COIL VOLTAGE DROP 071-078 SPANE 079-085 SPARE 064 HYDROCARBON CONTENT 087 CARBON MONOXIDE CONTENT 088 DWELL 089 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 CARBON MONOXIDE CONTENT 083 DWELL 084 DWELL 085 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 COIL AVAILABLE VOLTAGE 092 BATTERY TO COIL VOLTAGE 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTENY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE	1					067	CARBON MONOVIDE CONTENT	
070 BATTERY TO COIL VOLTAGE DROP 071-078 SPARE 084 HYDROCAPBON CONTENT 087 CARBON MONOXIDE CONTENT 088 DWELL 089 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOLTAGE DHOP 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 088 ALTERNATOR DUTPUT VOLTAGE 099 SPARE 100 SPARE	1		•			069	SPARE	
071-078 SPANK PLUG LOAD TEST 079-085 SPARE 040 HYDROCARBON CONTENT 041 CARBON MONOXIDE CONTENT 041 DWELL 049 MECHANICAL ADVANCE 040 TOTAL ADVANCE 041 SPARE 051 SPARE 053 BATTERY TO COIL VOL TAGE DHOP 053 COIL AVAILABLE VOL TAGE 054 SPARE 055 BATTERY VOL TAGE 056 REGULATOR BATTERY VOL TAGE 057 SPARE 058 ALTERNATOR OUTPUT VOL TAGE 059 SPARE 100 SPARE						070	BATTERY TO COIL VOLTAGE DROP	V
075-085 SPARE 066 HYDROCARBON CONTENT 087 CARBON MONOXIDE CONTENT 088 DWELL 089 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOL TAGE DHOP 093 COIL AVAILABLE VOL TAGE 094 SPARE 095 BATTERY VOL TAGE 096 REGULATOR BATTERY VOL TAGE 097 SPARE 098 ALTERNATOR OUTPUT VOL TAGE 099 SPARE 100 SPARE	1					071-078	SPANK PLUG LOAD TEST	
Dif HYDROCARBON CONTENT 047 CARBON MONOXIDE CONYENT 048 DWELL 059 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOL TAGE DHOP 093 COIL AVAILABLE VOL TAGE DHOP 094 SPARE 095 BATTERY VOL TAGE 095 BATTERY VOL TAGE 096 REGULATOR BATTERY VOL TAGE 097 SPARE 098 ALTERNATOR OUTPUT VOL TAGE 099 SPARE 100 SPARE	1					079- 085	SPARE	_
087 CARBON MONTOE CONTENT 040 DWELL 029 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOL TAGE DHOP 093 COIL AVAILABLE VOL TAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR DUTPUT VOLTAGE 099 SPARE 091 SPARE 092 SPARE 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 SPARE 096 REGULATOR DUTPUT VOLTAGE 097 SPARE 098 ALTERNATOR DUTPUT VOLTAGE 099 SPARE 100 SPARE	1					046	HYDROCARBON CONTENT	
089 MECHANICAL ADVANCE 090 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOL TAGE DHOP 093 COIL AVAILABLE VOL TAGE 094 SPARE 095 BATTERY VOL TAGE 095 BATTERY VOL TAGE 096 REGULATOR BATTERY VOL TAGE 097 SPARE 098 ALTERNATOR OUTPUT VOL TAGE 099 SPARE 100 SPARE						OAA	DWFLL	1
090 TOTAL ADVANCE 091 SPARE 092 BATTERY TO COIL VOL TAGE DHOP 093 COIL AVAILABLE VOL TAGE 094 SPARE 095 BATTERY VOL TAGE 096 REGULATOR BATTERY VOL TAGE 097 SPARE 098 ALTERNATOR OUTPUT VOL TAGE 099 SPARE 100 SPARE						089	MECHANICAL ADVANCE	(
091 SPARE 092 BATTERY TO COIL VOLTAGE DHJP 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE	}					Qe0	TOTAL ADVANCE	1
092 BATTERY TO COIL VOLTAGE DHOP 093 COIL AVAILABLE VOLTAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE	1					091	SPARE	
093 COLL AVAILABLE VOL TAGE 094 SPARE 095 BATTERY VOLTAGE 096 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE	1					560	BATTERY TO COLL VOL TAGE DHOP	
035 BATTERY VOLTAGE 046 REGULATOR BATTERY VOLTAGE 097 SPARE 098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE						093	LOIL AVAILABLE VOLTAGE	
046 REGULATOR BATTERY VOLTAGE 037 SPARE 038 ALTERNATOR OUTPUT VOLTAGE 039 SPARE 100 SPARE	1					095	BATTERY VOLTAGE	•
097 SPARE 098 ALTERNATOR DUTPUT VOLTAGE 099 SPARE 100 SPARE						096	REGULATOR BATTERY VOLTAGE	
098 ALTERNATOR OUTPUT VOLTAGE 099 SPARE 100 SPARE	1					097	SPARE	
100 SPARE						860	ALTERNATOR OUTPUT VOLTAGE	
						1 099	SPARE	
R	1							
R								
					•		\frown	
						11		
						11	X	
	1					11		
						11	\cup	
	1		•			11		

Hamilton Standard

A.

. INDICATES OUT OF LIMIT CONDITION M INDICATES MANUALLY ENTERED TEST VALUE

77

VEHICLE TEST REPORT

Constant at hit has a set to and and

.

Hamilton U Standard A

•• • • •

Q							
1 4 9	TEST NUMBER	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	Ureil
Burroudh	933 67 68 66 27 933 67 68 86 87	E MI S S I ON S 	CHECK 0.67 0.07 CHECI: 90 .46 50 .04	280 2.50 2.50 2.50 2.50 2.50	NUMBER 001 002 003 004 005 006 007 008 009 010 011 012 013 014 013 014 013 014 013 014 013 014 015 016 017 018 019 020 021-028 029 030 031-038 039 040 041-048 049 050 051-058 059 050 051-058 059 061 062 063 064 065 067 068	BATTERY VOLTAGE - PRECONDITIONED BATTERY CURRENT DRAIN SPARE COIL PRIMARY VOLTAGE (+) DISTRIBUTOH POINT VOLTAGE DROP SPARE CRANKING STARTER CURRENT (LOW LIMIT) CRANKING STARTER CURRENT (INGN LIMIT) STARTER CABLE VOLTAGE DROP BATTERY TO RELAY VOLTAGE DROP STARTER CONTROL VOLTAGE BATTERY CRANKING VOLTAGE BATTERY CRANKING VOLTAGE BATTERY CRANKING VOLTAGE BATTERY CRANKING VOLTAGE DISTRIBUTON ROTOR GAP VOLTAGE SPARE COIL AVAILABLE VOLTAGE (KV PROBE IN COIL TOWER) COIL AVAILABLE VOLTAGE MOP RELATIVE CYLINDER COMPRESSION SPARE CURB IDLE CYLINDER FOWER CONTHIBUTION DWELL BASIC TIMING (NO VACUUM) SPARE FLUG FIRING VOLTAGE COIL AVAILABLE VOLTAGE DISTRIBUTON ROTOR GAP VOLTAGE DWELL-CRANKING WALLABLE VOLTAGE COUR IDLE CYLINDER FOWER CONTHIBUTION DWELL BASIC TIMING (NO VACUUM) SPARE FLUG FIRING VOLTAGE COIL AVAILABLE VOLTAGE COIL AVAILABLE VOLTAGE COIL AVAILABLE VOLTAGE COIL AVAILABLE VOLTAGE DISTRIBUTOR CONTENT TOWER1 COIL AVAILABLE VOLTAGE DISTRIBUTOR CONTENT CARBON MONONIDE CONTENT COIL AVAILABLE VOLTAGE SPARE BATTERY VOLTAGE SPARE BATTERY TO COIL VOLTAGE	VOL' VOL' AMP VOL' VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL
•			·	•	047 048 049 100	SPARE ALTERNATOR OUTPUT VOLTAGE SPARE SPARE	

. INDICATES OUT OF LIMIT CONDITION

M INDICATES MANHALLY ENTERED TEST VALUE

•

- 759485 1

EVERGLADES LABORATORIES, INC. 78

CLIENT ADDRESS	~	BOAD SOUT ENT PALM DA PH SANPLE	HERN BOULEVARE ACH, FI URIDA 334(K ONE (305) 650-7820 NUMBE P
I CAR-BO-TECH	LAB	1 45	 1
145 OCEAN AVE, APT 502	GLIENT	 	
PALM BEACH SHORES, FL 33404	1 . 1 . 1	DATE	en an ann an Arranga an Arranga
RESIDUE FOR IFON, LEAD, HYDROCARBON TESTING	COL	1	
SAMPLED BY: CLIE	NT REC	1 1 10	0-27-76

(

ACID DIGESTION OF SOLID: REPORT

IRON 24.5%

LEAD 4.7%

EXTRACTION WITH VOLATILE SOLVENT - WEIGHT LOSS

HYDROCARBONS (EXTRACTABLE WITH PETROLEUM ETHER) 7.8%

JAMIN MARTIN, DIRECTOR Рн.

VEHICLE TEST REPORT

man the set of 79 had wars and for

21 CAPTICE 1.4 mi

TEST	нуумаен 	ACCEPTABLE	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	LNI7
1015	0.0		L	L		BATTERY WALTACE - RECONDUCIONED	
					002	BATTERY CURRENT DEAIN	VOL'
TIM		SNN CAD	11.2		003	SPARE	
		ADT UNL	• V 0		004	SPARE COIL PRIMARY VOLTAGE (+)	
1					006	DISTHIBUTOR POINT VOLTAGE DROP	VOL
D. D	1	12.1	12.5		007	SPARE	
	5	5.0	7.5 -	· ~ _	500	SPARE CRANKING STARTER CORRENT (LOW & 14/17)	
1	6		- 1	• 3	010	CRANKING STARTER CURRENT (LOW LIMIT)	AMP
	31	75	94	100	011	STARTER CABLE VOLTAGE DHOP	VOL
i	32	75	96	100	012	BATTERY TO RELAY VOLTAGE DROP STARTER CONTROL VOLTAGE	VOL
	23	75	07	100	014	BATTERY CRANKING VOLTAGE	VOL
	5.5	• 70		100	015	BATTERY TO COIL VOLTAGE DROP	VOL
	34		119	100	016 ,*	CRANKING RPM	RPM
	35 .	. 75	100	100	018	COIL AVAILABLE VOLTAGE (KV PROBE IN CON	R VC
[36	75	<u>99</u>	100		TOWER)	÷
1	37	75	<u>6</u> 9	100	019	COIL AVAILABLE VOLTAGE	K VC
	38	75	98	100	020	SPARK PLUG FIRING VOLTAGE	16 VK
1	<u>ل</u> ا	200	610	2000	029	DWELL-CRANKING	DEG
1	- 1 U C E	000 1 1 1 1	16 5	5040	030	BASIC TIMING-CRANKING (VACUUM DISCONNECT	DEG (CT
	90	1	14+3	15+5	031-038	RELATIVE CYLINDER COMPRESSION	PER
1	49		30 • 1	90.0	040	CURB IDLE	RPh
	51	7•0	8.3	16.0	041-048	CYLINDER POWER CONTRIBUTION	PEH
1	52	7.0	12.8	16.0	049	DWELL BASIC TIMING (NO VACUUM)	DEC
1	53	7.0	11.0	16.0	051-058	SPARK PLUG FIRING VOLTAGE	K M
	54	7.0	8.5	16.0	039	COIL AVAILABLE VOLTAGE (KV PROBE IN COIL	
1	55	7.0	10.5	16.0	060		
	55	7 0	2 C	10.0	061	ROTOR GAP VOLTAGE	×v.
	50	7.0		10.0	062	DISTRIBUTOR CAPACITOR TEST	
1	57	1 • 0	10-8	10.0	063	CON TEST	* LF
l	58	7•9	11.0	16.0	064	FASTIDLE	- R Pi
	71		1.6	8-0	065	LOW CURB IDLE	RPI
ł	72		.• 8	8.0	066	MANIFOLD VACUUM	Pb
1	73		3.6	0.3	068	CARBON MONOXIDE CONTENT	* 1994) 1923
	74		2.7	8.0	069	SPARE	•••
1	75		1.7	9.1	070	BATTERY TO COLL VOLTAGE DROP	MON.
1	76		5	· • • •	079-085	SPARE	K V
1	. 70		• 5	0.00	086	HYDROCARBON CONTENT	PP
1	11		1 • D		087	CARBON MONOXIDE CONTENT	PE
	76		2•4	8.0	088	DWELL	30
1	70		5.5	8.9	090	TOTAL ADVANCE	DE DE
	59	22.0	23.7		091	SPARE	
	5 0 M		12.0	6.00	092	BATTERY TO COIL VOLTAGE DROP	VO
}	•				094	SPARE	P 7
	673	ENISSION	S CHECK		095	BATTERY VOLTAGE • .	vc
ł		2011 22 1 2011			096	REGULATOR BATTERY VOLTAGE	VC
	6.8		0.14	~ ~ ^ ^	098	ALTERNATOR OUTPUT VOLTAGE	vc
	0.5		2+10		099	SPARE	
1	00		50	1260	100	SPARE	
1	37		.47	C.50			
	67		160	230	1		
1	51	. 7.0	5 - 1	16.0	1	/ /	
1	52	7.0	11.0	16.0	1	/ /.	
		•••				/ /	
1				f	1	And and a second se	
1							
1					1		
					1	·	

U

Â.

...

. . •

1

(:

. INDICATES OUT OF LIMIT CONDITION

M INDICATES MANUALLY ENTENED TEST VALUE .

159185-4

ftful Enquire Tabor ja

1 ch 80

7

EXHAUST UNICOON STAND Compare for avorage with

Arizona standa dis lo defermine passion tail.

ARIZUNA	LARGE	ENGINES	SMALL	INGINI S
EMISSION STANUARDS Might Year	C0 *2	HC ppm		H., ppn.
1968 and later	3.0	300	40	400
.1957 - 1967	4.5	500	5.0	6181
1557 And older	50	100	1.0	8.81

EXHAUST EMISSION STANDARDS

. .

• To be by amendment

٤

'1

Model Year of Vehicle	CO (^L)	His (spr.
Up to and including 1967	7.5	1100
1968 1960	5.0	604)
1970	4.0	4161
*1971 1974	4.0	460
-*1975 und later	11	3.1

"Valuate pognic news be function for the manufacture of example."

xxTp br promblyated at a later date.

STATE OF NEW JERSEY

EXHAUST EMISSION INSPECTION STANDARDS (Light-duty vehicles)

NODEL YEAR OF VEHICLES	FFFE July S	CTIVE	EFFF , July	CTIVE 1, 1974	EFFE	CTIVE 1, 1975
	CO(%)	HC(ppm)	C(%)	HC(µpm)	CO(%)	HC(upni)
Up to and including 1967	10.00	1600	8.5	1400	7.5	1200
1968-1969 1970 1074	' В.О КО	1-00 1-00	7.0 5.U	500	4,0	400

STATE OF NEW YORK

EXHAUST EMISSION STANDARDS

CO(5) G 6 4 0 5.0	110 (110m) 11000 1000 1000 1000	
նե 40 5.0	600 200 11000 -	
4 0 5.0	500 600	
5.0	600	
3.0	350	
40	4'.Q	
•	•	
105		
		μη

r.o.(nji	Itti (mpoo)
6	lúik)
5	6'NI
4	500
15	250
	6 5 4 1 5

Q. Linear many complaints about poor fuel economy and poor engine performance. What can I do to resolve these problems for my customers?

- A. Emission controls have been blamed for poor gas mileage. However, a recent report from the Environmental Protection Agency states that fuel economy should not suffer more than 5 to 7% as a result of emission control devices. Much of the decrease in gas mileage is a result of micreased weight of the vehicle, power consuming options, and incorrect carburction. Romember that emission controls are as much a part of the operation of an engine us its spark plugs, and emission analyzing equipment is required to properly repair and adjust latemodel vehicles.
 - Q. The Lederal laws deal with new vehicle certification. We should like concerned.

A. It's a fact that the Federal laws are primarily simed enew car manufacturers, however stiff penalties are imposed on suryone who disables an emission control de vice. Furthermore, many State and local government are enacting laws that deal with the maintenance transision systems. Some of these standards are show here for reference. Today's automotivo technician multiplication control systems and be proper equipped to service them.

EXAMPLES OF PUBLISHED SPECIFICATIONS -

STATE OF CALIFORNIA EXHAUSE EMISSION STANDARDS

\$1.5501.073 \$415 C.110 n	Domestic Volucies r Greater	HC rpm	C0 %
 1955-65	· · · · · · · · · · · · · · · · · · ·	1200	5.0
100 65	Air Injection	400	4.0
	Fagrice Mindiscrateur	500	70
1970 71 (.	61 A. F.18)	500	40
1972.23	Air tages loss	275	2 3
	Fagine Blackets asing	טאנ	4.0
tmpni ied Dominiti	Velocies and Compare Velocies Hollar 140 Cill		•
1:55 67		1900	8.4
1963 69	Are taken tibu	500	1.4
	Bayraan Mar Bills gaardina	- Alan	14
19.45 2.5	Par infector in	S-R1	<u>і</u> дп
	Logue the filt atom	6260	5.0

EXHIBIT M

Detroit Cesting Baboratory, Inc.

8720 NORTHEND AVELUE OAK PARK, MICHIGAN 48237 (313) 398 2100

802097-D	ENT. ORIA P	2-6-78	4-7-78
		· · · · · · · ·	Supplemental Poport
Car-Bo-Tech, Inc. 145 Ocean Avenue Palm Beach Shores, Flori	da 33404		
Attn: Suzanne Pletts, Ex Vice President	ecutive		
SUBJECT: Report of Che	mical Analysis.	and the house a second of the	
DESCRIPTION OF SAMPLE:		•	
Deposit from engine mani	fold.		
WORK REQUESTED:	•		
Chemical analysis.			
RESULTS: Carbon (Organic) Ash (Inorganic)	41.3% 58.7% 100.0%	• • • • •	
Analysis of Inorganic As	<u>h (</u> 58.7% of total)		
Component Aluminum Oxide Iron Oxide Lead Oxide Zinc Oxide Copper Oxide Silicon Magnesium Oxide Manganese Oxide Calcium Oxide	50.0% 42.8% 5.5% 0.3% 0.2% 1.1% Trace Trace Trace 99.9%	• .•	
		DETROIT TESTING LABOR Leslie T. Viland Project Engineer	ATORY, INC.
LTV/WRM/jk		William R. Martin, Man Mechanical & Hydrauli	nager c Testing

"Optroit Testing Laboratory, Inc., letters, must band data us to a three schoole inclution continuers to whom they are addressed. Our letters and reports apply only to those yeaples tested, and are not recession and after of the constension are over electrical or similar products. Samples not destroyed in testing are retrieved for a maximum at the system because of the encounterbackade of a system and the analysis from the testing are not permitted to ... a man entimeter without briot without approval.

EVERGLADES LABORATORIES, INC.

8049 SOUTHERN BOULEVARD WEST PALM BEACH, FLORIDA 33408 OLIFHT PHONE (305) 689-7520 SAMPLE NUMBER ADDRESS LAB CAR-BO-TECH 45 CLIENT 145 OCEAN AVE , APT 502 PALM BEACH SHORES, FL 33404 DATE COL RESIDUE FOR IRON, LEAD, HYDROCARBON TESTING ŧ REC 10-27-76 SAMPLED BY: CLIENT L

ACID	DIGESTION C	OF SOLID:	RE	PORT		
IRON	24.5%					
_E A D	4.7%					
EXTR	ACTION WITH	VOLATILE	SOLVENT	- WEIGHT	LOSS	

HYDROCARBONS (EXTRACTABLE WITH PETROLEUM ETHER) 7.8%

MARTIN, MIN Рн COTOD

|--|--|

			\ ```			17 75 C Dilio	
Á		10	<u> </u>	EHICLE TH	ST REP	ORT	1-
Ÿ	Cet. 1.	<u>2 1978</u>	With_	lat low	<u> </u>	1971 chine Lepice Cleanter 35il	- is
ughe.	TEST NUMBER	ACCEPTABLE LOW LIMIT	TEST VALUE	ACCEPTABLE HIGH LIMIT	TEST NUMBER	TEST DESCRIPTION	UNITS
Burro	AIDN-7097	CII 350/	1.18		001 002 003 004	BATTERY VOLTAGE - PRECONDITIONED BATTERY CUPRENT DRAIN SPARE SPARE	VOLTS AMPS
	1 40	12•1 450 -	12.6 540	550	C05 006 007	COLL PRIMARY VOLTAGE (-) DISTRIBUTOR POINT VOLTAGE DROP SPARE	VOLTS VOLTS
	933	ENISSIONS	CHECK		009 010 011	CPARE CPARKING STARTEP CUPRENT (LOW LIMIT) CRANKING STAPTER CUPRENT (HIGH LIMIT) STARTER CABLE VOLTAGE DROP	AMPS AMPS VOLTS
	5JARPN67		60	200	012 013	BATTERY TO RELAY VOLTAGE DROP STARTER CONTROL VOLTAGE	VOLTS VOLTS
	68		• 0 0	1.50	014	BATTERY CRANKING VOLTAGE	VOLTS
	2500 (36		0	200	015	CRANKING RPM	RPM
	RPM 237		• 0 0	1 - 0 0	017 018	SPARE COIL AVAILABLE VOLTAGE (Ky PROBE IN COIL	K VOLTS
1	D F/C	- EMISSIC	INS SYSTE:	4	019 020 021-028	COIL AVAILABLE VOLTAGE DISTRIBUTOR ROTOR GAP VOLTAGE SPARK PLUG FIRING VOLTAGE	K VOLTS
	40	450	520	550	029	DWELL- CRANKING	DEGREES
	70		• 4	2.0	030	BASIC TIMING CRANKING VACUUM DISCONNECTED' RELATIVE CYLINDER COMPRESSION	DEGREES
	51	S•C	8.5	21.0	039	SPARE	
	52	℃ •0	11.6	21.0	040		RPM
	53	8 • C	10.5	21.0	049	DWELL	DEGREES
	54	3 . 3	16.7	21.0	050	BASIC TIMING (NO VACUUM)	DEGREES
	55	8.0	10.8	21.0	059	COIL AVAILABLE VOLTAGE :KV PROBE IN COIL	K VOLTS
	56	8 • C	10.9	21.0		TOWER)	
	57	5.0	10.3	21.0	060	COIL AVAILABLE VOLTAGE ROTOR GAP VOLTAGE	K VOLTS
	58	8.0	10-5	21.0	062	DISTRIBUTOR CAPACITOR TEST	COUNTS
	71	5.0	8.6	07.0	063		LEVEL
	70	0.0	2.4	07.0	064	FAST IDLE	R VOLTS
	72	5.0	14+0	27.0	065	LOW CURB IDLE	RPM
	73	5.0	14.5	27.0	066	MANIFOLD VACUUM HYDROCARBON CONTENT	PSIA
	. 74	ນ. ບໍ	15+6	27.0	068	CARBON MONOXIDE CONTENT	PERCENT
	75	8.0	14 • 3	27.0	069		
•	76	3.0	16.3	27.0	071-078	SPARK PLUG LOAD TEST	K VOLTS
.	77	3.0	11.3	27.0	07 9 085	SPARE	
	78	8•0	14.6	27.0	086		PPM
1					088	DWELL	DEGREES
				(.	089	MECHANICAL ADVANCE	DEGPEES
		0 M D	\sim		090	SPARE	DEGREES
	d	9 17. 17.	G.		092 093 094	BATTERY TO COIL VOLTAGE DROP COIL AVAILABLE VOLTAGE SPARE	VOLTS K VOLTS
[Last	and t	I kra		095	BATTERY VOLTAGE	VOLTS
1	lesi	~ sume	The state	1	096	PEGULATOR BATTERY VOLTAGE	VOLTS
1	$C \rightarrow$	te.	A. f. m. Fries		098	ALTEPNATOR OUTPUT VOLTAGE	VOLTS
	Com	many		1	099	SPARE	
	2 tree	$+ F_{10} \otimes$			100	SPAPE	1
	- A		1				
	Maa	, H.D	ucote				1
		~ 11	. —				.
	Timing	140 Jet	.74 Plug	.050			
l							
}							1
L	<u></u>						

ับ A๑

Hamilton_____ Standard

INDICATES OUT OF LIMIT CONDITION
 M INDICATES MANUALLY ENTERED TEST VALUE

•

759485-1

.

Detroit Costing		an a		84	ΞA
Probability, Inc	MAMPLE - HERE AND	DAUNIN A TOTALININ A TOTALI			
DATA SHEET	D. F.L. NO.	jet Pr	11 1 10 80 . UY	75	JAABS
HC and CO Extremet	Emissions of Id.	le and 2000 P	cont no food		L, Viland
Spark Plug Say	0401 -25 1	reiviti]	1	
(GV1 Specificit	(SH , 045")		FROM	%	
These tests wer	e mande with t	1 2 . 0 4 C	HC .	03	
before entresion	tests of Olson	La boratorio.			
As received Original	Idle Adjustment)				
+At Vaie (56	OPATI in Drive 1	(ear-)	280ppm	4 7.	
- AF 2.570 F	RPM-No load		30ppr1	.05%	
After adjustment	for CD				
At Alle (SCO	RPM - Drive G	ra-) ·	11000	.02%	1
11 - 1 - 1	11 11	//	100ppm.	. 96%	17C notes
- At 2500R	PM - No Lood		0	.04%	
		<u> </u>		1	
)		
	B.			1	
These t	este made us	ing a		ł 	
Scort	Regearch Labora	loricis	ļ		•
Mosta	1 II Exhquet E	Imission Ana	14200		
				<u> </u>	
]	
·····					
				1	
· · · · · · · · · · · · · · · · · · ·					
}					
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
				<u> </u>	
		{		h	
i i		L	L		· · · · · · · · · · · · · · · · · · ·

Manufactured by ENERGY INSERT SYSTEMS, INC.

LIMITED WARRANTY

ENERGY INSERT SYSTEMS, INC. warrants to the first purchaser at retail that this ENERGY-GAS-SAVER manufactured by ENERGY INSERT SYSTEMS, INC. will be free from defects in workmanship and materials for a period of twelve (12) months from the date of original retail purchase or 12,000 miles, whichever occurs first. Defects caused by abuse, accidents, modifications, negligence, misuse or other causes beyond the control of ENERGY INSERT SYSTEMS, INC. are not covered by this Warranty.

If the ENERGY-GAS-SAVER proves defective within the warranty period, ENERGY INSERT SYSTEMS, INC. will at its option, either repair or replace the unit. Repair or replacement will be without charge if the defect appears.

To obtain warranty service, simply mail the unit postpaid and insured to the Company or go to an authorized dealer of the Company's.

In addition to the above Warranty, it is further warranteed that with a proper installation, your vehicle shall increase in gasoline mileage or you may receive your money back by returning the unit to the Company. (Any installation charge is not refundable).

> ENERGY INSERT SYSTEMS, INC. ENERGY-GAS-SAVER, INC.

INSTRUCTIONS FOR INSTALLING

"ENERGY GAS SAVER" AND "EXHAUST EXTRACTOR"

A. "Energy Gas Saver"

- 1. First verify that the unit is the proper one that fits the correct carburator, engine size and make of automobile.
- 2. Remove the carburator from automobile.
- 3. Carefully clean the carburator and manifold surfaces; make sure the old gasket is removed as well as all the dirt. Do not reuse the old gasket.
- 4. Must have clean and flat surface to assure proper fit and no vacuum leaks. Check for vacuum leaks.
- 5. Place "Energy Gas Saver" unit on intake manifold with the single primary opening facing upward and forward as illustrated below.

NOTE: The exhaust fitting for the flex tubing always goes toward the rear.

- 6. Place carburator on top of "Energy Gas Saver" and make sure that the carburator barrels open all the way without hitting or without binding.
- 7. While the two units are sitting on maniford, measure and cut the 5/16 studs to proper lengths to secure the two units to the intake manifold.
- 8. Remove carburator and "Energy Gas Saver" from manifold.
- 9. Install studs in manifold and install "Energy Gas Saver" base gasket.
- 10. Install "Energy Gas Saver" on studs.
- 11. Place carburator base gasket on top of "Energy Gas Saver" and place carburator on top.
- 12. Reattach all the linkage and reinstall all carburator components.
- NOTE: Slight modification may be required on fuel, vacuum and linkage systems due to the new height of carburator.

- 1 -

B. Extractor

- These instructions are for installing the exhaust extractor on vehicles equipped with or without a catalytic converter. On the vehicles with a catalytic converter, it is installed as close as possible to the "catalytic converter". If there is no "catalytic converter" it should be installed as close as possible to the front of the vehicle.
- The extractor is installed in the exhaust system and connected with a 1½" I.D. flex tubing to the rear of the "Energy Gas Saver" unit.
- 3. The extractor must be installed with the smaller return pipe that connects the flex tubing facing toward the engine as illustrated:

front

- Raise the automobile up and find a section of exhaust pipe near the front of the vehicle where the extractor will fit. Also, find a straight section of pipe for the extractor.
- 5. After you have established where to install the extractor, cut an old section of exhaust pipe out.
- 6. Install the extractor in that section and either weld or clamp in place.
- 7. The 1½" I.D. flexible pipe is to be installed between the "Energy Gas Saver" unit and the extractor.
- NOTE: Flexible pipe must be run in such a way as will not cause damage to any components due to exhaust heat.
- 8. Clamp flexible tubing to the "Extractor" and the "Energy Gas Saver" unit.

87

- 2 -

- C. Adjusting System
 - 1. Double check all components to assure proper installation and no vacuum leaks.
 - 2. Start automobile.
 - 3. Set timing 2 to 4° more advanced than factory specs.

NOTE: If pinging occurs, retard timing slightly to correct.

- 4. Adjust carburator fuel mixture with exhaust gas analyzer to assure best possible emission readings.
- 5. Reset idle speed to factory specs and as low as possible with the air conditioning on.

CONTRACTOR OF R FOR: R B **h** ' V ENER S NC INSERT U.S. PATT. 412-7093 #201 8 302 CUNFORD 2 BLL EAFFICE PRATES ON (2.5) 35, HONNY 2 550 SPIROL MANAGEMENT

•

92

_

A STATE MUNICIPAL AND A COMPANY AND AN AND A STATE WALK A O A A O BLAZE O.A A O B (4) BBL. (LOBD) H. (HOLLY). (CHASLER) - 11 く and interest to on the latest state of the state of the state of the state of the

N X

END VIEW

UJJIV GOT

Whereas, there has been presented to the

Commissioner of Patenis and Trademarks

A PETITION PRAYING FOR THE GRANT OF LETTERS PATENT FOR AN ALLEGED NEW AND USEFUL INVENTION THE TITLE AND DESCRIPTION OF WHICH ARE CON-TAINED IN THE SPECIFICATIONS OF WHICH A COPY IS HEREUNTO ANNEXED AND MADE A PART HEREOF, AND THE VARIOUS REQUIREMENTS OF LAW IN SUCH CASES MADE AND PROVIDED HAVE BEEN COMPLIED WITH, AND THE TITLE THERETO IS, FROM THE RECORDS OF THE PATENT AND TRADEMARK OFFICE IN THE CLAIMANT(S) INDICATED IN THE SAID COPY, AND WHEREAS, UPON DUE EXAMI-NATION MADE, THE SAID CLAIMANT(S) IS (ARE) ADJUDGED TO BE ENTITLED TO A PATENT UNDER THE LAW.

Now, THEREFORE, THESE Lefters Patent are to grant unto the said Claimant(s) and the successors, heirs or assigns of the said Claimant(s) for the term of Seventeen years from the date of this grant, subject to the payment of issue fees as provided by Law, the right to exclude hers from making, using or selling the said Invention throughout the States.

In testimony Whereot I have hereunto set my hand and caused the seal of the Datent and Trademark Office to be affixed at the City of Washington this twenty-eighth day of Nocember in the year of our Lord one Housand nine hundred and seventy-eight, of the Independence of the United States of Simerica the two hundred and third. Nuter C. Mean Studies Office. Darels O. Barne

(+++, ++ +7)

December 6, 1980

K. D. Drachand, Acting Chief Mobile Source Control Division Air Resources Board 9528 Telstar Avenue El Monte, California 91731

Dear Mr. Drachand:

Enclosed is our application for a motor vehicle add-on device. The purpose of this application is for an exemption from the provisions of the California Vehicle Code Section 27156. Even though our Energy Gas Saving system does not modify the vehicle's emission control system, we would still like to apply for an exemption from the prohibitions of Section 27156 of the Vehicle Code in order for us to legally advertise, offer for sale, sell or install in the State of California.

This system has had extensive testing on numerous vehicles and has never been known to increase emissions from the exhaust system. In fact, to our knowledge it is the only system that extracts solid pollutants (particulates) from the exhaust of the automobile engine.

Also, to our knowledge, our Energy Gas Saving system is the only gas saver that is scientifically proven. What in effect happens is that the vapor mix of gas and air from the carburator is mixed with hot exhaust and this mixture is further vaporized and this allows for a leaner mix into the combustion chambers of the engine. One of our exhibits (Exhibit F) is the research done on vaporization by Ford Motor Company, which is self-explanatory. Professor Enoch J. Durbin of Princeton University School of Engineering states in a letter to me, that vaporization does save fuel and his percentage figure is approximately 15%. An ercerpt of this letter is attached as Exhibit E.

It is our firm belief that in addition to the 15% savings in gasoline by vaporizing the vapor with heat, we save at least another 15% by doing the following. Replacing the air filter that comes on the vehicles with a 360° "high performance" air filter manufactured by FRAM Corporation. Also the "plellum" created by the mixing chamber helps increase the gasoline mileage the same as a high riser on a racing car. The idle setting for engines with this system can more readily be set at normal according to factory specifications because of the even buring of the fuel mixture. The manufacturers normally have their idles set much higher than factory specifications to overcome the roughness.

December 6, 1980 K. D. Drachand, Acting Chief Page 2

It is our intention to have tests done by Olson Laboratories and/or Southern California AAA for both exhaust emissions to qualify for the State of California and also for mileage testing. These two vehicles will be tested prior to the installation of our Energy Gas Saving equipment and tested after the installation of our Energy Gas Saving equipment.

The signature of the authorized representative signing this statement is the inventor, president of the company and majority stockholder.

We appreciate your prompt approval for our exemption from the prohibitions of Section 27156 of the California Vehicle Code.

Very truly yours,

Donald C. Pletts

DCP/tas

Sheet 1 of 2 4,127,093

FIG.1

لشعددها

United States Patent [19] [11] 4,127,093 Pletts [45] Nov. 28, 1978 [54] EXHAUST RECYCLE MIXER [56] References Cited [53] Inventor: Dosald C. Pietts, Palm Beach Shores, Fin. 3,459,162 \$/1969 Burwinkle et al. 123/141 X

[73] Assignee: Car-Bo-Tech Isc., Falm Beach Shores, Fla. [21] Appl. No.: 775,834

 [71]
 Let. Cl.?
 F02M 25/06

 [52]
 U.S. Cl.
 123/119 A

 [56]
 Field of Search
 123/119 A, 141

Mar. 9, 1977

[22] Filed:

į

ż

	U.S. PA'	TENT DOCUMENTS		
3,459,162	8/1969	Burwinkle et al.	123/141	x
3,530,643	9/1470	Festenden	123/119	
3,580,233	5/1971	Busse	123/119	
3,878,823	4/1975	Varianias	123/119	
Primary Ex Allorney, Ag	ominer—' tent, or Fi	Wendell E. Burns irm-Sherman & Shallov	way	
[57]		ABSTRACT		

A fuel/air and recycled-exhaust mixer is disclosed which is devoid of valves or interruptions in the exhaust-recycle path and which is effective with multibarrel and multi-stage carburctors, either as original equipment for new vehicles or as a conversion unit for existing vehicles.

8 Claims, 3 Drawing Figures

4,127,093

portions which is operable over substantial ranges of engine speeds and with multiple-stage carburation without valving the exhaust-recycle flow and while accomodating variations in entrained matter and heat content of the recycled exhaust.

3

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects of the invention, as well as a better understanding thereof, may be derived from the following description and accompanying drawings, in 10 which:

FIG. 1 is a sectional elevation of the preferred form of mixer;

FIG. 2 is a plan view thereof and taken on lines 2-2 of FIG. 1, and

FIG, 3 is an exploded view of the staggered-flow insert of the mixing chamber.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As shown in the drawings, the preferred form of mixer of the present invention comprises a body 1 of cast aluminum alloy, or a comparable material, shaped to fit between an automotive intake manifold 2 and its appropriate carburetor 3 with interposed gaskets 4 and 25 5 closing against the adjacent flange surfaces 6 and 7 of the mixer body. The body also includes four bolt bores 8 for receiving assembly bolts 9 therethrough to engage mating fittings in the carburetor and manifold. As shown in the drawings, the mixer is shaped to fit the 30 four-barrel carburetors of large-displacement, General Motors automotive engines.

The body 1 has a rectangular primary fuel/air duct 10 extended therethrough between an inlet 11 underlying the first-stage barrels 12 of the carburetor and an outlet 35 13 overlying the inlet 14 of the munifold. The outlet 13 of the primary duct is preferably rectangular, as shown, but may take any desired shape.

Adjacent the outlet 13, the body has a ledge 15 supporting a series of alternating spacers 16 and plates 40 17-19 loosely positioned therein. As best shown in FIG. 3, the lowermost plate 17 has a pair of ports 20 overlying the outlet 13. The next plate 18 has a centered, rectangular port 21; the next two plates 19, 19' have four notched ports 22 in their periphery and the upper-45 most plate 18' has a centered, rectangular port 21'.

The spaced, inward and outwardly ported plates 17-18 thus provide a staggered or zig-zag flow path through the primary fuel/air duct and a consequent thorough mixing of the several components of the com-30 bustion charge passing through the duct. Other forms of staggered-flow assemblies may be employed, if desired, but the disclosed series of loose plates and loose, perpheral spacers are especially advantageous with regard to simplicity of cost and insullation and their lack of ser-35 vice requirements. The overall assembly is simply retained in the primary fuel/air duct between the lodge 15 and a portion of the flange or gasket associated with the carburetor.

The body 1 also includes a pair of second-stage or 60 secondary fuel/air ducts 23 and 23' which are aligned with the outlets of the two second-stage barrels of the carbuscior and communicate therewith via inlets 24, 24' and with the intake manifold via outlets 25, 25; respectively. A wall 26 intermediate the secondary ducts 23 65 and 23' has a thickened portion 27 in its upper region near the inlets 24 and 24' and has a bine 23 of about one-fourth inch diameter extended therethrough to

adjacent the primary duct 10. The upper portion of the primary duct 10 has a delivery bore 29 of about oneeighth inch diameter intersecting the bore 28 and opening the bore 28 to the inlet portion of the primary duct 10. The uppermost spacer 16 is notched or otherwise relieved as at 30, to provide free communication of the bore 29 and the primary duct.

As best shown in FIG. 2, the body includes a settling chamber 31 extended along and partially between the 10 secondary ducts 23 and 23' and in direct communication via a port 32 with the bore 28 which passes between the secondary ducts. The chamber 31 is closed by a plate 33 accured on the body by screws 34 about its periphery. The plate has a threaded inlet port 35 for receiving a 15 fitting 36 associated with an exhaust return line 37. Preferably, the port 35 is located at a level below the level of the transfer port 32 and duct 28.

The chamber 31 thus includes a substantial volume and further provides for heat-transfer contact with the 20 resulting thin, curvate walls 38, 38' of the accordary ducts 23 and 23'.

In operation, the mixer is installed between the carburelor and manifold, as shown, and the tube 37 is connected to a point or points in the exhaust system intermediate the exhaust manifold and a muffler or resonator.

When the engine is then started, exhaust gases are drawn through an uninterrupted flow path from the point of connection in the exhaust system through to the inlet zone of the primery fuel/air duct 10. In the primary duct, the exhaust-recycle- is thoroughly mixed with the fresh fuel/air mixture and delivered to the engine as part of the fuel charge.

Any perticulate matter returned with the exhaust is free to fall out of entrainment in the enlarged settling chamber 31. Accumulations thereof may be removed quickly with a screwdriver at intervals coinciding with other services such as oil changes.

The intimate association of the returned gates with a large internal area of the mixer body silows the body to absorb heat freely from the gates, adjacent the secondstage ducts 23, 23, before the recycled gates are presented to the fresh fuel/air mixture and thereby help accomodate fluctuations in exhaust-gas temperatures while retuining the heat value in the flow path of the carburation.

It is important to note that the mizer of the present system is the essence of simplicity, being entirely without metering valves, check valves or similar close-tolerance complications.

However, it is significant that, in spite of its simplicity and lack of complex and sensitive adjustments, the mixer of the present invention is capable of extremely effective performance of fuel economy and pollutantreduction over a wide range of engine-operating conditions.

As slated before, the specific shape of the mixer disclosed in the drawings is intended for use with large-displacement. General Motors blocks. A mixer as disclosed herein has been so tested and proven most effective.

The test vehicle was a 1970 Cadillac Fleetwood having a 472CID engine, more than 70,000 mules, and its original four-barrel carburetor, a "Rochester Quadro Jet". The vehicle has a curb weight of 5,260 pounds. When used in the "carburetor" tests reported below, the vehicle was thoroughly tuned for optimum gas muleage with the carburetor as installed at the factory.

4,127,093

In the "carb/mixer" tests, the vehicle was altered only by addition of the mixer interiordiate the carbitretor as d intake and an exhaust take-off in the system to supgly the exhaust recycle.

5

In the mileage tests, a one-gallon reservoir and a ⁵ recently-checked speedometer were used for measurement, with the following average results:

•		
Carburetiw	Carb: Miser	-10
The second secon		
"regular" fuel - 12.6 mph	144 mph	
"nurlead"fuel + 11 8 mph	191 mph	

Accordingly, it is apparent that the present invention privides not only a dramatic increase in miles per gallon of gasoline, but accomplishes performance and economy with regular gas, instead of the high-octane premium gases normally necessary in that engine.

However, the mildage performance is only a part of 20 the surprising results provided by the present invention. Emission analyses were conducted by a commercial test facility, in both the "carburetor" and "carb/mixer" configurations, with the following results:

<u> </u>	Car	burehar	C.		
	lly dru- carbons	Carbon Monoside	Hydro- carbine	Carbon Monozale	-
luie (650 rpm) Kun (2500 rpm)	20m2 ppm 2000 ppm	4.10%	40 բրու 30 բրու	045% 004%	. 30

Therefore, it is apparent that the new mixer drastically reduces the hydrocarbon and carbon monoxide contents of the exhaust gases finally emitted, to the $_{15}$ point that a seven year old car with more that seventy thousand miles can operate well below the upper limits for hydrocarbons (250 - 280 ppm) and for carbon monoxide (1.5 - 2.5%) now specified or forthcoming in some of the more severe jurisdictions. This is accom- 40 plushed without catalytic converters or other complexities or sophistications.

The present invention thus provides a simple exhaust recycle system which equals or exceeds the performances of the more complex prior systems. 43

Various changes may be made in the details of the invention, as disclosed, such as adaptation to different carburetors and engines, without sacrificing the advantages thereof or departing from the scope of the appended claims.

What is claimed ia:

1. A charge-forming mixer for internal combustion engines having a carburetor, an intake member and an exhaust member, said mixer comprising a body having

- at least one fuel/air duct extended therethrough, said fuel/air duct having
- an inlet for receiving a fuel/air mixture from the carburetor and
- an outlet for discharging a combustible mixture therefrom to the intake member,
- means defining a staggered flow path for fluids passed enroute from said inlet to said outlet,

6

- a settling chamber on a side of said body remote from said fuel/air duct,
- a timsfer duct extended in heat transfer relationship through a wall of said body, said duct including,
- a transfer aperture communicating with said settling chamber and
- a delivery sperture in communication with soil fuelfair duct adjacent said inlet, and
- recycling means for recycling a portion of the exhaust gases from the exhaust member to the settling chamber, said recycling means including an unobstructed recycle path free of valves.

2. A charge-forming mixer according to claim 1 in which and settling chamber is formed internally in said 15 body.

3. A charge-forming mixer according to claim 2 in which said recycling means includes an exhaust inlet port positioned in said settling chamber at a level below said transfer aperture.

4. A charge-forming mixer according to claim 3 in which said body includes a second fuel/air duct and said transfer duct is positioned at least in part in a wall between said first and second fuel/air ducts.

5. A charge-forming mixer according to claim 3 in 25 which said body includes first and second secondary fuel/air ducts positioned to receive a supplemental flow of fuel and air, and said transfer duct is positioned at least in part in a wall separating said secondary ducts.

6. A charge-forming mixer according to claim 5 in which said settling chamber is positioned at least partially intermediate said secondary fuel/air ducts and in close heat-transfer relationship therewith.

7. A conversion unit for engines having four-barrel, two-stage carburetors comprising

- a body having
- a carburetor flange and
- an intake flange,
- primary fuel/air duct opening between said flanges and positioned to underly said printary carburctor barrels,
- means defining a staggered flow path for fluids passed through said primary fuel/air duct,
- a pair of secondary fuel/air ducts positioned individually to underly the secondary third and fourth barrels of the carburctur and opening between said flanges.
- settling chamber adjacent said secondary fuel/air
 ducts,
- a transfer duct within a wall separating said pair of secondary fuel/air ducts,
- said transfer duct including
- a transfer sperture communicating with said settling chamber and
- a delivery aperture communicating with said primary fuel/sir duct adjacent said inlet, and
- means for freely admitting recycled exhaust gaves into said settling chamber for unobstructed passage into said primary fuel/air duct vis a recycle path free of valves.
- 8. A conversion unit according to claim 7 in which said settling chamber is integral with said body and has a portion positioned at least partially intermediate said accordary fuel/sir ducts.

45

ю

4216654

(HIRD CARTONION THESE PRESENTS SHALL COMER

106

Mhereas, there has been presented to the

Commissioner of Patents and Trademarks

A PETITION PRAYING FOR THE GRANT OF LETTERS PATENT FOR AN ALLEGED NEW AND USLFUL INVENTION THE TITLE AND DESCRIPTION OF WHICH ARE CON-TAINED IN THE SPECIFICATIONS OF WHICH A COPY IS HEREUNTO ANNEXED AND MADE A PART HEREOF, AND THE VARIOUS REQUIREMENTS OF LAW IN SUCH CASES MADE AND PROVIDED HAVE BEEN COMPLIED WITH, AND THE TITLE THERETO IS, FROM THE RECORDS OF THE PATENT AND TRADEMARK OFFICE IN THE CLAIMANT(S) INDICATED IN THE SAID COPY, AND WHEREAS, UPON DUE EXAMI-NATION MADE, THE SAID CLAIMANT(S) IS (ARE) ADJUDGED TO BE ENTITLED TO A PATENT UNDER THE LAW.

Now, therefore, these Lefters Patent are to grant unto the said CLAIMANT(S) and the successors, heirs or assigns of the said CLAIMANT(S) For the term of Seventeen years from the date of this grant, subject to the payment of issue fees as provided by Law, the right to exclude "Thers from making, using or selling the said Invention throughout the "ted States.

> In testimony Whereof I have hereunto set my hand and caused the scal of the Patent and Trademark Office to be affixed at the City of Washington this welfth day of August in the year of our Lord one theusand nine hundred und eighty, and of the Independence of the United States of America the two hundred und fifth.

Silvery A. Siamo Commissioner of Sutents and Trademark.

United States Patent (19)

Pletts

0

7:0:1

[54] FUEL COMPONENT ENTRACTOR [76] Inventor: Donald C. Pletts, 145 Ocean Ave , #502 Palm Beach Shores, Eta. 33404 [21] Appl. No. 935,849 [22] Filed. Aug. 22, 1978 [51] Int. Ct² 902 No. 935,849 [52] U.S. Ct. 60/311; 55/456; 123/564, 60/219 [58] Field of Search 123/119 A, 60/311, 279; 55/456, 457 [56] References Cited

U.S. PATENT DOCUMENTS

2.025.362	12/1935	Start	123/119 A
2,147,671	2/1919	Pratt	123/119 A
2.8(4).618	11/1958	Mansfield	123/119 A
3,347,682	8/1968	Rigan	123/119 A
3.435.810	4/1969	Buse	123/119 A
3.495.385	2/1970	Glass	60/311
3.530.843	9/1970	Fessenden	123/119 A
3 579 941	5/1971	Gau	123/119 A

[11] 4,216,654

[45] Aug. 12, 1980

Princing Examiner--Wendell E. Burns Attorney, Agent, or Firm - Sherman & Shalloway

ABSTRACT

[57]

An exhaust extractor is disclosed in which a curvate path is provided for installation in the exhaust system of a vehicle and has an external chamber for receiving extracted fuel constituents of the chaust for supply to the intake of the vehicle engine while precluding reingestion of undesirable particulate and pollulant matter. A main duct carries a plurality of inwardly directed transfer scoops for interception and transfer of usable particulates and other fractions of the exhaust into the external chamber at selected portions of the periphery of the main duct away from the outer portion of the curvate path therein to minimize the transfer of heavy particulates or solids to the external chamber and the remainder of the exhaust recycle system.

3 Claims, 2 Drawing Figures

1 FUEL COMPONENT EXTRACTOR

BACKGROUND OF THE INVENTION

The present invention is concerned with the return of selected portions of exhaust gases from internal combustion engines for unitration in the forming of subsequent charges for the intake of the engine and is concerned, more particularly, with an extractor for the eahaust system which returns a high quantity of the 10 usable exhaust fraction while passing the undesitable and problematical components through for discharge.

PRIOR ART STATEMENT AND DISCUSSION

The most relevant prior art of which I am aware 15 comprising the following United States patents:

U.S. Pat. No. 3,435,810 to Busse. U.S. Pat. No. 3,530,643 to Fessenden; and

U.S. Pat. No. 3,580,233 to Busse.

<u>ر ،</u>

U.S. Pat. No. 3,435,810 discloses a separator for ex- 20 cluded. haust gases which imparts a whirling motion to the gaves to establish relatively separate streams of heavier and lighter components so that the light-component stream can be recycled to the intake of the engine.

U.S. Pat. No. 3,530,843 discloses an exhaust separator 25 which includes an axial tube centrally located within the unit to pass the central, heavier portion of the exhaust, while the more desirable portions thereof are withdrawn from the chamber surrounding the axial tube for supply to a charge-forming mixer at the engine 30. intake.

U.S. Pat. No. 3.580,233 discloses a senarator of the type disclosed in the Busse U.S. Pat. No. 3,435,810 in conjunction with a swirling mixer for the recycled ex-35

The prior attempts at separation of desirable exhaust fractions, as represented by the above-listed patents, are functional and can be used to recycle exhaust gases to the intake of a combustion engine. However, none of the prior art devices achieves a selective separation and 40 recycle of the most desirable constituents of the exhaust without either imposing a substantial back-pressure on the engine or, eventually, accumulating and then transferring undesirable solid portions of the exhaust.

In the separator disclosed in the Busse U.S. Pat. Nos. 45 3,435,810 and 3,580,233, the enforced swirling of the exhaust gases imposes a considerable back-pressure on the system so that, although the efficiency of the engine is partially improved by the recycle of portions of the need to overcome the back-pressure imposed by the efficiency-improving attempt. In the separator of the Fessenden patent, the chamber

surrounding the central, axial pipe is subject to accumulation of solids and, eventually, transfer of those solids 55 through the recycle system to the fuel/exhaust mixer with consequent blockage of susceptible portions of the system.

Therefore, the prior forms of exhaust teparators have they either involve mechanical complexities and high pressure drops or, if they are mechanically simple in construction, they are subject to undesirable misoperation after a period of use.

SUMMARY OF THE INVENTION

in general, the preferred form of extractor of the present invention comprises an exhaust duct section 2

which is curved on an are and which is in communication with an exterior, champer via a plurality of relatively small, inwardly-deflected wall portions positioned along the must portion of the wall, the outer portion of the wall being imperforate and forming a smooth path for the through-passage of the heavier portions of the exhaust, including the heavier particulate components.

OBJECTS OF THE INVENTION

It is an object of the present invention to provide an exhaust extractor for exhaust recycle systems which is simple in structure, imposes no additional back-pressure on the engine, and is reliable in its extracting function over extended periods of usage.

It is another object of the present invention to provide a simple and reliable extractor for exhaust gases, which will extract the usable exhaust portions for recycle with a minimum of the undestrable portions in-

It is another object of the present invention to provide a simple and reliable exhaust extractor which imposes a low back-pressure while imposing an inertial force on the exhaust components and passing the heavier portion of the constituents through the separator.

It is another object of the present invention to provide a simple and reliable exhaust extractor which imposes a low back-pressure while imposing an inertial force on the exhaust stream and intercepting and removing the lighter and usable constituents from the exhaust system.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects of the invention and a better understanding thereof may be derived from the following description and the accompanying drawings, in which:

FIG. 1 is a side view, partly cut away, of the preferred form of exhaust extractor of the invention; and FIG. 2 is a top view, partly cut away, of a portion of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As shown in the drawings, the preferred form of extractor is in the form of an insert for incorporation in the exhaust system of vehicles for their conversion with exhaust, a substantial part of the increase is lost to the 50 an exhaust-recycle system to improve their efficiency and emission performance. It is to be understood, however, that the extractor of the present invention is quite appropriate for use as original equipment in such systems.

A particularly advantageous system is disclosed in my copending application Ser. No. 775,834, filed Mar. 9, 1977, and titled "EXHAUST RECYCLE MIXER." The extractor of the present invention has been found to be especially effective with the mixer disclosed in that not been found to be satisfactory in all respects, since 60 application, but it is to be understand that the new extractor of the present invention may be used in any exhaust recycling system which may be found effective.

The new extractor comprises a section of exhaust duct I which defines a relatively gently curved path and 65 includes an outer curvate wall 2 and an inner curvate wall 3. A sleeve 4 of similar exhaust pipe material surrounds the curved portion of the duct 1 and is welded thereto at its ends 6 and 7 to form an external chamber

4,216,654

in the reduction of recycled softway which tend to accunulate in the recycle system and to reduce the effectives needed by system over long periods of usage

E-boalls, it is apported that the to'W extractor not only exceeds the prior units in its effectiveness and remaining, but also behaves its special advantages with an extremely simple structure free of complex diverters and of zones requiring servicing or periodic cleanout.

Various changes may be made in the details of the

invention, as disclosed, without sacrificing the advantages thereof or departing from the scope of the appended clauns.

What is claimed is

1. An extractor for fuel components of an exhaust stream comprising:

(a) a curved duct for exhaust gases, said duct defining (b) a curvate longitudinal interior flow path therethrough to impart a transverse merital force on exhaust gases flowing longitudinally through said curvate flow path,

(c) a chamber exterior of said curvate flow path,

- (d) transfer means for transferring fuel components from the inner arcuate portion of said curvate flow path to soil chamber,
- (c) and transfer means including a plurality of apertures in said duct along the inner arcuate portion of said curvate flow path and
- (f) a deflector adjacent each aperture and extended into the inner arcuate portion of sud curvate flow path, said deflectors being formed integrally with a wall of said duct and deformed therefrom to form said apertures.

 The extractor of claim 1 in which said chamber encloses the area of said duct wall having the apertures therein.

3. An extractor for fuel components of an exhaust stream comprising:

- (a) a duct for exhaust gases, said duct including
- (b) a curvate wall portion at least partially defining the inner arcuate portion of a curvate flow path,
 (c) said curvate wall having
- (d) a plurality of deformed areas therein, said deformed areas each defining.
- an aperture in said curvate wall and a deflector extended into an adjacent zone of said
- curvate flow path, and
 (c) a chamber formed at least in part by suid curvate
- wall and adapted to receive fuel companients of the exhaust stream via said apertures for transfer to an exhaust recycle system.

5. The end the miner wall 3. If desired, the chamber 5 is much be trained by structure other than a slocket, such as a V stape 1 with the and only as a clocked chamber is presert allow the end walls. The increase may include parameters are not walls. The increase wall but is 5 of classe only all the Veletion that a set wall, and the adjacent humation and as as written in the approximation for eination. Write the developed curvate form of duct is preferred, it is to be understand that other forms of fabrications may be employed as long as they provide a 10 performance look back previous curvate flow path through the ethected.

3

The since is provided with a takenth aperture 8 in communication with the chandler 5 and a connector 9 for connection thereof with the cohards fuel mixer. The 15 duct 1 carries a large number of small apertures 10 m its mner walf 3 which provide communication between the mixer on thereof and the external chandler 5 to transfer exhaust components to the chandler for recycle.

<u>с</u>ъ

:

The apertures 10 preferably are tormed by punching 20 depressed wall portions 11 radially inwardly of the inner wall so that the depressed walls intercept exhaust components adjacent the inner wall for deflection into the chamber 5. It has been found advantageous to form the depressed portions with their leading edges 12 one- 25 sixteenth to one-eighth of an inch inward from the inner surface 13 of the inner wall, and with an aperture size of about three-eighths of an inch in length and width, when the duct 1 is in the order of two and one-half melies diameter. While the foregoing dimensions are 30 preferred for a duet of two and one-half inch diameter, it is to be understood that these dimensions may be varied for different-sized extractors. The resultant scoop or depressed wall portion thus forms a partially curvate defector for the interception and removal of 35 the desired exhaust portion of usable gases and light particulates.

In operation with exhaust gases flowing therethrough, as shown in FIG. 1, the heavier gases and solids are concentrated outwardly of the curve of the 40 duct by metria and tend to foliow the outer wall 2 which, by reason of its being imperforate, channels these undesirable components toward the outlet and away from the chamber 5 without the imposition of complex vanes, switters or the like. The lighter gases 45 and particulates which are appropriate for recycle and use in the engine are thus presented in the inner portion of the curved duct 1 and are intercepted by the depressed walls or scoops 11 and diverted into the chamber 5 for recycle via the connector 9 with a minimum of 50 disturbance of the main flow of exhaust through the duct.

Therefore, it is apparent that the extractor of the present invention achieves its objects and provides an effective, selective extraction of the usable exhaust con- 55

63

Guaranteed to improve your gas mileage or your money back for the cost of the unit.

٩. ٦

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

ANN ARBOR, MICHIGAN 48105

OFFICE OF AIR. NOISE AND RADIATION

June 23, 1981

Mr. Donald C. Pletts, President Energy Gas Saver, Inc. 143 Inlet Way #5 Palm Beach Shores, FL 33404

Dear Mr. Pletts:

Please find enclosed an updated copy of the EPA recognized independent laboratory list.

Sincerely,

Merrill W. Korth, Device Evaluation Coordinator Test and Evaluation Branch

Enclosure

cc. J. White 511 file "Energy Gas Saver" 114 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

ANN ARBOR, MICHIGAN 48105

June 26, 1981

OFFICE OF AIR. NOISE AND RADIATION

Mr. Donald C. Pletts 143 Inlet Way #5 Palm Beach Shores, FL 33404

Dear Mr. Pletts:

We have completed our preliminary evaluation of your application, material, and test plan for the "Energy Gas Saver" device. Our comments are as follows:

- Since you intend to use test results from Olson Engineering, Inc. in support of your application for an EPA evaluation, we feel that you should have submitted your application or otherwise contacted us before the testing was performed there in March, 1981. This would have given us on opportunity to comment on your test plan before the tests were performed.
- 2. During the testing at Olson Engineering on the 1981 Ford LTD 302 V-8, the as-received baseline test should have been performed first, before the test with the "Energy Gas Saver" installed. We suggest that you test a second vehicle which is not equipped with overdrive or throttle body injection, as these are not representative of the vehicle population.
- 3. Also, what were the tuneup procedures before each test sequence at Olson Engineering, and were all components of the "Energy Gas Saver" removed before the baseline tests? Have all the results from tests at Olson Engineering been submitted to us?
- 4. Your installation instructions require that timing be set 2 to 4° more advanced than factory specifications, and that the carbure-tor fuel mixture be readjusted. If this is done, a separate test sequence is required with only these adjustments and without the "Energy Gas Saver" installed. Were these adjustments made on your test vehicle? If so, please detail the procedures used.
- 5. From the Olson Engineering test data sheets, we noticed that a different dynamometer was used for the baseline tests than was used for the tests with the device. This is inconsistent with our guidelines for properly evaluating a device.
- 6. For tests on the 1981 Ford at Automobile Club of Southern California, no data sheet was submitted for tests with the "Energy Gas Saver" installed.
- 7. The other data submitted with your application from the various sources is of some value, but we do not consider it as valid data to be used in place of current test data from an independent laboratory as described in my letter dated January 13, 1981.

We hope the above comments are helpful to you in conducting a test program to evaluate "Energy Gas Saver". In order for us to conduct our evaluations in a timely manner we have established a schedule for each. I ask that you respond to this letter by July 13, 1981 and that you submit the results from your latest tests by August 3, 1981.

If you have any questions, please feel free to contact me. My telephone number is (313) 668-4299.

an an growen an an an an an an an an

and the state of the

Sincerely,

Merrill W. Korth, Device Evaluation Coordinator Test and Evaluation Branch

.

-2-

July 9, 1981

Mr. Merrill W. Korth Devise Evaluation Coordinator Test and Evaluation Branch U. S. E. P. A. Ann Arbor, Michigan 48105

Dear Mr. Korth:

Please refer to your letter of June 26, 1981.

- 1. When I went to California in March of this year, I did not plan on having tests done by Olson Engineering, Inc. Also my plan was to obtain an exemption from the Air Resourse Board of California, in order to sell the "Energy-Gas-Saver" in California.
- 2. The Air Resourse Board gave me permission to have "Olson" do the tests with the Energy-Gas-Saver before doing the baseline test. You'll note that you have a baseline test done by the "Auto Club of Southern California". Also you have records of Ford Motor Company certification tests.
- 3. The 1981 Ford Ltd. with a 302 V-8 Engine was checked as per Company specifications including Idle on the carburetor. The Idle is the only adjustment that can be made on this vehicle. A copy of all the "Olson" tests are enclosed... The extractor was not removed from the exhaust system, it was however blocked off.
- 4. No adjustments were made on this vehicle, for any of the tests. (no adjustments could be made). I understand your requirments for testing in the event adjustment are made different than baseline.
- 5. Because of the sizable changes in the testing "Olson" used both of their dynamometers.
- 6. The Auto Club of Southern California would not give me the results of their thest with the Unit installed. These results are however included in the summary sheet.
- 7. The purpose of sending you all the test data was to show how much research had been done on the "Energy-Gas-Saver".

Mr. Merrill W. Korth July 9, 1981 Page 2

Since you allow Hot Start LA-4 testing, I would like to bring to your attention the Hot Start tests done by "Olson" as shown on page 2 of the enclosed "Summary of Highway Fuel Economy Tests".

You'll note the Baseline test by "Olson" is higher in HC and NOX than all three Hot Start tests done with the "Energy Gas Saver". Also test #1 is approximately the same on CO. I believe that if you converted the Auto Club of Southern California <u>P.P.M.</u> to Grams this Baseline test would be some what higher than the Olson test.

I am also enclosing the data I received from a California testing laboratory which I shall discuss with you on the telephone.

It is my intention to test a 1979 Ford with a 302-V8 Engine that does not have a closed loop feed back system and without an overdrive transmission. The testing laboratory will contact you prior to the starting of our next tests.

Yours very truly Donald C. Pletts

President

DCP/edy Enclo. AUTOMOTIVE ENVIRONMENTAL SYSTEMS, INC. = 7300 BOLSA AVENUE, WESTMINSTER, CALIFORNIA 92683 =. 714 897-0333

12.00

+ subsidiary of Clayton Constanting Company

June 29, 1981

Mr. Don Pletts Energy Gas Saver 143 Inlet Way #5 Palm Beach Shores, FL 33404

Dear Mr. Pletts:

AESi is pleased to submit the following quotation and proposal for testing services:

PRICE QUOTATION

See attached Quotation.

TERMS

Payment is by cashier's check upon delivery of vehicle to AESi. There is a \$300 minimum fee if the vehicle fails to complete an FTP for safety or mechanical reasons due to the vehicle.

All applicants attempting certification under Section 511 of the Motor Vehicle Information and Cost Savings Act must develop a test plan with EPA officials if EPA approval is desired. This is the responsibility of the applicant, not AESi.

TESTING

The vehicles will receive a baseline Hot Start LA-4 and a Highway Fuel Economy test. The vehicles will be tested on Indolene unleaded test fuel as prescribed in the Federal Register. A second (replicate) LA-4 and HFET sequence will be performed. These tests will be audited according to EPA requirements before acceptance.

Following confirmation of test quality, your device will be added in the vehicle by our mechanic. An additional set of LA-4 and HFET tests will then be performed.

An option that is available, should you desire, is the installation of a fuel flow meter to provide actual fuel consumed during emissions test and mileage accumulation. The price for installation, data collection, and reporting and vehicle restoration is \$200. AUTOMOTIVE ENVIRONMENTAL SYSTEMS, INC.

SCHEDULE

We require a two week notice to schedule your vehicle for testing. The test and compilation of results will take approximately 6 days.

DEVICE

The test device will be provided by you.

VEHICLE

The test vehicle may be provided by you or you may choose to have AESi procure a vehicle at \$30.00/day for a minimum of 6 days (4 days to perform tests, 1 day for vehicle preparation and 1 day for vehicle restoration and return).

All Section 511 applicants are reminded that test vehicles must meet emissions standards in baseline tests. If an applicant supplied vehicle fails a baseline test, the applicant must pay for this test. If an AESi supplied 1981 vehicle fails a baseline test the applicant will not be charged for this test.

RESULTS

Certified test results will be provided in letter report form only to you or to a person designated by you in writing. Original test result documentation will be retained by AESi to substantiate the test results. This information is kept in strictest confidence.

AGREEMENT

A copy of our testing agreement is attached. Please read it carefully as it contains limitations on our liability and restrictions on the use and applicability of the test results.

I appreciate the opportunity to provide you with this quotation. If you require additional information please do not hesitate to contact me.

Sincerely,

Alan D. Jones Project Engineer

ADJ:mra

Encls

AUTOMOTIVE ENVIRONMENTAL SYSTEMS, INC.	120	QUOTATIO	N Q-2883
7300 BOLSA AVENUE WESTMINSTER, CAL (\$2683) PHONE 7 NA 857-6335		ACCT.	TION Q-2883 CUSTOMER NO.
TO: ENERGY GAS SAVER 143 Inlet Way #5 Palm Beach Sores, FL 33404	SHIP ТО:		I
Attention: Mr. Don Pletts	- m. n	. ···	

REFER	ENCE		CONTACT DATE	TERMS:		
	,	್ ಹಿಂದ ಕಾಂದ್ರ ಕ್ ಹಿಂದ ಕಾಂದ್ರ	- 06/24/81	Cashier's Chec	k-Payment in A	dvance
	RESALE	- TAX DATE R	EQUIRED SHIP DATE	SHIP BY:		F.O.B.
YES	NO	%				
TEM	QUANTITY	PART NUMBER	DESCRIPTION		NET UNIT PRICE	AMOUNT
1	2	Vehicle Para	meter Checks	_	35.00	70.00
2	2	LA-4/HFET Ba	seline		600.00	1,200.00
3	2	LA-4/HFET Ba	seline Replicate	· · · · · · · · · · · · · · · · · · ·	600.00	1,200.00
4	• 2 hrs	Device Insta	llation	· · · · ·	40.00/hr	80.00
.5	- 2	Vehicle Para	meter Checks		35.00	70.00
6	[:] 2	LA-4/HFET w/	Device	•	Ġ00.00	1,200.00
7	2	LA-4/HFET w/	Device Replicate		600.00	1,200.00
		THIS QUOTATI	ON IS VALID UNTIL AUG	UST 29, 1981		
	• • •	<u>-</u>	••••••••••••••••••••••••••••••••••••••	. 	· · · · • • •	
ł	THIS QU	OTATION SUBJECT	TO TERMS AND CONDITION	S ON REVERSE SIDE	TOTAL	5,020.00
ONTA	CT BY:	ADJ ADD	PREPARED BY: ADJ:MRA:06/29	AUTHO	PRIZED BY: P. C. Ausila	
	•		• • • • ••• ••		(

AESi1

VEHICLE EMISSIONS TESTING AGREEMENT

THIS AGREEMENT LIMITS THE LIABILITY OF AESI, PLEASE READ CAREFULLY

1. AUTOMOTIVE ENVIRONMENTAL SYSTEMS, INC., (AESi), agrees to conduct the vehicle emissions tests specified below in general accordance with the procedures prescribed by the United States Environmental Protection Agency, or as otherwise described below. All testing will be done in the AESi Nestminster, California, vehicle emissions testing laboratory.

2. AESI herewith offers to perform the following tests and support activities for the firm fixed price stated below.

QUANTITY	DESCRIPTION TEST TYPE, VEHICLE TYPE, SPECIAL PROCEDURES, ETC.	SCHEDULED DATE UNIT PRIC	<u>e total</u>	
	, 		-	
			······································	Сівск
		TOTAL FIRM FIXED PRIC	8	CASH

3. Paymont in full must be received by AESi prior to the commencing of testing. The price quoted above covers only those items stipulated above. Any additional work must be covered by a new agreement.

4. AESi agrees to perform the activities specified above within two weeks of the date of this agreement. AESi will notify the customer of each scheduled test time at least 24 hours prior to the test time. It is the responsibility of the customer to furnish the test vehicles at the scheduled time. If the vehicle is not available for testing at the scheduled time, an additional charge of \$100 will be made to the customer. If any devices are to be installed on the vehicles prior to testing, or other additional work performed, such work will be quoted separately.

5. AESI will mail to the customer a letter doscribing the testing procedures and presenting the test results within one week of the completion of the testing. The results will be presented in terms of hydrocarbon (NC), carbon monoxide (CO), carbon dioxide (CO2), and corrected oxides of nitrogen (NOXC), in grams per mile, as well as the calculated fuel economy in miles per gallon. Motorcycle emissions are reported in grams per kilometer and fuel consumption in liters per 100 kilometers. The customer agrees not to use AESi's name or letter of results or any parts thereof in connection with any advertising, sales or promotional purposes without specific prior written approval from an officer of AESi.

6. AESI agrees to hold the customer's test results in strictest confidence and will not divulge such results to any other party without specific written authorization from the customer. AESI will make no representations or assume any responsibility for implied results or assumed information other than the specified data as they appear in the complete written final report letter.

7. AESi agrees to maintain the security of the customer's systems and/or devices while in the possession of AESi and to hold in confidence all proprietary information disclosed to AESi. Reciprocally, the customer agrees to honor AESi's laboratory security requirements, which restrict access to testing areas.

1

SEE REVERSE SIDE

9

8. The customer acknowledges and understands that (i) ABSi does not inspect vehicles submitted for testing to ABSi for mechanical defects or problems prior to testing, (ii) during testing AESi may be unable to detect any mechanical or other defects or problems affecting the vehicle, including those defects and problems which may, in connection with such testing, potentially result in substantial damage to the vehicle, prior to completion of such testing, and (iii) as a result, although the vehicle will be tested under circumstances substantially similar to normal driving conditions, the vehicle may nevertheless suffer substantial damage during testing in the event that mechanical or other defects or problems exist prior to testing or develop during testing. IN CONNECTION THEREWITH, NOTWITHSTANDING ANY SHOWING OF NEGLIGENCE ON THE PART OF AESI OR ITS REPRESENTATIVES. THE CUSTOMER HEREBY AGREES TO INDEHNIFY AND HOLD AESI HARNLESS AGAINST ANY AND ALL CLAIMS, ACTIONS, CAUSES OF ACTION, SUITS, DEBTS, CONTROVERSIES, LOSSES, DEMANDS, PROCEEDINGS, DAHAGES, LIABILITIES, COSTS AND EXPENSES, INCLUDING ATTORNEY'S FEES, ARISING OUT OF OR RESULTING FROM THE TESTING, POSSESSION, USE OR STORAGE OF THE VEHICLE BY AESI.

9. AESI SHALL HAVE NO LIABILITY FOR THEFT, COLLISION, FIRE OR DAMAGE OF ANY KIND WHATSOEVER DURING THE TESTING, STORAGE, USE OR POSSESSION OF THE VEHICLE BY AESI FOR ANY REASON WHATSOEVER INCLUDING, WITHOUT LIMITATION, THE NEGLIGENCE OF AESI OR ITS REPRE-SENTATIVES EXCEPT MHEN DUE TO THE WILLFUL FAULT OR GROSS NEGLIGENCE OF AESI OR ITS AUTHORIZED REPRESENTATIVES, AND IN THAT EVENT, ONLY TO THE EXTENT OF THE DIMINUTION IN THE RETAIL USED CAR VALUE OF THE VEHICLE ON THE DATE OF DELIVERY OF POSSESSION TO AESI. IN NO EVENT SHALL AESI BE LIABLE FOR LOSS OF USE OF THE VEHICLE OR FOR LOSS OF OR DAMAGE TO ANY ARTICLES LEFT IN THE VEHICLE OR FOR ANY OTHER FORM OF INCIDENTAL OR CONSEQUENTIAL DAMAGE.

10. AS A CONDITION OF ANY LIABILITY ON THE PART OF AESI, UPON RECEIPT OF THE VEHICLE FROM AESI, (1) THE CUSTOMER SHALL IMMEDIATELY INSPECT THE VEHICLE IN ALL RESPECTS FOR DAMAGE OR DEFECT, (11) IN CASE OF DAMAGE, THE CUSTOMER SHALL DEMAND REPAIRS BEFORE THE VEHICLE IS REMOVED FROM AESI'S POSSESSION, AND (111) AESI SHALL BE ENTITLED TO MAKE OR ORDER ANY REPAIRS.

11. AESI disclaims any representation whatsoever that the tests performed by AESI will provide results which will permit the vehicle tested to be certified for sale in accordance with the U.S. Environmental Protection Agency regulations or any other applicable federal, state or local governmental statute, rule, order, law or regulation.

12. This agreement will be formally entered into on the latest date signed below by duly authorized representatives of both parties: THIS AGREEMENT LIMITS THE LIABILITY OF AES1, PLEASE READ CAREFULLY.

Name:		AUTOMOTIVE ENVIR 7300 Bolsa Avenu Westminster, CA	AUTOMOTIVE ENVIRONMENTAL SYSTEMS, INC. 7300 Bolsa Avenue Westminster, CA 92683				
Signature:	Date:	Signature:	Da	te:			
Business Phone:		1	•				
Home Phone:	·	·					
		ï		,			
		1					
· · · · · · · · ·	,		, , , , , , , , , , , , , , , , , , ,	4			

4 1

1 1 · • £. \$

E. 5. 2

August 21, 31

Mr. Merrill . Korth, Device Evaluation Coordinator Test and Evaluation Branch U. S. E. P. Ann Arbor, Chigan 48105

Dear Merrill:

As per our telephone conversation of August 17, 1981, I am submitting a test plan for your approval.

- A. Test Vehicle #One 1979 Ford Thunderbird (302-V8 Engine) Testing to be done by A.E.S.I. of Westminster, California
 - a. 1 Vehicle Parameter check. (Factor; specifications)
 - b. 1 LA-4/HFET Baseline (Hot Start)
 - c. 1 LA-4/HFET Baseline (Hot Start) Replicate
 - d. Device Installed by Testing Facility
 - e. 1 Vehicle Parameter Check with divice installed
 - f. 1 LA-4/HFET with Device (Hot Start)
 - g. 1 LA-4/HFET with Device (Hot Start) Replicate

These tests shall start on September 14, 1981.

B. Test Vehicle #Two - 1981 Ford Ltd. (302-V8 Engine) Auto Overdrive Transmission

- a. 1 Vehicle Parameter Check (Factory specifications)
- b. 1 SECVS 11 Cold Start Baseline
- c. 1 LA-4/HFET Baseline (Hot Start)
- d. 1 LA-4/HFET Baseline (Hot Start) Replicate
- e. Device Installed by Testing Facility
- f. 1 Vehicle Parameter Check with device installed
- g. 1 SECVS 11 Cold Start with device installed
- h. 1 LA-4/HFET with device installed (Hot Start)
- i. 1 LA-4/HFET with device installed (Hot Start) Replicate

Vehicle #Two tests shall begin on September 21, 1981. The fuel to be used is Indolene Unleaded Test Fuel.

I trust this test plan shall be to your satisfaction.

Yours very truly,

Donald C. Pletts President

DCP/edv cc: AESI

FIRST AMERICAN BUILDING • 701 U.S. HIGHWAY ONE • SUITE 104 > NORTH PALM BEACH, FL 33408 • 305/845-6105 • 1-800-432-3589

Septer 7, 1981

Mr. Don: 5 G. Pletts, President Energy C s Saver 143 Inle Way 45 Palm Bee 5 Shores, 71, 33404

Dear Mr. Eletts:

<u>____</u>

We have evaluated your latest test plan which we received on August 26, 1981. Our comments are as follows:

- We would prefer that both vehicles not be equipped with the same engine. Each of the test vehicles you propose are equipped with 302 CID engines. We suggest that you replace one of these Fords with a late model GM car with a popular engine, preferably a V-6.
- 2. Is vehicle #2 the same test vehicle that was used earlier for tests at Olson Engineering?
- 3. Each vehicle should be completely original for the as-received tests and must not contain any modifications to the exhaust or emission systems.
- 4. Now much does the installation of the device upset the configuration of the carburgtor linkages, choke tubes, and the exhaust system?
- 5. Is any mileage accumulation required before the full benefit of the device is realized?
- 6. Are the test vehicles to be equipped with special air cleaners and will the hood close? We are concerned that additional height of the carburetor will cause a problem.
- 7. Although your test plan does not provide for any adjustments when the device is installed by the testing facility, we ask that certain checks should be performed before and after the installation of the device. These checks should include basic engine parameters and for the 1981 vehicle, we ask that the engine receive appropriate electronic checks to ensure that the sophisticated control systems on these vehicles are working properly.
- 8. On test vehicle #2, test sequence b includes a "SECVS 11 Cold Start Baseline". What is this test cycle?

gram to evaluate "Emerny Gas Saver". from your latest tests by October 10 please contact me. My telephone numb Merrill V. Morth, Device Evaluation Coordinator Test and Evaluation Tranch Sincerely, We hope the above comments are helpful My telephone number is by Actober 11. 125 ; - 7 - 2 and that you submit the results . If you have any questions, (313) 669-4299. "ou in conducting a test pro-

.

October 29, 1981

Mr. Donald C. Pletts, President Energy Gas Saver 143 Inlet Way #5 Pain Beach Shores, PL 33404

Dear Nr. Flotts:

In my letter to you of September 2, 1981, I explained the requirements for testing of "Energy Gas Saver" by an independent laboratory recognized by SPA. I also presented several other questions to you at that time. I asked that you respond to my letter by October 15, 1981. We have not received your response. Since you have not supplied TPA with appropriate test data for "Energy Gas Saver", we have insufficient data to support your claim for its fuel economy benefit.

Under the provisions of Section 511 of the Motor Vehicle Information and Gost Savings Act, SPA is required to evaluate your device on the basis of available information and publish the results of our evaluation in the Federal Register. We have begun to prepare our report.

Please contact we immediately if you do not understand this course of action. My telephone number is (313) 668-4399.

Sincerely.

Merrill W. Morth Device Evaluation Coordinator Test and Evaluation Branch

cc. 511 file (Energy Cas Saver)
J. Shelton

• • •

FEDERAL REGISTER TYPES	ETTING	REQUEST	127	REQUESTO 1, 2, 7, 8, 9 copy numb	R: Complet , 10, 11 and 1 er 7 and su	e items 2. Retain bmit the
Announcement of Fuel Economy Device Evaluation for "Energy Gas Saver"			balance with the Hq Fede HQ FEDER OFFICE: C and 6. Reto submit bal Managemen	balance with manuscript copy to the Hq Federal Register Office. HQ FEDERAL REGISTER OFFICE: Complete items 3, 4, 5 and 6. Retain copy number 6 and submit balance to Hq. Printing Management		
SUBMITTING ACTIVITY		3. ASSIGNED FRL	NUMBER (inclu ificat	de alpha & num ion.)	eric characters	for ident-
OPEN REQUISITION NUMBER		5. BILLING CODE		·		
FORWARDED TO GSA, NARS-SIGNATURE			•	DA	TE	
	ED NUMBE	ROFCOLUMNS	9. ESTI	MATED COST		
4	2	• • •		\$272.00	C14 Valid Ka	
	10. FINANC	CIAL DATA	OBJECT	AMO	UNT (f)	r.
	AC	COUNT NO. CLASS		DOLLARS CT		СТБ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 32 33 34 2 A H T	5 6 B 0 T C	41 42 43 44 4 34 C'2		2 7 2	00
AGNATURE: (a) REQUESTING OFFICER		1. SIGNATURE: (a) FEDERAL Rinds listed above	GISTER DESI	GNEE (reserved.)	<u>• </u>
the attic for John Shelto	\sim	VATTU	in W	rish	•	
(c) TELEPHONE NUMBER	2	HOT DATE	. 12	(C) TELEPH	ONE NUMBE	R ר
<u> </u>		511-	3~	1 319	- 3400	/
				-		
•						• .
• • • • • • • • • • • • • • • • • • •						
	•					
						•
		·				
······································		•			•	·· .

......

COPY & PRINTERS MANAGE SHE DECL