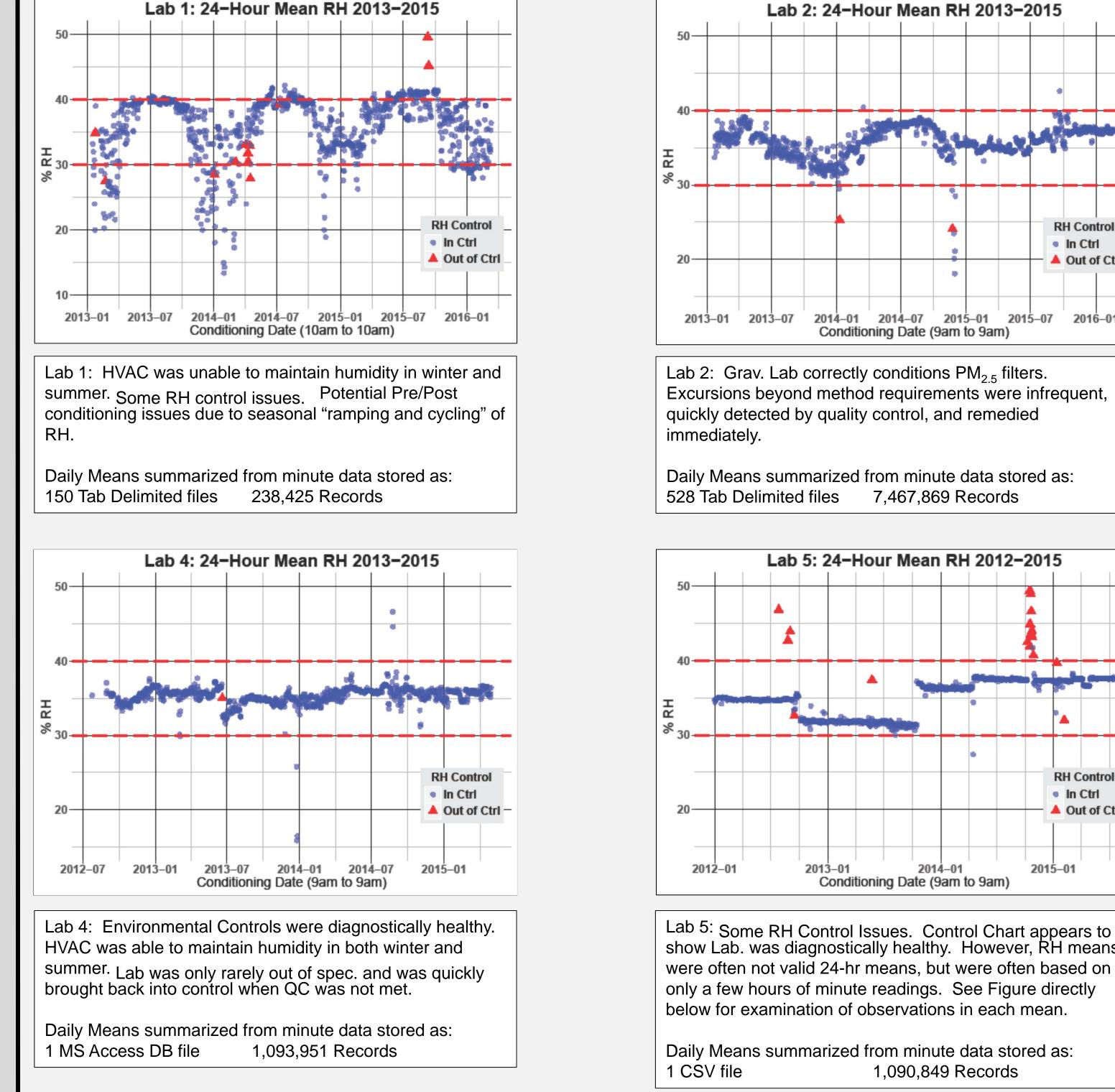
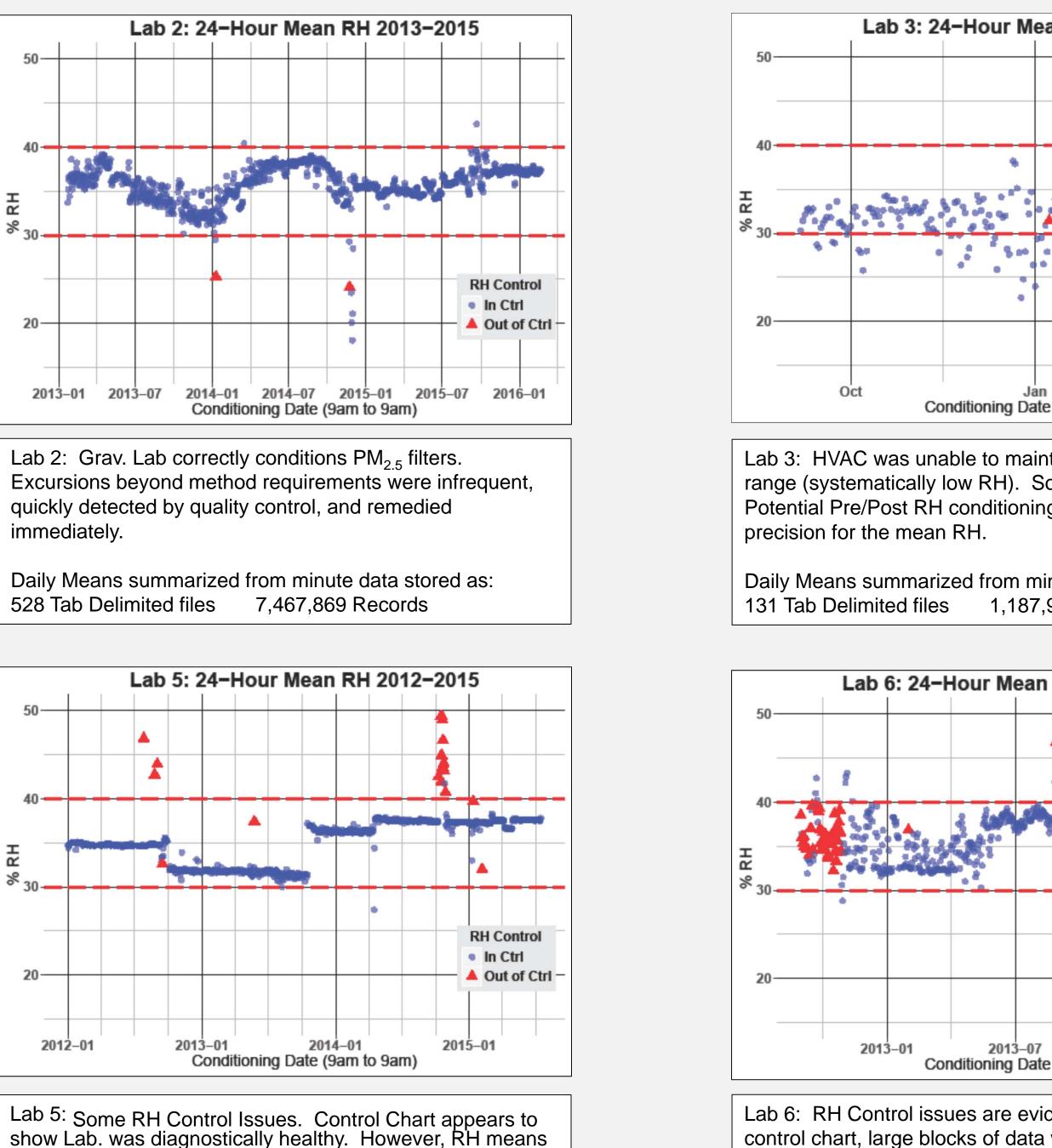
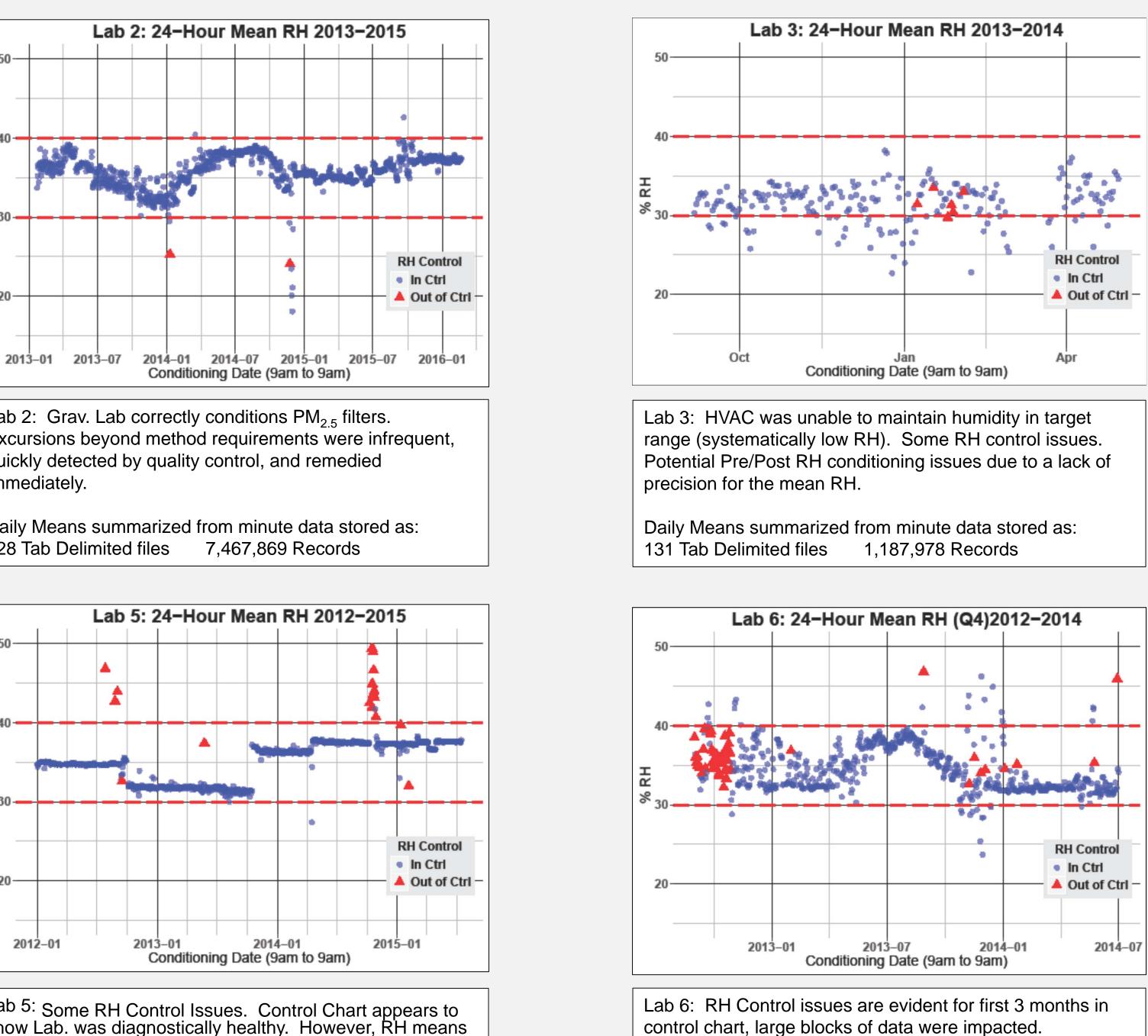
Data Analysis Tools for Quality Assurance Assessing the Utility of the R-Programming Language in Technical Systems Audits Doug Jager US EPA Region 4 Science and Ecosystem Support Division

Abstract


With decreasing resources and increasing demands being placed on local, state, tribal, and federal governments, improving the efficiency and effectiveness of data quality assessments is becoming ever more critical to conducting a successful Technical Systems Audit (TSA). Automated data analysis tools serve to drive consistency in data evaluations, enhance the speed in performing data reviews, and for TSAs, liberate limited staffing resources for other high value activities in the audit.


Introduction


EPA Region 4 SESD has evaluated the R programming language for both its effectiveness in performing data reduction and automating data quality assessments as well as assessing the learning curve required for developing analysis tools for data quality assessments. This poster provides a quick overview demonstrating how the R programming language can be used to assist in TSAs. Examples presented here show how the R programming language can be used to visualize data in quality assessments and how data summaries can be easily exported to other office products such as MS Excel[™].

Control Charting: Filter Conditioning Performance in Gravimetric Labs.

Several air monitoring programs operate PM_{2.5} gravimetric laboratories in EPA Region 4. TSAs in recent years have found QA/QC concerns at some of these laboratories. At the time of these TSAs, the Region 4 auditors did not have these data visualization tools to assist in diagnosing the performance of the Lab.'s filter conditioning processes. TSA auditors had to rely on manually spot checking records which is time intensive and does not provide a comprehensive conceptual QA model of the laboratory's performance. To address this deficiency, EPA staff developed a visualization tool using the R programming language. The below figures illustrate the effectiveness of R for visualizing and analyzing very large datasets efficiently and quickly. File formats for the Labs were CSV, Tab Delimited, and MS AccessTM. In some cases, the minute records were stored in 100's of files. The R program used for these control charts was found to be easily adaptable to evaluate data generated from multiple proprietary laboratory formats.

Directly Accessing AQS Oracle Tables for Automating Data Quality Assessments

Two R programs have been developed as demonstration projects for accessing data in AQS. These assessment tools examine Data Completeness and Network Summaries at Regional, State, County, and Primary Quality Assurance Organization (PQAO) levels. Both R programs directly access the Oracle Tables in AQS via the RODBC R Package, summarize and analyze the results, and then export the analyzed datasets into formatted Excel[™] spreadsheets using the XLConnect R package. Both programs were designed such that the user requires no knowledge of Structured Query Language (SQL) and only requires a basic familiarity with the R interpreter and interface package such as RStudio[™].

> **Automated Data Completeness Assessment** R Program Connecting Directly to AQS Oracle Tables, then Exporting to Excel

Quer	y Date:	2016-03-29							2013					2014					2015		
AQS Site	Param	Name	POC	Dur	Monitor Type	Network	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Annual	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Annual	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Annu
37-189-0003	88101	LC25	1	7	SLAMS		97	100	93	100	98	100	97	87	94	94	90	93	94		69
37-189-0003	88101	LC25	3	Х	SPM												61	76	40		44
37-191-0005	88101	LC25	1	7	SLAMS		100	100	100	100	100	100	100	93	100	98	100	100	20		55
37-191-0005	88101	LC25	3	Х	SPM		100	91	98	100	97	89	100	83	100	93					
37-191-0005	88501		3																		
37-191-0005	88502	PM2.5-AQI	3	Х	SLAMS										66	20	100	92	95		96
37-199-0004	44201	03	1	W	SPM	. 		96	99	100	98		82	99	100	93		90	89	84	87
45-001-0001	44201	03	1	W	SLAMS			93	99	97	95		77	90	94	85		96	87	100	90
45-003-0003	44201	03	2	W	SLAMS			97	99	100	98		99	99	84	95		99	99	100	98
45-007-0004	88501		3																		
45-007-0005	44201	03	1	W	SLAMS			99	99	100	99		99	99	100	99		100	98	87	9
45-015-0002	44201	03	1	W	SLAMS			99	99	90	98		97	100	90	97		85	99	94	9
45-019-0003	14129		2																		-
45-019-0003	42401	SO2	1	1	SLAMS		88	99	99	99	96	99	99	99	99	99	99	99	99	99	9
45-019-0003	42401	SO2	1	Y	SLAMS		87	99	99	99	96	99	99	98	99	99	99	98	99	99	9
45-019-0003	42401	SO2M	3	Н	SLAMS									97	96	49	97	97	97	97	9
45-019-0003	42602	NO2	2	1	SPM	: ==	88	99	99	99	96	88	99	99	99	96	99	92	99	99	9
45-019-0003	81102	PM10	3	Х	SLAMS	12220	99	99	90	100	97	100	100	100	100	100	97	77	68	100	8
45-019-0006	88101		1			1 77															
45-019-0008	88101		1			S. 															-
45-019-0009	88101		1																		-
45-019-0046	42101		1																		
45-019-0046	42401	SO2	2	1	SPM		99	99	99	97	98	98	99	38	98	83	98	99	99	99	9
45-019-0046	42401	SO2	2	Y	SPM		98	99	99	96	98	97	99	37	97	82	97	98	98	98	9
45-019-0046	42401	SO2M	5	Н	SPM									37	96	33	96	97	97	97	9
45-019-0046	42602	NO2	1	1	SPM		66	65	99	78	77	91	77	72	95	84	62	6	8	76	3
45-019-0046	44201	03	1	W	SLAMS			99	82	97	91		84	99	97	92		98	98	100	9
LEGEND 75% to 79% 0% to 74% E Missing Requ NAAQS Exclu	ata Com uired No		ramete	r		Input Que Start YR: End YR: PQAO: State: County: Region:	2013 2015														

the regulatory limits for filter conditioning were present. Daily Means summarized from minute data stored as: 8 CSV files 750,709 Records

Occurrences of daily 24-hr Mean RH both above and below

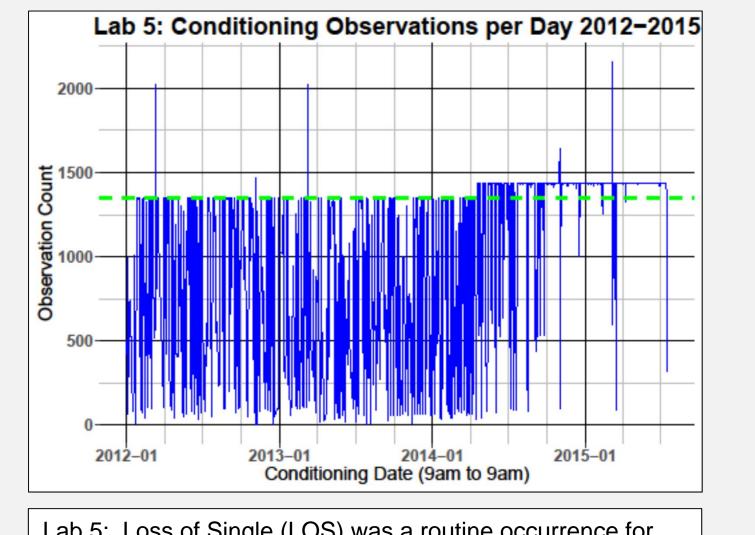
Table Above (Automated Data Completeness Assessment):

The Assessment Tool extracts quarterly and annual data completeness statistics from AQS. Multiple years of data can be queried at once. The data is exported from R to Excel[™] with most formatting automatically performed by the assessment tool; this includes cell highlighting, merging cells, cell boarders, custom title and subtitle, adding of legend, and column header labeling. The exported spreadsheet includes tabs for Data Completeness that is Site Sorted and Parameter Sorted, tabs listing Inactive Monitors and Inactive Monitors that have never reported data, as well as a tab for the raw unformatted data so these results can be easily imported by other databases and data analysis software.

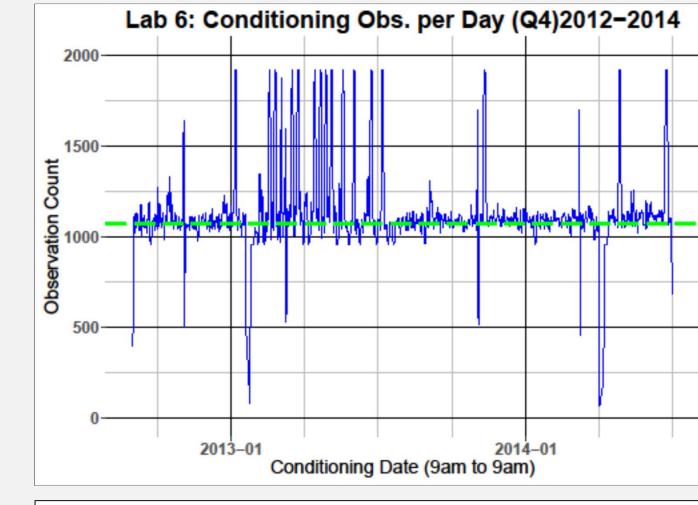
In addition to identifying quarters and years where low data capture occurred, the assessment tool detects NAAQS Excluded monitors, and highlights criteria analyzers that are not reporting required non-criteria parameters (i.e., NO & NO_x channels from NO₂ analyzers and 5-minute SO₂ measurements for SO₂ analyzers).

Tables to the Right (Example PQAO Summary Report and Example Site Summary Report):

These tables are similar to monitoring network summaries that are often found in Annual Network Plans. These crosstab tables greatly improve the process of verifying that the network summary tables found in the Annual Network Plans match the site and monitoring records stored in AQS. These reports can also be used to verify that PQAOs with non-regulatory monitors have their monitors appropriately NAAQS Excluded.


Example Site Summary Report: In addition to the features common to both reports, this crosstab table allows the auditors to quickly determine the make and models of analyzers comprising a monitoring network.

	Example PQAO Summary Report Regulatory Network Only									
			Lead (TSP) LC	Carbon monoxide	Sulfur dioxide	Nitrogen dioxide	Ozone	PM10	PM10-Cont	PM2.5
State	PQAO	PQAO Name	14129	42101	42401	42602	44201	81102	81102-C	88101
47	0170	Chattanooga-Hamilton County Air Pollution Control	0	0	0	0	2	0	0	3
47	0581	Knox County Department Of Air Pollution Control	4	0	0	0	2	2	0	5
47	0673	Memphis-Shelby County Health Department	1	3	1	1	3	3	0	4
47	0682	Metropolitan Health Department	0	1	1	2	2	3	0	3
47	0745	National Park Service	0	1	2	1	3	0	0	0
47	1025	Tennessee Division Of Air Pollution Control	2	0	5	0	9	0	1	14
47	1026	Tennessee Eastman Company	0	1	1	0	0	0	0	0
		USEPA - Clean Air Markets Division	0	0	0	0	2	0	0	0


Example Site Summary Report Regulatory Network Only											
			Lead (TSP) LC	Carbon monoxide	Sulfur dioxide	Ozone	PM10-Cont	PM2.5			
State	PQAO	AQS ID	14129	42101	42401	44201	81102-C	88101			
47	1025	47-001-0101			100	087					
47	1025	47-009-0011						118			
	10.000					100 C					

ate	PUAU	AUSID	14129	42101	42401	44201	81102-C	20101	Param	wiethoa	Equipment
47	1025	47-001-0101			100	087			14129	192	Pb-TSP/ICP SPECTRA (ICP-MS)
47	1025	47-009-0011						118	42101	054	THERMO ELECTRON 48, 48C, 48i
47	1025	47-009-0102				053			42401	060	THERMO ELECTRON 43A, 43B, 43C
47	1025	47-011-0102			600				42401	100	API MODEL 100 A SO2 ANALYZER
47	1025	47-045-0004						118	42401	600	Teledyne API 100 EU
47	1025	47-089-0002				087			44201	047	THERMO ELECTRON 49
47	1025	47-099-0002						118	44201	053	MONITOR LABS 8810
47	1025	47-105-0108				087		118	44201	087	MODEL 400 OZONE ANALYZER
47	1025	47-107-0101			600				81102	079	RUPRCHT&PATSHNCK TEOM SER 1400
47	1025	47-107-1002						118	88101	118	R & P CO PLUS MODEL 2025PM SEQ
47	1025	47-113-0006						118			
47	1025	47-119-2007						118			
47	1025	47-125-1009						118			
47	1025	47-141-0005						118			
47	1025	47-145-0004						118			
47	1025	47-163-0007		054	060						
47	1025	47-163-1007						118			
47	1025	47-163-2002				087					
47	1025	47-163-2003				087					
47	1025	47-163-3004	192								
47	1025	47-165-0007				047		118			
47	1025	47-173-0107					079				
47	1025	47-187-0106				047					
47	1025	47-189-0103				047					

Query Date:	
05-09-2016	

Lab 5: Loss of Single (LOS) was a routine occurrence for the data logger recording the environmental conditions. Mean RH and Temp. were not based on a complete 24-hr period until late 2014.

Lab 6: Good and complete logging of data. Observing "double counting" of minute readings is not uncommon. Only infrequent Loss of Single (LOS).

Conclusions

The automated data analysis tools developed for this demonstration project were found to enhance the speed in performing data quality assessments and have the potential to improve consistency for performing audits of data quality. The learning curve associated with the R programming language is not insignificant, but programming in R has not been as difficult as originally anticipated.

In addition to the examples provided here, Data Analysis tools are in development for:

This information can be used to ensure that SOPs are established for all makes and models of analyzers being employed. The R program automatically generates the legend that provides a description of the analyzer for the AQS Method Codes used in the table.

Nick Mangus: The Data Completeness and PQAO Network Summary Reports, and all of the data quality assessment tools currently in development, highly leverage the Oracle Views designed and implemented by Nick Mangus with the US EPA Office of Air Quality Planning & Standards. These Oracle Views to the AQS database have greatly reduced the time required to progress from the conception of an analysis tool to a working prototype ready for evaluation and testing.

- Reconciling single point precision & audit results with routine ambient air measurements, Evaluating Collocation requirements by PQAO,
- Reconciling flowrate verifications & audit results with routine PM ambient air measurements,
- Evaluating routine measurements in AQS that are potentially impacted by test atmospheres,
- Ensuring routine measurement results are bracketed by QA/QC Checks.

Looking forward, it is hoped that these data quality assessment tools can be exported to state, tribal, and local ambient air programs for use in their quality assurance assessments and annual data certifications.