Center for Air, Climate and Clean Energy Solutions (CACES)

Allen L Robinson

Carnegie Mellon University

Julian D Marshall

University of Washington

CACES investigators

Carnegie Mellon University:

- <u>Air</u>: Peter Adams, Neil Donahue, Spyros Pandis, Albert Presto, Allen Robinson, R Subramanian
- <u>Energy</u>: Ines Azevedo, Paulina Jaramillo, Scott Matthews, Jeremy Michalek

Health Canada:

Rick Burnett: epidemiology

Brigham Young University:

C Arden Pope: epidemiology

Imperial College:

• Majid Ezzati: epidemiology

Middlebury College:

Nick Muller: economics

University of Washington:

 Julian Marshall, Chris Tessum: exposure, health, and impact assessment

University of Minnesota:

 Adam Boies, Jay Coggins, Jason Hill, Dylan Millet, Steve Polasky (economics, energy systems, transportation)

University of Texas:

 Josh Apte: exposure, health, and impact assessment

Virginia Tech:

 Steve Hankey: exposure, health, and impact assessment

University of British Columbia:

 Michael Brauer: exposure, health, and impact assessment

Major Goals

Develop and improve a <u>suite of mechanistic and empirical models</u> that link emissions, concentrations, health, and economics for multiple pollutants at <u>high spatial resolution (100 m – 1 km)</u> over the entire continental U.S.

<u>Challenge models</u> with highly temporally-, spatially-, and chemicallyresolved measurements in case-study locations.

Apply models and collect measurements to quantify the <u>near-source</u>, <u>intra-urban, inter-urban and regional differences in pollutant</u> <u>concentrations</u>, composition, and sources, and to further our mechanistic understanding of <u>processes driving those</u> <u>differences</u>.

Democratize state-of-the-art modeling and policy analysis tools to dramatically improve our collective ability to investigate air, climate, and energy solutions.

Major Goals

Improve our understanding of <u>air pollution's health impacts</u>, especially changes over <u>time and regional differences</u> influence population-wide mortality and life expectancy, and by developing <u>multi-pollutant concentration-response functions</u>.

Improve methods for <u>science-based policy assessments that</u> <u>integrate advanced emissions, air quality, health, and economic</u> models for multiple pollutants (including climate forcers) using a life cycle approach.

Investigate a range of <u>technology and policy scenarios for</u> <u>addressing our nation's air, climate, and energy challenges</u>, and test their effectiveness at meeting policy goals such as improved health outcomes, climate outcomes, and costeffectiveness.

Cross cutting themes

- <u>Regional differences</u> in exposure and impacts from near-source to neighborhood to different parts of the U.S. focusing on modifiable factors.
- <u>Multipollutant</u> including $PM_{2.5}$ (speciated and source-resolved), NO_x , ozone, air toxics, and ultrafine particles.
- **Integrating air quality, climate, and energy policy** for multipollutant assessment of traditional pollutants with CO₂ and other radiative forcers.
- <u>New and expanded set of tools</u> for policy assessment, air quality measurement and modeling, exposure assessment, epidemiology, and cost-benefit analysis.
- **Democratization of tools** to researchers, policy analysts and decisionmakers, and individual citizens.
- **Environmental justice:** quantifying how emission-changes would impact exposure gaps by race, income.

Organization: Five Projects

Overall directors: Allen Robinson, Julian Marshall

1. <u>Mechanistic models</u> (Peter Adams)

- chemical transport models, reduced-complexity models, organics & UFs
- 2. <u>Field Measurements</u> (Albert Presto, Josh Apte)
 - 3 cities, high resolution distributed sensors, case studies (urban-rural, near roadway, etc)
- 3. <u>Empirical models</u> (Julian Marshall)
 - observation-based mapping, e.g. land-use regression
- 4. Policy scenarios and outcomes (Spyros Pandis, Jason Hill)
 - applications, proving that everything works, electricity and transportation decision-making
- 5. Epidemiology (Rick Burnett)
 - larger, unique epidemiological studies

Organization: Five Projects

Project 1: Mechanistic air quality impact models

<u>Reduced complexity models</u> for social costs, mortality, other health end points

- EASIUR, InMAP, APEEP, source-receptor matrices
- Assess limitations, best practices
- Widely disseminate

Chemical transport models

- Extend to higher spatial resolution (1 km)
- Advanced treatment of organics and ultrafine PM
- Near source physico-chemical transformation of organic PM

Historical PM_{2.5} levels (for health study)

- Composition
- Source tagged

<u>Regional differences</u> of source apportionment

("tagging", PSAT)

(a) EC: \$170,000/t EC

Project 1 – Mechanistic Models

Reduced Complexity Models

Statistical Life metric.

Project 1 – Mechanistic Models

when the groups live in

adjacent neighborhoods.

CACES

the health impacts of the

emissions.

Predictions of Social Costs

Project 1 – Mechanistic Models

Planned Extensions to Reduced-Form Models

- Species: organic PM2.5, ultrafine particles, ozone
- Resolution: 1 km
- Temporal: Seasonal resolution
- Impacts: multi-pollutant concentration-response functions
- Intercomparison: quantify strengths and weakness
- Develop best practice guidance

Ultrafine Particle Modeling

 N_{x-y} denotes the number of particles between x and y nm in diameter.

Project 1 – Mechanistic Models

CACES ¹²

Historical Reconstruction of PM Levels

1980 - present

Project 1 – Mechanistic Models

Wide Dissemination

InMAP

ĽΝΜΔΡ

③ spatialmodel.com/inmap/#methodology ☆ 💟 🔮 🧖 🚼 Home About Methodology Download nMAP methodology Why use [™]MAP? Because InMAP is a reduced complexity air quality model, it may not be the perfect tool for every job. However, InMAP is well suited for many situations, such · Projects that require many model runs, such as those that include scenario or uncertainty assessment. 2 concentrations emissions exposure · Projects that would benefit from the combination InMAP reads annual total InMAP calculates annual InMAP estimates changes of a large spatial resolution an high spatial average changes in PM in human PM25 exposure emissions from an resolution compared to what is available in other arbitrary shapefile and concentrations caused by caused by the input models allocates them to the the input emissions. emissions using census · Projects interested in investigation environmental model grid. data injustice or equity issues. Projects that do not have access to the time. expertise, or resources required to run comprehensive chemical transport models. 6 environmental justice 5 economic damage 4 health impacts InMAP calculates how Optionally, health damages can Using epidemiological different demographic groups be converted to economic concentration-response are exposed to PM_{2,5} even damages using a Value of functions. InMAP calculates when the groups live in Statistical Life metric the health impacts of the adjacent neighborhoods. emissions

http://spatialmodel.com/inmap/

EASIUR

http://barney.ce.cmu.edu/~jinhyok/easiur/

Project 1 – Mechanistic Models

Project 2: Air Quality Observatory

Mobile sampling to quantify block by block exposure.

Project 2 – Observatory

- Quantify role of <u>modifiable</u> <u>factors</u> (emissions and land use) on spatial temporal patterns of pollutant concentrations
- Evaluate models at high spatial and temporal resolution
- Develop <u>mechanistic</u> <u>understanding</u> of physicochemical processes near sources

CACFS

Case Studies

Target Cities

Los Angeles, Austin, Pittsburgh

Near Road

Airports

Restaurants

Goods Movement

Industrial

Urban Form

Project 2 – Observatory

Multi-modal sampling

Project 2 – Observatory

Multi-modal sampling

Supersite

Instruments: CO, NOx, SO₂, O₃ monitors, SMPS (particle size), water-based CPC, AMS (part time), MAAP (black carbon), RAMP with optical PM_{2.5}

Extended site

 Instruments: SMPS, water-based CPC, CO, NOx monitors, MAAP, RAMP with optical PM_{2.5}

- Distributed sites

Water-based CPC, RAMP with optical PM_{2.5}, some with BC measurements

<u>Mobile</u>

- Drive rasters in 1x1 km boxes in each case study
- Instruments: AMS, FMPS (particle size distribution), water-based CPC, CO, CO₂, NOx monitors, aethalometer (black carbon)

Project 2 – Observatory

Low-cost sensors

Co-location test at super site

Project 2 – Observatory

Spatial distribution of organic aerosol

Spatial variation in PM_1 (OA + BC + SO₄ + NO₃ + NH₄) on a single morning

- Differences in mass spectra (43/44 ratio, m/z 57 abundance) suggest influence of different sources.
- Source impacts also evident in single particle AMS data

Project 2 – Observatory

Ultrafine particles

Particle number (cm⁻³)

Neighborhood scale and smaller scale (episodic) variations in PN

Project 2 – Observatory

Project 3. Empirical models

- National, multi-pollutant
- Satellite, land use, mechanistic models, EPA monitoring data
- 1980 present
- Annual \rightarrow monthly
- Daily

Project 3 – Empirical models

Project 3. Empirical models

Project 3 – Empirical models

Project 3. Empirical models – annual, monthly

Challenges

- 1. Number of models
 - Annual: 6+ pollutants \times 36 y = 200+ models
 - Monthly: 6+ pollutants \times 36 y \times 12 months = 2,500+ models
- 2. Availability of monitoring data (see next slide)
- 3. Change in land-use over time; availability of data
- 4. Making predictions at many locations

Approach

- PLS + reduced dimensionality; Spatiotemporal model / scaling approach; Spatiotemporally varying covariates
- PostgreSQL, PostGIS
- Satellite & CTM estimates. Historical land use/cover

Sampson et al., 2011; Kim et al., *in press*; Keller et al., 2015; Bechle et al., 2015, Di et al., 2016

Source: Kim et al., In press

Project 3 – Empirical models

Project 3. Empirical models – annual monitoring data

Also: CO, PM species

Data notes:

Most data from EPA

AQShttp://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html

- PM_{2.5}: 1999 present
- PM₁₀: 1983 present
- NO₂, O₃, SO₂: 1980 present

Additonal PM data from IMPROVE network

http://views.cira.colostate.edu/fed/DataWizard/Default.aspx

- PM_{2.5}: 1988 present
- PM₁₀: 1999 present

Project 3 – Empirical models

Data completeness rules

Maximum gap: 45 days Minimum daily observations:

- 244 (daily measurements)
 - 61 (1-in-3 measurements)
 - 41 (1-in-6 day measurements)

Annual modeling suitability*

- 200 monitors
- > 500 monitors

* based on Monte-Carlo simulations by Bechle et al., 2015

Project 3. Empirical models – hourly

Case-study cities: Real-time LUR in cities w/ measurements (project 2) Assess feasibility of employing spatiotemporal traffic patterns in model-building Use of dense measurements in project 2 for model-building or validation

Project 3 – Empirical models

Project 3. Empirical models: dissemination

Empirica	l Model D	atabase н	ome About NO ₂	PM Other Pollutants	1			
NO ₂ (ppb)	2000- 2010	Annual; Monthly	Block Centers [*] ; Block Group; Tract	Contiguous U.S.	LUR with RS	Bechle et al.,2015 DOI, PubMed	J.D. Marshall	Download
NO ₂ (ppb)	2006- 2011	Annual; Monthly	Mesh Block Centers	Australia	LUR with RS	Knibbs et al.,2014 DOI, PubMed	L.D. Knibbs	Available by request
NO ₂ (ppb)	2005- 2010	Daily	1-km grid	New England	LUR with RS	Lee & Koutrakis, 2014 DOI, PubMed	H.J. Lee	
NO ₂ (µg/m ³)	2005- 2007	Annual	100-m grid	Western Europe	LUR with RS	Vienneau et al.,2013 DOI, PubMed	D. Vienneau	Link

BME = Bayesian maximum entropy; LUR = land use regression; RS = remote sensing; UK = universal kriging; Models noted with provide point-specific concentration estimates

Particulate Matter (PM) Concentration Estimates

Pollutant	Years	Temporal Unit	Location Type	Geographic Coverage	Model Type	Citation	Contact	Data
PM _{2.5} (µg/m ³)	1998-2014	Annual	0.01°×0.01°	Global	RS-derived estimates	van Donkelaar et al., 2016 DOI, PubMed	A. van Donkelaar	Link
PM _{2.5} (µg/m ³)	1990; 1995; 2000; 2005; 2010; 2013	Annual	0.1°×0.1°	Global	Fused model with RS	Brauer et al., 2016 DOI, PubMed	M. Brauer	Link
PM _{2.5} (µg/m ³)	2003-2011	Daily	1-km grid	Southeast U.S.	LUR with RS	Lee et al., 2015 DOI, PubMed		
PM _{2.5} (µg/m ³)	2003-2011	Daily	1-km grid	Northeast U.S.	LUR with RS	Kloog et al., 2014 DOI	I. Kloog	
PM _{2.5} (µg/m ³)	1999-2009	Annual	1.404°×0.784°*	Contiguous U.S.	LUR/BME	Reyes & Serre,2014 DOI, PubMed	M.L. Serre	Maps

www.spatialmodel.com/concentrations

Project 3 – Empirical models

Project 4. Air Pollutant Control Strategies in a Changing World

Project 4. Air Pollutant Control Strategies in a Changing World

emissions \rightarrow concentration \rightarrow exposure \rightarrow intake \rightarrow dose \rightarrow health effects

Project 4. Air Pollutant Control Strategies in a Changing World

(reduced form models)

emissions \rightarrow concentration \rightarrow exposure \rightarrow intake \rightarrow dose \rightarrow health effects

Project 4. Scenarios – overview

Objective: Investigate technology and policy scenarios aimed at identifying actions that improve air quality while limiting climate change.

- Policy, technology, and sector interactions.
- Multi-pollutant
- Life cycle approach for *economy- wide* emissions.
- Models to translate emissions to concentrations to public health to monetary impacts

Project 4 – Scenarios

Project 4. Scenarios – focus areas

Project 4 – Scenarios

Electricity Production Transportation Land Use Climate Change

Example scenarios/interactions/ "modifiable factors"

Policies in Place	Policy Scenarios
• CSAPR • MATS • CAA – NAAQs • Carbon STDs • CAFE • ZEV • AFV Subsidies • LCFS • Gasoline tax	 Carbon Tax/C-A-T Carbon STD – existing EGUs Biofuel RPS Modified gas tax. PM_{2.5}, VOC, NH₃
 Policy Interactions CSAPR – Carbon STDs ZEV/Transport – NAAQs Gas tax/Carbon tax Existing CAA/ PM_{2.5}, VOC, NH₃ ZEV/CAFE/AFV Incentives 	 CCS Renewables Nuclear International (Offsets) Criteria abatement tech. Alt. fuel vehicles Vehicle efficiency improvement

Project 4 – Scenarios

Transportation alternatives

Grid-independent gasoline-electric hybrid vehicles

Diesel vehicles

gas (CNG) vehicles

Ethanol vehicles using corn grain or corn stover

Electric vehicles (EVs) with electricity from:

- U.S. grid average (varies by region)
- Coal
- Natural gas
- Corn stover
- Wind, wave, or solar power (WWS)

Transportation alternatives

Tessum et al. PNAS 2014;111:18490-18495

Transportation alternatives

Tessum et al. PNAS 2014;111:18490-18495

Project 4 – Scenarios

Energy production: externalities

Jaramillo and Muller, Energy Policy 2016;90:202-211

Project 5. Health effects of air pollution

- Quantify relationship between mortality & ambient concentrations (NO2, CO, O3, PM2.5, PM2.5 components (sulfate, nitrate, ammonium, BC, OC) and sources),
- Quantify **benefits of lower ambient concentrations** of these pollutants on lowering death rates and increasing life expectancy of the entire U.S. population,
- Describe the spatial and temporal variation in these relationships over the contiguous U.S.

Mortality Data

- 1. Death rates from 1982 to 2011 for all counties in the U.S. from the U.S. National Center for Health Statistics (NCHS); and,
- 2. The 1986-2004 annual National Health Interview Surveys (NHIS), linked to mortality through 2011.

Exposure data

• Empirical models (satellite, EPA monitoring data, CTMs, land use)

Project 5 – Epidemiology

Project 5 – Epidemiology Characterise Spatial-Temporal Changes in Mortality Risk Associated with Changes in Complex Mixtures of Atmospheric Pollutants

Rick Burnett Arden Pope Mike Brauer Majid Ezzati

Project 5 – Epidemiology

Fine-Particulate Air Pollution and Life Expectancy in the United States

C. Arden Pope, III, Ph.D., Majid Ezzati, Ph.D., and Douglas W. Dockery, Sc.D. January 22, 2009

Matching PM_{2.5} data:1979-1983, 1999-2000, 51 Metro Areas

Life Expectancy data for 1978-1982, 1997-2001 in 211 counties in 51 Metro areas

Evaluate changes in life expectancy with changes in $PM_{2.5}$ for the 2-decade period of approximately 1980-2000.

CACES extends analysis to all US counties, w/ time-resolved exposures

Project 5 – Epidemiology

CACES will

Extend data to all US counties & monthly 1980-2011 temporal exposure resolution

Extend analysis within Bayesian time-space framework

Project 5 – Epidemiology

National Centre for Health Statistics "National Health Interview Survey Mortality Cohort" (NHIS)

- Annual population representative survey on lifestyle & health
- 1985-2009 panels linked to mortality up to 2011
- Mortality risk factor information age, sex, race, education, marital status, income, BMI, smoking (sub-sample up to 1996, complete after)
- Restricted-use file contains geographic identifiers (i.e. census block)
- Analysis conducted at NCHS Research Data Centre
- Purpose of cohort
 - Compare risk estimates of CACES generated exposures based on standard cohort design to other cohort studies
 - Examine sensitivity of risk estimates using exposure and covariate control at subject level and county level averages to inform county-mortality study
 - exposure error & ecological bias !
- NHIS is largest (subjects/deaths) of all US cohorts!

Project 5 – Epidemiology

Preliminary results using public-use files

- Publicly available data for 1985-2001 panels linked to 2011 mortality, 2002-2009 panels not publically available – need to analyze at RDC
- MSA smallest geographic identifier Census block available at RDC
- Linked census tract PM_{2.5} estimates for 1998-2004 time period population averaged up to MSA using hybrid LU-space-time model (Berkerman et al., ES&T 2013)
- 1.2 million adult subjects linked to mortality file for 1986-2001 panels with 240,000 deaths
 - 0.4 million living in a MSA with 78,000 deaths
- Hazard ratio for 10µ/m³ increase in PM_{2.5} after risk factor adjustment including smoking: Results generally consistent with other US based cohort studies

Summary: CACES' Five Projects

Directors: Allen Robinson (CMU), Julian Marshall (UW)

- 1. Mechanistic models
- 2. Measurements
- 3. Empirical models
- 4. Policy scenarios
- 5. Epidemiology

Themes:

- Regional differences; multi-pollutant; "modifiable factors".
- Integrating air quality, climate, and energy policy.
- New and expanded set of tools.
- Democratization of tools.
- Environmental justice

Summary

Areas for collaboration?

- 1. Setting scenarios (e.g., "low-coal", "high-coal", region-specific policies,...)
- 2. Reduced-form models
- 3. Empirical model estimates
- 4. Common metrics: EJ, VSL
- 5. Approaches for increasing "policy relevant"
- 6. ...other?

Center for Air, Climate and Clean Energy Solutions (CACES)

Allen L Robinson Carnegie Mellon University Julian D Marshall University of Washington

Thank you!

Carnegie Mellon University

W UNIVERSITY of WASHINGTON

UNIVERSITY OF MINNESOTA

