United States Environmental Protection Agency Region 10, Office of Air, Waste and Toxics 1200 Sixth Avenue, Suite 900 Seattle, Washington 98101 Permit Number: R10NT502600 Issued: 01-23-2015 AFS Plant I.D. Number: 530-77T-0048

Non - Title V Air Quality Operating Permit

This permit is issued in accordance with the provisions of 40 CFR § 49.139 and applicable rules and regulations to

Washington Beef LLC, Toppenish Plant

for operations in accordance with the conditions listed in this permit, at the following location:

Yakama Reservation 201 Elmwood Road Toppenish, WA 98948

Person Responsible for Compliance: Burt Ross

Plant Director Washington Beef LLC 201 Elmwood Road Toppenish, WA 98948 Phone: 509-865-2121

OR

Sherry Byers-Eddy Wastewater Treatment Plant Manager Washington Beef LLC 201 Elmwood Road Toppenish, WA 98948 Phone: 509-865-2121

A technical support document that describes the bases for conditions contained in this permit is also available.

Kate Kelly, Director Office of Air, Waste and Toxics U.S. Environmental Protection Agency, Region 10

January 23, 2015 Date

1. General Conditions

1.1. For purposes of this permit, the permitted source consists of the following equipment and/or activities. The information in this table is for descriptive purposes only.

Emission Unit ID	Description	Maximum Operation	Control Device
WB-01	Cleaver Brooks Processing Boiler #1	32.7 MMBtu/hr nat gas 233.5 gal/hr diesel	Low NO _x
WB-02	Cleaver Brooks Processing Boiler #2	32.7 MMBtu/hr nat gas/biogas 233.5 gal/hr diesel	Low NO _x
WB-03	Cleaver Brooks Fabrication Boiler #1	14.3 MMBtu/hr nat gas	Low NO _x
WB-04	Blood Dryer	9 MMBtu/hr nat gas 62 gal/hr diesel	Anco-Englin Rendering Scrubber (70,000 ft3/min)
WB-05	Rendering Room MAU (a heater)	7 MMBtu/hr nat gas	Anco-Englin Rendering Scrubber (70,000 ft3/min) and Pretreatment Spray Tower (10 gal/min)
WB-06	Rendering Operations & Tallow Tanks	Rendering: 36,000 lb/hr Tallow Tanks: 67,650 gal	Anco-Englin Rendering Scrubber (70,000 ft3/min) and Pretreatment Spray Tower (10 gal/min)
WB-07 Large Emergency Generator & Small Emergency Generator		Large: 423hp 19.2 gal/hr diesel Small: 80hp 3.4 gal/hr diesel	None
WB-08	Four Refrigeration System Cooling Towers (308,400 gal/hr)	Processing #1: 72,000 gal/hr Processing #2: 82,200 gal/hr Fabrication: 82,200 gal/hr VAP: 72,000 gal/hr	None
WB-09	Anaerobic Lagoon	500,000 ft ³ /day biogas production	Lagoon is covered; biogas is captured, processed, stored and then combusted in WB-02 or flared in the Waste Biogas Flare
WB-10	Wastewater Treatment System	1,600,000 gal/day wastewater processing	None
WB-11	Room Heating Units	24 MMBtu/hr nat gas, combined	None – Emissions are released inside buildings and then vented

- 1.2. The permittee shall comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Air Act.
- 1.3. Compliance with the terms of this permit does not relieve or exempt the permittee from compliance with other applicable Clean Air Act requirements or other applicable federal, tribal, state or local laws or regulations.

2. Emission Limits and Work Practice Requirements

- 2.1. At all times, including periods of startup, shutdown, maintenance and malfunction, the permittee shall, to the extent practicable, maintain and operate each emission unit, including any associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions and considering the manufacturer's recommended operating procedures. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the EPA, which may include, but is not limited to, monitoring results, review of operating and maintenance procedures and inspection of the source.
- 2.2. Emissions of particulate matter with an aerodynamic diameter less than 10 microns (PM₁₀) from this source shall not exceed 99 tons/yr as determined on a rolling 12-month basis by calculating the emissions (tons/month) for each month and adding the emissions for the previous eleven months. Monthly PM₁₀ emissions shall be calculated by multiplying the emission factors (lb/unit) in the Permit Appendix by the actual monthly operation/production (units/month) and dividing by 2,000 lb/ton.
- 2.3. Emissions of particulate matter with an aerodynamic diameter less than 2.5 microns (PM_{2.5}) from this source shall not exceed 99 tons/yr as determined on a rolling 12-month basis by calculating the emissions (tons/month) for each month and adding the emissions for the previous eleven months. Monthly PM_{2.5} emissions shall be calculated by multiplying the PM₁₀ emission factors (lb/unit) in the Permit Appendix by the actual monthly operation/production (units/month) and dividing by 2,000 lb/ton.
- 2.4. Emissions of sulfur dioxide (SO₂) from this source shall not exceed 99 tons/yr as determined on a rolling 12-month basis by calculating the emissions (tons/month) for each month and adding the emissions for the previous eleven months. Monthly SO₂ emissions shall be calculated by multiplying the emission factors (lb/unit) in the Permit Appendix by the actual monthly operation/production (units/month) and dividing by 2,000 lb/ton.
- 2.5. Emissions of hazardous air pollutants (HAP) from this source shall not exceed 24 tons/yr for the sum of all HAP, as determined on a rolling 12-month basis by calculating the emissions (tons/month) for each month and adding the emissions for the previous eleven months. Monthly HAP emissions shall be calculated by multiplying the emission factors (lb/unit) in the Permit Appendix by the actual monthly operation/production (units/month) and dividing by 2,000 lb/ton.
- 2.6. The Permittee shall not operate emission unit WB-07 (the Large & Small Emergency Generators) for more than 500 hr each during any rolling 12-month period.

3. Monitoring and Recordkeeping Requirements

3.1. Each month the permittee shall calculate and record source-wide monthly and rolling 12-month total emissions (tons) for all emission units and pollutant-emitting activities that emit PM₁₀, PM_{2.5}, SO₂ and/or HAP using the emission factors in the Permit Appendix.

- 3.2. Within four months after this permit is issued, the permittee shall install, calibrate, maintain and operate equipment or systems for tracking and recording the operation and production, such that source-wide emissions can be calculated on a monthly and rolling 12-month basis, including, but not limited to:
 - 3.2.1. Monitoring continuously and recording monthly the combined total quantity of natural gas (standard cubic feet, scf) combusted in WB-01 (Processing Boiler #1), WB-02 (Processing Boiler #2), WB-03 (Fabrication Boiler), WB-04 (Blood Dryer), WB-05 (Rendering Room MAU) and WB-11 (Room Heating Units).
 - 3.2.2. Monitoring continuously and recording monthly the quantity of biogas (scf) generated by WB-09, the quantity of biogas (scf) that is combusted in WB-02 (Processing Boiler #2) and the quantity of biogas (scf) that is flared in the Waste Biogas Flare.
 - 3.2.3. Monitoring continuously and recording monthly the combined total quantity of diesel (gal, reported in units of 1,000gal or 10³gal) combusted in WB-01 (Processing Boiler #1) and WB-02 (Processing Boiler #2).
 - 3.2.4. Monitoring hourly and recording monthly the hours of operation using non-resettable, totalizing hour meters and/or the Computer Maintenance Management System (CMMS) for:
 - 3.2.4.1. WB-04 while combusting diesel;
 - 3.2.4.2. WB-06 while the rendering scrubber is operating (and the plant is operating);
 - 3.2.4.3. WB-06 while the rendering scrubber is not operating (and the plant is operating);
 - 3.2.4.4. WB-07 (each emergency generator).
 - 3.2.5. When the rendering scrubber is operating, monitoring continuously and recording once per day the rendering scrubber combined pressure drop across the packing and mist eliminator (inches), water flow (gal/min) and pressure (psig) in the recirculation header, the blow down rate, and the water pH.
 - 3.2.6. When the pretreatment spray tower is operating, monitoring continuously and recording once per day the pretreatment spray tower water flow (gal/min).
- 3.3. The permittee shall obtain and record the percent sulfur by weight from the vendor for each delivery of diesel fuel. If the vendor is unable to provide this information (or there is no vendor), then the permittee shall obtain a representative grab sample for each delivery and test the sample using ASTM methods D2880-03, D4294-03 and D6021-96(2001). The permittee shall use the highest percent sulfur value recorded over the previous twelve months to calculate the emission factors for WB-01, WB-02, WB-04 and WB-07 using the emission factor equations in the Permit Appendix.
- 3.4. The permittee shall maintain records for at least five years of emission calculations and raw data and parameters used in the calculations.

4. **Reporting Requirements**

- 4.1. Once each year, on or before February 15, the permittee shall, along with the annual registration required by 40 CFR § 49.138(e)(2), submit to Region 10 a report containing the twelve monthly rolling 12-month emissions calculations for the previous calendar year.
- 4.2. The report required under Permit Condition 4.1 shall contain a description of all emission estimating methods used, including emission factors and their sources, a summary of materials usage, assumptions made, and hourly operations data.
- 4.3. All submittals, notifications and reports to Region 10 shall be sent to:

Tribal Air Permits Coordinator, AWT-150	Copies to:	Environmental Management Program
Office of Air, Waste and Toxics		Yakama Nation
U.S. EPA, Region 10		P.O. Box 151
1200 Sixth Avenue, Suite 900		Toppenish, WA 98948
Seattle, WA 98101		

5. Acronyms, Abbreviations & Units

10 ⁶ btu	One Million Btu (or MMBtu)
10 ³ gal	One Thousand Gallons
AFS	Air Facility System (an EPA database)
As	Arsenic
ASTM	American Society for Testing and Materials
Be	Beryllium
btu	British Thermal Unit (or Btu)
	Cadmium
	Code of Federal Regulations
CH4	
	Computer Maintenance Management System
	Carbon Monoxide
	Carbon Dioxide
	Carbon Dioxide Equivalent
Cr	Chromium
	Chromium VI Dissolved Air Flotation Unit
DAF	Dissolved Air Flotation Unit
Diesel dscf	Diesel Fuel, No. 2 Fuel Oil, Distillate Oil
asci EJ	Dry Standard Cubic Feet Environmental Justice
EJ EPA	
EFA ESA	6, 1
FARR	
FIP	
FR	
ft	
ft ³	Cubic Feet
FWS	U.S. Fish & Wildlife Service
gal	Gallon
GHG	Greenhouse Gas
gr	Grains
GWP	Global Warming Potential
H2S	
HAP	Hazardous Air Pollutant
HCOH	Formaldehyde
Hg	Mercury
	Horsepower
hr	Hour
kW	Kilowatt
L	
lb	Pound
MAU	Make-Up Air Unit
min	
ml	
Mn	6
	Month Nitrous Ovide
	Nitrous Oxide
nat gas NEPA	Natural Gas National Environmental Policy Act
NEFA	Trational Environmental Folicy Act

NESHAP National Emission Standards for HAP

NHPA	National Historic Preservation Act
Ni	Nickel
NMFS	National Marine Fisheries Services
NMTOC	Non Methane Total Organic Carbon
NOx	Nitrogen Oxide
NPDES	National Pollutant Discharge Elimination System
NSPS	New Source Performance Standards
O&M	Operation & Maintenance
PAH	Polynuclear Aromatic Hydrocarbons
Pb	Lead
PM	Particulate Matter
PM ₁₀	PM with an aerodynamic diameter < 10 um
PM2.5	PM with an aerodynamic diameter < 2.5 um
POM	Polycyclic Organic Matter
ppm	Parts per Million
ppmv	
PSD	Prevention of Significant Deterioration
PTE	Potential to Emit
Region 10	EPA, Region 10
RSC	Reduced Sulfur Compound
scf	Standard Cubic Feet
Se	
SO_2	Sulfur Dioxide
TSD	Technical Support Document
um	Micrometer
ug	6
VOC	Volatile Organic Compound

yr Year

Source	Fuel or Operating Status	Pollutant	Emission Factor
WB-01, -02	Diesel	PM ₁₀	2.3 lb PM ₁₀ /10 ³ gal
WB-01, -02	Diesel	SO ₂	$\frac{142 \text{ x S}^1}{142 \text{ x S}^1} \frac{16 \text{ SO}_2}{10^3 \text{ gal}}$
WB-01, -02	Diesel	Arsenic (As)	5.5E-04 lb As/10 ³ gal
WB-01, -02	Diesel	Beryllium (Be)	4.1E-04 lb Be/10 ³ gal
WB-01, -02	Diesel	Cadmium (Cd)	4.1E-04 lb Cd/10 ³ gal
WB-01, -02	Diesel	Chromium (Cr)	4.1E-04 lb Cr/10 ³ gal
WB-01, -02	Diesel	Chromium VI (CrVI)	2.1E-05 lb CrVI/10 ³ gal
WB-01, -02	Diesel	Formaldehyde (HCOH)	4.8E-02 lb HCOH/10 ³ gal
WB-01, -02	Diesel	Lead (Pb)	1.2E-03 lb Pb/10 ³ gal
WB-01, -02	Diesel	Manganese (Mn)	8.2E-04 lb Mn/10 ³ gal
WB-01, -02	Diesel	Mercury (Hg)	4.1E-04 lb Hg/10 ³ gal
WB-01, -02	Diesel	Nickel (Ni)	4.1E-04 lb Ni/10 ³ gal
WB-01, -02	Diesel	POM	3.3E-03 lb POM/10 ³ gal
WB-01, -02	Diesel	Selenium (Se)	2.1E-03 lb Se/10 ³ gal
	210001		
WB-01, -02, -03, -11	Natural Gas	PM ₁₀	7.6 lb PM ₁₀ /10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		SO ₂	1.5 lb SO ₂ /10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Arsenic (As)	2.0E-04 lb As/10 ⁶ scf
	Natural Gas	Benzene	2.1E-03 lb Benzene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Beryllium (Be)	1.2E-05 lb Be/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Cadmium (Cd)	1.1E-03 lb Cd/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Chromium (Cr)	1.4E-03 lb Cr/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Chromium VI (CrVI)	7.0E-05 lb CrVI/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Cobalt	8.4E-05 lb Cobalt/10 ⁶ scf
	Natural Gas	Dichlorobenzene	1.2E-03 lb Dichlorobenzene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Fluoranthene	3.0E-06 lb Fluoranthene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Fluorene	2.8E-06 lb Fluorene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Formaldehyde (HCOH)	7.5E-02 lb HCOH/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Hexane	1.8E+00 lb Hexane/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Lead (Pb)	5.0E-04 lb Pb/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Manganese (Mn)	3.8E-04 lb Mn/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11	Natural Gas	Mercury (Hg)	2.6E-04 lb Hg/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Naphthalene	6.1E-04 lb Naphthalene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Naphthalene, 2-Methyl	2.4E-05 lb Naphthalene, 2-Methyl/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Nickel (Ni)	2.1E-03 lb Ni/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Phenanthrene	1.7E-05 lb Phenanthrene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		РОМ	2.1E-03 lb POM/10 ⁶ scf
		Pyrene	5.0E-06 lb Pyrene/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Selenium (Se)	2.4E-05 lb Se/10 ⁶ scf
WB-01, -02, -03, -04, -05, -11		Toluene	3.4E-03 lb Toluene/10 ⁶ scf

 1 S = % Sufur, i.e. If 0.5% Sulfur, S = 0.5

Source	Fuel or Operating Status	Pollutant	Emission Factor	
WB-02	Biogas	PM ₁₀	4.5 lb PM ₁₀ /10 ⁶ scf	
WB-02	Biogas	PM ₁₀	$\frac{110 \text{ PM}_{10}}{10 \text{ scf}}$	
WB-02, -09	Biogas	SO ₂	84 lb SO ₂ /10 ⁶ scf	
WB-02, -09	Biogas	Arsenic (As)	1.2E-04 lb As/10 ⁶ scf	
WB-02, -09	Biogas	Benzene	1.2E-03 lb Benzene/10 ⁶ scf	
WB-02, -09	Biogas	Beryllium (Be)	7.1E-06 lb Be/10 ⁶ scf	
WB-02, -09	Biogas	Cadmium (Cd)	6.5E-04 lb Cd/10 ⁶ scf	
WB-02, -09	Biogas	Chromium (Cr)	8.2E-04 lb Cr/10 ⁶ scf	
WB-02, -09	Biogas	Chromium (Cr)	4.1E-05 lb CrVI/10 ⁶ scf	
WB-02, -09	Biogas	Cobalt	4.9E-05 lb Cobalt/10 ⁶ scf	
WB-02, -09	Biogas	Dichlorobenzene	7.1E-04 lb Dichlorobenzene/10 ⁶ sc	
WB-02, -09	Biogas	Fluoranthene	1.8E-06 lb Fluoranthene/10 ⁶ scf	
WB-02, -09	Biogas	Fluorene	1.7E-06 lb Fluorene/10 ⁶ scf	
WB-02, -09	Biogas	Formaldehyde (HCOH)	4.4E-02 lb HCOH/10 ⁶ scf	
WB-02, -09	Biogas	Hexane	1.1E+00 lb Hexane/10 ⁶ scf	
WB-02, -09	Biogas	Lead (Pb)	2.9E-04 lb Pb/10 ⁶ scf	
WB-02, -09	Biogas	Manganese (Mn)	2.9E-04 lb Pb/10 scf	
WB-02, -09		Mercury (Hg)	1.5E-04 lb Hg/10 ⁶ scf	
WB-02, -09 WB-01, -09	Biogas	Naphthalene	3.6E-04 lb Naphthalene/10 ⁶ scf	
WB-01, -09 WB-02, -09	Biogas	Naphthalene, 2-Methyl	1.4E-05 lb Naphthalene, 2-Methyl/10 ⁶ sc	
WB-02, -09 WB-02, -09	Biogas	Nickel (Ni)	1.4E-03 lb Naphthalene, 2-Methyl/10°sc 1.2E-03 lb Ni/10 ⁶ scf	
· · · · · · · · · · · · · · · · · · ·	Biogas	Phenanthrene	-	
WB-02, -09 WB-02, -09	Biogas	Phenantifrene POM	1.0E-05lb Phenanthrene/106scf1.2E-03lb POM/106scf	
,	Biogas	Pom Pyrene		
WB-02, -09	Biogas	•	2.9E-06 lb Pyrene/10 ⁶ scf	
WB-02, -09	Biogas	Selenium (Se)	1.4E-05 lb Se/10 ⁶ scf	
WB-02, -09	Biogas	Toluene	2.0E-03 lb Toluene/10 ⁶ scf	
WB-04	Diesel	PM ₁₀	0.14 lb PM ₁₀ /hr	
WB-04	Diesel	SO ₂	8.8 x S ¹ lb SO ₂ /hr	
WB-04	Diesel	Arsenic (As)	3.4E-05 lb As/hr	
WB-04	Diesel	Beryllium (Be)	2.5E-05 lb Be/hr	
WB-04	Diesel	Cadmium (Cd)	2.5E-05 lb Cd/hr	
WB-04	Diesel	Chromium (Cu)	2.5E-05 lb Cr/hr	
WB-04 WB-04	Diesel	Chromium (Cr) Chromium VI (CrVI)	1.3E-06 lb Cr/lr	
WB-04	Diesel	Formaldehyde (HCOH)	3.0E-03 lb HCOH/hr	
WB-04	Diesel	Lead (Pb)	7.4E-05 lb Pb/hr	
WB-04	Diesel	Manganese (Mn)	5.1E-05 lb Mn/hr	
WB-04	Diesel	Mercury (Hg)	2.5E-05 lb Hg/hr	
WB-04	Diesel	Nickel (Ni)	2.5E-05 lb Ni/hr	
WB-04 WB-04		POM	2.5E-05 lb N/hr 2.0E-04 lb POM/hr	
	Diesel			
WB-04	Diesel	Selenium (Se)	1.3E-04 lb Se/hr	

¹ S = % Sufur, i.e. If 0.5% Sulfur, S = 0.5

Source	Fuel or Operating Status	Pollutant	E	mission Factor
WB-06	Scrubber Operating	PM ₁₀	33	lb PM ₁₀ /hr
WB-06	Scrubber Not Operating			lb PM ₁₀ /hr
WB-06	Scrubber Operating	Benzene		lb Benzene/hr
WB-06	Scrubber Not Operating			lb Benzene/hr
WB-06	Scrubber Operating	Butadiene, 1,3-		lb Butadiene, 1,3-/hr
WB-06	Scrubber Not Operating			lb Butadiene, 1,3-/hr
WB-06	Scrubber Operating	Carbon Disulfide		lb Carbon Disulfide/hr
WB-06	Scrubber Not Operating			lb Carbon Disulfide/hr
WB-06	Scrubber Operating	Ethylbenzene		lb Ethylbenzene/hr
WB-06	Scrubber Not Operating	, , , , , , , , , , , , , , , , , , ,		lb Ethylbenzene/hr
WB-06	Scrubber Operating	Hexane		lb Hexane/hr
WB-06	Scrubber Not Operating			lb Hexane/hr
WB-06	Scrubber Operating	Methanol		lb Methanol/hr
WB-06	Scrubber Not Operating			lb Methanol/hr
WB-06	Scrubber Operating	Pentanone, 4-Methy-2-		lb Pentanone, 4-Methy-2-/hr
WB-06	Scrubber Not Operating			lb Pentanone, 4-Methy-2-/hr
WB-06	Scrubber Operating	Toluene		lb Toluene/hr
WB-06	Scrubber Not Operating			lb Toluene/hr
WB-06	Scrubber Operating	Xylenes _{total}		lb Xylenes _{total} /hr
WB-06	Scrubber Not Operating			lb Xylenes _{total} /hr
WD-00	Serubber Not Operating	Ayrenes _{total}	1.712+00	io Ayrenes _{total} , in
WB-07 (Large Generator)	Diesel	PM ₁₀	0.93	lb PM ₁₀ /hr
WB-07 (Small Generator)	Diesel	PM ₁₀	0.18	lb PM ₁₀ /hr
WB-07 (Large Generator)	Diesel	SO ₂		lb SO ₂ /hr
WB-07 (Small Generator)	Diesel	SO ₂		lb SO ₂ /hr
WB-07 (Large Generator)	Diesel	Acetaldehyde		lb Acetaldehyde/hr
WB-07 (Small Generator)	Diesel	Acetaldehyde		lb Acetaldehyde/hr
WB-07 (Large Generator)	Diesel	Acrolein		lb Acrolein/hr
WB-07 (Small Generator)	Diesel	Acrolein	4.3E-05	lb Acrolein/hr
WB-07 (Large Generator)	Diesel	Benzene		lb Benzene/hr
WB-07 (Small Generator)	Diesel	Benzene	4.4E-04	lb Benzene/hr
WB-07 (Large Generator)	Diesel	Butadiene, 1,3- (54)		lb Butadiene, 1,3-/hr
WB-07 (Small Generator)	Diesel	Butadiene, 1,3- (54)		lb Butadiene, 1,3-/hr
WB-07 (Large Generator)	Diesel	Formaldehyde (HCOH)		lb HCOH/hr
WB-07 (Small Generator)	Diesel	Formaldehyde (HCOH)		lb HCOH/hr
WB-07 (Large Generator)	Diesel	POM		lb POM/hr
WB-07 (Small Generator)	Diesel	РОМ		lb POM/hr
WB-07 (Large Generator)	Diesel	Toluene		lb Toluene/hr
WB-07 (Small Generator)	Diesel	Toluene		lb Toluene/hr
WB-07 (Large Generator)	Diesel	Xylenes _{total}		lb Xylenes _{total} /hr
WB-07 (Small Generator)	Diesel	Xylenes _{total}		lb Xylenes _{total} /hr

¹ S = % Sufur, i.e. If 0.5% Sulfur, S = 0.5

Source	Fuel or Operating Status	Pollutant	E	mission Factor
WD 00		DM	4 272	
WB-08	Four Cooling Towers Operating		4,272	lb PM ₁₀ /mo
WB-10	Wastewater Processed	Acetaldehyde	2.5E+02	lb Acetaldehyde/mo
WB-10	Wastewater Processed	Benzene	1.8E+01	lb Benzene/mo
WB-10	Wastewater Processed	Carbon Disulfide	1.1E+00	lb Carbon Disulfide/mo
WB-10	Wastewater Processed	Dichloromethane	9.5E+00	lb Dichloromethane/mo
WB-10	Wastewater Processed	Hexane	5.3E+00	lb Hexane/mo
WB-10	Wastewater Processed	Methanol	4.9E+00	lb Methanol/mo
WB-10	Wastewater Processed	Toluene	3.5E+01	lb Toluene/mo
WB-10	Wastewater Processed	Xylenes_{total}	1.7E+01	lb Xylenes _{total} /mo

United States Environmental Protection Agency Region 10, Office of Air, Waste and Toxics AWT-150 1200 Sixth Avenue, Suite 900 Seattle, Washington 98101-3140

Technical Support Document Non-Title V Air Quality Operating Permit

Permit Writer: Wallace Reid

Washington Beef LLC

Yakama Reservation 201 Elmwood Road Toppenish, Washington 98948

Purpose of Owner-Requested Non-Title V Operating Permit and Technical Support Document

Title 40 Code of Federal Regulations Section 49.139 establishes a permitting program to provide for the establishment of federally-enforceable requirements for air pollution sources located within Indian reservations in Idaho, Oregon and Washington. The owner or operator of an air pollution source who wishes to obtain a federally-enforceable limitation on the source's actual emissions or potential to emit must submit an application to the Regional Administrator requesting such limitation.

The United States Environmental Protection Agency, Region 10, then develops the permit via a public process. The permit remains in effect until it is modified, revoked or terminated by Region 10 in writing.

This document, the technical support document, fulfills the requirement of 40 CFR § 49.139(c)(3) by describing the proposed limitation and its effect on the actual emissions and/or potential to emit of the air pollution source. Unlike the air quality operating permit, this document is not legally enforceable. The permittee is obligated to follow the terms of the permit. Any errors or omissions in the summaries provided here do not excuse the permittee from the requirements of the permit.

Table of Contents

	Cover Page 1		
1.	Authority to Issue Non-Title V Permits		
2.	Plant Information 3		
	2.1Location		
3.	Project Description		
4.	Regulatory Analysis and Permit Content.84.1Evaluation of Synthetic Minor Emission Limit Request.84.2Other Federal Regulations.94.3Permit Content.10Permit Section 1 – General Conditions.10Permit Section 2 – Emission Limits and Work Practice Requirements.11Permit Section 3 – Monitoring and Recordkeeping Requirements.13		
5.	Permit Procedures		
6.	Abbreviations, Acronyms and Units		

Appendix: Emission Inventory

1. Authority to Issue Non-Title V Permits

On April 8, 2005, Region 10 adopted regulations (70 FR 18074) codified at 40 CFR Parts 9 and 49, establishing Federal Implementation Plans under the Clean Air Act for Indian reservations in Idaho, Oregon and Washington. The FIPs, commonly referred to as the Federal Air Rules for Reservations, put in place basic air quality regulations to protect health and welfare on Indian reservations located in the Pacific Northwest. In the FARR, 40 CFR § 49.139 creates a permitting program for establishing federally enforceable requirements for air pollution sources on Indian reservations. This permit has been developed pursuant to 40 CFR § 49.139.

2. Plant Information

2.1 Location

The Washington Beef LLC (also known as the permittee) plant is located in Toppenish, Washington, within the exterior boundaries of the Yakama Reservation.

Tribal Contact:	Elizabeth Sanchey, Program Manager Environmental Management Program
	Yakama Nation
	P. O. Box 151
	Toppenish, Washington 98948
	Phone: 509-865-5121 x6038
	Email: esanchey@yakama.com

2.2 Local Air Quality and Attainment Status

The Yakama Reservation is in attainment with the national ambient air quality standards or is unclassifiable. The subject plant is not located in a designated nonattainment area. With respect to prevention of significant deterioration impact evaluation, the majority of the reservation is classified as Class II lands.

2.3 General Description of Operations and Products

The Washington Beef, Toppenish plant is a beef slaughtering and rendering operation, producing a range of edible beef products and inedible beef byproducts, including, tallow, meat meal, a dried blood product and hides. The North American Industry Classification System, Standard Industrial Classification Code is 311614, Rendering and Meat Processing from Carcasses. This industry comprises establishments primarily engaged in rendering animal fat, bones and meat scraps; or preparing meat and meat by-products from carcasses.

The permittee has installed a rendering scrubber and pretreatment spray tower to control both odor and particulate emissions from their operations, and they have a wastewater treatment system with a permitted discharge to Wanity Slough. Upstream from the permitted discharge point, wastewater is collected throughout the plant, directed to a dissolved air flotation unit, then to an anaerobic lagoon, and is aerated prior to discharge. Anaerobic digestion of the wastewater occurs in the anaerobic lagoon, which is covered both to control odor and to capture biogas that

is produced by the anaerobic decomposition of beef slaughtering and rendering wastewaters. The biogas is processed and stored in a dome for later combustion in WB-02, Processing Boiler #2; excess biogas is flared.

The rendering scrubber and pretreatment spray tower are installed on the roof of the building adjacent to where rendering operations are located. Emissions from the roof vents where rendering operations occur, except for those roof vents directly over the rendering cookers, are collected and directed to the pretreatment spray tower. After that, these rendering room emissions are routed to the rendering scrubber. Emissions from the roof vents directly over the rendering cookers are all the other emissions from the plant that run through the rendering scrubber, including blood dryer and blood dryer roof vent emissions, tallow tank emissions, and meat meal emissions.

Heat is needed for rendering operations, for keeping the slaughtering process clean and sanitary, for drying blood, and for space heating. The permittee generates this heat in three boilers (WB-01, WB-02 and WB-03), one blood dryer (WB-04), one make-up air unit heater (WB-05) located inside the rendering room, and several other heaters located throughout the plant (collectively WB-11). Fuels used to fire the boilers include natural gas, biogas and diesel. All of the heaters combust natural gas. The permittee has also expressed an interest in burning tallow at some point in the future, but this permit does not currently authorize this option. Four cooling towers provide cooling needed for slaughtering operations and for keeping edible beef products cold prior to shipment. Emergency power is provided to the plant by two diesel-fired emergency generators.

The above discussion is focused on describing operations that result in accountable, non-fugitive air pollutant emissions, which are the primary sources evaluated in this TSD, and for which there are emission limits included in the final non-Title V permit. However, in their application documents, the permittee also itemized a list of insignificant sources of air pollution and fugitive sources for which the permittee requested there be no emission limits included in the permit (see Administrative Record, Letter from Washington Beef to the EPA dated May 29, 2014, Table 15 "List of Insignificant Emission Units" and Table 16 "List of Fugitive Emissions Sources"). The EPA reviewed these lists and, except for one source listed in Table 16, had no data or information to refute the permittee's claims. The exception was the Make-Up Air Units included in Table 16 that the EPA has since concluded are not fugitive because the emissions exhaust into various processing areas. The Make-Up Air Units are now included in the permit as WB-11. The EPA has separately informed Washington Beef that any future modifications to their plant, or the discovery of additional information that indicates any of these itemized fugitive or insignificant sources, or any other source, for which accountable air pollutant emissions are identified, would require that the permit be modified at that time to include such emissions.

There is another important detail about plant operations that is not specifically addressed in the final permit but is nonetheless important to both Washington Beef and future EPA enforcement personnel who will be inspecting the Washington Beef plant for compliance with the non-Title V air permit. The cover over the anaerobic lagoon is listed as a control device in the final permit and as such is subject to Permit Condition 2.1 relating to periods of startup, shutdown, maintenance and malfunction. Therefore, the EPA expects that the anaerobic lagoon cover will be in place and functional at most times, and that Washington Beef will seek to expeditiously

return the anaerobic lagoon cover and collection system to operation after periods of down-time. On the other hand, the final permit does not mandate that the facility stop operating during periods when the anaerobic lagoon is not covered; however, emission released during such periods should be tracked and reported as part of any emission reports. The EPA expects Washington Beef to track operation of the anaerobic lagoon cover in sufficient detail, as for all other air pollution sources and control devices at the plant, to be able to calculate emissions.

Related to the tracking and reporting of emission from the lagoon, there are no emission factors in the permit to calculate greenhouse gas emissions due to venting of biogas because there are no greenhouse gas permit limitations included in the final permit. However, the EPA has decided it is appropriate to retain the greenhouse gas emission calculations in the Technical Support Document Appendix as a reference for both Washington Beef and the EPA when evaluating greenhouse gas emissions in the future.

The plant currently comprises the following equipment and activities with non-fugitive source emissions:

WB-01: Processing Boiler #1 is a Cleaver Brooks packaged boiler, model # CBLE200X-800-150ST, serial # 0L103915, dated 7/7/2011, with maximum fuel inputs of 32.7 10⁶btu/hr natural gas, 233.5 gal/hr diesel.

WB-02: Processing Boiler #2 is a Cleaver Brooks packaged boiler, model # CBI-200-800-150, serial # 0L103326, dated 2003, with maximum fuel inputs of 32.7 10⁶btu/hr natural gas and 233.5 gal/hr diesel, and can also combust biogas.

<u>**WB-03:**</u> The Fabrication Boiler is a Cleaver Brooks packaged boiler, model # CB I 700-350, serial # L-94177, dated 4/12/1995, with a maximum fuel input of 14.3 10^{6} btu/hr (natural gas only).

WB-04: The Blood Dryer is a Cyclonetic model unit, model # JB3C-50-EPD170-M.20-MA, serial # 82800A-011-07. It is used for blood drying operations and has maximum fuel inputs of 9 10⁶btu/hr natural gas or 62 gal/hr diesel. Emissions from this unit and from the room where this unit is located are directed to the rendering scrubber without pretreatment; the rendering scrubber is an Anco-Eaglin Inc. 70,000 ft³/min packed bed air scrubber (Operation & Maintenance Manual-Version1-Nov 2006), with a recirculating solution maintained at pH 4.5 by the addition of an odor neutralizer, an oxidizer and sulfuric acid. This tower is eight feet in diameter and ten feet high; water is sprayed into the tower countercurrent to airflow at a rate of 10 gal/min. Particulate matter removed from the air stream at this point is drained and routed to the wastewater treatment system (**WB-10**).

WB-05: The Make-Up Air Unit heater provides make-up air for rendering operations, with a maximum fuel input of 7 10⁶btu/hr natural gas (natural gas only). Emissions from this unit are routed through either the rendering scrubber directly or first through the pretreatment spray tower and then on to the rendering scrubber.

WB-06: Rendering operations at the plant generate emissions that are emitted through roof vents in the rendering room, some of which are located directly over the rendering cookers. Emissions

from the roof vents over the rendering cookers are routed directly to the rendering scrubber without pretreatment. All other rendering room emission are routed first through the pretreatment spray tower and then on to the rendering scrubber. The rendering operations include three barometric process cyclones, operated at less than atmospheric pressure and high temperature. These three identical units are located inside the rendering room. Each cyclone is approximately 7 feet tall and 4.5 feet across, and they are integral to the overall functioning of the rendering scrubber and the pretreatment spray tower. Emissions from WB-04, from tallow tank operations, from meat-meal operations (fugitive), and some emissions from WB-05 are routed to the rendering scrubber without pretreatment. The remaining emissions from WB-05 are routed first to the pretreatment spray tower and then on to the rendering scrubber.

WB-07: The Large Emergency Generator (423 hp, 19.2 gal/hr) and the Small Emergency Generator (80 hp, 3.4 gal/hr) are both 0.3 gal/kW-hr diesel-fired engines.

<u>WB-08</u>: The refrigeration cooling system at the plant includes four cooling towers with a combined recirculation rate of 308,000 gal/hr. The permittee also uses a biocide for the cooling towers to keep them functioning properly.

WB-09: Biogas is generated, combusted, and/or flared at the plant. Generation of biogas occurs in the anaerobic lagoon, which receives all process wastewater from rendering and meat processing, as well as all sanitary wastewater. Pursuant to NPDES Permit Number WA-005020-2, the maximum combined flow to the anaerobic lagoon is approximately 1,600,000 gal/day (67,000 gal/hr) and the volume of biogas generated from anaerobic digestion is approximately 500,000 ft³/day. Combustion of biogas occurs in **WB-02** to offset the use of natural gas and diesel. Flaring of biogas occurs in the waste biogas flare (Varec Biogas 244E Waste Gas Burner), located near the anaerobic lagoon, and is done when biogas can't be combusted in **WB-02**.

WB-10: The wastewater treatment system at the plant processes approximately 1,600,000 gal/day (67,000 gal/hr). It includes the anaerobic lagoon, the cover over the lagoon for capturing biogas, two activated sludge basins, a surge basin, a dissolved air flotation unit, an NPDES discharge point to Wanity Slough, biogas collection and processing, a biogas storage dome, and a piping network for routing biogas to **WB-02**.

<u>WB-11:</u> Multiple gas-fired heaters associated with makeup air units are used at the plant for space heating. The combined capacity of these units is $24 \ 10^6$ btu/hr natural gas. Emissions from these units are to interior work spaces throughout the plant and are eventually discharged outside through room vents.

3. Project Description

On October 2, 2006, Region 10 received an application from the permittee regarding their "Beef Cattle 'Complex' Slaughter House" plant in Toppenish, WA. In its application, the permittee requested "a limitation on the total number of gallons of fuel oil that may be combusted in all boilers", and "a requirement that cyclones and a packed bed scrubber be utilized..."

On August 5, 2011, Region 10 received a revised application from the permittee to account for modifications at their Toppenish plant: "...a fuel use change to incorporate biogas generated in an on-site anaerobic pond to fuel one of the existing boilers", "...a flare for that biogas to be used when the boiler is unavailable...", and "...ducting changes from the rendering room to the scrubber to lessen fugitive room emissions."

Region 10 has reviewed the permittee's submitted applications, toured the Toppenish plant on November 20, 2013, and prepared an emissions inventory (TSD Appendix) based on our understanding of the permittee's operations. A prior draft of Region 10's emission inventory was submitted to the permittee and to the Yakama Nation on March 14, 2014, for their review. Subsequent discussions with the permittee resulted in its submittal of a revised final application, which Region 10 received on June 2, 2014.

The permit and this TSD are based on the permittee's final application and on subsequent discussions with the permittee, in which it requested the following limitations and requirements:

- 1. A limitation on the emission of particulates (PM₁₀, PM_{2.5}), sulfur dioxide (SO₂) and hazardous air pollutants (HAP);
- 2. A requirement that the rendering scrubber be used when the plant is operating, including use of barometric process cyclones, a pretreatment spray tower, and a collection of ductwork that is used to route emissions from multiple sources to the pretreatment spray tower and/or rendering scrubber;
- 3. A requirement that the anaerobic lagoon be covered to capture biogas, and that biogas processing, storage, and distribution systems be used to combust or flare the biogas; and,
- 4. A requirement that all equipment and ducting be maintained and operated in accordance with manufacturers' specifications and instructions to the extent practicable.

4. Regulatory Analysis and Permit Content

4.1 Evaluation of Synthetic Minor Emission Limit Request

Region 10 has developed a detailed PTE emissions inventory (TSD Appendix) based on maximum production levels estimated by the permittee, and assuming these production levels would be sustained over 8,760 hr/yr. These emissions are summarized as follows:

Particulate matter (PM):	128	tons/yr
Particulate matter (PM ₁₀), aerodynamic diameter less than 10 microns:	134	tons/yr
Particulate matter (PM _{2.5}), aerodynamic diameter less than 2.5 microns:	134	tons/yr
Sulfur dioxide (SO ₂):	173	tons/yr
Greenhouse gases (GHG), CO2-equivalent basis:	81,721	tons/yr
Carbon monoxide (CO):	64	tons/yr
Nitrogen oxides (NO _x):	69	tons/yr
Volatile organic compounds (VOC):	9.1	tons/yr
Lead (Pb):	0.0029	tons/yr
Hazardous air pollutants (HAP):	25	tons/yr
Largest single HAP – Xylenestotal:	8.4	tons/yr
Hydrogen Sulfide (H ₂ S) & Reduced Sulfur Compounds (RSC)	10	tons/yr

There are several fundamental assumptions reflected in these emission calculations. First, the particulate values are based on the assumption that the rendering scrubber is not operating. Region 10 used 2008 source test data (collected with the scrubber operating) and assumptions regarding scrubber efficiency to back-calculate particulate emissions without a scrubber. The scrubber source test data from the 2006 source test were not used because the permittee installed WB-04 (Blood Dryer) and made several upgrades to the rendering scrubber after the 2006 source test, so Region 10 concluded that the 2008 source test data are more representative of current operations. This uncontrolled emissions estimate was used because there is no requirement at this time that the scrubber be used; the permit will require use of the scrubber to meet the permit limits.

Second, for purposes of calculating PM_{2.5} emissions for this permit, the permittee is willing to assume that all PM₁₀ is PM_{2.5}, so no separate PM_{2.5} emissions inventory is needed. Third, all of the diesel used at the plant, for purposes of the PTE calculation, is assumed to contain a maximum sulfur content of 0.5%, which leads to the value of 173 tons/yr SO₂; the permittee has indicated that low sulfur content diesel fuel will be used to assure compliance. Fourth, Region 10 has concluded that emissions from wastewater occur primarily from the dissolved air flotation unit into an enclosed structure at the plant, so they are considered to be non-fugitive emissions. The wastewater data used for this purpose was derived from the 2006 source test; no wastewater data was collected during the 2008 source test. Fifth, Region 10 has used the value 500 ppmv as the total sulfur content in the biogas based on a recent telephone conversation with the permittee. Sixth, Region 10 has not included GHG emissions in the permit because even if they did exceed 100 tons/yr, based on a recent court decision by the U.S. Supreme Court, they should not be included in a permit unless one of the criteria pollutant thresholds were also exceeded; in this case all criteria pollutants will be maintained below their relative thresholds based on compliance with the permit conditions. Seventh, the permittee has documented that WB-01, WB-02 and WB-

03 are low-NO_x boilers; this is reflected in the emissions inventory. Even without a low-NO_x credit, the permittee has a NO_x PTE below 100 tons/year, so there is no need for a limit in the permit.

The permittee is seeking to avoid the Title V program and is accepting practically enforceable emission limits below the 100-ton/yr threshold (25-ton/yr for total HAP). Consequently, emission limits are needed for PM₁₀, PM_{2.5}, SO₂ and HAP.

The emission limits requested by the permittee are presented in Permit Conditions 2.2 through 2.5. Operational requirements and limits are also included in permit conditions 2.1 and 2.6. The emission limits are accompanied by monitoring and recordkeeping requirements to ensure compliance (see Permit Conditions 3.1 through 3.4). The monitoring, recordkeeping and reporting for this permit will require the estimation of emissions from all of the non-fugitive activities at the plant at least once a month to confirm compliance with the rolling 12-month limits.

In general, the only emission limits necessary in the air permit are those for which the EPA has calculated a PTE equal to or greater than 100 tons per year, or 25 tons per year for total HAPs, or 10 tons per year for any individual HAP. This is why there is not an emission limitation in the permit for every pollutant for which the EPA calculated a PTE. The one pollutant for which this general rule does not apply is PM (not PM₁₀ or PM_{2.5}, for which there are permit limitations). PM (particulate larger in size than 10um) does not have an imposed limitation in the permit even though the calculated PTE for PM is 128 tons per year. This is due to PM not being considered a regulated air pollutant for the purposes of Title V air permits. The logical explanation for this may be found in the EPA memorandum dated October 16, 1995, Definition of Regulated Pollutant for Particulate Matter for Purposes of Title V. This memorandum explains the EPA policy that PM₁₀ (and now also PM_{2.5}) is considered to be the only regulated form of particulate matter.

However, as a practical matter, these technical and policy details associated with PM have little or no practical effect at the Washington Beef plant. This is because the vast majority, if not all of particulate matter emitted from the plant is less than 10um in diameter. For example, note that the calculated PTE for PM is 128 tons per year and the calculated PTE for PM₁₀ is 134 tons per year. These numbers can't be directly compared because the measurement techniques for PM and PM₁₀ are significantly different, but these values do suggest that the vast majority, if not all, of the particulate matter emitted from the Washington Beef plant is less than 10um in diameter, which does have a specific limitation in the permit.

4.2 Other Federal Regulations

Endangered Species Act Impacts: Region 10 is obligated to consider the impact that a federal project may have on listed species or critical habitats. Because the permit contains voluntarily requested emission limits, it is Region 10's conclusion that issuance of the permit will not affect a listed species or critical habitat. Therefore, no additional requirements will be added to the permit for ESA reasons. Region 10's "no-effect" determination concludes Region 10's obligations under Section 7 of the ESA. (See Endangered Species Consultation Handbook:

Procedures for Conducting Consultation and Conference Activities Under Section 7 of the Endangered Species Act, FWS and NMFS, March 1998, at Figure 1).

National Environmental Policy Act Review: Under Section 793(c) of the Energy Supply and Environmental Coordination Act of 1974, no action taken under the Clean Air Act shall be deemed a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. The permit in this case is an action taken under regulations implementing the Clean Air Act and is therefore exempt from the NEPA.

National Historic Preservation Act: No part of the plant is listed in the National Register, and this permit does not allow or require any construction activities. Consequently, no adverse effects are expected and further review under the NHPA is not necessary.

Environmental Justice (EJ): The plant is located in the town of Toppenish, WA, and within the Yakama Reservation. Links to maps that show environmental justice indicators for poverty and people of color are available at http://yosemite.epa.gov/R10/ocrej.nsf/environmental+justice/maps. In this action, however, the permit is only creating voluntary limits on emissions which will in turn lower emissions and lesson impacts. A disproportionately high environmental or public health impact to a low income or minority population is not expected to result from this project.

4.3 Permit Content

The permit includes the requested emission limits as well as monitoring, recordkeeping and reporting requirements necessary to assure compliance with the limits. Compliance with the limits allows the permittee to be treated as a minor source for Title V purposes.

In its May 29, 2014, letter to Region 10 requesting emission limits, the permittee included two Tables (#15 & #16) listing several sources they assert are insignificant or fugitive sources. Region 10 has reviewed this list of sources and included in the permit all non-fugitive activities with accountable emissions. If Region 10 becomes aware at any future time that additional sources exist, then the permit will need to be revised to address them.

Each section of the permit is discussed below. The permit is organized into four sections as follows:

Permit Section 1: General Conditions

This section of the permit contains conditions of a general nature that apply to the plant. Permit Condition 1.1 identifies the emission units at the plant. Condition 1.2 requires the permittee to comply with the conditions in the permit.

The permit establishes permittee-requested limits and related compliance assurance provisions to restrict the plant's PTE. It does not contain other Clean Air Act requirements to which the plant is or may be subject, such as the FARR; New Source Performance Standards, 40 CFR Part 60; or National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 61 and 63. It also does not contain any requirements that might apply in the future, such as the Tribal New Source Review, 40 CFR Part 49, or Prevention of Significant Deterioration, 40 CFR Part 52, permitting

programs. As specified in Permit Condition 1.3, compliance with the terms of the permit in no way relieves or exempts the permittee from compliance with other applicable Clean Air Act requirements or of any other applicable federal, tribal, state, or local law or regulation.

Permit Section 2: Emission Limits and Work Practice Requirements

The permit contains emission limits (in tons per year) and work practice requirements that have been established as a result of the subject permit action. Permit Condition 2.1 requires the permittee to maintain and operate all emission units and associated control equipment in a manner that minimizes air pollutant emissions. Permit condition 2.6 sets hour per year limits for the two emergency generators to match the assumption in the PTE inventory reflecting the intention to only use the generators sparingly.

Permit conditions 2.2 through 2.5 contain annual limits for each pollutant with the potential to be emitted above a major source threshold. The emission limits were set at 99 tons/yr (24 tons/yr for total HAP). The permit specifies (and lists in the Permit Appendix) the emission factors that must be used when determining compliance with the annual emission limits. Note that for compliance purposes, consistent with the EPA policy (Performance Test Calculation Guidelines, June 6, 1990), 24.501 should be rounded to 25, while 24.500 should be rounded to 24.

Permit Section 3: Monitoring and Recordkeeping Requirements

Permit Condition 3.1 requires the permittee to calculate total monthly emissions every month. The rolling 12-month emissions must be determined by adding the emissions calculated for the most recent month with the emissions for the immediately preceding 11 months. Emissions are to be calculated for all the emission units identified in Permit Condition 1.1. The required emission factors are contained in the Permit Appendix. The permittee can refer to the emission estimating techniques set forth in the TSD Appendix when calculating monthly emissions and applying the required emission factors. For those sources with lb/mo emissions factors (WB-08 and WB-10), the permittee is willing to assume maximum operation for 8,760 hours per year to avoid tracking operations requirements.

Permit Condition 3.2 requires the permittee to track their operations in specific ways depending on the emission factors included in the Permit Appendix. All of the emission factors are in units of $lb/10^6$ scf, $lb/10^3$ gal, lb/hr or lb/mo. These units match the monitoring and recordkeeping requirements. For example, a factor with the units $lb/10^6$ scf will require the metering and tracking of the cubic-feet of either natural gas or biogas. A factor with the unit lb/hr will require monitoring and reporting the number of hours of operation. The lb/mo emission factors were set assuming maximum operations, making tracking actual operating rates unnecessary to ensure compliance. Thus, Permit Condition 3.2.1 only requires one metering location for natural gas usage because the emission units WB-01, WB-02, WB-03, WB-04, WB-05 and WB-11 all have identical emission factors when combusting natural gas (except for PM₁₀; WB-04 and WB-05 PM₁₀ natural gas emissions are accounted for in WB-06 emissions).

Permit Condition 3.2.2 requires at least two metering locations for measuring the quantity of biogas produced in emission unit WB-09, the quantity of biogas combusted in WB-02, and the quantity of biogas flared in the Waste Biogas Flare. Permit Condition 3.2.3 requires at least one metering location for diesel usage in emission units WB-01 and WB-02, since they both have

identical emission factors when combusting diesel fuel. Permit Condition 3.2.4 requires the installation of non-resettable, totalizing hour meters and/or operating practices to track the hours of operation of emission units WB-04, WB-06 and WB-07. Emission unit WB-06 has an additional requirement that its hours of operation be correlated with overall operation of the plant; for every hour the plant is operating, the permittee must be able to determine when WB-06 is operating and when it is not operating. Permit Conditions 3.2.5 and 3.2.6 requires the permittee to track various operating parameters that indicate whether the rendering scrubber and/or pretreatment spray tower are operating in accordance with manufacturer specifications.

Permit Condition 3.3 requires the permittee to obtain and record the sulfur content (percent sulfur by weight) for each diesel delivery, and then to use the highest recorded value over a rolling twelve-month period to calculate the monthly SO₂ emission factors for WB-01, WB-02, WB-04, WB-07 (Large Emergency Generator) and WB-07 (Small Emergency Generator). The emission factor equations in each instance are:

1.	WB-01 (lb SO ₂ /10 ³ gal)	EF = 142 x S [where $S = %$ sulfur by weight; 0.5% sulfur, $S = 0.5$]
2.	WB-02 (lb SO ₂ /10 ³ gal)	EF = 142 x S [where $S = %$ sulfur by weight; 0.5% sulfur, $S = 0.5$]
3.	WB-04 (lb SO ₂ /hr)	EF = 8.8 x S [where $S = %$ sulfur by weight; 0.5% sulfur, $S = 0.5$]
4.	WB-07 (Large, lb SO ₂ /hr)	EF = 2.7 x S [where $S = %$ sulfur by weight; 0.5% sulfur, $S = 0.5$]
5.	WB-07 (Small, lb SO ₂ /hr)	EF = 0.48 x S [where $S = %$ sulfur by weight; 0.5% sulfur, $S = 0.5$]

These five emission factor equations are included in the Permit Appendix and must be used by the permittee to calculate these variable emission factors monthly, and then to calculate and report monthly emissions as required by Permit Condition 2.4.

Permit Condition 3.4 requires the permittee to maintain records adequate to enable the calculation of monthly emissions, including all supporting documentation, for a period of five years. Paper records may be scanned as electronic files, stored electronically, and reported to Region 10 in a widely available electronic format. However, paper records generated for monitoring plant operations and for demonstrating compliance with the Permit must be maintained with all other records for at least five years. Data loggers designed to overwrite pre-existing data in a continuously recording loop are not required by this permit condition to store historical data. However, continuously monitoring data loggers such as non-resettable totalizing hour meters and non-resettable totalizing natural gas or diesel meters, are required to maintain historical data, as designed. Lastly, data and information recorded and collected in the CMMS must also be maintained for at least five years and reported in a widely available electronic format whenever requested by Region 10.

Region 10 has also concluded that monitoring and recordkeeping for the H₂S content of biogas is unnecessary because we have included a sufficiently conservative H₂S concentration (500 ppmv) in the PTE calculation and emission factors to account for natural variability of the biogas. Similarly, Region 10 has concluded that monitoring and recordkeeping of the biocide used in the plant cooling towers is unnecessary because the HAP emissions are relatively insignificant. Permit Section 4: Reporting Requirements

Permit Condition 4.1 requires the permittee to annually submit to Region 10 a record of the twelve monthly rolling 12-month emissions calculations for the previous calendar year. For ease in coordinating submittals, this report is required to be submitted concurrently with the annual FARR registration submittal due by February 15 of each year.

Permit Condition 4.2 requires that the annual report include details on how the emissions were calculated. Condition 4.3 requires copies of the report be sent to the Yakama Nation.

5. **Permit Procedures**

As required under 40 CFR § 49.139(c), all draft owner-requested operating permits must be publicly noticed and made available for public comment. For this permit action, the requirements of 40 CFR § 49.139(c)(5) are as follows.

Administrative Record: Make available for public inspection, in at least one location in the area affected by the air pollution source, a copy of the draft operating permit prepared by Region 10, the TSD for the draft permit, the application, and all supporting materials (see 40 CFR 49.139(c)(5)(i)).

Publish Public Notice: Publish the draft permit notice via a prominent advertisement in a newspaper of general circulation in the area affected by the emissions source. The public notice must describe the availability of the draft permit to operate, the supporting materials and the opportunity to comment. Where possible, notices will also be made in the Tribal newspaper (see 40 CFR § 49.139(c)(5)(ii)).

Distribute Public Notice to Affected Parties: Provide copies of the public notice to the permittee, the Tribal governing body, and to the Tribal, State and local air pollution authorities having jurisdiction in areas outside of the Yakama Reservation potentially impacted by the air pollution source (see 40 CFR § 49.139(c)(5)(iii)).

30-Day Public Comment Period: Provide for a 30-day period for submittal of public comments, starting upon the date of publication of the notice. If requested, the Regional Administrator may hold a public hearing and/or extend the public comment period for up to an additional 30 days (see 40 CFR § 49.139(c)(5)(iv)).

Accept All Comments: Region 10 will accept all comments received on the draft permit during the 30-day public comment period (see 40 CFR § 49.139(c)(5)(iv)).

Prepare Final Permit and TSD: After the close of the public comment period, Region 10 will consider all comments received and prepare a final permit to operate and a final TSD. The final TSD will include a response to all comments received during the public comment period (see 40 CFR § 49.139(c)(6)).

Make the Permit Available: Region 10 will make the final permit and TSD available at all of the locations where the draft permit was made available (see 40 CFR § 49.139(c)(7)).

Send Final Documents to All Commenters: Send the final permit and TSD to all persons who provided comments on the draft permit to operate (see 40 CFR § 49.139(c)(7)).

5.1. Response to Public Comments

The public comment period for this permit ran from October 16 to November 20, 2014. The EPA received comments from Jan Whitefoot on November 12, 2104, and from Washington Beef on November 12, 2014. Washington Beef requested a meeting regarding their submitted comments. The EPA met with Washington Beef on November 14, 2014; after that meeting, Washington Beef submitted additional comments on November 20, 2014. Jan Whitefoot requested a public meeting, but no public meeting was held as explained in the response to Comment #17 below.

As required in 40 CFR § 49.139(c)(6), the EPA has considered the comments and has developed a response to each. The comments received are listed below along with a response to the comment that explains whether or not any change to the permit resulted and why any change was made.

As required in 40 CFR § 49.139(c)(7), the EPA will provide the final permit and TSD to the owner or operator of the air pollution source and each person who has submitted comments on the draft permit. The final permit and TSD are also being made available for 30 days at all of the locations where the draft permit was made available.

Comments from Jan Whitefoot:

1. The odor has literally driven people away from the City of Toppenish.

EPA Response - Odor is not regulated under the Clean Air Act or its implementing regulations. Washington Beef voluntarily installed an air scrubber and covered an anaerobic lagoon. Both technological improvements have significantly reduced odors from the site, as experienced by the EPA personnel who have toured Washington Beef both before and after these improvements were made. With issuance of this permit, maintenance and operation of each emission unit and any associated air pollution control equipment, including the air scrubber and anaerobic lagoon cover, in a manner consistent with good air pollution control practices will be required – see Permit Condition 2.1. This new requirement should help minimize odors as well as other air pollutants that the permit specifically addresses.

2. We are concerned with cumulative health effects of breathing the hazardous gases and pathogens from the slaughterhouse.

EPA Response - Under the Clean Air Act, the EPA regulates criteria air pollutants (ozone, particulate matter, carbon monoxide, nitrogen oxides, sulfur dioxide, and lead), hazardous air pollutants and certain other air pollutants. The EPA understands the concern regarding health effects caused by emissions from the facility. However, this permitting action is limited to simply creating enforceable limits voluntarily requested by the company.

The permit creates limits for all regulated air pollutants that the facility could potentially emit at amounts higher than the Title V major source thresholds. Specifically, the permit will require that particulate matter (with aerodynamic diameters less than both 10 microns and 2.5 microns) and sulfur dioxide emissions not exceed 99 tons per year and that total hazardous air pollutant emissions not exceed 24 tons per year. As noted in our response to comment #1

above, the permit also requires the facility and existing air pollution control equipment be operated consistent with good air pollution control practices, which will help minimize emissions, and requires monitoring, recordkeeping and reporting to ensure the facility meets the new emission limits.

3. Does the EPA, AB Foods permit state AB foods will be cutting back on hours in order to stay under minor source emissions guidelines?

EPA Response - The permit does not limit hours of operation, except for the emergency generators in Permit Condition 2.6. Emissions are generally determined by multiplying an emission factor (e.g. pounds per gallon or pounds per hour) by the amount of fuel consumed or hours of operation per year. The facility can voluntarily cut back on hours of operation to help meet their annual emission limits. The permit requires tracking of operations and calculation and reporting of emissions.

4. We realize AB Foods current permit states they emit 154 tons of particulate matter a year. This exceeds the amount EPA listed in the newspaper of 100 tons a year of sulfur dioxide and particulate matter.

EPA Response – As the newspaper notice explained, the permit will limit particulate matter (with aerodynamic diameters less than 10 and 2.5 microns – PM_{10} and $PM_{2.5}$, respectively) and sulfur dioxide to less than 100-tons per year, the Title V major source threshold for those pollutants. The Technical Support Document presents the potential to emit for all of the regulated pollutants including particulate matter bigger than 10 microns (PM). PM is not considered a regulated pollutant for determining Title V applicability, so there is no need to limit PM in a permit the purpose of which is to avoid Title V applicability, such as this one. The Technical Support Document will be revised to explain this in more detail.

5. Please clarify, does the permit say 100 tons a year of sulfur dioxide and 100 tons a year of particulate, or 100 tons of year of both added together?

EPA Response - The permit limits each of the pollutants to below 100-tons per year; the pollutants are not added together to determine compliance.

6. What type of permit was AB Foods operating under when it was violated for illegal ammonia release? Illegal water discharges? Minor source or major source? AB Foods was also fined for illegal ammonia releases into Wanity Slough. This also effects air quality and shows AB Foods needs to be closely monitored to protect the citizens working within the plant and living and visiting Toppenish. Has EPA done monitoring at the Toppenish site, to determine ammonia releases?

EPA Response – This will be the first air pollution permit issued to the facility. Permits are not required for implementation of many federal regulations. We assume the comment is regarding two enforcement actions in 2008.

Section 112(r) of the Clean Air Act, referred to as the Risk Management Program, does not require a permit, but instead requires development and implementation of a Risk Management Plan for certain chemicals that are used or stored onsite above a threshold

amount specified in Section 112(r). For the Washington Beef plant the chemical requiring a Risk Management Plan is anhydrous ammonia, which is used in the plant's refrigeration systems. The enforcement action brought by the EPA against Washington Beef in 2008 under Section 112(r) did not relate to a release of anhydrous ammonia; the action was for failure to have a Risk Management Plan for anhydrous ammonia. For more information about this enforcement action, please contact Javier Morales at 206-553-1255 (morales.javier@epa.gov).

Also in 2008, the EPA brought an enforcement action under the Clean Water Act regarding untreated wastes being discharged directly into Spencer Lateral, which drains into Wanity Slough, that were subject to the terms of Washington Beef's National Pollutant Discharge Elimination System permit, WA-005020-2. The action did not involve or address any air releases. For more information about this case, please contact Steven Potokar at 206-553-6354 (potokar.steven@epa.gov).

Regarding actual releases of ammonia to the air, ammonia emissions from the rendering scrubber were measured in 2006 and 2008. These tests were provided to the EPA and are included in the Administrative Record for this permit. The 2006 test data indicated that ammonia emissions were below detection levels; however, due to changes to the rendering operations and emission controls since 2006, the EPA determined that the 2006 test data was no longer representative of current emissions. Using the highest of three measured rates and scaling from the measured scrubber air flow (61,907 cubic feet per minute) to the maximum scrubber air flow (70,000 cubic feet per minute) and the maximum number of hours per year (8,760 hours per year), the 2008 test data indicated that potential ammonia emissions are estimated to be less than 5 tons per year [(0.84 lbs/hr x 70,000 cfm / 61907 cfm x 8,760 hr/yr) / 2,000 lbs/ton = 4.2 tons/year]. As a regulated pollutant that is not classified as a hazardous air pollutant, ammonia's major source threshold is 100 tons per year. Worst case assumptions indicate that the facility emits less than 5% of the major source threshold for ammonia, so there was no need for Washington Beef to request an emission limit in this permit.

Although the 2006 scrubber test is no longer considered representative, during the 2006 test, Washington Beef also sampled the wastewater entering the dissolved air flotation unit for ammonia (results are documented in the 2006 test report). The samples were purged with nitrogen in a laboratory to simulate ammonia being released to the air, and the ammonia was measured. Based on the highest of three measured results and maximum wastewater flow rates, potential air emissions from the wastewater are estimated to be less than 1 ton per year [(0.17 ug/ml x 0.00834 (lb/10³gal)/(ug/ml) x 67,000 gal/hr x 10³gal/1,000 gal x 8,760 hr/yr) / 2,000 lbs/ton = 0.42 tons/yr]. Conservatively assuming all of the estimated ammonia is released in the dissolved air flotation unit (a non-fugitive emission unit) and adding these emissions to the rendering scrubber potential emissions, the total ammonia emissions are still less than 5% of the major source threshold.

While the EPA did not include ammonia in the emission inventory because the emissions were clearly far below the major source threshold, your question is a good one. The EPA should have documented the ammonia emissions in the technical support document, so applicability with regard to ammonia is clear.

7. Please provide a copy of AB Foods emergency evacuation plan.

EPA Response – Under the permit action currently being considered, the EPA does not have authority to obtain an emergency evacuation plan from Washington Beef. We suggest contacting Washington Beef or the Yakama Nation to learn about any emergency evacuation plans that might exist.

The Risk Management Plans required under the Clean Air Act, Section 112(r), are generally not publically available due to issues of plant security. However, the Risk Management Plan for Washington Beef, discussed in the response to comment #6 above, may be requested under the Freedom of Information Act or you may schedule a public reading room appointment to see the plan. For more information, please contact Javier Morales at 206-553-1255 (morales.javier@epa.gov).

8. AB foods Slaughterhouse cannot be trusted for a minor source of permit and should be a permitted under the more stringent Title 5 permit.

EPA Response – Washington Beef has voluntarily requested that the EPA impose enforceable permit limitations on their facility to ensure they remain a minor source of air pollution. The permit will not only create emission limits that allow the facility to be treated as a minor source, but will create enforceable monitoring, recordkeeping and reporting requirements to confirm whether the facility is in compliance with the emission limits. Noncompliance will be enforceable by the EPA, the Yakama Nation or any member of the public. The facility will also be subject to inspections to ensure they are operating in compliance with their permit.

The EPA does not have authority under the Clean Air Act to force a permittee to obtain a Title V permit when they voluntarily accept enforceable emission limits below the major source thresholds. If Washington Beef decides at some future time to expand their operations in a way that increases air pollutant emissions, they may be required to obtain a permit modification prior to expanding their operations. If such an expansion would cause Washington Beef to become a major source of air pollution, they will be required to submit a Title V permit application to the EPA before construction commences.

9. Also, in the potential permit it states AB Foods air quality numbers as stated as potentially released. This is not the same numbers as actual criteria pollutants, gases, particulates and pathogens actually released. Potential numbers are speculative. They are not proof AB foods would be under the 100 tons a year limit. This does not protect public health. AB Foods releases 8.4 tons a year of Xylene. Is it included with particulates when counted? What effect on human health?

EPA Response - The EPA did calculate a theoretical potential to emit, as required by the Clean Air Act implementing regulations, rather than using actual emissions. The purpose for doing so is simply to identify a worst case scenario for the facility, assuming that all facility variables are at their maximum levels to project the greatest amount of air pollutant emissions. These potential to emit calculations are then used to determine the applicability of the various Clean Air Act regulatory programs to the specific facility circumstances. In

Washington Beef's case, their potential to emit values demonstrated that they have the potential to be a major source of air pollution for PM₁₀, PM_{2.5}, sulfur dioxide and total HAP. Washington Beef then had the choice to apply for a Title V permit as a major source or apply for a Non-Title V permit to create enforceable limits that are below the major source thresholds. Compliance with the proposed permit conditions will ensure that the Washington Beef facility emits actual levels of PM₁₀, PM_{2.5} and sulfur dioxide below 100-tons per year each, and actual levels of total HAP below 25-tons per year.

Washington Beef's potential to emit for total xylenes is 8.4-tons per year. As explained above, this is a worst case scenario for the plant, assuming that all plant variables are at their maximum levels to produce the greatest amount of total xylenes emissions. Washington Beef's actual total xylenes emissions are likely to be significantly below this level under normal operating conditions, and will be reported to the EPA and to the Yakama Nation on an annual basis. Because the potential to emit for total xylenes is less than 10-tons per year, the Title V threshold for any single hazardous air pollutant, the proposed permit does not include any total xylenes limitations. Xylene emission do need to be tracked and added to the other plant hazardous air pollutant emissions to demonstrate compliance with the 24 ton per year limit in the permit. The health effects of total xylenes is described in the Public Health Statement – Xylene-CAS#: 1330-20-7, dated August 2007, issued by the U.S. Agency for Toxic Substances and Disease Registry (available free on the Internet).

10. EPA is bound by Washington State Air Quality Laws (SIPS) in which were just revised. EPA standards cannot be less than Washington State air quality laws.

EPA Response – The Washington Beef facility is located within the boundaries of the Yakama Nation and is therefore not subject to Washington state air quality laws. The federal Clean Air Act is not required to be as stringent as the Washington State air quality laws.

11. Toppenish EPA air quality monitor has had some of the highest readings for polluted air quality in the Yakima Valley and in Washington State. Where is AB Foods air quality monitor located? Who is the contact person who supervises monitor? What is his/her training in air monitoring? What type of air monitor is used? Name of monitor? In 2013, EPA has stated Yakima Valley is close to non-attainment for air quality. Stakeholders need all facilities releasing ammonia, hydrogen sulfide, sulfur dioxide, pathogens and other hazardous chemicals and criteria pollutants to be closely monitored. We would like to see past data and current data on monitors from AB Foods for: hydrogen sulfide, ammonia, sulphate dioxide, pathogens and particulates. We request air monitoring data for the last 8 years on AB Foods.

EPA Response – The permit does not require the installation of monitoring devices for plant emissions or ambient air quality. Instead, the permit requires Washington Beef to monitor operations and calculate actual emissions on a monthly and a rolling 12-month basis, using the emissions factors and formulae included in the permit. The EPA believes that the monitoring in the permit will ensure compliance. There are ambient air monitors in Toppenish and the Yakima Valley to determine overall compliance under the Clean Air Act with the National Ambient Air Quality Standards. For more information about air quality monitoring, please contact Keith Rose at 206-553-1949 (rose.keith@epa.gov).

12. We are worried about the public's health because AB Foods facility burns tallow which can potentially release airborne pathogens and prions.

EPA Response – The proposed permit does not allow the burning of tallow in Washington Beef's boilers. If Washington Beef chooses to burn tallow at some time in the future, they will be required to first obtain a permit modification. If Washington Beef burns tallow without getting prior approval, it will be a permit violation.

13. AB Foods info state Biocides are used in the cooling towers to stop the growth of airborne pathogens. What exact chemicals are used in the Biocides? What is their effect on human health? Please provide us with AB Foods MSDS sheet on Biocides.

EPA Response – The biocide used by Washington Beef in their cooling towers and reported in their application documents is chlorine, which was considered by the EPA in the calculation of hazardous air pollutant emissions from the facility. However, the actual emissions of chlorine are very small, orders of magnitude below the 10-ton per year threshold for any individual hazardous air pollutant. The permit allows Washington Beef to make a biocide change so long as it does not significantly alter their reported hazardous air pollutant emissions. As requested in your comment, the EPA has included a copy of the requested MSDS sheet in the record.

14. AB foods lists 64 tons of carbon dioxide and 6,411 tons (?) of carbon monoxide from the biogas flare. Is this tonnage included into the total tons of pollutants/particulates in the permit?

EPA Response – Neither carbon dioxide (represented as greenhouse gases in the technical support document) nor carbon monoxide are limited by the permit. The potential to emit greenhouse gases (including carbon dioxide) from the Washington Beef plant is 81,721 tons per year. Because Washington Beef will be obtaining a non-Title V permit such that the facility will not be major for any other pollutants, the EPA is barred by a recent U.S. Supreme Court decision (June 23, 2014, Utility Air Regulatory Group v. EPA) from including any greenhouse gas limitations in the proposed permit, regardless of the potential to emit. The court decision allows a source to be treated as a minor source if greenhouse gases are the only pollutants that would qualify it a major source.

The potential to emit carbon monoxide is 64 tons per year. Because, under a worst case operating scenario, the plant will not emit more than 100 tons per year of carbon monoxide, there is no permit limitation included in the permit. If Washington Beef elects to change their operations in any way that increases their carbon monoxide potential to emit above 100 tons per year, they must obtain a permit modification or a Title V permit prior to doing so.

15. We question where you obtained the numbers for your releases criteria pollutants of sulfur dioxide and particulates.

EPA Response – For sulfur dioxide, the EPA generally used the most conservative (leading to higher emission estimates) published emission factor from the EPA guidance, AP-42, and we assumed that the sulfur content of any diesel fuel combusted in the boilers is the

maximum allowed by regulation. These assumptions were used to calculate the potential to emit for sulfur dioxide. Washington Beef's actual sulfur dioxide emissions are likely to be significantly below this level under normal operating conditions, and will be reported an annual basis. The potential to emit calculations are presented in the Technical Support Document for the proposed permit; the emission factors used by Washington Beef to calculate actual sulfur dioxide emissions are included directly in the permit.

The 2008 source test for Washington Beef's air scrubber was used to calculate the potential to emit for particulate matter. This source test document is included in the Administrative Record, the potential to emit calculations are presented in the Technical Support Document for the proposed permit, and the emission factors used by Washington Beef to calculate actual fine particulate emissions are included directly in the permit

16. Since AB foods is located within the exterior boundaries of the Yakama Indian Reservation, FARR rules should be included. The permit we viewed did not list Federal Air Regulations for Reservation (FARR) requirements for air quality. Since these laws are federally enforceable, why are they not listed?

EPA Response – Unlike Title V permits, which include all applicable requirements, Non-Title V permits are limited in scope to simply creating enforceable emission limits. Nonetheless, as stated in the proposed permit (Permit Condition 1.3), additional, applicable Clean Air Act requirements, such as the FARR rules mentioned in this comment, still apply to the plant and can be enforced separately.

17. There needs to be more information available to the public and a public meeting where all stakeholders are invited. There was one article in the Yakima Herald newspaper. Many people are unaware about this permit process and have not been notified of it. I talked to a senior citizen living directly across the street for AB foods. He had not been notified of the new permit. His family is interested in having AB Foods investigated for air quality and learning more in a public meeting. We are formally requesting a public meeting in Toppenish, WA, regarding the purposed air quality permit for AB Foods, Washington Beef Slaughterhouse.

EPA Response – The EPA published the public notice for the proposed permit in two newspapers, the Yakima Herald and the Toppenish Review-Independent. We made available the permit, supporting technical documents, and the complete administrative record in three public libraries in Toppenish, Yakima and Seattle. We also delivered a Spanish version of the public notice to these three libraries, to the Yakama Nation, and to Washington Beef. Furthermore, throughout the entire process of drafting the proposed permit, we coordinated our efforts, including draft documents, with the Yakama Nation. When the public notice period ended on November 20, 2014, the EPA had received only one set of comments from a member of the public; another set of comments had been submitted by Washington Beef. Therefore, the EPA does not believe there is sufficient public interest to warrant the expense and time delay associated with holding a public hearing in this case. Furthermore, many of the issues raised in the public comments are outside the scope of the proposed permit action and could not be resolved in a public forum focused exclusively on the proposed permit. The neighbor living directly across the street from the Washington Beef plant, or any other person, may contact the EPA at any time with concerns or observations. Such information is welcomed by the EPA and will be considered, as appropriate.

Comments from Washington Beef (date of receipt noted):

18. 11/12: Restoring the Facility-Wide Emission Limit for PM. EPA's working drafts of the Non-Title V Air Quality Operating Permit provided emission limitations for PM because it is a regulated air pollutant and because uncontrolled PM emissions are greater than 100 tons per year as set forth in permit application documents and in EPA's Technical Support Document at pages 7 and A-2. Accordingly, emission limits are needed for PM to assure that the facility is a minor source for Title V air permitting purposes. 11/20: Washington Beef commented on the removal of the PM emission limitation and requested reinstatement of the limitations. Washington Beef understands based on the November 14 meeting discussion and documents provided by EPA (specifically the EPA Headquarters October 16, 1995 Memorandum Definition of Regulated Pollutant for Particulate Matter for Purposes of Title V) that PM is not a regulated pollutant for Title V permitting and likewise is not considered regulated for Non-Title V permitting. Therefore, Washington Beef withdraws its November 12 comment and understands that PM will not be included in the Non-Title V Air Quality Operating Permit. Thank you for the clarification.

EPA Response - This comment was formally withdrawn; however, for clarity, the EPA has also added language to the Technical Support Document (Section 4.1) explaining more clearly why there is no PM limit included in the permit.

19. 11/12: Establishing Facility-Wide Enforceable Emissions Limits. The question of whether a facility is a "major" source is a determination that is made on a facility-wide basis. When a facility requests emissions limits to avoid being a "major" source, those limits would also apply on a facility-wide basis. Washington Beefs Non-Title V Application was submitted for the entire Washington Beef processing plant ~ a source. EPA reviewed the application on this basis and the draft permit and Technical Support Document confirm that the processing facility is the source for which a permit was sought and for which the permit has been drafted. The draft permit is based on the careful discernment of air pollution units and activities within the processing facility and to be complete must include insignificant activities and fugitives in the source description. One way that this concern could be addressed is by adding the phrase "and includes insignificant emissions and fugitive emissions identified in the permit application documents" to the description of the permitted source in Section 1.1. This modification would also clarify that Washington Beef is authorized to operate all of the emission units, insignificant activities, and fugitive emissions disclosed and included in the permit application and permit preparation. 11/20: Washington Beef commented to request that the phrase "and includes insignificant emissions and fugitive emissions identified in the permit application documents" be added to the facility description in Draft Permit section 1.1. Thank you for clarifying that EPA's permit practice is to permit a facility without specific reference in the permit to insignificant or fugitive emissions and without requirements regarding those emissions, even though the emissions are noted in the permit application documents. Washington Beef withdraws its November 12 comment regarding facility-wide enforceable emission limits. We also appreciate EPA's understanding

of Washington Beef's concern that the permit administrative decision records, adequately document the existence of these insignificant and fugitive sources.

EPA Response - This comment was formally withdrawn; however, for clarity, the EPA has added language to the Technical Support Document that acknowledges Washington Beef's submittal of information about various insignificant and fugitive emissions from the Washington Beef Toppenish Plant and explains why such sources are or are not included in this permitting action. While fugitive emissions are not counted toward Title V applicability, insignificant emission units are not addressed in the non-Title V program. To the extent emissions from an emission unit can be calculated and could contribute towards Washington Beef exceeding an emission limit, the emission unit has been addressed in this permit action. There are in fact some emission units that emit minute levels of emissions that are not practical to track. If Washington Beef or the EPA become aware of emissions or emission units that have not been addressed but could contribute towards exceedances of the emission units in the permit, the permit should be modified to address such emission or emission units.

20. 11/12: Permit, Page 2, Section 1.1. WB-01, WB-02, and WB-03 have low-NO_x burners, and this should be indicated as a control for each of these units. Documentation of this has previously been provided to EPA. Note also that emissions from the boilers should be calculated using either the boiler manufacturer provided emission factor or AP-42 natural gas combustion factor for small commercial and industrial boilers with low-NO_x burners. 11/20: Washington Beef has provided with these comments, additional information from Cleaver-Brook documenting that the boilers WB-01, WB-02, and WB-03 all have 30 ppm low-NO_x burners.

EPA Response - The EPA acknowledges receipt of the letter from Cleaver Brooks to Washington Beef dated November 14, 2014, documenting that WB-01, WB-02 and WB-03 are low-NO_x boilers. Based on this information, the EPA has modified the boiler information in Section 1.1 and modified the NO_x calculations presented in the Technical Support Document Appendix. The EPA notes, however, that even without credit for low-NO_x boilers, the plant potential-to-emit for NO_x is significantly below 100 tons per year. Therefore, with or without low-NO_x boilers, there are no NO_x limits included in the final Washington Beef air permit.

21. 11/12: Permit, Page 2, Section 1.1. WB-04, the Blood Dryer, does not vent through the Pretreatment Spray Tower. 11/20: EPA confirmed its understanding that the Blood Dryer WB-04 does not vent through the Pretreatment Spray Tower.

EPA Response – While the blood dryer controls were correctly described in the Technical Support Document, Section 2.3, the description in the permit, Section 1.1, had a typographical error. The final Washington Beef air permit has been modified to reflect that the Blood Dryer does not vent through the Pretreatment Spray Tower.

22. 11/12: Permit, Page 3, Section 2.2. We note that the 99 ton per year limit on PM that was included in Section 2.2 of the courtesy draft permit has been deleted. Since PM is a regulated air pollutant with uncontrolled Potential to Emit exceeding 100 tons/yr, an emissions limit for

PM is needed. 11/20: In accordance with the discussion above PM is not a regulated pollutant and thus emission limitations for PM will not be included in the permit.

EPA Response - This comment was formally withdrawn; however, for clarity, the EPA has also added language to the Technical Support Document (Section 4.1) explaining more clearly why there is no PM limit included in the permit.

23. 11/12: Permit, Page 4, Section 3.2.2. Please change dscf to scf. The flow measurement units installed are not moisture-compensating. Note that using scf instead of dscf will result in conservative (high) estimates of emissions. 11/20: EPA confirmed that it will change dscf to scf.

EPA Response – This was a typographical error. The final Washington Beef air permit has been modified to reflect the use of "scf" units of measurement throughout.

24. 11/12: Permit, Page 4, Section 3.2.5. Add "when the scrubber is operating". During periods when the scrubber is shut down, monitoring is not needed. 11/20: EPA confirmed that it will add the language "when the scrubber is operating" as requested.

EPA Response – The suggested language is typically used by the EPA for parameter monitoring requirements and was intended to be used in this permit. The final Washington Beef air permit has been modified as suggested.

25. 11/12: Permit, Page 4, Section 3.2.6. Add "when the pretreatment spray tower is operating". During periods when the pretreatment spray tower is shut down, monitoring is not needed. 11/20: EPA confirmed that it will add the language "when the pretreatment spray tower is operating" as requested.

EPA Response – Again, the suggested language is typically used by the EPA for parameter monitoring requirements and was intended to be used in this permit. The final Washington Beef air permit has been modified as suggested.

26. 11/12: Permit Appendix, Page 4, Emission Factors. We believe the emission factor for WB-08, the Cooling Towers, is too large by a factor of 20. We note that the emission factor selected is based on AP-42, Table 13.4-1. The calculation method used by EPA assumes that the TDS content of the circulating is 20,000 parts per million – this is implicit when multiplying the 1.7 lbs drift/kgal circulating water by 0.020 to obtain lbs PM₁₀/kgal. This salinity level is more than 50% of the salinity of ocean water. As noted in our prior comments to EPA on cooling tower emissions, the maximum TDS in the circulating water at Washington Beef is 1000 parts per million. This is a practical limit associated with the design of ammonia condensers; at higher TDS levels the equipment is subject to scaling and corrosion. At a TDS level of 1000 parts per million, and assuming that all PM is emitted as PM₁₀, the maximum PM₁₀ emission from the tower would be 383 lb/month. 11/20: EPA indicated that potential PM₁₀ emission from the cooling towers can also be estimated using the 0.019 lbs PM₁₀/10³ gal circulating water emission factor that is in AP-42, Table 13.4-1. Washington Beef concurs with the use of this emission factor.

EPA Response – The emission factor for cooling towers in AP-42, Table 13.4-1, is considered representative and reasonable in this case. The final Washington Beef air permit has been modified to use the factor $0.019 \text{ lb}/10^3$ gal PM-10, obtained directly from AP-42, Table 13.4-1.

27. 11/12: Technical Support Document, Page 4, Section 2.3. The statement that "The permittee generates this heat in four boilers (WB-01, WB-02, WB-03 and WB-04)..." is incorrect. WB-04 is a dryer, not a boiler. 11/20: EPA confirmed that it will correct the Draft Permit to reflect that WB-04 is a dryer, not a boiler.

EPA Response – While all of the plant descriptions in the permit and Technical support Document correctly identified the boilers and blood dryer, the statement in Section 2.3 of the Technical Support Document was incorrect. The final Washington Beef Technical Support Document has been modified to reflect this correction.

28. 11/12: Technical Support Document, Pages 7, A-2, A-7, Section 4.1. Calculations of GHG Potential to Emit include estimated emissions from unflared venting of biogas. Unflared venting of biogas is a process upset and should not be included in the calculations. 11/20: EPA confirmed that it will delete the requirement regarding estimated emissions from the unflared venting of biogas.

EPA Response - There are no GHG limits included in the draft air permit or in the final air permit. Furthermore, the Technical Support Document has been modified to accurately reflect that unflared venting of biogas is not a normal operating practice at the Washington Beef plant. However, the EPA notes that biogas is produced at all times when there is wastewater in the anaerobic lagoon, and that biogas would need to be vented during periods when the anaerobic lagoon cover is not functional for any reason, perhaps during periods of maintenance, or at other times. There is no reason to remove the calculations from the Technical Support Document, so, for informational purposes, the calculation techniques will stay in the technical support document. See the response to Comment #31 for more discussion.

29. 11/12: Technical Support Document, Page 7, Section 4.1. The TSD states that "the permittee is willing to assume that all PM₁₀ is PM_{2.5}, so no separate PM_{2.5} emissions inventory is needed." This assumption is true only for purposes of this permit. We request that the language be changed to read that "for purposes of calculating PM_{2.5} emissions for this permit, the permittee is willing to assume that all PM₁₀ is PM_{2.5}". 11/20: EPA confirmed that it will include the requested language regarding calculation of PM_{2.5} emissions.

EPA Response – This is a reasonable and correct clarification. The final Washington Beef Technical Support Document has been modified as indicated.

30. 11/12: Technical Support Document, Page A-4. It's unclear why a PM for the flare would be calculated assuming a dirty flame. Methane burns very cleanly and generates virtually no soot. The value of 40 ug/l from AP-42 Table 13.5-1 provides a more reasonable emission factor. 11/20: Washington Beef withdraws its comments regarding PM calculations for the flame.

EPA Response - This comment was formally withdrawn. The final permit is unchanged from the draft.

31. 11/12: Technical Support Document, Pages A-12 and A-13. The monthly emission factors for carbon disulfide are different on these two pages. The reason for this difference is not clear. 11/20: EPA confirmed that the correct monthly emission factor for carbon disulfide is the HAP factor on page A-13 of the Draft Permit.

EPA Response – This was a typographical error. The Technical Support Document has been modified to reflect that the correct emission factor for carbon disulfide is the HAP factor found on page A-13.

32. 11/20: Repair and maintenance of the anaerobic lagoon and the lagoon cover was also discussed during the meeting. There activities can require removal of the cover for extended times to accommodate activities such as removal of accumulated solids and greases and repair of the liner or cover itself. Because the lagoon cover is identified as a "control device" for the lagoon, Washington Beef wishes to confirm the discussion that during such repairs Washington Beef needs to keep records documenting that repairs are being completed with due diligence, that the records be made available during inspection by EPA, and that no formal notification to EPA of the commencement or completion of repairs is needed.

EPA Response – The EPA has added language to the Technical Support Document to clarify that routine maintenance of the anaerobic lagoon cover is anticipated. The permit does not require shutdown of the plant when the anaerobic lagoon cover is not functional during periods of maintenance or during periods of unanticipated upset, but the permit does require that Washington Beef maintain the anaerobic lagoon cover during all other periods as an air pollution control device. Furthermore, Washington Beef should estimate, and report when required elsewhere, emissions released under such circumstances.

6. Acronyms, Abbreviations & Units

10 ⁶ btu	One Million Btu (or MMBtu)
10 ³ gal	One Thousand Gallons
AFS	Air Facility System (an EPA database)
As	Arsenic
ASTM	American Society for Testing and Materials
Be	Beryllium
btu	British Thermal Unit (or Btu)
Cd	Cadmium
CFR	Code of Federal Regulations
CH_4	Methane
CMMS	Computer Maintenance Management System
CO	Carbon Monoxide
CO_2	
CO_2e	Carbon Dioxide Equivalent
Cr	Chromium
CrVI	Chromium VI
DAF	Dissolved Air Flotation Unit
Diesel	Diesel Fuel, No. 2 Fuel Oil, Distillate Oil
dscf	Dry Standard Cubic Feet
EJ	Environmental Justice
EPA	U.S. Environmental Protection Agency
ESA	Endangered Species Act
FARR	Federal Air Rules for Reservations
FIP	
FR	Federal Register
ft	Feet
ft ³	Cubic Feet
FWS	U.S. Fish & Wildlife Service
gal	Gallon
GHG	Greenhouse Gas
gr	
GWP	Global Warming Potential
H2S	Hydrogen Sulfide
HAP	Hazardous Air Pollutant
HCOH	Formaldehyde
Hg	Mercury
hp	Horsepower
hr	Hour
kW	Kilowatt
L	Liter
lb	Pound
MAU	Make-Up Air Unit
min	Minute
	2 611111

- ml Milliliter
- Mn Manganese
- mo Month
- N₂O Nitrous Oxide
- nat gas Natural Gas
- NEPA National Environmental Policy Act
- NESHAP National Emission Standards for HAP

NHPA	National Historic Preservation Act
Ni	Nickel
NMFS	National Marine Fisheries Services
NMTOC	Non Methane Total Organic Carbon
NO _x	Nitrogen Oxide
NPDES	National Pollutant Discharge Elimination System
NSPS	New Source Performance Standards
O&M	Operation & Maintenance
PAH	Polynuclear Aromatic Hydrocarbons
Pb	Lead
PM	Particulate Matter
PM_{10}	PM with an aerodynamic diameter < 10 um
PM _{2.5}	PM with an aerodynamic diameter < 2.5 um
POM	Polycyclic Organic Matter
ppm	Parts per Million
ppmv	Parts per Million by Volume
PSD	Prevention of Significant Deterioration
PTE	Potential to Emit
Region 10	EPA, Region 10
RSC	Reduced Sulfur Compound
scf	Standard Cubic Feet
Se	Selenium
SO_2	Sulfur Dioxide
TSD	Technical Support Document
um	Micrometer

- ug Microgram
- VOC Volatile Organic Compound
 - yr Year

Technical Support Document Appendix

Emissions Inventory

& Potential to Emit Calculations

Technical Support Document

Non Title V Air Operating Permit

Initial Permit

Washington Beef LLC

Toppenish, Washington

AFS Plant Number 53-077-T0048

Non Title V Operating Permit No. R10NT502600

Page A-1

Sourcewide Emission Summary

	s in tons/	<u>, y =</u>												
	WB-01 ²													
Sources ¹	& WB-02 ³	WB-03 ⁴	WD 04 ⁵	WB-05 ⁶	$\mathbf{W} \mathbf{D} 0 \mathbf{c}^7$	WB-07 ⁸	WB-08 ⁹	WB-09 ¹⁰	WD 10 ¹¹	WB-11 ¹²	Source-			
			WB-04 ⁵	WB-05	WB-06 ⁷				WB-10		Wide PT			
Particulates (PM) ¹³	4.1	0.12	0.53		95	0.28	26	1.56		0.20	128			
Fine Particulates (PM ₁₀) ¹⁴	4.7	0.47	0.61		100	0.28	26	1.56		0.78	134			
Sulfur Dioxide (SO ₂) ¹³	145	0.092	19	0.045		0.41		7.6		0.15	173			
Greenhouse Gases (GHG) ¹⁶	45,849	7,328	6,088	3,590		145		6,411		12,309	81,721			
Carbon Monoxide (CO) ¹⁷	24	5.2	3.2	2.5		0.84		20		8.7	64			
Nitrogen Oxides $(NO_x)^{17}$ 41 3.1 5.4 1.5 3.9 3.7 10 69 Volatile Organic Comp (VOC)^{17} 1.5 0.34 5.1 0.32 0.30 0.93 0.57 9.1 Lead Compounds (Pb)^{17} 0.0025 0.000031 0.00033 0.000015 0.000016 0.0029														
Volatile Organic Comp (VOC) ¹⁷ 1.5 0.34 5.1 0.32 0.30 0.93 0.57 9.1 Lead Compounds (Pb) ¹⁷ 0.0025 0.00031 0.00033 0.00015 0.000016 0.00029														
Lead Compounds (Pb) ¹⁷ 0.0025 0.000031 0.00033 0.000015 0.000016 0.0029 Hygrogen Sulfide ¹⁷ (H ₂ S) & RSC 9.1 1.2 10														
Lead Compounds (Pb) ¹⁷ 0.0025 0.00031 0.00033 0.00015 0.000016 0.0029 Hygrogen Sulfide ¹⁷ (H ₂ S) & RSC 9.1 1.2 10														
Hvgrogen Sulfide ¹⁷ (H ₂ S) & RSC 9.1 1.2 10 Predicted Highest Plantwide Single HAP ¹⁸ Xylenes _{total} 8.4 Predicted Total HAP ¹⁹ 25														
Predicted Highest Plantwide Single HAP18Xylenestotal8.4Predicted Total HAP19251 Fugitive sources are not considered when making a Non-Title V permit determination and not included in this PTE calculation; except for HAP emissions, for which fugitive														
Predicted Highest Plantwide Single HAP ¹⁸ Xylenes _{total} 8.4 Predicted Total HAP ¹⁹ 25 1 Fugitive sources are not considered when making a Non-Title V permit determination and not included in this PTE calculation; except for HAP emissions, for which fugitive sources are considered. 2 2 WB-01 Processing Boiler #1, 32.7 10 ⁶ btu/hr natural gas, 233.5 gal/hr diesel 5														
WB-01 Processing Boiler #1, 32.7 10 WB-02 Processing Boiler #2, 32.7 10 ⁶		-	-											
WB-02 Processing Boiler #2, 32.7 10 (WB-03 Fabrication Boiler, 14.3 10 ⁶ btu			gas, 255.5 ga	al/nr diesel										
WB-04 Blood Dryer, 9 10 ⁶ btu/hr natur	-													
WB-05 Rendering Room Makeup Air			gas											
WB-06 Rendering Operations & Tallo			-	bber 70 000	ft ³ /min									
WB-07 Large Emergency Generator (4	ŕ		ž		It /IIIII									
WB-08 Four Refrigeration System Coo		Ţ	•		n flow rate									
WB-09 Biogas Flaring, 500,000 ft/day	-	-	a/m design		ii now rate									
WB-10 Wastewater Treatment System)00 gal/hr) y	vastewater r	processed									
WB-11 Room Heating Units, 24 10 ⁶ bt			-	=		WB-05								
PM (>10um diameter) is not a regulate							ned more fu	llv in the tex	t of the Tec	hncial Supp	ort Docum			
In this case virtually all or most of the	particulate m	natter calcula	ated here is	likely to be	less than 10	um.		-						
The largest emissions of PM_{10} and PM_{10}			-	-	-	-			Operation of	the renderir	ig scrubber			
required under this permit. The permit														
The largest emissions of SO ₂ from WB														
he Permittee indicated they will be usi	-								-					
emissions. The permit requires monitor	•	-									•			
The largest emissions of GHG occurs f emissions when combusting natural ga			tions of WB	-01 and WB	8-02 when th	e plant is co	ombusting d	lesel. The co	ombined WI	3-01 and WI	3-02 GHG			
6 6	-	<i>.</i>	missions wi	ll agab ba gi	mificantly 1	acc than the	an alaulated 1	OTE under n	ormal plant	operating	nditions			
	00, 10, 112													
It is anticipated that actual CO, NO_x , V		Zulanac a		n de signine	anuv iess u	an 0.4 tons/	•							
t is anticipated that actual plantwide si	ingle HAP, Y	•		U	•	entire vear	Operation o		ing serubber	15 required	under uns			
	ingle HAP, Y	•		U	•	entire year.	Operation o							
It is anticipated that actual plantwide singlest plantwide single HAP of 8.4 to bermit.	ingle HAP, > ons/yr is base	d on the ren	dering scrut	ober not wor	king for an	-	x							
It is anticipated that actual plantwide singlest plantwide single HAP of 8.4 to permit.	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
t is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. t is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
t is anticipated that actual plantwide si ighest plantwide single HAP of 8.4 to ermit. t is anticipated that actual total HAP e ased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
t is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. t is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
t is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. t is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide singlest plantwide single HAP of 8.4 to bermit.	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						
It is anticipated that actual plantwide si nighest plantwide single HAP of 8.4 to permit. It is anticipated that actual total HAP e pased on the rendering scrubber not we	ingle HAP, X ons/yr is base missions wil	d on the ren	dering scrub antly less th	ober not wor nan 25 tons/y	rking for an	mal plant op	erating cond	litions. The						

Hazardous Air Pollutant Totals by Individual Constituent and Source

-			-		-					-								
	WB-01	WB-02	WB-03				WB-04		WB-05	WB-06	WB-06	WB-07	WB-07	WB-08	WB-09	WB-09	WB-10	WB-11
HAP by		Natural	Natural	WB-01	WB-01	WB-02	Natural	WB-04	Natural	Scrubber	Scrubber	Large	Small	Four	Waste	Biogas	Waste-	Room
	<u> </u>	Gas	Gas	Biogas	Diesel	Diesel	Gas	Diesel	Gas	Operating	Not Operating	Emerg	Emerg	Cooling	Biogas	Venting Assume	water	Heating
Source	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	Gen tons/yr	Gen tons/yr	Towers tons/yr	Flare tons/yr	None	System tons/yr	Units tons/yr
	2.7E-01	3.0E-01	1.2E-01	6.1E-02	5.9E-02		7.3E-02	1.6E-02	5.7E-02	5.5E+00	2.2E+01	8.2E-03	4.5E-04	0.0E+00		0.0E+00	2.0E+00	1.9E-01
РТЕ	2.7E-01						7.3E-02		5.7E-02		2.2E+01				6.1E-02		2.0E+00	
HAP by Const		0102 01	1122 01						0.12.02			0122 00			0112 02		2002100	102 01
Acetaldehyde	1.5E+00		1.4717168	2	1											РТЕ	25.0	
Acrolein	2.1E-04		0.0002073		-											FIL	25.0	
Arsenic	1.1E-04		0.0001120		-													
Benzene	7.7E-01		0.7682712															
Beryllium	6.8E-06		0.0000068															
Butadiene, 1,3-	4.4E-02		0.043887															
Cadmium	4.4E-02 6.2E-04		0.0006193															
Carbon Disulfide	0.2E-04 7.0E-01		0.6986400		1													
Chlorine	0.0E+00		0.0000000		Assuma	d inciani	ficant to	ollow ar	ootor flor	zihility ch	loosing co	oling tor	vor bioci	do				
Chloroform	0.0E+00		0.0000000			ected 200				ability ch	loosing co	oning tov		ue				
Chromium	7.9E-04		0.0007882			Letteu 200	obuitt	Itst										
Chromium VI	3.9E-05		0.0000394															
Cobalt	4.7E-05		0.0000473															
Dichlorobenzene	6.8E-04		0.0006750															
Dichloromethane	5.7E-02	-	0.0570000															
Ethylbenzene	1.6E+00		1.5943200															
Fluoranthene	1.7E-06		0.0000017															
Fluorene	1.6E-06		0.000001			The tots	al predict	ed nlant	wide HA	P PTE is	25 tons/y	r Xvlen	es are th	e nredict	ed highe	st	1	
Formaldehyde	4.5E-02	_	0.0448586				-	-	8.4 tons/		20 tons/ y	1. Hylen		e preulei	eu ingne	50		
Hexane	1.1E+00		1.1371750			plantwi	ut single	IIAI at	0.4 (0115/	y I								
Lead	2.8E-04		0.000281															
Manganese	2.1E-04		0.0002140															
Mercury	1.5E-04		0.0001464															
Methanol	1.2E+00		1.1638200															
Naphthalene	3.4E-04		0.0003434		1	L											1	
Naphthalene, 2-Methyl	1.4E-05		0.0000135		1													
Nickel	1.2E-03		0.0011825	5	1													
Pentanone, 4-Methy-2-	4.6E+00		4.5552000		1													
Phenanthrene (POM)	9.6E-06		0.0000096		1													
POM (Less Indv POM)	1.5E-03		0.0015456	<u>5</u>	1													
Pyrene (POM)	2.8E-06		0.0000028	3	1													
Selenium	1.4E-05		0.0000135	5	1													
Styrene	0.0E+00	1	0.000000)	Not dete	ected 200	8 Source	e Test										
Toluene	5.0E+00		5.0308293	3]													
Xylenes _{total}	8.4E+00		8.4246383	3]													
		PTE	25.0		-													
Non Title V Operating	Permit No. R	10NT502600															Page A-3	
																	-	

					Converted Value &			Emission				
Source	Emission Factor Reference	1	EF	Units	Units	Capacity	Units	Rate (lb/hr)	hr/yr	tons/lb	tons/yr	PM PTE ²⁰
²¹ WB-01 (Natural Gas)	AP-42 Table 1.4-2 (Filterable)	PM	1.9	lb PM/10 ⁶ scf	0.00186 lb PM/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.061	8,760	0.00050	0.27	
	AP-42 Table 1.3-1 (Filterable)	PM	2.0	lb PM/10 ³ gal		233.5	gal/hr	0.47	8,760	0.00050	2.0	2.0
	AP-42 Table 1.4-2 (Filterable)	PM	1.9	lb PM/10 ⁶ scf	0.00186 lb PM/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.061	8,760	0.00050	0.27	
²² WB-02 (Biogas)	AP-42 Table 1.4-2 (Filterable), Adjusted for biogas	PM	1.1	lb PM/106scf		500,000	scf/day	0.023	8,760	0.00050	0.10	
	AP-42 Table 1.3-1 (Filterable)	PM	2.0	lb PM/10 ³ gal		233.5	gal/hr	0.47	8,760	0.00050	2.0	2.0
²¹ WB-03 (Natural Gas)	AP-42 Table 1.4-2 (Filterable)	PM	1.9	lb PM/10 ⁶ scf	0.00186 lb PM/10 ⁶ btu	14.3	10 ⁶ btu/hr	0.027	8,760	0.00050	0.12	0.12
	No Emission Factor - PM accounted for in WB-06											
	AP-42 Table 1.3-1 (Filterable)	PM	0.12	lb PM/hr				0.12	8,760	0.00050	0.53	0.53
²³ WB-05 (Natural Gas)	No Emission Factor - PM accounted for in WB-06											
	and Rendering Plant is Operating; 2008 Source Test	PM	1.3	lb PM/hr				1.3	8,760	0.00050	5.5	
²⁶ WB-06 (Not Operating)	and Rendering Plant is Operating; 2008 Source Test	PM	22	lb PM/hr				22	8,760	0.00050	95	95
	AP-42 Table 3.3-1 (Diesel)	PM	0.93	lb PM/hr				0.93	500	0.00050	0.23	0.23
	AP-42 Table 3.3-1 (Diesel)	PM	0.18	lb PM/hr				0.18	500	0.00050	0.045	0.045
	AP-42 Table 13.4-1, Converted to hourly factor	PM	4,272	lb PM/mo				6	8,760	0.00050	26	26
	AP-42 Table 13.5-1 (Soot, heavily smoking flare)	PM	17	lb PM/10 ⁶ scf		500,000	scf/day	0.36	8,760	0.00050	1.56	1.6
	No Biogas Venting - No reported PM in biogas											
	No Emission Factor - No reported PM from wastewater											
²¹ WB-11 (Room Heating Units)	AP-42 Table 1.4-2 (Filterable)	PM	1.9	lb PM/106scf	0.00186 lb PM/10 ⁶ btu	24.0	10 ⁶ btu/hr	0.045	8,760	0.00050	0.20	0.20
 21 The converted value and units are der 22 Adjustment for biogas is calculated as 23 The emission factor is directly from th 24 Blood dryer and rendering room MAU 	apture the worst-case PTE scenario for each emission unit and fuel (or ived as follows: $1.9 \text{ lb PM}/10^6 \text{scf x } 10^6 \text{scf}/1,020 10^6 \text{btu}$ (volume/he is follows: $1.9 \text{ lb PM}/10^6 \text{scf x } [(600 10^6 \text{btu}/10^6 \text{scf for biogas})/(1,020 \text{ he referenced AP-42 table, for boilers less than 100 10^6 \text{btu}/hr, and noJ emissions are routed to the rendering scrubber, and during the 2008ssions are accounted for in rendering scrubber emissions.$	at-value o 10 ⁶ btu/10 conversio	conversion 0 ⁶ scf for n on is neces	for natural gas) atural gas)] = 1 sary to match the	 = 0.00186 lb PM/10⁶btu .12 lb PM/10⁶scf. The tor e capacity units for combined 	. Converted t ns/yr calculat usting diesel.	o match capacit	y units for tons	f biogas a	available fo		
25 The emission factor is directly from the	he referenced AP-42 table, for boilers less than 100 106 btu/hr, convert	ed to an l	hourly fact	tor: 2.0 lb PM/10	0 ³ gal x 62.0 gal/hr (capa	city of WB-0	04) x 10 ³ gal/1,0	000 gal = 0.12	24 lb PM	/hr		
cyclones. A standard currently applica this standard is used the plant would b allow the plant to exceed 99 tons PM/ highly dependent on the efficiency of PM PTE value) would be 138 tons PM 10 has assumed that PM PTE for the <i>c</i> operating, the actual PM emissions we the variability in PM emissions due to derived the WB-06 (Operating) and W gr/scf: 0.0021, 0.0015, 0.0009. Based	I non-fugitive PM PTE because without a permit there would be no erable to the rendering operations is 0.1 grains/scf from a process source be allowed to emit, in the absence of other regulatory restraints, 263 to (yr. The Region 10-calculated PM PTE for the entire plant is 128 tons the rendering scrubber, which is unknown. For example, the calculate Λ /yr. At 93% scrubber efficiency the reverse-calculated PM PTE wou entire plant exceeds 100 tons PM/yr, even though a specific value can ould be 15.2 tons {[1.26 lb PM/hr x (8,760 hr/yr x 0.90)]/2,000 lb/t b the scrubber PM efficiency being unknown is less important overall, VB-06 (Not Operating) PM emission factors by using the highest meas 1 on the 0.0021 gr/scf source test result, Region 10 calculated the WB-2) 1.26 lb PM/hr x (100)/(100-94.2) = 21.8 lb PM/hr.	e stack, pe ons PM/yr PM/yr, n ed 95 tons ld be 79 t not be de on + [21 which re sured from	er 40 CFR r. This den nost of wh s PM/yr væ tons PM/yr tetermined. 1.8 lb PM// inforces R nt-half PM	§ 49.125(d)(3). nonstrates that in ich is generated v due assumes an e r. Because the PM For example, if t hr x (8,760 hr/y egion 10's conclu- t results from the	This standard applies bec the absence of a permit, when the rendering scrubl efficiency of 94.2%. At 90 A scrubber efficiency is u the rendering scrubber is the rendering scrubber is a x 0.10]/2,000 lb/ton = usion that the permit mus 2008 scrubber source tes	ause the soun compliance ' ber is not ope 6% scrubber nknown, and operating 90 = 14.5 tons I t set a standa it, 0.0021 gr/	cce is located wi with the particul erating and the p efficiency the re d will remain unl % of the time ov PM}. Furthermo rd regarding scr scf. There were	thin the bound, ate standard ap lant continues verse-calculate known in the a ver the course of re, if the rende ubber operation three runs duri	aries of t oplicable to opera ed PM P bsence o of an enti ring scru g perform ng the sc	he Yakama to the rend te. Howeve TE (derive f additiona ire year wh bber is ope nance of so purce test a	Reservation lering operator, PM/yr P d from the c l source tess en the plant crating most ome kind. F s follows, ir	n. When tions would TE value is controlled ting, Regio cof the time Region 10 n units of
27 The emergency generator-specific em	ission factor is calculated as follows: 0.00220 lb PM, PM_{10} /hp-hr x	423 hp =	= 0.93 lb I	PM, PM ₁₀ /hr								
0 50 1	ission factor is calculated as follows: 0.00220 lb PM, PM_{10} /hp-hr x	1		, 10								
29 AP-42 Table 13.4-1, Converted to how	urly factor, 0.019 1b/10 ³ gal x 308,000 gal/hr (maximum combined co	oler desi	gn flowrat	e) x 10 ³ gal/1,000) gal x 8,760 hr/12 mo = 4	4,272 lb PM/	mo for all four c	ooling towers				

PM Calculations

30 The converted value and units are derived as follows: 274 ug PM/L x L/0.0353147 ft³ (L to ft³ conversion) x 0.0000000220462 lb/ug (ug to lb conversion) x 1,000,000 scf/10⁶scf = 17.1 lb PM/10⁶scf. **31** There is no reported PM in the biogas and there are no reported PM emissions from the plant's wastewater.

Non Title V Operating Permit No. R10NT502600

Source	Emission Factor Reference		EF	Units	Converted Value & Units	Capacity	Units	Emission Rate lb/hr	hr/yr	tons/lb	tons/yr	PM ₁₀ P
³³ WB-01 (Natural Gas)	AP-42 Table 1.4-2 (Total)	PM ₁₀	7.6	lb PM ₁₀ /10 ⁶ scf	0.00745 lb PM/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.24	8,760	0.00050	1.1	
³⁵ WB-01 (Diesel)	AP-42 Table 1.3-1 (Filterable) & Table 1.3-2 (CPM-TOT)	PM_{10}	2.3	lb PM ₁₀ /10 ³ gal		233.5	gal/hr	0.54	8,760	0.00050	2.4	2.4
³³ WB-02 (Natural Gas)	AP-42 Table 1.4-2 (Total)	PM ₁₀	7.6	lb PM ₁₀ /10 ⁶ scf	0.00745 lb PM/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.24	8,760	0.00050	1.1	
³⁴ WB-02 (Biogas)	AP-42 Table 1.4-2 (Total), Adjusted for biogas	PM ₁₀	4.5	lb PM ₁₀ /10 ⁶ scf		500,000	scf/day	0.094	8,760	0.00050	0.41	
	AP-42 Table 1.3-1 (Filterable) & Table 1.3-2 (CPM-TOT)	PM ₁₀	2.3	lb PM ₁₀ /10 ³ gal		233.5	gal/hr	0.54	8,760	0.00050	2.4	2.
	AP-42 Table 1.4-2 (Total)	PM ₁₀	7.6	lb PM ₁₀ /10 ⁶ scf	0.00745 lb PM/106btu	14.3	10 ⁶ btu/hr	0.11	8,760	0.00050	0.47	0.4
	No Emission Factor - PM ₁₀ accounted for in WB-06											
³⁷ WB-04 (Diesel)	AP-42 Table 1.3-1 (Filterable) & Table 1.3-2 (CPM-TOT)	PM ₁₀	0.14	lb PM ₁₀ /hr				0.14	8,760	0.00050	0.61	0.
	No Emission Factor - PM ₁₀ accounted for in WB-06											
	and Rendering Plant is Operating; 2008 Source Test	PM ₁₀	3.3	lb PM ₁₀ /hr				3.3	8,760	0.00050	14	
	and Rendering Plant is Operating; 2008 Source Test	PM ₁₀	23	lb PM ₁₀ /hr				23	8,760	0.00050	100	1
 ³⁹WB-07 (Large Generator) 		PM ₁₀	0.93	lb PM ₁₀ /hr				0.93	500	0.00050	0.23	0
³⁹ WB-07 (Small Generator)		PM ₁₀	0.18	lb PM ₁₀ /hr				0.18	500	0.00050	0.045	0
	AP-42 Table 13.4-1, Converted to hourly factor	PM ₁₀	4,272	lb PM ₁₀ /mo				6	8,760	0.00050	26	
	AP-42 Table 13.5-1 (Soot, heavily smoking flare)	PM ₁₀	17	lb PM ₁₀ /10 ⁶ scf		500,000	scf/day	0.36	8,760	0.00050	1.56	
	No Biogas Venting - No reported PM_{10} in biogas	10							.,			
	No Emission Factor - No reported PM ₁₀ from wastewater											
 ⁴²WB-10 (Wastewater System) ³³WB-11 (Room Heating Units) ae PM₁₀ PTE column is designed to be converted value and units are derived 	No Emission Factor - No reported PM ₁₀ from wastewater AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fu- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0	heat-value o	conversion	n for natural gas)	$= 0.00745 \text{ lb PM}/10^6 \text{btu}$. Converted	to match capacity	units for ton	s/yr calcu		0.78]
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission	el (or operat heat-value o 20 10 ⁶ btu/1 n factor is d	ing) config conversion 0 ⁶ scf for n lerived as 1	guration. These v n for natural gas) natural gas)] = 4 follows: (2.0×10^{-1})	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt	hen summed . Converted ns/yr calcula terable) + 1	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga	tons PM ₁₀ /yr y units for tons the amount o	s/yr calcu of biogas e) = 2.3	ılation. available fo lb PM ₁₀ /10	or combust	on.
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission l emissions are routed to the rendering scrubber, and during the 20	el (or operat heat-value o 20 10 ⁶ btu/1 n factor is d	ing) config conversion 0 ⁶ scf for n lerived as 1	guration. These v n for natural gas) natural gas)] = 4 follows: (2.0×10^{-1})	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt	hen summed . Converted ns/yr calcula terable) + 1	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga	tons PM ₁₀ /yr y units for tons the amount o	s/yr calcu of biogas e) = 2.3	ılation. available fo lb PM ₁₀ /10	or combust	on.
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission	el (or operat heat-value c 20 10 ⁶ btu/1) n factor is d 08 source te	ing) config conversion 0 ⁶ scf for n lerived as a st the bloc	guration. These v a for natural gas) natural gas)] = 4 follows: (2.0 x 0 od dryer was com	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n	hen summed . Converted ns/yr calcula terable) + 1	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga	tons PM ₁₀ /yr y units for tons the amount o	s/yr calcu of biogas e) = 2.3	ılation. available fo lb PM ₁₀ /10	or combust	on.
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission vemissions are routed to the rendering scrubber, and during the 20 sions are accounted for in rendering scrubber emissions. ission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be for	el (or operat heat-value o 20 10^{6} btu/1 ¹ n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 no enforceab	ing) config conversion 0 ⁶ scf for n lerived as a sst the bloc 2.0 gal/hr x ble require	guration. These x h for natural gas)] = 4 follows: $(2.0 \times (0.000))$ follows: $(2.0 \times (0.000))$ d dryer was com- x 10^3 gal/1,000 gal = ment to either in:	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Fill abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta	hen summed . Converted ns/yr calcula terable) + 1 rendering roo	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus	tons PM 10/yr v units for tons the amount o l (Condensible sts only natura	s/yr calcu f biogas e) = 2.3 ul gas). T	ilation. available fo lb PM ₁₀ /10 herefore, b	or combust ³ gal lood dryer rometric pr	and
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are derived djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emine he conversion of the diesel PM ₁₀ emine egion 10 has calculated uncontrolled clones. A standard currently application and the standard currently application.	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10^6 scf/1,020 10^6 btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10^6 btu/ 10^6 scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission 1^6 emissions are routed to the rendering scrubber, and during the 20 scions are accounted for in rendering scrubber emissions. Sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be to ble to the rendering operations is 0.1 grains/scf PM from a process	el (or operat heat-value o 20 10^{6} btu/1 ¹ n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 no enforceal s source stac	ing) configure conversion 0 ⁶ scf for n lerived as is lerived as is st the bloc 2.0 gal/hr x ole require k, per 40 0	guration. These x h for natural gas)] = 4 follows: (2.0×6) d dryer was com $(10^3 \text{gal}/1,000 \text{ gal} = 1)$ ment to either in CFR § 49.125(d)	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies	hen summed . Converted ns/yr calcula terable) + 1 rendering roo	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> m MAU combus	tons PM 10/yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo	s/yr calcu of biogas e) = 2.3 ul gas). T ray tower pundaries	ilation. available fo lb PM ₁₀ /10 herefore, b , and/or ba ; of the Yał	or combust ³ gal lood dryer rometric pr cama Reser	and occess vatio
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applica /hen this standard is used the plant w	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10^6 scf/1,020 10^6 btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10^6 btu/ 10^6 scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission ¹ emissions are routed to the rendering scrubber, and during the 20 sisons are accounted for in rendering scrubber emissions. Sisoin factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be 1 ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrain	el (or operat heat-value c 20 10^{6} btu/li n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 o enforceat s source stac ats, 263 tons	ing) configure conversion 0 ⁶ scf for n lerived as 1 st the bloc 2.0 gal/hr x ble require (k, per 40 0 PM ₁₀ /yr.	guration. These x a for natural gas)] = 4 follows: (2.0×6) follows: (2.0×6) follows: $(10^3 gal/1,000 gal = 10^3 gal/1,000 gal/1,000 gal = 10^3 gal/1,000 gal/1,000 gal/1,000 gal = 10^3 gal/1,000 gal/1,000$	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the to = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a	hen summed . Converted ns/yr calcula terable) + 1 rendering roo ain the rende because the permit, con	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located upliance with the	tons PM 10/yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard	s/yr calcu f biogas e) = 2.3 il gas). T ay tower pundaries applicabl	ilation. available fr lb PM ₁₀ /10 herefore, b , and/or ba , of the Yal e to the rei	or combust ³ gal lood dryer rometric pr kama Reser ndering ope	and occess vatio
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are derived djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emit he conversion of the disesl PM ₁₀ emit egion 10 has calculated uncontrolled clones. A standard currently application then this standard is used the plant would allow the plant to exceed 99 too too the standard to exceed 99 too	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10^6 scf/1,020 10^6 btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10^6 btu/ 10^6 scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission 1^6 emissions are routed to the rendering scrubber, and during the 20 scions are accounted for in rendering scrubber emissions. Sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be to ble to the rendering operations is 0.1 grains/scf PM from a process	el (or operat heat-value c 20 10^{6} btu/li n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 no enforceab is source stac ats, 263 tons it is 134 tons	ing) configure (in the second	guration. These v a for natural gas)] = 4 follows: (2.0×6) d dryer was com $(10^3 \text{gal}/1,000 \text{ gal} =$ ment to either in CFR § 49.125(d) This demonstrate , most of which is	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the remo	hen summed . Converted ns/yr calcula terable) + 1 rendering roc ain the rende because the permit, con dering scrubi	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located upliance with the per is not operation	tons PM 10/yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bc PM standard ng and the pla	s/yr calcu f biogas e) = 2.3 al gas). T ay tower oundaries applicabl nt contin	ilation. available fi lb PM ₁₀ /10 herefore, b , and/or ba of the Yal e to the rer ues to oper	or combust ³ gal lood dryer rometric pr cama Reser ndering ope ate. Howey	and occess vatio ratio
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applica hen this standard is used the plant w build allow the plant to exceed 99 to M ₁₀ /yr PTE value is highly depender erived from the controlled PM ₁₀ PT.	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10^6 scf/1,020 10^6 btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10^6 btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission l emissions are routed to the rendering scrubber, and during the 20 sions are accounted for in rendering scrubber emissions. ission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar tt on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency the	el (or operat heat-value c 20 10^6 btu/l ¹⁰ n factor is d 08 source te $I_{10}/10^3$ gal x 6 no enforceal as source stac tis, 263 tons it is 134 tons for example, ne reverse-ca	ing) configure	guration. These v in for natural gas) hatural gas)] = 4 follows: (2.0 x 0 od dryer was com $(10^3 gal/1,000 gal =$ ment to either in CFR § 49.125(d) This demonstratu , most of which in lated 100 tons PM PM ₁₀ PTE would	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Fili abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the renu M ₁₀ /yr value assumes an of be 90 tons PM ₁₀ /yr. Bec	hen summed . Converted ns/yr calcula terable) + 1 rendering roc ain the rende because the permit, con dering scrubl efficiency of ause the PM	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located pliance with the per is not operatii 85.5%. At 87% s 10 scrubber effici	tons PM 10/yr v units for tons the amount of (Condensible sts only natura etreatment spr l within the bc PM standard ng and the pla scrubber effici ency is unkno	s/yr calcu of biogas e) = 2.3 al gas). T ray tower bundaries applicabl nt contin iency the wn, and	available for lb PM ₁₀ /10 herefore, b , and/or ba , of the Yal e to the rei ues to oper reverse-ca will remain	or combust ³ gal lood dryer rometric pr cama Reser idering ope rate. Howev lculated PM u unknown	and occess vatio ratio rer, th 1 ₁₀ P'
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU indering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applica hen this standard is used the plant w bould allow the plant to exceed 99 tot M ₁₀ /yr PTE value is highly depender erived from the controlled PM ₁₀ PT issence of additional source testing, F	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission l emissions are routed to the rendering scrubber, and during the 20 sisons are accounted for in rendering scrubber emissions. sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency the egion 10 has assumed that PM ₁₀ PTE for the entire plant exceeds	el (or operat heat-value c 20 10^6 btu/l ¹⁰ n factor is d 08 source te $I_{10}/10^3$ gal x 6 no enforceath a source stac tis, 263 tons ti is 134 tons for example, ne reverse-c: 100 tons PM	ing) configure (1) of the conversion of the con	guration. These v a for natural gas) hatural gas)] = 4 follows: (2.0 x 0 od dryer was com $(10^3 \text{gal}/1,000 \text{ gal} = 1)$ ment to either in CFR § 49.125(d) This demonstrate , most of which is lated 100 tons PM PM ₁₀ PTE would in though a species	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Fili abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the renu M ₁₀ /yr value assumes an of be 90 tons PM ₁₀ /yr. Bec fic value can not be deter	hen summed . Converted ns/yr calcula terable) + 1 rendering roc ain the rende because the permit, con dering scrub efficiency of ause the PM mined. There	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located pliance with the per is not operatii 85.5%. At 87% s 10 scrubber effici efore, Region 10	tons PM 10/yr v units for tons the amount of (Condensible sts only natura etreatment spr l within the bc PM standard ng and the pla ccrubber effici ency is unkno has concluded	s/yr calcu of biogas e) = 2.3 al gas). T ay tower oundaries applicabl nt contin tency the wn, and d that a P	available fo lb PM ₁₀ /10 herefore, b , and/or ba , of the Yal e to the rei ues to oper reverse-ca will remain M ₁₀ emissi	or combust ³ gal lood dryer rometric pr cama Reser dering ope ate. Howev lculated PM u unknown on limit of	and occess vatio ration rer, the $I_{10} P$ in the 99 to
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled vclones. A standard currently applica 'hen this standard is used the plant w ould allow the plant to exceed 99 tot M ₁₀ /yr PTE value is highly dependen erived from the controlled PM ₁₀ PT besence of additional source testing, F M ₁₀ /yr is necessary in the permit, and	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10^6 scf/1,020 10^6 btu (volume/ follows: 7.6 lb PM/10 ⁶ scf x [(600 10^6 btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission l emissions are routed to the rendering scrubber, and during the 20 sions are accounted for in rendering scrubber emissions. ission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar tt on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency the	el (or operat heat-value o 20 10^6 btu/10 n factor is d 08 source te $I_{10}/10^3$ gal x 6 no enforceat a source stac tits, 263 tons ti is 134 ton: for example, ne reverse-c: 100 tons PM f the renderi	ing) configure conversion 0 ⁶ scf for n lerived as a st the bloc 2.0 gal/hr x ble require k, per 40 y s PM ₁₀ /yr, s PM ₁₀ /yr, eve ing scrubb	guration. These v a for natural gas) hatural gas)] = 4 follows: (2.0 x (b) d dryer was com to a dry	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Fili abusting natural gas (the n = 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the remv M ₁₀ /yr value assumes an e be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromet	hen summed . Converted ms/yr calcula terable) + 1 rendering roc ain the rende because the permit, con dering scrub efficiency of ause the PM mined. There ric process c	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located pliance with the per is not operatii 85.5%. At 87% s 10 scrubber effici efore, Region 10 yclones to ensure	tons PM 10/yr v units for ton: the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla ccrubber effici ency is unkno has concluded this PM 10 lir	s/yr calcu of biogas e) = 2.3 al gas). T ay tower oundaries applicabl nt contin tency the wn, and d that a P nit is not	available fo lb PM ₁₀ /10 herefore, b , and/or ba ; of the Yal e to the ret ues to oper reverse-ca will remain M ₁₀ emissi exceeded.	or combust ³ gal lood dryer rometric pr cama Reser dering ope ate. Howev lculated PM u unknown on limit of For examp	and occess vatio ration rer, th I_{10} P in the 99 to le, if
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) the PM ₁₀ PTE column is designed to the converted value and units are derived djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU ndering room MAU natural gas emi- the conversion of the diesel PM ₁₀ emi- egion 10 has calculated uncontrolled rclones. A standard currently applica /hen this standard is used the plant would allow the plant to exceed 99 ton M ₁₀ /yr PTE value is highly depender lerived from the controlled PM ₁₀ PT sence of additional source testing, R M ₁₀ /yr is necessary in the permit, an- ndering scrubber is operating 90% o 0.10)]/2,000 lb/ton = 23.0 tons PM	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0) M is less than or equal to 10 um, thus the calculated PM ₁₀ emission V emissions are routed to the rendering scrubber, and during the 20 sions are accounted for in rendering scrubber emissions. Sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plan tt on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency th egion 10 has assumed that PM ₁₀ PTE for the entire plant exceeds a further concludes that the permit must require proper operation o f the time over the course of an entire year when the plant is also of t ₁₀₀). Furthermore, if the rendering scrubber is operating most of th	el (or operat heat-value c 20 10^6 btu/10 n factor is d 08 source te 1 ₁₀ /10 ³ gal x 6 no enforcealt a source stac tt is 134 tons for example, he reverse-c: 100 tons PM f the renderi perating, the	ing) configure (1) and (2) an	guration. These v a for natural gas)] = 4 follows: (2.0 x (d dryer was con $(10^3 \text{gal}/1.000 \text{ gal} =$ ment to either in CFR § 49.125(d) This demonstrate most of which i lated 100 tons PP PM ₁₀ PTE would nt hough a speci- ier, pretreatment M ₁₀ emissions we in PM ₁₀ emission	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n e 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an o be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and barometi ould be 23.0 tons {[3.30] ns due to the scrubber PM	hen summed . Converted ns/yr calcula terable) + 1 rendering roo anin the rende because the permit, con dering scrubl efficiency of ause the PM mined. There ric process c lb PM ₁₀ /hr x	, in this case 134 to match capacity tion is limited by .3 lb PM ₁₀ /10 ³ ga om MAU combus ring scrubber, pro- source is located upliance with the ber is not operatii 85.5%. At 87% s 10 scrubber effici efore, Region 10 yclones to ensure (8,760 hr/yr x y being unknown	tons PM 10/yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla scrubber effici ency is unkno has concludee this PM 10 lir 0.90)]/2,000 is less import	s, yr calcu of biogas e) = 2.3 al gas). T ay tower oundaries applicabl nt contin tency the wn, and d that a P nit is not lb/ton + ant overa	available fi $B PM_{10}/10$ $B PM_{10}/10$ B refore, b a ad/or ba $a of the Yal e to the refues to oper reverse-ca will remain M_{10} emissisexceeded.[22.84 lb l]a ultichter filter fil$	or combust ³ gal lood dryer rometric pr cama Reser dering ope ate. Howev lculated PN o unknown on limit of For examp PM ₁₀ /hr x einforces R	and occess vatio ration rer, the I_{10} P ² to le, if (8,76 egion
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) the PM ₁₀ PTE column is designed to the converted value and units are derived djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU endering room MAU natural gas emi- the conversion of the diesel PM ₁₀ em- egion 10 has calculated uncontrolled vclones. A standard currently applica /hen this standard is used the plant would allow the plant to exceed 99 to M ₁₀ /yr PTE value is highly dependen lerived from the controlled PM ₁₀ PT seence of additional source testing, R M ₁₀ /yr is necessary in the permit, an- endering scrubber is operating 90% of 0.10)]/2,000 lb/ton = 23.0 tons PM onclusion that the permit must set a s	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission of emissions are routed to the rendering scrubber, and during the 20 scions are accounted for in rendering scrubber emissions. Sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair is PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency th egion 10 has assumed that PM ₁₀ PTE for the entire plant exceeds a further concludes that the permit must require proper operation o of the time over the course of an entire year when the plant is also of t ₁₀). Furthermore, if the rendering scrubber is operating most of th tandard regarding scrubber operating performance of some kind. F	el (or operat heat-value c 20 10^{6} btu/10 n factor is d 08 source te 10/ 10^{3} gal x 6 no enforceal a source stac tis, 263 tons ti s 134 ton: for example, ne reverse-cr. 100 tons PM f the renderi perating, the e time, the v Region 10 de	ing) configure (06 scf for n lerived as is st the bloc 2.0 gal/hr x ble require is, per 40 0 PM ₁₀ /yr, s PM ₁₀ /yr, the calcu- alculated Id 1 ₀ /yr, eve- ing scrubb e actual PP variability srived the	guration. These v h for natural gas)] = 4 follows: (2.0 x (od dryer was con $(10^3 \text{gal}/1,000 \text{ gal} =$ ment to either in CFR § 49.125(d) This demonstratu , most of which i lated 100 tons PM M ₁₀ PTE would n though a speci- ier, pretreatment M ₁₀ emissions wi in PM ₁₀ emissions wi B-06 (Operatin	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n e 0.143 lb PM ₁₀ /hr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an o be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromet ould be 23.0 tons {[3.30] ns due to the scrubber PM ng) and WB-06 (Not Ope	hen summed . Converted ns/yr calcula terable) + 1 rendering roc anin the rende because the permit, con dering scrubi efficiency of ause the PM mined. There ric process c b PM ₁₀ /nr x 1 ₁₀ efficiency rating) PM ₁₀	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> om MAU combus ring scrubber, pro- source is located upliance with the per is not operatii 85.5%. At 87% s 10 scrubber effici effore, Region 10 yclones to ensure ((8,760 hr/yr x v being unknown emission factors	tons PM ₁₀ /yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ag and the pla crubber effici ency is unkno has concluded this PM ₁₀ lir 0.90)]/2,000 l is less import by using the l	s, yr calcu of biogas $e_{j} = 2.3$ $a_{j} = 2.$	llation. available fr $lb PM_{10}/10$ herefore, b , and/or ba of the Yal e to the ren ues to oper reverse-ca will remain M_{10} emissi exceeded. [22.84 lb] ull, which r neasured ba	or combust ³ gal lood dryer rometric pr cama Reser Idering ope ate. Howev lculated PM u unknown on limit of For examp PM ₁₀ /hr x einforces R ack-half PM	and occess vation ratior er, th 1 ₁₀ PT in the 99 to le, if t (8,76 egion 1 resu
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri- djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU endering room MAU natural gas emi- he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applica /hen this standard is used the plant w ould allow the plant to exceed 99 ton M ₁₀ /yr PTE value is highly dependen lerived from the controlled PM ₁₀ PT osence of additional source testing, R M ₁₀ /yr is necessary in the permit, an endering scrubber is operating 90% o 0.10)/2.000 lb/ton = 23.0 tons PM onclusion that the permit must set a s om the 2008 scrubber source test, 0.0	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission <i>q</i> emissions are routed to the rendering scrubber, and during the 20 assions are accounted for in rendering scrubber, and during the 20 sistication of the rendering scrubber and during the 20 sistication of the rendering scrubber and during the 20 sistication of the rendering scrubber and the science of the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrain as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency of f further concludes that the permit must require proper operation of f the time over the course of an entire year when the plant is also of to 10. Furthermore, if the rendering scrubber is operating most of th tandard regarding scrubber operating the source test as as follows 0044 gr/scf. There were three runs during the source test as as follows 10	el (or operat heat-value o 20 10^{6} btu/10 n factor is d 08 source te 1 ₁₀ /10 ³ gal x 6 no enforceat a source stac atts, 263 tons tt is 134 ton: for example, he reverse-c: 100 tons PM f the renderi pperating, the e time, the v degion 10 de ows, in units	ing) configured in the second	guration. These v in for natural gas) hatural gas)] = 4 follows: (2.0 x (od dryer was com 10^3 gal/1,000 gal = ment to either in CFR § 49.125(d) This demonstrated , most of which i lated 100 tons PP PM ₁₀ PTE would in though a speci- ber, pretreatment M ₁₀ emissions we in PM ₁₀ emission WB-06 (Operatin 0.0041, 0.0018,	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /nr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an e be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromett ould be 23.0 tons {[3.30] ns due to the scrubber PM mg) and WB-06 (Not Ope 0.0044. Based on the 0.0	hen summed . Converted ns/yr calcula terable) + 1 rendering roo anin the rende because the permit, con dering scrubl efficiency of ause the PM mined. There ric process c b PM ₁₀ /hr x f ₁₀ efficiency rating) PM ₁₀ 0044 gr/scf sc	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> m MAU combus ring scrubber, pro- source is located upliance with the per is not operatin 85.5%. At 87% s 10 scrubber effici- efore, Region 10 yclones to ensure ((8,760 hr/yr x being unknown emission factors pource test result,	tons PM ₁₀ /yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla crubber effici ency is unkno has concluded this PM ₁₀ lir 0,90)/2,000 l is less import by using the Region 10 cal	s, yr calcu of biogas e) = 2.3 al gas). T ray tower bundaries applicabl nt contin tency the wn, and d that a P nit is not lb/ton + ant overar highest n culated t	available fi $1b PM_{10}/10$ brefore, b and/or ba of the Yal e to the renues to oper reverse-ca will remain M_{10} emissi exceeded. [22.84 lb] 1], which r neasured ba he WB-06	or combust ³ gal lood dryer rometric pr cama Reser idering ope ate. Howev lculated PM i unknown on limit of FOr examp PM ₁₀ /nr x einforces R ack-half PM PM ₁₀ emis	ion. and occess vatio ration er, the 1_{10} P to le, if (8,7) egion 1 results sion f
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri- djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU endering room MAU natural gas emi- he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applica /hen this standard is used the plant w ould allow the plant to exceed 99 ton M ₁₀ /yr PTE value is highly dependen lerived from the controlled PM ₁₀ PT osence of additional source testing, R M ₁₀ /yr is necessary in the permit, an endering scrubber is operating 90% o 0.10)/2.000 lb/ton = 23.0 tons PM onclusion that the permit must set a s om the 2008 scrubber source test, 0.0	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission of emissions are routed to the rendering scrubber, and during the 20 scions are accounted for in rendering scrubber emissions. Sission factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrair is PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency th egion 10 has assumed that PM ₁₀ PTE for the entire plant exceeds a further concludes that the permit must require proper operation o of the time over the course of an entire year when the plant is also of t ₁₀). Furthermore, if the rendering scrubber is operating most of th tandard regarding scrubber operating performance of some kind. F	el (or operat heat-value o 20 10^{6} btu/10 n factor is d 08 source te 1 ₁₀ /10 ³ gal x 6 no enforceat a source stac atts, 263 tons tt is 134 ton: for example, he reverse-c: 100 tons PM f the renderi pperating, the e time, the v degion 10 de ows, in units	ing) configured in the second	guration. These v in for natural gas) hatural gas)] = 4 follows: (2.0 x (od dryer was com 10^3 gal/1,000 gal = ment to either in CFR § 49.125(d) This demonstrated , most of which i lated 100 tons PP PM ₁₀ PTE would in though a speci- ber, pretreatment M ₁₀ emissions we in PM ₁₀ emission WB-06 (Operatin 0.0041, 0.0018,	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /nr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an e be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromett ould be 23.0 tons {[3.30] ns due to the scrubber PM mg) and WB-06 (Not Ope 0.0044. Based on the 0.0	hen summed . Converted ns/yr calcula terable) + 1 rendering roo anin the rende because the permit, con dering scrubl efficiency of ause the PM mined. There ric process c b PM ₁₀ /hr x f ₁₀ efficiency rating) PM ₁₀ 0044 gr/scf sc	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> m MAU combus ring scrubber, pro- source is located upliance with the per is not operatin 85.5%. At 87% s 10 scrubber effici- efore, Region 10 yclones to ensure ((8,760 hr/yr x being unknown emission factors pource test result,	tons PM ₁₀ /yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla crubber effici ency is unkno has concluded this PM ₁₀ lir 0,90)/2,000 l is less import by using the Region 10 cal	s, yr calcu of biogas e) = 2.3 al gas). T ray tower bundaries applicabl nt contin tency the wn, and d that a P nit is not lb/ton + ant overra highest n culated t	available fi $1b PM_{10}/10$ brefore, b and/or ba of the Yal e to the renues to oper reverse-ca will remain M_{10} emissi exceeded. [22.84 lb] 1], which r neasured ba he WB-06	or combust ³ gal lood dryer rometric pr cama Reser idering ope ate. Howev lculated PM i unknown on limit of FOr examp PM ₁₀ /nr x einforces R ack-half PM PM ₁₀ emis	and occess vation ration ret, th I_{10} PT in the 99 too le, if t (8,76 egion I resu sion f
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) he PM ₁₀ PTE column is designed to he converted value and units are deri djustment for biogas is calculated as ased on AP-42 Table 1.3-6 50% of F lood dryer and rendering room MAU endering room MAU natural gas emi he conversion of the diesel PM ₁₀ em egion 10 has calculated uncontrolled clones. A standard currently applice /hen this standard is used the plant w ould allow the plant to exceed 99 ton M ₁₀ /yr PTE value is highly dependent lerived from the controlled PM ₁₀ PT seence of additional source testing, R M ₁₀ /yr is necessary in the permit, am- endering scrubber is operating 90% o 0.10)]/2,000 lb/ton = 23.0 tons PM onclusion that the permit must set a s om the 2008 scrubber source test, 0.4 follows: 1) 0.0044 + 0.0011 (50% of	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume. follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission J emissions are routed to the rendering scrubber, and during the 20 issions are accounted for in rendering scrubber, and during the 20 sision factor to an hourly factor is calculated as follows: 2.3 lb PM non-fugitive PM ₁₀ PTE because without a permit there would be a ble to the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrain is PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency th egion 10 has assumed that PM ₁₀ PTE for the entire plant exceeds 1 further concludes that the purimit must require proper operation on f the time over the course of an entire year when the plant is also c to to 3.10. Furthermore, if the rendering scrubber is operating most of th tandard regarding scrubber operating performance of some kind. F 2044 gr/scf. There were three runs during the source test as as follof if PM) gr/scf x 70,000 scf/min [rated capacity of scrubber] x lb/	el (or operat heat-value o 20 10^{6} btu/li n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 to cenforceat a source stac ats, 263 tons it is 134 ton: for example, ne reverse-c: 100 tons PM f the renderi pperating, the e time, the v degion 10 de bws, in units 7,000 gr [co	ing) configured in the second	guration. These v in for natural gas) hatural gas)] = 4 follows: (2.0 x (od dryer was com 10^3 gal/1,000 gal = ment to either in CFR § 49.125(d) This demonstrated , most of which i lated 100 tons PP PM ₁₀ PTE would in though a speci- ber, pretreatment M ₁₀ emissions we in PM ₁₀ emission WB-06 (Operatin 0.0041, 0.0018,	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /nr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an e be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromett ould be 23.0 tons {[3.30] ns due to the scrubber PM mg) and WB-06 (Not Ope 0.0044. Based on the 0.0	hen summed . Converted ns/yr calcula terable) + 1 rendering roo anin the rende because the permit, con dering scrubl efficiency of ause the PM mined. There ric process c b PM ₁₀ /hr x f ₁₀ efficiency rating) PM ₁₀ 0044 gr/scf sc	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> m MAU combus ring scrubber, pro- source is located upliance with the per is not operatin 85.5%. At 87% s 10 scrubber effici- efore, Region 10 yclones to ensure ((8,760 hr/yr x being unknown emission factors pource test result,	tons PM ₁₀ /yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla crubber effici ency is unkno has concluded this PM ₁₀ lir 0,90)/2,000 l is less import by using the Region 10 cal	s, yr calcu of biogas e) = 2.3 al gas). T ray tower bundaries applicabl nt contin tency the wn, and d that a P nit is not lb/ton + ant overra highest n culated t	available fi $1b PM_{10}/10$ brefore, b and/or ba of the Yal e to the renues to oper reverse-ca will remain M_{10} emissi exceeded. [22.84 lb] 1], which r neasured ba he WB-06	or combust ³ gal lood dryer rometric pr cama Reser idering ope ate. Howev lculated PM i unknown on limit of FOr examp PM ₁₀ /nr x einforces R ack-half PM PM ₁₀ emis	and occess vation ration ration fl ₁₀ PT in the 99 to le, if the (8,76 egion fl results sion fl
⁴² WB-10 (Wastewater System) ³³ WB-11 (Room Heating Units) the PM ₁₀ PTE column is designed to be converted value and units are derived ljustment for biogas is calculated as used on AP-42 Table 1.3-6 50% of F ood dryer and rendering room MAU dering room MAU natural gas emi- te conversion of the disel PM ₁₀ em- gion 10 has calculated uncontrolled clones. A standard currently applice hen this standard is used the plant would allow the plant to exceed 99 to A_{10} /yr PTE value is highly dependen- erived from the controlled PM ₁₀ PT sence of additional source testing, F A_{10} /yr is necessary in the permit, am- dering scrubber is operating 90% of 0.10)/2,000 lb/ton = 23.0 tons PM nclusion that the permit must set a so m the 2008 scrubber source test, 0.0 follows: 1) 0.0044 + 0.0011 (50% of resume the PM ₁₀ emission factor is the source test.	AP-42 Table 1.4-2 (Total) capture the worst-case PTE scenario for each emission unit and fur- ved as follows: 7.6 lb PM/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu (volume- follows: 7.6 lb PM/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,0 M is less than or equal to 10 um, thus the calculated PM ₁₀ emission <i>q</i> emissions are routed to the rendering scrubber, and during the 20 assions are accounted for in rendering scrubber, and during the 20 sistication of the rendering scrubber and during the 20 sistication of the rendering scrubber and during the 20 sistication of the rendering scrubber and the science of the rendering operations is 0.1 grains/scf PM from a process ould be allowed to emit, in the absence of other regulatory restrain as PM ₁₀ /yr. The Region 10-calculated PM ₁₀ PTE for the entire plar at on the efficiency of the rendering scrubber, which is unknown. F E value) would be 111 tons PM ₁₀ /yr. At 84% scrubber efficiency of f further concludes that the permit must require proper operation of f the time over the course of an entire year when the plant is also of to 10. Furthermore, if the rendering scrubber is operating most of th tandard regarding scrubber operating the source test as as follows 0044 gr/scf. There were three runs during the source test as as follows 10	el (or operat heat-value o 20 10^{6} btu/li n factor is d 08 source te $I_{10}/10^{3}$ gal x 6 to cenforceat a source stac ats, 263 tons it is 134 ton: for example, ne reverse-c: 100 tons PM f the renderi pperating, the e time, the v degion 10 de bws, in units 7,000 gr [co	ing) configured in the second	guration. These v in for natural gas) hatural gas)] = 4 follows: (2.0 x (od dryer was com 10^3 gal/1,000 gal = ment to either in CFR § 49.125(d) This demonstrated , most of which i lated 100 tons PP PM ₁₀ PTE would in though a speci- ber, pretreatment M ₁₀ emissions we in PM ₁₀ emission WB-06 (Operatin 0.0041, 0.0018,	worst-case scenarios are t = 0.00745 lb PM/10 ⁶ btu .47 lb PM/10 ⁶ scf. The to 0.50) lb PM ₁₀ /10 ³ gal (Filt abusting natural gas (the n = 0.143 lb PM ₁₀ /nr stall or adequately mainta (3). This standard applies es that in the absence of a s generated when the rem M ₁₀ /yr value assumes an e be 90 tons PM ₁₀ /yr. Bec fic value can not be deter spray tower and baromett ould be 23.0 tons {[3.30] ns due to the scrubber PM mg) and WB-06 (Not Ope 0.0044. Based on the 0.0	hen summed . Converted ns/yr calcula terable) + 1 rendering roo anin the rende because the permit, con dering scrubl efficiency of ause the PM mined. There ric process c b PM ₁₀ /hr x f ₁₀ efficiency rating) PM ₁₀ 0044 gr/scf sc	, in this case 134 to match capacity tion is limited by <u>3 lb PM₁₀/10³ga</u> m MAU combus ring scrubber, pro- source is located upliance with the per is not operatin 85.5%. At 87% s 10 scrubber effici- efore, Region 10 yclones to ensure ((8,760 hr/yr x being unknown emission factors pource test result,	tons PM ₁₀ /yr v units for tons the amount o l (Condensible sts only natura etreatment spr l within the bo PM standard ng and the pla crubber effici ency is unkno has concluded this PM ₁₀ lir 0,90)/2,000 l is less import by using the Region 10 cal	s, yr calcu of biogas e) = 2.3 al gas). T ray tower bundaries applicabl nt contin tency the wn, and d that a P nit is not lb/ton + ant overra highest n culated t	available fi $1b PM_{10}/10$ brefore, b and/or ba of the Yal e to the renues to oper reverse-ca will remain M_{10} emissi exceeded. [22.84 lb] 1], which r neasured ba he WB-06	or combust ³ gal lood dryer rometric pr cama Reser idering ope ate. Howev lculated PM i unknown on limit of FOr examp PM ₁₀ /nr x einforces R ack-half PM PM ₁₀ emis	and occess vatio ratio er, th 1 ₁₀ P' in the 99 to le, if (8,7) egion 1 resu

PM₁₀ Calculations

42 There is no reported PM_{10} in the biogas and there are no reported PM_{10} emissions from the plant's wastewater.

Non Title V Operating Permit No. R10NT502600

Source	Emission Factor Reference		EF	Units	Converted Value & Units	Capacity	Units	Emission Rate lb/hr	hr/vr	tons/lb	tons/vr	SO ₂ PTE ⁴
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr S/10 ⁶ scf	SO ₂	1.5	lb SO ₂ /10 ⁶ scf	0.00147 lb SO ₂ /10 ⁶ btu	32.7	10 ⁶ btu/hr	0.048		0.00050	0.21	50 ₂ PTE
	AP-42 Table 1.3-1 (142xS %, assume S=0.5%)	SO ₂	71	lb SO ₂ /10 ³ gal	0.00147 10.00%10.00	233.5	gal/hr	17		0.00050	73	73
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr $S/10^6$ scf	SO ₂	1.5	lb SO ₂ /10 ⁶ scf	0.00147 lb SO ₂ /10 ⁶ btu	32.7	10 ⁶ btu/hr	0.048		0.00050	0.21	
	Reported (by Permittee) H ₂ S maximum value 500 ppmv	SO ₂	84	lb SO ₂ /10 ⁶ scf	0.00147 10.00910.00	500.000	scf/day	1.7		0.00050	7.6	
	AP-42 Table 1.3-1 (142xS%, assume S=0.5%)	SO ₂	71	lb SO ₂ /10 ³ gal		233.5	gal/hr	1.7	8,760	0.00050	73	73
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr S/10 ⁶ scf	SO ₂	1.5	lb SO ₂ /10 ⁶ scf	0.00147 lb SO ₂ /10 ⁶ btu	14.3	10 ⁶ btu/hr	0.021	8,760	0.00050	0.092	0.092
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr $S/10^6$ scf	SO ₂	0.013	lb SO ₂ /hr	000117 105071050	1110	10 blum	0.013		0.00050	0.057	0.072
	AP-42 Table 1.3-1 (142xS%, assume $S = 0.5\%$)	SO ₂	4.4	lb SO ₂ /hr				4.4	8,760	0.00050	19	19
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr S/10 ⁶ scf	SO ₂	7.5	lb SO ₂ /mo				0.010		0.00050	0.045	0.045
	No Emission Factor - 2008 Source Test	502	110					0.010	0,700	0.00020	01010	0.04
	No Emission Factor - 2008 Source Test											
	100% conversion sulfur to SO_2 and $S = 0.5\%$	SO ₂	1.4	lb SO√hr				1.4	500	0.00050	0.35	0.35
	100% conversion sulfur to SO_2 and $S = 0.5\%$	SO ₂	0.24	lb SO ₂ /hr				0.24	500	0.00050	0.060	0.06
	No Emission Factor - No reported SO ₂ from WB-08	502	0.24					0.24	500	0.00050	0.000	0.000
	Reported (by Permittee) H_2S maximum value 500 ppmv	SO ₂	84	lb SO ₂ /10 ⁶ scf		500,000	scf/day	1.7	8 760	0.00050	7.6	7.6
	No Biogas Venting - No reported SO ₂ in Biogas	~~2	0.			200,000			0,700	0.00020	110	
	No EF - No reported SO_2 from Wastewater											
	AP-42 Table 1.4-2 (Footnote d), Adjusted for 5,000 gr S/106scf	SO ₂	1.5	lb SO ₂ /10 ⁶ scf	0.00147 lb SO ₂ /10 ⁶ btu	24	10 ⁶ btu/hr	0.035	8 760	0.00050	0.155	0.15
WB-11 (Room Heating Units)		502	110	10 00 2 10 301	0100117 1050%1050	2.	ro otalii	0.055	0,700	0.00020	0.100	173
The SO ₂ PTE column is designed to c	capture the worst-case PTE scenario for each emission unit and fuel	(or opera	ting) conf	iguration. These	worst-case scenarios are	then summ	ed. in this case	173 tons SØvr.				175
	content of pipeline natural ga is as follows: $0.6 \text{ lb } \text{SQ}/10^6 \text{scf x}$ (5,	· •	0.	0					ıl gas".			
	0^{6} scf) x (1,000,000 scf/ 10^{6} scf) x (64.06 lb SO ₂ /34.06 lb H ₂ S) = [H ₂ :									available b	iogas.	
	ollows: 142 lb SQ/ 10^3 gal x 0.5% Sulfur = 71 lb SQ/ 10^3 gal, Boile		,									
	atural gas SQ ₂ factor, adjusted to 5,000 gr S/10 ⁶ scf maximum and co							= 0.0132 lb SC	D ₂ /hr			
	iesel SO ₂ factor, adjusted to S=0.5% and converted to an hourly fact		- 0	Ũ								
	nost significant source of SQ_2 at the plant when combusting diesel. F											
	e sources when combusting diesel is 165 tons/yr. Region 10 calculat		-	-		-						
00 10°btu/hr, distillate oil fired (142 al/hr), and then converting these res	1b/1,000 gallons), assuming a 0.5% sulfur concentration in the dies	el, conve	rting to ap	propriate units,	multiplying this by the ra	ted diesel ca	pacities of WB	-01 (233.5 gal/	hr), WB	-02 (233.5	gal/hr), an	d WB-04
	atural gas SQ ₂ factor, adjusted to 5,000 gr S/10 ⁶ scf maximum and co			1 C 1 7 11	$80/10^6 - 6 = 10^6 - 6/10^6$	0 10 ⁶ h (7.0.10 ⁶ D (- 0.7(0.1./12		52 11 50 /		

SO₂ Calculations

52 100% conversion sulfur to SO₂ and S = 0.5%, 19.2 gal/hr x 7.05 lb/gal x 0.005 x (64g/mole SO₂/32g/mole S) = 1.35 lb SO₂/hr 53 100% conversion sulfur to SO₂ and S = 0.5%, 3.4 gal/hr x 7.05 lb/gal x 0.005 x (64g/mole SO2/32g/mole S) = 0.240 lb SO/hr

54 The permittee has not reported SO₂ emissions from the cooling towers.

55 The permittee has not reported SO₂ in the biogas or SO₂ emissions from the plant's wastewater.

Greenhouse Gas (GHG) Calculations

Source	Emission Factor Reference		EF	Units		ted Value & Units	Capacity	Units	Emission Rate (lb/hr)	hr/yr	tons/lb	tons/yr	CO ₂ e PTE ⁵⁶
57WB-01 (Natural Gas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	119,440	lb CO2e/106scf	117	lb CO2e/106btu	32.7	10 ⁶ btu/hr	3,824	8,760	0.00050	16,750	
59,68 WB-01 (Diesel Fuel)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	22,415	lb CO2e/103gal			233.5	gal/hr	5,234	8,760	0.00050	22,924	22,924
57WB-02 (Natural Gas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	119,440	lb CO2e/106scf	117	lb CO2e/106btu	32.7	10 ⁶ btu/hr	3,824	8,760	0.00050	16,750	
⁵⁸ WB-02 (Biogas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O), adjusted biogas	CO ₂ e	70,259	lb CO2e/106scf			500,000	scf/day	1,464	8,760	0.00050	6,411	
59,68 WB-02 (Diesel Fuel)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	22,415	lb CO2e/103gal			233.5	gal/hr	5,234	8,760	0.00050	22,924	22,924
57,68 WB-03 (Natural Gas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	119,440	lb CO2e/106scf	117	lb CO2e/106btu	14.3	10 ⁶ btu/hr	1,673	8,760	0.00050	7,328	7,328
⁶⁰ WB-04 (Natural Gas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O), converted to hr	CO ₂ e	1,054	lb CO ₂ e/hr					1,054	8,760	0.00050	4,617	
61,68 WB-04 (Diesel Fuel)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O), converted to hr	CO ₂ e	1,390	lb CO ₂ e/hr					1,390	8,760	0.00050	6,088	6,088
62,68 WB-05 (Natural Gas)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O), converted to mo	CO ₂ e	598,371	lb CO ₂ e/mo					820	8,760	0.00050	3,590	3,590
⁶³ WB-06 (Operating)	No Emission Factor - 2008 Source Test												
⁶³ WB-06 (Not Operating)	No Emission Factor - 2008 Source Test												
64,68 WB-07 (Large Generator)	AP-42 Table 3.3-1, CO ₂ , Diesel	GHG	487	lb GHG/hr					487	500	0.00050	122	122
65,68 WB-07 (Small Generator)	AP-42 Table 3.3-1, CO ₂ , Diesel	GHG	92	lb GHG/hr					92	500	0.00050	23	23
⁶⁶ WB-08 (Four Cooling Towers)	No Emission Factor - No reported GHG												
58, 68 WB-09 (Waste Biogas Flare)	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O), adjusted biogas	CO ₂ e	70,259	lb CO2e/106scf			500,000	scf/day	1,464	8,760	0.00050	6,411	6,411
67WB-09 (Biogas Venting)	No Biogas Venting; Biogas 40% CO_2 and 60% CH_4	CO ₂ e	667,478	lb CO2e/106scf			500,000	scf/day	13,906	8,760	0.00050	60,907	
66 WB-10 (Wastewater System)	No reported GHG from wastewater												
	40 CFR 98 Tables C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	119,440	lb CO2e/106scf	117	lb CO2e/106btu	24.0	10 ⁶ btu/hr	2,810	8,760	0.00050	12,309	12,309
													81,721

56 The CO₂e PTE column is designed to capture the worst-case PTE scenario for each emission unit and fuel (or operating) configuration. These worst-case scenarios are then summed, in this case 81,721 tons CO/yr.

57 See 40 CFR 98 Table A-1 for GWP: $CO_2=1$, $N_2O=298$, $CH_4=25$. [53.06 kg $CO_2/10^6$ btu + (0.0001 x 298) kg $N_20/10^6$ btu + (0.001 x 25) kg $CH_4/10^6$ btu] x (2.20462 lb/kg) x (1,020 10^6btu/10⁶scf) = 119,440 $CO_2e/10^6$ scf.

58 The emission factor is the natural gas factor, adjusted for biogas. 119,440 lb $CQe/10^6$ scf x [(600 10^6 btu/ 10^6 scf for biogas)/(1,020 10^6 btu/ 10^6 scf for natural gas)] = 70,259 lb $CO_2e/10^6$ scf. The tons/yr calculation is limited by available biogas.

59 See 40 CFR 98 Table A-1 for GWP: CO₂=1, N₂O=298, CH₄=25. [73.96 kg CO₂/10⁶btu + (0.0006 x 298) kg N₂0/10⁶btu + (0.003 x 25) kg CH₄/10⁶btu] x (2.20462 lb/kg) x (137 10⁶btu/10³gal) = 22,415 lb CO₂e/10³gal

 $\frac{60}{10}$ The emission factor is the natural gas factor, converted to an hourly factor. 119,440 lb CQe/10⁶ scf x 9.0 10⁶ btu/hr x 10⁶ scf/1,020 10⁶ btu = 1,054 lb CO₂e/hr

62 The emission factor is the natural gas factor, converted to a monthly factor. [119,440 lb CQe/10⁶scf x 7.0 10⁶btu/hr x 10⁶scf/1,020 10⁶btu x 8,760 hr/yr]/12 mo = 598,371 lb CO₂e/mo

63 No emissions of GHG from the rendering scrubber based on the 2008 source test

64 The emission factor is calculated as follows: $1.15 \text{ lb GHG/hp-hr} \times 423 \text{ hp} = 486.5 \text{ lb GHG/hr}$

65 The emission factor is calculated as follows: 1.15 lb GHG/hp-hr x 80 hp = 92.0 lb GHG/hr

66 The permittee reported no GHG emissions from the four cooling towers or from the plant's wastewater, with the exception of biogas that is accounted for in WB-09 (Waste Biogas Flare).

67 The emission factor is calculated as follows: $[(0.66 \text{ kg/m}^3 \text{ CH}_4 \text{ x 25 x } 0.60) + (1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)] \times (2.20462 \text{ lb/kg}) \times (\text{m}^3/35.3147 \text{ ft}^3) \times (1,000,000 \text{ ft}^3/10^6 \text{scf}) = 667,478 \text{ lb/10}^6 \text{scf}. 0.66 \text{ kg/m}^3 \text{ density CH}_4. 1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)] \times (2.20462 \text{ lb/kg}) \times (\text{m}^3/35.3147 \text{ ft}^3) \times (1,000,000 \text{ ft}^3/10^6 \text{scf}) = 667,478 \text{ lb/10}^6 \text{scf}. 0.66 \text{ kg/m}^3 \text{ density CH}_4. 1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)] \times (2.20462 \text{ lb/kg}) \times (\text{m}^3/35.3147 \text{ ft}^3) \times (1,000,000 \text{ ft}^3/10^6 \text{scf}) = 667,478 \text{ lb/10}^6 \text{scf}. 0.66 \text{ kg/m}^3 \text{ density CH}_4. 1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)] \times (2.20462 \text{ lb/kg}) \times (\text{m}^3/35.3147 \text{ ft}^3) \times (1,000,000 \text{ ft}^3/10^6 \text{scf}) = 667,478 \text{ lb/10}^6 \text{scf}. 0.66 \text{ kg/m}^3 \text{ density CH}_4. 1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)]$

68 This is the worst-case CO₂e scenario: 1) WB-01, WB-02 and WB-04 combust diesel, 2) WB-03, WB-05 and WB-11 combusts natural gas (because that's all it can burn), 3) the WB-07 emergency generators operate (combusting diesel) 500 hours/yr, and 4) all of the biogas is flared. The CO₂e PTE is 81,721 tons/yr, approximately 20% below the threshold of 100,000 tons/yr.

Source	Emission Factor Reference		EF	Units		ed Value & Jnits	Capacity	Units	Emission Rate (lb/hr)	hr/yr	tons/lb	tons/yr	CO PTE ⁶⁹
⁷⁰ WB-01 (Natural Gas)	AP-42 Table 1.4-1	CO	84	lb CO/10 ⁶ scf	0.082	lb CO/106btu	32.7	10 ⁶ btu/hr	2.7	8,760	0.00050	12	12
⁷² WB-01 (Diesel Fuel)	AP-42 Table 1.3-1	CO	5.0	lb CO/10 ³ gal			233.5	gal/hr	1.2	8,760	0.00050	5.1	
⁷⁰ WB-02 (Natural Gas)	AP-42 Table 1.4-1	CO	84	lb CO/10 ⁶ scf	0.082	lb CO/10 ⁶ btu	32.7	10 ⁶ btu/hr	2.7	8,760	0.00050	12	12
⁷¹ WB-02 (Biogas)	AP-42 Table 1.4-1, Adjusted for biogas	CO	49	lb CO/10 ⁶ scf			500,000	scf/day	1.0	8,760	0.00050	4.5	
⁷² WB-02 (Diesel Fuel)	AP-42 Table 1.3-1	CO	5.0	lb CO/10 ³ gal			233.5	gal/hr	1.2	8,760	0.00050	5.1	
⁷⁰ WB-03 (Natural Gas)		CO	84	lb CO/10 ⁶ scf	0.082	lb CO/106btu	14.3	10 ⁶ btu/hr	1.2	8,760	0.00050	5.2	5.2
	AP-42 Table 1.4-1, Converted to hourly factor	CO	0.74	lb CO/hr					0.74	8,760	0.00050	3.2	3.2
	AP-42 Table 1.3-1, Converted to hourly factor	CO	0.31	lb CO/hr					0.31	8,760	0.00050	1.4	
	AP-42 Table 1.4-1, Converted to monthly factor	CO	421	lb CO/mo					0.58	8,760	0.00050	2.5	2.5
	No Emission Factor - 2008 Source Test												
· 1 8,													
		СО	2.8	lb CO/hr					2.8	500	0.00050	0.71	0.71
-0		СО	0.53	lb CO/hr					0.53	500	0.00050	0.13	0.13
	No Emission Factor - No reported CO from WB-08												
⁸⁰ WB-09 (Waste Biogas Flare)		СО	222	lb CO/10 ⁶ scf			500,000	scf/day	4.6	8,760	0.00050	20	20
	No Biogas Venting - No reported CO in biogas												
	No Emission Factor - No reported CO in wastewater												
⁷⁰ WB-11 (Room Heating Units)		СО	84	lb CO/10 ⁶ scf	0.082	lb CO/10 ⁶ btu	24.0	10 ⁶ btu/hr	2.0	8,760	0.00050	8.7	8.7
WB II (Room Heating Onits)	2									· ·		81	64
69 The CO PTE column is designed to ca	apture the worst-case PTE scenario for each emission unit and fuel (or	operatin	g) configu	ration. These wor	rst-case sce	narios are the	n summed, i	n this case 64 to	ns CO/yr.				
70 Small Boilers < 100 10 ⁶ btu/hr, Low N	ÍOx	•											
	Ox: 84 lb CO/10 ⁶ scf x [(600 10 ⁶ btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ btu	u/10 ⁶ scf f	for natural	gas)] = 49.4 lb	CO/10 ⁶ scf.	The tons/yr	calculation i	s limited by avai	lable biogas.				
72 Directly from AP-42 Table 1.3-1, <10													
	all Boilers < 100 10 ⁶ btu/hr, Low NOx, Converted to hourly factor. 84						lb CO/hr						
	0 MM Btu/hr, Distillate oil, Converted to hourly factor, 5 lb $CO/10^3$ g		-		1 = 0.310	lb CO/hr							
 75 Small Boilers < 100 10° btu/hr, Low N 76 No emissions of CO from the rendering 	IOx: $[84 \text{ lb } \text{CO}/10^6 \text{scf x } 7.0 \ 10^6 \text{btu/hr x } 10^6 \text{scf}/1,020 \ 10^6 \text{btu x } 8,760 \text{ h}$	r/yr]/12	mo = 421	b CO/mo									
	pllows: $0.00668 \text{ lb CO/hp-hr} \times 423 \text{ hp} = 2.83 \text{ lb CO/hr}$												
	bllows: $0.00668 \text{ lb CO/hp-hr} \times 425 \text{ hp} = 2.65 \text{ lb CO/hr}$												
	issions from the four cooling towers, no CO in the biogas and no CO α	emission	s from the	plant's wastewate	er.								
	bllows: $0.37 \text{ lb CO}/10^6 \text{btu} \times 600 \ 10^6 \text{btu}/10^6 \text{scf} = 222 \ \text{lb CO}/10^6 \text{scf}$			-									
	m the plant will be significantly less than 64 tons/yr under normal pla	nt operat	ing conditi	ons.									

CO Calculations

						ed Value &			Emission					
Source 83	Emission Factor Reference	NO.	EF	Units		Inits	Capacity	Units	Rate (lb/hr)	hr/yr	tons/lb	tons/yr	NO _x PT	
83 WB-01 (Natural Gas		· · · x	50	lb NO _x /10 ⁶ scf	0.049	lb NO _x /10 ⁶ btu	32.7	10 ⁶ btu/hr	1.6	8,760	0.00050		•••	
⁸⁵ WB-01 (Diesel Fuel		NO _x	20	lb NO _x /10 ³ gal			233.5	gal/hr	4.7	8,760	0.00050	20	20	
83WB-02 (Natural Gas		NO _x	50	lb NO _x /10 ⁶ scf	0.049	lb NO _x /10 ⁶ btu	32.7	10 ⁶ btu/hr	1.6	8,760	0.00050	7		
	AP-42 Table 1.4-1	NO _x	29	lb NO _x /10 ⁶ scf			500,000	scf/day	0.6	8,760	0.00050	2.7		
⁸⁵ WB-02 (Diesel Fuel		NO _x	20	lb NO _x /10 ³ gal			233.5	gal/hr	4.7	8,760	0.00050	20	20	
83 WB-03 (Natural Gas		NO _x	50	lb NO _x /10 ⁶ scf	0.049	lb NO _x /10 ⁶ btu	14.3	10 ⁶ btu/hr	0.7	8,760	0.00050	3.1	3.	
86 WB-04 (Natural Gas	AP-42 Table 1.4-1, Converted to an hourly factor	NO_x	0.44	lb NO _x /hr					0.44	8,760	0.00050	1.9		
⁸⁷ WB-04 (Diesel Fuel	AP-42 Table 1.3-1, Converted to an hourly factor	NO _x	1.2	lb NO _x /hr					1.2	8,760	0.00050	5.4	5.	
88 WB-05 (Natural Gas	AP-42 Table 1.4-1, Converted to a monthly factor	NO _x	250	lb NO _x /mo					0.34	8,760	0.00050	1.5	1.	
	No Emission Factor - 2008 Source Test													
	No Emission Factor - 2008 Source Test													
		NO _x	13	lb NO _x /hr					13	500	0.00050	3.28	3.	
		NOx	2.5	lb NO _x /hr					2.5	500	0.00050	0.62	0.0	
		NO _x	41	lb NO _x /10 ⁶ scf			500,000	scf/day	0.85	8,760	0.00050	3.7	3.	
		NOx	100	lb NO _x /10 ⁶ scf	0.098	lb NO _x /10 ⁶ btu	24.0	10 ⁶ btu/hr	2.4	8,760	0.00050	10	1	
99 WB-07 (Large Generator) AP-42 Table 3.3-1 NO2 1.3 b N0/hr Image: Mode Marco Marc														
poilers $< 100 \ 10^6$ btu/hr, Distillate oi ne emission factor is calculated as f ne emission factor is calculated as f ne emission factor is calculated as f o emissions of NO _x from the renderin	I fired follows: 50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 9.0 10 ⁶ btu/hr = 0.4 follows: 20 lb NQ/10 ³ gal x 10 ³ gal/1,000 gal x 62 gal/hr = 1.24 lb/hr follows: [50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 7.0 10 ⁶ btu/hr x 8, ng scrubber based on the 2008 source test	441 lb/hr			atural gas)]	= 29.4 Ib N			alation is limit	ted by av	vailable bio	ogas.		
illers < 100 10^{6} btu/hr, Distillate oi e emission factor is calculated as f e emission factor is calculated as f e emission factor is calculated as f o emissions of NO _x from the renderir e emission factor is calculated as f	I fired follows: 50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 9.0 10 ⁶ btu/hr = 0.4 follows: 20 lb NQ/10 ³ gal x 10 ³ gal/1,000 gal x 62 gal/hr = 1.24 lb/hr follows: [50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 7.0 10 ⁶ btu/hr x 8,	441 lb/hr			atural gas)]	= 29.4 lb N			ulation is limit	ted by av	vailable bio	ogas.		
illers < 100 10^{6} btu/hr, Distillate oi e emission factor is calculated as f e emission factor is calculated as f e emission factor is calculated as f o emissions of NO _x from the renderir e emission factor is calculated as f e emission factor is calculated as f	I fired follows: 50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 9.0 10 ⁶ btu/hr = 0.4 follows: 20 lb NQ/10 ³ gal x 10 ³ gal/1,000 gal x 62 gal/hr = 1.24 lb/hr follows: [50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 7.0 10 ⁶ btu/hr x 8, ng scrubber based on the 2008 source test follows: 0.031 lb NQ/hp-hr x 423 hp = 13.1 lb NO _x /hr	441 lb/hr .760 hr/yr]/12mo/y	r = 250 lb/mo	atural gas)]	= 29.4 lb M			ulation is limit	ted by av	vailable bio	ogas.		
pilers < 100 10^{6} btu/hr, Distillate oi e emission factor is calculated as f e emission factor is calculated as f e emission factor is calculated as f o emissions of NO _x from the renderin e emission factor is calculated as f e permittee has reported no NO _x en	I fired follows: 50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 9.0 10 ⁶ btu/hr = 0.4 follows: 20 lb NQ/10 ³ gal x 10 ³ gal/1,000 gal x 62 gal/hr = 1.24 lb/hr follows: [50 lb NQ/10 ⁶ scf x 10 ⁶ scf/1,020 10 ⁶ btu x 7.0 10 ⁶ btu/hr x 8, ng scrubber based on the 2008 source test follows: 0.031 lb NQ/hp-hr x 423 hp = 13.1 lb NO _x /hr follows: 0.031 lb NQ/hp-hr x 80 hp = 2.48 lb NO _x /hr	441 lb/hr 760 hr/yr]/12mo/y	r = 250 lb/mo	atural gas)]	= 29.4 lb N			alation is limit	ted by av	vailable bio	ogas.		

NO_{x} Calculations

Source	Emission Factor Reference		EF	Units	Converted Value & Units	Capacity	Units	Emission Rate (lb/hr)	hr/yr	tons/lb	tons/yr	VOC PTE
WB-01 (Natural Gas)	AP-42 Table 1.4-2	VOC	5.5	lb VOC/10 ⁶ scf	0.0054 Ib VOC/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.18	8,760	0.00050	0.77	0.77
97 WB-01 (Diesel Fuel)	AP-42 Table 1.3-3, NMTOC	VOC	0.34	lb VOC/10 ³ gal		233.5	gal/hr	0.079	8,760	0.00050	0.35	
WB-02 (Natural Gas)		VOC	5.5	lb VOC/10 ⁶ scf	0.0054 Ib VOC/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.18	8,760	0.00050	0.77	0.77
⁹⁶ WB-02 (Biogas)	AP-42 Table 1.4-2, Adjusted for biogas	VOC	3.2	lb VOC/10 ⁶ scf		500,000	scf/day	0.068	8,760	0.00050	0.30	
97 WB-02 (Diesel Fuel)	AP-42 Table 1.3-3, NMTOC	VOC	0.34	lb VOC/10 ³ gal		233.5	gal/hr	0.079	8,760	0.00050	0.35	
WB-03 (Natural Gas)		VOC	5.5	lb VOC/10 ⁶ scf	0.0054 lb VOC/106btu	14.3	10 ⁶ btu/hr	0.077	8,760	0.00050	0.34	0.34
98 WB-04 (Natural Gas)	No emission factor - VOC accounted for in WB-06											
98 WB-04 (Diesel Fuel)	No emission factor - VOC accounted for in WB-06											
98 WB-05 (Natural Gas)	No emission factor - VOC accounted for in WB-06											
	and Rendering Plant is Operating; 2008 Source Test	VOC	0.058	lb VOC/hr				0.058	8,760	0.00050	0.25	
100 WB-06 (Not Operating)	and Rendering Plant is Operating; 2008 Source Test	VOC	1.2	lb VOC/hr				1.2	8,760	0.00050	5.1	5.1
	AP-42 Table 3.3-1, Diesel, Exhaust plus Crankcase	VOC	1.1	lb VOC/hr				1.1	500	0.00050	0.27	0.27
¹⁰² WB-07 (Small Generator)	AP-42 Table 3.3-1, Diesel, Exhaust plus Crankcase	VOC	0.20	lb VOC/hr				0.20	500	0.00050	0.050	0.050
¹⁰³ WB-08 (Four Cooling Towers)	No Emission Factor - No reported VOC from WB-08											
	AP-42 Table 1.4-2, Adjusted for biogas	VOC	3.2	lb VOC/10 ⁶ scf		500,000	scf/day	0.068	8,760	0.00050	0.30	0.30
¹⁰³ WB-09 (Biogas Venting)	No Biogas Venting - No reported VOC in biogas											
¹⁰⁴ WB-10 (Wastewater System)	Based on 2006 source test	VOC	155	lb VOC/mo		67,000	gal/hr	0.21	8,760	0.00050	0.93	0.93
WB-11 (Room Heating Units)		VOC	5.5	lb VOC/10 ⁶ scf	0.0054 lb VOC/106btu	24.0	10 ⁶ btu/hr	0.13	8,760	0.00050	0.57	0.57
											105	9.1
he VOC PTE column is designed to	capture the worst-case PTE scenario for each emission unit and	d fuel (or oper	ating) con	figuration. Thes	e worst-case scenarios ar	e then summ	ned, in this case	9.1 tons VOC	/yr.			
he emission factor is calculated as for	bllows: 5.5 lb VOC/10 $scf x [(600 10^6 btu/10^6 scf for biogas)/(10^6 scf for biogas)/($	1,020 10 ⁶ btu/1	0 ⁶ scf for 1	natural gas)] =	3.24 lb VOC/10 ⁶ scf. The	e tons/yr calc	culation is limite	ed by available	biogas.			
	ombustors, Distillate oil fired: 0.34 NMTOC lb/10gal. Assum	1		U								
	J emissions are routed to the rendering scrubber, and during the combusting natural gas. Therefore, blood dryer and rendering r							nbusts only na	tural gas	s). Also, V	OC emissio	ons when
incusting dieser die less didit when	comousting matural gas. Therefore, blood arger and fendering i			sinissions are de	countrol for in rendering	serabber em						

VOC Calculations

100 VOC (THC propane), Assume rendering scrubber 95% efficient for VOC, 0.058 lb VOC/hr (Highest value measured during 2008 source test) x 100/5 = 1.16 lb VOC/hr

101 The emission factor is calculated as follows: (0.00247 + 0.0000441) lb VOC/hp-hr x 423 hp = 1.06 lb VOC/hr

102 The emission factor is calculated as follows: (0.00247 + 0.0000441) lb VOC/hp-hr x 80 hp = 0.201 lb VOC/hr

103 The permittee has reported no VOC emissions from the four cooling towers and no reported VOC in the biogas.

104 The emission factor is calculated as follows: $0.38 \text{ ug/ml VOC} \times (0.00834 \text{ lb/l} \hat{d} \text{gal})/(\text{ug/ml}) \times 67,000 \text{ gal/hr} \times 10^3 \text{gal/},000 \text{ gal} \times 8,760 \text{ hr/} 12 \text{ mo} = 155 \text{ lb VOC/mo}$

105 It is anticipated that VOC emissions from the plant will be significantly less than 9.1 tons/yr under normal plant operating conditions.

Hazardous Air Pollutant Summary Calculations

~					Convertee				Emission				106
Source	Emission Factor Reference	HAD	EF	Units	Ur		Capacity	Units	Rate (lb/hr)	hr/yr	tons/lb	tons/yr	106 HAP PTE
(1 B 01 (1 atala 0 B)	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, HAP factor summation	HAP	1.9	lb HAP/10 ⁶ scf	0.0019	lb HAP/10 ⁶ btu	32.7	10 ⁶ btu/hr	0.061	8,760	0.00050	0.27	0.27
	AP-42 Table 1.3.8 and Table 1.3-10, HAP factor summation	HAP	0.058	lb HAP/10 ³ gal	0.0040		233.5	gal/hr	0.014	8,760	0.00050	0.059	
107 WB-02 (Natural Gas)	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, HAP factor summation	HAP	1.9	lb HAP/106scf	0.0019	lb HAP/106btu	32.7	10 ⁶ btu/hr	0.061	8,760	0.00050	0.27	0.27
= == (===g==)	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, Adjusted for biogas	HAP	1.1	lb HAP/106scf			500,000	scf/day	0.023	8,760	0.00050	0.101	
	AP-42 Table 1.3.8 and Table 1.3-10, HAP factor summation	HAP	0.058	lb HAP/10 ³ gal			233.5	gal/hr	0.014	8,760	0.00050	0.059	
(1 B 05 (Futurul Ous)	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, HAP factor summation	HAP	1.9	lb HAP/10 ⁶ scf	0.0019	lb HAP/10 ⁶ btu	14.3	10 ⁶ btu/hr	0.026	8,760	0.00050	0.12	0.12
(The Off (Tuttaria Gas)	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, Converted to hourly factor	HAP	0.017	lb HAP/hr					0.017	8,760	0.00050	0.073	0.073
	AP-42 Table 1.3.8 and Table 1.3-10, Converted to hourly factor	HAP	0.0036	lb HAP/hr					0.0036	8,760	0.00050	0.016	
	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, Converted to monthly factor	HAP	9.5	lb HAP/mo					0.013	8,760	0.00050	0.057	0.057
	and Rendering Plant is Operating; 2008 Source Test	HAP	1.2	lb HAP/hr					1.2	8,760	0.00050	5.5	
¹¹⁴ WB-06 (Not Operating)	and Rendering Plant Operating; 2008 Source Test, 75% efficiency	HAP	5.0	lb HAP/hr					5.0	8,760	0.00050	22	22
¹¹⁵ WB-07 (Large Generator)	Based on AP-42 Table 3.3-2, HAP factor summation	HAP	0.033	lb HAP/hr					0.033	500	0.00050	0.0082	0.0082
¹¹⁶ WB-07 (Small Generator)	Based on AP-42 Table 3.3-2, HAP factor summation	HAP	0.0018	lb HAP/hr					0.0018	500	0.00050	0.00045	0.00045
¹¹⁷ WB-08 (Four Cooling Towers)	Based on reported material balance	HAP	23	lb HAP/mo					0.032	8,760	0.00050	0.14	
	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, Adjusted for biogas	HAP	1.1	lb HAP/10 ⁶ scf			500,000	scf/day	0.023	8,760	0.00050	0.10	0.10
	HAP emissions accounted for in WB-10; No Biogas Venting												
	WB-10 factor based on 2006 source test	HAP	335.80	lb HAP/mo					0.46000	8,760	0.00050	2.0148	2.0
105	AP-42 Tables 1.4-2, 1.4-3 and 1.4-4, HAP factor summation	HAP	1.9	lb HAP/10 ⁶ scf	0.0019	lb HAP/10 ⁶ btu	24.0	106btu/hr	0.044	8,760	0.00050	0.19	0.19
· · · ·	capture the worst-case PTE scenario for each emission unit and fue tors specifc to the plant. See "HAPfact" worksheet that displays ar		0.	5		scenarios ar	re then summ	ned, in this case	25 tons HAP/	yr.		120	25.0
108 The emission factor is calculated as for	bllows: $1.89 \text{ lb HAP}/10^6 \text{scf x} [(600 \ 10^6 \text{btu}/10^6 \text{scf for biogas})/(1,0)]$	20 10 ⁶ b	tu/10 ⁶ scf f	or natural gas)] =	= 1.15 lb H.	AP/10 ⁶ scf.	Гhe tons/yr c	alculation is lim	ited by availa	ble biog	as.		
	ctors specifc to the plant. See "HAPfact" worksheet that displays ar												
	al gas factor converted to an hourly factor as follows: 1.89 lb HAP/						AP/hr						
	factor converted to an hourly factor as follows: 0.058 lb HAP/10 ³ g al gas factor converted to a monthly factor as follows: [1.89 lb HAI			e e			/12	0.47 1 11 10 0/					
	g the 2008 source test. See "HAPfact" worksheet that displays and						/12 mo/yr =	9.47 ID HAP/III)				
-	I non-fugitive HAP PTE because without a permit there would be n			°			intain the rer	dering scrubber	, pretreatment	t spray to	ower, and/o	or barometri	c process
value is highly dependent on the HAP from the controlled HAP PTE value) v unknown in the absence of additional limit of 24 tons HAP/yr is necessary in example, if the rendering scrubber is c HAP/hr x (8,760 hr/yr x 0.10)]/2,00	IAP PTE for the entire plant is 25 tons HAP/yr, most of which (22 th efficiency of the rendering scrubber, which is unknown. For exam would be approximately 118 tons HAP/yr. At 50% scrubber efficien source testing, Region 10 has assumed that HAP PTE for the entire in the permit, and further concludes that the permit must require pro operating 90% of the time over the course of an entire year when th 10 lb/ton = 11.0 tonsHAP}. Furthermore, if the rendering scrubber on that the permit must set a standard regarding scrubber operating	ple, the c ncy the r plant ex per oper e plant is is opera	calculated 2 everse-calc acceeds 25 tr ation of the s also opera- ting most of	25 tons HAP/yr v culated PM PTE ons HAP/yr, ever e rendering scrub ating, the actual 1 of the time, the v	value assume would be ap in though a s ober, pretreat HAP emission ariability in	es an efficier proximately pecific value ment spray ons would be HAP emissio	14 tons HA 14 tons HA e can not be tower and ba e 11.0 tons { ons due to th	At 95% scrubbe: P/yr. Because th determined. The rometric proces [1.32 lb HAP/hr e scrubber HAP	r efficiency th e HAP scrubb refore, Region s cyclones to o x (8,760 hr/ efficiency be	e reverse per effici- n 10 has ensure th yr x 0.9 ing unkr	e-calculate ency is unl concluded his HAP lir 00]/2,000 1 hown is les	d HAP PTE cnown, and that a HAP nit is not ex lb/ton + [1 s important	derived will remain emission ceeded. For 3.2 lb
115 See "HAPfact" worksheet that display	s and sums all relevant large emergency generator HAP factors.												
116 See "HAPfact" worksheet that display	s and sums all relevant small emergency generator HAP factors.												
needed.	by the Permittee is chlorine, $280 \text{ lb/yr x yr/12 mo} = 23.3 \text{ lb/mo.}$					0			nittee flexibili	ty in cha	nging bioc	ide formula	tions as
	assumed to be emitted from the wastewater prior to entering the ana		-			in WB-10 no	ot in the biog	as					
120 It is anticipated that total HAP emission under the permit becasue the permittee	g 2006 source test. See "HAPfact" worksheet that displays and sum ons will be significantly less than 25 tons/yr under normal plant ope e is required to operate the rendering scrubber at all times, to the ex lation of actual HAP emissions to ensure the 24 tons/yr total HAP e	erating co tent prac	onditions. " ticable. Th	The predicted tot the permit does re	tal HAP of 2								
Non Title V Operating Permit No. R10NT5026	00												Page A-11

H₂S and RSC Calculations

Source	Emission Factor Reference		EF	Units		d Value & nits	Consite	Units	Emission Boto (lb/br)	har far	tons/lb	4	H2S & I PTE
			EF	Units	U	nits	Capacity	Units	Rate (lb/hr)	hr/yr	tons/1b	tons/yr	PII
	No reported H ₂ S or RSC emissions from WB-01												-
	No reported H ₂ S or RSC emissions from WB-02												
120 WB-03 (Natural Gas)	No reported H ₂ S or RSC emissions from WB-03												
¹²⁰ WB-02 (Biogas)	No reported H ₂ S or RSC emissions from WB-01												
¹²⁰ WB-01 (Diesel Fuel)	No reported H ₂ S or RSC emissions from WB-01												
¹²⁰ WB-02 (Diesel Fuel)	No reported H ₂ S or RSC emissions from WB-02												
120 WB-04 (Natural Gas)	No reported H ₂ S or RSC emissions from WB-04												
120 WB-04 (Diesel Fuel)	No reported H ₂ S or RSC emissions from WB-04												
120 WB-05 (Natural Gas)	No reported H ₂ S or RSC emissions from WB-05												
¹²¹ WB-06 (Operating)	and Rendering Plant is Operating; 2008 Source Test	H ₂ S, RSC	1.04E-01	lb/hr			70,000	ft ³ /min	0.10	8,760	0.00050	0.45	
	and Rendering Plant Operating; 2008 Source Test, 95% efficiency	H ₂ S, RSC	2.08E+00	lb/hr			70,000	ft ³ /min	2.1	8,760	0.00050	9.1	9.
	No reported H ₂ S or RSC emissions from WB-07												
	No reported H ₂ S or RSC emissions from WB-07												
¹²⁰ WB-08 (Four Cooling Towers)	No reported H ₂ S or RSC emissions from WB-08												
	No reported H ₂ S or RSC emissions from WB-09												
WB-09 (Biogas Venting)	H ₂ S and RSC emissions accounted for in WB-10												
	WB-10 factors based on 2006 source test	H ₂ S, RSC	1.97E+02	lb/mo			67,000	gal/hr	0.270	8,760	0.00050	1.2	1.
									-				1
	Hydrogen Sulfide	H ₂ S, RSC	0	ppbv	34	0	ug/m ³	0.00E+00	lb/hr				
WB-06	Carbon Disulfide	H ₂ S, RSC	47	ppbv	76	146	ug/m ³	3.83E-02	lb/hr				
H ₂ S & RSC data from 2008	Diethyl Disulfide	H ₂ S, RSC	37	ppbv	122	185	ug/m ³	4.84E-02	lb/hr				
source test	Methyl Mercaptan	H ₂ S, RSC	0	ppbv	48	0	ug/m ³	0.00E+00	lb/hr				
	sec-Butyl Mercaptan	H ₂ S, RSC	14	ppbv	90	52	ug/m ³	1.35E-02	lb/hr				
	Unidentified S	H ₂ S, RSC	10	ppbv	34	14	ug/m ³	3.64E-03	lb/hr				
								1.04E-01		-			
WB-10	Hydrogen Sulfide	H ₂ S, RSC	4.0E-01	ug/ml				1.6E+02	lb/mo				
H ₂ S & RSC data from 2006	Carbon Disulfide	H ₂ S, RSC	2.8E-03	ug/ml				1.1E+00	lb/mo				
source test	Methyl Mercaptan	H ₂ S, RSC	8.5E-02	ug/ml				3.5E+01	lb/mo				
								1.97E+02					

121 Summation of all detected HAP from the rendering scrubber during the 2008 source test

122 Assume the rendering scrubber is 95% efficient removing HS and RSC, $1.04E-01 \times 100/5 = 2.08E+00$ lb/hr

123 Summation of all detected HAP from wastewater during the 2006 source test

			1		1			1			1							WB-11
Hannahara	WB-01	WB-02	WB-03				WB-04		WB-05	WB-06	Scrubber	Large	Small	WB-08	Waste	WB-09	WB-10	Room
Hazardous	Natural	Natural	Natural	WB-02	WB-01	WB-02	Natural	WB-04	Natural	Scrubber	Not	Emerg	Emerg	Cooling	Biogas	Biogas	Waste-	Heating
Air Pollutants	Gas	Gas	Gas	Biogas	Diesel	Diesel	Gas	Diesel	Gas	1 0	Operating	Gen	Gen	Towers	Flare	Assume No	water	Units
11 1 1	lb/106scf	lb/106scf	lb/106scf	lb/106scf	lb/10 ³ gal	lb/10 ³ gal	lb/hr	lb/hr	lb/mo	lb/hr	lb/hr	lb/hr	lb/hr	lb/mo	lb/106scf	Venting	lb/mo	lb/10 ⁶ scf
Acetaldehyde		-					-					6.51E-03	3.57E-04				2.45E+02	
Acrolein	2.005.04	2.005.04	2.005.04	1.105.04	5 405 04	5 405 04	1.700.00	2.415.05	1.005.02			7.86E-04	4.31E-05		1 105 04			2.005.04
Arsenic			2.00E-04		5.48E-04	5.48E-04		3.41E-05		0.775.00	1.505.01	-	1.255.01		1.18E-04		1.005.01	2.00E-04
Benzene	2.10E-03	2.10E-03		1.24E-03	4.445.04	4.445.04	1.85E-05		1.05E-02	3.75E-02	1.50E-01	7.92E-03	4.35E-04		1.24E-03		1.80E+01	2.10E-03
Beryllium	1.20E-05	1.20E-05	1.20E-05	7.06E-06	4.11E-04	4.11E-04	1.06E-07	2.54E-05	6.01E-05						7.06E-06			1.20E-05
Butadiene, 1,3-										2.60E-03	1.00E-02	3.32E-04	1.82E-05					
Cadmium	1.10E-03	1.10E-03	1.10E-03	6.47E-04	4.11E-04	4.11E-04	9.71E-06	2.54E-05	5.51E-03						6.47E-04			1.10E-03
Carbon Disulfide										3.96E-02	1.58E-01						1.10E+00	
Chlorine														2.33E+01				
Chloroform										0.00E+00	0.00E+00							
Chromium	1.40E-03	1.40E-03	1.40E-03	8.24E-04	4.11E-04	4.11E-04	1.24E-05	2.54E-05	7.01E-03						8.24E-04			1.40E-03
Chromium VI	7.00E-05	7.00E-05	7.00E-05	4.12E-05	2.06E-05	2.06E-05	6.18E-07	1.30E-06	3.51E-04						4.12E-05			7.00E-05
Cobalt	8.40E-05	8.40E-05		4.94E-05			7.41E-07		4.21E-04						4.94E-05			8.40E-05
Dichlorobenzene	1.20E-03	1.20E-03	1.20E-03	7.06E-04			1.06E-05		6.01E-03						7.06E-04			1.20E-03
Dichloromethane										0.00E+00	0.00E+00						9.50E+00	
Ethylbenzene										9.10E-02	3.64E-01							
Fluoranthene	3.00E-06	3.00E-06	3.00E-06	1.76E-06			2.65E-08		1.50E-05						1.76E-06			3.00E-06
Fluorene (POM)	2.80E-06	2.80E-06	2.80E-06	1.65E-06			2.47E-08		1.40E-05						1.65E-06			2.80E-06
Formaldehyde	7.50E-02	7.50E-02	7.50E-02	4.41E-02	4.80E-02	4.80E-02	6.62E-04	2.98E-03	3.76E-01			1.00E-02	5.50E-04		4.41E-02			7.50E-02
Hexane	1.80E+00	1.80E+00	1.80E+00	1.06E+00			1.59E-02		9.02E+00	5.34E-03	2.10E-02				1.06E+00		5.30E+00	1.80E+00
Lead	5.00E-04	5.00E-04	5.00E-04	2.94E-04	1.23E-03	1.23E-03	4.41E-06	7.44E-05	2.50E-03						2.94E-04			5.00E-04
Manganese	3.80E-04	3.80E-04	3.80E-04	2.24E-04	8.22E-04	8.22E-04	3.35E-06	5.08E-05	1.90E-03						2.24E-04			3.80E-04
Mercury	2.60E-04	2.60E-04	2.60E-04	1.53E-04	4.11E-04	4.11E-04	2.29E-06	2.54E-05	1.30E-03						1.53E-04			2.60E-04
Methanol										6.48E-02	2.59E-01						4.90E+00	
Naphthalene	6.10E-04	6.10E-04	6.10E-04	3.59E-04			5.38E-06		3.06E-03						3.59E-04			6.10E-04
Naphthalene, 2-Methyl	2.40E-05	2.40E-05	2.40E-05	1.41E-05			2.12E-07		1.20E-04						1.41E-05			2.40E-05
Nickel	2.10E-03	2.10E-03	2.10E-03	1.24E-03	4.11E-04	4.11E-04	1.85E-05	2.54E-05	1.05E-02						1.24E-03			2.10E-03
Pentanone, 4-Methy-2-										2.59E-01	1.04E+00							
Phenanthrene (POM)	1.70E-05	1.70E-05	1.70E-05	1.00E-05			1.50E-07		8.52E-05						1.00E-05			1.70E-05
POM (Less Indv POM)	2.08E-03	2.08E-03	2.08E-03	1.23E-03	3.30E-03	3.30E-03	1.83E-05	2.05E-04	1.04E-02			1.43E-03	7.83E-05		1.23E-03			2.08E-03
Pyrene (POM)	5.00E-06	5.00E-06	5.00E-06	2.94E-06			4.41E-08	İ	2.50E-05						2.94E-06			5.00E-06
Selenium	2.40E-05				2.06E-03	2.06E-03	2.12E-07	1.30E-04	1.20E-04						1.41E-05			2.40E-05
Styrene										0.00E+00	0.00E+00							
Toluene	3.40E-03	3.40E-03	3.40E-03	2.00E-03			3.00E-05		1.70E-02		1.10E+00	3.47E-03	1.91E-04		2.00E-03		3.50E+01	3.40E-03
Xylenes _{total}											1.90E+00		1.33E-04				1.70E+01	
2 Total	1.800 + 00	1 80E+00	1 80E+00	1.11E+00	5.80E-02	5 80E 02	1.67E.02	2 60E 02	$0.47E \pm 00$					2 33E+01	1.11E+00	0.00E±00		1.80E+00

1.89E+00 1.89E+00 1.11E+00 5.80E-02 5.80E-02 1.67E-02 3.60E-03 9.47E+00 1.25E+00 5.00E+00 3.29E-02 1.81E-03 2.33E+01 1.11E+00 0.00E+00 3.36E+02 1.89E+00

Hazardous Air Pollutant Calculations by Individual Constituent and Source

	WB-01	WB-02	WB-03				WB-04		WB-05	WB-06	WB-06	WB-07	WB-07	WB-08	WB-09	WB-09	WB-10	WB-11
Hazardous Air	Natural	Natural	Natural	WB-02	WB-01	WB-02	Natural	WB-04	Natural	Scrubber	Scrubber Not	Large	Small	Cooling	Waste Biogas	Biogas Venting	Waste-	Room Heating
Pollutants	Gas	Gas	Gas	Biogas	Diesel	Diesel	Gas	Diesel	Gas	Operating	Operating	Emerg Gen	Emerg Gen	Towers	Flare	Assume	water	Units
	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	None	tons/yr	tons/y									
Acetaldehyde												1.63E-03	8.93E-05				1.47E+00	
Acrolein												1.97E-04	1.08E-05					
Arsenic	2.80E-05	3.15E-05	1.23E-05	6.46E-06	5.61E-04	5.60E-04	7.73E-06	1.49E-04	6.01E-06						6.46E-06			2.06E-
Benzene	2.94E-04	3.31E-04	1.29E-04	6.79E-05			8.12E-05		6.31E-05	1.64E-01	6.57E-01	1.98E-03	1.09E-04		6.79E-05		1.08E-01	2.17E-
Beryllium	1.68E-06	1.89E-06	7.36E-07	3.87E-07	4.20E-04	4.20E-04	4.64E-07	1.11E-04	3.61E-07						3.87E-07			1.24E-
Butadiene, 1,3-										1.14E-02	4.38E-02	8.30E-05	4.55E-06					
Cadmium	1.54E-04	1.73E-04	6.75E-05	3.54E-05	4.20E-04	4.20E-04	4.25E-05	1.11E-04	3.31E-05						3.54E-05			1.13E-
Carbon Disulfide										1.73E-01	6.92E-01						6.60E-03	
Chlorine														0.00E+00				
Chloroform										0.00E+00	0.00E+00							
Chromium	1.96E-04	2.20E-04	8.59E-05	4.51E-05	4.20E-04	4.20E-04	5.41E-05	1.11E-04	4.21E-05						4.51E-05			1.44E-
Chromium VI	9.81E-06	1.10E-05	4.29E-06	2.26E-06	2.11E-05	2.11E-05	2.71E-06	5.70E-06	2.10E-06						2.26E-06			7.22E-
Cobalt	1.18E-05	1.32E-05	5.15E-06	2.70E-06			3.25E-06		2.52E-06						2.70E-06			8.66E-
Dichlorobenzene	1.68E-04	1.89E-04	7.36E-05	3.87E-05			4.64E-05		3.61E-05						3.87E-05			1.24E-
Dichloromethane										0.00E+00	0.00E+00						5.70E-02	
Ethylbenzene										3.99E-01	1.59E+00							
Fluoranthene	4.21E-07	4.72E-07	1.84E-07	9.64E-08			1.16E-07		9.02E-08						9.64E-08			3.09E-
Fluorene (POM)	3.93E-07	4.41E-07	1.72E-07	9.03E-08			1.08E-07		8.42E-08						9.03E-08			2.89E-
Formaldehyde	1.05E-02	1.18E-02	4.60E-03	2.41E-03	4.91E-02	4.91E-02	2.90E-03	1.30E-02	2.25E-03			2.50E-03	1.38E-04		2.41E-03			7.73E-
Hexane	2.52E-01	2.83E-01	1.10E-01	5.80E-02			6.96E-02		5.41E-02	2.34E-02	9.20E-02				5.80E-02		3.18E-02	1.86E-0
Lead	7.01E-05	7.87E-05	3.07E-05	1.61E-05	1.26E-03	1.26E-03	1.93E-05	3.26E-04	1.50E-05						1.61E-05			5.16E-
Manganese	5.33E-05	5.98E-05	2.33E-05	1.23E-05	8.41E-04	8.40E-04	1.47E-05	2.23E-04	1.14E-05						1.23E-05			3.92E-0
Mercury	3.65E-05	4.09E-05	1.60E-05	8.38E-06	4.20E-04	4.20E-04	1.00E-05	1.11E-04	7.82E-06						8.38E-06			2.68E-0
Methanol										2.84E-01	1.13E+00						2.94E-02	
Naphthalene	8.55E-05	9.60E-05	3.74E-05	1.97E-05			2.36E-05		1.83E-05						1.97E-05			6.29E-0
Naphthalene, 2-Methyl	3.36E-06	3.78E-06	1.47E-06	7.72E-07			9.28E-07		7.21E-07						7.72E-07			2.47E-
Nickel	2.94E-04	3.31E-04	1.29E-04	6.79E-05	4.20E-04	4.20E-04	8.12E-05	1.11E-04	6.31E-05						6.79E-05			2.17E-0
Pentanone, 4-Methy-2-										1.13E+00	4.56E+00							
Phenanthrene (POM)	2.38E-06	2.68E-06	1.04E-06	5.48E-07			6.57E-07		5.11E-07						5.48E-07			1.75E-0
POM (Less Indv POM)	2.91E-04	3.27E-04	1.27E-04	6.71E-05	3.38E-03	3.37E-03	8.02E-05	8.96E-04	6.24E-05			3.58E-04	1.96E-05		6.71E-05			2.14E-
Pyrene (POM)	7.01E-07	7.87E-07	3.07E-07	1.61E-07			1.93E-07		1.50E-07						1.61E-07			5.16E-
2 ()		3.78E-06	1.47E-06	7.72E-07	2.11E-03	2.11E-03	9.28E-07	5.70E-04	7.21E-07						7.72E-07			2.47E-0
Styrene										0.00E+00	0.00E+00				- /			
2	4.77E-04	5.35E-04	2.09E-04	1.10E-04			1.31E-04		1.02E-04		4.82E+00	8.68E-04	4.78E-05		1.10E-04		2.10E-01	3.51E-
Xylenes _{total}											8.32E+00		3.33E-05				1.02E-01	
	2.65E-01	2.98E-01	1.16E-01	6.10E-02	5,94E-02	5.93E-02	7.31E-02	1.58E-02	5.68E-02					0.00E+00	6.10E-02	0.00E+00	2.01E+00	1.95E-
		2.98E-01				2002 02	7.31E-02		5.68E-02	21.72.00		8.22E-03			6.10E-02		2.01E+00	
																	2.50E+01	
																	2.5012T01	

Page A-14

Natural Gas Emission Factor Calculations

C	Endering Ersten Defenser	Dellerter	EE	TT	
Source	Emission Factor Reference	Pollutant	EF	Units	Derivation and/or calculation of emission factor
WB-01, -02, -03, -04, -05, -11		PM	1.90	lb PM/10 ⁶ scf	Directly from AP-42 Table 1.4-2, PM (Filterable)
WB-01, -02, -03, -04, -05, -11		PM ₁₀	7.60	lb PM ₁₀ /10 ⁶ scf	Directly from AP-42 Table 1.4-2, PM (Total)
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-2 and Footnote d	SO ₂	1.50	lb SO ₂ /10 ⁶ scf	$(0.6 \text{ lb}/10^6 \text{ scf}) \times (5,000 \text{ grains}/10^6 \text{ scf})/(2,000 \text{ grains}/10^6 \text{ scf}) = 1.5 \text{ lb}/10^6 \text{ scf}$ (Assume maximum S in pipeline qulaity natural gas)
WB-04 (EF not in permit)	S max 5,000grains/10 ⁶ scf	SO ₂	0.0130	lb SO ₂ /hr	$(0.6 \text{ lb}/10^6 \text{scf})[(5,000 \text{grains}/10^6 \text{scf})/(2,000 \text{grains}/10^6 \text{scf})](10^6 \text{scf}/1,020 \ 10^6 \text{Btu}/\text{hr}) = 0.0132 \ \text{lb}/\text{hr}$
WB-05 (EF not in permit)	S max 5,000grains/10 ⁶ scf, 8760	SO ₂	7.52	lb SO ₂ /mo	(0.6 lb SO ₂ /10 ⁶ scf) x [(5,000gr/10 ⁶ scf)/(2,000gr/10 ⁶ scf)] x (10 ⁶ scf/1,020 10 ⁶ Btu) x (7.0 10 ⁶ Btu/hr) x (8,760 hr/12 mo) = 7.52 lb SO ₂ /mo
WB-01, -02, -03, -04, -05, -11		CO ₂ e	119,440	lb CO ₂ e/10 ⁶ scf	$[53.06 \text{ kg CO}_2/10^6 \text{btu} + (0.0001 \text{ x } 298) \text{ kg N}_20/10^6 \text{btu} + (0.001 \text{ x } 25) \text{ kg CH}_4/10^6 \text{btu}] \text{ x } (2.20462 \text{ lb/kg}) \text{ x } (1.020 10^6 \text{btu}/10^6 \text{sc}f) = 119,440 \text{ CO}_2\text{e}/10^6 \text{ sc}f = 119,440 CO$
WB-04 (EF not in permit)	40 CFR 98 Tbl C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	1,054	lb CO ₂ e/hr	$(119,440 \text{ lb } \text{CO}_2\text{e}/10^6\text{scf}) \times (9.0 \ 10^6\text{btu/hr}) \times (10^6\text{scf}/1,020 \ 10^6\text{btu}) = 1,054 \ \text{lb } \text{CO}_2\text{e/hr} \ [\text{WB-04 Capacity } 9.0 \ 10^6\text{btu/hr}]$
WB-05 (EF not in permit)	40 CFR 98 Tbl C-1 (CO ₂) and C-2 (CH ₄ , N ₂ O)	CO ₂ e	598,371	lb CO ₂ e/mo	$[119,440 \text{ lb } \text{CO}_2\text{e}/10^6 \text{scf } x 7.0 \ 10^6 \text{btu/hr } x \ 10^6 \text{scf}/1,020 \ 10^6 \text{btu } x \ 8,760 \ \text{hr/yr}]/12 \ \text{mo} = 598,371 \ \text{lb } \text{CO}_2\text{e}/\text{mo}$
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-1	со	84.0	lb CO/10 ⁶ scf	Directly from AP-42 Table 1.4-1, Small Boilers < 100 10 ⁶ Btu/hr, Low NOx
WB-04 (EF not in permit)	AP-42 Table 1.4-1, Converted to hourly factor	СО	0.741	lb CO/hr	84 lb CO/10 ⁶ scf x 9.0 10 ⁶ btu/hr x 10 ⁶ scf/1,020 10 ⁶ btu = 0.741 lb CO/10 ⁶ scf [WB-04 Capacity 9.0 10 ⁶ Btu/hr]
WB-05 (EF not in permit)	AP-42 Table 1.4-1, Converted to montly factor	СО	421	lb CO/mo	[84 lb CO/10 ⁶ scf x 7.0 10 ⁶ btu/hr x 10 ⁶ scf/1,020 10 ⁶ btu x 8,760 hr/yr]/12 mo = 421 lb CO/mo
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-1 (Low NOx, except WB-11)	NO _x	50	lb NO _x /10 ⁶ scf	Directly from AP-42 Table 1.4-3, <100 10 ⁶ btu/hr, Low NOx
WB-04 (EF not in permit)	AP-42 Table 1.4-1, Converted to an hourly factor	NO _x	0.441	lb NO _x /hr	50 lb $NO_x/10^6 scf x 10^6 scf/1,020 10^6 btu x 9.0 10^6 btu/hr = 0.441 lb/hr$
WB-05 (EF not in permit)	AP-42 Table 1.4-1, Converted to a monthly factor	NO _x	250	lb NO _x /mo	$[50 \text{ lb NO}_x/10^6 \text{scf} \times 10^6 \text{scf}/1,020 10^6 \text{btu} \times 7.0 10^6 \text{btu/hr} \times 8,760 \text{ hr/yr}]/12 \text{mo/yr} = 250 \text{ lb/mo}$
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-2	VOC	5.50	lb VOC/10 ⁶ scf	Directly from AP-42 Table 1.4-2
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-2, 1.4-3 and 1.4-4	HAP	1.89E+00	lb HAP/10 ⁶ scf	Summation of all natural gas HAP factors from AP-42 Tables 1.4-2, 1.4-3 and 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-2, 1.4-3 and 1.4-4	HAP	1.67E-02	lb HAP/hr	Summation of all natural gas HAP factors from AP-42 Tables 1.4-2, 1.4-3 and 1.4-4
WB-05 (EF not in permit)	AP-42 Table 1.4-2, 1.4-3 and 1.4-4	HAP	9.47E+00	lb HAP/mo	Summation of all natural gas HAP factors from AP-42 Tables 1.4-2, 1.4-3 and 1.4-4
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-38-2	Arsenic (As)	2.00E-04	lb As/10 ⁶ scf	Directly from AP-42 Table 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-38-2	Arsenic (As)	1.76E-06	lb As/hr	Converted to hourly factor. 0.00020 lb/106scf x 106scf/1,020 106btu x 9.0 106btu/hr = 0.00000176 lb Arsenic/hr
WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-38-2	Arsenic (As)	1.00E-03	lb As/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 71-43-2	Benzene	2.10E-03	lb Benzene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
WB-04 (EF not in permit)	AP-42 Table 1.4-3, 71-43-2	Benzene	1.85E-05	lb Benzene/hr	Converted to hourly factor
WB-05 (EF not in permit)	AP-42 Table 1.4-3, 71-43-2	Benzene	1.05E-02	lb Benzene/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-41-7	Beryllium (Be)	1.20E-05	lb Be/10 ⁶ scf	Directly from AP-42 Table 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-41-7	Beryllium (Be)	1.06E-07	lb Be/hr	Converted to hourly factor
WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-41-7	Beryllium (Be)	6.01E-05	lb Be/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-43-9	Cadmium (Cd)	1.10E-03	lb Cd/10 ⁶ scf	Directly from AP-42 Table 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-43-9	Cadmium (Cd)	9.71E-06	lb Cd/hr	Converted to hourly factor
WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-43-9	Cadmium (Cd)	5.51E-03	lb Cd/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-47-3	Chromium (Cr)	1.40E-03	lb Cr/10 ⁶ scf	Directly from AP-42 Table 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-47-3	Chromium (Cr)	1.24E-05	lb Cr/hr	Converted to hourly factor
WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-47-3	Chromium (Cr)	7.01E-03	lb Cr/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, Cr(VI) = 5% total Cr	Chromium VI (CrVI)	7.00E-05	lb CrVI/10 ⁶ scf	(0.0014 lb HAP/10 scf) x 0.05 = 0.000070 (7.0E-05), See CARB AB 2588 Guidance
WB-04 (EF not in permit)	AP-42 Table 1.4-4, Cr(VI) = 5% total Cr	Chromium VI (CrVI)	6.18E-07	lb CrVI/hr	(0.0014 lb HAP/10 scf) x 0.05 = 0.000070 (7.0E-05), See CARB AB 2588 Guidance
WB-05 (EF not in permit)	AP-42 Table 1.4-4, Cr(VI) = 5% total Cr	Chromium VI (CrVI)	3.51E-04	lb CrVI/mo	Converted to monthly factor
WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-48-4	Cobalt	8.40E-05	lb Cobalt/10 ⁶ scf	Directly from AP-42 Table 1.4-4
WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-48-4	Cobalt	7.41E-07	lb Cobalt/hr	Converted to hourly factor
WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-48-4	Cobalt	4.21E-04	lb Cobalt/mo	Converted to monthly factor

Natural Gas Emission Factor Calculations (continued)

Saunaa	Emission Factor Reference	Dollutout	EF	Tin:4a	Deviation and/on coloristion of amigging factor
Source 40 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 25321-22-6	Pollutant Dichlorobenzene	L.F 1.20E-03	Units lb Dichlorobenzene/10 ⁶ scf	Derivation and/or calculation of emission factor Directly from AP-42 Table 1.4-3
40 WB-01, -02, -03, -04, -03, -11 41 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 25321-22-6	Dichlorobenzene	1.20E-03	lb Dichlorobenzene/hr	Converted to hourly factor
42 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 25321-22-6	Dichlorobenzene	6.01E-03	lb Dichlorobenzene/mo	Converted to monthly factor
43 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 205-24-0	Fluoranthene	3.00E-06	lb Fluoranthene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
44 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 206-44-0 AP-42 Table 1.4-3, 206-44-0	Fluoranthene	2.65E-08	lb Fluoranthene/hr	Converted to hourly factor
45 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 206-44-0 AP-42 Table 1.4-3, 206-44-0	Fluoranthene	1.50E-05	lb Fluoranthene/mo	Converted to monthly factor
46 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 86-73-7	Fluorene	2.80E-06	lb Fluorene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
47 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 86-73-7	Fluorene	2.47E-08	lb Fluorene/hr	Converted to hourly factor
47 WB-04 (EF not in permit) 48 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 86-73-7 AP-42 Table 1.4-3, 86-73-7	Fluorene	1.40E-05	lb Fluorene/mo	Converted to monthly factor
49 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 50-00-0	Formaldehyde (HCOH)	7.50E-02		Directly from AP-42 Table 1.4-3
			6.62E-04	lb HCOH/10 ⁶ scf	
50 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 50-00-0	Formaldehyde (HCOH)		lb HCOH/hr	Converted to hourly factor
51 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 50-00-0	Formaldehyde (HCOH)	3.76E-01	lb HCOH/mo	Converted to monthly factor
52 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 110-54-3	Hexane	1.80E+00	lb Hexane/10 ⁶ scf	Directly from AP-42 Table 1.4-3
53 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 110-54-3	Hexane	1.59E-02	lb Hexane/hr	Converted to hourly factor
54 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 110-54-3	Hexane	9.02E+00	lb Hexane/mo	Converted to monthly factor
55 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-2	Lead (Pb)	5.00E-04	lb Pb/10 ⁶ scf	Directly from AP-42 Table 1.4-2
56 WB-04 (EF not in permit)	AP-42 Table 1.4-2	Lead (Pb)	4.41E-06	lb Pb/hr	Converted to hourly factor
57 WB-05 (EF not in permit)	AP-42 Table 1.4-2	Lead (Pb)	2.50E-03	lb Pb/mo	Converted to monthly factor
58 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7439-96-5	Manganese (Mn)	3.80E-04	lb Mn/10 ⁶ scf	Directly from AP-42 Table 1.4-4
59 WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7439-96-5	Manganese (Mn)	3.35E-06	lb Mn/hr	Converted to hourly factor
60 WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7439-96-5	Manganese (Mn)	1.90E-03	lb Mn/mo	Converted to monthly factor
61 WB-01, -02, -03, -04, -05, -11		Mercury (Hg)	2.60E-04	lb Hg/10 ⁶ scf	Directly from AP-42 Table 1.4-4
62 WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7439-97-6	Mercury (Hg)	2.29E-06	lb Hg/hr	Converted to hourly factor
63 WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7439-97-6	Mercury (Hg)	1.30E-03	lb Hg/mo	Converted to monthly factor
64 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 91-20-3	Naphthalene	6.10E-04	lb Naphthalene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
65 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 91-20-3	Naphthalene	5.38E-06	lb Naphthalene/hr	Converted to hourly factor
66 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 91-20-3	Naphthalene	3.06E-03	lb Naphthalene/mo	Converted to monthly factor
67 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 91-57-6	Naphthalene, 2-Methyl	2.40E-05	lb Naphthalene, 2-Methyl/10 ⁶ scf	Directly from AP-42 Table 1.4-3
68 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 91-57-6	Naphthalene, 2-Methyl	2.12E-07	lb Naphthalene, 2-Methyl/hr	Converted to hourly factor
69 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 91-57-6	Naphthalene, 2-Methyl	1.20E-04	lb Naphthalene, 2-Methyl/mo	Converted to monthly factor
70 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7440-02-0	Nickel (Ni)	2.10E-03	lb Ni/10 ⁶ scf	Directly from AP-42 Table 1.4-4
71 WB-04 (EF not in permit)	AP-42 Table 1.4-4, 7440-02-0	Nickel (Ni)	1.85E-05	lb Ni/hr	Converted to hourly factor
72 WB-05 (EF not in permit)	AP-42 Table 1.4-4, 7440-02-0	Nickel (Ni)	1.05E-02	lb Ni/mo	Converted to monthly factor
73 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 85-01-8	Phenanthrene	1.70E-05	lb Phenanthrene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
74 WB-04 (EF not in permit)	AP-42 Table 1.4-3, 85-01-8	Phenanthrene	1.50E-07	lb Phenanthrene/hr	Converted to hourly factor
75 WB-05 (EF not in permit)	AP-42 Table 1.4-3, 85-01-8	Phenanthrene	8.52E-05	lb Phenanthrene/mo	Converted to monthly factor
76 WB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, Sum of POM	POM (PAH)	2.10E-03	lb POM/10 ⁶ scf	Summation of individual polycyclic organic matter (POM) components from Table 1.4-3
77 WB-04 (EF not in permit)	AP-42 Table 1.4-3, Sum of POM	POM (PAH)	1.85E-05	lb POM/hr	Converted to hourly factor
78 WB-05 (EF not in permit)	AP-42 Table 1.4-3, Sum of POM	POM (PAH)	1.05E-02	lb POM/mo	Converted to monthly factor

Natural Gas Emission Factor Calculations (continued)

Γ						
	Source	Emission Factor Reference	Pollutant	EF	Units	Derivation and/or calculation of emission factor
79	VB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 129-00-0	Pyrene	5.00E-06	lb Pyrene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
80	VB-04 (EF not in permit)	AP-42 Table 1.4-3, 129-00-0	Pyrene	4.41E-08	lb Pyrene/hr	Converted to hourly factor
81	VB-05 (EF not in permit)	AP-42 Table 1.4-3, 129-00-0	Pyrene	2.50E-05	lb Pyrene/mo	Converted to monthly factor
82	VB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-4, 7782-49-2	Selenium (Se)	2.40E-05	lb Se/10 ⁶ scf	Directly from AP-42 Table 1.4-4
83	VB-04 (EF not in permit)	AP-42 Table 1.4-4, 7782-49-2	Selenium (Se)	2.12E-07	lb Se/hr	Converted to hourly factor
84	VB-05 (EF not in permit)	AP-42 Table 1.4-4, 7782-49-2	Selenium (Se)	1.20E-04	lb Se/mo	Converted to monthly factor
85	VB-01, -02, -03, -04, -05, -11	AP-42 Table 1.4-3, 108-88-3	Toluene	3.40E-03	lb Toluene/10 ⁶ scf	Directly from AP-42 Table 1.4-3
86	VB-04 (EF not in permit)	AP-42 Table 1.4-3, 108-88-3	Toluene	3.00E-05	lb Toluene/hr	Converted to hourly factor
87	VB-05 (EF not in permit)	AP-42 Table 1.4-3, 108-88-3	Toluene	1.70E-02	lb Toluene/mo	Converted to monthly factor

Biogas Emission Factor Calculations

Source	Emission Factor Reference	Pollutants	EF	Units	Derivation of emission factor
WB-02	AP-42 Table 1.4-2, Filterable, Adjusted for biogas	PM	1.10	lb PM/10 ⁶ scf	$1.9 \text{ lb PM}/10^6 \text{scf x } [(600 \ 10^6 \ \text{Btu}/10^6 \text{scf for biogas})/(1,020 \ 106 \ \text{Btu}/10^6 \text{scf for natural gas})] = 1.12 \ \text{lb PM}/10^6 \text{scf}$
WB-09	AP-42 Table 13.5-1 (Soot, heavily smoking flare)	PM, PM ₁₀	17.1	lb PM, PM ₁₀ /10 ⁶ scf	274 ug PM, $PM_{10}/L \ge L/0.0353147 \text{ ft}^3 \ge 0.0000000220462 \text{ lb/ug} \ge 1,000,000 \text{ scf/10}^6 \text{scf} = 17.1 \text{ lb PM}, PM_{10}/10^6 \text{scf}$
WB-02	AP-42 Table 1.4-2, Total, Adjusted for biogas	PM ₁₀	4.50	lb PM ₁₀ /10 ⁶ scf	7.6 lb $PM_{10}/10^6 \text{scf x} [(600\ 10^6\ \text{Btu}/10^6\ \text{scf for biogas})/(1,020\ 106\ \text{Btu}/10^6\ \text{scf for natural gas})] = 4.47 \text{ lb } PM_{10}/10^6 \text{scf}$
WB-02, -09	Permittee reported H ₂ S maximum is 500 ppmv	SO_2	83.5	lb SO ₂ /10 ⁶ scf	$(500 \text{ ppmv}) \times (34.06 \text{ lb } \text{H}_2\text{S}/385.1 \times 10^6 \text{ scf}) \times (1,000,000 \text{ scf}/10^6 \text{ scf}) \times (64.06 \text{ lb } \text{SO}_2/34.06 \text{ lb } \text{H}_2\text{S}) = 83.5 \text{ lb } \text{SO}_2/10^6 \text{ scf}$
WB-02, -09 (Flare)	40 CFR 98 Table C-1 (CO2) and C-2 (CH4, N2O)	CO ₂ e	70,259	lb CO ₂ e/10 ⁶ scf	$119,440 \text{ lb } \text{CO}_2\text{e}/10^6 \text{scf x } [(600 \ 10^6 \text{btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{btu}/10^6 \text{scf for natural gas})] = 70,259 \text{ lb } \text{CO}_2\text{e}/10^6 \text{scf}$
WB-09 (No Venting)	Assume biogas 40% CO2 and 60% CH4	CO ₂ e	667,478	lb GHG/10 ⁶ scf	$[(0.66 \text{ kg/m}^3 \text{ CH}_4 \text{ x } 25 \text{ x } 0.60) + (1.98 \text{ kg/m}^3 \text{ CO}_2 \text{ x } 0.40)] \text{ x } (2.20462 \text{ lb/kg}) \text{ x } (\text{m}^3/35.3147 \text{ ft}^3) \text{ x } (1.000,000 \text{ ft}^3/10^6 \text{ scf}) = 667,478 \text{ lb/10} \text{ lb/10} \text{ scf} = 667,478 \text{ lb/10} \text{ lb/10} \text{ scf} = 667,478 \text{ scf} = 667,478 \text{ scf} = 667,478 \text{ scf} = 667,478 $
WB-02	AP-42 Table 1.4-1, Adjusted for biogas	со	49.40	lb CO/10 ⁶ scf	84 lb CO/10 ⁶ scf x [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 49.4 lb CO/10 ⁶ scf
WB-09	AP-42 Table 13.5-1	со	222.00	lb CO/10 ⁶ scf	$0.37 \text{ lb CO}/10^6 \text{btu x } 600 10^6 \text{btu}/10^6 \text{scf} = 222 \text{ lb CO}/10^6 \text{scf}$
WB-02	AP-42 Table 1.4-1, Adjusted for biogas	NO _x	29.41	lb NO _x /10 ⁶ scf	$50 \text{ lb NO}_x/10^6 \text{scf x } [(600\ 10^6\ \text{Btu}/10^6 \text{scf for biogas})/(1,020\ 10^6\ \text{Btu}/10^6 \text{scf for natural gas})] = 29.41 \text{ lb NO}_x/10^6 \text{scf}$
WB-09	AP-42 Table 13.5-1	NO _x	40.80	lb NO _x /10 ⁶ scf	$0.068 \text{ lb NO}_x/10^6 \text{btu} \ge 600 \ 10^6 \text{btu}/10^6 \text{scf} = 40.8 \text{ lb CO}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-2, Adjusted for biogas	VOC	3.24	lb VOC/10 ⁶ scf	$5.5 \text{ lb VOC}/10^6 \text{scf x } [(600 \ 10^6 \ \text{Btu}/10^6 \ \text{scf for biogas})/(1,020 \ 10^6 \ \text{Btu}/10^6 \ \text{scf for natural gas})] = 3.24 \ \text{lb VOC}/10^6 \ \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, Adjusted for biogas	HAP	1.11E+00	lb HAP/10 ⁶ scf	$1.89 \text{ lb HAP}/10^6 \text{scf x } [(600 \ 10^6 \text{ Btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{ Btu}/10^6 \text{scf for natural gas})] = 1.11 \text{ lb HAP}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-4, 7440-38-2, Adjusted for biogas	Arsenic (As)	1.18E-04	lb As/10 ⁶ scf	$2.0\text{E-04 lb}/10^6 \text{scf x} [(600 10^6 \text{Btu}/10^6 \text{scf for biogas})/(1,020 10^6 \text{Btu}/10^6 \text{scf for natural gas})] = 1.18\text{E-04 lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 71-43-2, Adjusted for biogas	Benzene	1.24E-03	lb Benzene/10 ⁶ scf	$2.1E-03 \text{ lb}/10^{6} \text{scf x } [(600 \ 10^{6} \text{ Btu}/10^{6} \text{scf for biogas})/(1,020 \ 10^{6} \text{Btu}/10^{6} \text{scf for natural gas})] = 1.24E-03 \ \text{lb}/10^{6} \text{scf}$
WB-02, -09	AP-42 Table 1.4-4, 7440-41-7, Adjusted for biogas	Beryllium (Be)	7.06E-06	lb Be/10 ⁶ scf	$1.2E-05 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 7.06E-06 \text{ lb}/10 ⁶ scf
WB-02, -09	AP-42 Table 1.4-4, 7440-43-9, Adjusted for biogas	Cadmium (Cd)	6.47E-04	lb Cd/10 ⁶ scf	$1.1\text{E-03 lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 6.47\text{E-04 lb}/10^6 \text{scf}
WB-02, -09	AP-42 Table 1.4-4, 7440-47-3, Adjusted for biogas	Chromium (Cr)	8.24E-04	lb Cr/10 ⁶ scf	$1.4\text{E-03 lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $8.24\text{E-04 lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-4, Cr(VI) = 5% total Cr, Adjusted for biogas	Chromium VI (CrVI)	4.12E-05	lb CrVI/10 ⁶ scf	$7.0\text{E-05 lb}/10^6 \text{scf x } [(600\ 10^6\ \text{Btu}/10^6 \text{scf for biogas})/(1,020\ 10^6\ \text{Btu}/10^6 \text{scf for natural gas})] = 4.12\text{E-05 lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-4, 7440-48-4, Adjusted for biogas	Cobalt	4.94E-05	lb Cobalt/10 ⁶ scf	$8.4E-05 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $4.94E-05 \text{ lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 25321-22-6, Adjusted for biogas	Dichlorobenzene	7.06E-04	lb Dichlorobenzene/106scf	$1.2\text{E-03 lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 7.06\text{E-04 lb}/10^6 \text{scf}
WB-02, -09	AP-42 Table 1.4-3, 206-44-0, Adjusted for biogas	Fluoranthene	1.76E-06	lb Fluoranthene/10 ⁶ scf	$3.0\text{E}-06 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $1.76\text{E}-06 \text{ lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 86-73-7, Adjusted for biogas	Fluorene	1.65E-06	lb Fluorene/10 ⁶ scf	$2.8E-06 \text{ lb}/10^6 \text{scf x } [(600 \ 10^6 \text{ Btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{Btu}/10^6 \text{scf for natural gas})] = 1.65E-06 \ \text{lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 50-00-0, Adjusted for biogas	Formaldehyde (HCOH)	4.41E-02	lb HCOH/10 ⁶ scf	$7.5E-02 \ lb/10^{6} scf \ x \ [(600 \ 10^{6} \ Btu/10^{6} scf \ for \ biogas)/(1,020 \ 10^{6} \ Btu/10^{6} scf \ for \ natural \ gas)] = 4.41E-02 \ lb/10^{6} scf$
WB-02, -09	AP-42 Table 1.4-3, 110-54-3, Adjusted for biogas	Hexane	1.06E+00	lb Hexane/10 ⁶ scf	$1.8E-00 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $1.06E-00 \text{ lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-2, Adjusted for biogas	Lead (Pb)	2.94E-04	lb Pb/10 ⁶ scf	$5.0\text{E-04} \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 2.94\text{E-04} \text{ lb}/10^6 \text{scf}
WB-02, -09	AP-42 Table 1.4-4, 7439-96-5, Adjusted for biogas	Manganese (Mn)	2.24E-04	lb Mn/10 ⁶ scf	$3.8E-04 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 2.24E-04 \text{ lb}/10^6 \text{scf}
WB-02, -09	AP-42 Table 1.4-4, 7439-97-6, Adjusted for biogas	Mercury (Hg)	1.53E-04	lb Hg/10 ⁶ scf	$2.6\text{E-04 lb}/10^6\text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $1.53\text{E-04 lb}/10^6\text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 91-20-3, Adjusted for biogas	Naphthalene	3.59E-04	lb Naphthalene/10 ⁶ scf	$6.1E-04 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $3.59E-04 \text{ lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 91-57-6, Adjusted for biogas	Naphthalene, 2-Methyl	1.41E-05	lb Naphthalene, 2-Methyl/10 ⁶ scf	$2.4\text{E-05} \text{ lb}/10^6 \text{scf x} [(600\ 10^6\ \text{Btu}/10^6 \text{scf for biogas})/(1,020\ 10^6\ \text{Btu}/10^6 \text{scf for natural gas})] = 1.41\text{E-05}\ \text{lb}/10^6 \text{scf}$
WB-02, -09	AP42 Tbl 1.4-4, 7440-02-0, Adjusted for biogas	Nickel (Ni)	1.24E-03	lb Ni/10 ⁶ scf	$2.1E-03 \text{ lb}/10^6 \text{scf x } [(600 \ 10^6 \text{ Btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{Btu}/10^6 \text{scf for natural gas})] = 1.24E-03 \ \text{lb}/10^6 \text{scf}$
WB-02, -09	AP42 Tbl 1.4-3, 85-01-8, Adjusted for biogas	Phenanthrene	1.00E-05	lb Phenanthrene/10 ⁶ scf	$1.7\text{E-05 lb}/10^6 \text{scf x} [(600\ 10^6\ \text{Btu}/10^6 \text{scf for biogas})/(1,020\ 10^6\ \text{Btu}/10^6 \text{scf for natural gas})] = 1.00\text{E-05 lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, Sum of POM, Adjusted for biogas	POM (PAH)	1.24E-03	lb POM/10 ⁶ scf	$2.1E-03 \text{ lb}/10^6 \text{scf x } [(600 \ 10^6 \text{ Btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{Btu}/10^6 \text{scf for natural gas})] = 1.24E-03 \ \text{lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 129-00-0, Adjusted for biogas	Pyrene	2.94E-06	lb Pyrene/10 ⁶ scf	$5.0\text{E}-06 \text{ lb}/10^6 \text{scf x} [(600 \ 10^6 \text{ Btu}/10^6 \text{scf for biogas})/(1,020 \ 10^6 \text{Btu}/10^6 \text{scf for natural gas})] = 2.94\text{E}-06 \ \text{lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-4, 7782-49-2, Adjusted for biogas	Selenium (Se)	1.41E-05	lb Se/10 ⁶ scf	$2.4\text{E}-05 \text{ lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = $1.41\text{E}-05 \text{ lb}/10^6 \text{scf}$
WB-02, -09	AP-42 Table 1.4-3, 108-88-3, Adjusted for biogas	Toluene	2.00E-03	lb Toluene/10 ⁶ scf	$3.4\text{E-03 lb}/10^6 \text{scf x}$ [(600 10 ⁶ Btu/10 ⁶ scf for biogas)/(1,020 10 ⁶ Btu/10 ⁶ scf for natural gas)] = 2.00\text{E-03 lb}/10^6 \text{scf}

Diesel Emission Factor Calculations

Source	Emission Factor Reference	Pollutants	EF	Units	Derivation of emission factor
WB-01, -02	AP-42 Table 1.3-1, <100 10 ⁶ btu/hr, Filter PM	PM	2.00	lb PM/10 ³ gal	Directly from AP-42 Table 1.3-1, Boilers < 100 MM Btu/hr, Filterable PM, Emission Factor Rating A
WB-04	AP-42 Table 1.3-1, Converted to hourly factor	РМ	0.120	lb PM/hr	$2 \text{ lb PM/10}^3 \text{gal x } 62.0 \text{ gal/hr x } 10^3 \text{gal/1,000 gal} = 0.124 \text{ lb PM/hr}$
WB-07 (Large Generator)	AP-42 Table 3.3-1, Diesel	PM, PM ₁₀	0.930	lb PM, PM ₁₀ /hr	$0.00220 \text{ lb PM, PM}_{10}/\text{hp-hr x } 423 \text{ hp} = 0.931 \text{ lb PM, PM}_{10}/\text{hr}$
WB-07 (Small Generator)	AP-42 Table Tbl 3.3-1	PM, PM ₁₀	0.180	lb PM, PM ₁₀ /hr	$0.00220 \text{ lb PM}, \text{PM}_{10}/\text{hp-hr} \times 80 \text{ hp} = 0.176 \text{ lb PM}, \text{PM}_{10}/\text{hr}$
WB-01, -02	AP-42 Table 1.3-2, CPM-TOT, 50% PM < 10um	PM ₁₀	2.30	$16 \text{ PM}_{10}/10^3 \text{ gal}$	Directly from AP-42 Table 1.3-2, No. 2 Oil Fired (assume diesel), CPM-TOT, Emission Factor Rating D plus 50% of PM (assumed < 10um)
WB-04	AP-42 Table 1.3-1, Converted to hourly factor	PM ₁₀	0.140	lb PM ₁₀ /hr	$2.3 \text{ lb PM}_{10}/10^3 \text{gal} \times 62.0 \text{ gal/hr} \times 10^3 \text{gal/}1,000 \text{ gal} = 0.143 \text{ lb PM}_{10}/hr$
WB-01, -02	AP-42 Table 1.3-1 (142xS%, assumes $S = 0.5\%$)	SO ₂	71.0	$1b SO_2/10^3 gal$	$142 \text{ lb SO}/10^3 \text{ gal } \times 0.5\% \text{ Sulfur} = 71 \text{ lb SO}/103 \text{ gal} = 0.143 \text{ lb FM}_{10} \text{ m}^{-1}$
WB-04	AP-42 Table 1.3-1 (142xS%, assumes $S = 0.5\%$)	SO ₂	4.40	lb SO ₂ /hr	$71 \text{ lb } \text{SO}/10^3 \text{gal} \times 62.0 \text{ gal/hr} \times 10^3 \text{gal}/1,000 \text{ gal} = 4.40 \text{ lb } \text{SO}/hr$
WB-07 (Large Generator)	100% conversion S to SO ₂ and S = 0.5%	SO ₂	1.40	lb SO ₂ /hr	$19.2 \text{ gal/hr} \times 7.05 \text{ lb/gal} \times 0.005 \times (64 \text{g/mole SO}_2/32 \text{g/mole SO}) = 1.35 \text{ lb SO}_2/\text{hr}$
WB-07 (Small Generator)	100% conversion S to SO_2 and $S = 0.5\%$ 100% conversion S to SO_2 and $S = 0.5\%$	SO ₂	0.240	lb SO ₂ /hr	$3.4 \text{ gal/hr} \times 7.05 \text{ lb/gal} \times 0.005 \times (64g/\text{mole SO}_3/32g/\text{mole S}) = 0.240 \text{ lb SO}_3/\text{hr}$
WB-01, -02	40 CFR 98 Tables A-1, C-1 and C-2	CO ₂ e	22,415	~	$[73.96 \text{ kg/10}^6 \text{ Btu CO}_2 + (0.003 \text{ kg CH}_4/10^6 \text{ Btu x 25}) + (0.0006 \text{ kg N}_20/10^6 \text{ Btu x 298})] \times 137 \ 10^6 \text{Btu/10}^3 \text{gal x 2.20462 lb/kg} = 22.415$
WB-01, -02 WB-04		CO ₂ e	1.390	lb CO ₂ e/10 ³ gal lb CO ₂ e/hr	
	40 CFR 98 Tables A-1, C-1 and C-2	CO ₂ e	487	-	22,415 lb GHG/10 ³ gal x 62.0 gal/hr x 10 ³ gal/1,000 gal = 1,390 lb GHG/hr
WB-07 (Large Generator)	AP-42 Table 3.3-1, CO ₂ , Diesel AP-42 Table 3.3-1, CO ₂ , Diesel Fuel	CO ₂ e		lb CO ₂ e/hr lb CO ₂ e/hr	1.15 lb GHG/hp-hr x 423 hp = 486.5 lb GHG/hr
WB-07 (Small Generator)	~		92.0 5.00	-	1.15 lb GHG/hp-hr x 80 hp = 92.0 lb GHG/hr
WB-01, -02	AP-42 Table 1.3-1, <100 10 ⁶ btu/hr, Distillate oil	CO		lb CO/10 ³ gal	Directly from AP-42 Table 1.3-1, Boilers < 100 10 ⁶ btu/hr
WB-04	AP-42 Table 1.3-1, <100 10 ⁶ btu/hr, Distillate oil	СО	0.310	lb CO/hr	$5 \text{ lb } \text{CO}/10^3 \text{ gal} \times 62.0 \text{ gal}/\text{hr} \times 10^3 \text{ gal}/1,000 \text{ gal} = 0.310 \text{ lb } \text{CO}/\text{hr}$
WB-07 (Large Generator)	AP-42 Table 3.3-1, CO, Diesel	со	2.83	lb CO/hr	$0.00668 \text{ lb CO/hp-hr} \times 423 \text{ hp} = 2.83 \text{ lb CO/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-1, CO, Diesel	со	0.534	lb CO/hr	$0.00668 \text{ lb CO/hp-hr} \times 80 \text{ hp} = 0.534 \text{ lb CO/hr}$
WB-01, -02	AP-42 Table 1.3-1	NO _x	20.0	lb NO _x /10 ³ gal	Directly from AP-42 Table 1.3-1, Boilers < 100 10 ⁶ btu/hr, Distillate oil fired
WB-04	AP-42 Table 1.3-1, <100 10 ⁶ btu/hr, Distillate oil	NO _x	1.24	lb NO _x /hr	$20 \text{ lb NO}_x/10^3 \text{gal x } 62.0 \text{ gal/hr x } 10^3 \text{gal}/1,000 \text{ gal} = 1.24 \text{ lb NO}_x/\text{hr}$
WB-07 (Large Generator)	AP-42 Table 3.3-1	NO _x	13.1	lb NO _x /hr	$0.031 \text{ lb NO}_{x}/\text{hp-hr} \times 423 \text{ hp} = 13.1 \text{ lb NOx/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-1	NO _x	2.48	lb NO _x /hr	$0.031 \text{ lb NOx/hp-hr} \times 80 \text{ hp} = 2.48 \text{ lb NOx/hr}$
WB-01, -02	AP-42 Table 1.3-3, NMTOC	VOC	0.340	lb VOC/10 ³ gal	Commercial/institutional/residential combustors, Distillate oil fired: 0.34 NMTOC lb/10 gal. Assume equivalent to 0.34 VOC lb/10
WB-07 (Large Generator)	AP-42 Table 3.3-1, Diesel, Exhaust + Crankcase	VOC	1.06	lb VOC/hr	(0.00247 + 0.0000441) lb VOC/hp-hr x 423 hp = 1.06 lb VOC/hr
WB-07 (Small Generator)	AP-42 Table 3.3-1, Diesel, Exhaust + Crankcase	VOC	0.201	lb VOC/hr	(0.00247 + 0.0000441) lb VOC/hp-hr x 80 hp = 0.201 lb VOC/hr
WB-01, -02	AP-42 Tables 1.3.8 and 1.3-10	НАР	5.80E-02	lb HAP/10 ³ gal	Summation of all diesel HAP factors from AP-42 Tables 1.3-8 and 1.3-10
WB-04	AP-42 Tables 1.3.8 and 1.3-10	НАР	3.60E-03	lb HAP/hr	Summation of all diesel HAP factors from AP-42 Tables 1.3-8 and 1.3-10
WB-07 (Large Generator)	AP-42 Table 3.3-2, Summation of HAP	НАР	3.29E-02	lb HAP/hr	Based on AP-42 Table 3.3-2, Summation of all HAP from table
WB-07 (Small Generator)	AP-42 Table 3.3-2, Summation of HAP	НАР	1.81E-03	lb HAP/hr	Based on AP-42 Table 3.3-2, Summation of all HAP from table
WB-07 (Large Generator)	AP-42 Table 3.3-2	Acetaldehyde	6.51E-03	lb Acetaldehyde/hr	0.000767 lb/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 62.0 gal/hr = 0.00651 lb/hr
WB-07 (Small Generator)	AP-42 Table 3.3-2	Acetaldehyde	3.57E-04	lb Acetaldehyde/hr	0.000767 lb Acetaldehyde/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.000357 lb Acetaldehyde/hr
WB-07 (Large Generator)	AP-42 Table 3.3-2	Acrolein	7.86E-04	lb Acrolein/hr	$0.0000925 \text{ lb}/10^6 \text{Btu} \ge 137 \ 10^6 \text{Btu}/10^3 \text{gal} \ge 10^3 \text{gal}/1,000 \text{ gal} \ge 62.0 \text{ gal/hr} = 0.000786 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2	Acrolein	4.31E-05	lb Acrolein/hr	0.0000925 lb Acrolein/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.0000431 lb Acrolein/hr
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Arsenic (As)	5.48E-04	lb As/10 ³ gal	$4.0 \text{ Ib } \text{As}/10^{12} \text{Btu} \times 137,000 \text{ Btu/gal} \times 10^{12} \text{Btu}/1,000,000,000 \text{ Btu} \times 1,000 \text{ gal}/10^{3} \text{ gal} = 5.48\text{E-04 Ib } \text{As}/10^{3} \text{ gal}$
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Arsenic (As)	3.41E-05	lb As/hr	4.0 lb As/10 ¹² Btu x 137,000 Btu/gal x 10 ¹² Btu/1,000,000,000 Btu x 1,000 gal/10 ³ gal = $5.48E-04$ lb As/10 ³ gal
WB-07 (Large Generator)	AP-42 Table 3.3-2	Benzene	7.92E-03	lb Benzene/hr	$0.000933 \text{ lb}/10^6 \text{Btu} \times 137 10^6 \text{Btu}/10^3 \text{gal} \times 10^3 \text{gal}/1,000 \text{ gal} \times 62.0 \text{ gal}/\text{hr} = 0.00792 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2	Benzene	4.35E-04	lb Benzene/hr	$0.000933 \text{ lb Benzene/10}^{6} \text{Btu } x 137 10^{6} \text{Btu/10}^{3} \text{gal } x 10^{3} \text{gal/1},000 \text{ gal } x 3.4 \text{ gal/hr} = 0.000435 \text{ lb Benzene/hr}$
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Beryllium (Be)	4.11E-04	lb Be/10 ³ gal	$3.0 \text{ lb Be/l0^{12}Btu x 137,000 Btu/gal x 10^{12}Btu/1,000,000,000 Btu x 1,000 gal/10^{3}gal = 4.11E-04 \text{ lb Be/l0^{3}gal}$
WB-04	AP-42 Table 1.3-10, Converted to 1b/10 ³ gal	Beryllium (Be)	2.54E-05	lb Be/hr	$3.0 \text{ lb Be/l0^{12}Btu x 137,000 Btu/gal x 10^{12}Btu/1,000,000,000 Btu x 1,000 gal/10^{3}gal = 4.11E-04 \text{ lb Be/l0^{3}gal}$

Diesel Emission Factor Calculations - continued

Source	Emission Factor Reference	Pollutants	EF	Units	Derivation of emission factor
WB-07 (Large Generator)	AP-42 Table 3.3-2	Butadiene, 1,3-	3.32E-04	lb Butadiene, 1,3-/hr	$0.0000391 \text{ lb/10}^{6}$ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 62.0 gal/hr = 0.000332 lb/hr
WB-07 (Small Generator)	AP-42 Table 3.3-2	Butadiene, 1,3-	1.82E-05	lb Butadiene, 1,3-/hr	0.0000391 lb Butadiene, 1,3-/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.0000182 lb Butadiene, 1,3-/h
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Cadmium (Cd)	4.11E-04	lb Cd/10 ³ gal	3.0 lb Cd/10 ¹² Btu x 137,000 Btu/gal x 1012Btu/1,000,000,000 Btu x 1,000 gal/103gal = 4.11E-04 lb Cd/10 ³ gal
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Cadmium (Cd)	2.54E-05	lb Cd/hr	3.0 lb Cd/10 ¹² Btu x 137,000 Btu/gal x 1012Btu/1,000,000,000 Btu x 1,000 gal/103gal = 4.11E-04 lb Cd/10 ³ gal
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Chromium (Cr)	4.11E-04	lb Cr/10 ³ gal	3.0 lb Cr/10 ¹² Btu x 137,000 Btu/gal x 1012Btu/1,000,000,000,000 Btu x 1,000 gal/103gal = 4.11E-04 lb Cr/10 ³ gal
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Chromium (Cr)	2.54E-05	lb Cr/hr	3.0 lb Cr/10 ¹² Btu x 137,000 Btu/gal x 1012Btu/1,000,000,000 Btu x 1,000 gal/103gal = 4.11E-04 lb Cr/10 ³ gal
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Chromium VI (CrVI)	2.06E-05	lb CrVI/10 ³ gal	1.5 lb CrVI/10 ¹³ Btu x 137,000 Btu/gal x 10 ¹³ Btu/10,000,000,000,000 Btu x 1,000 gal/10 ³ gal = 2.06E-05 lb CrVI/10 ³ ga
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Chromium VI (CrVI)	1.30E-06	lb CrVI/hr	1.5 lb $CrVI/10^{13}$ Btu x 137,000 Btu/gal x 10 ¹³ Btu/10,000,000,000 Btu x 1,000 gal/10 ³ gal = 2.06E-05 lb $CrVI/10^{3}$ g
WB-01, -02	AP-42 Table 1.3-8 (HCOH), Average	Formaldehyde (HCOH)	4.80E-02	lb HCOH/10 ³ gal	$(0.035 \text{ lb HCOH}/10^3 \text{gal} + 0.061 \text{ lb HCOH}/10^3 \text{gal})/2 = 0.048 \text{ lb HCOH}/10^3 \text{gal}$
WB-04	AP-42 Table 1.3-8 (HCOH), Average	Formaldehyde (HCOH)	2.98E-03	lb HCOH/hr	$(0.035 \text{ lb HCOH}/10^3 \text{gal} + 0.061 \text{ lb HCOH}/10^3 \text{gal})/2 = 0.048 \text{ lb HCOH}/10^3 \text{gal}$
WB-07 (Large Generator)	AP-42 Table 3.3-2	Formaldehyde (HCOH)	1.00E-02	lb HCOH/hr	$0.00118 \text{ lb}/10^6 \text{Btu} \ge 137 \ 10^6 \text{Btu}/10^3 \text{gal} \ge 10^3 \text{gal}/1,000 \text{ gal} \ge 62.0 \text{ gal/hr} = 0.010 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2	Formaldehyde	5.50E-04	lb HCOH/hr	0.00118 lb HCOH/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.000550 lb HCOH/hr
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Lead (Pb)	1.23E-03	lb Pb/10 ³ gal	9.0 lb Pb/10 ¹² Btu x 137,000 Btu/gal x 10^{12} Btu/1,000,000,000 Btu x 1,000 gal/10 ³ gal = 1.23E-03 lb Pb/10 ³ gal
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Lead (Pb)	7.44E-05	lb Pb/hr	9.0 lb Pb/10 ¹² Btu x 137,000 Btu/gal x 10 ¹² Btu/1,000,000,000,000 Btu x 1,000 gal/10 ³ gal = 1.23E-03 lb Pb/10 ³ gal
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Manganese (Mn)	8.22E-04	lb Mn/10 ³ gal	$6.0 \text{ lb } \text{Mn}/10^{12} \text{Btu} \ x \ 137,000 \ \text{Btu/gal} \ x \ 10^{12} \text{Btu}/1,000,000,000 \ \text{Btu} \ x \ 1,000 \ \text{gal}/10^{3} \text{gal} = 8.22 \text{E-03} \ \text{lb} \ \text{Mn}/10^{3} \text{gal}$
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Manganese (Mn)	5.08E-05	lb Mn/hr	$6.0 \text{ lb } \text{Mn}/10^{12} \text{Btu} \ x \ 137,000 \ \text{Btu/gal} \ x \ 10^{12} \text{Btu}/1,000,000,000 \ \text{Btu} \ x \ 1,000 \ \text{gal}/10^{-3} \text{gal} \ = \ 8.22 \text{E-03} \ \text{lb} \ \text{Mn}/10^{-3} \text{gal} \ \text{Schematical} \ \text{Schematical} \ \text{Bcharge}$
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Mercury (Hg)	4.11E-04	lb Hg/10 ³ gal	3.0 lb Hg/10 ¹² Btu x 137,000 Btu/gal x 10 ¹² Btu/1,000,000,000 Btu x 1,000 gal/10 ³ gal = 4.11E-04 lb Hg/10 ³ gal
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Mercury (Hg)	2.54E-05	lb Hg/hr	3.0 lb Hg/10 ¹² Btu x 137,000 Btu/gal x 10 ¹² Btu/1,000,000,000 Btu x 1,000 gal/10 ³ gal = 4.11E-04 lb Hg/10 ³ gal
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Nickel (Ni)	4.11E-04	lb Ni/10 ³ gal	$3.0 \text{ lb Ni}/10^{12}$ Btu x 137,000 Btu/gal x 10^{12} Btu/1,000,000,000 Btu x 1,000 gal/ 10^{3} gal = 4.11E-04 lb Ni/ 10^{3} gal
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Nickel (Ni)	2.54E-05	lb Ni/hr	3.0 lb Ni/10 ¹² Btu x 137,000 Btu/gal x 10^{12} Btu/1,000,000,000,000 Btu x 1,000 gal/10 ³ gal = 4.11E-04 lb Ni/10 ³ gal
WB-01, -02	AP-42 Table 1.3-8, POM	POM	3.30E-03	lb POM/10 ³ gal	Directly from AP-42 Table 1.3-8 (POM), Emission Factor Rating E
WB-04	AP-42 Table 1.3-8, POM	РОМ	2.05E-04	lb POM/hr	Directly from AP-42 Table 1.3-8 (POM), Emission Factor Rating E
WB-07 (Large Generator)	AP-42 Table 3.3-2, PAH	POM	1.43E-03	lb POM/hr	$0.000168 \text{ lb}/10^6 \text{Btu} \ge 137 \ 10^6 \text{Btu}/10^3 \text{gal} \ge 10^3 \text{gal}/1,000 \text{ gal} \ge 62.0 \text{ gal}/\text{hr} = 0.00143 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2, PAH	POM	7.83E-05	lb POM/hr	0.000168 lb POM/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.0000783 lb POM/hr
WB-01, -02	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Selenium (Se)	2.06E-03	lb Se/10 ³ gal	$15.0 \text{ lb Se}/10^{12} \text{Btu} \times 137,000 \text{ Btu/gal} \times 10^{12} \text{Btu}/1,000,000,000 \text{ Btu} \times 1,000 \text{ gal}/10^{3} \text{ gal} = 2.06\text{E}-03 \text{ lb Se}/10^{3} \text{ gal}$
WB-04	AP-42 Table 1.3-10, Converted to lb/10 ³ gal	Selenium (Se)	1.30E-04	lb Se/hr	$15.0 \text{ lb } \text{Se}/10^{12} \text{Btu } \ge 137,000 \text{ Btu/gal } \ge 10^{12} \text{Btu}/1,000,000,000 \text{ Btu } \ge 1,000 \text{ gal}/10^{3} \text{gal } = 2.06\text{E}-03 \text{ lb } \text{Se}/10^{3} \text{gal } = 2.06\text{E}-03 \text{ lb } \text$
WB-07 (Large Generator)	AP-42 Table 3.3-2	Toluene	3.47E-03	lb Toluene/hr	$0.000409 \text{ lb}/10^6 \text{Btu} \times 137 \ 10^6 \text{Btu}/10^3 \text{gal} \times 10^3 \text{gal}/1,000 \text{ gal} \times 62.0 \text{ gal/hr} = 0.00347 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2	Toluene	1.91E-04	lb Toluene/hr	0.000409 lb Toluene/10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.000191 lb Toluene/hr
WB-07 (Large Generator)	AP-42 Table 3.3-2	Xylenes _{total}	2.42E-03	lb Xylenes _{total} /hr	$0.000285 \text{ lb}/10^6 \text{Btu} \times 137 \ 10^6 \text{Btu}/10^3 \text{gal} \times 10^3 \text{gal}/1,000 \text{ gal} \times 62.0 \text{ gal/hr} = 0.00242 \text{ lb/hr}$
WB-07 (Small Generator)	AP-42 Table 3.3-2	Xylenes _{total}	1.33E-04	lb Xylenes _{total} /hr	0.000285 lb Xylenes _{rotal} /10 ⁶ Btu x 137 10 ⁶ Btu/10 ³ gal x 10 ³ gal/1,000 gal x 3.4 gal/hr = 0.000133 lb Xylenes _{rotal} /hr

Operating Time EF Calculations

Common	Emission Easter Deference	Dollutonto	FF	Tinita	Derivation of amission factor
Source	Emission Factor Reference	Pollutants PM	EF 1.26	Units lb PM/hr	Derivation of emission factor $0.000 + DV(r^3 = 167,000 = r = 70,000, 6^3/min = 60 min factor = 1.26 Hz DV/factor$
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test				$0.0021 \text{ gr PM/ft}^3 \times 1b/7,000 \text{ gr } \times 70,000 \text{ ft}^3/\text{min } \times 60 \text{ min/hr} = 1.26 \text{ lb PM/hr}$
WB-06 (Not Operating)	and Rendering Plant Operating; 2008 Source Test	PM	21.8	lb PM/hr	$0.0021 \text{ gr PM/ft}^3 \times \text{lb}/7,000 \text{ gr} \times 70,000 \text{ ft}^3/\text{min} \times 60 \text{ min/hr} \times 17.30 = 21.8 \text{ lb PM/hr}, representing 94.2\% scrubber efficiency$
WB-08 (Four Cooling Towers)		PM ₁₀	4,272	lb PM ₁₀ /mo	0.019 lb PM ₁₀ /10 ³ gal x 308,000 gal/hr x 10 ³ gal/1,000 gal x 8,760 hr/12 mo = 4,272 lb PM ₁₀ /mo for all four cooling towers
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	PM ₁₀	3.30	lb PM ₁₀ /hr	$0.0044 + 0.0011 (50\% \text{ of PM}) \text{ gr PM}_{10}/\text{ft}^3 \text{ x } \text{ lb}/7,000 \text{ gr } \text{ x } 70,000 \text{ ft}^3/\text{min } \text{ x } 60 \text{ min/hr} = 3.30 \text{ lb PM}_{10}/\text{hr}$
WB-06 (Not Operating)	and Rendering Plant Operating; 2008 Source Test	PM ₁₀	22.8	lb PM ₁₀ /hr	0.0044 + 0.0011 (50% of PM) gr PM ₁₀ /ft ³ x lb/7,000 gr x 70,000 ft ³ /min x 60 min/hr x 6.92 = 22.84 lb PM ₁₀ /hr, representing 85.5% scrubber efficien
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	VOC (THC propane)	0.058	lb VOC/hr	0.058 lb VOC/hr (Highest value measured during 2008 source test)
WB-06 (Not Operating)	and Rendering Plant Operating; 95% efficient	VOC (THC propane)	1.16	lb VOC/hr	0.058 lb VOC/hr (Highest value measured during 2008 source test) x 100/5 = 1.16 lb VOC/hr, assume 95% VOC efficient
WB-10 (Wastewater)	Based on 2006 source test	VOC (THC propane)	155	lb VOC/mo	$0.38 \text{ ug/ml VOC } \times (0.00834 \text{ lb/10}^3 \text{ gal})/(\text{ug/ml}) \times 67,000 \text{ gal/hr } \times 10^3 \text{ gal/1},000 \text{ gal } \times 8,760/12 \text{ hr/mo} = 155 \text{ lb VOC/mo}$
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	HAP	1.25E+00	lb HAP/hr	Summation of all HAP detected during 2008 source test
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	HAP	5.00E+00	lb HAP/hr	Summation of all HAP detected during 2008 source test
WB-08 (Four Cooling Towers)	Based on reported material balance	HAP	2.33E+01	lb HAP/mo	The only reported cooling tower HAP is chlorine
WB-10 (Wastewater)	Based on 2006 source test	HAP	3.36E+02	lb HAP/mo	(Summation of all HAP detected during 2006 source test)
WB-10 (Wastewater)	Based on 2006 source test	Acetaldehyde	2.45E+02	lb Acetaldehyde/mo	$0.60 \text{ ug/ml} \text{ Acetaldehyde } x (0.00834 \text{ lb}/10^3 \text{gal})/(\text{ug/ml}) x 67,000 \text{ gal/hr} x 10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{ gal} x 8760/12 = 245 \text{ lb} \text{ Acetaldehyde}/10^3 \text{gal}/1,000 \text{gal} x 8760/1$
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Benzene (78)	3.75E-02	lb Benzene/hr	(44.9 ppbv Benzene x 78/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.0375 lb/Benzene/hr
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Benzene (78)	1.50E-01	lb Benzene/hr	(44.9 ppbv Benzene x 78/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.150 lb/Benzene/hr
WB-10 (Wastewater)	Based on 2006 Source Test	Benzene (78)	1.80E+01	lb Benzene/mo	0.0440 ug/ml Benzene x (0.00834 lb/10 ³ gal)/(ug/ml) x 67,000 gal/hr x 10 ³ gal/1,000 gal x 8760/12 = 18 lb Benzene/mo
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Butadiene, 1,3- (54)	2.60E-03	lb Butadiene, 1,3-/hr	(4.5 ppbv Butadiene, 1,3- x 54/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.00260 lb/ Butadiene, 1,3-
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Butadiene, 1,3- (54)	1.00E-02	lb Butadiene, 1,3-/hr	(4.5 ppbv Butadiene, 1,3- x 54/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.010 lb/ Butadiene, 1,3-/
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Carbon Disulfide (76)	3.96E-02	lb Carbon Disulfide/hr	(13.5 ppbv Carbon Disulfide x 76/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.0396 lb/Carbon Disulfide/
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Carbon Disulfide (76)	1.58E-01	lb Carbon Disulfide/hr	(13.5 ppbv Carbon Disulfide x 76/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.158 lb/Carbon Disulfide
WB-10 (Wastewater)	Based on 2006 Source Test	Carbon Disulfide (76)	1.10E+00	lb Carbon Disulfide/mo	0.00280 ug/ml Carbon Disulfide x (0.00834 lb/10 ³ gal)/(ug/ml) x 67,000 gal/hr x 10 ³ gal/1,000 gal x 8760/12 = 1.1 lb Carbon Disulfide/
WB-08 (Four Cooling Towers)	Based on reported material balance	Chlorine	2.33E+01	lb Chlorine/mo	280 lb/yr x yr/12 mo = 23.3 lb/mo
WB-06 (Operating)	Not Detected 2008 Source Test	Chloroform (119)	0.00E+00	lb Chloroform/hr	0.00 ug/m3 Chloroform x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.00 lb/Chloroform/hr
WB-06 (Not Operating)	Not Detected 2008 Source Test	Chloroform (119)	0.00E+00	lb Chloroform/hr	0.00 ug/m3 Chloroform x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.00 lb/Chloroform/hr
WB-06 (Operating)	Not Detected 2008 Source Test	Dichloromethane (85)	0.00E+00	lb Dichloromethane/hr	0.00 ug/m3 Dichloromethane x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.00 lb/Dichloromethane/hr
WB-06 (Not Operating)	Not Detected 2008 Source Test	Dichloromethane (85)	0.00E+00	lb Dichloromethane/hr	0.00 ug/m3 Dichloromethane x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.00 lb/Dichloromethane
WB-10 (Wastewater)	Based on 2006 Source Test	Dichloromethane (85)	9.50E+00	lb Dichloromethane/mo	0.0234 ug/ml Dichloromethane x (0.00834 lb/10 ³ gal)/(ug/ml) x 67,000 gal/hr x 10 ³ gal/1,000 gal x 8760/12 = 9.5 lb Dichloromethane/n
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Ethylbenzene (106)	9.10E-02	lb Ethylbenzene/hr	$(80.1 \text{ pbv Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46) \text{ ug/m3 x } 0.0283 \text{ m3/ft3 x } 2.2046\text{E-09 lb/ug x } 70,000 \text{ ft3/min x } 60 \text{ min/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text{ lb/Ethylbenzene x } 106/24.46 \text{ m3/hr} = 0.0910 \text$
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Ethylbenzene (106)	3.64E-01	lb Ethylbenzene/hr	(80.1 ppbv Ethylbenzene x 106/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.364 lb/Ethylbenzen
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Hexane (86)	5.34E-03	lb Hexane/hr	(5.8 ppbv Hexane x 86/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.00534 lb/Hexane/hr
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Hexane (86)	2.10E-02	lb Hexane/hr	(5.8 ppbv Hexane x 86/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.021 lb/Hexane/h
WB-10 (Wastewater)	Based on 2006 Source Test	Hexane (86)	5.30E+00	lb Hexane/mo	0.0130 ug/ml Hexane x (0.00834 lb/10 ³ gal)/(ug/ml) x 67,000 gal/hr x 10 ³ gal/1,000 gal x 8760/12 = 5.3 lb Hexane/mo
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Methanol (32)	6.48E-02	lb Methanol/hr	(189 ppbv Methanol x 32/24.46) ug/m3 x 0.0283 m3/fi3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr = 0.0648 lb/Methanol/hr
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Methanol (32)	2.59E-01	lb Methanol/hr	(189 ppbv Methanol x 32/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/hr x 100/25 = 0.259 lb/Methan
WB-10 (Wastewater)	Based on 2006 Source Test	Methanol (32)	4.90E+00	lb Methanol/mo	$0.0121 \text{ ug/ml Methanol x } (0.00834 \text{ lb/10}^3 \text{ gal})/(\text{ug/ml) x } 67,000 \text{ gal/hr x } 10^3 \text{gal}/1,000 \text{ gal x } 8760/12 = 4.9 \text{ lb Methanol/mo}$
WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Pentanone, 4-Methy-2-	2.59E-01	lb Pentanone, 4-Methy-2-/hr	(242 ppbv Pentanone, 4-Methy-2- x 100/24/6) ug/m3 x 0.283 m3/f3 x 2.2046E-09 lb/ug x 70,000 f3/min x 60 min/hr = 0.259 lb/Pentanone, 4-Methy-
WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Pentanone, 4-Methy-2-	1.04E+00	lb Pentanone, 4-Methy-2-/hr	(242 ppbv Pentanone, 4-Methy-2- x 100/24.46) ug/m3 x 0.0283 m3/ft3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/m = 0.257 for enanone, 4-Methy-
WB-06 (Operating)	Not Detected 2008 Source Test	Styrene (104)	0.00E+00	lb Styrene/hr	0.00 ug/m3 Styrene x 0.0283 m3/f3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/h x 100E2 = 1.04 to 1 channel, + rhemy- 10.00 ug/m3 Styrene x 0.0283 m3/f3 x 2.2046E-09 lb/ug x 70,000 ft3/min x 60 min/h = 0.00 lb/Styrene/hr
m D-00 (Operaning)	NOLDERCICIC 2008 SOURCE TEST	Styrene (104)	0.00E+00	io styrene/iii	0.00 ug/m5 orgrene x 0.0205 m5/n5 x 2.2040E-09 10/ug x 70,000 ro/mm x 00 mm/m = 0.00 i0/styrene/m

Operating Time EF Calculations (continued)

Source	Emission Factor Reference	Pollutants	EF	Units	Derivation of emission factor
40 WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Toluene (92)	2.75E-01	lb Toluene/hr	(279ppbv Toluene x 92/24.46)ug/m3 x 0.0283 m3/ft3 x 2.2046E-09lb/ug x 70,000 ft3/min x 60 min/hr = 0.275lb/Toluene/hr
41 WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Toluene (92)	1.10E+00	lb Toluene/hr	(279ppbv Toluene x 92/24.46)ug/m3 x 0.0283m3/ft3 x 2.2046E-09lb/ug x 70,000ft3/min x 60min/hr x 4 = 1.10lb/Toluene/hr
42 WB-10 (Wastewater)	Based on 2006 Source Test	Toluene (92)	3.50E+01	lb Toluene/mo	0.0860 ug/ml Toluene x ($0.00834 \text{ lb}/10^3 \text{gal}$)/(ug/ml) x 67,000 gal/hr x $10^3 \text{gal}/1,000 \text{ gal}$ x 8760/12 = 35 lb Toluene/mo
43 WB-06 (Operating)	and Rendering Plant Operating; 2008 Source Test	Xylenes _{total} (106)	4.75E-01	lb Xylenes _{total} /hr	(418ppbv Xylenes _{total} x 106/24.46)ug/m3 x 0.0283m3/ft3 x 2.2046E-09lb/ug x 70,000ft3/min x 60min/hr = 0.475lb/Xylenes _{total} /hr
44 WB-06 (Not Operating)	and Rendering Plant Operating; 75% efficient	Xylenes _{total} (106)	1.90E+00	lb Xylenes _{total} /hr	(418ppbv Xylenes _{total} x 106/24.46)ug/m3 x 0.0283m3/ft3 x 2.2046E-09lb/ug x 70,000ft3/min x 60min/hr x 4 = 1.90 lb/Xylenes _{total} /hr
45 WB-10 (Wastewater)	Based on 2006 Source Test	Xylenes _{total} (106)	1.70E+01	lb Xylenes _{total} /mo	$0.0420 ug/ml Xylenes_{total} x (0.00834 lb/10^{3} gal)/(ug/ml) x 67,000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/1,000 gal x 8760/12 = 17 lb Xylenes_{total} /mo = 1000 gal/hr x 10^{3} gal/hr x 10^$