

WH-552 Washington DC 20460

Development **Document for Effluent Limitations Guidelines** and Standards for the

Final

Aluminum Forming

Point Source Category

Volume I

DEVELOPMENT DOCUMENT

for

EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS

for the

ALUMINUM FORMING POINT SOURCE CATEGORY

William D. Ruckelshaus Administrator

Jack E. Ravan Assistant Administrator for Water

Steven Schatzow Director Office of Water Regulations and Standards

Jeffery D. Denit Director, Effluent Guidelines Division

> Ernst P. Hall, Chief Metals & Machinery Branch

> Janet K. Goodwin Technical Project Officer

> > June 1984

U.S. Environmental Protection Agency
Office of Water
Office of Water Regulations and Standards
Effluent Guidelines Division
Washington, D.C. 20460

CONTENTS

Section	<u>Title</u>	Page
I	SUMMARY AND CONCLUSIONS	1
II	RECOMMENDATIONS BPT BAT NSPS PSES PSNS	13 13 31 41 58 71
III	INTRODUCTION Legal Authority Data Collection and Utilization Data Collection Since Proposal Description of the Aluminum Forming Category Description of Aluminum Forming Processes	87 87 87 91 93
IV	INDUSTRY SUBCATEGORIZATION Basis for Subcategorization Production Normalizing Parameter Description of Subcategories	135 135 146 148
V	WATER USE AND WASTEWATER CHARACTERISTICS Sources of Data Presentation of Wastewater Characteristics Core Operations Unique to Major Forming Operations Core Operations Not Unique to Specific Forming Operations Ancillary Operations Treated Wastewater Samples	165 165 174 175 179 181 187
VI	SELECTION OF POLLUTANT PARAMETERS Rationale for Selection of Pollutant Parameters Description of Pollutant Parameters Pollutant Selection for Core Waste Streams Pollutant Selection for Ancillary Waste Streams Pollutant Selection by Subcategory	541 542 543 616 647 674
VII	CONTROL AND TREATMENT TECHNOLOGY End-of-Pipe Treatment Technologies Major Technologies Major Technology Effectiveness	697 697 698 720

CONTENTS (Continued)

Section	<u>Title</u>	Page
	Minor Technologies In-Plant Technology	736 771
VIII	COST OF WASTEWATER TREATMENT AND CONTROL General Approach Cost Estimation Methodology: Pre-Proposal	855 855 856
	Cost Estimation Methodology: Post-Proposal Summary of Costs Normal Plant Nonwater Quality Aspects	880 897 897 897
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY	
	AVAILABLE	959
	Technical Approach to BPT	959
	Rolling with Neat Oils Subcategory	965
	Rolling With Emulsions Subcategory	972
	Extrusion Subcategory	978
	Forging Subcategory	984
	Drawing with Neat Oils Subcategory Drawing with Emulsions or Soaps	987
	Subcategory	991
	Application of the Limitations in Permits	995
X	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE	1049
	Technical Approach to BAT	1049
	Selected Option for BAT	1057
	Regulated Pollutant Parameters	1058
	Rolling with Neat Oils Subcategory	1061
	Rolling with Emulsions Subcategory	1064
	Extrusion Subcategory	1065
	Forging Subcategory	1068
	Drawing with Neat Oils Subcategory	1070
	Drawing with Emulsions or Soaps Subcategory	1072
IX	NEW SOURCE PERFORMANCE STANDARDS	1147
	Technical Approach to NSPS	1147
	NSPS Option Selection	1148 1149
	Regulated Pollutant Parameters New Source Performance Standards	1150
XII	PRETREATMENT STANDARDS Introduction of Aluminum Forming	1173
	Wastewater into POTW	1173
	Technical Approach to Pretreatment	1176
	recinited Approach to reciedment	1170

CONTENTS (Continued)

Section	<u>Title</u>	Page
	PSES and PSNS Option Selection Regulated Pollutant Parameters Pretreatment Standards	1177 1178 1179
XIII	BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	1241
XIV	ACKNOWLEDGMENT	1243
xv	REFERENCES	1245
XVI	GLOSSARY	1261

TABLES

Section	<u>Title</u>	Page
I I I - 1 I I I - 2	Profile of Aluminum Forming Plants Plant Age Distribution by Discharge Type	119 120
III-3	Distribution of Facilities According to Time Elapsed Since Latest Major Plant Modification	121
V-1 V-2	Rolling with Neat Oils Spent Lubricants Frequency of Occurence of Toxic Pollutants Rolling with Neat Oils Spent Lubricants	189
V-3	Raw Wastewater Sampling Data Rolling with Neat Oils Spent	190
	Lubricants Raw Wastewater	194
V-4 V-5	Rolling with Emulsions Spent Emulsion Frequency of Occurence of Toxic Pollutants Rolling with Emulsions Spent Emulsions Raw	196
	Wastewater	197
V-6	Sampling Data Rolling with Emulsions Spent	127
• •	Emulsions Raw Wastewater	201
V-7	Roll Grinding Spent Lubricant	210
V-8	Frequency of Occurence of Toxic Pollutants Roll	210
V -0	Grinding Spent Emulsion Raw Wastewater	211
V- 9		211
V -9	Sampling Data Roll Grinding Spent Emulsions Raw	215
	Wastewater	215
V-10	Extrusion Die Cleaning Bath	220
V-11	Extrusion Die Cleaning Rinse	221
V-12	Frequency of Occurence of Toxic Pollutants	
	Extrusion Die Cleaning Bath Raw Wastewater	222
V-13	Sampling Data Extrusion Die Cleaning Bath Raw	
	Wastewater	223
V-14	Frequency of Occurence of Toxic Pollutants	
	Extrusion Die Cleaning Rinse Raw Wastewater	228
V-15	Sampling Data Extrusion Die Cleaning Rinse Raw	
	Wastewater	232
V-16	Extrusion Die Cleaning Scrubber Liquor	235
V-17	Frequency of Occurence of Toxic Pollutants Extrusion	
	Die Cleaning Scrubber Liquor Raw Wastewater	236
V-18	Sampling Data Extrusion Die Cleaning Scrubber Liquor	
,	Raw Wastewater	240
V-19	Extrusion Press Scrubber Liquor	241
V-20	Frequency of Occurence of Toxic Pollutants Extrusion	~ ~ .
V-20	Press Scrubber Liquor Raw Wastewater	242
W 21		242
V-21	Sampling Data Extrusion Press Scrubber Liquor Raw	246
17 22	Wastewater	246
V-22	Extrusion Dummy Block Contact Cooling Water	247
V-23	Frequency of Occurence of Toxic Pollutants Extrusion Dummy Block Contact Cooling Water Raw Wastewater	248

Section	<u>Title</u>	Page
V-24	Sampling Data Extrusion Dummy Block Cooling Raw	
	Wastewater	252
V-25	Drawing with Neat Oils Spent Lubricants	253
V-26	Drawing with Emulsions or Soaps Spent Emulsion	254
V-27	Frequency of Occurence of Toxic Pollutants Drawing with Emulsions or Soaps Spent Emulsion Raw Wastewater	255
V-28	Sampling Data Drawing with Emulsions or Soaps Spent	255
	Emulsions Raw Wastewater	259
V-29	Sawing Spent Lubricant	260
V-30	Frequency of Occurence of Toxic Pollutants Sawing	
	Spent Lubricant Raw Wastewater	261
V-31	Sampling Data Sawing Spent Lubricant Raw Wastewater	265
V-32	Frequency of Occurence of Toxic Pollutants Degreasing Spent Solvents Raw Wastewater	269
V-33	Sampling Data Degreasing Spent Solvents Raw Wastewater	273
V-34	Annealing Atmosphere Scrubber Liquor	274
V-35	Frequency of Occurence of Toxic Pollutants Annealing Atmosphere Scrubber Liquor Raw Wastewater	275
V-36	Sampling Data Annealing Atmosphere Scrubber Liquor Raw Wastewater	279
V-37	Rolling Solution Heat Treatment Contact Cooling Water	280
V-38	Frequency of Occurence of Toxic Pollutants Rolling Solution Heat Treatment Contact Cooling Water Raw Wastewater	281
V-39	Sampling Data Rolling Solution Heat Treatment Contact Cooling Water Raw Wastewater	285
V-40	Extrusion Press Heat Treatment Contact Cooling Water	288
V-41	Frequency of Occurence of Toxic Pollutants Extrusion Press Heat Treatment Contact Cooling Water Raw	
	Wastewater	289
V-42	Sampling Data Extrusion Press Heat Treatment Contact Cooling Water Raw Wastewater	293
V-43	Extrusion Solution Heat Treatment Contact Cooling Water	299
V-44	Frequency of Occurence of Toxic Pollutants Extrusion Solution Heat Treatment Contact Cooling Water Raw Wastewater	300
V-45	Sampling Data Extrusion Solution Heat Treatment Contact Cooling Water Raw Wastewater	304
V-46	Forging Solution Heat Treatment Contact Cooling Water	307
V-47	Frequency of Occurence of Toxic Pollutants Forging Solution Heat Treatment Contact Cooling Water	20,
	Raw Wastewater	308

<u>Section</u>	<u>Title</u>	Page
V-48 V-49 V-50	Sampling Data Forging Solution Heat Treatment Contact Cooling Water Raw Wastewater Drawing Solution Heat Treatment Contact Cooling Water Frequency of Occurence of Toxic Pollutants Drawing	312 317
	Solution Heat Treatment Contact Cooling Water Raw Wastewater	318
V-51	Sampling Data Drawing Solution Heat Treatment Contact Cooling Water Raw Wastewater	322
V-52 V-53	Cleaning or Etching Bath Frequency of Occurence of Toxic Pollutants Cleaning or Etching Bath Raw Wastewater	326 328
V-54 V-55	Sampling Data Cleaning or Etching Bath Raw Wastewater Cleaning or Etching Rinse	332 349
V-56	Frequency of Occurence of Toxic Pollutants Cleaning or Etching Rinse Raw Wastewater	351
V-57 V-58	Sampling Data Cleaning or Etching Rinse Raw Wastewater Cleaning or Etching Scrubber Liquor	355 391
V-59	Frequency of Occurence of Toxic Pollutants Cleaning or Etching Scrubber Liquor Raw Wastewater	392
V-60	Sampling Data Cleaning or Etching Scrubber Liquor Raw Wastewater	396
V-61 V-62	Forging Scrubber Liquor Frequency of Occurence of Toxic Pollutants Forging Scrubber Liquor Raw Wastewater	397 398
V-63 V-64	Sampling Data Forging Scrubber Liquor Raw Wastewater Direct Chill Casting Contact Cooling Water	402
V-65	(Aluminum Forming Plants) Direct Chill Casting Contact Cooling Water (Primary Aluminum Subcategory)	404 406
V-66	Frequency of Occurence of Toxic Pollutants Direct Chill Casting Contact Cooling Water Raw Wastewater	408
V-67	Sampling Data Direct Chill Casting Cooling Water Raw Wastewater	412
V-68 V-69	Continuous Rod Casting Contact Cooling Water (Aluminum Forming Plants) Continuous Rod Casting Contact Cooling Water (Primary	426
V-70	Aluminum Plants) Continuous Rod Casting Contact Cooling Water (Filmary Aluminum Plants)	427 428
V-71		429
V-71 V-72	Continuous Sheet Casting Spent Lubricant Degassing Scrubber Liquor (Primary Aluminum Plants)	430
V-72 V-73	Frequency of Occurence of Toxic Pollutants Degassing Scrubber Liquor Raw Wastewater	430
V-74	Sampling Data Degassing Scrubber Liquor Raw Wastewater	

Section	<u>Title</u>	Page
V-75	Extrusion Press Hydraulic Fluid Leakage	436
V-76	Frequency of Occurence of Toxic Pollutants Extrusion	
V-77	Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data Extrusion Press Hydraulic Fluid Leakage	437
V -//	Raw Wastewater	441
V-78	Sampling Data Additional Wastewater Raw Wastewater	445
V-79	Miscellaneous Nondescript Wastewater	460
V-80	Sampling Data Plant B Treated Wastewater	461
V-81	Sampling Data Plant C Treated Wastewater	465
V-82	Sampling Data Plant D Treated Wastewater	466
V-83	Sampling Data Plant E Treated Wastewater	471
V-84	Sampling Data Plant H Treated Wastewater	479
V-85	Sampling Data Plant J Treated Wastewater	481
V-86	Sampling Data Plant K Treated Wastewater	483
V-87	Sampling Data Plant L Treated Wastewater	485
V-88	Sampling Data Plant P Treated Wastewater	486
V-89	Sampling Data Plant Q Treated Wastewater	488
V -90	Sampling Data Plant U Treated Wastewater	490
V-91	Sampling Data Plant V Treated Wastewater	494
V-92	Sampling Data Plant AA Treated Wastewater	596
V-93	Sampling Data Plant BB Treated Wastewater	500
V-94	Sampling Data Plant DD Treated Wastewater	504
V-95	Sampling Data Plant EE Treated Wastewater	510
V I - 1	List of 129 Toxic Pollutants	675
VI-2	Priority Pollutant Disposition Core Operations	681
VI-3	Priority Pollutant Disposition Ancillary Operations	685
VI-4	Priority Pollutant Disposition by Subcategpry	692
VII-1	pH Control Effect on Metals Removal	788
VII-2	Effectiveness of Sodium Hydroxide for Metals	
	Removal	789
VII-3	Effectiveness of Lime and Sodium Hydroxide for	
	Metals Removal	790
VII-4	Theoretical Solubilities of Hydroxides and	
	Sulfides of Selected Metals in Pure Water	791
VII-5	Sampling Data from Sulfide Precipitation-	
	Sedimentation Systems	792
VII-6	Sulfide Precipitation-Sedimentation Performance	793
VII-7	Ferrite Co-precipitation Performance	794
VII-8	Concentration of Total Cyanide (mg/l)	795
VII-9	Multimedia Filtration Performance	796
VII-10 VII-11	Performance of Selected Settling Systems Skimming Performance	797 798
A T T _ 1	Skimming relivingnee	798

Section	<u>Title</u>	Page
VII-12	Trace Organic Removal by Skimming API Plus	
	Belt Skimmers (From Plant 06058)	799
VII-13	Combined Metals Data Effluent Values (mg/l)	800
VII-14	L&S Performance Additional Pollutants	801
VII-15	Combined Metals Data Set - Untreated Wastewater	802
VII-16	Maximum Pollutant Level in Untreated Wastewater Additional Pollutants (mg/l)	803
VII-17	Precipitation-Settling-Filtration (LS&F) Performance Plant A	804
VII-18	Precipitation-Settling-Filtration (LS&F) Performance Plant B	805
VII-19	Precipitation-Settling-Filtration (LS&F) Performance Plant C	806
VII-20	Summary of Treatment Effectiveness (mg/l)	807
VII-21	Chemical Emulsion Breaking Efficiencies	808
VII-22	Treatability Rating of Priority Pollutants	
V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Utilizing Carbon Adsorption	809
VII-23	Classes of Organic Compounds Adsorbed on	
	Carbon	810
VII-24	Ion Exchange Performance (all values mg/l)	811
VII-25	Peat Adsorption Performance	812
VII-26	Membrane Filtration System Effluent	813
VII-27	Ultrafiltration Performance	814
VIII-J	Major Differences Between Cost Methodologies	902
VIII-2	Cost Equations for Recommended Treatment and	
	Control Technologies - Pre-Proposal	903
VIII-3	Oily Sludge Production Associated with Aluminum	
	Forming	909
VIII-4	Lime Dosage Requirements and Lime Sludge	
	Production Associated with Aluminum Forming	910
VIII-5	Carbon Exhaustion Rates Associated with	0.1.1
	Aluminum Forming	911
VIII-6	Cost Equations for Recommended Treatment and	0.7.0
	Control Technologies - Post-Proposal	912
VIII-7	Components of Total Capital Investment -	016
_	Post-Proposal	916
VIII-8	Components of Total Annualized Costs - Post-	017
	Proposal	917
VIII-9	Wastewater Sampling Frequency - Post-Proposal	918
VIII-10	Cost Program Pollutant Parameters	919
VIII-11	Aluminum Forming Category Cost of Compliance	920
	(\$1982)	920

Section	<u>Title</u>	Page
VIII-12	Characteristics of the Rolling with Neat Oils	
VIII-13	Subcategory Normal Plant Used for Costing Characteristics of the Rolling with Emulsion	921
VIII-14	Subcategory Normal Plant Used for Costing Characteristics of the Extrusion Subcategory	922
	Normal Plant Used for Costing	923
VIII-15	Characteristics of the Forging Subcategory Normal Plant Used for Costing	924
VIII-16	Characteristics of the Drawing with Neat Oils Subcategory Normal Plant Used for Costing	925
VIII-17	Characteristics of the Drawing with Emulsions or Soaps Subcategory Normal Plant Used for) 2 3
VIII-18	Costing Summary of the Aluminum Forming Normal Plant	926
V111-10	Cost (\$1982)	927
IX-1	Production Operations-Rolling with Neat Oils Subcategory	998
IX-2	Comparison of Wastewater Discharge Rates From Cleaning or Etching Rinse Streams	1000
IX-3	Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste	
XI-4	Streams - Rolling with Neat Oils Subcategory BPT Mass Limitations for the Rolling with Neat	1001
IX-5	Oils Subcategory Production Operations-Rolling with Emulsions	1003
	Subcategory	1007
IX-6	Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste	
IX-7	Streams - Rolling with Emulsions Subcategory BPT Mass Limitations for the Rolling with	1008
IA /	Emulsions Subcategory	1010
1X-8	Production Operations - Extrusion Subcategory	1013
I X- 9	Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste	
	Streams - Extrusion Subcategory	1014
IX-10	BPT Mass Limitations for the Extrusion Subcategory	1016
IX-11	Production Operations - Forging Subcategory	1020
IX-12	Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste Streams	
	- Forging Subcategory	1021
IX-13 IX-14	BPT Mass Limitations for the Forging Subcategory Production Operations - Drawing with Neat Oils	1023
	Subcategory	1026

Section	<u>Title</u>	Page
IX-15	Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste	
IX-16	Streams - Drawing with Neat Oils Subcategory BPT Mass Limitations for the Drawing with Neat	1027
	Oils Subcategory	1029
IX-17	Production Operations - Drawing with Emulsions or Soaps Subcategory	1033
IX-18	Comparison of Wastewater Discharge Rates From	
IX-19	Drawing with Emulsion or Soap Streams Concentration Range of Pollutants Considered for BPT Regulation in Core and Ancillary Waste Streams - Drawing with Emulsions or Soaps	1034
	Subcategory	1035
IX-20	BPT Mass Limitations for the Drawing with Emulsions or Soaps Subcategory	1037
IX-21	Allowable Discharge Calculations for Plant X in Example 1	1041
IX-22	Allowable Discharge Calculations for Plant Y in Example 2	1041
X-1	Capital and Annual Cost Estimates for BAT Options Total Subcategory	1074
X-2	Capital and Annual Cost Estimates for BAT Options Direct Dischargers	1075
X- 3	Pollutant Reduction Benefits - Rolling with Neat	
X-4	Oils Subcategory Pollutant Reduction Benefits - Rolling with	1076
	Emulsions Subcategory	1078
X-5	Pollutant Reduction Benefits - Extrusion Subcategory	1080
X-6	Pollutant Reduction Benefits - Forging Subcategory Pollutant Reduction Benefits - Drawing with Neat Oils	1082
X-7	Subcategory	1085
X-8	Pollutant Reduction Benefits - Drawing with Emulsions or Soaps Subcategory	1087
X -9	Pollutant Reduction Benefits - Direct Dischargers - Rolling with Neat Oils Subcategory	1089
X- 10	Pollutant Reduction Benefits - Direct Dischargers -	1091
X-11	Rolling with Emulsions Subcategory Pollutant Reduction Benefits - Direct Dischargers -	1031
X 11	Extrusion Subcategory	1093
X-12	Pollutant Reduction Benefits - Direct Dischargers -	
	Drawing with Neat Oils Subcategory	1095
X-13	Pollutant Reduction Benefits - Direct Dischargers -	
	Drawing with Emulsions or Soaps Subcategory	1097

Section	<u>Title</u>	Page
X-14	Pollutant Reduction Benefits - Normal Plant -	
	Rolling with Neat Oils Subcategory	1099
X-15	Pollutant Reduction Benefits - Normal Plant - Rolling with Emulsions Subcategory	1100
X-16	Pollutant Reduction Benefits - Normal Plant -	
X-17	Extrusion Subcategory Pollutant Reduction Benefits - Normal Plant -	1101
	Forging Subcategory	1102
X-18	Pollutant Reduction Benefits - Normal Plant - Drawing with Neat Oils Subcategory	1103
X-19	Pollutant Reduction Benefits - Normal Plant -	1103
X-20	Drawing with Emulsions or Soaps Subcategory Rolling with Neat Oils Subcategory	1104
X-20	Treatment Performance - Normal Plant	1105
X-21	Rolling with Emulsions Subcategory Treatment Performance - Normal Plant	1106
X-22	Extrusion Subcategory Treatment	
X-23	Performance - Normal Plant Forging Subcategory Treatment Performance -	1107
	Normal Plant	1108
X-24	Drawing with Neat Oils Subcategory Treatment Performance - Normal Plants	1109
X-25	Drawing with Emulsions Subcategory	
X-26	Treatment Performance - Normal Plant TTO - Evaluation of Oil Treatment Effectiveness	1110
	on Toxics Removal	1111
X-27	Production Operations - Rolling with Neat Oils Subcategory	1112
X-28	BAT Mass Limitations for the Rolling with Neat	
X-29	Oils Subcategory Production Operations - Rolling with Emulsions	1113
W 20	Subcategory	1118
X-30	BAT Mass Limitations for the Rolling with Emulsions Subcategory	1119
X-31	Production Operations - Extrusion Subcategory	1122
X-32	BAT Mass Limitations for the Extrusion Subcategory	1123
X-33	Production Operations - Forging Subcategory	1127
X-34	BAT Mass Limitations for the Forging Subcategory	1128
X-35	Production Operations - Drawing with Neat Oils Subcategory	1131
X-36	BAT Mass Limitations for the Drawing with Neat	1121
	Oils Subcategory	1132
X-37	Production Operations - Drawing with Emulsions or Soaps Subcategory	1136
		0

<u>Section</u>	<u>Title</u>	<u>Page</u>
X-38	BAT Mass Limitations for the Drawing with Emulsions or Soaps Subcategory	1137
XI-1 XI-2 XI-3 XI-4 XI-5 XI-6	NSPS for the Rolling with Neat Oils Subcategory NSPS for the Rolling with Emulsions Subcategory NSPS for the Extrusion Subcategory NSPS for the Forging Subcategory NSPS for the Drawing with Neat Oils Subcategory NSPS for the Drawing with Emulsions or Soaps Subcategory	1151 1155 1158 1162 1165
XII-l	POTW Removals of the Toxic Pollutants Found in	
W 7 7 2	Aluminum Forming Wastewater	1180
XII-2	Capital and Annual Cost Estimates for BAT Options Indirect Dischargers (\$1982)	1182
XII-3	Pollutant Reduction Benefits - Indirect Dischargers - Rolling with Neat Oils Subcategory	1183
XII-4	Pollutant Reduction Benefits - Indirect Dischargers	1105
	- Rolling with Emulsions Subcategory	1185
XII-5	Pollutant Reduction Benefits - Indirect Dischargers - Extrusion Subcategory	1187
XII-6	Pollutant Reduction Benefits - Indirect Dischargers	
w	- Forging Subcategory	1189
XII-7	Pollutant Reduction Benefits - Indirect Dischargers - Drawing with Neat Oils Subcategory	1192
XII-8	Pollutant Reduction Benefits - Indirect Dischargers	1132
	- Drawing with Emulsions or Soaps Subcategory	1194
XII-9	PSES for the Rolling with Neat Oils Subcategory	1196
XII-10	PSES for the Rolling with Emulsions Subcategory	1200
XII-11	PSES for the Extrusion Subcategory	1203
XII-12	PSES for the Forging Subcategory	1207
XII-13	PSES for the Drawing with Neat Oils Subcategory	1210
XII-14	PSES for the Drawing with Emulsions or Soaps	1214
VII 16	Subcategory PSNS for the Rolliwg with Neat Oils Subcategory	1214
XII-15 XII-16	PSNS for the Rolling with Emulsions Subcategory	1219
XII-10 XII-17	PSNS for the Extrusion Subcategory	1225
XII-17 XII-18	PSNS for the Extrusion Subcategory	1229
XII-18	PSNS for the Drawing with Neat Oils Subcategory	1232
XII-19 XII-20	PSNS for the Drawing with Real Offs Subcategory PSNS for the Drawing with Emulsions or Soaps	. 252
AII 20	Subcategory	1236

F IGURES

Section	<u>Title</u>	Page
III-1	Aluminum Forming Products	122
III-2	Geographical Distribution of Aluminum Forming	
	Plants	123
III-3	Common Rolling Mill Configurations	124
III-4	Geographical Distribution of Plants with Hot or Cold Rolling	125
III - 5	Direct Extrusion	126
III-6	Geographical Distribution of Plants with Extrusion	127
III-7	Forging	128
III-8	Geographical Distribution of Plants with Forging	129
III - 9	Tube Drawing	130
III-10	Geographical Distribution of Plants with Tube, Wire,	
<u> </u>	Rod and Bar Drawing	131
III-11	Direct Chill Casting	132
III-12	Continuous Casting	133
III-13	Vapor Degreasing	134
V-1	Wastewater Sources at Plant A	516
V-2	Wastewater Sources at Plant B	517
V-3	Wastewater Sources at Plant C	518
V-4	Wastewater Sources at Plant D	519
V-5	Wastewater Sources at Plant E	520
V-6	Wastewater Sources at Plant F	521
V-7	Wastewater Sources at Plant G	522
V-8	Wastewater Sources at Plant H	523
V-9	Wastewater Sources at Plant J	524
V-10	Wastewater Sources at Plant K	525
V-11	Wastewater Sources at Plant L	526
V-12	Wastewater Sources at Plant N	527
V-13	Wastewater Sources at Plant P	528
V-14	Wastewater Sources at Plant Q	529
V-15	Wastewater Sources at Plant R	530
V-16	Wastewater Sources at Plant S	531
V-17	Wastewater Sources at Plant T	532
V-18	Wastewater Sources at Plant U	533
V-19	Wastewater Sources at Plant V	534
V-20	Wastewater Sources at Plant W	535
V-21	Wastewater Sources at Plant AA	536
V-22	Wastewater Sources at Plant BB	537
V-23	Wastewater Sources at Plant CC	538
V-24	Wastewater Sources at Plant DD	539
V-25	Wastewater Sources at Plant EE	540
VII-1	Comparative Solubilities of Metal Hydroxides	
	and Sulfide as a Function of pH	815
VII-2	Lead Solubility in Three Alkalies	816
VII-3	Effluent Zinc Concentration vs. Minimum Effluent pH	817
VII-4	Hydroxide Precipitation Sedimentation Effectiveness	
	-Cadmium	818

FIGURES (Continued)

Chromium	Section	<u>Title</u>		
VII-6	VI I-5	Hydroxide Precipitation Sedimentation Effectiveness		
Copper	_		819	
VII-7 - Lead VII-8 Hydroxide Precipitation Sedimentation Effectiveness - Nickel and Aluminum 822 VII-9 Hydroxide Precipitation Sedimentation Effectiveness - Nickel and Aluminum 823 VII-10 Hydroxide Precipitation Sedimentation Effectiveness - Zinc VII-10 Hydroxide Precipitation Sedimentation Effectiveness - Iron VII-11 Hydroxide Precipitation Sedimentation Effectiveness - Manganese - Manganese - TSS VII-12 Hydroxide Precipitation Sedimentation Effectiveness - TSS VII-13 Hexavalent Chromium Reduction with Sulfur Dioxide VII-14 Granular Bed Filtration S28 VII-15 Pressure Filtration 829 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 832 VII-21 UV/Ozonation 334 VII-21 UV/Ozonation 345 VII-22 Types of Evaporation Equipment 340 VII-24 Gravity Thickening VII-25 Ion Exchange with Regeneration 837 VII-27 Reverse Osmosis Membrane Configurations 841 VII-29 Simplified Reverse Osmosis Schematic VII-20 Simplified Reverse Osmosis Schematic VII-21 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-34 Flow Diagram for Emulsion Breaking with Chemicals System VII-35 Flow Diagram for a Batch Treatment Ultrafiltration System VII-36 VII-37 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks)	VII-6	-	820	
VII-8 Hydroxide Precipitation Sedimentation Effectiveness - Nickel and Aluminum Wilr-9 Hydroxide Precipitation Sedimentation Effectiveness - Zinc VII-10 Hydroxide Precipitation Sedimentation Effectiveness - Iron WII-11 Hydroxide Precipitation Sedimentation Effectiveness - Iron WII-12 Hydroxide Precipitation Sedimentation Effectiveness - Manganese VII-12 Hydroxide Precipitation Sedimentation Effectiveness - TSS 826 VII-13 Hexavalent Chromium Reduction with Sulfur Dioxide VII-14 Granular Bed Filtration 829 VII-15 Pressure Filtration 820 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 832 VII-21 UV/Ozonation VII-21 UV/Ozonation VII-22 Types of Evaporation Equipment 834 VII-23 Dissolved Air Flotation VII-24 Gravity Thickening VII-25 Ion Exchange with Regeneration Simplified Reverse Osmosis Schematic 840 VII-29 Simplified Reverse Usmosis Schematic 841 VII-29 Simplified Ultrafiltration Flow Schematic 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Typical Ozone 847 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 847 VII-32 Filter Configurations 848 VII-34 Flow Diagram for Batch Treatment Ultrafiltration 858 VII-35 Flow Diagram for Activated Carbon Adsorption with 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-7	Hydroxide Precipitation Sedimentation Effectiveness	821	
VII-9	VII-8	Hydroxide Precipitation Sedimentation Effectiveness		
VII-10	VII-9	Hydroxide Precipitation Sedimentation Effectiveness		
VII-11 Hydroxide Precipitation Sedimentation Effectiveness - Manganese 825 VII-12 Hydroxide Precipitation Sedimentation Effectiveness - TSS 826 VII-13 Hexavalent Chromium Reduction with Sulfur Dioxide 827 VII-14 Granular Bed Filtration 828 VII-15 Pressure Filtration 829 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-29 Simplified Ultrafiltration Flow Schematic 842 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 847 VII-35 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-10	Hydroxide Precipitation Sedimentation Effectiveness		
VII-12	VII-11	w =		
TSS	VII-12		825	
Dioxide 827 VII-14 Granular Bed Filtration 828 VII-15 Pressure Filtration 829 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851		- TSS	826	
VII-14 Granular Bed Filtration 828 VII-15 Pressure Filtration 829 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32	V11-13		827	
VII-15 Pressure Filtration 829 VII-16 Representative Types of Sedimentation 830 VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 847 VII-35 Flow Diagram for Recycling with a Cooling Tower 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-14	· · · · · · · · ·		
VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 847 VII-35 Flow Diagram for Recycling with a Cooling Tower 850 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-15			
VII-17 Activated Carbon Adsorption Column 831 VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 847 VII-35 Flow Diagram for Recycling with a Cooling Tower 850 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-16	Representative Types of Sedimentation		
VII-18 Centrifugation 832 VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 847 VII-35 Flow Diagram of Activated Carbon Adsorption with 848 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-17			
VII-19 Treatment of Cyanide Waste by Alkaline Chlorination 833 VII-20 Typical Ozone Plant for Waste Treatment 834 VII-21 UV/Ozonation 835 VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 848 VII-35 Flow Diagram of Activated Carbon Adsorption with 848 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-18			
VII-20 Typical Ozone Plant for Waste Treatment VII-21 UV/Ozonation VII-22 Types of Evaporation Equipment VII-23 Dissolved Air Flotation VII-24 Gravity Thickening VII-25 Ion Exchange with Regeneration VII-26 Simplified Reverse Osmosis Schematic VII-27 Reverse Osmosis Membrane Configurations VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 838 849 849 849				
VII-21 UV/Ozonation VII-22 Types of Evaporation Equipment VII-23 Dissolved Air Flotation VII-24 Gravity Thickening VII-25 Ion Exchange with Regeneration VII-26 Simplified Reverse Osmosis Schematic VII-27 Reverse Osmosis Membrane Configurations VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 835 836 837 837 838 837 838 839 840 841 842 843 844 845 845 846 847 847 848 848 848 849 849 849	VII-20			
VII-22 Types of Evaporation Equipment 836 VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 848 VII-35 Flow Diagram of Activated Carbon Adsorption with 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851				
VII-23 Dissolved Air Flotation 837 VII-24 Gravity Thickening 838 VII-25 Ion Exchange with Regeneration 839 VII-26 Simplified Reverse Osmosis Schematic 840 VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed 842 VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 848 VII-35 Flow Diagram of Activated Carbon Adsorption with 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-22	·		
VII-24 Gravity Thickening VII-25 Ion Exchange with Regeneration VII-26 Simplified Reverse Osmosis Schematic VII-27 Reverse Osmosis Membrane Configurations 841 VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 839 840 841 842 842 843 844 845 845 846 847 847 848 848 848 848 848 849 849 849 849 849	VII-23			
VII-26 Simplified Reverse Osmosis Schematic VII-27 Reverse Osmosis Membrane Configurations VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 840 841 842 842 843 844 845 845 846 847 847 848	VII-24	Gravity Thickening	838	
VII-26 Simplified Reverse Osmosis Schematic VII-27 Reverse Osmosis Membrane Configurations VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 840 841 842 842 843 844 845 845 846 847 847 848	VII-25	Ion Exchange with Regeneration	839	
VII-28 Sludge Drying Bed VII-29 Simplified Ultrafiltration Flow Schematic VII-30 Vacuum Filtration VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 842 843 844 845 845 845 846 847 847 848	VII-26	Simplified Reverse Osmosis Schematic	840	
VII-29 Simplified Ultrafiltration Flow Schematic 843 VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration 848 VII-35 Flow Diagram of Activated Carbon Adsorption with 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-27	Reverse Osmosis Membrane Configurations	841	
VII-30 Vacuum Filtration 844 VII-31 Flow Diagram for Emulsion Breaking with Chemicals 845 VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-28	Sludge Drying Bed	842	
VII-31 Flow Diagram for Emulsion Breaking with Chemicals VII-32 Filter Configurations VII-33 Gravity Oil-Water Separation VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration VII-36 Flow Diagram for Recycling with a Cooling Tower VII-37 Counter Current Rinsing (Tanks) 845 845 846 847 848 848 848	VII-29		843	
VII-32 Filter Configurations 846 VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-30			
VII-33 Gravity Oil-Water Separation 847 VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-31		845	
VII-34 Flow Diagram for a Batch Treatment Ultrafiltration System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-32	Filter Configurations	846	
System 848 VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-33	Gravity Oil-Water Separation	847	
VII-35 Flow Diagram of Activated Carbon Adsorption with Regeneration 849 VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-34		848	
VII-36 Flow Diagram for Recycling with a Cooling Tower 850 VII-37 Counter Current Rinsing (Tanks) 851	VII-35	Flow Diagram of Activated Carbon Adsorption with		
VII-37 Counter Current Rinsing (Tanks) 851	VII-36			
\mathcal{L}				
	VII-38	Effect of Added Rinse Stages on Water Use		

xvi

FIGURES (Continued)

Section	<u>Title</u>	Page
VII-39	Schematic Diagram of Spinning Nozzle Aluminum	
	Refining Process	853
VIII-1	Costs of Oil Skimming (Pre-Proposal)	928
VIII-2	Costs of Chemical Emulsion Breaking	
	(Pre-Proposal)	929
VIII-3	Costs of Dissolved Air Flotation (Pre-Proposal)	930
VIII-4	Costs of Thermal Emulsion Breaking (Pre-Proposal)	931
VIII-5	Costs of Multimedia Filtration (Pre-Proposal)	932
VIII-6	Costs of pH Adjustment with Acid (Pre-Proposal)	933
VIII-7	Costs of pH Adjustment with Caustic (Pre-Proposal)	934
VIII-8	Costs of Lime and Settle (Pre-Proposal)	935
VIII-9	Costs of Chromium Reduction (Pre-Proposal)	936
VIII-10	Costs of Cyanide Oxidation (Pre-Proposal)	937
VIII-11	Costs of Activated Carbon Adsorption (Pre-Proposal)	938
VIII-12	Costs of Vacuum Filtration (Pre-Proposal)	939
VIII-13	Costs of Contract Hauling (Pre-Proposal)	940
VIII-14	Costs of Flow Equalization (Pre-Proposal)	941
VIII-15	Costs of Pumping (Pre-Proposal)	942
VIII-16	Costs of Holding Tanks (Pre-Proposal)	943
VIII-17	Costs of Recycling (Pre-Proposal)	944
VIII-18	General Logic Diagram of Computer Cost Model	945
VIII-19	Logic Diagram of Module Design Procedure	946
VIII-20	Logic Diagram of the Costing Routine	947
VIII-21	Costs of Chemical Precipitation and Gravity	
	Settling (Post-Proposal)	948
VIII-22	Costs of Vacuum Filtration (Post-Proposal)	949
VIII-23	Costs of Flow Equalization (Post-Proposal)	950
VIII-24	Costs of Cartridge/Multimedia Filtration	
	(Post-Proposal)	951
VIII-25	Costs of Chemical Emulsion Breaking (Post-	
	Proposal)	952
VIII-26	Costs of Oil Skimming (Post-Proposal)	953
VIII-27	Costs of Chromium Reduction (Post-Proposal)	954
VIII-28	Costs of Recycling via Cooling Towers/Holding Tanks (Post-Proposal)	955
VIII-29	Cost of Countercurrent Cascade Rinsing (Post-Proposal)	956
VIII-30	Costs of Contract Hauling (Post-Proposal)	957
TX-1	BPT Treatment Train for the Rolling with Neat Oils	

xvii

•

FIGURES (Continued)

Section	<u>Title</u>	<u>Page</u>
	Subcategory	1043
IX-2	BPT Treatment Train for the Rolling with Emulsions Subcategory	1044
IX-3	BPT Treatment Train for the Extrusion Subcategory	1045
IX-4	BPT Treatment Train for the Forging Subcategory	1046
IX-5	BPT Treatment Train for the Drawing with Neat Oils Subcategory	1047
IX-6	BPT Treatment Train for the Drawing with Emulsions or Soaps Subcategory	1048
		1141
X-1	BAT Treatment Train for Option 1	1141
X-2	BAT Treatment Train for Option 2	1142
X-3	BAT Treatment Train for Option 3	1143
X-4	BAT Treatment Train for Option 4	1144
X-5	BAT Treatment Train for Option 5	1145
X-6	BAT Treatment Train for Option 6	1146

xviii

•

SECTION I

SUMMARY AND CONCLUSIONS

Pursuant to Sections 301, 304, 306, 307, 308, and 501 of the Clean Water Act and the Settlement Agreement in Natural Resources Defense Council v. Train 8 ERC 2120 (D.D.C. 1976) modified 12 ERC 1833 (D.D.C. 1979), modified by orders dated October 26, 1982 and August 2, 1983, EPA has collected and analyzed data for plants in the Aluminum Forming Point Source Category. There are no existing effluent limitations or performance standards for this industry. This document and the administrative record provide effluent the technical basis for promulgating limitations guidelines for existing direct dischargers, pretreatment standards for new and existing indirect dischargers, standards of performance for new source direct dischargers.

Summary of the Category

Two hundred seventy-one plants employing approximately 31,200 people comprise this category. Of the 271 plants, 59 discharge directly to rivers, lakes, or streams; 72 discharge to publicly owned treatment works (POTW); and 140 do not discharge process Most of the zero discharge plants employ a combinawastewater. tion of forming and ancillary operations which do not generate process wastewater. The aluminum forming category has a total production estimated at 5,000,000 kkg (5,500,000 tons) per year, with individual production ranging from less than 10 kkg (22,000 pounds) to more than 259,000 kkg (570 million pounds) per year. Aluminum forming processes are those manufacturing operations in which aluminum or aluminum alloys are shaped into semi-finished or mill products by hot and cold working. These operations, called core operations, include rolling, extruding, forging, and drawing of aluminum. Associated processes, called ancillary operations, are practiced to achieve desired aluminum product characteristics or finishes, and include the casting of aluminum alloys for subsequent forming, heat treatment, and all surface treatment operations performed as an integral part of aluminum forming (called cleaning or etching).

Products manufactured by aluminum forming operations generally serve as stock for subsequent fabricating operations. Cast ingots and billets are the starting point for making sheet and plate, extrusions, and forgings, as well as rod, for use in drawing operations. Rolled aluminum sheet and plate can be used as stock for stampings, can blanks, and roll formed products. Extrusions can be used as raw stock for forging and drawing; to fabricate final products, such as bumpers, window frames, and light standards; or can be sold as final products. Forgings are

1

either sold as consumer products or as parts in the production of machinery, aircrafts, and engines.

Pollutants found in significant amounts in aluminum forming waste streams include: cadmium, chromium, copper, lead, nickel, selenium, zinc, and aluminum, oil and grease, suspended solids, cyanide, and specific toxic organics.

The Agency developed a data collection portfolio (dcp) to collect information regarding plant size, age, production, the production processes used, the quantity of process wastewater used and discharged, wastewater treatment in-place, and disposal practices at plants practicing aluminum forming. The dcp's were sent to 580 firms known or believed to perform aluminum forming; 95 percent of these firms responded.

EPA sampled the raw (untreated) and treated process wastewater at aluminum forming plants. Screen sampling was performed at four facilities, each representing one of the core processes. Samples were collected from wastewater sources associated with the core processes, as well as any associated processes, including cleaning, etching, solution heat treatment, annealing, and other wastewater streams. Each of the samples was analyzed to determine the presence or absence, and if present, the concentration of 129 toxic priority pollutants, plus conventional selected nonconventional pollutants. The remaining 21 plants were sampled to verify the findings of the screen sampling to determine flow characteristics of a number of waste streams commonly associated with aluminum forming, strengthen the data base.

The Agency examined the rate of production and wastewater generation reported in the dcp's for each aluminum forming operation. These data combined with the wastewater characteristics deterduring sampling became the principal bases for subcategorizing this category. Based on these data, the most appropriate to subcategorizing this category is by the major manuapproach facturing processes. In addition, a review of the use of lubriin rolling and drawing showed that these operations needed to be segmented according to whether neat oils or soaps and emulsions are used. A neat oil is a pure oil which when spent of its lubricating properties, can be hauled to an oil reclaimer or used as fuel in the plant. Emulsions and soaps are mixtures of and water. When these lubricants are spent, plants can contract haul them to a disposal site, or treat them to remove the oil and discharge or reuse the water. The aluminum forming category is subcategorized based on manufacturing processes and wastewater characteristics, resulting in six subcategories: rolling with neat oils, rolling with emulsions, extrusion, forging, drawing with neat oils, and drawing with emulsions or soaps.

Each subcategory is divided into two segments. The individual core operations listed previously comprise the first segment of each subcategory. The core operations also include operations that may be found in conjunction with the forming process or are present at every facility. Some of the operations included in the core do not discharge wastewater. The effluent flow from the core operations for each of the subcategories is production normalized or related to the mass of aluminum processed through the forming operation, and the limitations at BPT and BAT are based on the production normalized flow and the treatment effectiveness.

second segment of each subcategory consists of the ancillary operations that generate wastewater and when practiced are an integral part of the aluminum forming process. These ancillary operations, such as solution heat treatment, cleaning or etching, and casting, are practiced to achieve desired characteristics or finishes on the aluminum products and can be characterized by the generation of large volumes of wastewater. Because they are not found at every plant in a subcategory and they are not unique to a specific subcategory, they are not included in the core. Instead, a separate limitation is proposed for the waste streams generated by these ancillary operations and normalized by the mass of aluminum processed through the ancillary operation. An aluminum forming plant would be permitted to discharge pollutants equivalent to the sum of the limitations established for the core and the ancillary operation(s) practiced at the plant.

Using the subcategories to study the characteristics of the untreated wastewater, EPA identified several distinct control and treatment technologies (both in-plant and end-of-pipe) for use in treating the pollutants found in aluminum forming wastewaters. The following end-of-pipe technologies were selected for study by the Agency:

- Chemical precipitation and sedimentation (lime and settle),
- Oil skimming,
- Chromium reduction,
- Cyanide oxidation or precipitation,
- Multimedia filtration,
- Carbon adsorption,
- Reverse osmosis,

- Chemical emulsion breaking, and
- Thermal emulsion breaking.

EPA also studied various types of in-plant controls reported in the dcp's and observed during sampling. The in-plant controls studied included:

- Recycle of contact cooling water and scrubber liquor,
- Countercurrent cascade rinsing,
- Hauling or regeneration of chemical baths for cleaning or etching,
- Alternative fluxing and degassing methods which do not require wet scrubbing, and
- Recycle of extrusion press hydraulic fluid leakage.

Engineering costs were prepared for each of the treatment options considered for each plant in the category. These costs were then used by the Agency to estimate the impact of implementing the various options on the industry. For each subcategory for each control and treatment option, the number of potential closures, number of employees affected, and impact on price were estimated. These results are reported in the EPA document titled: Economic Impact Analysis of Effluent Limitations and Standards for the Aluminum Forming Industry EPA 440/2-83-010.

Based on consideration of the above factors, EPA identified various control and treatment technologies which formed the basis for BPT and selected control and treatment appropriate for each set of standards and limitations. The mass limitations and standards for BPT, BAT, NSPS, PSES, and PSNS are presented in Section II. The limitations and standards are discussed briefly below.

BPT

In general, the BPT level represents the average of the best existing performances of plants of various ages, sizes, processes or other common characteristics. Where existing performance is uniformly inadequate, BPT may be transferred from a different subcategory or category. In balancing costs in relation to effluent reduction benefits, EPA considers the volume and nature of existing discharges, the volume and nature of discharges expected after application of BPT, the general environmental

À

effects of the pollutants, and cost and economic impact of the required pollution control level.

EPA is promulgating BPT mass limitations based on model end-of-pipe treatment, which consists of oil skimming and lime precipitation and settling, and, where necessary, preliminary treatment consisting of chemical emulsion breaking, and hexavalent chromium reduction. Cyanide removal, where appropriate, is also included in the model BPT technology. The cyanide limitations are based on the application of cyanide precipitation technology which is transferred from the coil coating category. However, the Agency recommends product substitution as the most effective means of cyanide control.

The pollutants selected for limitation at BPT are: chromium, cyanide, zinc, aluminum, oil and grease, total suspended solids (TSS), and pH.

Fifty-nine plants are direct dischargers. The Agency estimates investment costs in 1982 dollars for these plants would be \$48.4 million and that total annual costs would be \$37.9 million. Removal of toxic pollutants over estimates of current removals would be 94,250 kg/yr (207,350 lbs/yr). In addition, BPT will result in the removal of 15.6 million kg/yr (34.3 million lbs/yr) of total pollutants including 1.73 million kg/yr (3.80 million lbs/yr) of the pollutant aluminum. The analysis of econ impact concluded that there are two potential plant closures The analysis of economic 221 job losses associated with compliance with the BPT treatment Total loss in industry production is expected to be percent, with the cost of production increasing by 0.1 about 0.3 percent. If average compliance costs incurred by the plants in the category were passed on to consumers, price increases would range from 0 to 0.7 percent. The Agency has determined that the effluent reduction benefits associated with compliance with BPT limitations justify the costs.

BAT

The BAT technology level represents the best economically achievable performance of plants of various ages, sizes, processes or other shared characteristics. As with BPT, where existing performance is uniformly inadequate, BAT may be transferred from a different subcategory or category. BAT may include feasible process changes or internal controls, even when not common industry practice.

In developing BAT, EPA has given substantial weight to the reasonableness of costs. The Agency considered the volume and nature of discharges, the volume and nature of discharges expected after application of BAT, the general environmental

effects of the pollutants, and the costs and economic impacts of the required pollution control levels. Despite this consideration of costs, the primary determinant of BAT is still effluent reduction capability.

The direct dischargers are expected to move directly to compliance with BAT limitations from existing treatment because the flow reduction used to meet BAT limitations would allow the use of smaller -- and less expensive -- lime and settle equipment than would be used to meet BPT limitations without flow reduction.

The pollutants selected for regulation at BAT are: chromium, cyanide, zinc, and aluminum.

Implementation of the BAT limitations will remove annually an estimated 124,500 kg (273,900 lbs) of toxic metal and organic pollutants (from estimated current discharge) at a capital cost, above equipment in place, of \$48.2 million and a total annual cost of \$25.1 million (\$1982).

BAT will remove 16,000 kg/yr (35,200 lb/yr) of toxic pollutants (metals and organics) and 19,400 kg/yr (42,680 lb/yr) of the pollutant aluminum incrementally above BPT. Total annual costs for BAT are less than BPT because the lower flows allow for smaller equipment and thereby smaller operating and maintenance costs. The Agency projects no additional plant or line closures as a result of these costs. If the average compliance cost incurred by the plants in the industry were passed on to consumers, price increases would range from 0 to 0.8; not significantly greater than the BPT increases. Thus EPA has determined that BAT is economically achievable.

NSPS

NSPS (new source performance standards) are based on the best available demonstrated technology (BDT), including process changes, in-plant control, and end-of-pipe treatment technologies which reduce pollution to the maximum extent feasible.

EPA is establishing the best available demonstrated technology for the aluminum forming category to be equivalent to BAT technology with the addition of filtration prior to discharge. The Agency recognizes that new sources have the opportunity to implement more advanced levels of treatment without incurring the costs of retrofitting equipment, the costs of partial or complete shutdown to install new equipment and the costs to start up and stabilize the treatment system as existing systems would have to do.

ċ

Filtration is an appropriate technology for NSPS because it is demonstrated in this category and because compliance with NSPS will be approximately the same as the cost for an existing plant to comply with the BAT limitations. EPA does not believe that NSPS will constitute a barrier to entry for new sources, prevent major modifications to existing sources, or produce other adverse economic effects.

The pollutants selected for regulation are: chromium, cyanide, zinc, aluminum, oil and grease, TSS, and pH.

All of the flow allowances established for NSPS are equivalent to the BAT allowances with the exception of extrusion press hydraulic fluid leakage. The NSPS flow allowance is based on reported flow data from extrusion presses designed and built to allow for the recirculation of the hydraulic fluid leakage.

PSES

PSES (pretreatment standards for existing sources) are designed to prevent the discharge of pollutants which pass through, interfere with, or are otherwise incompatible with the operation of POTW. Pretreatment standards are technology-based and analogous to the best available technology for removal of toxic pollutants. EPA is promulgating PSES based on the application of technology equivalent to BAT, which consists of end-of-pipe treatment comprised of oil skimming and lime precipitation and settling, and preliminary treatment, where necessary, consisting of hexavalent chromium reduction, chemical emulsion breaking, and cyanide removal.

In the aluminum forming category, the Agency has concluded that the toxic metals regulated under these standards (chromium, cyanide, and zinc) pass through the POTW. The nationwide average percentage of these same toxic metals removed by a well operated POTW meeting secondary treatment requirements is about 50 percent (ranging from 20 to 65 percent), whereas the percentage that can be removed by an aluminum forming direct discharger applying the best available technology economically achievable is about 91 percent (ranging from 79 to 97 percent). Accordingly, these pollutants pass through a POTW and are being regulated at PSES.

In addition to pass through of toxic metals, the Agency has determined that there would be pass through of toxic organic pollutants associated with oil waste streams. The PSES technology will remove 97 percent of the toxic organics, whereas the POTW national average removal of these same toxic organics by a well operated POTW meeting secondary treatment requirements is 71 percent. At BAT, the Agency has determined that toxic organics will be adequately controlled by the oil and grease limitation.

Oil and grease standards are not appropriate at PSES and therefore it is necessary to specifically control toxic organics at PSES. Toxic organics are regulated as total toxic organics (TTO) which is all those toxic organics that were found to be present in sampled aluminum forming wastewaters at concentrations greater than the analytical quantification level of 0.01 mg/l.

The analysis of wastewaters for toxic organics is costly and requires sophisticated equipment, therefore the Agency has retained the alternative to monitoring for TTO that was proposed. Data indicate that the toxic organics are much more soluble in oil and grease than in water and that the removal of the oil and grease will substantially remove the toxic organics. Therefore, a monitoring parameter for oil and grease based on the application of oil and grease removal has been provided as an alternative to monitoring for TTO at PSES.

The PSES set forth in this regulation are expressed in terms of mass per unit of production rather than as concentration standards. Regulation on the basis of concentration only is not appropriate because concentration-based standards do not restrict the total quantity of pollutants discharged. Flow reduction is a significant part of the model technology for pretreatment because it results in more concentrated waste streams which further result in more effective pollutant removal. Thus, mass based standards are necessary to reflect the pollutant removal achievable by the model treatment technology.

The pollutants selected for regulation are: chromium, cyanide, zinc, and TTO. Aluminum is not limited because aluminum is commonly used by a POTW as a flocculant to aid in the settling and removal of suspended solids.

Implementation of the PSES will remove annually an estimated 119,500 kg (263,000 lbs) of toxic metal and organic pollutants (from estimated current discharge) at a capital cost, above equipment in place, of \$26.1 million and a total annual cost of \$16.7 million (\$1982). The Agency's estimate of potential plant closures indicates that there are three potential closures associated with PSES. In terms of employment, these potential closures could affect approximately 276 employees. Total loss in industry production is expected to be about 0.2 percent, with the cost of production increasing about 1 percent. Therefore, the Agency has determined that PSES is economically achievable.

The Agency has set the PSES compliance date at three years after promulgation of this regulation.

PSNS

Like PSES, PSNS (pretreatment standards for new sources) are established to prevent the discharge of pollutants which pass-through, interfere with, or are otherwise incompatible with the operation of the POTW. New indirect dischargers, like new direct dischargers, have the opportunity to incorporate the best available demonstrated technologies including process changes, in-plant controls, and end-of-pipe treatment technologies, and to use plant site selection to ensure adequate treatment system installation.

This regulation establishes mass-based PSNS for the aluminum forming category. The treatment technology basis for the PSNS being promulgated is identical to the treatment technology set forth as the basis for the NSPS being promulgated.

The pollutants regulated under PSNS are chromium, cyanide, zinc, and TTO. Aluminum is not limited because aluminum, in its hydroxide form, is commonly used by a POTW as a flocculant to aid in the settling and removal of suspended solids. Monitoring for oil and grease has been established as an alternative to monitoring for TTO as discussed under PSES.

Nonwater Quality Environmental Impacts

Eliminating or reducing one form of pollution may cause other environmental problems. Sections 304(b) and 306 of the Act require EPA to consider the nonwater quality environmental impacts (including energy requirements) of certain regulations. In compliance with these provisions, we considered the effect of this regulation on air pollution, solid waste generation, water scarcity, and energy consumption. This regulation was circulated for review by EPA personnel responsible for nonwater quality programs. While it is difficult to balance pollution problems against each other and against energy use, we believe that this regulation will best serve often competing national goals.

The Agency considered the solid wastes that would be generated at aluminum forming plants by the suggested treatment technologies and believes that except for the sludges generated by the treatment of cyanide, these sludges are not hazardous under Section 3001 of the Resource Conservation and Recovery Act (RCRA). This judgement is made based on the recommended technology of lime precipitation. By the addition of a small excess of lime during treatment, similar sludges, specifically toxic metal bearing sludges generated by other categories such as the iron and steel category, passed the EP toxicity test. See 40 CFR 261.24 (45 FR 33084 (May 19, 1980)).

Only wastewater treatment sludge generated by cyanide precipitation technology is likely to be hazardous under the regulations implementing subtitle C of the Resource Conservation and Recovery Act (RCRA). Under those regulations generators of these wastes must test the wastes to determine if the wastes meet any of the 262.11, 45 characteristics of hazardous waste (see 40 CFR 33142-33143, May 19, 1980). Wastewater sludge generated by cvanide precipitation treatment of aluminum forming solution heat treatment contact cooling water may contain cyanides and may exhibit extraction procedure (EP) toxicity. Therefore, these wastes may require disposal as a hazardous waste. Wastewater treatment sludge from cyanide precipitation of a process waste stream is generated separately from lime and settle sludge and may be disposed of separately.

Treatment and control technologies that require recycling and reuse of water may require cooling mechanisms. Evaporative cooling mechanisms can cause water loss and contribute to water scarcity problems--a primary concern in arid and While this regulation assumes water reuse, semi-arid regions. the overall amount of reuse through evaporative cooling mechanlow and the quantity of water involved is not significant. In addition, most aluminum forming plants are located the Mississippi where water scarcity is not a problem. conclude that the consumptive water loss is insignificant and that the pollution reduction benefits of recycle technologies outweigh their impact on consumptive water loss.

EPA estimates that the achievement of BPT effluent limitations will result in a net increase in electrical energy consumption of approximately 65 million kilowatt-hours per year. effluent technology should not substantially increase the energy requirements of BPT because reducing the flow reduces the pumping the agitation requirement for mixing wastewater, requirements, and other volume-related energy requirements. Therefore, the BAT limitations are assumed to require an equivalent energy consumption to that of the BPT limitations. To achieve the BPT and BAT effluent limitations, a typical direct discharger will increase energy consumption by less than one percent of the energy consumed for production purposes.

The Agency estimates that PSES will result in a net increase in electrical energy consumption of approximately 50 million kilowatt-hours per year. To achieve PSES, a typical existing indirect discharger will increase energy consumption by less than one percent of the total energy consumed for production purposes.

NSPS and PSNS will not significantly add to total energy consumption of the industry. A normal plant for each subcategory was used to estimate the energy requirements for new sources. A new

source wastewater treatment system will add approximately one million kilowatt-hours per year to the total industry energy requirements.

SECTION II

RECOMMENDATIONS

- 1. EPA has divided the aluminum forming category into six subcategories for the purpose of effluent limitations and standards. These subcategories are:
 - Rolling With Neat Oils
 - Rolling With Emulsions
 - Extrusion
 - Forging
 - Drawing With Neat Oils
 - Drawing With Emulsions or Soaps

Each subcategory is regulated by core and ancillary operations. The core is composed of those operations that always occur with the subcategory or are dry operations. Operations not included in the core are classified as ancillary operations and may or may not be present at any one facility.

2. BPT is being promulgated based on the model treatment technology of flow equalization, oil skimming, and chemical precipitation and sedimentation (lime and settle) technology, and where appropriate, chemical emulsion breaking, chromium reduction, and cyanide removal. The following BPT effluent limitations are being promulgated for existing sources:

- A. BPT MASS LIMITATIONS FOR THE ROLLING WITH NEAT OILS SUBCATEGORY
- (a) Rolling with Neat Oils Core Waste Streams Without An Annealing Furnace Scrubber

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum ro	lled with neat oils
Chromium	0.0244	0.010
Cyanide	0.0161	0.0067
Zinc	0.0808	0.0338
Aluminum	0.356	0.174
Oil & Grease	1.11	0.664
Total Suspended Solids	2.27	1.079
РН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (b) Rolling With Neat Oils Core Waste Streams With An Annealing Furnace Scrubber

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum rolled	d with neat oils
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.0360 0.0237 0.119 0.525 1.634 3.348	0.0147 0.0098 0.0498 0.257 0.980 1.593

(c) Continuous Sheet Casting - Spent Lubricant

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum cast	by continuous
Chromium	0.00086	0.00035
Cyanide	0.00057	0.00024
Zinc	0.0029	0.0012
Aluminum	0.0127	0.0063
Oil & Grease	0.0393	0.0236
Total Suspended Solids	0.0805	0.0383
pH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Solution Heat Treatment Contact Cooling Water

Pollutant	or	Maximum for	Maximum	for
Pollutant	Property	Any One Day	Monthly	Average
mg/off-kg	(lb/million	off-lbs) of aluminum	quenched	
Chromium		3.39	1.39	
Cyanide		2.24	0.93	
7 inc		11.25	4.70	

 Cyanide
 2.24
 0.93

 Zinc
 11.25
 4.70

 Aluminum
 49.55
 24.66

 Oil & Grease
 154.10
 92.46

 Total Suspended Solids
 315.91
 150.25

 pH
 (1)
 (1)

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million off	-lbs) of aluminum c	leaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.262	0.110
Aluminum	1.15	0.573
Oil & Grease	3.58	2.15
Total Suspended Solids	7.34	3.49
pН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Rinse

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million o	ff-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum Oil & Grease	6.12 4.04 20.31 89.46 278.24	2.51 1.67 8.49 44.52 166.95
Total Suspended Solids pH	570.39 (1)	271.29 (1)

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	7.00	2.86
Cyanide	4.61	1.91
Zinc	23.22	9.70
Aluminum	102.24	50.88
Oil & Grease	318.00	190.80
Total Suspended Solids	651.90	310.05
рН	(1)	(1)

- (a) Within the range of 7.0 to 10.0 at all times.
- B. BPT MASS LIMITATIONS FOR THE ROLLING WITH EMULSIONS SUBCATEGORY
- (a) Rolling With Emulsions Core Waste Streams

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum rol	led with emulsions
Chromium	0.057	0.024
Cyanide	0.038	0.016
Zinc	0.19	0.079
Aluminum	0.84	0.416
Oil & Grease	2.60	1.56
Total Suspended Solids	5.33	2.53
рН	(1)	(1)

(b) Direct Chill Casting - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum Monthly	for Average
mg/off-kg (lb/million methods	off-lbs) of aluminum cast	by direct	chill
Chromium	0.59	0.24	
Cyanide	0.39	0.16	
Zinc	1.94	0.81	
Aluminum	8.55	4.26	
Oil & Grease	26.58	15.95	
Total Suspended Solids	54.49	25.92	
рН	(1)	(1)	

- (1) Within the range of 7.0 to 10.0 at all times.
- (c) Solution Heat Treatment Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average	
mg/off-kg (lb/million off-lbs) of aluminum quenched			
Chromium	3.39	1.39	
Cyanide	2.24	0.93	
Zinc	11.25	4.70	
Aluminum	49.55	24.66	
Oil & Grease	154.10	92.46	
Total Suspended Solids	315.91	150.25	
рH	(1)	(1)	

(d) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million off	-lbs) of aluminum c	leaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.262	0.109
Aluminum	1.15	0.573
Oil & Grease	3.58	2.15
Total Suspended Solids	7.34	3.49
Hq	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (e) Cleaning or Etching Rinse

		
Pollutant or	Maximum for	Maximum for
Pollutant_Property	Any One Day	Monthly Average
mg/off-kg (lb/million o	ff-lbs) of aluminum	cleaned or etched
Chromium	6.12	2.51
Cyanide	4.04	1.67
Zinc	20.31	8.49
Aluminum	89.46	44.52
Oil & Grease	278.24	166.95
Total Suspended Solids	570.39	271.29
Hq	(1)	(1)

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	7.00	2.86
Cyanide	4.61	1.91
Zinc	23.22	9.70
Aluminum	102.24	50.88
Oil & Grease	318.00	190.80
Total Suspended Solids	651.90	310.05
pН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- C. BPT MASS LIMITATIONS FOR THE EXTRUSION SUBCATEGORY
- (a) Extrusion Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million of	f-lbs) of aluminum e	xtruded
Chromium	0.16	0.066
Cyanide	0.11	0.044
Zinc	0.53	0.22
Aluminum	2.34	1.16
Oil & Grease	7.32	4.39
Total Suspended Solids	15.0	7.13
На	(1)	(1)

(b) Direct Chill Casting - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum Monthly	for Average
mg/off-kg (lb/million omethods	off-lbs) of aluminum cas	t by direct	chill
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.59 0.39 1.94 8.55 26.58 60.60	0.24 0.16 0.81 4.26 15.95 25.92 (1)	

- (1) Within the range of 7.0 to 10.0 at all times.
- (c) Solution and Press Heat Treatment Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million o	ff-lbs) of aluminum	quenched
Chromium	3.39	1.39
Cyanide	2.24	0.93
Zinc	11.25	4.70
Aluminum	49.55	24.66
Oil & Grease	154.10	92.46
Total Suspended Solids	315.91	150.25
pH	(1)	(1)

(d) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.26	0.109
Aluminum	1.15	0.573
Oil & Grease	3.58	2.15
Total Suspended Solids pH	7.34	3 .4 9 (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (e) Cleaning or Etching Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	6.12	2.51
Cyanide	4.04	1.67
Zinc	20.31	8.49
Aluminum	89.46	44.52
Oil & Grease	278.24	166.95
Total Suspended Solids	570.39	271.29
рH	(1)	(1)

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	7.00	2.86
Cyanide	4.61	1.9!
Zinc	23.22	9.70
Aluminum	102.24	50.88
Oil & Grease	318.00	190.80
Total Suspended Solids	651.90	310.05
pH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (g) Degassing Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million off	-lbs) of aluminum	degassed
Chromium	1.15	0.47
Cyanide	0.76	0.32
Zinc	3.81	1.59
Aluminum	16.78	8.35
Oil & Grease	52.18	31.31
Total Suspended Solids	106.97	50.88
Hq	(1)	(1)

(h) Extrusion Press Leakage

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of hard alloy	aluminum extruded
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.65 0.43 2.16 9.51 29.56 60.60 (1)	0.27 0.18 0.90 4.73 17.74 28.82 (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- D. BPT MASS LIMITATIONS FOR THE DRAWING WITH NEAT OILS SUBCATEGORY
- (a) Drawing With Neat Oils Core Waste Streams

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum dra	wn with neat oils
Chromium	0.022	0.0090
Cyanide	0.015	0.0050
Zinc	0.073	0.031
Aluminum	0.32	0.160
Oil & Grease	0.97	0.598
Total Suspended Solids	2.04	0.972
Hq	(1)	(1)

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million omethods	off-lbs) of aluminum cas	t by continuous
Chromium	0.684	0.28
Cyanide	0.451	0.187
Zinc	2.271	0.949
Aluminum	10.00	4.976
Oil & Grease	31.10	18.66
Total Suspended Solids	63.76	30.322
Hq	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (c) Continuous Rod Casting Spent Lubricant

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum cast	by continuous
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.00086 0.00057 0.00287 0.01263 0.03928 0.08052	0.00035 0.00024 0.00120 0.00628 0.02357 0.03830

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million of	f-lbs) of aluminum	quenched
Chromium	3.39	1.39
Cyanide	2.24	0.93
Zinc	11.25	4.70
Aluminum	49.55	24.66
Oil & Grease	154.10	92.46
Total Suspended Solids	315.91	150.25
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (e) Cleaning or Etching Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million of	f-lbs) of aluminum o	leaned or etched
Chromium Cyanide Zinc Aluminum Oil & Grease	0.079 0.052 0.26 1.150 3.58	0.032 0.022 0.11 0.57 2.15
Total Suspended Solids pH	7.34 (1)	3. 4 9 (I)

(f) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	6.12	2.51
Cyanide	4.04	1,67
Zinc	20.31	8,49
Aluminum	89.46	44.52
Oil & Grease	278.24	166.95
Total Suspended Solids	570.39	271.29
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (g) Cleaning or Etching Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	7.00	2.86
Cyanide	4.61	1.91
Zinc	23.22	9.70
Aluminum	102.24	50.88
Oil & Grease	318.00	198.80
Total Suspended Solids	651.90	310.05
pН	(1)	(1)

- E. BPT MASS LIMITATIONS FOR THE DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY
- (a) Drawing With Emulsions or Soaps Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
ma/off-ka /lh/million	off-lbs) of aluminum draw	n with amulaions
or soaps	off-ibs) of aluminum draw	n with emuisions
Chromium	0.205	0.084
Cyanide	0.135	0.056
Zinc	0.680	0.285
Aluminum	3.00	1.50
Oil & Grease	9.33	5.60
Total Suspended Solids	19.12	9.10
PH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (b) Continuous Rod Casting Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	_Any One Day	Monthly_Average
mg/off-kg (lb/million methods	off-lbs) of aluminum cast	by continuous
Chromium	0.684	0.28
Cyanide	0.450	0.187
Zinc	2.27	0.949
Aluminum	10.00	4.976
Oil & Grease	31.10	18.66
Total Suspended Solids	63.76	30.323
На	(1)	(1)

(c) Continuous Rod Casting - Spent Lubricant

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum cast	by continuous
Chromium	0.0009	0.0004
Cyanide	0.0006	0.0003
Zinc	0.0029	0.001
Aluminum	0.013	0.006
Oil & Grease	0.040	0.024
Total Suspended Solids	0.081	0.039
pН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Solution Heat Treatment Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million off	-lbs) of aluminu	m quenched
Chromium	3.39	1.39
Cyanide	2.24	0.93
Zinc	11.25	4.70
Aluminum	49.55	24.66
Oil & Grease	154.10	92.46
Total Suspended Solids	315.91	150.25
pН	(1)	(1)

(e) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.079 0.052 0.262 1.15 3.58 7.34 (1)	0.032 0.022 0.109 0.573 2.15 3.49 (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	6.12	2.51
Cyanide	4.04	1.67
Zinc	20.31	8.49
Aluminum	89.46	44.519
Oil & Grease	278.24	166.95
Total Suspended Solids		271.29
рН	(1)	(1)
L	, . <i>,</i>	

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million o		
Chromium	7.00	2.86
Cyanide	4.61	1.91
Zinc	23.22	9.70
Aluminum	102.24	50.88
Oil & Grease	318.00	190.80
Total Suspended Solids	651.90	310.05
Hq	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- 3. BAT is being promulgated based on the model treatment technology of oil skimming, chemical precipitation, and sedimentation (lime and settle) technology and in-process flow reduction control methods, and where applicable, chemical emulsion breaking, chromium reduction, and cyanide removal. The following BAT effluent limitations are being promulgated for existing sources:
- A. BAT MASS LIMITATIONS FOR THE ROLLING WITH NEAT OILS SUBCATEGORY
- (a) Rolling With Neat Oils Core Waste Streams Without An Annealing Furnace Scrubber

Pollutant Pollutant		Maximum Any One			aximum for thly Average
mg/off-kg	(lb/million	off-lbs) o	of aluminum	rolled	with neat oils
Chromium Cyanide Zinc Aluminum		0.0 0.0 0.3)16)81		0.010 0.0067 0.034 0.174

(b) Rolling With Neat Oils - Core Waste Streams With An Annealing Furnace Scrubber

Pollutant or Pollutant Proper	Maximum for cty Any One Day	Maximum for Monthly Average
mg/off-kg (lb/mi	allion off-lbs) of aluminum	n rolled with neat oils
Chromium Cyanide Zinc Aluminum	0.036 0.024 0.119 0.525	0.015 0.0098 0.050 0.257
(c) Continuous	Sheet Casting - Spent Lubr	ricant
Pollutant or Pollutant Proper	Maximum for rty Any One Day	Maximum for Monthly Average
mg/off-kg (1b/mimethods	illion off-lbs) of aluminum	n cast by continuous
Chromium Cyanide Zinc Aluminum	0.00086 0.00057 0.00287 0.0127	0.00035 0.00024 0.0012 0.0062
(d) Solution He	eat Treatment - Contact Coo	oling Water
Pollutant or Pollutant Proper	Maximum for cty Any One Day	Maximum for Monthly Average
mg/off-kg (lb/m:	illion off-lbs) of aluminum	n quenched
Chromium Cyanide Zinc Aluminum	0.897 0.591 2.974 13.10	0.367 0.245 1.243 6.518
	Etching - Bath	
Pollutant or Pollutant Proper	Maximum for rty Any One Day	Maximum for Monthly Average
mg/off-kg (lb/m	illion off-lbs) of aluminur	m cleaned or etched
Chromium Cyanide Zinc Aluminum	0.079 0.052 0.262 1.151	0.032 0.022 0.109 0.573

(f) Cleaning or Etching - Rinse

Pollutant	or	Maximum for	Maximur	m for
<u>Pollutant</u>	Property	Any One Day	Monthly A	Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or	etched
Chromium Cyanide Zinc Aluminum		0.612 0.404 2.031 8.944	0.	251 167 849 45

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or Maximum f Pollutant Property Any One Day						imum for Average	
mg/off-kg	(lb/million	off-lbs)	of a	luminum	cleaned	or	etched
Chromium Cyanide Zinc Aluminum		0 2	.851 .561 .822			0	.348 .232 .179 .186

B. BAT MASS LIMITATIONS FOR THE ROLLING WITH EMULSIONS SUBCATEGORY

(a) Rolling With Emulsions - Core Waste Streams

Pollutant		Maximum for	Maximum for
Pollutant		Any One Day	Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	rolled with emulsions
Chromium		0.057	0.024
Cyanide		0.038	0.016
Zinc		0.19	0.079
Aluminum		0.84	0.42

(b) Direct Chill Casting - Contact Cooling Water

Pollutant Pollutant		Maximum for Any One Day		Мс		kimum fo nly Aver	
mg/off-kg methods	(lb/million	off-lbs) of	aluminum	cast	by	direct	chill
Chromium Cyanide Zinc Aluminum		0.59 0.39 1.94 8.55				0.24 0.16 0.81 4.26	

(c) Solution Heat Treatment - Contact Cooling Water

Pollutant Pollutant		Maximum fo Any One Da			mum for y Average
mg/off-kg	(lb/million	off-lbs) of	aluminum	quenched	
Chromium Cyanide Zinc Aluminum		0.90 0.59 2.98 13.10			0.37 0.25 1.25 6.52

(d) Cleaning or Etching - Bath

Pollutant		Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum		0.079 0.052 0.26 1.15	0.032 0.022 0.109 0.573

(e) Cleaning or Etching - Rinse

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum		0.61 0.41 2.03 8.95	0.25 0.17 0.85 4.45

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property		Maximur Any One I	Maximum for Monthly Average			
mg/off-kg	(lb/million	off-lbs) of	aluminum	cleaned	or	etched
Chromium Cyanide Zinc Aluminum		0.85 0.50 2.82 12.43			0	. 35 . 23 . 18 . 19

C. BAT MASS LIMITATIONS FOR THE EXTRUSION SUBCATEGORY

(a) Extrusion - Core Waste Streams

Pollutant or Pollutant Property		Maximum for Any One Day	Maximum for Monthly Average	
mg/o	ff-kg (lb/million	off-lbs) of aluminum	extruded	
119 121 128	Chromium Cyanide Zinc Aluminum	0.15 0.098 0.49 2.19	0.061 0.041 0.21 1.09	

(b) Direct Chill Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

mg/off-kg (lb/million off-lbs) of aluminum cast by direct chill methods

Chromium	0.59	0.24
Cyanide	0.39	0.16
Zinc	1.94	0.81
Aluminum	8.55	4.26

(c) Solution or Press Heat Treatment Contact Cooling

Pollutant	Maximum for Any One Day		Maximum for Monthly Average		
	off-lbs) of	aluminum	quenched		
Chromium	0.90		0	.37	
Cyanide	0.59		0	. 25	
Zinc	2.98		1	. 25	
Aluminum	13.10		6	.52	

(d) Cleaning or Etching - Bath

Pollutant Pollutant			Maximu Monthly	
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or	etched
Chromium Cyanide Zinc Aluminum		0.079 0.052 0.262 1.15	0. 0.	032 022 109 58

(e) Cleaning or Etching - Rinse

Pollutant		Maximum fo	Maximum for			
<u>Pollutant</u>	Property	Any One Da	зу	Month	nly	Average
mg/off-kg	(lb/million	off-lbs) of	aluminum	cleaned	or	etched
Chromium Cyanide Zinc Aluminum		0.61 0.41 2.03 8.95			0 .	. 25 . 17 . 85 . 4 5

(f) Cleaning or Etching - Scrubber Liquor

Pollutant Pollutant		Maximum for Any One Day				
mg/off-kg	(lb/million	off-lbs) of	aluminum	cleaned	or	etched
Chromium Cyanide Zinc Aluminum		0.85 0.56 2.82 12.43			0	. 35 . 23 . 18 . 19

(g) Extrusion Press Leakage

Pollutant Pollutant		Maximum for Any One Day			Maximum for Monthly Average		
mg/off-kg	(lb/million	off-lbs) of	hard	alloy	aluminum	extruded	
Chromium Cyanide Zinc Aluminum		0.65 0.43 2.16 9.51			0	. 27 . 18 . 90 . 73	

D. BAT MASS LIMITATIONS FOR THE DRAWING WITH NEAT OILS SUBCATEGORY

(a) Drawing With Neat Oils - Core Waste Streams

(a) Drawing wi	ttii Neat Offs - Core waste s	octeams				
Pollutant or	Maximum for	Maximum for				
Pollutant Prope	erty Any One Day	Monthly Average				
mg/off-kg (lb/m	nillion off-lbs) of aluminum	n drawn with neat oils				
Chromium	0.022	0.009				
Cyanide	0.015	0.006				
Zinc	0.073	0.031				
Aluminum	0.321	0.16				
III am III am	0.321	0.10				
(b) Continuous Rod Casting - Contact Cooling Water						
Pollutant or	Maximum for	Maximum for				
Pollutant Prope	erty Any One Day	Monthly Average				
mg/off-kg (1b/mmethods Chromium Cyanide Zinc Aluminum	0.086 0.056 0.283 1.247	0.035 0.024 0.118 0.621				
	s Rod Casting - Spent Lubric	·				
Pollutant or	Maximum for	Maximum for				
Pollutant Prope	erty Any One Day	Monthly Average				
mg/off-kg (lb/m	nillion off-lbs) of aluminum	n cast by continuous				
Chromium	0.00086	0.0004				
Cyanide	0.0006	0.0002				
Zinc	0.0029	0.0012				
Aluminum	0.0127	0.0063				
STUMLIMM	0.0127	0.0003				

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant		Maximum for	Maximum for			
Pollutant	Property	Any One Day	Monthly Average			
mg/off-kg	(lb/million	off-lbs) of aluminum	quenched			
Chromium		0.896	0.367			
Cyanide		0.591	0.245			
Zinc		2.974	1.243			
Aluminum		13.10	6.519			
(e) Cleaning or Etching - Bath						
Pollutant	or	Maximum for	Maximum for			
Pollutant	Property	Any One Day	Monthly Average			
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or etched			
Chromium		0.079	0.032			
Cyanide		0.052	0.022			
Zinc		0.262	0.109			
Aluminum		1.151	0.563			
711 0111 111 0111		1.131	0.303			
(f) Cleaning or Etching - Rinse						
(f) Clea	ning or Etch	ing - Rinse				
(f) Clea		ing - Rinse Maximum for	Maximum for			
Pollutant			Maximum for Monthly Average			
Pollutant Pollutant	or Property	Maximum for	Monthly Average			
Pollutant Pollutant mg/off-kg	or Property	Maximum for Any One Day off-lbs) of aluminum	Monthly Average cleaned or etched			
Pollutant Pollutant mg/off-kg Chromium	or Property	Maximum for Any One Day off-lbs) of aluminum 0.612	Monthly Average cleaned or etched 0.251			
Pollutant Pollutant mg/off-kg Chromium Cyanide	or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404	Monthly Average cleaned or etched 0.251 0.167			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc	or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031	Monthly Average cleaned or etched 0.251 0.167 0.849			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum	or Property (lb/million	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404	Monthly Average cleaned or etched 0.251 0.167			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum	or Property (lb/million ning or Etch	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor	Monthly Average cleaned or etched 0.251 0.167 0.849			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea	or Property (lb/million ning or Etch	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea Pollutant Pollutant	or Property (lb/million ning or Etch or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for Monthly Average			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea Pollutant Pollutant mg/off-kg	or Property (lb/million ning or Etch or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor Maximum for Any One Day off-lbs) of aluminum	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for Monthly Average cleaned or etched			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea Pollutant Pollutant mg/off-kg Chromium	or Property (lb/million ning or Etch or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor Maximum for Any One Day off-lbs) of aluminum 0.851	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for Monthly Average cleaned or etched 0.348			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea Pollutant Pollutant Mg/off-kg Chromium Cyanide	or Property (lb/million ning or Etch or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor Maximum for Any One Day off-lbs) of aluminum 0.851 0.561	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for Monthly Average cleaned or etched 0.348 0.232			
Pollutant Pollutant mg/off-kg Chromium Cyanide Zinc Aluminum (g) Clea Pollutant Pollutant mg/off-kg Chromium	or Property (lb/million ning or Etch or Property	Maximum for Any One Day off-lbs) of aluminum 0.612 0.404 2.031 8.944 ing - Scrubber Liquor Maximum for Any One Day off-lbs) of aluminum 0.851	Monthly Average cleaned or etched 0.251 0.167 0.849 4.451 Maximum for Monthly Average cleaned or etched 0.348			

E. BAT MASS LIMITATIONS FOR THE DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY

(a) Drawing With Emulsions or Soaps - Core Waste Streams

Pollutant Pollutant		Maximum for Any One Day					
mg/off-kg or soaps	(lb/million	off-lbs) of	aluminum	drawn	with	emulsions	
Chromium Cyanide Zinc Aluminum		0.205 0.135 0.681 3.00	5		0	.084 .056 .285	

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant Pollutant		Maximum fo Any One Da		Мо		imum for ly Average
mg/off-kg methods	(lb/million	off-lbs) of	aluminum	cast	by	continuous
Chromium Cyanide Zinc Aluminum		0.086 0.056 0.283 1.25	်			0.035 0.024 0.118 0.62

(c) Continuous Rod Casting - Spent Lubricant

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
TOTTUCANE	riopercy	Thry one bay	Honemay hverage
mg/off-kg methods	(lb/million	off-lbs) of aluminum	cast by continuous
Chromium Cyanide Zinc Aluminum		0.0009 0.0006 0.0029 0.013	0.0004 0.0003 0.0012 0.0063

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	quenched
Chromium Cyanide Zinc Aluminum		0.897 0.591 2.98 13.10	0.37 0.25 1.24 6.52
(e) Clear	ning or Etchi	ing - Bath	
Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum		0.079 0.052 0.262 1.15	0.032 0.022 0.11 0.57
	ning or Etch:		
Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum (g) Clea	ning or Etch	0.612 0.404 2.03 8.95 ing - Scrubber Liquor	0.251 0.167 0.849 4.45
Pollutant		Maximum for	Maximum for
	Property (lb/million	Any One Day off-lbs) of aluminum	Monthly Average cleaned or etched
Chromium Cyanide Zinc Aluminum	(12)	0.85 0.561 2.82 12.43	0.348 0.232 1.18 6.19

- NSPS is being promulgated based on the model treatment technology of oil skimming, chemical precipitation, sedimentation and filtration (lime, settle, and filter) technology and in-process flow reduction control methods, and where applicable, chemical emulsion breaking, chromium reduction, and cyanide removal. following effluent standards are being promulgated for new sources:
- NSPS FOR THE ROLLING WITH NEAT OILS SUBCATEGORY
- (a) Rolling With Neat Oils - Core Waste Streams Without An Annealing Furnace Scrubber

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	rolled with neat oils
Chromium	0.021	0.0083
Cyanide	0.011	0.0044
Zinc	0.057	0.023
Aluminum	0.338	0.150
Oil & Grease	0.553	0.553
Total Suspended Solids	0.830	0.664
рН	(1)	(1)

Within the range of 7.0 to 10.0 at all times. (1)

(b) Rolling With Neat Oils - Core Waste Streams With An Annealing Furnace Scrubber

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

mg/off-kg (lb/million off-lbs) of aluminum rolled with neat oils

Chromium	0.030	0.0123
Cyanide	0.016	0.0065
Zinc	0.084	0.0343
Aluminum	0.499	0.221
Oil & Grease	0.817	0.817
Total Suspended Solids	1.225	0.980
pH	(1)	(1)

(c) Continuous Sheet Casting - Spent Lubricant

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum	cast by continuous
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.00073 0.00039 0.0020 0.012 0.0197 0.0295	0.00029 0.00016 0.00082 0.0053 0.019 0.022

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Solution Heat Treatment Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.76	0.31
Cyanide	0.41	0.17
Zinc	2.08	0.86
Aluminum	12.45	5.52
Oil & Grease	20.37	20.37
Total Suspended Solids	30.56	24.45
PH	(1)	(1)

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.066	0.027
Cyanide	0.036	0.015
Zinc	0.183	0.075
Aluminum	1.094	0.485
Oil & Grease	1.79	1.79
Total Suspended Solids	2.69	2.15
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Rinse

Pollutant or	Maximum fo	or	Maximu	um for
Pollutant Property	Any One Da	y	Monthly	Average
mg/off-kg (lb/million	off-lbs) of	aluminum	cleaned or	etched
Chromium	0.52		0.	. 21
Cyanide	0.28		0.	. 11
Zinc	1.42		0.	. 59
Aluminum	8.50		3.	. 70
Oil & Grease	13.91		13.	. 91
Total Suspended Solids	s 20.87		16.	. 69
pН	(1)		(1))

- (1) Within the range of 7.0 to 10.0 at all times.
- (g) Cleaning or Etching Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.715	0.29
Cyanide	0.387	0.16
Zinc	1.97	0.81
Aluminum	11.81	5.24
Oil & Grease	19.33	19.33
Total Suspended Solids	29.00	23.20
pН	(1)	(1)

B. NSPS FOR THE ROLLING WITH EMULSIONS SUBCATEGORY

(a) Rolling With Emulsions - Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	rolled with emulsions
Chromium	0.048	0.020
Cyanide	0.026	0.011
Zinc	0.133	0.055
Aluminum	0.80	0.35
Oil & Grease	1.30	1.30
Total Suspended Solids	1.95	1.56
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (b) Direct Chill Casting Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million emethods	off-lbs) of aluminum	cast by direct chill
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids	0.49 0.27 1.36 8.12 13.29 19.94	0.20 0.11 0.59 3.60 13.29 15.95

(1)

(1)

(1) Within the range of 7.0 to 10.0 at all times.

Нq

(c) Solution Heat Treatment - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	guenched
Chromium	0.76	0.31
Cyanide	0.41	0.17
Zinc	2.08	0.86
Aluminum	12.45	5.52
Oil & Grease	20.37	20.37
Total Suspended Solids	30.56	24.45
рH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Cleaning or Etching Bath

The state of the s		
Pollutant or	Maximum for	Maximum for
Pollutant Property	y Any One Day	Monthly Average
mg/off-kg (lb/mil.	lion off-lbs) of aluminum	cleaned or etched
Chromium	0.067	0.027
	·	· -
Cyanide	0.036	0.015
Zinc	0.183	0.075
Aluminum	1.094	0.485
Oil & Grease	1.79	1.79
Total Suspended So	olids 2.69	2.15
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (e) Cleaning or Etching Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million lbs)	of aluminum cleaned or	etched
Chromium	0.52	0.21
Cyanide	0.28	0.11
Zinc	1.42	0.59
Aluminum	8.50	3.77
Oil & Grease	13.91	13.91
Total Suspended Solids	20.87	16.70
pН	(1)	(1)

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.72	0.29
Cyanide	0.39	0.16
Zinc	1.97	0.81
Aluminum	11.81	5.24
Oil & Grease	19.33	19.33
Total Suspended Solids	29.00	23.20
pH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- C. NSPS FOR THE EXTRUSION SUBCATEGORY

(a) Extrusion - Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	extruded
Chromium	0.13	0.051
Cyanide	0.068	0.027
Zinc	0.35	0.14
Aluminum	2.07	0.92
Oil & Grease	3.39	3.39
Total Suspended Solids	5.10	4.07
рН	(1)	(1)

(b) Direct Chill Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminu	um cast by direct chill
Chromium	0.49	0.20
Cyanide	0.27	0.11
Zinc	1.36	0.56
Aluminum	8.12	3.60
Oil & Grease	13.29	13.29
Total Suspended Solids pH	19.24 (1)	15.95 (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (c) Solution and Press Heat Treatment Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.76 0.41 2.08 12.45 20.37 30.56 (1)	0.31 0.17 0.86 5.52 20.37 24.45 (1)

(d) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/mill	ion off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended So pH	0.067 0.036 0.183 1.094 1.79 lids 2.69	0.027 0.015 0.075 0.485 1.79 2.15

- (1) Within the range of 7.0 to 10.0 at all times.
- (e) Cleaning or Etching Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.52	0.21
Cyanide	0.28	0.11
Zinc	1.42	0.59
Aluminum	8.50	3.77
Oil & Grease	13.91	13.91
Total Suspended Solid	s 20.87	16.70
Hq	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Ch.	0.70	0.00
Chromium	0.72	0.29
Cyanide	0.39	0.16
Zinc	1.97	0.81
Aluminum	11.81	5.24
Oil & Grease	19.33	19.33
Total Suspended Solids	s 29.00	23.20
Ha	(1)	(1)

(g) Extrusion Press Leakage

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of hard al	lloy aluminum extruded
Chromium	0.11	0.045
Cyanide	0.060	0.024
Zinc	0.31	0.126
Aluminum	1.82	0.81
Oil & Grease	2.98	2.98
Total Suspended Solids	4.47	3.58
рН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- D. NSPS FOR THE FORGING SUBCATEGORY

(a) Forging - Core Waste Streams

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	forged
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.019 0.010 0.051 0.305 0.50 0.75	0.008 0.004 0.021 0.135 0.50 0.60

(b) Forging - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million o	off-lbs) of aluminum	forged
Chromium	0.035	0.014
Cyanide	0.019	0.008
Zinc	0.096	0.04
Aluminum	0.576	0.256
Oil & Grease	0.943	0.95
Total Suspended Solids	1.42	1.13
pH -	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (c) Solution Heat Treatment Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.76	0.31
Cyanide	0.41	0.163
Zinc	2.08	0.86
Aluminum	12.45	5.52
Oil & Grease	20.37	20.37
Total Suspended Solid	s 30.56	24.45
Hq	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Cleaning or Etching Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.066	0.027
Cyanide	0.036	0.015
Zinc	0.183	0.075
Aluminum	1.094	0.485
Oil & Grease	1.79	1.79
Total Suspended Solids	2.69	2.15
pH	(1)	(1)

(e) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.52	0.21
Cyanide	0.28	0.11
Zinc	1.42	0.59
Aluminum	8.5	3.77
Oil & Grease	13.91	13.91
Total Suspended Solids	20.87	16.69
pH	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluming	um cleaned or etched
Chromium	0.72	0.29
Cyanide	0.39	0.155
Zinc	1.97	0.812
Aluminum	11.81	5.24
Oil & Grease	19.33	19.33
Total Suspended Solids	29.00	23.20
Hq	(1)	(1)

E. NSPS FOR THE DRAWING WITH NEAT OILS SUBCATEGORY

(a) Drawing With Neat Oils - Core Waste Streams

Pollutant or Pollutant Prope	erty	Maximum Any One					ım for Avera	
mg/off-kg (lb/m	million o	ff-lbs)	of	aluminum	drawn	with	neat	oils
Chromium Cyanide			019				.008	
Zinc Aluminum		0.	051 304			0 .	.021	
Oil & Grease Total Suspended	d Solids	0.	498 747			0	. 498 . 598	
рН		(1)				(1))	

(1) Within the range of 7.0 to 10.0 at all times.

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum	cast by continuous
Chromium	0.072	0.029
Cyanide	0.039	0.016
Zinc	0.198	0.082
Aluminum	1.185	0.526
Oil & Grease	1.939	1.939
Total Suspended Solids	s 2.909	2.327

2.909 (1)

(1)

(1) Within the range of 7.0 to 10.0 at all times.

рH

(c) Continuous Rod Casting - Spent Lubricant

Pollutant	or	Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average
mg/off-kg methods	(lb/million	off-lbs) of aluminum	cast by continuous
methods			
Chromium		0.0008	0.0003
Cyanide		0.0004	0.0002
Zinc		0.002	0.008
Aluminum		0.012	0.006
Oil & Grea	ase	0.02	0.02
Total Susp	pended Solids	0.03	0.024
pН		(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Solution Heat Treatment Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
-		_
Chromium	0.754	0.306
Cyanide	0.408	0.163
Zinc	2.08	0.856
Aluminum	12.45	5.52
Oil & Grease	20.37	20.37
Total Suspended Solids		24.45
рН	(1)	(1)

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.066	0.027
Cyanide	0.036	0.015
Zinc	0.183	0.075
Aluminum	1.094	0.485
Oil & Grease	1.79	1.79
Total Suspended Solids	2.69	2.15
Hq	(1)	(1)

(1) Within the range of 7.0 to 10.0 at all times.

(f) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.515	0.209
Cyanide	0.278	0.111
Zinc	1.42	0.584
Aluminum	8.50	3.77
Oil & Grease	13.91	13.91
Total Suspended Solids	20.87	16.70
рН	(1)	(1)

(1) Within the range of 7.0 to 10.0 at all times.

(g) Cleaning or Etching - Scrubber Liquor

Pollutant	or	Maximum for	Maximur	n ior
Pollutant	Property	Any One Day	Monthly A	Average
mg/off-kg	(lb/million	off-lbs) of aluminum	cleaned or	etched
Chromium		0.715	0.3	290
Cyanide		0.387	0.	155
Zinc		1.97	0.1	812
Aluminum		11.81	5.3	24
Oil & Grea	ase	19.33	19.3	33
Total Susp	pended Solids	29.00	23.	20
pН	•			

F. NSPS FOR THE DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY

(a) Drawing With Emulsions or Soaps - Core Waste Streams

Pollutant	or	Maximum f	or	J	Maximu	ım for
Pollutant	Property	Any One D	ay	Moi	nthly	Average
mg/off-kg or soaps	(lb/million	off-lbs) of	aluminum	drawn	with	emulsions
Chromium Cyanide		0.17 0.09	4		0	.070
Zinc Aluminum		0.47 2.85				. 196 . 27

Zinc 0.476 0.196
Aluminum 2.85 1.27
Oil & Grease 4.67 4.67
Total Suspended Solids 7.00 5.60
pH (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (b) Continuous Rod Casting Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
	n off-lbs) of aluminum	cast by continuous
methods		
Chromium	0.072	0.029
Cyanide	0.039	0.016
Zinc	0.198	0.081
Aluminum	1.184	0.526
Oil & Grease	1.940	1.940
Total Suspended Soli	ds 2.91	2.33
рН	(1)	(1)

(c) Continuous Rod Casting - Spent Lubricant

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cast by continuous
methods		-
Chromium	0.0008	0.0003
Cyanide	0.0004	0.0002
Zinc	0.0020	0.0008
Aluminum	0.012	0.0053
Oil & Grease	0.020	0.020
Total Suspended Solid	s 0.030	0.024
На	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (d) Solution Heat Treatment Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.754	0.31
Cyanide	0.408	0.16
Zinc	2.08	0.86
Aluminum	12.450	5.52
Oil & Grease	20.37	20.37
Total Suspended Solids	20.56	24.45
рН	(1)	(1)

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.066	0.027
Cyanide	0.036	0.015
Zinc	0.183	0.075
Aluminum	1.094	0.49
Oil & Grease	1.79	1.79
Total Suspended Solids	2.69	2.15
РН	(1)	(1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (f) Cleaning or Etching Rinse

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Aluminum Oil & Grease Total Suspended Solids pH	0.515 0.278 1.42 8.50 13.91 20.87	0.21 0.11 0.59 3.77 13.91 16.70 (1)

- (1) Within the range of 7.0 to 10.0 at all times.
- (g) Cleaning or Etching Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.72	0.290
Cyanide	0.387	0.155
Zinc	1.97	0.812
Aluminum	1.18	5.24
Oil & Grease	19.33	19.33
Total Suspended Solids	29.00	23.20
рН	(1)	(1)

- 5. PSES is being promulgated based on the model treatment technology of oil skimming and chemical precipitation and sedimentation (lime and settle) technology and in-process flow reduction control methods, and where applicable, chemical emulsion breaking, chromium reduction, and cyanide removal. The following pretreatment standards are being promulgated for existing sources:
- A. PSES FOR THE ROLLING WITH NEAT OILS SUBCATEGORY
- (a) Rolling With Neat Oils Core Waste Streams Without An Annealing Furnace Scrubber

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	rolled with neat oils
Chromium	0.025	0.010
Cyanide	0.016	0.007
Zinc	0.081	0.034
Total Toxic Organics (Oil & Grease*	(TTO) 0.038 1.11	0.67

(b) Rolling With Neat Oils - Core Waste Streams With An Annealing Furnace Scrubber

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	rolled with neat oils
Chromium Cyanide	0.036 0.024	0.015 0.010
Zinc Total Toxic Organics (0.119	0.050
Oil & Grease*	1.64	0.98

(c) Continuous Sheet Casting - Spent Lubricant

Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/million lbs)	of aluminum cast by	continuous methods	
Chromium	0.00086	0.00035	
Cyanide	0.00057	0.00024	
Zinc	0.0029	0.0012	
Total Toxic Organics (T)	ro) 0.0014		
Oil & Grease*	0.040	0.024	

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or	Maximum for		Maximum for		
Pollutant Property	Any One Da	ay	Monthly	Average	
mg/off-kg (lb/million of	ff-lbs) of	aluminum	quenched		
Chromium	0.90		0	.37	
Cyanide	0.59		0	. 25	
Zinc	2.98		1	. 25	
Total Toxic Organics (T)	ro) 1.41				
Oil & Grease*	40.74		24	. 45	
(e) Cleaning or Etching	g - Bath				
Dell'intend	Manifester E		Mania.		

Pollutant	or	Maximum	for	Maximum	n for
Pollutant	Property_	Any One	Day	Monthly A	Average

ma/off-ka	(lh/million	off-lbs)	of aluminum	cleaned or	at chad
11107 OT 1 - KO	- 1 1 1 2 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1	011-1051	от атиштии	Creamed or	erenea

Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.262	0.109
Total Toxic Organics (TTO)	0.124	
Oil & Grease*	3.58	2.15

(f) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminu	m cleaned or etched
Chromium	0.61	0.25
Cyanide	0.41	0.17
Zinc	2.03	0.85
Total Toxic Organics (TTO) 0.96	
Oil & Grease*	27.82	16.69

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminu	m cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics	0.85 0.56 2.82 (TTO) 1.34	0.35 0.23 1.18
Oil & Grease*	38.7	23.20

B. PSES FOR THE ROLLING WITH EMULSIONS SUBCATEGORY

(a) Rolling With Emulsions - Core Waste Streams

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	rolled with emulsions
Chromium		0.057	0.024
Cyanide		0.038	0.016
Zinc		0.190	0.079
Total Tox	ic Organics	(TTO) 0.090	- -
Oil & Gre	•	2.60	1.5e

(b) Direct Chill Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
<pre>mg/off-kg (lb/million methods</pre>	off-lbs) of aluminum	cast by direct chill
Chromium	0.59	0.24
Cyanide	0.39	0.16
Zinc	1.94	0.81
Total Toxic Organics (Oil & Grease*	(TTO) 0.92 26.58	 15.95

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(c) Solution Heat Treatment - Contact Cooling Water

Zinc

Oil & Grease*

Total Toxic Organics (TTO)

(c) Solution heat if	eatment contact coo	ing water
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.90	0.37
Cyanide	0.56	0.25
Zinc	2.98	1.24
Total Toxic Organics	(TTO) 1.41	
Oil & Grease*	40.74	24.44
(d) Cleaning or Etch	ning - Bath	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Chromium	0.079	0.032

0.109

2.15

0.262

0.124

3.58

(e) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	lbs) of aluminum	cleaned or etched
Chromium	0.61	0.25
Cyanide	0.41	0.17
Zinc	2.03	0.85
Total Toxic Organics (Oil & Grease*		16.69

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(f) Cleaning or Etching - Scrubber Liquor

Pollutant	or	Maximum for		Maximum for			
Pollutant	Property	Any One	Day		Month	nly	Average
mg/off-kg	(lb/million	off-lbs)	of a	luminum	cleaned	or	etched
Chromium		0.	85			0	35
Cyanide		0.	56			0	. 23
Zinc		2.	83			1.	. 18
Total Toxi	c Organics	(TTO) 1.	34			-	
Oil & Grea	se*	38.	66			23.	. 20

C. PSES FOR THE EXTRUSION SUBCATEGORY

(a) Extrusion - Core Waste Streams

Pollutant		Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	extruded
Chromium		0.15	0.061
Cyanide		0.098	0.041
Zinc		0.49	0.21
Total Tox:	ic Organics	(TTO) 0.23	
Oil & Grea	ase*	6.80	4.07

(b) Direct Chill Casting - Contact Cooling Water

Pollutant Pollutant		Maximum fo Any One Da			aximum fo	
rollucane	reoperty	Thiry one Be	<u> </u>	110111	y 137 C.	- 490
mg/off-kg methods	(lb/million	off-lbs) of	aluminum	cast by	direct	chill
Chromium		0.59			0.24	
Cyanide		0.39			0.16	
Zinc		1.94			0.81	
Total Tox:	ic Organics	(TTO) 0.92				
Oil & Grea	_	26.58			15.95	

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(c) Solution and Press Heat Treatment - Contact Cooling Water

Pollutant	or	Maximum for	Maximum for
Pollutant		Any One Day	Monthly Average
TOTTUCANE	Troperty	Ally Olic Day	Honemay Average
mg/off-kg	(lb/million	off-lbs) of aluminum	quenched
Chromium		0.90	0.37
Cyanide		0.59	0.25
-			
Zinc		2.98	1.25
Total Tox:	ic Organics	(TTO) 1.41	
Oil & Grea		40.74	24.45
011 4 010	200	20.74	21.15
(d) Clear	ning or Etch	ing - Bath	
Pollutant	or	Maximum for	Maximum for
Pollutant			
	rroberra	Any One Day	Monthly Average
mg/off-kg		off-lbs) of aluminum	
mg/off-kg		off-lbs) of aluminum	cleaned or etched
Chromium		off-lbs) of aluminum	cleaned or etched
Chromium Cyanide		off-lbs) of aluminum 0.079 0.052	cleaned or etched 0.032 0.022
Chromium Cyanide Zinc	(lb/million	off-lbs) of aluminum 0.079 0.052 0.26	cleaned or etched
Chromium Cyanide Zinc		off-lbs) of aluminum 0.079 0.052 0.26	cleaned or etched 0.032 0.022
Chromium Cyanide Zinc	(lb/million	off-lbs) of aluminum 0.079 0.052 0.26	cleaned or etched 0.032 0.022

(e) Cleaning or Etching - Rinse

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million		
Chromium	0.61	0.25
Cyanide	0.41	0.17
Zinc Total Toxic Organics	2.03 (TTO) 0.96	0.85
Oil & Grease*	27.82	16.69

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Propert	y Any One Day	Monthly Average
mg/off-kg (lb/mil	lion off-lbs) of alumi	num cleaned or etched
Chromium	0.85	0.35
Cyanide	0.56	0.23
Zinc	2.82	1.18
Total Toxic Organ	nics (TTO) 1.34	
Oil & Grease*	38.66	23.20

(g) Extrusion Press Leakage

-			
Pollutant		Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average
mg/off-kg	(lb/million	off-lbs) of hard	alloy aluminum extruded
Chromium		0.65	0.27
Cyanide		0.43	0.18
Zinc		2.16	0.90
Total Tox	ic Organics	(TTO) 1.02	
Oil & Gre	ase*	29.56	17.74

D. PSES FOR THE FORGING SUBCATEGORY

(a) Forging - Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million o	off-lbs) of aluminum	forged
Chromium	0.022	0.009
Cyanide	0.015	0.006
Zinc	0.073	0.031
Total Toxic Organics ('Oil & Grease*	PTO) 0.035 1.00	 0.60

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(b) Forging - Scrubber Liquor

Pollutant Property Any C	ne Day	Monthly Average
mg/off-kg (lb/million off-lbs	of aluminum for	rged
Chromium Cyanide Zinc Total Toxic Organics (TTO) Oil & Grease*	0.042 0.028 0.14 0.065 1.89	0.017 0.011 0.058

(c) Solution Heat Treatment - Contact Cooling Water

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	quenched
Chromium		0.897	0.37
Cyanide		0.591	0.25
Zinc		2.98	1.24
Total Toxi	c Organics	(TTO) 1.41	
Oil & Grea	ase*	40.74	24.45

(d) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	n off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.26	0.11
Total Toxic Organics	(TTO) 0.123	
Oil & Grease*	3.58	2.15

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(e) Cleaning or Etching - Rinse

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics Oil & Grease*	0.61 0.40 2.03 (TTO) 0.96 27.82	0.25 0.17 0.85 16.70

(f) Cleaning or Etching - Scrubber Liquor

(1) creaming of Been.	ing betubbet Biquot	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.851	0.35
Cyanide	0.561	0.23
Zinc	2.82	1.18
Total Toxic Organics	(TTO) 1.34	
Oil & Grease*	38.66	23.20

E. PSES FOR THE DRAWING WITH NEAT OILS SUBCATEGORY

(a) Drawing With Neat Oils - Core Waste Streams

Pollutant		Maximum for	Maximum for
Pollutant		Any One Day	Monthly Average
mg/off-kg	(lb/million	off-lbs) of aluminum	drawn with neat oils
Chromium		0.022	0.009
Cyanide		0.015	0.006
Zinc		0.073	0.031
Total Tox	ic Organics	(TTO) 0.035	
Oil & Great	ase*	1.00	0.60

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant o		Maximum			aximum for
Pollutant P	roperty	Any One	Day	Mon	thly Average
mg/off-kg (methods	lb/million	off-lbs) o	of aluminum	cast by	y continuous
Chromium Cyanide		0.0			0.035 0.023
Zinc		0.2	- -		0.118
Total Toxic			•		
Oil & Greas	e*	3.8	178		2.327

(c) Continuous Rod Casting - Spent Lubricant

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg methods	(lb/million	off-lbs) of aluminum	cast by continuous
Chromium		0.0009	0.0004

Chromium	0.0009	0.0004
Cyanide	0.0006	0.0003
Zinc	0.0029	0.0012
Total Toxic Organics (TTO)	0.0014	
Oil & Grease*	0.040	0.024

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.896	0.367
Cyanide	0.591	0.245
Zinc	2.98	1.24
Total Toxic Organics	(TTO) 1.41	
Oil & Grease*	40.74	24.45

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/milli	on off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.033
Cyanide	0.052	0.022
Zinc	0.262	0.109
Total Toxic Organic	s (TTO) 0.124	
Oil & Grease*	3.58	2.15
(f) Clooping or Et	ahina Dinas	

(f) Cleaning or Etching - Rinse

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics		0.251 0.17 0.85
Oil & Grease*	27.82	16.70

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-1bs) of aluminum	cleaned or etched
Chromium	0.851	0.348
Cyanide	0.561	0.232
Zinc	2.82	1.18
Total Toxic Organics ((TTO) 1.34	
Oil & Grease*	38.66	23.20

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

F. PSES FOR THE DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY

(a) Drawing With Emulsions or Soaps - Core Waste Streams

Pollutant Pollutant		Maximum Any One				ım for Average
mg/off-kg or soaps	(lb/million	off-lbs) o	f aluminum	drawn	with	emulsions

Chromium	0.205	0.084
Cyanide	0.135	0.056
Zinc	0.681	0.285
Total Toxic Organics (TTO)	0.32	
Oil & Grease*	9.33	5.60

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million omethods	off-lbs) of aluminum	cast by continuous
Chromium	0.086	0.035
Cyanide	0.056	0.024
Zinc	0.283	0.119
Total Toxic Organics ('Oil & Grease*	TTO) 0.134 3.88	2.33

(c) Continuous Rod Casting - Spent Lubricant

Pollutant or	Maximum for	Maximum for
Pollutant Propert	Ly Any One Day	Monthly Average
mg/off-kg (lb/mil	lion off-lbs) of aluminum	n cast by continuous
Chromium	0.0009	0.0004
Cyanide	0.0006	0.0003
Zinc	0.0029	0.0012
Total Toxic Organ Oil & Grease*		0.024

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(d) Solution Heat Treatment - Contact Cooling Water

	Maximum for Any One Day	Maximum for Monthly Average	
mg/off-kg (lb/million of	f-lbs) of aluminum	quenched	
Chromium Cyanide Zinc	0.896 0.591 2.98	0.367 0.245 1.25	
Total Toxic Organics (TT Oil & Grease*	O) 1.41 40.74	24.44	

(e) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.262	0.11
Total Toxic Organics (Oil & Grease*	TTO) 0.124 3.58	2.15

(f) Cleaning or Etching - Rinse

Pollutant or Maximum for Pollutant Property Any One Day		Maximum for Monthly Average	
		off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc		0.612 0.404 2.03	0.251 0.167 0.849
	c Organics se*		16.69

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(g) Cleaning or Etching - Scrubber Liquor

Pollutant Pollutant		Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg	(lb/million	off-lbs) of alum	inum cleaned or etched
Chromium		0.851	0.348
Cyanide		0.561	0.232
Zinc		2.82	1.18
Total Tox:	ic Organics	(TTO) 1.34	
Oil & Grea	ase* -	38.66	23.20

6. PSNS is being promulgated based on the model treatment technology of oil skimming and chemical precipitation, sedimentation and filtration (lime, settle, and filter) technology and inprocess flow reduction control methods, and where applicable, chemical emulsion breaking, chromium reduction, and cyanide removal. The following pretreatment standards are being promulgated for new sources:

A. PSNS FOR THE ROLLING WITH NEAT OILS SUBCATEGORY

(a) Rolling With Neat Oils - Core Waste Streams Without An Annealing Furnace Scrubber

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/mil)	lion off-lbs) of aluminum	rolled with neat oils
Chromium	0.021	0.009
Cyanide	0.011	0.005
Zinc	0.057	0.02 4
Total Toxic Organ: Oil & Grease*	ics (TTO) 0.038 0.54	0.54

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(b) Rolling With Neat Oils - Core Waste Streams With An Annealing Furnace Scrubber

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million of	f-lbs) of aluminum	rolled with neat oils
Chromium	0.030	0.013
Cyanide	0.017	0.007
Zinc	0.084	0.035
Total Toxic Organics (T)	ro) 0.057	
Oil & Grease*	0.817	0.817
(c) Continuous Sheet Ca	asting - Spent Lubr	ricant
Pollutant or	Maximum for	Maximum for

Pollutant or		ximum for		kimum for
Pollutant Prop	erty An	y One Day	Month	nly Average
mg/off-kg (lb/methods	million off-	lbs) of aluminum	cast by	continuous
Chromium Cyanide		0.00073 0.00039		0.00029 0.00016
Zinc		0.0020		0.00082
Total Toxic Or	ganics (TTO)			
Oil & Grease*		0.020		0.020

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium Cyanide Zinc Total Toxic Organics (Oil & Grease*	0.76 0.41 2.08 TTO) 1.41 20.37	0.31 0.17 0.86 20.37

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(e) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics (*Oil & Grease*	0.067 0.036 0.183 TTO) 0.124 1.79	0.027 0.015 0.075 1.79

(f) Cleaning or Etching - Rinse

Pollutant		Maximur					um for
Pollutant	Property	Any One	e Da	ay	Month	<u>lly</u>	Average
mg/off-kg	(lb/million	off-lbs)	of	aluminum	cleaned	or	etched
Chromium		0	. 52			0	. 21
Cyanide		0	. 28			0.	. 11
Zinc		1	. 42			0	. 59
Total Tox	ic Organics	(TTO) 0	. 96			-	
Oil & Great	ase*	13	. 91			13	. 91

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	y Any One Day	Monthly Average
mg/off-kg (lb/mill	lion off-lbs) of aluminum	n cleaned or etched
Chromium	0.72	0.29
Cyanide	0.39	0.16
Zinc	1.97	0.81
Total Toxic Organi	ics (TTO) 1.34	
Oil & Grease*	19.33	19.33

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(a) Rolling With Emulsions - Core Waste Streams

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million o	ff-lbs) of aluminum	rolled with emulsions
Chromium Cyanide Zinc Total Toxic Organics (TOIL & Grease*	0.048 0.026 0.133 TO) 0.090 1.30	0.020 0.011 0.055 1.30
(b) Direct Chill Casti	ng - Contact Coolin	g Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
<pre>mg/off-kg (lb/million methods</pre>	off-lbs) of aluminum	cast by direct chill
Chromium	0.49	0.20
Cyanide	0.27	0.11
Zinc	1.36	0.56
Total Toxic Organics (TTO) 0.92	
Oil & Grease*	13.29	13.29

B. PSNS FOR THE ROLLING WITH EMULSIONS SUBCATEGORY

(c) Solution Heat Treatment - Contact Cooling Water

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminu	um quenched
Chromium Cyanide Zinc	0.76 0.41 2.08	0.31 0.17 0.86
Total Toxic Organics (Oil & Grease*		20.37

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(d) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	n off-lbs) of aluminum	cleaned or etched
Chromium	0.079	0.032
Cyanide	0.052	0.022
Zinc	0.26	0.109
Total Toxic Organics	(TTO) 0.00	0.00
Oil & Grease*	0.00	0.00
(e) Cleaning or Etch		
Pollutant or	Maximum for	Maximum for

Pollutant I	Property	Any One	Day	Monthly	Average
mg/off-kg	(lb/million	off-lbs) o	of aluminum	cleaned or	etched
Chromium Cyanide Zinc		0.5 0.2 1.4	.8	Č).21).11).59
Total Toxio	c Organics (se*	(TTO) 0.9 13.9		13	 3.91

(f) Cleaning or Etching - Scrubber Liquor

Pollutant Pollutant		Maximum fo Any One Da			um for Average
mg/off-kg	(lb/million	off-lbs) of	aluminum	cleaned or	etched
Chromium Cyanide Zinc		0.72 0.39 1.97		0	.29 .16 .81
	ic Organics ase*				.33

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

C. PSNS FOR THE EXTRUSION SUBCATEGORY

(a) Extrusion - Core Waste Streams

Pollutant or Pollutant Prop		imum for One Day			imum for lly Average
mg/off-kg (1b/	million off-l	bs) of a	aluminum	extruded	1
Chromium Cyanide Zinc Total Toxic Or Oil & Grease*	ganics (TTO)	0.13 0.07 0.35 0.24 3.40			0.05 0.03 0.15 3.40
(b) Direct Ch	nill Casting -	- Contact	t Cooling	Water	
Pollutant or Pollutant Prop		kimum for 7 One Day			kimum for nly Average
mg/off-kg (lb/methods	million off-	lbs) of a	aluminum	cast by	direct chill
Chromium Cyanide Zinc Total Toxic On	cganics (TTO)	0.49 0.27 1.36 0.92			0.05 0.03 0.13
Oil & Grease*	-	13.29			2.98

(c) Solution and Press Heat Treatment - Contact Cooling Water

Pollutant or Pollutant Prope	Maximum for rty Any One Day	Maximum for Monthly Average
mg/off-kg (lb/m	illion off-lbs) of aluminum	n quenched
Chromium Cyanide Zinc Total Toxic Orga	0.76 0.41 2.08 anics (TTO) 1.41	0.31 0.17 0.86
Oil & Grease*	20.37	20.37

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(d) Cleaning or Etching - Bath

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.067	0.027
Cyanide	0.036	0.015
Zinc	0.183	0.075
Total Toxic Organics (TTO) 0.00	0.00
Oil & Grease*	1.79	1.79

(e) Cleaning or Etching - Rinse

Maximum for	Maximum for
ty Any One Day	Monthly Average
llion off-lbs) of aluminu	um cleaned or etched
0.52	0.21
0.28	0.11
1.42	0.59
nics (TTO) 0.96	
13.91	13.91
	llion off-lbs) of aluminu 0.52 0.28 1.42 nics (TTO) 0.96

(f) Cleaning or Etching - Scrubber Liquor

Pollutant Pollutant		Maximum fo Any One Da			um for Average
mg/off-kg	(lb/million	off-lbs) of	aluminum	cleaned or	etched
Chromium Cyanide Zinc		0.72 0.39 1.97		0	.29 .16 .81
	ic Organics ase*				.33

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(g) Extrusion Press Leakage

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of hard alloy	aluminum extruded
Chromium Cyanide Zinc Total Toxic Organics (Oil & Grease*	0.11 0.06 0.31 TTO) 0.21 2.98	0.05 0.03 0.13 2.98

D. PSNS FOR THE FORGING SUBCATEGORY

(a) Forging - Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million o	ff-lbs) of aluminum	forged
Chromium	0.019	0.008
Cyanide	0.010	0.004
Zinc	0.051	0.021
Total Toxic Organics (T Oil & Grease*	TO) 0.035 0.50	0.50

(b) Forging - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	n off-lbs) of aluminum	forged
Chromium	0.035	0.014
Cyanide	0.019	0.008
Zinc	0.096	0.040
Total Toxic Organics	(TTO) 0.065	
Oil & Grease*	0.95	0.95

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(c) Solution Heat Treatment - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of alumin	um quenched
Chromium	0.76	0.31
Cyanide	0.41	0.16
Zinc	2.08	0.86
Total Toxic Organics		
Oil & Grease*	20.37	20.37
(d) Cleaning or Etch	ing – Bath	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

ma/off-ka	(lb/million	off-lbs)	of	aluminum	cleaned	or	etched

Chromium	0.066	0.027
Cyanide	0.036	0.015
Zīnc	0.183	0.075
Total Toxic Organics (TTO)	0.124	
Oil & Grease*	1.79	1.79

(e) Cleaning or Etching - Rinse

Pollutant or	Maximum for	Maximum for
Pollutant Propert	y Any One Day	Monthly Average
mg/off-kg (lb/mil	lion off-lbs) of aluminum	n cleaned or etched
Chromium	0.52	0.21
Cyanide	0.28	0.11
Zinc	1.42	0.59
Total Toxic Organ Oil & Grease*		13.91

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(f) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	n cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics (Oil & Grease*	0.72 0.39 1.97 (TTO) 1.34 19.33	0.29 0.16 0.812 19.33

E. PSNS FOR THE DRAWING WITH NEAT OILS SUBCATEGORY

(a) Drawing With Neat Oils - Core Waste Streams

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	drawn with neat oils
Chromium	0.019	0.008
Cyanide	0.010	0.004
Zinc	0.051	0.021
Total Toxic Organics Oil & Grease*	(TTO) 0.035 0.50	0.50

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant	or	Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average
mg/off-kg methods	(lb/million	off-lbs) of aluminum	cast by continuous
Chromium Cyanide Zinc		0.072 0.039 0.198	0.029 0.016 0.082
Total Tox: Oil & Great	ic Organics · ase*	(TTO) 0.134 1.94	1.94

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(c) Continuous Rod Casting - Spent Lubricant

Pollutant or Pollutant Prop		aximum fo ny One Da		Мс		imum for ly Average
mg/off-kg (1b/methods	million off	-lbs) of	aluminum	cast	ру о	continuous
Chromium Cyanide Zinc Total Toxic On Oil & Grease*	rganics (TTO	0.000 0.000 0.001 0.001) 4 2 0 4			0.0003 0.0002 0.0008

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	quenched
Chromium	0.76	0.306
Cyanide	0.41	0.163
Zinc	2.08	0.856
Total Toxic Organics (Oil & Grease*	TTO) 1.41 20.37	 20.37

(e) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc	0.067 0.036 0.183	0.027 0.015 0.075
Total Toxic Organics Oil & Grease*	(TTO) 0.124 1.79	1.79

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(f) Cleaning or Etching - Rinse

Pollutant or	Maxim	um for	Maximu	ım for
Pollutant Prope	rty Any O	ne Day	Monthly	Average
mg/off-kg (lb/m	illion off-lbs) of aluminum	cleaned or	etched
Chromium		0.52	0	. 21
Cyanide		0.28	0	. 11
Zinc		1.42	0	. 59
Total Toxic Org	anics (TTO)	0.96	-	
Oil & Grease*	j	3.91	13	. 91

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
TOTTUCUME TEOPETEY	Any one bay	nonenty average
mg/off-kg (lb/million	n off-lbs) of aluminum	n cleaned or etched
Chromium	0.72	0.29
Cyanide	0.39	0.16
Zinc	1.97	0.812
Total Toxic Organics		
Oil & Grease*	19.33	19.33

F. PSNS FOR THE DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY

(a) Drawing With Emulsions or Soaps - Core Waste Streams

Pollutant	or	Maximum	for	Maxim	ium for
Pollutant	Property	Any One	Day	Monthly	Average
ma/off-ka	(lh/million	off-lbs)	of aluminum	drawn with	amulaiona

mg/off-kg (lb/million off-lbs) of aluminum drawn with emulsions or soaps

Chromium	0.173	0.070
Cyanide	0.094	0.038
Zinc	0.48	0.196
Total Toxic Organics (TTO)	0.32	
Oil & Grease	4.67	4.67

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(b) Continuous Rod Casting - Contact Cooling Water

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/milliomethods	on off-lbs) of aluminum	cast by continuous
Chromium	0.072	0.029
Cyanide	0.039	0.016
Zinc	0.198	0.082
Total Toxic Organics Oil & Grease*	s (TTO) 0.134 1.94	 1.94

(c) Continuous Rod Casting - Spent Lubricant

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million methods	off-lbs) of aluminum	cast by continuous
Chromium	0.0007	0.0003
Cyanide	0.0004	0.0002
Zinc	0.0020	0.0008
Total Toxic Organics (Oil & Grease*	TTO) 0.0014 0.020	 0.020

(d) Solution Heat Treatment - Contact Cooling Water

Pollutant or Maximum for Pollutant Property Any One Day		Maximum for Monthly Average	
mg/off-kg (lb/m	aillion off-lbs) of aluminum	quenched	
Chromium Cyanide	0.76 0.41	0.306 0.163	
Zinc	2.08	0.856	
Total Toxic Org Oil & Grease*	yanics (TTO) 1.41 20.37	20.37	

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

(e) Cleaning or Etching - Bath

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium Cyanide Zinc Total Toxic Organics (Oil & Grease*	0.067 0.036 0.183 (TTO) 0.124 1.79	0.027 0.015 0.075 1.79

(f) Cleaning or Etching - Rinse

Pollutant Pollutant		Maximum Any One			imum for ly Average
mg/off-kg	(lb/million	off-lbs) o	f aluminum	cleaned	or etched
Chromium Cyanide Zinc		0.5 0.2 1.4	8		0.21 0.11 0.59
Total Tox: Oil & Great	ic Organics ase*	(TTO) 0.9			 13.91

(g) Cleaning or Etching - Scrubber Liquor

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/off-kg (lb/million	off-lbs) of aluminum	cleaned or etched
Chromium	0.715	0.290
Cyanide	0.387	0.155
Zinc	1.97	0.812
Total Toxic Organics (TTO) 1.34	
Oil & Grease*	19.33	19.33

^{*}Alternate monitoring limit - oil and grease may be substituted for TTO.

SECTION III

INTRODUCTION

LEGAL AUTHORITY

The Federal Water Pollution Control Act Amendments of 1972 established a comprehensive program to "restore and maintain the chemical, physical, and biological integrity of the Nation's waters" (Section 101(a)). To implement the Act, EPA was to issue effluent limitations guidelines, pretreatment standards, and new source performance standards for industry dischargers.

The Act included a timetable for issuing these standards. However, EPA was unable to meet many of the deadlines and, as a result, in 1976, it was sued by several environmental groups.

In settling this lawsuit, EPA and the plaintiffs executed a court-approved "Settlement Agreement." This Agreement required EPA to develop a program and adhere to a schedule in promulgating effluent limitations guidelines, new source performance standards, and pretreatment standards for 65 "priority" pollutants and classes of pollutants for 21 major industries. See Natural Resources Defense Council, Inc. v. Train, 8 ERC 2120 (D.D.C. 1976), modified, 12 ERC 1833 (D.D.C. 1979), modified by Orders dated October 26, 1982 and August 2, 1983.

Many of the basic elements of this Settlement Agreement program were incorporated into the Clean Water Act of 1977. Like the Agreement, the Act stressed control of toxic pollutants, including the 65 "priority" pollutants. In addition to strengthening the toxic control program, Section 304(e) of the Act authorizes the Administrator to prescribe "best management practices" (BMP) to prevent the release of toxic and hazardous pollutants from plant site runoff, spillage or leaks, sludge or waste disposal, and drainage from raw material storage associated with, or ancillary to, the manufacturing or treatment process.

The purpose of this document is to provide the supporting technical data regarding water use, pollutants, and treatment technologies for BPT, BAT, NSPS, PSES, and PSNS effluent limitations that EPA is promulgating for the aluminum forming category under Sections 301, 304, 306, 307, 308, and 501 of the Clean Water Act.

DATA COLLECTION AND UTILIZATION

EPA gathered and evaluated technical data in the course of developing these guidelines in order to perform the following tasks:

- 1. To profile the category with regard to the production, manufacturing processes, geographical distribution, potential wastewater streams, and discharge mode of aluminum forming plants.
- 2. To subcategorize, if necessary, in order to permit regulation of the aluminum forming category in an equitable and manageable way. This was done by taking all of the factors mentioned above plus others into account.
- 3. To characterize wastewater, detailing water use, wastewater discharge, and the occurrence of priority, conventional, and nonconventional pollutants, in waste streams from aluminum forming processes.
- 4. To select pollutant parameters—those priority, conventional, and nonconventional pollutants present at significant concentrations in wastewater streams—that should be considered for regulation.
- 5. To consider control and treatment technologies and select alternative methods for reducing pollutant discharge in this category.
- 6. To consider the costs of implementing the alternative control and treatment technologies.
- 7. To present possible regulatory alternatives.

Sources of Industry Data

Data on the aluminum forming category were gathered from previous EPA studies, literature studies, inquiries to federal and state environmental agencies, raw material manufacturers and suppliers, trade association contacts, and the aluminum forming manufacturers themselves. Additionally, meetings were held with industry representatives and the EPA. All known aluminum formers were sent a data collection portfolio (dcp) requesting specific information concerning each facility. Finally, a sampling program was carried out at 25 plants. The sampling program consisted of screen sampling and analysis at four facilities to determine the presence of a broad range of pollutants and verification at 21 plants to quantify the pollutants present in aluminum forming wastewater. Specific details of the sampling program and information from the above data sources are presented in Section V.

After proposal on November 22, 1982, a large number of public comments were received on the proposed regulation and supporting documents, many containing additional data about the category.

The Agency sent out requests for additional information and data to 13 commenters and visited six facilities; sampling and analyses were performed at five of those plants. On July 27, 1983, a notice was published in the <u>Federal Register</u> (49 FR 34079) announcing the availability of additional data for review and comment. All additional information obtained since proposal which arrived in a timely manner and all comments on the proposed regulation were considered in preparing the final regulation.

Literature Review. EPA reviewed and evaluated existing literature for background information to clarify and define various aspects of the aluminum forming category and to determine general characteristics and trends in production processes and wastewater treatment technology. Review of current literature continued throughout the development of these guidelines.

Plant Survey and Evaluation. The aluminum forming plants were surveyed to gather information regarding plant size, age and production, the production processes used, and the quantity, treatment, and disposal of wastewater generated at these plants. This information was requested in dcp's mailed to all companies known or believed to be involved in the forming of aluminum or aluminum alloys. The original mailing list was compiled from the following sources:

- U.S. Department of Commerce, Directory of Aluminum Suppliers in the United States, Revised January 1978.
- Architectural Aluminum Manufacturers Association, Membership Directory, 1977.
- Aluminum Foil Container Manufacturers Association, Membership Roster as of May 1, 1978.
- Dun & Bradstreet, Inc., Million Dollar Directory, 1978.

In all, dcp's were sent to 580 firms. Approximately 95 percent of the companies responded to the survey. In many cases, companies contacted were not actually members of the aluminum forming category as it is defined by the Agency. Where firms had aluminum forming operations at more than one location, a dcp was requested from each plant. A total of 279 dcp's applicable to the aluminum forming category were returned. Two plants had ceased aluminum forming operations before proposal and a total of 277 plants were included in the data base at proposal. Subsequent to proposal, the Agency became aware of three plants which have closed and three additional plants which have ceased aluminum forming operations. Therefore, a total of 271 plants are included in the data base. In cases where the dcp responses were

incomplete or unclear, additional information was requested by telephone or letter.

The dcp responses were interpreted individually, and the following data were documented for future reference and evaluation:

- Company name, plant address, and name of the contact listed in the dcp.
- Plant discharge status as direct (to surface water), indirect (to POTW), or zero discharge.
- Production process streams present at the plant, as well as associated flow rates; production rates; operating hours; wastewater treatment, reuse, or disposal methods; the quantity and nature of process chemicals; and the percent of any soluble oil used in emulsified mixtures.
- Capital and annual treatment costs.
- Availability of pollutant monitoring data provided by the plant.

The summary listing of this information provided a consistent, systematic method of evaluating and summarizing the dcp responses. In addition, procedures were developed to simplify subsequent analyses. The procedures developed had the following capabilities:

- Selection and listing of plants containing specific production process streams or treatment technologies.
- Summation of the number of plants containing specific process stream and treatment combinations.
- Calculation of the percent recycle present for specific streams and summation of the number of plants recycling this stream within various percent recycle ranges.
- Calculation of annual production values associated with each process stream and summation of the number of plants with these process streams having production values within various ranges.
- Calculation of water use and blowdown from individual process streams.

In addition to industry data obtained from dcp's, telephone contacts were made with plants in the aluminum forming category to expand the Agency's information on extrusion die cleaning baths,

rinses, and scrubbers, and on the roll grinding operations. Telephone contacts also served to clarify information contained in the dcp's.

The calculated information and summaries were important and frequently used in the development of this guideline. Summaries were used in the category profile, evaluation of subcategorization, and analysis of in-place treatment and control technologies. Calculated information was used in the determination of water use and discharge values for the conversion of pollutant concentrations to mass loadings.

Utilization of Industry Data

Data collected from the previously listed sources throughout this report in the development of a base for BPT BAT limitations and NSPS and pretreatment standards. Previous EPA studies as well as the literature provided the basis for the aluminum forming subcategorization discussed in Section IV. Raw wastewater characteristics for each subcategory presented in Section V were obtained from the screening and verification sam-Selection of pollutant parameters for control (Section pling. VI) was based on verification and screening sampling results. These provided information on both the pollutants which the plant personnel felt were in their wastewater discharges and those pollutants specifically found in aluminum forming wastewaters the result of sampling. Based on the selection of pollutants requiring control and their levels, applicable treatment technologies were identified and these are described in Section VII of this document. Actual wastewater treatment technologies utilized by aluminum forming plants (as identified in the dcp responses and observed at the sampled plants) were also used to identify applicable treatment technologies. The costs of treatment (both individual technologies and systems) were based primarily on data from equipment manufacturers and literature and are contained in Section VIII of this document. Finally, dcp data, sampling data, estimated treatment system performance are utilized in Sections IX, X, XI, and XII (BPT, BAT, NSPS, and pretreatment, respectively) in the selection of applicable treatment systems; the presentation of achievable effluent levels; and the presentation of actual effluent levels obtained for each aluminum forming subcategory.

DATA COLLECTION SINCE PROPOSAL

After proposal of the Aluminum Forming Regulation, EPA provided a 75 day comment period, which closed on February 8, 1983. EPA received approximately 1,000 individual comments from 24 different commenters. The Agency gathered additional data after

proposal to clarify data and to provide further support for the regulation.

Under authority of Section 308 of the Clean Water Act, the Agency requested specific additional information and data from 13 commenters to clarify and support their individual comments. Agency's request for information asked each commenter to provide particular specific information supporting their comments. Responses were received from all of the 13 commenters. additional data and information received related primarily wastewater sources not specifically considered by the proposed regulation; space limitations and retrofit problems involved with the installation of two-stage countercurrent rinsing; and the and disposal costs of solid wastes generated by classification wastewater treatment. We received flow and production data for additional waste streams as well as information on treatment and characteristics of these streams. Plan view diagrams were submitted by two companies to show space availability for countercurrent cascade rinsing. We also received information regarding operating schedules for surface treatment lines. Cost information was submitted for solid waste disposal as well as copies correspondence with disposal companies and state or local author-We also received new technical information on the regeneration of cleaning and etching baths.

To supplement existing data regarding treatment-in-place and the long-term performance of that treatment, we collected discharge monitoring report (DMR) data from state or EPA Regional offices for direct dischargers. DMR data are self-monitoring data supplied by permit holders to meet state or EPA permit requirements. These data were available from 30 aluminum forming plants; however, the data vary widely in character and nature due to the dissimilar nature of the monitoring and reporting requirements placed on aluminum forming plants by the NPDES permit issuing authority. These data were not used in the actual development of the final limitations but DMR data from 11 plants that have lime and settle treatment were used as a check on the achievability of the treatment effectiveness values used to establish limitations and standards. A discussion on these DMR data and a comparison of them to the treatment effectiveness values used in this regulation is found in the administrative record to this rulemaking.

The existing treatment effectiveness data were reviewed thoroughly following proposal. As a result of this review, minor additions and deletions were made to the Agency's treatment effectiveness data base. These changes are documented in the record along with responses to comments. Following the changes, statistical analyses performed prior to proposal were repeated. Conclusions reached prior to proposal were unchanged and little

or no effect on the final limitations occurred as a result of changes in the data.

Additional data were obtained from 17 plants that perform anodizing and conversion coating operations as an integral part of aluminum forming extrusion operations. These obtained by site visits, telephone contacts, and letter requests, were used to expand the process configuration, production, and wastewater flow information obtained during the Agency's 1978 data collection effort with regard to plants which perform anodizing and conversion coating. These data were used to characterize wastewater flows and subsequently estimate cost of compliance for these plants.

Since proposal, the Agency made engineering visits to six aluminum forming plants to determine the flow characteristics of 12 wastewater streams (sawing spent lubricant, roll grinding spent lubricant, die cleaning baths, extrusion press hydraulic leakage, detergent cleaning baths and rinses, anodizing baths and rinses, dye baths and rinses, and sealing baths and rinses). Additionally, we collected samples for chemical analysis at five of these plants to determine the nature of the above wastewater streams and the effectiveness of end-of-pipe treatment in removing pollutants, primarily aluminum. In addition to the wastewater streams listed above, we sampled a variety of process wastewaters to characterize treatment effectiveness.

A notice of data availability was published in the <u>Federal</u> Register on July 27, 1983 and the comment period for this notice ended on August 11, 1983.

The data described above were analyzed and incorporated with the data collected prior to proposal, and were used in the development of the final effluent limitations guidelines and standards delineated in this document. A further discussion of how these additional data were used is presented in the appropriate sections of this document.

DESCRIPTION OF THE ALUMINUM FORMING CATEGORY

The aluminum forming industry is generally included within SIC 3353, 3354, 3355, and 3463 of the Standard Industrial Classification Manual, prepared in 1972 and supplemented in 1977 by the Office of Management and Budget, Executive Office of the President.

Aluminum forming is the deformation of aluminum or aluminum alloys into specific shapes by hot or cold working such as rolling, extrusion, forging, and drawing. Also included are a number of ancillary operations such as casting, heat treatment, and sur-

face treatment that are an integral part of aluminum forming processes and that can contribute significantly to the wastewaters discharged from aluminum forming plants. For the purposes of this regulation, surface treatment is considered to be a part of forming whenever it is performed as an integral part of aluminum forming. All surface treatment of aluminum is considan integral part of aluminum forming whenever it is performed at the same plant site at which aluminum is formed. The manufacture of aluminum powders and the forming of parts from aluminum alloy powders will be regulated under the aluminum or nonferrous metals forming regulation. Casting done at a plant which manufactures aluminum and also does aluminum forming will be subject to the casting limitations for the aluminum manufacturing subcategories of the nonferrous metals category if they cast the aluminum without cooling. If the aluminum is a remelted primary aluminum product and is cast at a facility for subsequent forming of aluminum, then the casting of remelted aluminum will be subject to the aluminum forming limitations.

Historical

The dcp responses indicate that 156 companies own 271 aluminum forming plants. Five of the companies own 22 percent of the plants, and 16 companies own 42 percent of the production facilities.

Employment data is given in the dcp responses for 248 plants (89 percent of the total). These plants report a total of 28,557 workers involved in aluminum forming. Employment at the individual sites ranges from one to 2,100 people. The employment distribution of aluminum forming workers at the 248 plants is: 69 percent employ fewer than 100 people in aluminum forming operations; 83 percent employ fewer than 200 people in this capacity; and 95 percent employ fewer than 500 people.

Aluminum forming plants are not limited to any one geographical location. As shown in Figure III-2, plants are found throughout most of the United States, but the majority are located east of the Mississippi River. Population density is not a limiting factor in plant location. Aluminum forming plants tend to be more common in urban areas, but they are frequently found in rural areas as well.

The majority of the aluminum forming plants (55 percent) that reported the age of their facility indicated they were built since 1957. Table III-2 shows the age distribution of aluminum forming plants according to their classification as direct, indirect, and zero discharge type. The dates of most recent modification were reported by 230 plants. The distribution of facilities according to time elapsed since their last major plant

modification is given in Table III-3. Of the 271 aluminum forming plants, 44 percent have been modified since 1972.

Product Description

There are a number of advantages to using aluminum in a wide variety of products. Chief among these are that aluminum is lightweight, tough, resistant to corrosion, and has high electrical conductivity. The major uses of aluminum are in the building and construction industry, transportation industries, the electrical products industry, and in container and package manufacturing.

Products manufactured by aluminum forming operations generally serve as stock for subsequent fabricating operations, as shown in Figure III-1. Cast ingots and billets are the starting point for making sheet and plate, extrusions, and forgings, as well as rod, for use in drawing operations. Rolled aluminum sheet and plate can be used as stock for stampings, can blanks, and roll formed products; as finished products in building, ship and aircraft construction; or as foil. Extrusions can be used as raw stock for forging and drawing; to fabricate final products, such as bumpers, window frames, or light standards; or can be sold as final products, such as beams or extruded tubing. Forgings are either sold as consumer products or used as parts in the production of machinery, aircraft, and engines.

The variety and type of products produced at one location has a large influence on the production capacity of the forming plant, the number of people employed, and the amount of water used. The capital intensive investment, large source of energy required, and specialized labor force involved in making aluminum sheet, strip, foil, and plate products limit the number of facilities available to meet the demand for these sheet products. Most sheet products are made at a few large plants owned by major companies. Table III-1 summarizes data about these and other products of aluminum forming. A variety of sheet products are often produced at the same location. Other products, such as billets and extrusions, are frequently made in conjunction with the rolled products at these plants.

Tubes, rod, cable, and wire are produced at sites that range in size from very large to small. On a mass basis most drawn products are produced by a few large companies or factories, while the remainder are produced by a number of smaller firms. Employment varies from a few to several hundred people.

Extrusion and forging processes, which produce a wide variety of products, do not require large facilities. Consequently, extrusion and forging products are formed at many sites by a number of

companies. Production and employment at facilities using either type of process range from small plants with few workers to large plants with hundreds of employees. Some extrusion plants have other forming operations as well. Forging, however, is usually performed by plants that are not involved in other processes.

Casting in the aluminum forming category, both continuous and direct chill, is done prior to another operation, such as rolling or extrusion. Aluminum billets or ingots are rarely cast at aluminum forming plants for sale to other industries or firms. Stationary casting in this industry usually involves only melted in-plant scrap aluminum. The ingots, frequently called pigs or sows, produced from stationary casting are normally remelted and used as stock for continuous or direct chill casting.

Reported production of formed aluminum at individual plant sites ranged from .09 kkg (0.1 ton) to almost 360,000 kkg (400,000 tons) during 1977. The aluminum forming production distribution for the 249 plants, for which 1977 production data were available, is summarized as follows: 75 percent produced less than 9,000 kkg (10,000 tons); 96 percent produced less than 45,000 kkg (50,000 tons); and 98 percent produced less than 180,000 kkg (200,000 tons).

One hundred forty plants indicated that no wastewater from aluminum forming operations is discharged to either surface waters or a POTW. Of the remaining 131, 59 discharge an effluent directly to surface waters, and 72 discharge aluminum forming indirectly, sending aluminum forming effluent through a POTW. The volume of aluminum forming wastewater discharged by plants in category ranges from 0 to 2,896,000 liters per hour (0 to 765,000 gal/hr). The mean volume is approximately 74,000 per hour (19,540 gal/hr) for those plants having discharges. hundred fifty-nine plants supplied wastewater data. This is less than the total number of aluminum forming plants in the category because several plants did not provide enough information to calculate the flows. Of these 259 plants, over 50 percent reported no wastewater discharge from aluminum forming operations; 90 percent discharge less than 19,000 liters per hour (5,000 gal/hr); and 98 percent discharge less than 190,000 liters per hour gal/hr). There is no correlation between overall water use and total aluminum production for a plant as a whole; however, correlations can be developed between water use or wastewater discharge and production on a process basis. This discussed further in Section V.

Sixty plants reported some form of treatment for wastewater from aluminum forming processes. Another 13 plants mentioned treatment only for wastes not covered under the aluminum forming category. The most common forms of wastewater treatment are pH

adjustment, clarification, gravity oil separation (skimming), and Recirculation including in-line filtration and cooling towers are frequently used as wastewater controls. reduction techniques demonstrated include countercurrent cascade and spray rinsing. Oily wastes are separated into oil and water fractions by emulsion breaking using heat or chemicals. Gravity separation is frequently used to separate neat oil and broken emulsions from the water fraction. The oil portion is usually removed by a contractor, although some plants dispose of application, incineration, or lagooning. Wastewater treatment sludges generally are not thickened, but are disposed without treatment; however, vacuum and pressure filters, centrifuges, and drying beds are occasionally used. Sludge disposal methods include landfill and contractor removal. Disposal wastewater is being accomplished by discharge to surface waters or a POTW, by contractor removal, or by land application.

DESCRIPTION OF ALUMINUM FORMING PROCESSES

Aluminum forming processes, for the purpose of this guideline, are those manufacturing operations in which aluminum or aluminum alloys are shaped into semifinished or mill products by hot or cold working. An aluminum alloy is defined, for the purposes of this regulation, as any metal in which aluminum is the major component by percent composition. Frequently used alloying materials include silicon, zinc, copper, manganese, iron, magnesium, titanium, and nickel. The content of these alloying materials in aluminum generally ranges from 3 to 12 percent. Alloys are formulated to produce a metal with improved characteristics such as good machinability, hardness, strength, high resistance to corrosion, and good castability.

The manufacturing operations, called core operations (see Section IV), include rolling, extruding, forging and drawing of aluminum. Associated processes, called ancillary operations, such as the casting of aluminum alloys for subsequent forming, heat treatment, cleaning, and etching are also included.

Water is used in combination with oil lubricants, surface processing chemicals, and in contact cooling as a part of these operations in order to achieve specified desired metal characteristics (i.e., tensile strength, malleability, specific surface properties). Water may also be used in wet air pollution control devices (i.e., wet scrubbers, electrostatic precipitators) to collect fumes and particulates. A further discussion of wastewater sources from aluminum forming processes is presented in Section V. Regulatory flow allowances for waste streams under BPT, BAT, NSPS, and pretreatment standards are presented and discussed in Sections IX, X, XI, and XII respectively.

EPA recognizes that plants sometimes combine non-aluminum forming process and nonprocess wastewater prior to treatment and discharge. Pollutant discharge allowances will be established only for aluminum forming process wastewater, not the non-aluminum process or non-process wastewaters under this regulation. The flows and wastewater characteristics for these other waste streams are a function of the plant operations, layout, and water handling practices. As a result, the pollutant discharge effluent limitation for non-aluminum forming wastewater streams will be prepared by the permitting or control authority on a case-bycase basis. These wastewaters are not further discussed in this document or covered by the regulation.

Core Operations

Rolling. The rolling process is used to transform cast aluminum ingot into any one of a number of intermediate or final products. Pressure exerted by the rollers as aluminum is passed between them reduces the thickness in the metal and may cause work hardening. Square ingots cast by the direct chill method described previously are often used in the production of wire, rod, and bar. The ingots are usually reduced by hot rolling to elongated forms, known as blooms. Additional hot or cold rolling may be used to produce rod, bar, or wire. Rod is defined as having a solid round cross section 0.95 cm (3/8 inch) or more in diameter. Bar is also identified by a cross section with 0.95 cm (3.8 inch) or more between two parallel sides, but it is not round. Wire is characterized by a diameter of less than 0.95 cm (3/8 inch).

Although the design of rolling mills varies considerably, the principle behind the process is essentially the same. At the rolling mill, aluminum is passed through a set of rolls that reduces the thickness of the metal and increases its length. Two common roll configurations are shown in Figure III-3. Multiple passes through the rolls are usually required, and mills are frequently designed to allow rolling in the reverse direction. For wire, rod, and bar products, grooves in the upper and lower rolls account for the various reductions in cross sectional area.

At sheet mills, ingots are heated to temperatures ranging from 400° to 500°C and hot rolled to form slabs. Hot rolling is usually followed by further reduction of thickness on a cold rolling mill. The hot rolled product is generally limited to plate typically defined as being greater than or equal to 6.3 mm (0.25 inch) thick. Cold rolled products are classified as sheet from 6.3 to 0.15 mm (0.249 to 0.007 inch) thick and foil below 0.15 mm (0.006 inch) thick.

As will be discussed later in this section, heat treatment is usually required before and between stages of the rolling process. Ingots are usually made homogeneous in grain structure prior to hot rolling in order to remove the effects of casting on the aluminum's mechanical properties. Annealing is typically required between passes or after cold rolling to keep the metal ductile and remove the effects of work hardening. The kind and degree of heat treatment applied depends on the alloy involved, the nature of the rolling operation, and the properties desired in the product.

is necessary to use a cooling and lubricating compound during rolling to prevent excessive wear on the rolls, to prevent adhesion of aluminum to the rolls, and to maintain a suitable and uniform rolling temperature. Oil-in-water emulsions, stabilized emulsifying agents such as soaps and other polar organic materials, are used for this purpose in hot rolling operations. Emulsion concentrations usually vary between 5 and 10 percent Evaporation of the lubricant as it is sprayed on the serves to cool the rolling process. Mist eliminators may metal be used to recover rolling emulsions that are dispersed to atmosphere. The emulsions are typically filtered to remove metal and other contaminants and recirculated through the mills. The use of deionized water to replace evaporative and carryover and the addition of bactericides and antioxidizing agents are practiced at many plants to increase the life of the emul-Nevertheless, the emulsions eventually become rancid or degraded and must be eliminated from circulation either tinuous bleed or periodic discharge. Most cold rolling operations use mineral oil or kerosene-based lubricants rather water-based compounds to avoid staining the aluminum surface; however, emulsions are used for cold rolling in other countries and, to a limited extent, in the United States. As in hot rolling, mist eliminators are commonly used to collect cold rolling mists in order to recover the rolling oils for reuse.

The steel rolls used in hot and cold rolling operations require periodic machining to remove aluminum buildup and to grind away any cracks or imperfections that appear on the surface of the rolls. Although the survey of the category indicated that roll grinding with water is practiced, the use of an oil-in-water emulsion is much more common. This emulsion is usually recycled and periodically discharged after treatment with other emulsified waste streams at the plant. Some plants have demonstrated that the discharge of roll grinding emulsions can be avoided by inline removal using magnetic separation of steel fines from the emulsion or filtration techniques. With this treatment, the emulsion can be recycled indefinitely with no bleed stream other than carryover on the rolls.

Of the plants surveyed, 57 have rolling operations. Twenty-three of these discharge wastewater directly to surface water, nine discharge indirectly through a POTW, and 25 do not discharge process wastewater. The geographical location of plants with aluminum rolling operations is presented in Figure III-4. The annual production of rolled aluminum at these plants during 1977 varied from 270 to 580,000 kkg (300 to 640,000 tons), with a mean value of 200,000 kkg (220,000 tons). The production distribution is summarized as follows: of the 45 rolling operations for which 1977 production data were available, 36 percent produced less than 18,000 kkg (20,000 tons) of aluminum and aluminum alloys; 73 percent produced less than 90,000 kkg (100,000 tons); and 90 percent produced less than 360,000 kkg (400,000 tons).

Extrusion. In the extrusion process, high pressures are applied to a cast billet of aluminum, forcing the metal to flow through a die orifice. The resulting product is an elongated shape or tube of uniform cross-sectional area. Extrusions are manufactured using either a mechanical or a hydraulic extrusion press.

There are two basic methods of extrusion practiced in the aluminum forming category:

- direct extrusion, and
- indirect extrusion.

The direct extrusion process is shown schematically in Figure III-5. A heated cylindrical billet is placed into the ingot chamber, and the dummy block and ram are placed into position behind it. Pressure is exerted on the ram by hydraulic or mechanical means, forcing the metal to flow through the die opening. The extrusion is sawed off next to the die, and the dummy block and ingot butt are released. Hollow shapes are produced with the use of a mandrel positioned in the die opening so that the aluminum is forced to flow around it. A less common technique, indirect extrusion, is similar, except that in this method, the die is forced against the billet extruding the metal in the opposite direction through the ram stem. A dummy block is not used in indirect extrusion.

Although aluminum can be extruded cold, it is usually first heated to a temperature ranging from 375 to 525°C, so that little work hardening will be imposed on the product. Heat treatment is frequently used after extrusion to attain the desired mechanical properties. Heat treatment techniques will be described later in this section. At some plants, contact cooling of the extrusion, sometimes called press heat treatment quench, is practiced as the aluminum leaves the press. This can be done in one of three ways: with a water spray near the die, by immersion in a water tank adjacent to the runout table, or by passing the aluminum

through a water wall. A third wastewater stream which may be associated with the extrusion process is dummy block cooling water. Following an extrusion, the dummy block drops from the press and is cooled before being used again. Air cooling is most commonly used for this purpose, but water is used at a few plants to quench the dummy blocks.

The extrusion process requires the use of a lubricant to prevent adhesion of the aluminum to the die and ingot container walls. In hot extrusion, limited amounts of lubricant are applied to the ram and die face or to the billet ends. For cold extrusion, the container walls, billet surfaces, and die orifice must be lubricated with a thin film of viscous or solid lubricant. The lubricant most commonly used in extrusion is graphite in an oil or water base. A less common technique, spraying liquid nitrogen on the billet prior to extrusion, is also used. The nitrogen vaporizes during the extrusion process and acts as a lubricant.

Extrusion presses that are used to extrude hard alloys such as aircraft alloys operate under extremely high pressures. These presses frequently use an oil-water emulsion as the hydraulic fluid to reduce the risk of fires instead of neat oil used as the hydraulic fluid in other presses. Due to the nature of this hydraulic fluid and the extremely high pressures, these extrusion presses frequently develop hydraulic fluid leaks which must be treated and discharged.

The steel dies used in the extrusion process require frequent dressing and repairing to ensure the necessary dimensional precision and surface quality of the product. The aluminum that has adhered to the die orifice is typically removed by soaking the die in a caustic solution. The aluminum is dissolved and later precipitated as aluminum hydroxide. The caustic bath is followed by a water rinse of the dies. The rinse is frequently discharged as a wastewater stream.

In all, 163 extrusion plants were identified in this survey. Of these, 85 indicated that no wastewater is discharged from aluminum forming operations at the plant; 38 identified themselves as direct dischargers; and 40 indicated indirect discharge of the process effluent to a POTW. In subsequent investigation of extrusion practices, it became apparent that these figures may be misleading. At many of the extrusion plants contacted, personnel did not realize that die cleaning rinse water was considered to be an aluminum forming wastewater stream as defined in this study. For this reason, some of the plants classified as zero discharge are believed to be discharging this effluent stream either to surface waters or to a POTW.

The geographical locations of the extrusion plants are shown in Figure III-6. Annual production of extruded products from these plants ranged between 6.8 and 68,000 kkg (7.5 and 75,000 tons) in 1977. The production distribution is summarized as follows: of the 157 extrusion operations for which 1977 production data were available, 58 percent produced less than 4,500 kkg (5,000 tons) of aluminum and aluminum alloys; 81 percent produced less than 9,000 kkg (10,000 tons); and 92 percent produced less than 18,000 kkg (20,000 tons).

Forging. Forging is a process in which aluminum is formed, usually hot, into shapes by employing compressive forces. The actual forging process is a dry operation. There are four basic methods of forging practiced in the aluminum forming category:

- Closed die forging,
- Open die forging,
- Rolled ring forging, and
- Cold impact extruding.

In each of these techniques, pressure is exerted on dies or rolls, forcing the heated stock to take the desired shape. The first three methods are shown schematically in Figure III-7.

Closed die forging, the most prevalent method, is accomplished by hammering or squeezing the aluminum between two steel dies, one fixed to the hammer or press ram and the other to the anvil. Forging hammers, mechanical presses, and hydraulic presses can be used for the closed die forging of aluminum alloys. The heated stock is placed in the lower die and, by one or more blows of the ram, forced to take the shape of the die set. In closed-die forging, aluminum is shaped entirely within the cavity created by these two dies. The die set comes together to completely enclose the forging, giving lateral restraining to the flow of the metal.

The process of open die forging is similar to that described above, but in this method, the shape of the forging is determined by manually turning the stock and regulating the blows of the hammer or strokes of the press. Open die forging requires a great deal of skill and only simple, roughly shaped forgings can be produced. Its use is usually restricted to items produced in small quantities and to development work where the cost of making closed type dies is prohibitive.

The process of rolled ring forging is used in the manufacture of seamless rings. A hollow cylindrical billet is rotated between a mandrel and pressure roll to reduce its thickness and increase its diameter.

The process of impact extruding is performed by placing a cut-off piece of aluminum in a bottom die. A top die consisting of a round or rectangular punch and fastened to the press ram is driven into the aluminum slug, causing the aluminum to be driven up around the top punch. Usually, the aluminum adheres to the punch and must be stripped off as the press ram rises.

Proper lubrication of the dies is essential in forging aluminum alloys. Collodial graphite in either a water or an oil medium is usually sprayed onto the dies for this purpose. Particulates and smoke may be generated from the partial combustion of oil-based lubricants as they contact the hot forging dies. In those cases, air pollution controls may be required. Baghouses, wet scrubbers, and commercially available dry scrubbers are in use at aluminum forming facilities.

Forging of aluminum alloys is practiced at 16 plants located as shown in Figure III-8. Of those plants, 12 discharge aluminum forming wastewater indirectly to a POTW, and the remaining four plants have no discharge of process wastewater. The production distribution is summarized as follows: of the 15 forging operations for which 1977 production data were available, 67 percent produced less than 900 kkg (1,000 tons) of aluminum and aluminum alloys; 80 percent produced less than 4,500 kkg (5,000 tons); and 87 percent produced less than 9,000 kkg (10,000 tons).

Drawing. The term drawing, when it applies to the manufacture of tube, rod, bar, or wire, refers to the pulling of metal through a die or succession of dies to reduce its diameter, alter the cross sectional shape, or increase its hardness. In the drawing of aluminum tubing, one end of the extruded tube is swaged to form a solid point and then passed through the die. A clamp, known as a bogie, grips the swaged end of tubing, as shown in Figure III-9. A mandrel is then inserted into the die orifice, and the tubing is pulled between the mandrel and die, reducing the outside diameter and the wall thickness of the tubing. Wire, rod, and bar drawing is accomplished in a similar manner, but the aluminum is drawn through a simple die orifice without using a mandrel.

In order to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels used, it is essential that a suitable lubricant be applied during drawing. A wide variety of lubricants are used for this purpose. Heavier draws, which have a higher reduction in diameter, may require oil-based lubricants, but oil-in-water emulsions are used for many applications. Soap solutions may also be used for some of the lighter draws. Drawing oils are usually recycled until their lubricating properties are exhausted.

Intermediate annealing is frequently required between draws in order to restore the ductility lost by cold working of the drawn product. Degreasing of the aluminum may be required to prevent burning of heavy lubricating oils in the annealing furnaces.

Of the plants surveyed, 77 are involved in the drawing of tube, wire, rod, and bar. The geographical location of these plants is shown in Figure III-10. No aluminum forming wastewater is discharged at 51 of the plants. Of the remainder, 10 discharge directly to surface water, and 16 discharge indirectly to a POTW. The production distribution is summarized as follows: of the 57 drawing operations for which 1977 production data were available, 46 percent produced less than 900 kkg (1,000 tons) of aluminum and aluminum alloys; 74 percent produced less than 4,500 kkg (5,000 tons); and 82 percent produced less than 9,000 kkg (10,000 tons).

Sawing. Sawing may be required for a number of aluminum forming processes. Before ingots can be used as stock for rolling or extrusion, the ingot may require scalping or sawing to a suitable length. Following processes such as rolling, extrusion, and drawing, the aluminum products may be sawed. The circular saws and band saws used generally require a cutting lubricant in order to minimize friction and act as a coolant. Oil-in-water emulsions or mineral-based oils are usually applied to the sides of the blade as a spray. In some cases, a heavy grease or wax may be used as a saw lubricant. Normally, saw oils are not discharged as a wastewater stream. The lubricants frequently are carried over on the product or removed together with the saw chips for reprocessing. In some cases; however, recycle and discharge of a low-volume saw lubricant stream is practiced.

Swaging. Swaging is a forming operation frequently associated with drawing. Swaging is often the initial step in drawing tube or wire. By repeated blows of one or more pairs of opposing dies, a solid point is formed. The point is then inserted through the drawing die and gripped. In a few cases, swaging is used in tube forming without a subsequent drawing operation. Some lubricants, such as waxes and kerosene, may be used to prevent adhesion of the metal or oxide on the swaging dies.

Ancillary Operations

<u>Casting</u>. Before aluminum alloys can be used for rolling or extrusion, and subsequently for other aluminum forming operations, they are usually cast into ingots of suitable size and shape. Although ingots may be prepared at smelters or other forming plants, 85 of the 277 plants surveyed indicated that casting is done on site. In addition, 30 of the 31 primary aluminum plants surveyed in the nonferrous metals study indicated

that some form of casting is done on site. Nine of these plants fall into both the aluminum forming and nonferrous metals categories. Therefore, 106 primary reduction, secondary aluminum and aluminum forming plants have casting operations on site.

The equipment and methods of casting used at aluminum forming plants are the same as those employed by primary and many secondary plants, and the water requirements and waste characteristics are also very similar. Casting done at a plant which does both primary aluminum reduction and aluminum forming will be subject to the casting limitations for primary aluminum if they cast the aluminum directly without cooling. If the aluminum is a remelted primary aluminum product then the casting subsequent to the remelting will be subject to the aluminum forming limitations.

The aluminum alloys used as the raw materials for casting operations are sometimes purchased from nearby smelters and transported to the forming plants in the molten state. Usually, however, purchased aluminum ingots are charged together with alloying elements into melting furnaces at the casting plants. Several types of furnaces can be used, but reverberatory furnaces are the most common. The melting temperatures used range from 650 to 750°C.

At many plants, fluxes are added to the metal in order to reduce hydrogen contamination, remove oxides, and eliminate undesirable trace elements. Solid fluxes, such as hexachloroethane, aluminum chloride, and anhydrous magnesium chloride, may be used, is more common to bubble gases such as chlorine, nitrogen, argon, and mixtures of chlorine and inert gases through the molten metal. Fluxing is accomplished by inserting "lance" into the molten liquid and pumping the gas perforated through it. This forces the oxides of aluminum back up to the surface. The oxides form on top of the molten metal while it stands in the crucibles and after it is poured into the furnace, and--being heavier than pure aluminum--the oxides sink down into the molten metal. Bubbles in the fluxing material surround the aluminum oxides and carry them up to the surface, where it can be skimmed off with big, long-handled rakes.

After alloying and fluxing, the metal is allowed to flow into a second or "holding" compartment of the furnace, which acts as a reservoir. When the reservoir of molten metal is sufficiently full the metal may be drawn off to be cast.

Certain complex reactions occur in the furnace itself and, as a result, some hydrogen gas is trapped in the molten metal. For this reason, just before it moves from the charging furnace to the holding furnaces, the metal is "degassed" by introducing a combination of nitrogen and chlorine gas, or chlorine gas alone,

or other chemicals. Although similar to fluxing in its description, degassing has an entirely different purpose but both may occur in the same operation.

The fluxing and degassing operations are not the same as the demagging process used in the manufacture of secondary aluminum. Like degassing and fluxing, demagging involves bubbling of chlorine gas through molten aluminum, however the constituent to be removed through demagging is primarily magnesium. Thus, the demagging process is a refining process which frequently requires significantly more chlorine than degassing or fluxing and some type of wet air pollution control.

One of the problems associated with furnace degassing with chlorine is the need for air pollution control. If the alloy being treated does not contain magnesium, the chlorine gas will react to form aluminum chloride, which exists as a dense, white The presence of hydrochloric acid in these vapors necessitates the use of wet scrubbers. For this reason, other gases or mixtures of gases may be preferred as degassing agents. In addition, a number of in-line treatment methods that eliminate need for fluxing when degassing aluminum have recently been developed and are being adopted by the industry. For a more detailed description of these alternatives, see Section VII. the aluminum forming plants and four primary aluminum plants with casting operations reported using wet air pollution controls to treat fumes from their melting furnaces. Chlorine was occasionally cited as a degassing agent. If enough metal refining is taking place that large amounts of gases are being emitted and a wet scrubber is necessary, this is considered metal manufacturing and is covered under the primary or secondary subcategory of the nonferrous metals manufacturing point source category.

The casting methods used in aluminum forming can be divided into three classes:

- Direct chill casting,
- Continuous casting, and
- Stationary casting.

The process variations among these techniques affect both the metallic properties of the aluminum that is cast and the characteristics of associated wastewater streams.

<u>Direct chill casting</u> is performed at 61 aluminum forming plants and is the most widely used method of casting aluminum for subsequent forming. Direct chill casting is characterized by continuous solidification of the metal while it is being poured. The length of an ingot cast using this method is determined by

the vertical distance it is allowed to drop rather than by mold dimensions.

shown in Figure III-11, molten aluminum is tapped from the melting furnace and flows through a distributor channel shallow mold. Noncontact cooling water circulates within this mold, causing solidification of the aluminum. The base of mold is attached to a hydraulic cylinder which is gradually lowered as pouring continues. As the solidified aluminum leaves the mold, it is sprayed with contact cooling water to reduce the temperature of the forming ingot. The cylinder continues to water, causing further cooling of the descend into a tank of ingot as it is immersed. When the cylinder has reached its lowest position, pouring stops and the ingot is lifted from the pit. The hydraulic cylinder is then raised and positioned for another casting cycle.

In direct chill casting, lubrication of the mold is required to ensure proper ingot quality. Lard or castor oil is usually applied before casting begins and may be reapplied during the drop. Much of the lubricant volatilizes on contact with the molten aluminum, but contamination of the contact cooling water with oil and oil residues does occur.

The production distribution is summarized as follows: of the 56 direct chill casting operations for which 1977 production data were available, 52 percent produced less than 23,000 kkg (25,000 tons) of aluminum and aluminum alloys; 73 percent produced less than 45,000 kkg (50,000 tons); and 89 percent produced less 180,000 kkg (200,000 tons). Direct chill casting is also performed by 27 primary aluminum plants covered in the nonferrous A comparison of production information was made metals survey. using production capacity from the two data sets, since the primary aluminum data was not from 1977. Of the 18 reduction plants supplying production capacity data, 28 percent produce less than 90,000 kkg (100,000 tons); 78 percent produce less than 180,000 kkg (200,000 tons); and 94 percent produce less than 227,000 kkg (250,000 tons).

Continuous casting is practiced at 15 plants in the aluminum forming category instead of, or in addition to, direct chill casting methods. Unlike direct chill casting, no restrictions are placed on the length of the casting, and it is not necessary to interrupt production to remove the cast product. The use of continuous casting eliminates or reduces the degree of subsequent rolling required.

A relatively new technology, continuous casting of aluminum first came into practice in the late 1950's. Since then, improvements and modifications have resulted in the increased use of this process. Current applications include the casting of plate, sheet, foil, and rod. Because continuous casting affects the mechanical properties of the aluminum cast, the use of continuous casting is limited by the alloys used, the nature of subsequent forming operations, and the desired properties of the finished product. In applications where continuous casting can be used, the following advantages have been cited:

- Increased flexibility in the dimensions of the cast product;
- Low capital costs, as little as 10 to 15 percent of the cost of conventional direct chill casting and hot rolling methods; and
- Low energy requirements, reducing the amount of energy required to produce comparable products by direct chill casting and rolling methods by 35 to 80 percent, depending on the product being cast.

In addition, the use of continuous casting techniques has been found to significantly reduce or eliminate the use of contact cooling water and oil lubricants.

number of different continuous casting processes are currently being used in the category. Although the methods vary somewhat, they are similar in principle to one of the three processes diagrammed schematically in Figure III-12. The most common method of continuous sheet casting, shown in Figure III-12A, substitutes single casting process for the conventional direct chill casting, scalping, heating, and hot rolling sequence. The continuous sheet casting line consists of melting and holding furnaces, a caster, pinch roll, shear, bridle, and coiler. aluminum flows from the holding furnace through a degassing chamber or filter to the caster headbox. The level of molten aluminum maintained in the headbox causes the metal to flow upwards through the top assembly, which distributes it uniformly across the width of the casting rolls. The aluminum solidifies as it leaves the tip and is further cooled and solidified as it passes through the internally water-cooled rolls. leaves the caster as a formed sheet and successively passes through pinch rolls, a shear, and a tension bridle before being wound into a coil. The cooling water associated with this method continuous sheet casting never comes into contact with the aluminum metal.

Another method of casting continuous aluminum sheet is shown in Figure III-12B. This process is not very common and is limited due to the mechanical properties of the sheet produced. Molten aluminum is poured into a rotating perforated cylinder. The

droplets formed are air cooled and solidify as they fall. At this point, the pellets may either be removed for temporary storage or charged directly to a preheated chamber, hot rolled into sheet, and coiled. This unique process design not only eliminates the use of contact cooling water, but also results in considerable reductions in the amount of noncontact cooling water required in the production of sheet.

Several methods of rod casting, similar to the one shown in Figure III-12C, are currently being used to produce aluminum rod. Typically, continuous rod is manufactured on an integrated ing and rolling line consisting of a wheel belt caster, pinch roll, shear, rolling trains, and a coiler. A ring mold is into the edge of the casting wheel. The mold is bound peripherally by a continuous belt which loops around the casting wheel an associated idler wheel. As the casting wheel rotates, aluminum is poured into the mold and solidifies. After a rotation of approximately 180°, the belt separates from the mold, releasing the still pliable aluminum bar. The bar then enters directly into an in-line rolling mill, where it is rolled into Noncontact cooling water circulating within the rod and coiled. casting wheel is used to control the temperature of the ring mold. Cooling of the belt is, for the most part, also accomplished by noncontact water, though some plants indicated that contact with the aluminum bar as it leaves the mold is difficult Some models are actually designed so that cooling avoid. water circulates within the interior of the wheel and then flows over the freshly cast bar and onto the belt as the belt separates from the ring mold. Because continuous casting incorporates casting and rolling into a single process, rolling lubricants may be required. Frequently, oil emulsions similar to those used in conventional hot rolling are used for this purpose. Graphite solutions may be suitable for roll lubrication of some continuous casting processes. In other instances, aqueous solutions of magnesia are used.

The production distribution is summarized as follows: of the 14 continuous casting operations for which 1977 production data were available, 57 percent produced less than 18,000 kkg (20,000 tons) of aluminum and aluminum alloys; 71 percent produced less than (30,000 tons); and 100 percent produced less than 27,000 kkg 36,000 kkg (40,000 tons). Five plants in the primary aluminum industry have continuous casting. Production was compared using the production capacity rather than actual production since 1977 production was not available. Of the four plants supplying production capacity data, one plant has a capacity less than 22,700 kkg (25,000 tons); two plants have a capacity of 45,000 kkg (50,000 tons) or less; and no plant has a capacity above 68,000 kkg (75,000 tons).

Stationary casting of aluminum ingots is practiced at 16 aluminum plants, usually to recycle in-house aluminum scrap. production distribution is summarized as follows: of stationary casting operations for which 1977 production data were available, 50 percent produced less than 1,800 kkg (2,000 tons) of aluminum and aluminum alloys; 70 percent produced less than 4,500 kkg (5,000 tons); and 90 percent produced less than 9,000 kkg (10,000 tons). In the stationary casting method, molten aluminum is poured into cast iron molds and allowed to air cool. Lubricants and cooling water are not required. Melting and casting procedures are dictated by the intended use of the ingots Frequently, the ingots are used as raw material for subsequent aluminum forming operations at the plant. plants sell these ingots for reprocessing.

Heat Treatment. Heat treatment is an integral part of aluminum forming practiced at nearly every plant in the category. It is frequently used both in process and as a final step in forming to give the aluminum alloy the desired mechanical properties. The general types of heat treatment applied are the following:

- Homogenizing, to increase the workability and help control recrystallization and grain growth following casting;
- Annealing, to soften work-hardened and heat-treated alloys, relieve stress, and stabilize properties and dimensions:
- Solution heat treatment, to improve mechanical properties by maximizing the concentration of hardening constituents in solid solution; and
- Artificial aging, to provide hardening by precipitation of constituents from solid solution.

Homogenizing, annealing, and aging are dry processes, while solution heat treatment typically involves significant quantities of contact cooling water.

In the casting process, large crystals of intermetallic compounds are distributed heterogeneously throughout the ingot. Homogenization of the cast ingot provides a more uniform distribution of the soluble constituents within the alloy. By reducing the brittleness caused by casting, homogenization prepares the ingot for subsequent forming operations. The need for homogenization and the time and temperatures required are dependent on the alloy involved, the ingot size, the method of casting used, and the nature of the subsequent forming operations. Typically, the ingot is heated to a temperature ranging between 425 and 650°C

and held at that temperature for four to 48 hours. The ingots are then allowed to air cool. One plant does use a water mist to aid final cooling after homogenizing.

Annealing is used by plants in the aluminum forming category to remove the effects of strain hardening or solution heat treat-The alloy is raised to its recrystallization temperature, typically between 350 and 400°C. Nonheat-treatable, strainhardened alloys need only be held in the furnace until annealing temperature is reached; heat-treatable alloys usually require a detention time of two or three hours. In continuous the metal is raised to higher temperatures (i.e., 425 to 450°C) and detained in the furnace for 30 to 60 seconds. essential that the removed from the annealing furnace, it is alloys be cooled to 250°C or lower at a slow, heat-treatable controlled rate. After annealing, the aluminum is in a ductile, more workable condition suitable for subsequent forming operations. One plant reported that a water seal was used on its annealing furnace to maintain the inert atmosphere in the anneal-Water circulates through a fibrous material which furnace. provides the seal between the furnace door and the frame. water is to prevent scorching of the seal matepurpose of the Some of the water does pass through the fibrous material and contacts the metal; however, this water evaporates on con-After discussions with the plant and the furnace vendor, tact. it was concluded that the furnace seal water is a noncontact cooling water stream.

Solution heat treatment is accomplished by raising the temperature of a heat-treatable alloy to the eutectic temperature, where held for the required length of time, then quenched rapidly. As a result of this process, the metallic constituents in the alloy are held in a super-saturated solid solution, improving the mechanical properties of the alloy. The metal temperatures recommended for solution heat treatment of formed aluminum alloys typically range from 450 to 550° C. The required length of time the metal must be held at this temperature varies from one to 48 hours. In the case of extrusion, certain aluminum heat treated immediately following the can be solution allovs extrusion process. In this procedure, known as press heat treatment, the metal is extruded at the required temperatures and quenched with contact cooling water as it emerges from the die or press.

The quenching techniques used in solution heat treatment are frequently critical in achieving the desired mechanical properties. The sensitivity of alloys to quenching varies, but delays in transferring the product from the furnace to the quench, a quenching rate that is incorrect or not uniform, and the quality of the quenching medium used can all have serious detrimental

effects. With few exceptions, contact cooling water is used to quench solution heat treated products. Immersion quenching in contact cooling water, typically ranging from 65 to 100°C, is used for most aluminum formed products. Forgings are also quenched at cooler temperatures (i.e., 60 to 70°C). Spray or flush quenching is sometimes used to quench thick products. Solution heat treated forgings of certain alloys can be quenched using an air blast rather than a water medium. Air quenching can also be used for certain extrusions following press heat treatment. Immersion quenching using glycol is often found in the manufacture of high-performance aeronautical components. This quenching technique is critical for achieving desired mechanical properties, and its use may increase as the demand for high-quality parts goes up.

Artificial aging, also known as precipitation heat treatment, is applied to some aluminum alloys in order to cause precipitation of super-saturated constituents in the metal. The alloy is heated to a relatively low temperature (i.e., 120 to 200°C) for several hours and then air cooled. Artificial aging is frequently used following solution heat treatment to develop the maximum hardness and ultimate tensile and yield strength in the metal. For certain alloys, the mechanical properties are maximized by sequentially applying solution heat treatment, cold working, and artificial aging.

At elevated temperatures, the presence of water vapors can disrupt the oxide film on the surface of the product, especially if the atmosphere is also contaminated with ammonia or sulfur pounds. Possible detrimental effects include surface blistering, discoloration, and a decrease in tensile properties. When this occurs, it is necessary to control the atmosphere within a heat treatment furnace. A number of techniques can be used to control the atmosphere. At some aluminum forming plants, natural gas is burned to generate an inert atmosphere. The resulting flue gases are cooled to remove moisture and are introduced to the heat treatment furnace. Under the proper conditions, the same fuel that heats the furnace can be used for Because of the high sulfur content in most furnace purpose. fuels; however, the off-gases may require treatment by wet scrubbers before they can be used as inert atmosphere for heat treatment.

Cleaning or Etching. A number of chemical or electrochemical treatments may be applied after the forming of aluminum or aluminum alloy products. Acid and alkaline solutions, and detergents can be used to clean soils such as oil and grease from the aluminum surface. Acid and alkaline solutions can also be used to etch the product or brighten its surface. Deoxidizing and desmutting are accomplished with acid solutions. Surface

treatments and their associated rinses are usually combined in a single line of successive tanks. Wastewater discharge from these lines is typically commingled prior to treatment or discharge. In some cases, rinse water from one treatment is reused in the rinse of another.

These treatments may be used for cleaning purposes, to provide the desired finish for an aluminum formed product, or they may prepare the aluminum surface for subsequent coating. A number of different terms are commonly used in referring to sequences of surface treatments (e.g., pickling lines, cleaning lines, etch lines, preparation lines, and pretreatment lines). The terminology depends, to some degree, on the purpose of the lines, but usage varies within the industry. In addition, the characteristics of wastewater generated by surface treatment is determined by the unit components of the treatment lines rather than the In order to simplify specific purpose of its application. discussion, the term cleaning or etching is used in this document to refer to any surface treatment processes other than solvent cleaning.

Surface treatment operations performed as an integral part of the forming process are considered to be within the scope of the aluminum forming category. For the purposes of this regulation, surface treatment of aluminum is considered to be an integral part of aluminum forming whenever it is performed at the same plant site at which aluminum is formed.

Solvent Cleaning. Solvent cleaners are used to remove oil and grease compounds from the surface of aluminum products. This process is usually used to remove cold rolling and drawing lubricants before products are annealed, finished, or shipped. There are three basic methods of solvent cleaning: vapor degreasing, cold cleaning, and emulsified solvent degreasing.

Vapor degreasing, the predominant method of solvent cleaning the aluminum forming industry, uses the hot vapors of chlorinated remove oils, greases, and waxes. In simplest form, solvents to vapor degreasing units consist of an open steel tank similar to the one shown in Figure III-13A. Solvent is heated at the bottom a steel tank and, as it boils, a hot solvent vapor is gener-Because of its higher density, the vapor displaces air and fills the tank. Near the top of the tank, condenser cooling zone in which the vapors condense and are prevented from rising above a fixed level. When cool aluminum forming products are lowered into the hot vapor, the solvent condenses onto the product, dissolving oils present on the surface. Vapor degreasing units may also incorporate immersion or spraying of the hot solvent for more effective cleaning. Conveyor systems similar to the one shown in Figure III-13B are used in some applications.

The solvents most commonly used for vapor degreasing in aluminum forming are trichloroethylene, 1,1,1-trichloroethane, and perchloroethylene. Selection of the solvent depends on a number of factors, including solvent boiling point, product dimension, and alloy makeup; and the nature of the oil, grease, or wax to be removed. Stabilizing agents are usually added to the solvents.

Vapor degreasing solvents are frequently recovered by distillation. Solvents can be distilled either within the degreasing unit itself or in a solvent recovery still. The sludge residue generated in the recovery process is toxic and may be flammable. Suitable handling and disposal procedures must be followed and are discussed in subsequent sections of this report (principally in Section VII).

Cold cleaning is another solvent cleaning method and involves hand wiping, spraying, or immersion of metal parts in organic solvents to remove oil, grease, and other contaminants from the surface. A variety of solvents or solvent blends, primarily petroleums and chlorinated hydrocarbons, are used in cold cleaning. These solvents can be reclaimed by distillation either on site or by an outside recovery service. For highly contaminated solvents; however, reclamation may not be cost effective, and contract hauling is the disposal method of choice. In general, cold cleaning is not as effective as vapor degreasing treatment, but the costs are considerably lower.

Emulsified solvents can also be used to clean aluminum, but they are less efficient than pure solvents, and their use is limited to the removal of light oil and grease. Reclamation of emulsified solvents is not economically feasible at this time. Contract hauling of the spent solvents is the disposal method practiced by plants in the aluminum forming category.

Due to the toxic nature of many cleaning solvents, emission controls may be required.

Alkaline and Acid Cleaning. Alkaline cleaning is the most common method of cleaning aluminum surfaces. The alkaline solutions vary in pH and chemical composition. Inhibitors are frequently added to minimize or prevent attack on the metal. Alkaline cleaners are able to emulsify vegetable and animal oils and greases to a certain degree and are effective in the removal of lard, oil, and other such compounds. Mineral oils and grease, on the other hand, are not emulsified by alkaline cleaning solutions and, therefore, are not removed as effectively.

Aluminum products can be cleaned with an alkaline solution either by immersion or spray. The solution is usually maintained at a temperature ranging between 60 and 80° C. Rinsing, usually with warm water, should follow the alkaline cleaning process to prevent the solution from drying on the product.

Acid solutions can also be used for aluminum cleaning, but they are less effective than either alkaline or solvent cleaning systems. Their use is generally limited to the removal of oxides and smut. Acid cleaning solutions usually have a pH ranging from 4.0 to 5.7 and temperatures between room temperature and 80°C. The solutions typically contain one or two acids (e.g., nitric, sulfuric, phosphoric, chromic, and hydrofluoric acids).

Electrochemical Brightening.
aluminum alloys can be Chemical and The surface aluminum or aluminum chemically electrochemically brightened to improve surface smoothness and reflectance. Chemical brightening is accomplished by immersing the product in baths of concentrated or dilute acid solutions. The acids most commonly used for this purpose are sulfuric; phosphoric; acetic; and, to a lesser extent, chromic and hydrofluoric. Other constituents, such as copper or lead salts, glycerol, and ethylene glycol, may be added as well.

Aluminum can also be brightened by electrochemical methods. The product is immersed in an electrolyte bath, through which direct current is passed. The electrolytic solutions are acidic, containing hydrofluoric, phosphoric, chromic, or sulfuric acid, or they may be alkaline, containing sodium carbonate or trisodium phosphate.

Etching. Chemical etchants are used to reduce or eliminate scratches and other surface imperfections, to remove oxides, or to provide surface roughness. The most widely used etchant is an aqueous solution of sodium hydroxide. The concentration and temperature of the caustic bath are carefully controlled to provide the desired degree of etching. In general, the sodium hydroxide concentration ranges from 1 to 15 percent, and the solution is maintained between 50 and 80°C. It is important that products are rinsed immediately following caustic etching.

As a result of etching with a caustic solution, the surface of the product may be discolored. Alloying constituents, such as copper, manganese, and silicon, as well as other impurities in the metal, are not dissolved in the etchant and form a dark residual film referred to as smut. In order to alleviate this problem, caustic etching is frequently followed by desmutting.

For specific aluminum alloys or desired finishes, acid etching may be used. Aluminum-silicon alloys are frequently etched in a

solution containing nitric and hydrofluoric acids. Fumes generated by acid etching are corrosive and may constitute a health hazard requiring suitable air pollution control. In general, etching with acids is more expensive, but it may result in less aluminum loss, which can be an economic advantage.

Desmutting and Deoxidizing. Acid solutions are used in desmutting and deoxidizing aluminum products. Desmutting, a process frequently applied following caustic etching, is accomplished by immersion in an acid solution that dissolves the residual film. Although a number of acid solutions can be used to remove smut, dilute nitric acid is most commonly employed.

Deoxidizers are acid solutions formulated to remove specific oxide films and coatings from the aluminum products. The oxides may have been formed naturally, or they may result from heat treatment or other surface treatments. Deoxidizing solutions can be composed of a variety of acids, including chromic, phosphoric, sulfuric, nitric, and hydrofluoric acid.

Anodizing. Anodizing is either a chemical or an electrolytic oxidation process which converts the surface of the metal to an insoluble oxide. These oxide coatings provide corrosion protection, decorative surfaces, a base for painting and other coating processes, as well as special electrical and mechanical properties.

The majority of anodizing is carried out by immersion of racked parts in tanks. Continuous anodizing may be done on large coils of aluminum in a manner similar to continuous electroplating. The formation of the oxide occurs (in electrolytic anodizing) when the parts are made anodic in dilute sulfuric acid or dilute chromic acid solutions. The oxide layer begins formation at the extreme outer surface, and as the reaction proceeds, the grows into the metal. The last formed oxide, known as the boundary layer, is located at the interface between the aluminum and the oxide. The boundary is extremely thin and nonporous. sulfuric acid process is typically used for all parts subject to stress or containing recesses in which the sulfuric acid solution may be retained and attack the aluminum. Chromic acid anodic coatings are more protective than sulfuric acid coatings and have a relatively thick boundary layer. For these reasons, a chromic acid bath is used if a complete rinsing of the part cannot be achieved.

<u>Chemical</u> <u>Conversion</u> <u>Coating</u>. This manufacturing operation includes chromating, phosphating, and passivating. These coatings are applied to previously deposited metal or basis material for increased corrosion protection, lubricity, preparation of the surface for additional coatings, or formulation of a special

surface appearance. In chromating, a portion of the aluminum is converted to one of the components of the protective film formed by the coating solution. This occurs by reaction with aqueous solutions containing hexavalent chromium and active organic or inorganic compounds. Most of the coatings are applied by chemical immersion, although a spray or brush treatment can be used.

Phosphate coatings are used to provide a good base for paints and other organic coatings, to condition the surfaces for cold forming operations by providing a base for drawing compounds and lubricants, and to impart corrosion resistance to the aluminum surface by the coating itself or by providing a suitable base for rust-preventive oils or waxes. Phosphate conversion coatings are formed by the immersion of aluminum in a dilute solution of phosphoric acid. The method of applying the phosphate coating is dependent upon the size and shape of the part to be coated. Small parts frequently are coated in barrels immersed in the phosphating solution. Large parts may be spray coated or continuously passed through the phosphating solution.

<u>Coloring or Dyeing</u>. Coloring or dyeing aluminum is frequently performed on anodized aluminum. The dyeing process involves impregnating the pores of the anodized aluminum with an organic material.

Mineral coloring is the precipitation of a pigment in the pores of the anodic coating before sealing.

Integral color anodizing is a single-step process in which the color is produced during anodizing. Coloring results from the occulsion of micro-particles in the coating. The electrolyte reacts with the micro-constituents and the matrix of the aluminum alloy.

Another method for coloring is a two-step or electrolytic coloring process. Following anodizing with sulfuric acid and rinsing, the aluminum parts are transferred to an acidic electrolyte which contains a dissolved metal salt. The metallic pigment is electrodeposited in the pores of the anodic coating by the use of alternating current.

<u>Sealing</u>. Sealing is the final surface finishing step performed in conjunction with anodizing. Sealing partially converts the alumina on the surface to an aluminum monohydroxide. Corrosion resistance of anodized aluminum is largely dependent on the effectiveness of the sealing operation. Sealing solutions may consist of boiling deionized water or nickel acetate. Precipitation of nickel hydroxide helps in plugging pores left in the anodized surface.

Aluminum anodized in sulfuric acid may be sealed in slightly acidified water (pH 5.5 to 6.5) at about 93 to 100°C (200 to 212°F). Clear anodized aluminum parts may be sealed with hot nickel acetate followed by rinsing and immersion in a hot dichromate solution.

Table III-1
PROFILE OF ALUMINUM FORMING PLANTS

	Number	PRODUCTION	(tons/yr)	EMPLOYMENT	
Aluminum Product	of Plants	Industry Total	Plant Average	Plant Average	
Plate	7	6.00x104	8.57x10 ³	852	
Sheet	16	8.34x10 ⁵	5.56x10 ⁴	693	
Strip	21	7.28x10 ⁵	3.639x10 ⁴	356	
Foil	15	2.091x10 ⁵	1.394x10 ⁴	294	
Tube	25	7.08x10 ⁴	3,078	176	
Rod	13	4.747x10 ⁴	4,747	125	
Wire & Cable	48	1.988x10 ⁵	4,229	43	
Extrusions	141	9.07x10 ⁵	6.48x10 ³	100	
Forgings	16	1.856x10 ⁴	1,547	94	

Table III-2
PLANT AGE DISTRIBUTION BY DISCHARGE TYPE

Type of Plant	No	Plant Age As of 1977 (Years)									
Discharge	<u>Data</u>	0-5	6-10	11-20	21-30	31-40	41-50	51-60	61-75	75+*	Total
Direct	0	1	8	17	20	11	0	1	0	1	59
Indirect	0	13	7	22	13	7	2	2	4	2	72
Zero	3	14	21	46	<u>29</u>	_9	<u>6</u>	<u>4</u>	2	<u>6</u>	140
Total	3	28	36	85	62	27	8	7	6	9	271

^{*}These plants may have installed aluminum forming operations after their initial construction.

Table III-3

DISTRIBUTION OF FACILITIES ACCORDING TO TIME ELAPSED SINCE LATEST MAJOR PLANT MODIFICATION

Type of Plant	No <u>Data</u>	Years Elapsed Since Latest Major Modification (As of 1977)					
Discharge		0-5	6-10	11-15	16-20	<u>21+</u>	<u>Total</u>
Direct	10	30	13	5	0	1	59
Indirect	15	38	9	2	4	4	72
Zero	<u>34</u>	62	24	_5	_9	_6	140
Total	59	130	46	12	13	11	271

121

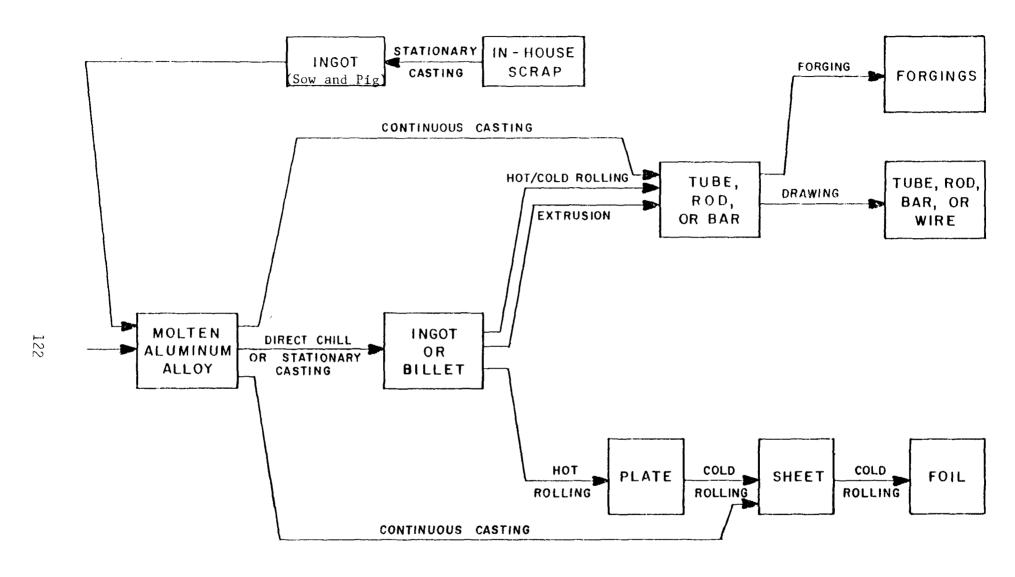


Figure III-1
ALUMINUM FORMING PRODUCTS

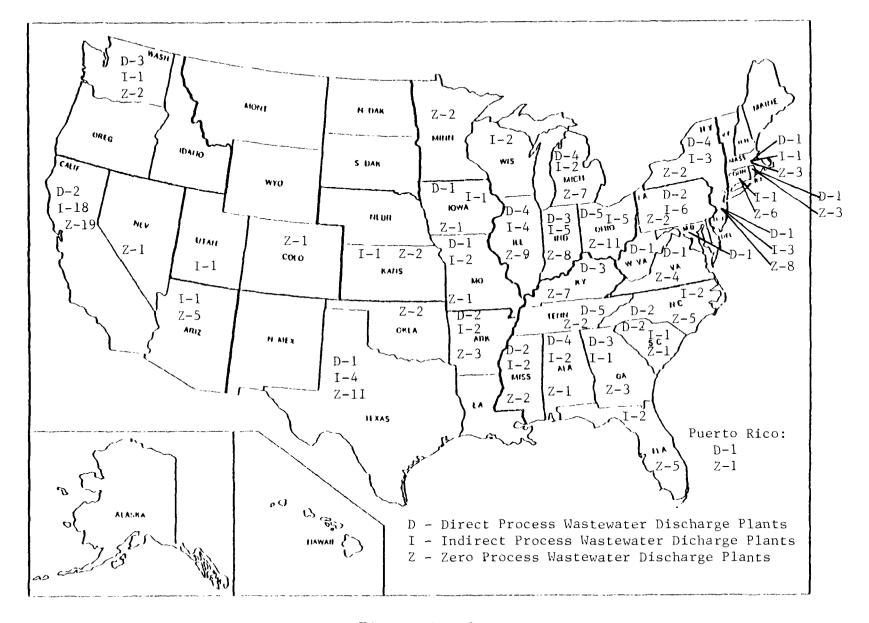
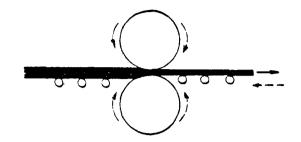
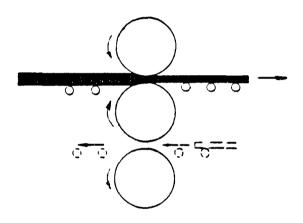




Figure III-2
GEOGRAPHICAL DISTRIBUTION OF ALUMINUM FORMING PLANTS

A. TWO - HIGH REVERSING MILL

B. THREE - HIGH CONTINUOUS ROLLING MILL

Figure III-3
COMMON ROLLING MILL CONFIGURATIONS

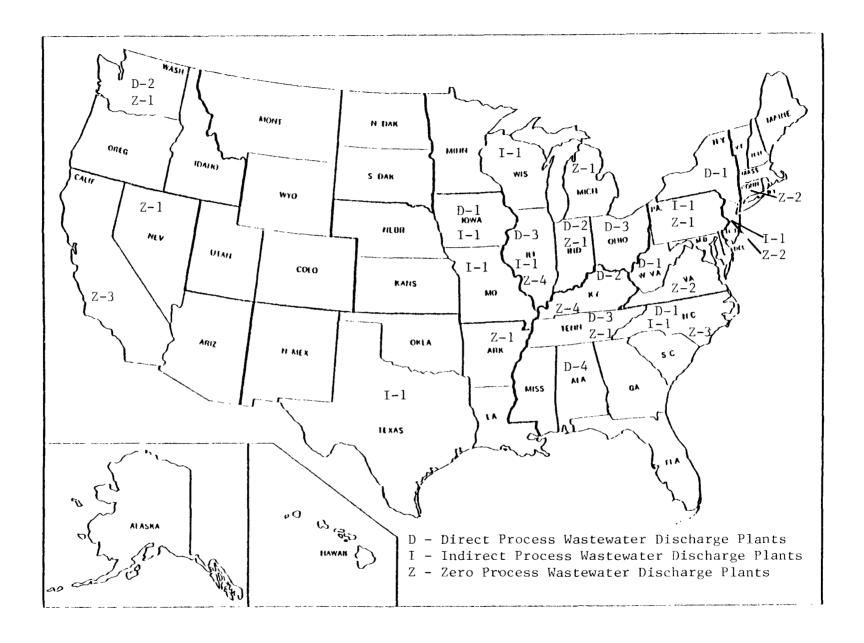
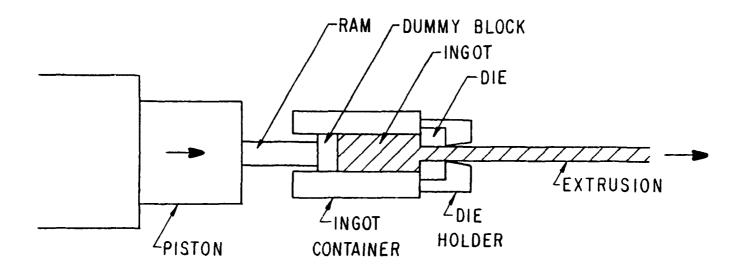
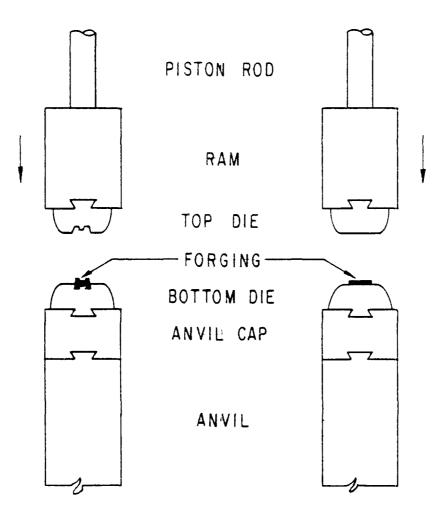


Figure III-4

GEOGRAPHICAL DISTRIBUTION OF PLANTS WITH HOT/COLD ROLLING

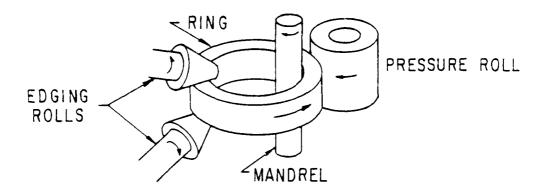

Figure III-5
DIRECT EXTRUSION

Figure III-6
GEOGRAPHICAL DISTRIBUTION OF PLANTS WITH EXTRUSION

A. CLOSED DIE FORGING B. OPEN DIE FORGING

C. ROLLED RING FORGING

Figure III-7 FORGING

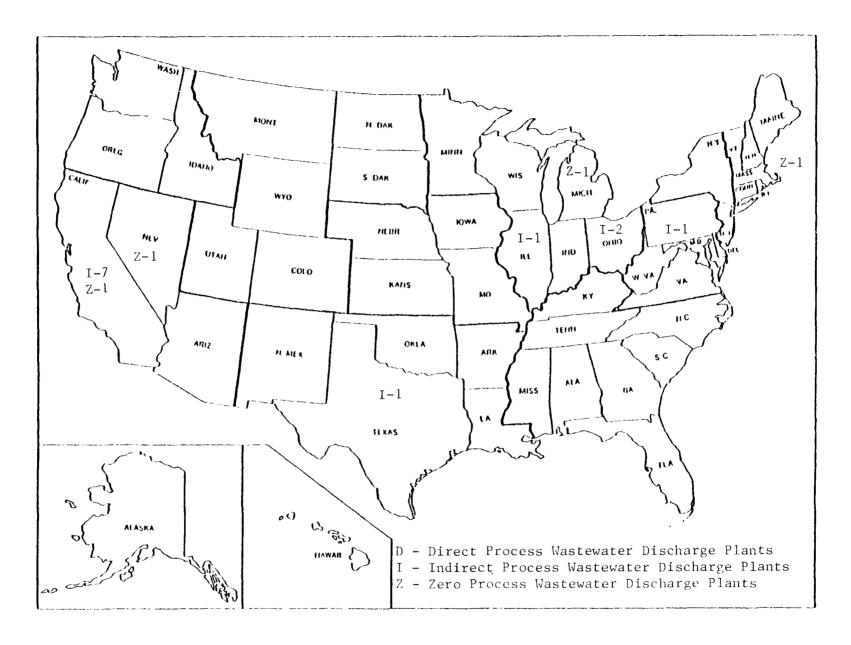


Figure III-8

GEOGRAPHICAL DISTRIBUTION OF PLANTS WITH FORGING

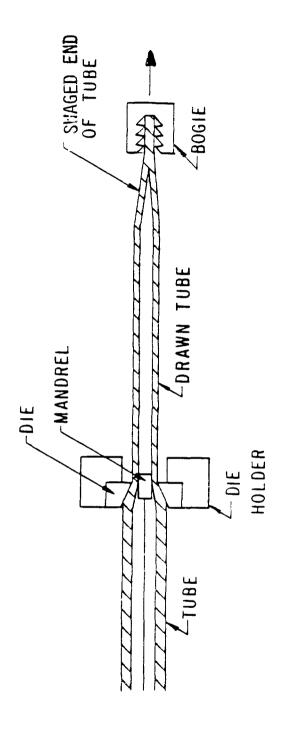


Figure III-9 TUBE DRAWING

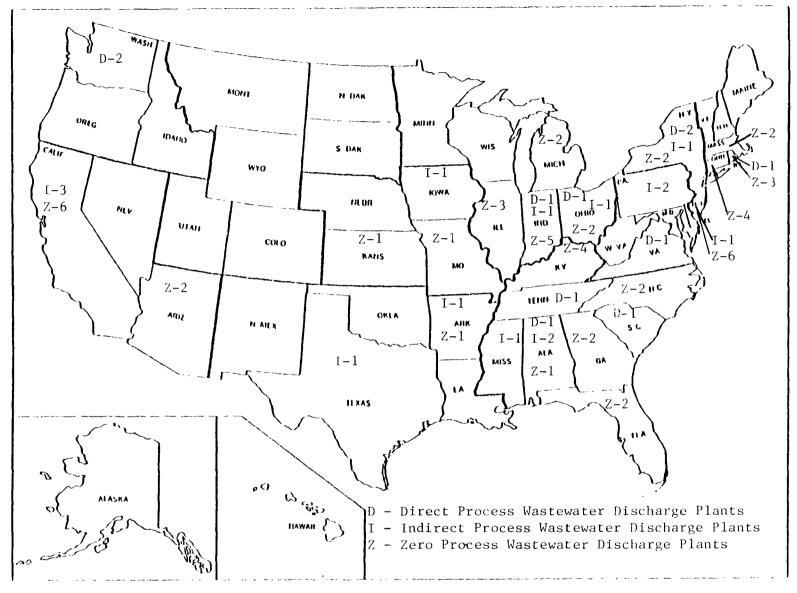


Figure III-10

GEOGRAPHICAL DISTRIBUTION OF PLANTS WITH TUBE, WIRE, ROD AND BAR DRAWING

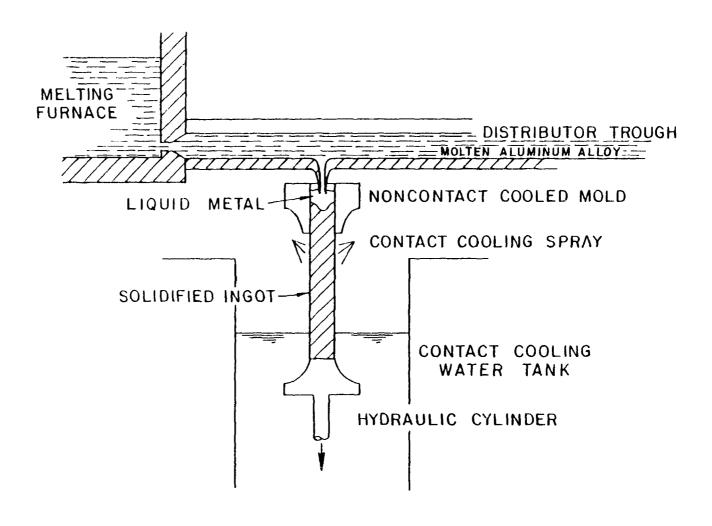
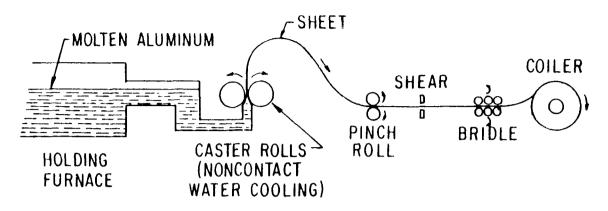
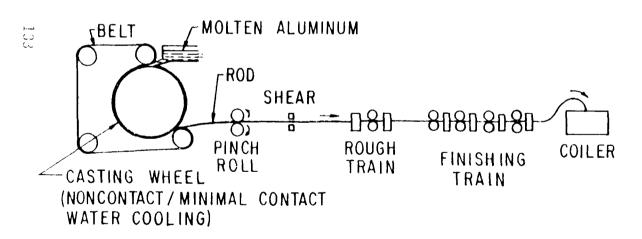
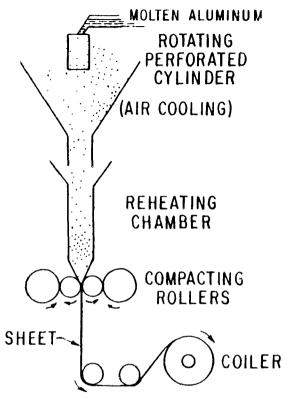
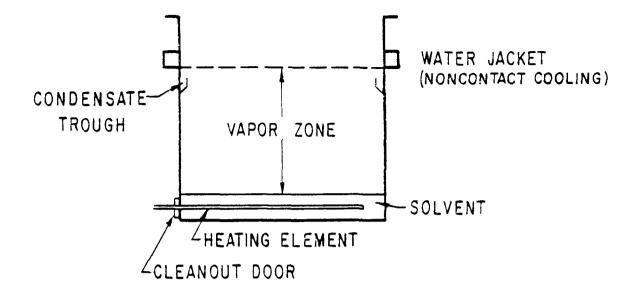




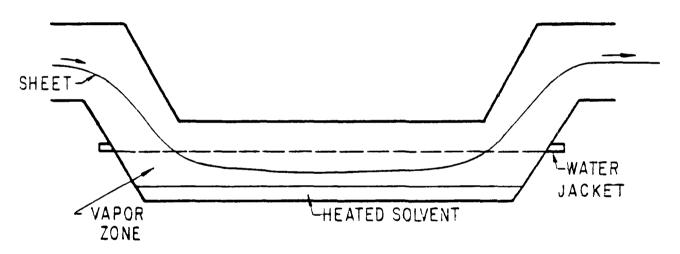
Figure III-11
DIRECT CHILL CASTING



A. CONVENTIONAL SHEET CASTING



C. WHEEL CASTING OF ROD


Figure III-12
CONTINUOUS CASTING

B. CASTING SHEET FROM PELLETS

A. OPEN TOP VAPOR DEGREASER

B. STRIP CONVEYORIZED DEGREASER

Figure III-13
VAPOR DEGREASING

SECTION IV

INDUSTRY SUBCATEGORIZATION

Subcategorization should take into account pertinent industry characteristics, manufacturing process variations, wastewater characteristics, and other factors. Effluent limitations and standards establish mass limitations on the discharge of pollutants which are applied, through the permit issuance process, to specific dischargers. To allow the national standard to be applied to a wide range of sizes of production units, the mass of pollutant discharge must be referenced to a unit of production. This factor is referred to as a production normalizing parameter and is developed in conjunction with subcategorization.

Division of the category into subcategories provides a mechanism for addressing process and product variations which result in distinct wastewater characteristics. The selection of production normalizing parameters provides the means for compensating for differences in production rates among plants with similar products and processes within a uniform set of mass-based effluent limitations and standards.

BASIS FOR SUBCATEGORIZATION

Factors Considered

After considering the nature of the various segments of the aluminum forming industry and their operations, EPA evaluated possible bases for subcategorization. These include:

- 1. Raw Materials Used
- 2. Manufacturing Processes
- 3. Wastewater Characteristics
- 4. Products Manufactured
- 5. Water Use
- 6. Water Pollution Control Technology
- 7. Treatment Costs
- 8. Solid Waste Generation
- 9. Size of Plant
- 10. Age of Plant
- 11. Number of Employees
- 12. Total Energy Requirements (Manufacturing Process and Water Treatment and Control)
- 13. Nonwater Quality Characteristics
- 14. Unique Plant Characteristics

Subcategorization Selection

After considering the above factors, it was concluded that the aluminum forming category consists of separate and distinct with enough variability in products and wastes to require the division of the industry into a number of discrete subcatego-The individual processes, wastewater characteristics, applicable treatment technologies comprise the most significant factors in the subcategorization of this complex industry. remaining factors either served to support and substantiate the subcategorízation or were shown to be inappropriate bases for subcategorization. In evaluating these factors, the following items were addressed: the nature of the subcategorization based on the factor being considered; the positive and negative aspects the potential subcategorization; the potential production normalizing parameters that could be used in conjunction with subcategorization scheme; and the interrelationship between different factors. Each factor is discussed below.

Raw Materials. The raw materials used in the aluminum forming category can be classified as follows:

- aluminum and aluminum alloys;
- lubricants;
- surface treatment, degreasing, and furnace fluxing chemicals; and
- additives to lubricants and cooling water.

In some instances, the same raw material may take on various effluent characteristics, and these will require different treatment. For example, an oil that is emulsified requires different treatment than the same oil in a pure state. The proportion of particular pollutants may differ depending upon the type of aluminum alloy being processed. Copper alloyed aluminum may generate wastewater with higher concentrations of copper than other aluminum alloys. Due to process variations and the proprietary nature of many alloys and chemical additives, it is difficult to establish a production normalizing parameter that directly relates pollutant discharge to specific alloys or process chemicals.

Manufacturing Processes. There are four principal manufacturing processes used in aluminum forming: rolling, extrusion, forging, and drawing. Since recognition of these separate processes is common, subcategorization using these four processes would be easily understood.

Typically, a company will have only one of these forming operations at an individual plant site, as tabulated below. Consequently, all the plant operations associated with that facility would be regulated under one subcategory.

PLANTS HAVING ONLY ONE ALUMINUM FORMING OPERATION ON-SITE

Forming Operation	Number of Plants With Only This Forming Operation	Percent of Total Plants With This Forming Operation
Rolling	37	65
Extrusion	144	88
Forging	13	81
Drawing	52	68

Subcategorization based on the principal manufacturing processes does not take into account the wastewater generated by minor or ancillary production processes. In many cases, the principal manufacturing process will contribute only a small fraction of the plant's total process wastewater.

<u>Wastewater</u> <u>Characteristics</u> <u>and</u> <u>Treatment</u> <u>Technologies</u>. Using wastewater characteristics as a criterion, the following subcategorization would result: emulsions; pure oils, also known as neat oils; oil-in-water (nonemulsified) mixtures; and acidic or basic wastewaters. The major types of unit operations producing the identified waste streams are listed below.

Unit Operations Producing the Waste Stream

Emulsions Hot Rolling

Cold Rolling

Drawing

Extrusion (Press Leakage)

Neat Oils Cold Rolling

Drawing

Oil-in-water (nonemulsified) Casting

mixtures

Waste Stream

Solution heat treatment Cleaning or etching

Acidic or basic wastewaters Extrusion die cleaning

Cleaning or etching

Anodizing or conversion coating

This subcategorization scheme reflects the fact that effective wastewater pollutant removal is dependent on the wastewater characteristics and treatment system designed for removal of these pollutants. Treatment of emulsified and oil-in-water (non-emulsified) wastewaters in the same treatment system is inappropriate because additional treatment steps are required to break emulsions. Wastewaters generated during the cleaning or etching of aluminum with an acid or base solution may require pH adjustment with metals removal and may not need to be treated for oil removal. Finally, since spent neat oils are pure oil and contain no water, they may frequently be disposed of by incineration or contract hauling, thus requiring no treatment.

<u>Products</u> <u>Manufactured</u>. Another approach to subcategorization is based on the products manufactured, as listed below:

	ASSOCIATED
Product	Manufacturing Process

Plate Rolling
Sheet Rolling
Strip Rolling
Foil Rolling

Rod and bar Rolling, extrusion, drawing Extrusion or drawing

Tubing Extrusion or drawing Miscellaneous shapes Extrusion or forging

Wire and cable Drawing

Other (L shapes, I-beams, etc.) Drawing or extrusion

The product manufactured would be an appropriate criterion for subcategorization if the waste characterization and production

process to produce a given item are the same from plant to plant; however, this approach is not applicable to the manufacture of many aluminum formed products. For example, rods can be produced by two different production processes which generate similar wastewater (i.e., rolling and drawing); however, the mass of pollutants generated per unit of rod produced by rolling will be different than the amount generated by drawing the rod. Furthermore, some products produced by the same process may use different lubricants, therefore generating a waste with different characteristics. Strip and sheet, for example, can be produced by operations which use either neat or emulsified oils as lubricants.

This approach to subcategorization does not take into account ancillary operations, such as cleaning or etching, heat treatment, and casting, that may be found at any given plant. All of these factors make it very difficult to develop an equitable regulation using products manufactured as a basis for subcategorization.

<u>Process</u> <u>Water Use</u>. Major differences in water use (volume of water applied to a process per mass of product) between facilities with large and small production could be considered as a factor in the development of subcategories.

As will be discussed in Section V, analysis of the data indicated that production normalized water use (i.e., gallons per ton of aluminum formed) for a given unit operation is usually independent of production volume. For example, a large direct chill casting operation will use about the same amount of water per ton of ingot produced as an operation casting much less aluminum by the same method.

<u>Size</u>. The number of employees and amount of aluminum processed were used to measure relative sizes of aluminum forming plants.

Wastewaters produced by a production process are largely independent of the number of plant employees. Variations in staff occur for many reasons, including shift differences, clerical and administrative support, maintenance workers, efficiency of plant operations, and market fluctuations. Due to these and other factors, the number of employees is constantly fluctuating, making it difficult to develop a correlation between the number of employees and wastewater generation.

Subcategorization based on size in terms of production of aluminum would group plants by the off-pounds of extrusions, sheets, rods, etc. This is a good method of subcategorization for an economic analysis on this category since plants producing rod will compete for the same market, and smaller production plants

may have very different economic characteristics than large production plants. One drawback to this subcategorization approach is that it does not account for the ancillary operations frequently performed in conjunction with the forming operation and the wastewater they may generate.

Age. Aluminum forming is one of the newest large-volume metal industries. The demand for aluminum products has grown greatly since the end of World War II. Thus, aluminum forming plants are relatively modern; most are less than 30 years old. Furthermore, to remain competitive, plants must be constantly modernized. Modernization of production equipment, processes, treatment systems, and air pollution control equipment is undertaken on a continuous basis throughout the industry. Data regarding the age and date of the latest major modification for each plant were compiled from the dcp responses and summarized in Tables III-2 and III-3 (pp. 120 and 121), respectively.

<u>Unique Plant Characteristics</u>. Aluminum forming plants are unique on the basis of their physical locations and unit operations. As discussed later in this section, these unit operations are necessary to the manufacturing process, but vary from plant to plant, depending on the product and specifications.

Location. The geographical distribution of the aluminum forming plants is shown in Figure III-2 (p. 122). The plants are not limited to any one geographical location, but they are generally located east of the Mississippi River, with pockets of plants located in the western states of Washington, California, and Texas. Although some cost savings may be realized for facilities located in non-urban settings where land is available to install lagoons, equivalent control of wastewater pollutant discharge can be achieved by urban plants with the use of physical and chemical treatment systems that have smaller land requirements. Since most plants are located in the eastern part of the United States (an area where precipitation exceeds evaporation) or in urban areas, evaporation and land application of the wastewater are not commonly used. Presently, only 27 of the 271 plants are known to evaporate or apply wastewater to land.

<u>Unit Operations</u>. The following is a list of the unit operations performed as part of the aluminum forming process.

Waste Stream Unit Operation

Direct chill casting Contact cooling water

Continuous rod casting Spent lubricant

Contact cooling water

Continuous sheet casting Spent lubricant

Stationary casting Dry operation

Hot rolling Spent emulsion

Spent neat oil or emulsion Cold rolling

Spent emulsion Roll grinding

Scrubber liquor Degassing

Extrusion die cleaning Bath caustic solution

> Rinse water Scrubber liquor

Extrusion dummy block cooling Contact cooling water

Scrubber liquor Forging

Drawing Spent neat oil, emulsion,

or soap solution

Annealing Atmosphere scrubber liquor

Press heat treatment Contact cooling water

Solution heat treatment Contact cooling water

Homogenizing Dry operation

Artificial aging Dry operation

Degreasing Spent solvents

Bath: caustic, acid, seal,
 or detergent solutions Cleaning, etching, or other surface treatment

Rinse water Scrubber liquor

Spent neat oil or emulsion Sawing

Dry operation Swaging

Included in this list are several operations that either do not discharge a waste stream or discharge small quantities of wastewater. Furthermore, for subcategories based on these operations, this approach to subcategorization does not take into account the different types of oils used for lubrication. For example, drawing can use a neat oil lubricant or an emulsified oil lubricant. Waste characteristics and treatment schemes are different for the two types of oils used.

Subcategory Selection

In selecting the subcategories, the Agency tried to minimize the number of subcategories, but at the same time provide sufficient segmentation to account for the differences between processes and associated wastewater streams. Because the aluminum forming category encompasses a variety of operations that generate wastewaters with differing characteristics, it is necessary to consider a combination of factors when establishing subcategorization.

Each of the factors listed and discussed previously are evaluated below on the basis of suitability for subcategorizing the aluminum forming category.

Materials. The pollutants in the wastewater discharged are dependent on the raw materials; however, the amount of pollutants discharged does not directly correlate with the nature of Heavy discharge of some metals may result from materials used. the presence of these particular compounds in the aluminum alloy; however, the amount of metal that enters the wastewater is much more highly dependent on the operation performed on the alloy. For instance, etching the workpiece will result in a higher metal discharge than rolling the workpiece. Subcategorization solely of raw materials was considered inappropriate for basis category because of the difficulty associated correlating raw materials with the discharge of pollutants.

Manufacturing Processes. Aluminum forming is widely characterized by the principal manufacturing processes of rolling, extruding, forging, and drawing. Companies have built plants around a single production process and are familiar with the terminology. Pollutant generation can be related to the mass of production from these processes. On this basis, subcategorization based on manufacturing processes is appropriate for this category; however, the four processes of rolling, extruding, forging, and drawing do not account for the different lubricants, requiring different treatments, that can be used for the rolling and drawing operations. This approach to subcategorization also fails to consider the unique properties of the aluminum forming

plants in the variety of ancillary unit operations that may be present, many of which generate large volumes of wastewater. Therefore, the manufacturing processes by themselves are not suitable for subcategorizing the aluminum forming category.

Wastewater Characteristics. Wastewater characteristics are very in the appropriate consideration of technology and form the basis for effluent limitations. Subcategorization based solely on wastewater characteristics is inappropriate for the aluminum forming category since it is difficult to develop a production normalizing parameter. than one manufacturing process may generate a waste stream with the same characteristics, such as rolling and drawing which both can use neat oils and emulsions. Volume of wastewater, or in this case lubricant generated per the mass of aluminum rolled, may vary greatly with the volume generated per mass of aluminum The purpose of subcategorizing is to allow for equitable regulations across a category and the subcategories must allow for a normalizing parameter to establish mass limitations. Wastewater characteristics alone inappropriate are subcategorizing the aluminum forming category.

Products Manufactured. As discussed previously, the same product can be manufactured by as many as three of the aluminum forming The mass of pollutant generated per unit of product will be different depending on the type of forming operation Subcategorization based on products manufactured does not account for the ancillary operations, such as cleaning or etching, heat treatment, and casting, that may be found at any given plant. These factors make it very difficult to develop a reliable effluent limitation using products manufactured as a basis for the subcategorization. Thus, this is an inappropriate approach for subcategorizing the aluminum forming category to establish equitable effluent limitations: however, subcategorization on the basis of products manufactured is an appropriate approach for characterizing the industry for an economic impact analysis where the emphasis is on a plant's ability to compete in the marketplace.

Process Water Use. Process water use, when related to the mass of aluminum processed, is fairly constant regardless of the production volume. Since no distinct differences in water use could be identified between plants with large production volumes and plants with small production volumes, the Agency has determined that this approach is inappropriate to subcategorize the aluminum forming category. Flows which are normalized by some aspect of production are used to establish effluent limitations; variations in water use or discharge were considered and are discussed in detail in Sections V and IX.

<u>Size</u>. Size in terms of employment is considered to be an inappropriate basis for subcategorization because it cannot be directly related to the generation of wastewater. Size in terms of production is also considered to be inappropriate for subcategorizing to establish effluent guidelines, since it does not account for the wastewaters generated by the ancillary operations.

Age. Since most aluminum forming plants have been built in the past 30 years and have been modernized frequently, age is not a valid basis for subcategorization.

Location. Location does not appear to be a significant factor on which to base subcategorization. Most aluminum forming plants are located in urban areas; thus, there is no vast disparity in land availability between urban and rural plants. In addition, few plants use land application or evaporation to treat aluminum forming wastewaters.

<u>Unit Operations</u>. The principal benefit from using unit operations as a basis for subcategorization is that an appropriate effluent limitation can be established for each waste stream generated. For each regulated pollutant, a specific pollutant mass discharge value could be calculated for each waste stream present at the facility. These values would be summed to determine the total mass discharge allowed for that pollutant at that facility.

The difficulties with this approach are the large number of sub-categories (approximately 25) and the need for a separate production normalizing parameter for each subcategory or unit operation.

Primarily because of the large number of subcategories and complications associated with it, subcategorization based on unit operations alone was not considered to be appropriate.

Summary of Subcategorization

The aluminum forming category is not well suited to subcategorization using any one of the factors discussed in this section. By applying a combination of factors, such as manufacturing processes, unit operations, raw materials, and wastewater characteristics, the aluminum forming category can be divided into six subcategories:

- 1. Rolling with Neat Oils
- 2. Rolling with Emulsions
- 3. Extrusion
- 4. Forging

- 5. Drawing with Neat Oils
- 6. Drawing with Emulsions or Soaps

manufacturing process consists of one of the four principal forming operations plus a number of ancillary operations. of these unit operations must be addressed by the limitations and standards. Since not all plants with a given manufacturing process have the same number of ancillary unit operations, method of equating the plants must be developed. In addition to the principal forming operation, there are some ancillary operathat are unique to the principal forming operations and others that are necessary to manufacture the final product. the purpose of subcategorization, the forming operation and these closely related ancillary operations are grouped to comprise a core operation. Another group of operations is not unique to the forming operations, is not always necessary in the manufacturing process, and does not discharge wastewater. For simplification, these are included with the other operations in the core. thus becomes a distinct regulatory unit that, for the purpose of establishing limits, is viewed as a single source of pollutants.

There are still a number of unit operations that do not fit into the core. These operations are not unique to a forming process, discharge wastewater (usually large volumes), and are not always necessary to the manufacturing process. Because these operations make significant contributions to the pollutant loadings when they are performed, but they are not performed consistently throughout the subcategory, they are not included in the core. Instead, these operations are included in the subcategories as ancillary operations that, for regulatory purposes, can be added to the core when they (the ancillary operations) are practiced, or in order to limit the pollutant discharges from aluminum forming plants.

Subcategorization on the basis of the core and ancillary operations as previously defined does not take into account the different types of wastes that can be generated by rolling and drawing. To account for the two types of wastes generated by rolling and drawing lubricants, four distinct operations were specified: rolling that uses neat oils, rolling that uses emulsions, drawing that uses neat oils, and drawing that uses emulsions or soaps. These four operations are still identifiable by the industry and account for the differences in wastewater generated by the same forming operation. Furthermore, each can be related to some unit of production to normalize plant practices and can be applied to the subcategorization scheme of core and ancillary operations. Thus, the manufacturing processes, unit operations, raw materials, and wastewater characteristics

all play an important part in subcategorizing the aluminum forming category.

PRODUCTION NORMALIZING PARAMETER

In order to ensure equitable regulation of the category, effluent limitations guidelines and standards of performance have been established on a pollutant mass discharge basis (i.e., mass of pollutant discharged per unit of production). The unit of production specified in these regulations is known as a production normalizing parameter (PNP). Establishing concentration limitations rather than mass-based limits was considered; however, a plant that diluted its wastewater would have an advantage in meeting concentration-based limitations over a plant that conserved water. Thus, with concentration limitations a plant might actually be penalized for having good water conservation practices. To avoid this possibility, the mass of pollutants in the discharge has been related to a specific PNP to establish a limitation that will limit the pollutant mass discharged proportionate to an amount of production.

The approach used in selecting the appropriate PNP for a given subcategory or ancillary operation is two-fold: achieving a correlation between production and the corresponding discharge of pollutants and ensuring feasibility and ease of regulation. Some of the alternatives considered in specifying the PNP include:

- 1. Mass of aluminum processed,
- 2. Number of finished products manufactured,
- 3. Surface area of aluminum processed, and
- 4. Mass of process chemicals used.

The evaluation of these alternatives is summarized in the discussion that follows.

Mass of Aluminum Processed. The aluminum forming industry typically maintains production records of the pounds of aluminum processed by an individual unit operation. Availability of these production data and lack of data for other production parameters, such as area of aluminum and number of products, makes this the most convenient parameter to use. The aluminum forming dcp requested three production values: the capacity production rate for the unit operation in question, the maximum production rate achieved in 1977, and the average production rate for 1977, all in lb/hr.

<u>Number of End Products Processed</u>. The number of products processed by a given plant would not account for the variations in size and shape typical of formed products. Extrusions, for instance, are produced in a wide range of sizes. It would be

unreasonable to expect the quenching of a large extrusion to use the same amount of water required for a smaller extruded product.

<u>Surface Area of Aluminum Processed</u>. Surface area may be an appropriate production normalizing parameter for surface treatment operations of aluminum such as cleaning or etching. It would not, however, be appropriate for quench or lubricant and cooling operations. The surface area of aluminum processed is not generally kept or known by industry and in some cases, such as forging of miscellaneous shapes, surface area data would be difficult to determine.

 $\underline{\text{Mass}}$ of $\underline{\text{Process}}$ Chemicals $\underline{\text{Used}}$. The mass of process chemicals used (e.g., lubricants, solvents, and cleaning or etching solutions) is dependent on the processes which the aluminum undergoes rather than the other raw materials used in the process.

Selection of the Production Normalizing Parameter

Two of the four parameters considered, number of finished products and mass of process chemicals, are not appropriate PNP's for the aluminum forming category. The number of finished products is inappropriate because of the lack of consistency and uniformity in the finished products manufactured by an aluminum forming plant, particularly by an extrusion or forging plant. Also the processes vary from plant to plant even when producing essentially the same product. The mass of process chemicals is an inappropriate PNP because the mass of pollutants discharged is more directly related to the type of operation using the process chemicals than the amount of these compounds used, although the process chemicals frequently enter the wastewater.

The surface area of product as a PNP would relate the mass of pollutants discharged to the surface area of aluminum that contacts the process wastewater. This parameter may be appropriate for some aluminum forming operations that produce wastewater, since the mass of pollutants entering the wastewater may be related to the area of the aluminum it is contacted with. However, the Agency is not selecting surface area as a production normalizing parameter because surface area is not always the most appropriate parameter, especially in contact cooling situations where the volume of water used is more closely related to the mass of product. Aluminum formed products, especially forged products or extrusions, also come in a wide variety of shapes and the surface area of these shapes would be difficult to determine.

The fourth parameter considered is the mass of product. The Agency has selected mass as the most appropriate PNP. The mass of pollutants can be related to the mass of aluminum processed

and most companies keep production records in terms of mass. is based on the average production rates reported in the dcp's. In most cases, the plants were operating at or near capacity production rate for a given piece of equipment. polluaverage production rate will correlate with the mass of the wastewater. For the six subcategories, the found in core operations are closely related to the principal operation and the mass of pollutants generated from each ought to dependent on the mass of aluminum processed through the forming operation. Thus, there is only one PNP for each core based on the mass of pollutants processed through the forming opera-Each ancillary operation has a separate PNP based on aluminum processed through the ancillary operation. example of how the PNP's apply when establishing mass discharge limits is shown in Section IX.

PNP for aluminum forming is "off-kilograms" or the kilograms of product removed from a machine at the end of a process cycle. the rolling process aluminum ingot enters the mill to be Following one process cycle which may substantially reduce the ingot's thickness, the aluminum is removed from the rolling mill where it may be processed through another operation, such as annealing, sizing, cleaning, or it may simply be stored before being brought back to the rolling mill for another process further reducing the thickness. The mass of aluminum removed from the rolling mill after each process cycle multiplied by the number of process cycles is the PNP for that process. core of each subcategory has one PNP which is based on the mass aluminum processed through the principal forming operation. There is a different PNP for each ancillary operation which is mass of aluminum removed from the process following each process cycle for that specific operation. For example, the PNP for solution heat treatment would be the mass of aluminum removed the contact cooling water quench that follows solution heat In the case of press heat treatment the PNP is the aluminum removed from the contact cooling water quench that immediately follows extrusion.

DESCRIPTION OF SUBCATEGORIES

Subcategory Terminology and Usage

Each subcategory is broken into "core" and "ancillary" operations. The core is composed of those operations that always occur in conjunction with the forming operation, are dry operations, or are a basic part of the manufacturing process. The core limitation is based on the mass of aluminum passed through the principal manufacturing unit. The core limitation does not vary within a given subcategory and applies to all the plants in that subcategory.

Operations not included in the core are classified as ancillary operations. These are operations involving discharged wastewater streams of significant pollutant concentrations and flows that may or may not be present at any one facility. The ancillary operation limitations are based on the mass of aluminum processed through the given ancillary operations. In other words, the mass of aluminum cast by the direct chill method is the normalizing parameter for casting, and the mass of aluminum cleaned or etched is the normalizing parameter for cleaning or etching. To determine the effluent limitation for the facility as a whole, the permit writer must consider the core limitation as well as the appropriate ancillary limitation.

The ancillary operation of cleaning or etching includes all surface treatment operations, including chemical or electrochemical anodizing and conversion coating when they are performed at the same location where the aluminum is formed. A cleaning or etching operation is defined by the cleaning or etching baths which are followed by a rinse. Multiple baths would be considered multiple cleaning or etching operations only when each bath is followed by a rinse and a separate limitation would apply to each bath-rinse combination. Multiple rinses following a single bath will be regulated by a single limitation.

In the following discussion, the aluminum forming subcategories are presented on an individual basis. The core and ancillary operations included in each subcategory are briefly described, and the appropriate production normalizing parameters are identified.

Some plants will be included under more than one subcategory. The frequency of plants with more than one subcategory is tabulated below. In these cases, the subcategories should be used as building blocks to establish permit limitations. It should be noted that in most cases the ancillary operations will be included with only one subcategory (i.e., the core operation with which it is most closely associated). As an example, consider rolling plant which has both rolling with neat oils and rolling This plant has direct chill casting as one of with emulsions. ancillary operations. Since the casting precedes rolling with emulsions and the rolling with emulsions operation is performed on the product of the casting operation, casting will be considered an ancillary operation only to the Rolling with Emulsions Subcategory.

The lists presented in the following discussions provide information specific to the subcategory being addressed. The frequency of occurrence of ancillary streams considers each ancillary operation individually and apart from any other ancillary operations that may be present at the same plant. Thus, the sum of the

frequencies of the ancillary operations cannot be related to the number of plants in that subcategory. The same methods have been applied to the frequency of subcategory overlap. Since there are some plants that will be in more than one subcategory, the sum of plants in each subcategory will be larger than the number of plants in the category.

INCIDENCE OF OVERLAP WITH MORE THAN ONE OTHER SUBCATEGORY

Subcategory	Total Plants in One or More Subcategory	Percent of Total Plants in the Subcategory
Rolling with Neat Oils	34	68
Rolling with Emulsions	28	86
Extrusion	22	13
Forging	9	57
Drawing with Neat Oils	25	38
Drawing with Emulsions or Soaps	5	38

Rolling with Neat Oils Subcategory

This subcategory is applicable to all wastewater discharges resulting from or associated with aluminum rolling operations in which neat oils are used as a lubricant. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

ROLLING WITH NEAT OILS SUBCATEGORY

Unit Operation W	aste Stream	Production Normalizing Parameter
CORE:		
Rolling with neat oils	Spent lubricant	Mass of aluminum
Roll grinding	Spent emulsion	rolled with neat oil Mass of aluminum rolled with neat oil
Stationary casting	None	Mass of aluminum rolled with neat oil
Homogenizing	None	Mass of aluminum rolled with neat oil
Annealing	Atmosphere scrubber liquor	Mass of aluminum rolled with neat oil
Artificial aging	None	Mass of aluminum rolled with neat oil
Degreasing	Spent solvent	Mass of aluminum rolled with neat oil
Sawing	Spent lubricant	Mass of aluminum rolled with neat oil
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum rolled with neat oil
ANCILLARY:		
Continuous sheet casting	Spent lubricant	Mass of aluminum sheet cast by continuous methods
Rolling solution heat treatment Cleaning or etching	Contact cooling water Bath	Mass of aluminum quenched Mass of aluminum cleaned or etched
	Rinse	Mass of aluminum cleaned or etched
	Scrubber liquor	Mass of aluminum cleaned or etched

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at those plants:

_	Frequency		
Associated Waste Streams	No.	of Plants	Percent of Total Plants in the Subcategory
nobectated nable betcamp		01 1 100	<u> Dubeutegory</u>
CORE:			
Rolling with neat oils spent lubrican Roll grinding spent emulsion	it	50 *	100 *
Annealing atmosphere scrubber liquor Sawing spent lubricant] *	2 *
Miscellanous nondescript wastewater		*	*
ANCILLARY:			
Continuous sheet casting Spent lubricant		11	22
Rolling solution heat treatment Contact cooling water Cleaning or etching		6	12
Bath		9	18
Rinse		9	18
Scrubber liquor		0	0

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

As this table shows, 50 of the plants surveyed in this study are included in the Rolling with Neat Oils Subcategory. For the majority of these plants, the core regulations can be applied without alteration because no ancillary streams are present. However, continuous sheet casting is practiced at 11 plants (22 percent), and cleaning or etching of the rolled product is practiced at nine plants (18 percent). The presence of heat treatment was reported at only six plants (12 percent).

Over half of the plants (33 of 50) associated with this subcategory were also associated with one or more additional subcategories. The most common case, overlap with the Rolling with Emulsions Subcategory, was reported at 19 of the 50 plants (38 percent). Frequently, rolling of aluminum with emulsions is followed by rolling to desired gauge using neat oils. It is important to realize that at these plants, operations such as casting were considered to be associated with the emulsion rolling rather than neat oil rolling for the purpose of subcategorization. In this way, duplication of streams is avoided. Seven of the plants (14 percent) were included in both the Rolling with Neat Oils and Drawing with Neat Oils subcategories. In these

cases, the aluminum was usually first rolled and then drawn to form the desired product. If the drawn product was then etched or heat treated, these operations were associated with drawing with neat oils rather than rolling with neat oils. In only four cases (8 percent) was overlap with more than one other subcategory found to exist.

As discussed in Section III (p. 110), the annealing operation does not use process water. One of the plants surveyed anneals aluminum which is rolled with neat oils and derives the inert gas atmosphere used in its annealing process from furnace off-gases. Because of the sulfur content of furnace fuels, the off-gases require cleaning with wet scrubbers to remove contaminants. Other plants import cleaned gases or burn natural gas to provide an inert atmosphere. Since the Agency believes that this scrubber is necessary to the operation of the annealing furnace in this process situation, an allowance has been included as part of the core of the Rolling with Neat Oils Subcategory. For the Rolling with Neat Oils Subcategory, two core allowances will be because most plants do not have an annealing established, Separate allowances will be established scrubber liquor flow. for core waste streams without an annealing furnace scrubber and for core waste streams with an annealing furnace scrubber for only the rolling with neat oils subcategory since no annealing furnace scrubbers are known to be in operation in conjunction with any other forming operation.

Rolling with Emulsions Subcategory

This subcategory is applicable to all wastewater discharges resulting from or associated with aluminum rolling operations in which oil-in-water emulsions are used as lubricants. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

ROLLING WITH EMULSIONS SUBCATEGORY

Unit Operation	Waste Stream	Production Normalizing Parameter
CORE:		
Rolling with emulsions	Spent emulsion	Mass of aluminum rolled with emulsions
Roll grinding	Spent emulsion	Mass of aluminum rolled with emulsions
Stationary casting	None	Mass of aluminum rolled with emulsions
Homogenizing	None	Mass of aluminum rolled with emulsions
Artificial aging	None	Mass of aluminum rolled with emulsions
Degreasing	None	Mass of aluminum rolled with emulsions
Annealing	None	Mass of aluminum rolled with emulsions
Sawing	Spent lubricant	Mass of aluminum rolled with emulsions
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum rolled with emulsions
ANCILLARY:		
Direct chill casting	Contact cooling water	Mass of aluminum cast by direct chill method
Rolling solution heat treatment	Contact cooling water	Mass of aluminum quenched
Cleaning or etching	Bath	Mass of aluminum cleaned or etched
	Rinse	Mass of aluminum cleaned or etched
	Scrubber liquor	Mass of aluminum cleaned or etched

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at those plants.

	Frequency			
Associated Waste Streams	No.	of	Plants	Percent of Total Plants in the Subcategory
Inductive was a second			11402	<u> </u>
CORE:				
Rolling with emulsions spent emulsion Roll grinding spent emulsion	1		29 *	100
Sawing spent lubricant Miscellaneous nondescript wastewater			*	*
ANCILLARY:				
Direct chill casting Contact cooling water Rolling solution heat treatment			20	69
Contact cooling water			8	28
Cleaning or Etching Bath			7	24
Rinse			7	24
Scrubber liquor			2	7

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

Of the plants surveyed in this study, 29 were classified as belonging to the Rolling with Emulsions Subcategory. The core streams in this subcategory include rolling emulsions that are expected to be present at every plant. As shown in the preceding list, the regulation of plants in this subcategory will usually require consideration of waste streams associated with ancillary operations. Direct chill casting is associated with the rolling operations at 20 of the plants surveyed. Solution heat treatment is practiced at eight plants. Seven plants will also require regulation of cleaning or etching baths and rinses as an ancillary stream, and two plants will receive an allocation for a cleaning or etching scrubber liquor discharge.

In all but one case (97 percent), plants in the Rolling with Emulsions Subcategory were also included in one or more other subcategories. The most common case, overlap with the Rolling with Neat Oils Subcategory, was reported at 19 of the 29 plants (66 percent). Frequently, rolling of aluminum with emulsions is followed by rolling with neat oils to the desired gauge. It is important to realize that at these plants, operations such as direct chill casting were considered to be associated with the emulsion rolling rather than neat oil rolling for the purpose of subcategorization. In this way, duplication of streams is

avoided. Two of the plants (7 percent) were included in both the Rolling with Emulsions and Drawing with Neat Oils subcategories. Two of the plants (7 percent) were included in both the Rolling with Emulsions and Extrusion subcategories. In five cases (17 percent), overlap with more than one other subcategory was found to exist.

Extrusion Subcategory

This subcategory is applicable to all wastewater discharges resulting from or associated with aluminum extrusion operations. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

EXTRUSION SUBCATEGORY

Unit Operation	Waste Stream	Production Normalizing Parameter
CORE:		
Extrusion	Dummy block	Mass of aluminum extruded
Die cleaning	cooling Bath and rinse	Mass of aluminum extruded
	Scrubber liquor	Mass of aluminum extruded
Stationary casting	None	Mass of aluminum extruded
Annealing	None	Mass of aluminum extruded
Homogenizing	None	Mass of aluminum extruded
Artificial aging	None	Mass of aluminum extruded
Degreasing	Spent solvent	Mass of aluminum extruded
Sawing	Spent lubricant	Mass of aluminum extruded
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum extruded
ANCILLARY:		
Direct chill casting	Contact cooling water	Mass of aluminum cast by direct chill method
Extrusion press or	Contact cooling	Mass of aluminum

solution heat treatment	water	quenched
Cleaning or etching	Bath	Mass of aluminum cleaned or etched
	Rinse	Mass of aluminum cleaned or etched
	Scrubber liquor	Mass of aluminum cleaned or etched
Degassing	Scrubber liquor	Mass of aluminum degassed
Extrusion press	Hydraulic fluid leakage	Mass of aluminum extruded

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at those plants:

_	Frequency			
				Percent of
				Total Plants
Annual at a 1 Danks Observe	NT		D1	in the
Associated Waste Streams	NO.	OI	Plants	Subcategory
CORE:				
Extrusion			163	100
Die cleaning bath and rinse			*	*
Die cleaning scrubber liquor			*	*
Sawing spent lubricant			*	*
Miscellaneous nondescript wastewater			*	*
ANCILLARY:				
Direct chill casting Contact cooling water Extrusion press and solution heat tre	eatm	ent.	44	27
Contact cooling water Cleaning or etching			52	32
Bath			85	52
Rinse			85	52
Scrubber liquor			3	2
Degassing				
Scrubber liquor			1	}
Extrusion press leakage			5	3

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

The Extrusion Subcategory includes more plants, 163, than any other subcategory, or approximately half of the plants surveyed. Three of these plants are known to have closed since proposal. Although an accurate count was not possible from the available data, extrusion die cleaning is expected to be present at every extrusion plant, and this operation serves as the principal component of the core for this subcategory.

More than half of the plants in this subcategory can be regulated on the basis of the core allocation alone, but the other facilities will require the consideration of ancillary streams. As shown in the preceding list, the most common ancillary operation is cleaning or etching (associated with extrusion at 85 of these plants), followed by heat treatment (32 percent) and direct chill casting (27 percent).

Although most of the plants in the Extrusion Subcategory (88 percent) are not associated with any other subcategories, some overlap does occur. In the most common example, nine of the extrusion plants (6 percent) are also associated with the Drawing with Neat Oils Subcategory.

Forging Subcategory

This subcategory is applicable to all wastewater discharges resulting from or associated with aluminum forging operations. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

FORGING SUBCATEGORY

Unit Operation	Waste Stream	Production Normalizing Parameter
CORE:		
Forging	None	Mass of aluminum forged
Artificial aging	None	Mass of aluminum forged
Annealing	None	Mass of aluminum forged
Degreasing	Spent solvent	Mass of aluminum forged
Sawing	Spent lubricant	Mass of aluminum forged
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum forged

ANCILLARY:

Forging air pollution control	Scrubber liquor	Mass of aluminum forged
Forging solution heat treatment	Contact cooling water	Mass of aluminum quenched
Cleaning or etching	Bath	Mass of aluminum cleaned or etched
	Rinse	Mass of aluminum cleaned or etched
	Scrubber liquor	Mass of aluminum cleaned or etched

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at these plants:

	Frequency			
Associated Waste Streams	No.	of	Plants	Percent of Total Plants in the Subcategory
CORE:				
Sawing spent lubricant Miscellaneous nondescript wastewater			16	100
ANCILLARY:				
Forging air pollution control Scrubber liquor Forging solution heat treatment			4	25
Contact cooling water Cleaning or etching			11	69
Bath Rinse			13 13	81 81
Scrubber liquor			2	13

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

Of the 16 plants identified with the Forging Subcategory, only one could be regulated by the core streams alone. The most common ancillary streams, cleaning or etching baths and rinses, are each associated with 81 percent of the forging plants. Frequently, more than one ancillary stream is associated with a

given plant. Six of the 16 forging plants (38 percent) involve at least three such streams.

Most of the plants in the Forging Subcategory (81 percent) do not have operations associated with any other subcategory. Overlap only occurs with the Extrusion and Drawing subcategories.

<u>Drawing with Neat Oils Subcategory</u>

This subcategory is applicable to all wastewater discharges resulting from or associated with aluminum drawing operations in which neat oils are used as a lubricant. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

DRAWING WITH NEAT OILS SUBCATEGORY

Unit Operation W	aste Stream	Production Normalizing Parameter
CORE:		
Drawing with neat oils	Spent lubricant	Mass of aluminum drawn with neat oils
Stationary casting	None	Mass of aluminum drawn with neat oils
Homogenizing	None	Mass of aluminum drawn with neat oils
Annealing	None	Mass of aluminum drawn with neat oils
Artificial aging	None	Mass of aluminum drawn with neat oils
Degreasing	Spent solvent	Mass of aluminum drawn with neat oils
Sawing	Spent lubricant	Mass of aluminum drawn with neat oils
Swaging	None	Mass of aluminum drawn with neat oils
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum drawn with neat oils
ANCILLARY:		
Continuous rod casting	Contact cooling water	Mass of aluminum rod cast by continuous methods
	Spent lubricant	Mass of aluminum rod cast by continuous methods

Drawing solution heat treatment	Contact cooling water	Mass of aluminum quenched
Cleaning or etching	Bath	Mass of aluminum
		cleaned or etched
	Rinse	
		cleaned or etched
	Scrubber liquor	Mass of aluminum
		cleaned or etched

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at those plants:

_	Frequency			
				Percent of Total Plants in the
Associated Waste Streams	No.	of	Plants	Subcategory
CORE:				
Drawing with neat oils spent lubrican	nt		66	100
Sawing spent lubricant			*	*
Miscellaneous nondescript wastewater			*	*
ANCILLARY:				
Continous rod casting				
Contact cooling water			2	3 3
Spent lubricant			2	3
Drawing solution heat treatment			8	1.3
Contact cooling water Cleaning or etching			0	12
Bath			13	20
Rinse			13	20
Scrubber liquor			0	0

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

The Drawing with Neat Oils Subcategory is the second largest aluminum forming subcategory and contains 66 of the 277 plants surveyed in this study. The majority of the plants in the Drawing with Neat Oils Subcategory can be regulated on the basis of the core alone. Heat treatment contact cooling water and cleaning or etching baths and rinses are the most common ancillary streams in this subcategory.

Frequent overlap with other subcategories was noted. The most common case was with the Extrusion Subcategory; nine of the neat oil drawing plants (14 percent) were found to have extrusion processes as well. In all, 36 percent of the plants in the Drawing with Neat Oils Subcategory were also associated with one or more other alumminum forming subcategories.

Drawing with Emulsions or Soaps Subcategory

This subcategory is applicable to all wastewater discharges resulting from or associated with the aluminum drawing operations which use oil-in-water emulsion or soap solution lubricants. The unit operations and associated waste streams covered by this subcategory and the appropriate production normalizing parameters are listed below.

DRAWING WITH EMULSIONS OR SOAPS SUBCATEGORY

Unit Operation W	aste Stream	Production Normalizing Parameter
CORE:		
Drawing with emulsions or soaps	Spent emulsion	Mass of aluminum drawn with emulsions or soaps
Stationary casting	None	Mass of aluminum drawn with emulsions or soaps
Artificial aging	None	Mass of aluminum drawn with emulsions or soaps
Homogenizing	None	Mass of aluminum drawn with emulsions or soaps
Annealing	None	Mass of aluminum drawn with emulsions or soaps
Degreasing	Spent solvent	Mass of aluminum drawn with emulsions or soaps
Sawing	Spent lubricant	Mass of aluminum drawn with emulsions or soaps
Swaging	None	Mass of aluminum drawn with emulsions or soaps
Miscellaneous non- descript wastewater sources	Various	Mass of aluminum drawn with emulsions or soaps

ANCILLARY:

Continuous rod casting	Contact cooling water	Mass of aluminum rod cast by continuous methods
	Spent lubricant	Mass of aluminum rod cast by continuous methods
Drawing solution heat treatment	Contact cooling water	Mass of aluminum quenched
Cleaning or etching	Bath	Mass of aluminum cleaned or etched
	Rinse	Mass of aluminum cleaned or etched
	Scrubber liquor	Mass of aluminum cleaned or etched

The following list summarizes data pertaining to the number of plants in this subcategory and the waste streams which are present at these plants:

probent de enoce pranto.			Frequer	ıcy
Associated Waste Streams	No.	of	Plants	Percent of Total Plants in the Subcategory
CORE:				
Drawing with emulsions or soaps spent lubricants	-		13	100
Sawing spent lubricants Miscellaneous nondescript wastewater			*	*
ANCILLARY:				
Continuous rod casting Contact cooling water Spent lubricant]]	8 8
Drawing solution heat treatment Contact cooling water Cleaning or etching			4	31
Bath			1	8 8
Rinse Scrubber liquor			Ö	0

^{*}An accurate count could not be determined from available data, assumed to be present at all plants.

The Drawing with Emulsions or Soaps Subcategory is the smallest of the aluminum forming subcategories, with only 13 plants. The principal core stream in this subcategory, spent emulsions from drawing with emulsions or soaps, is present at all 13 plants. For the majority of plants, the core streams accurately describe all wastewater associated with the subcategory. At four of the plants (31 percent), solution heat treatment is applied to the drawn product. Continuous rod casting and cleaning or etching were each reported less frequently. Consideration of the appropriate ancillary streams is required for these plants.

Most of the plants (69 percent) are not associated with any other subcategories. Overlap with other subcategories was observed at four of the 13 plants surveyed (31 percent).

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section presents the analytical data that characterize the raw wastewater and indicate the effectiveness of various wastewater treatment processes and the flow data that serve as the basis for developing regulatory flow allowances in the aluminum forming category. The data were obtained from four sources: data collection portfolios (dcp's); sampling and analysis programs; 308 letters sent to industry to obtain additional information on comments submitted during the comment period; and longterm or historical data.

SOURCES OF DATA

Data Collection Portfolios

Data collection portfolios (dcp's) are questionnaires which were developed by the Agency to obtain extensive data from plants in the aluminum forming category. These dcp's, which were sent to all known aluminum forming facilities, requested information about plant age, production, number of employees, water usage, manufacturing processes, raw material and process chemical usage, wastewater treatment technologies, the known or believed presence or absence of toxic pollutants in the plant's raw and treated process wastewaters, and other pertinent factors.

The dcp responses supplied the quantity of aluminum produced during 1977, as well as the average production rate (lb/hr), maximum production rate, and the rate at full capacity for each operation. As discussed in Section IV, the average production rate is considered the most applicable parameter for relating to water use and raw waste characteristics, and has been used as the normalizing basis for calculations.

Data supplied by dcp responses were evaluated, and two flow-to-production ratios were calculated for each stream. The two ratios, water use and wastewater discharge flow, are differentiated by the flow value used in calculation. Water use is defined as the volume of water or other fluid (e.g., emulsions, lubricants) required for a given process per mass of aluminum product and is therefore based on the sum of recycle and make-up flows to a given process. Wastewater flow discharged after in-process treatment or recycle (if these are present) is used in calculating the production normalized flow for that waste stream. The production normalized wastewater flow is defined as the volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of aluminum produced. Differ-

ences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and carryover on the product. The production values used in calculation correspond to the production normalizing parameter, PNP, assigned to each stream, as outlined in Section IV.

The production normalized flows were compiled and statistically analyzed by stream type. Where appropriate, an attempt was made to identify factors that could account for variations in water use. The production normalized flow information is summarized in this section. A similar analysis of factors affecting the wastewater values is presented in Sections IX, X, XI, and XII where representative BPT, BAT, NSPS, and pretreatment discharge flow allowances are selected for use in calculating the effluent limitations and standards.

The BPT discharge flows were also used to estimate flows at aluminum forming plants that supplied EPA with only production data. The estimated flow was then used to determine the cost of wastewater treatment at these facilities (see Section VIII).

The methods used in evaluation of wastewater data varied as dictated by the intended use of the results. For example, in Section VI the wastewater data from effluent samples are examined to select pollutants for consideration in regulating the category.

The mass loading data (kg of pollutant per kkg of production) from sampled plants were averaged to determine mass loadings typical of the different wastewater streams.

Sampling and Analysis Program

The sampling and analysis program discussed in this section was undertaken primarily to implement portions of the Settlement Agreement and to identify pollutants of concern in the industry, with emphasis on toxic pollutants. Samples were collected at 25 aluminum forming facilities and subsequently analyzed.

This section summarizes the purpose of the sampling trips and identifies the sites sampled and parameters analyzed. It also presents an overview of sample collection, preservation, and transportation techniques. Finally, it describes the pollutant parameters quantified, the methods of analyses and laboratories used, the detectable concentration of each pollutant, and the general approach used to ensure the reliability of the analytical data produced.

Prior to each sampling visit, all available data, such as layout and diagrams of the selected plant's production processes and

wastewater treatment facilities, were reviewed. Often an engineering visit to the plant to be sampled was made prior to the actual sampling visit to finalize the sampling approach. Among the types of information obtained on engineering visits were identification and observations of production processes, types of wastewater generated, use of wastewater treatment technologies, and in-process technologies. These observations were recorded in plant visit reports. Representative sample points were then selected to provide coverage of discrete raw wastewater sources, total raw wastewater entering a wastewater treatment system, and final effluents. Finally, before conducting a visit, a detailed sampling plan showing the selected sample points and all pertinent sample data to be obtained was generated and reviewed.

Twenty plants were sampled prior to proposal. Selection. The reason that the Agency selected these 20 plants was to adequately represent the full range of manufacturing operations found in this industry as well as the performance of existing wastewater treatment systems. As such, the plants selected for sampling were typically plants with multiple forming operations and associated surface and heat treatment operations. rates and pollutant concentrations in the wastewaters discharged from the manufacturing operations at these plants are believed to be representative of the flow rates and pollutant concentrations which would be found in wastewaters generated by operations at any plant in the aluminum forming category. addition, the 20 sampled plants have a variety of treatment systems in place. Plants with no treatment as well as plants using the technologies considered as the basis for regulation were included.

Five plants were sampled after proposal to obtain data necessary for the Agency to adequately address several issues that arose during the comment period. These five plants were identified as having operations directly related to specific comment issues and were therefore selected for sampling efforts. Metals and conventional pollutants data have been incorporated into the data base presented in this section. Organics data for extrusion press hydraulic fluid are also presented in this section. The remainorganic pollutant analyses were received from the laboratory too late to be included in the data base. Samples were collected from before and after modules of wastewater treatment systems. These additional performance data were collected to compare to the treatment effectiveness concentrations derived using the combined metals data base (see Section VII - Lime and Settle Performance - Combined Metals Data Base, p.

<u>Field Sampling</u>. After selection of the plants to be sampled, each plant was contacted by telephone, and a letter of notification was sent to each plant as to when a visit would be expected.

These inquiries led to acquisition of facility information necessary for efficient on-site sampling. The information resulted in selection of the sources of wastewater to be sampled at each plant. The sample points included, but were not limited to, untreated and treated discharges, process wastewater, and partially treated wastewater.

Sites visited for this sampling program are listed below by subcategory and letter designation:

- Rolling with Neat Oils Plants B, C, D, E, N, P, U, T, CC, and EE.
- 2. Rolling with Emulsions Plants B, C, D, E, H, P, T, U, CC, and EE.
- 3. Extrusion Plants F, G, K, L, N, R, V, W, AA, BB, and DD.
- 4. Forging Plants A, J, Q, R, and W.
- 5. Drawing with Neat Oils Plants E, H, R, and V.
- 6. Drawing with Emulsions or Soaps Plants S and W.

Sample Collection, Preservation, and Transportation. Collection, preservation, and transportation of samples were accomplished in accordance with procedures outlined in Appendix III of "Sampling and Analysis Procedures for Screening of Industrial Effluents for Priority Pollutants" (published by the Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, March 1977, revised, April 1977) and in "Sampling Screening Procedure for the Measurement of Priority Pollutants" (published by the EPA Effluent Guidelines Division, Washington, D.C., October 1976). The procedures are summarized in the paragraphs that follow.

Whenever practical, all samples collected at each sampling point were taken from mid-channel at mid-depth in a turbulent, well-mixed portion of the waste stream. Periodically, the temperature and pH of each waste stream sampled were measured on-site.

Each large composite (Type 1) sample was collected in a new 11.4-liter (3-gallon), narrow-mouth glass jug that had been washed with detergent and water, rinsed with tap water, rinsed with distilled water, rinsed with methylene chloride, and air dried at room temperature in a dust-free environment.

Before collection of Type 1 samples, new Tygon tubing was cut to minimum lengths and installed on the inlet and outlet (suction and discharge) fittings of the automatic sampler. Two liters

(2.1 quarts) of blank water, known to be free of organic compounds and brought to the sampling site from the analytical laboratory, were pumped through the sampler and its attached tubing into the glass jug; the water was then distributed to cover the interior of the jug and subsequently discarded.

A blank was produced by pumping an additional 3 liters (3.2 quarts) of blank water through the sampler, distributed inside the glass jug, and poured into a 3.8-liter (1-gallon) sample bottle that had been cleaned in the same manner as the glass jug. The blank sample was sealed with a Teflon -lined cap, labeled, and packed in ice in a plastic foam-insulated chest. This sample subsequently was analyzed to determine any contamination contributed by the automatic sampler.

During collection of each Type 1 sample, the glass jug was packed in ice in a separate plastic foam-insulated container. After the complete composite sample had been collected, it was mixed to and two 0.95-liter (1-quart) provide a homogeneous mixture, aliquots were removed for metals analysis and placed in new labeled plastic 0.95-liter bottles which had been rinsed with distilled water. One of these 0.95-liter aliquots was sealed a Teflon -lined cap; placed in an iced, insulated chest to maintain it at 4°C (39°F); and shipped by air for inductively coupled argon plasma emission spectrophotometry (ICAP) metal analysis. Initially, the second sample was stabilized by addition of 5 ml (0.2 ounce) of concentrated nitric acid, capped and iced in the same manner as the first, and shipped by air to the contractor's facility for atomic-absorption metal analysis.

Because of subsequent EPA notification that the acid pH of the stabilized sample fell outside the limits permissible under Department of Transportation regulations for air shipment, stabilization of the second sample in the field was discontinued. Instead, this sample was acid-stabilized at the analytical laboratory.

After removal of the two 0.95-liter (1-quart) metals aliquots from the composite sample, the balance of the sample in the 11.4-liter (3-gallon) glass jug was subdivided for analysis of nonvolatile organics, conventional, and nonconventional parameters. If a portion of this 7.7-liter (2-gallon) sample was requested by an industry representative for independent analysis, a 0.95-liter (1-quart) aliquot was placed in a sample container supplied by the representative.

Sample Types 2 (cyanide) and 3 (total phenol) were stored in new bottles which had been iced and labeled, 1-liter (33.8-ounce) clear plastic bottles for Type 2, and 0.47-liter (16 ounce) amber glass for Type 3. The bottles had been cleaned by rinsing with

distilled water, and the samples were preserved as described below.

To each Type 2 (cyanide) sample, sodium hydroxide was added as necessary to elevate the pH to 12 or more (as measured using pH paper). Where the presence of chlorine was suspected, the sample was tested for chlorine (which would decompose most of the cyanide) by using potassium iodide/starch paper. If the paper turned blue, ascorbic acid crystals were slowly added and dissolved until a drop of the sample produced no change in the color of the test paper. An additional 0.6 gram (0.021 ounce) of ascorbic acid was added, and the sample bottle was sealed (by a Teflon -lined cap), labeled, iced, and shipped for analysis.

To each Type 3 (total phenol) sample, phosphoric acid was added as necessary to reduce the pH to 4 or less (as measured using pH paper). Then, 0.5 gram (0.018 ounce) of copper sulfate was added to kill bacteria, and the sample bottle was sealed (by a Teflon -lined cap), labeled, iced, and shipped for analysis.

Each Type 4 (volatile organics) sample was stored in a new 125-ml (4.2-ounce) glass bottle that had been rinsed with tap water and distilled water, heated to 105°C (221°F) for one hour, and cooled. This method was also used to prepare the septum and lid for each bottle. Each bottle, when used, was filled to overflowing, sealed with a Teflon -faced silicone septum (Teflon side down) and a crimped aluminum cap, labeled, and iced. Hermetic sealing was verified by inverting and tapping the sealed container to confirm the absence of air bubbles. (If bubbles were found, the bottle was opened, a few additional drops of sample were added, and a new seal was installed.) Samples were maintained hermetically sealed and iced until analyzed.

Wastewater samples were collected in two stages: screening and verification. Ideally, the screening phase involves collection of samples from every waste stream in the category. Pollutants that were not detected during screening were not considered further in the study. Because of the tight schedule of this study, there was not time to analyze all of the samples obtained during screening before verification sampling began. Therefore, verification samples were analyzed for almost all of the toxic pollutants, as well as selected conventional and nonconventional pollutants.

Sample Analysis. Samples were sent by air to one of six laboratories: Cyrus Wm. Rice Division of NUS Corporation of Pittsburgh, Pennsylvania; ARO, Inc. of Tullahoma, Tennessee; Systems Science and Software (SSS) of San Diego, California; Spectrix of Houston, Texas; Radian Corporation of Austin, Texas; and Versar, Inc. of Springfield, Virginia. Screening samples

went to Rice; there the samples were split for metals analysis. An aliquot of each metal sample received by Rice was sent to EPA's Chicago laboratory for ICAP analysis; Rice retained an aliquot for atomic absorption spectrophotometry (AA). Twenty-two metals were analyzed by ICAP, and five metals were analyzed by AA, as follows:

Metals Analyzed by ICAP

Calcium Copper Magnesium Iron Sodium Manganese Silver Molybdenum Aluminum Nickel Boron Lead Barium Tin Beryllium Titanium Cadmium Vanadium Cobalt Yttrium Chromium 7.inc

Metals Analyzed by AA

Antimony Arsenic Selenium Thallium Mercury

Many of the metals analyzed by ICAP are not classified as toxic pollutants and are not reported in this document as such. They are considered only because they consume lime and increase sludge production in wastewater treatment facilities.

Verification samples went to Radian or ARO when metal analysis was performed by AA. Since metals analysis of screening samples was complete before verification metals analysis began, Radian analyzed the samples only for metals shown to be significant in the aluminum forming category or those expected to consume large amounts of lime.

Some verification samples were sent to System, Science and Software (SSS), Spectrix, Radian, or Rice, where analysis for the organic toxic pollutants was done.

Due to their very similar physical and chemical properties, it is extremely difficult to separate the seven polychlorinated biphenyls (pollutants 106 to 112) for analytical identification and quantification. For that reason, the concentrations of the polychlorinated biphenyls are reported by the analytical labora-

tory in two groups: one group consists of PCB-1242, PCB-1254, and PCB-1221; the other group consists of PCB-1232, PCB-1248, PCB-1260, and PCB-1016. For convenience, the first group will be referred to as PCB-1254 and the second as PCB-1248.

Because the analytical standard for TCDD was judged to be too hazardous to be made generally available, samples were never analyzed for this pollutant. There is no reason to expect the TCDD would be present in aluminum forming wastewater.

Past studies by EPA and others have identified many nontoxic pollutant parameters useful in characterizing industrial wastewaters and in evaluating treatment process removal efficiencies. Some of these pollutants may also be selected as reliable indicators of the presence of specific toxic pollutants. For these reasons, a number of nontoxic pollutants were also studied for the aluminum forming category. These additional pollutants may be divided into two general groups:

Conventional

Nonconventional

total suspended solids (TSS) oil and grease pH

aluminum chemical oxygen demand (COD) phenols (total) total organic carbon (TOC) total dissolved solids (TDS)

In addition, samples were analyzed for calcium, magnesium, alkalinity, and sulfate in order to provide the data necessary to evaluate the cost of lime and settle treatment.

The analytical quantification levels used in evaluation of the sampling data reflect the accuracy of the analytical methods employed. Below these concentrations, the identification of the individual compounds is possible, but quantification is difficult. Pesticides and PCB's can be analytically quantified at concentrations above 0.005 mg/l, and other organic toxic levels above 0.010 mg/l levels associated with toxic metals are as follows: 0.100 mg/l for antimony; 0.010 mg/l for arsenic; 1 x for cadmium; 0.005 mg/l for chromium; 0.009 mg/l for copper; 0.010 mg/l for cyanide; 0.02 mg/l for lead; 0.0001 mg/l for mercury; 0.005 mg/l for nickel; 0.010 mg/l for selenium; 0.020 mg/l for silver; 0.100 mg/l for thallium; and 0.050 mg/l for zinc.

These detection limits are not always the same as those published in the proposed development document, some of which were in error; nor are they always the same as some of the detection limits published elsewhere for these same pollutants by the same analytical methods. The detection limits used were reported

with the analytical data and hence are the appropriate limits to apply to the data. Detection limit variation can occur as a result of a number of laboratory-specific, equipment-specific, and daily operator-specific factors. These factors can include day-to-day differences in machine calibration, variation in stock solutions, and variation in operators.

Quality Control. Quality control measures used in performing all analyses conducted for this program complied with the guidelines given in "Handbook for Analytical Quality Control in Water and Wastewater Laboratories" (published by EPA Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, 1976). As part of the daily quality control program, blanks (including sealed samples of blank water carried to each sampling site and returned unopened, as well as samples of blank water used in the field), standards, and spiked samples were routinely analyzed with actual samples. As part of the overall program, all analytical instruments (such as balances, spectrophotometers, and recorders) were routinely maintained and calibrated.

The atomic-absorption spectrometer used for metal analysis was checked to see that it was operating correctly and performing within expected limits. Appropriate standards were included after not more than 10 samples. Also, approximately 15 percent of the analyses were spiked with distilled water to assure recovery of the metal of interest. Reagent blanks were analyzed for each metal, and sample values were corrected if necessary.

Historical Data

A useful source of long-term or historical data available for aluminum forming plants are the Discharge Monitoring Reports (DMR's) completed as a part of the National Pollutant Discharge Elimination System (NPDES). DMR's were obtained through the EPA regional offices and state regulatory agencies for the year 1982, and up to the second quarter of 1983 in some cases. The DMR's present a summary of the analytical results from a series of samples taken during a given month for the pollutants designated in the plant's permit. In general, minimum, maximum, and average values, in mg/l or lbs/day, are presented for such pollutants as total suspended solids, aluminum, oil and grease, pH, chromium, The samples were collected from the plant outfall(s), which represents the discharge(s) from the plant. For facilities with wastewater treatment, the DMR's provide a measure of the performance of the treatment system. In theory, these data could then serve as a basis for characterizing treated wastewater from aluminum forming plants; however, there is no influent to treatment information and too little information on the performance of the plant at the time the samples were collected to use

data in evaluating the performance of various levels of treatment. They do serve as a set of data that was used to compare to the treatment effectiveness concentrations presented in Section VII (p.).

PRESENTATION OF WASTEWATER CHARACTERISTICS

To simplify the presentation of the sampling data, tables were developed that present ranges of concentrations with the number of samples in which each pollutant was found within these ranges. For each waste stream a frequency of occurrence table is presented for all 129 toxic pollutants. For those pollutants detected above analytically quantifiable concentrations in any sample of that wastewater stream, the actual analytical data are presented in a second table. Where no data are listed for a specific day of sampling, it indicates that the wastewater samples for the stream were not collected.

The statistical analysis of data includes some samples measured at levels considered not quantifiable. The base neutrals, acid fraction, and volatile organics are considered not quantifiable at concentrations equal to or less than 0.010 mg/l. Below this level, organic analytical results are not quantitatively accurate; however, the analyses are useful to indicate the presence of a particular pollutant. Nonquantifiable results are designated in the tables with an asterisk (double asterisk for pesticides).

When calculating averages from the organic sample data, non-quantifiable results (* or **) were handled as zeros. Since an "*" or "**" denotes a small but unquantified amount, it is used as a zero in calculation of averages to minimize overstatement of the amount present. Organics data reported as not detected (ND) are not averaged, since ND signifies that the pollutant was not present in the sample. For example, three samples reported as ND, *, 0.021 mg/l would average as 0.010 mg/l.

In the following discussion, water use and field sampling data are presented for each core operation by subcategory. Discussions of the water use and discharge rates and field sampling data for the ancillary operations follow thereafter. Appropriate tubing or background blank and source water concentrations are presented with the summaries of the sampling data. Figures V-1 through V-25 show the location of wastewater sampling sites at each facility. The method by which each sample was collected is indicated by number, as follows:

- 1 one-time grab
- 2 24-hour manual composite
- 3 24-hour automatic composite

- 4 48-hour manual composite
- 5 48-hour automatic composite
- 6 72-hour manual composite
- 7 72-hour automatic composite
- 8 8-hour manual composite
- 9 8-hour automatic composite

CORE OPERATIONS UNIQUE TO MAJOR FORMING PROCESSES

Rolling

Rolling with Neat Oils Spent Lubricant. As described in Section III, the cold rolling of aluminum products typically requires the use of mineral oil or kerosene-based lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, limited flow data were available for analysis. Of the 50 plants surveyed that oil rolling lubricants, water (oil) use could be calculated for only four. These data are presented summarized in Table V-1. None of the plants provided sufficient flow data to calculate the degree of recycle practiced or the discharge flow of this stream.

Toxic pollutant frequency occurrence data are presented in Table V-2. Wastewater sampling data for neat oil lubricants are presented in Table V-3.

Rolling with Emulsions Spent Emulsion. Of the plants surveyed, 29 rolling operations were identified that use oil-in-water emulsions as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration treatment. Some plants discharge a bleed stream, but periodic discharge of the recycled emulsion is more commonly practiced.

Water use, wastewater factors, and percent recyle corresponding to this stream are summarized in Table V-4.

Toxic pollutant frequency occurrence data are presented in Table V-5. Table V-6 summarizes the field sampling data for toxic and selected conventional and nonconventional pollutants. This stream is characterized by high levels of COD (79.8 to 1,520,000 mg/l), TOC (38.0 to 560,000 mg/l), and phenolic compounds as measured by total phenolics-4AAP (0.210 to 49.0 mg/l). Several toxic organic pollutants were detected in the spent emulsions at significant concentrations. These included several of the polynuclear aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCBs).

Roll Grinding Spent Emulsion. The steel rolls used in rolling operations require periodic machining to remove aluminum buildup and surface imperfections. This process is referred to as roll grinding. Oil-in-water emulsions are often used as coolants and lubricants during roll grinding operations. Data on roll grinding spent lubricants from the dcp's and additional data collected after proposal have been included in the data base for this waste stream. Although the available data for this stream are not as extensive as for other aluminum forming processes, they did provide a basis for the analysis of water use and wastewater rates typically associated with roll grinding. This information is summarized in Table V-7, along with the degree of recycle or disposal mode practiced at the plants.

One roll grinding operation was sampled prior to proposal. Unfortunately, the sampled facility did not use an emulsified lubricant. Additional data gathered since proposal, however, include three samples of roll grinding spent emulsions. Toxic pollutant frequency occurrence data for the nonemulsified stream (stream code U-7) and for the three spent emulsions (stream codes CC-2, EE-11, and EE-12) are presented in Table V-8. The field sampling data are summarized in Table V-9. This waste stream is characterized by high levels of oil and grease (11 to 780 mg/1), suspended solids (9.0 to 120 mg/1), total dissolved solids (340 to 2,200 mg/1), and COD (230 to 850 mg/1).

Extrusion

Extrusion Die Cleaning Bath. As discussed in Section III (p. 101), the steel dies used in extrusion require frequent dres sing to ensure the necessary dimensional precision and surface quality of the product. The aluminum that has adhered to the die orifice is typically removed by soaking the die in a caustic solution, although a few plants indicated that mechanical brush ing could be used to clean very simple dies. Water use and wastewater values corresponding to the die cleaning caustic bath were calculated for 37 extrusion plants for which information was available. This information is presented and statistically summarized in Table V-10.

Although recycle of the caustic solution, as such, is never practiced, periodic discharge of these stagnant baths is common. For this reason, water use (make-up rate) and wastewater (discharge rates) are normally identical. Variations in the water use in caustic die cleaning baths may result from the following:

Intricacy and size of the die orifice. Aluminum alloy being extruded. Concentration of caustic used. Individual plant practices.

The available data are not sufficient, however, to analyze quantitatively the effect of these factors.

Wastewater samples were collected from three extrusion die clean ing baths during the sampling program. Wastewater data for extrusion die cleaning baths are summarized in Tables V-11 and V-12. The wastewater characteristics of this stream are similar to discharges from cleaning or etching baths.

Extrusion Die Cleaning Rinse. After caustic treatment, the extrusion dies are rinsed with water. At some plants, the dies are simply hosed off; at others, a rinse tank is used for this purpose. Most of the plants contacted indicated that rinsing was required to avoid damage to the die and the material being extruded. Water use and wastewater factors could be calculated for only nine of the 30 plants. This information is presented and summarized in Table V-13. Water use does not appear to be affected by differences in rinsing method (i.e., hose or rinse tank). Other factors, such as the intricacy of the dies, concentration of caustic used, aluminum alloy being extruded, and individual plant practices, could account for minor variations in water use. The degree of influence of these factors cannot be determined from the available data.

Toxic pollutant frequency occurrence data are presented in Table V-14. Table V-15 summarizes the field sampling data for toxic and selected conventional and nonconventional pollutants detected above the analytically quantifiable levels. This waste stream is characterized by high concentrations of aluminum (9.0 to 430 mg/l), dissolved solids (3,200 to 7,200 mg/l), and low concentrations of suspended solids (28 to 120 mg/l) and oil and grease (<3.0 to 17 mg/l). Only five of the toxic organic pollutants were detected during sampling.

Extrusion Die Cleaning Scrubber Liquor. Of the plants surveyed, two indicated the use of wet scrubbers associated with their die cleaning operations. Wet scrubbers may be required to treat fumes from the caustic die cleaning operation in order to control air pollution emissions and ensure a safe working environment. Water use and wastewater factors are calculated in Table V-16. Toxic pollutant frequency occurrence data are presented in Table V-17. Table V-18 summarizes the field sampling data for toxic and selected conventional and nonconventional pollutants detected above the analytically quantifiable levels. This waste stream is characterized by moderate levels of oil and grease (58 mg/l) and dissolved solids (330 mg/l). The toxic metals, when detected, were present at levels well below their treatability levels.

Extrusion Press Scrubber Liquor. Of the 163 extrusion plants surveyed, two plants reported the use of wet scrubbers at the

extrusion presses to remove caustic fumes. These fumes occur as a result of cleaning aluminum from extrusion presses between operations.

One of these plants reported sufficient data for the calculation of wastewater values. The scrubber at this plant runs continu ously without recycle and has water use and wastewater values of $2,071\ l/kkg$. The other plant, while not supplying enough information to allow calculation of these values, reported that their scrubber is only run intermittently. These data appear in Table V-19. This waste stream was sampled at only one plant. Toxic pollutant frequency occurrence data are presented in Table V-20. The field sampling data are summarized in Table V-21. As can be seen in the table, this stream is characterized by low levels of suspended solids (5 mg/l) and elevated levels of dissolved solids (360 mg/l). All of the toxic metals were detected well below their treatability levels.

Extrusion Dummy Block Contact Cooling Water. As described in Section III (p.), a dummy block is placed between the ram and ingot during the direct extrusion process. After the extrusion is complete, the ingot butt and dummy block are released from the press. Typically, the dummy blocks are allowed to air cool; how ever, of the 163 extrusion plants, three indicated that water was used for this purpose. As can be seen in Table V-22, none of these plants recycle the cooling water. Data were available to calculate water use and wastewater discharge rates for two of the three plants.

Toxic pollutant frequency occurrence data are presented in Table V-23. Data from wastewater sampling of dummy block cooling water are presented in Table V-24. This waste stream is characterized by elevated concentrations of oil and grease (74 mg/l) and dis solved solids (50 mg/l). Only one toxic organic pollutant (chloroform) was detected (0.08 mg/l). None of the toxic metals were detected.

Forging

There are no core waste streams that are unique to the forging operation.

Drawing

Drawing with Neat Oils Spent Lubricant. Of the 277 plants surveyed, 66 draw aluminum products using neat oil lubricants. Two plants avoid discharge of this stream by 100 percent recycle of the drawing oil. Most of the plants dispose of the spent oil by incineration or contractor hauling and did not provide the flow data required to calculate water (oil) use and wastewater

discharge (oil) values. Table V-25 shows the water use and wastewater values for the plants that supplied sufficient information for the calculation of these values.

No wastewater samples of spent drawing neat oils were collected.

Drawing with Emulsions or Soaps Spent Emulsion. Of the plants surveyed, nine draw aluminum products using oil-in-water emulsions, and four indicated that soap solutions were used as drawing lubricants. Water use and wastewater factors calculated for this stream are presented and summarized in Table V-26. As can be seen, several plants recycle the emulsions or soap solutions, then discharge them periodically after their lubricating properties are exhausted. Review of the data shows that there is considerable variability in the wastewater discharge rates. This variation may be somewhat related to difference in the dimension of wire being drawn. Wastewater discharge factors were calculated for seven of the 13 plants.

Toxic pollutant frequency occurrence data are presented in Table V-27. Table V-28 summarizes the field sampling data for the toxic and selected conventional and nonconventional pollutants detected above analytically quantifiable levels. This waste stream is characterized by extremely high levels of oil and grease (51,540~mg/l) and the presence of certain toxic organic pollutants.

Swaging. Swaging is frequently associated with drawing operations and has been included in the Drawing with Neat Oils Subcategory. Swaging is used as an initial step in drawing with tube or wire. By repeated blows of one or more pairs of opposing dies, a solid point is formed. This can then be inserted through the die and gripped for drawing. In a few cases, swaging is used in tube forming without a subsequent drawing operation. Some lubricants, such as waxes and kerosene, may be used to prevent adhesion of metal or oxide on the dies. Discharge of swaging lubricants was not reported by any of the plants surveyed in this study.

CORE OPERATIONS NOT UNIQUE TO SPECIFIC MAJOR FORMING PROCESSES

Sawing Spent Lubricant. Although sawing is associated with nearly all aluminum forming operations, only 12 of the plants surveyed reported the use of saw oil emulsions. Because plants frequently failed to mention minor streams that are not dis charged, the actual number of plants using saw lubricants may be much higher. The lubricants are frequently recycled and, in most instances, discharge from the system is limited to carryover and disposal by contractor hauling. Only three plants reported direct or indirect discharge of saw oils.

Water use and wastewater factors were calculated for plants providing flow and production data corresponding to the stream. These factors are shown and summarized in Table V-29.

Field samples of sawing spent lubricant from three plants were collected. The wastewater characteristics of this waste stream are presented in Tables V-30 and V-31.

Degreasing Spent Solvents. Although 34 solvent degreasing operations have been identified from dcp responses, no discharge is typically associated with this process. Vapor degreasing, the predominant method of solvent cleaning in the aluminum forming industry, is described in Section III (p. 113). A number of toxic organic pollutants, including trichloroethylene, 1,1,1-trichloroethane, and perchloroethylene, are commonly used solvents for vapor degreasing. The solvents are frequently reclaimed by distillation, either on-site or by an outside recovery service.

Toxic pollutant frequency occurrence data are presented in Table V-32. Field sampling data for cleaning solvent streams are sum marized in Table V-33. Besides the presence of volatile organic pollutants mentioned above, this waste stream is characterized by high levels of oil and grease (2,180 mg/l), COD (330 mg/l), and TOC (143 mg/l).

<u>Annealing</u> solution-heat-treated alloys, to relieve stress, and to stabilize the properties and dimensions of the aluminum product. cases, it is necessary to control the atmosphere within annealing furnace. At elevated temperatures, the presence of water vapors can disrupt the oxide film on the surface of the product, especially if the atmosphere is also contaminated with ammonia or sulfur compounds. Inert gas atmospheres can be used within the furnace to avoid possible detrimental effects, such as blistering, discoloration, and a decrease in tensile properties. At most plants, natural gas is burned to generate an inert atmo At one of the aluminum forming plants surveyed, flue gases from the burning of fuel to heat the annealing furnace are used as the furnace atmosphere. Due to the sulfur content of furnace fuels, however, the off-gases require treatment by scrubbers before they can be used as an inert atmosphere for heat The scrubber in use at this plant was reported to treatment. require a relatively large flow of water which is extensively recycled (more than 99 percent). The water use and wastewater values calculated for this stream are shown in Table V-34.

Toxic pollutant frequency occurrence data are presented in Table V-35. Table V-36 summarizes the field sampling data for those

pollutants detected above analytically quantifiable levels. This waste stream is characterized by high levels of sulfates if the furnace fuel has a high sulfur content.

ANCILLARY OPERATIONS

Heat Treatment

Solution and Press Heat Treatment Contact Cooling Water. Heat treatment of aluminum products frequently involves the use of a water quench in order to achieve desired metallic properties. At the 277 aluminum forming plants surveyed, 88 solution heat treatment processes were identified that involve water quenching.

The field samples from heat treatment quenching processes have been identified and compiled according to the aluminum forming operation that it follows (i.e., rolling, forging, drawing, and extrusion). Additional differentiation was made between press and solution heat treatment of extrusions. The wastewater streams and the tables which list the water use, percent recycle, wastewater values, frequency of occurrence of toxic pollutants, and sampling data for toxic and conventional and nonconventional pollutants are listed below:

	Water Use, Percent	Toxic Pollutant	
		Frequency	
Wastewater Stream	Wastewater Values	of <u>Occurrence</u>	Sampling Data
Rolling Solution Heat Treatment Contact Cool: Water		Table V-38	Table V-39
Extrusion Press Heat Treatment Contact Cool: Water		Table V-41	Table V-42
Extrusion Solution Heat Treatment Contact Cool: Water		Table V-44	Table V-45
Forging Solution Heat Treatment Contact Cool: Water		Table V-47	Table V-48
Drawing Solution Heat Treatment Contact Cool: Water		Table V-50	Table V-51

The water use factors calculated for this stream were analyzed to determine if a relationship exists between water use requirements and the type of products being quenched (extrusions, forgings, etc.) or the method of heat treatment used (e.g., press versus

solution heat treatment of extrusions). It was determined that neither of these factors account for the variations in water use. Heat treatment water requirements are independent of the major forming process which precedes the heat treatment operation. The water requirements are a function of several variables, including the mass and surface area of the aluminum, the time allowed for cooling, and the temperature gradient.

Since the water use requirements are independent of the major forming process which precedes the operation, it is assumed that the pollutant loadings in the discharged wastewater are also independent and will be similar for the various heat treatment operations. For regulatory purposes the wastewater discharge values for all the heat treatment operations will be combined into a single value for all solution and press heat treatment operations.

Cleaning or Etching Bath. As described in Section III (p. 112), a variety of chemical solutions are used for cleaning purposes or to provide the desired finish for formed aluminum products. These treatments and their associated rinses are usually combined in a single line of successive tanks. Wastewater discharged from these lines is typically commingled prior to treatment or discharge.

The acid, alkaline, and detergent solutions used in cleaning or etching lines are usually maintained as stagnant baths into which the products are immersed. Chemicals are added as required to make up for losses due to evaporation, carryover, and splash-out. In this survey, most of the plants with cleaning or etching lines did not indicate discharge of these chemical dips. A few plants reported periodic discharge of cleaning or etching compounds, usually following treatment. Other plants indicated that the chemical dip is hauled periodically by an outside contractor or disposed of on-site. Water use and wastewater discharge rates for this stream are presented in Table V-52.

Table V-53 presents the frequency of occurrence of toxic pollutants for this wastewater stream type. Table V-54 summarizes the field sampling data for those pollutants detected above analytically quantifiable levels. This waste stream is characterized by high levels of several of the toxic metals, specifically copper; chromium and lead; oil and grease (<1 to 1,900 mg/l); suspended solids (1 to 1,100 mg/l); aluminum (0.300 to 70,000 mg/l); dissolved solids (586 to 284,000 mg/l); and TOC (1 to 6,260 mg/l).

<u>Cleaning or Etching Rinse</u>. Rinsing is usually required following successive chemical treatments within cleaning or etching lines. The most common methods are spray rinsing or immersion in a continuous-flow rinse tank. The number of rinses within a given

line varied from plant to plant, depending on the kind of surface treatment applied.

Water use and wastewater values calculated for the cleaning or etch lines at aluminum forming plants are shown in Table V-55. As can be seen, cleaning or etching lines with multiple rinses tend to have higher water use and wastewater discharge values than those with single rinses. Direct correlations between these factors cannot be established on the basis of these data. A more detailed discussion of factors which could account for variations in wastewater discharge of this stream is presented in Section IX. The percent of recycled rinse water could not be calculated because of the difficulty in defining the amount of water used. This was caused by countercurrent and stagnant rinses, carryover, and other practices peculiar to the cleaning or etching lines in the aluminum forming category.

Toxic pollutant frequency occurrence data are presented in Table V-56. Table V-57 summarizes the field sampling data for those pollutants detected above analytically quantifiable levels. This waste stream, like cleaning or etching baths, is characterized by elevated concentrations of the toxic metals, copper, chromium, and lead. In addition, nickel and zinc were present at high levels in many samples. Oil and grease and suspended solids were also present at high levels, but lower relative to the baths, as would be expected.

Cleaning or Etching Scrubber Liquor. Of the 40 plants with cleaning and etching lines, seven indicated that wet scrubbers are associated with these operations. Fumes from caustic or acid baths may require treatment to control air pollution emissions and ensure a safe working environment. Sufficient flow data were available to calculate water use from one of the seven plants, and wastewater values were available from four of the seven plants. This information is summarized and presented in Table V-58.

Toxic pollutant frequency occurrence data are presented in Table V-59. Table V-60 summarizes the field sampling data for those pollutants detected above the analytically quantifiable levels. This waste stream is characterized by low levels of contamination, as exhibited by suspended solids at $12 \, \text{mg/l}$.

Forging Scrubber Liquor. Of the 16 forging plants surveyed, three indicated that wet scrubbers were used to control particulates and smoke generated from the partial combustion of oil-based lubricants in the forging process. Water use and wastewater discharge rates are summarized in Table V-61.

Toxic pollutant frequency occurrence data are presented in Table V-62. Table V-63 summarizes the field sampling data for the toxic and selected conventional and nonconventional pollutants detected above the analytically quantifiable levels. This waste stream is characterized by the presence of eight toxic organic pollutants, five of which were polynuclear aromatics. The five were present at concentrations ranging from 0.018 to 0.075 mg/l. High levels of oil and grease (162 mg/l), COD (349 mg/l), and dissolved solids (388 mg/l) are also characteristic of this waste stream.

Casting

Direct Chill Casting Contact Cooling Water. Of the plants surveyed, 61 aluminum forming, 25 primary aluminum plants, and five plants in the secondary aluminum subcategory indicated that they cast aluminum or aluminum alloys using the direct chill method. Because the ingot or billet produced by direct chill casting is used as stock for subsequent rolling or extrusion, this wastewater stream is considered to be an ancillary stream for the Rolling with Emulsions and Extrusion Subcategories.

Contact cooling water is used in the direct chill casting method to spray the ingot or billet as it drops from the mold and then to quench it as it is immersed in a cooling tank at the bottom of the casting pit. As described in Section III (p.), the cool ing water may be contaminated by lubricants applied to the mold before and during the casting process. Some plants discharge this cooling water stream without recycle, but it is commonly recirculated through a cooling tower. Even with recycle, periodic discharge or the discharge of a continuous bleed stream is required to prevent the accumulation of dissolved solids. Of the 48 aluminum forming plants for which information was available, 30 recycle the contact cooling water stream used in direct chill casting. The average recycle rate at these plants was 96 per cent, but the reported values ranged between 50 and 100 percent.

The calculated water use, percent recycle and wastewater values corresponding to direct chill casting cooling water streams at aluminum forming plants are presented in Table V-64. The calculated water use, percent recycle, and wastewater values for primary aluminum and secondary aluminum plants with direct chill casting operations are presented in Table V-65.

Toxic pollutant frequency occurrence data are presented in Table V-66. The field sampling data for those pollutants detected above analytically quantifiable levels are summarized in Table V-67. This waste stream is characterized by the presence of certain toxic organic pollutants at levels ranging from 0.500 mg/l to below the level of detection. It is also characterized

by elevated levels of oil and grease (5 to 214 mg/l) and suspended solids (<1 to 220 mg/l).

Continuous Rod Casting Contact Cooling Water. Three of the aluminum forming plants surveyed in this study use continuous casting methods to manufacture aluminum rod for subsequent draw ing. Four plants from the primary aluminum subcategory of the nonferrous metals forming category also have continuous rod casting operations. This process, also referred to as Properzi or wheel casting, is described in Section III (p.). Although the cooling water associated with continuous rod casting is, for the most part, noncontact, some contact with the freshly cast aluminum bar as it leaves the ring mold is difficult to avoid. For this reason, the cooling water used in continuous rod casting operations is classified as an ancillary stream associated with the Drawing with Neat Oils and Drawing with Emulsions or Soaps Subcategories.

Water use and wastewater factors corresponding to this stream could be calculated for only one of the aluminum forming con tinuous rod casting plants. At this facility no recycle of cooling water was practiced. Water use and wastewater rates could not be calculated for the other aluminum forming plant known to recycle and periodically discharge this stream. other plant indicated that contact cooling water was not This information is presented in Table V-68. Water discharge of this waste stream was reported from three primary aluminum All plants reported recycle of this waste stream; plants. however, only two reported enough information to calculate a discharge flow. This information is presented in Table V-69.

No field samples of this cooling water stream were collected. Because of the similarities in raw materials used, water usage in the processing steps, and product characteristics, it is assumed that the wastewater characteristics of this stream are similar to those of the direct chill casting contact cooling water waste stream. These data are presented in Tables V-66 and V-67.

Continuous Rod Casting Spent Lubricant. As discussed in Section III (p. 107), in continuous casting operations, oil-in-water emulsions are used as lubricants. Both of the rod casting plants providing information practiced total recycle of this stream, although one aluminum forming plant indicated that periodic disposal was required. Sufficient flow and production data were not available to calculate water use or wastewater flows for this stream. Some recycle information is presented in Table V-60.

No continuous rod casting lubricant field samples were collected. Because of the similarities in raw materials used, lubricant usage in the processing steps, and the nature of the

lubricants used in the continuous rod casting operation, it is assumed that the wastewater characteristics of this waste stream are similar to those of the rolling with emulsions spent emulsion waste stream. These data are presented in Tables V-5 and V-6.

Of the 277 Continuous Sheet Casting Spent Lubricant. surveyed in the aluminum forming study, 11 cast aluminum sheet products using continuous techniques such as the Hunter Hazelett methods. No plants in the primary aluminum industry reported casting aluminum sheet products using continuous methods. While continuous sheet or strip casting uses only methods. noncontact cooling water, a few plants indicated that lubricants required for the associated rolling line. Oil-in-water emulsions, graphite solutions, and aqueous solutions of magnesia can be used for this purpose. Of the plants surveyed, six reported the use of lubricants in their continuous sheet casting The lubricants were always recycled and two of the operations. plants indicated that periodic disposal of this stream was required. Water use and wastewater rates of this stream are shown for these two plants and for a third plant which did not indicate the discharge mode in Table V-71. Two other plants reported periodic disposal of the lubricant, but provided no flow data. Six additional facilities with continuous sheet casting did not indicate the use of a rolling lubricant.

No wastewater samples were collected from continuous sheet cast ing operations. Because of the similarities in the raw materials used, lubricant usage in the processing steps, and the nature of the type of lubricant used in this operation, it is assumed that the wastewater characteristics of this waste stream are similar to those of the rolling with emulsions spent emulsion waste stream. These data are presented in Tables V-5 and V-6.

Stationary Casting. In stationary casting, molten aluminum is poured into specific shapes for rolling and further processing. It was observed that in 14 plants, this is done without the discharge of any contact cooling water. Frequently, the aluminum is allowed to air cool and solidify. Often, the stationary molds are internally cooled with noncontact cooling water. In some plants, a small amount of water or mist is applied to the top of the stationary cast aluminum to promote more rapid solidification and allow earlier handling. In most cases, contact cooling water is either collected and recycled or it evaporates.

Degassing Scrubber Liquor. The purpose, variations, and limitations of metal treatment technologies are described in Section III (p. 105). While the wastewater sampling program was in progress, two of the plants visited had wet air pollution control devices cleaning the degassing fumes. Since that time, the plant that was sampled replaced the wet scrubbers with dry

devices. Only one of the 80 plants with casting operations surveyed in this study continues to use wet air pollution controls in association with their metal treatment operations prior to casting. Sufficient data were not available from this plant, however, to calculate the water use or wastewater flow of this stream. There have been four plants that have gone to the alternative degassing air pollution control methods since the draft document was written. Four plants in the primary aluminum subcategory reported using wet air pollution controls in their metal treatment operations. Three of these plants provided information on water use and wastewater flows. This information is presented in Table V-72.

Toxic pollutant frequency occurrence data are presented in Table V-73. Table V-74 summarizes the field sampling data for those pollutants detected above analytically quantifiable levels. This wastewater is characterized by slightly elevated levels of suspended solids (<38 mg/l).

Extrusion Press Hydraulic Fluid Leakage

The extrusion of hard alloy aluminum frequently requires the use of an extrusion press hydraulic fluid, which is typically an oilin-water emulsion. Table V-75 presents the wastewater discharge data on five extrusion press leakage streams. Discharges of this stream range from 258 1/kkg to 2,554 1/kkg, with two plants practicing recycle.

Wastewater samples of extrusion press leakage were collected at one plant during the post proposal sampling effort. Toxic pollu tant frequency of occurence data are presented in Table V-76 and sampling data are presented in Table V-77. This waste stream is characterized by elevated levels of oil and grease (490 to 7,300 mg/l).

Additional Wastewater Samples

Table V-78 presents the field sampling data for all raw waste samples not previously presented. These samples represent combined wastewater streams, miscellaneous waste streams, or streams not considered in the scope of this regulation. Table V-79 presents wastewater discharge flow data for four plants on miscellaneous nondescript wastewater flows.

TREATED WASTEWATER SAMPLES

Tables V-80 through V-95 present the field sampling data for the treated wastewater from 16 of the 25 sampled plants. Treated wastewater data for some of these plants were incorporated into the larger data base which was used to determine the treatment

effectiveness for different control systems. The treatability limits selected for the aluminum forming control options are presented in Section VII (Control and Treatment Technology) (Table VII-20, p. 807).

Most of the treated wastewater streams analyzed were collected after some form of oil separation (Streams D-15, E-8, and U-3) and emulsion breaking process (Streams B-7, C-9, E-9, P-7, U-9, AA-7, and EE-6) (see Figures V-1 through V-25). As expected, these streams showed lower concentrations of oil and grease (<100 mg/l) than found in the influent raw waste streams. In addition, one stream (Stream B-8) was sampled after an ultrafiltration process which removes a large percentage of the oil and grease from the raw waste. Also, samples collected after settling ponds, lagoons, or clarifiers (Streams D-4, E-11, J-6, K-5, Q-4, AA-7, BB-12, DD-16, and EE-8) showed reduced levels of suspended solids. Lime and settle system effluents (Streams D-14, K-5, and EE-8) had toxic metal concentrations below the detection limits for most of the toxic metals.

	Wate	er Use	Percent	Waste	ewater
Plant	<u>l/kkg</u>	gal/ton	Recycle	1/kkg	gal/ton
1	10.17	2.440	*	*	*
2	4.586	1.100	*	*	*
3	4.753	1.140	*	*	*
4	3.144	0.7540	*	*	*

^{*}Data not available.

Statistical Summary

Minimum	3.144	0.7540
Maximum	10.17	2.440
Mean	5.666	1.359
Median	4.670	1.120
Sample:	4 of	50 plants

Note: Table does not include 46 plants which provided insufficient information to calculate water use and wastewater values.

Table V-2

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH NEAT OILS SPENT LUBRICANTS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nui		imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101 -	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	1	2	2			
2.	acrolein	0.010	1	1	1			
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1		1		
5.	benzidine	0.010	1	2	2			
6.	carbon tetrachloride	0.010	1	1	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	2	2			
9.	hexachlorobenzene	0.010	1	2	2			
10.	1,2-dichloroethane	0.010	1	1	1			
11.	1.1.1-trichloroethane	0.010	1	1			1	
12.	hexachloroethane	0.010	1	2	2			
13.	1,1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	1			
15.	1,1,2,2-tetrachloroethane	0.010	1	i	1			
16.	chloroethane	0.010	1	1	1			
17.	bis(chloromethyl)ether	0.010	1	·	ż			
18.	bis(chloroethyl)ether	0.010	i	$\frac{1}{2}$	$\tilde{2}$			
19.	2-chloroethyl vinyl ether	0.010	i	1	ī			
20.	2-chloronaphthalene	0.010	i	$\dot{2}$	2			
21.	2,4,6-trichlorophenol	0.010	1	2	2			
	p-chloro-m-cresol	0.010	1	2	2			
22.	1	0.010	1	1	1			
23.	chloroform	0.010	1	$\frac{1}{2}$	2			
24.	2-chlorophenol	0.010	1	2	$\frac{2}{2}$			
25.	1,2-dichlorobenzene		1					
26.	1,3-dichlorobenzene	0.010	l •	2	2			
27.	1,4-dichlorobenzene	0.010	!	2	2			
28.	3,3'-dichlorobenzidine	0.010	1	2	2			
29.	1,1-dichloroethylene	0.010	1	1	!			
30.	1,2-trans-dichloroethylene	0.010	1	1	1			
31.	2,4-dichlorophenol	0.010	1	2	2			
32.	1,2-dichloropropane	0.010	1	1	1			
33.	1,3-dichloropropene	0.010	1	1	1			
34.	2,4-dimethylphenol	0.010	1	2	2			
35.	2,4-dinitrotoluene	0.010	1	2	2			
36.	2.6-dinitrotoluene	0.010	1	2	2			
37.	1,2-diphenylhydrazine	0.010	1	2	2			
38.	ethylbenzene	0.010	1	1			1	
39.	fluoranthene	0.010	1	2	2			
37.			•	_				

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	2	2			
41.	4-bromophenyí phenyí ether	0.010	1	2	2			
42.	bis(2-chloroisopropyl)ether	0.010	1	2	2			
43.	bis(2-chloroethoxy)methane	0.010	1	2	2			
44.	methylene chloride	0.010	1	1			1	
45.	methyl chloride (chloromethane)	0.010	1	1	1			
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	1	1			
49.	trichlorofluoromethane	0.010	1	1	1			
50.	dichlorodifluoromethane	0.010	1	1	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	2	2			
53.	hexachlorocyclopentadiene	0.010	1	2	2			
54.	isophorone	0.010	1	2	2			
55.	naphthalene	0.010	1	2	2			
56.	nitrobenzene	0.010	1	2	2			
57.	2-nitrophenol	0.010	1	2	2			
58.	4-nitrophenol	0.010	1	2	2			
59.	2,4-dinitrophenol	0.010	1	2	2			
60.	4,6-dinitro-o-cresol	0.010	1	2	2			
61.	N-nitrosodimethylamine	0.010	1	2	2			
62.	N-nitrosodiphenylamine	0.010	1	2	2			
63.	N-nitrosodi-n-propylamine	0.010	1	2	2			
64.	pentachlorophenol	0.010	1	2	2			
65.	phenol	0.010	1	2	2			
66.	bis (2-ethylhexyl) phthalate	0.010	1	2				2
67.	butyl benzyl phthalate	0.010	1	2	2			
68.	di-n-butyl phthalate	0.010	1	2				2
69.	di-n-octyl phthalate	0.010	1	2	2			
70.	diethyl phthalate	0.010	1	2				2
71.	dimethyl phthalate	0.010	1	2	2			
72.	benzo(a)anthracene	0.010	Ì	2	2			
73.	benzo(a)pyrene	0.010	1	2	2			
74.	benzo(b)fluoranthene	0.010	1	2	2			
75.	benzo(k)fluoranthene	0.010	1	2	2			
76.	chrysene	0.010	1	2	2			
77.	acenaphthylene	0.010	1	2	2			
78.	anthracene (a)	0.010	1	2				2

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH NEAT OILS SPENT LUBRICANTS RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	2	2			
80.	fluorene	0.010	1	2	2			
81.	phenanthrene (a)	0.010		-				
82.	dibenzo(a,h)anthracene	0.010	<u> </u>	2	2			
83.	ındeno (1,2,3-c,d)pyrene	0.010	1	2	2			
84.	pyrene	0.010	1	2	2			,
85.	tetrachloroethylene	0.010	1	,			1	ı
86.	toluene	0.010	1	1	1		ı	
87.	trichloroethylene	0.010	1	1	1			
88.	vinyl chloride (chloroethylene)	0.010 0.005	0	1	•			
89.	aldrin	0.005	0	0				
90.	dieldrin	0.005	ΰ	0				
91.	chlordane	0.005	0	Ü				
92.	4, 4'-DDT	0.005	0	0				
93.	4, 4'-DDE	0.005	0	0				
94.	4,4'-DDD		0	0				
95.	alpha-endosulfan	0.005 0.005	0	0				
96.	beta-endosulfan	0.005	Ö	0				
97. 98.	endosulfan sulfate	0.005	0	Ö				
	endrin	0.005	0	0				
99. 100.	endrin aldehyde	0.005	0	Ü				
	heptachlor	0.005	Ü	0				
101. 102.	heptachlor epoxide	0.005	Ö	0				
102.	alpha-BHC beta-BHC	0.005	Ö	ő				
103.	gamma-BHC	0.005	Ű	ő				
104.	delta-BHC	0.005	ő	ő				
106.	PCB-1242 (b)	0.005	ő	ŏ				
107.	PCB-1254 (b)	0.005	0	-				
107.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	_	_				
110.	PCB-1248 (c)	0.005	U	0				
111.	PCB-1260 (c)	0.005		-				
112.	PCB-1016 (c)	0.005	-	_				
113.	toxaphene	0.005	O	0				
114.	antimony	0.100	ő	ő				
115.	arsenic	0.010	ĭ	2	2			
116.	asbestos	10 MFL	ΰ	Ũ	~			
110.	asocscos	10 111 11	V	~				

Table V-2 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH NEAT OILS SPENT LUBRICANTS RAW WASTEWATER

		Analytical Quantification Level	Number of Streams	Number of Samples	Nui - ND-	nber of T in Sample 0.011-		ved
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	1	2	2			
118.	cadmium	0.002	1	2			2	
119.	chromium (total)	0.005	1	2				2
120.	copper	0.009	1	2				2
121.	cyanide (total)	0.010	i	2	2			
122.	lead	0.020	1	2				2
123.	mercury	0.0001	1	2	2			
124.	nickel	0.005	1	2		1		1
125.	selenium	0.01	0	O				
126.	silver	0.02	U	()				
127.	thallium	0.100	0	O				
128.	zinc	0.050	1	2				2
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-3

SAMPLING DATA ROLLING WITH NEAT OILS SPENT LUBRICANTS RAW WASTEWATER

Pollutant	Stream Code	Sample Type†	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3 Average
Toxic Pollutants						
4. benzene	U-6	1	*		0.080	0.080
11. 1,1,1-trichloroethane	U-6	1	*		0.200	0.200
38. ethylbenzene	U-6	1	ND		0.880	0.880
44. methylene chloride	U-6	1	*		0.310	0.310
66. bis(2-ethylhexyl) phthalate	U-6	1	*	350.000	640.000	495.000
68. di-n-butyl phthalate	U-6	1	*	110.000	100.000	105.000
70. diethyl phthalate	U-6	1	*	48.000	100.000	74.000
78. anthracene (a) 81. phenanthrene (a)	U - 6	1	ND	150.000	200.000	175.000
85. tetrachloroethylene	U-6	1	ND		1.400	1.400
86. toluene	U-6	1	ND		0.510	0.510
118. cadmium	U-6	1	0.002	0.29	0.44	0.37
119. chromium	U-6	1	<0.001	2.13	20.0	11.1
120. copper	U-6	1	0.013	5.25	22	14
122. lead	U-6	1	0.010	1.09	7.73	4.41
124. nickel	U-6	1	0.016	0.044	1.87	0.96
128. zinc	U-6	1	<0.010	3.2	20	12
Nonconventional						
aluminum	U-6	1	<0.100	732	663	698
calcium	U - 6	1	58.7	485	351	418
chemical oxygen demand (COD)	U-6	1		20,930	20,810	20,870
magnesium	U-6	1	7.44	43.9	43.3	43.6
phenols (total, by 4-AAP method)	U-6	1		2.2	2.1	2.2
total organic carbon (TOC)	U-6	1		11,000	13,000	12,000

194

Table V-3 (Continued)

SAMPLING DATA ROLLING WITH NEAT OILS SPENT LUBRICANTS RAW WASTEWATER

	Stream	Sample			Concentra	tions $(mg/1)$	
Pollutant	Code	Typet	Source	Day T	Day 2	Day 3	Average
Conventional							
oil and grease	U-6	1		78,300	91,400		85,400
suspended solids	U-6	1		58	66		62

(a) Reported together.

tSample Type

Note. These numbers also apply to subsequent sampling data tables in this section.

one-time grab

2

24-hour manual composite 24-hour automatic composite 3

48-hour manual composite

48-hour automatic composite 72-hour manual composite

72-hour automatic composite Indicates less than or equal to 0.01 mg/l.

Indicates less than or equal to 0.005 mg/l.

Table V-4
ROLLING WITH EMULSIONS SPENT EMULSION

	Water Use		Percent	Wastewater			
Plant	1/kkg	gal/ton	Recycle	1/kkg	gal/ton		
1	*	*	* (P)	0.3344	0.0802		
	*	*	* (P)	0.3919	0.0940		
2 3 4 5 6 7 8 9	*	*	* (P)	0.5879	0.1410		
4	60.46	14.50	99 (B)	0.6046	0.1450		
5	*	*	* (P)	0.6404	0.1536		
6	*	*	* (P)	0.6671	0.1600		
7	*	*	* (P)	1.376	0.3300		
8	*	*	* (P)	2.039	0.4890		
9	*	*	* (P)	3.919	0.9400		
10	*	*	* (P)	4.837	1.160		
11	*	*	* (P)	5.045	1.210		
12	*	*	* (P)	6.921	1.660		
13	*	*	* (P)	7.255	1.740		
14	*	*	* (P)	12.63	3.030		
15	*	*	* (P)	15.05	3.610		
16	*	*	* (P)	23.35	5.600		
17	30,600	7,340	100 (P)	28.13	6.746		
18	*	*	* (P)	50.87	12.20		
19	*	*	* (P)	89.39	21.44		
20	54,870	13,160	97 (B)	181.4	43.50		
21	*	*	* (P)	197.8	47.43		
22	*	*	*	228.6	54.82		
23	41,110	9,860	85 (B)	304.4	73.00		
24	*	*	*	344.4	82.60		
25	76,340	18,310	100 (P)	352.2	84.48		
26	*	*	100 (P)	*	*		
27	*	*	* (P)	*	*		
28	*	*	* (P)	*	*		
29	*	*	* (P)	* *	*		
30	*	*	* (P) *	*	*		
31	*	*	*	*	*		
32	x	×	×	ж	*		

^{*}Data not available.

Statistical Summary

Minimum	60.46	14.50	0.3344	0.0802
Maximum	76,340	18,310	352.2	84.48
Mean	40,600	9,737	74.51	17.87
Median	41,110	9,860	7.255	1.740
Sample:	5 of 29	plants	25 of 29	plants

Note: Three plants discharge from both hot and cold rolling operations which appear separately in this table.

P Periodic discharge.

B Bleed discharge.

Table V-5

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
ROLLING WITH EMULSIONS SPENT EMULSIONS
RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
1.	acenaphthene	0.010	6	9	7	1		1
2.	acrolein	0.010	4	8	6	2		
3.	acrylonitrile	0.010	4	8	8			
4.	benzene	0.010	4	8	7	1		
5.	benzidine	0.010	6	9	9			
6.	carbon tetrachloride	0.010	4	8	8			
7.	chlorobenzene	0.010	4	8	7	1		
8.	1,2,4-trichlorobenzene	0.010	6	9	9			
9.	hexachlorobenzene	0.010	ь	9	9			
10.	1,2-dichloroethane	0.010	4	8	8			
11.	1,1,1-trichloroethane	0.010	4	8	8			
12.	hexachloroethane	0.010	6	9	9			
13.	1.1-dichloroethane	0.010	4	8	8			
14.	1,1,2-trichloroethane	0.010	4	8	8			
15.	1.1.2.2-tetrachloroethane	0.010	4	8	8			
16.	chloroethane	0.010	4	8	8			
17.	bis(chloromethyl)ether	0.010	4	8	8			
18.	bis(chloroethyl)ether	0.010	6	9	9			
19.	2-chloroethyl vinyl ether	0.010	4	ર્શ્વ	8			
20.	2-chloronaphthalene	0.010	6	9	9			
21.	2,4,6-trichlorophenol	0.010	6	9	8	1		
22.	p-chloro-m-cresol	0.010	6	10	10	'		
23.	chloroform	0.010	4	8	6	2		
24.	2-chlorophenol	0.010	6	10	10	2		
25.		0.010	6	9	9			
26.	1,2-dichlorobenzene	0.010	6	9	9			
27.	1,3-dichlorobenzene	0.010	6	9	9			
	1,4-dichlorobenzene	· · · · · ·	•	9	9			
28.	3, 3'-dichlorobenzidine	0.010	6 4					
29.	1,1-dichloroethylene	0.010	•	8	8 7		1	
30.	1,2-trans-dichloroethylene	0.010	4	8			,	
31.	2,4-dichlorophenol	0.010	6	10	10			
32.	1,2-dichloropropane	0.010	4	8	8			
33.	1,3-dichloropropene	0.010	4	8	8			
34.	2,4-dimethylphenol	0.010	6	10	10			
35.	2,4-dinitrotoluene	0.010	6	9	9			
36.	2,6-dinitrotoluene	0.010	6	9	9			
37.	1,2-diphenylhydrazine	0.010	6	9	9	_		
38.	ethylbenzene	0.010	4	8	3	5		
39.	fluoranthene	0.010	6	9	6	3		

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	6	9	9			
41.	4-bromophenyl phenyl ether	0.010	6	9	9			
42.	bis(2-chloroisopropyl)ether	0.010	6	9	9			
43.	bis(2-chloroethoxy)methane	0.010	6	9	9			
44.	methylene chloride	0.010	4	8	3		1	4
45.	methyl chloride (chloromethane)	0.010	4	8	8			
46.	methyl bromide (bromomethane)	0.010	4	8	8			
47.	bromoform (tribromomethane)	0.010	4	8	8			
48.	dichlorobromomethane	0.010	4	8	8			
49.	trichlorofluoromethane	0.010	4	8	8			
50.	dichlorodifluoromethane	0.010	4	8	8			
51.	chlorodibromomethane	0.010	4	8	8			
52.	hexachlorobutadiene	0.010	6	9	9			
53.	hexachlorocyclopentadiene	0.010	6	9	9			
54.	isophorone	0.010	6	9	9			
55.	naphthalene	0.010	6	9	7		2	
56.	nitrobenzene	0.010	6	9	9			
57.	2-nitrophenol	0.010	6	10	10			
58.	4-nitrophenol	0.010	6	10	10			
59.	2,4-dinitrophenol	0.010	6	10	10			
60.	4,6-dinitro-o-cresol	0.010	6	10	10			
61.	N-nitrosodimethylamine	0.010	6	9	9			
62.	N-nitrosodiphenylamine	0.010	6	9	6		2	1
63.	N-nitrosodi-n-propylamine	0.010	6	ý	9			
64.	pentachlorophenol	0.010	6	10	10			
65.	phenol	0.010	6	10	7		2	1
66.	bis (2-ethylhexyl) phthalate	0.010	6	9	5		2	2
67.	butyl benzyl phthalate	0.010	6	9	8		1	
68.	di-n-butyl phthalate	0.010	6	9	5		2	2
69.	di-n-octyl phthalate	0.010	6	ý	9		_	_
70.	diethyl phthalate	0.010	6	ý	5		2	2
71.	dimethyl phthalate	0.010	6	\hat{g}	8		_	1
72.	benzo(a)anthracene	0.010	6	ģ	ğ			,
73.	benzo(a)pyrene	0.010	6	ý	ý			
74.	benzo(b)fluoranthene	0.010	6	ģ	ý			
75.	benzo(k)fluoranthene	0.010	6	ý	ý			
75. 76.	chrysene	0.010	6	9	Š		1	
77.	acenaphthylene	0.010	6	ý	8		i	
77. 78.	anthracene (a)	0.010	6	9	7		i	1
70.	antintacene (a)	0.010	U	2	,		,	,

Table V-5 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

		Analytical Quantification	Number of		Number of Times Observed in Samples (mg/l) ND- 0.011- 0.101-			
	Pollutant	Level (mg/l)	Streams Analyzed	Analyzed	0.010	0.011- 0.100	0.f0f- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	6	9	9			
80.	fluorene	0.010	6	9	4	2	3	
81.	phenanthrene (a)	0.010	_	~				
82.	dibenzo(a,h)anthracene	0.010	6	9	9			
83.	indeno (1,2,3-c,d)pyrene	0.010	6	9	9			
84.	pyrene	0.010	6	9	5	4		
85.	tetrachloroethylene	0.010	4	8	4	1		3
86.	toluene	0.010	4	8	3	3	2	
87.	trichloroethylene	0.010	4	8	7			1
88.	vinyl chloride (chloroethylene)	0.010	4	8	8			
89.	aldrin	0.005	5	7	7			
90.	dieldrin	0.005	5	7	7			
91.	chlordane	0.005	5	7	6	1		
92.	4,4'-DDT	0.005	5	7	7			
93.	4,4'-DDE	0.005	5	7	6	1		
94.	4,4'-DDD	0.005	5	7	7			
95.	alpha-endosulfan	0.005	5	7	7			
96.	beta-endosulfan	0.005	5	7	7			
97.	endosulfan sulfate	0.005	5	7	6	1		
98.	endrin	0.005	5	7	6	i		
99.	endrin aldehyde	0.005	5	7	5	2		
100.	heptachlor	0.005	5	7	7	-		
101.	heptachlor epoxide	0.005	5	7	7			
102.	alpha-BHC	0.005	5	7	6	1		
103.	beta-BHC	0.005	5	7	6	i		
104.	gamma-BHC	0.005	5	7	7	•		
105.	delta-BHC	0.005	5	7	7			
106.	PCB-1242 (b)	0.005	-	, 				
107.	PCB-1254 (b)	0.005	5	7	4	2		1
108.	PCB-1221 (b)	0.005	_	, _		-		•
109.	PCB-1232 (b)	0.005	_	_				
110.	PCB-1248 (c)	0.005	5	7	4	1	1	1
111.	PCB-1260 (c)	0.005	-	· -	-•		•	•
112.	PCB-1016 (c)	0.005	-	-				
113.	toxaphene	0.005	5	7	7			
114.	antimony	0.100	6	10	ý	1		
115.	arsenic	0.010	6	10	5	4	1	
116.	asbestos	10 MFL	ŏ	Ö	,	→	1	

Table V-5 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
	0.11	Level	Streams	Samples	ND-	0.011-	70.10F-	1 000
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	6	10	10			
118.	cadmium	0.002	ь	10	4	5	1	
119.	chromium (total)	0.005	6	10	3	3	4	
120.	copper	0.009	6	10	4		2	4
121.	cyanide (total)	0.010	6	10	2	5	2	1
122.	Lead	0.020	6	10	4		1	5
123.	mercury	0.0001	6	10	10			
124.	nickel	0,005	6	10	3	2	5	
125.	selenium	0.01	6	10	10			
126.	silver	0.02	6	10	10			
127.	thallium	0.100	6	10	10			
128.	zinc	0.050	6	10	3			7
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	O	0				

(a), (b), (c) Reported together.

Table V-6

	0.11	Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day	Average
Toxi	c Pollutants							
1.	acenaphthene	B - 6 E - 7	6 3	ND *	ND 5.700	ND	ND	5.700
		P = 5 T = 1 U = 4	1	ND ND	ND 0.095 ND	ИD		0.095
		U-11	1	ND	ND			
2.	acrolein	E-7 P-5 U-4	1 1 1	ND ND ND	ND ND 0.050	ND ND	ND ND	0.050
		U-11	ì	ND	0.040			0.040
4.	benzene	E - 7 P - 5 U - 4 U - 11	1 1 1	ND ND *	ND 0.020 *	ND ND	*	* * *
7. 201	chlorobenzene	E-7 P-5 U-4 U-11	1 1 1	ND ND ND ND	ND ND ND ND	0.011 ND	ND ND	0.011
21.	2,4,6-trichlorophenol	B-6 E-7 P-5 T-1 U-4 U-11	6 3 1 1 1	* ND ND	ND ND ND 0.022 ND ND	ND ND	ΝD	0.022
23.	chloroform	E-7 P-5 U-4 U-11	1 1 1	* ND * *	0.013 ND ND ND	0.026 ND	VI) *	0.013
30.	1,2-trans-di~chloroethylene	E-7 P-5 U-4 U-11	1 1 1	ND ND ND ND	DN DN DN DN	0.690 ND	ND ND	0.690
38.	ethylbenzene	E-7 P-5 U-4 U-11	1 1 1	ND ND ND ND	ND 0.020 0.040 ND	0.089 0.030	ND U.070	0.089 0.040 0.040

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat:	ions (mg/l) Day 3	Average
39.	fluoranthene	B - 6 E - 7 P - 5 T - 1	6 3 1 1	ND ND ND	ND ND ND ND ND	0.066 ND	0.051	0.059
		U - 4 U - 1 1	1	ND	0.020			0.020
44.	methylene chloride	E-7 P-5 U-4 U-11	1 1 1	0.017 * * *	* 1.200 *	1.100 1.000	0.360 1.300	0.487 1.167 *
55.	naphthalene	B-6 E-7 P-5 T-1 U-4 U-11	6 3 1 1 1	ND ND ND ND	ND ND 0.750 ND 0.150	NÐ ND	ND	0.750 0.150
62.	N-nitrosodiphenylamine	B-6 E-7 P-5 T-1 U-4 U-11	6 3 1 1 1	ND ND ND ND	ND ND ND ND ND O.600	0.780 ND	1.500	0.600
65.	phenol	B-6 E-7 Y-5 T-1 U-4 U-11	6 3 1 1 1	* ND ND ND	ND ND ND 9.900 ND ND	0.270 0.180	ND ND	0.270 0.180 9.900
66.	bis(2-ethylhexyl) phthalate	B-6 E-7 P-5 T-1 U-4 U-11	6 3 1 1 1	* * *	ND 2.900 ND 1.900 ND ND	0.320 NU	0.520	1.247
67.	butyl benzyl phthalate	B-6 E-7 P-5 T-1 U-4 U-11	6 3 1 1 1	* * ND ND ND	ND ND ND 0.190 ND ND	ND ND	ND	0.190

Table V-6 (Continued)

SAMPLING DATA ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

			Stream	Sample			Concentrati	ions (mg/l)	
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	68.	di-n-butyl phthalate	B-6	6	*	ND			
			E-7	3 1	*	3.100	0.370	0.330	1.267
			₽-5	1	ND	ND	ND		
			T - 1	1		19.000			19.000
			U - 4	1	*	ND			
			U-11	1	*	ND			
	70.	diethyl phthalate	B-6	6	*	ND			
		, ,	E-7	3	*	1.900	0.340	0.220	0.820
			P-5	1	ND	ND	ND		
			T - 1	1		3.100			3.100
			Ū-4	1	*	ND			31100
			U-11	1	*	ND			
	71.	dimethyl phthalate	B - 6	6	ИD	ND			
			E-7	3	*	1.200	ND	ND	1.200
			P - 5	1	ND	ND ND	ND	ND	1.200
			T - 1	1	.,,	ND	ND		
			Ū-4	i	ND	ND			
			U-11	i	ND	ND			
2	76.	chrysene	B - 6	6	ND	ND			
203	, • •	on y dene	E-7	3	*	ND	ND	ND	
			P-5	ĺ	ND	ND	ND	ND	
			T-1	1	112	0.360	.,,		0.360
			Ú-4	1	ND	ND			0. 300
			Ŭ-11	i	ND	*			*
	77.	acenaphthylene	8-6	6	ND	ND			
	, , •	acenaphenyrene	E - 7	3	*	ND ND	1.000	ND	1.000
			P-5	1	ND	ND	ND	ND	1.000
			T-1	1	ND	ND	ND		
			U-4	1	ND	ND			
			U-11	i	ND	ND			
	78.	anthracene (a)	B-6	6	ND	ND			
	81.	phenanthrene (a)	E-7	3	ND	ND	1.000	2.000	1.500
	01.	phenanent ene (a)	P-5	1	ND ND	ND ND	ND	2.000	1. 300
			T - 1	1	ND	<1.100	ND		<1.100
			U-4	i	ND	<0.090			<0.090
			U-11	i	ND ND	<0.200			<0.200
			0-11	'	ND	(0.200			\0.200
	80.	fluorene	B-6	6	ND	ND			
			E-7	3	*	ND	0.220	0.760	0.490
			P-5	1	ИD	ND	ND		
			'T - 1	1		0.450			0.450
			U - 4	1	ND	0.070			0.070
			U-11	1	ND	0.040			0.040

Table V-b (Continued)

SAMPLING DATA ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

			Stream	Sample			Concentrati	ions (mg/l)	
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	84.	pyrene	B - 6	6	ND	ND			
		F)	E-7	3	ND	ND	0.075	0.048	0.062
			P - 5	1	ND	ND	ND		
			T-1	1		0.098			0.098
			U - 4	1	ND	ND			
			U-11	1	ND	0.020			0.020
	85.	tetrachloroethylene	E-7	1	ND	ND	0.040	*	0.025
			P-5	1	ND	4.700	1.900	4.200	3.600
			U - 4	1	ND	*			*
			U-11	1	ND	*			*
	86.	toluene	E-7	1	ND	ND	0.089	*	0.045
			P-5	1	ND	0.200	0.040	0.160	0.133
			U – 4	1	ND	0.040			0.040 *
			U - 1 1	1	ND	*			*
	87.	trichloroethylene	E - 7	3	ND	ND	4.800	ND	4.800
		,	P-5	1	ND	ND	ND	ИD	
			U - 4	1	ND	ND			
			U-11	1	ND	ND			
204	91.	chlordane	B-6	6	ND	ND			
77			E - 7	3	**	0.013			0.013
			P - 5	1	ND	ND	ND	ND	
			T - 1	1		ND			
			U-11	1	ND	ND			
	93.	4,4'-DDE	B - 6	6	**	0.053			0.053
			E - 7	3	**	ND			
			P-5	1	ND	ND	ND	ND	
			T - 1	1		ND			
			U – 1 1	1	ND	ND			
	95.	alpha-endosulfan	B - 6	6	ND	0.008			0.008
			E - 7	3	ND	ИD			
			P-5	1	ND	ND	ND	ND	
			T - 1	1		NĐ			
			U-11	1	ND	ND			
	96.	beta-endosulfan	B - 6	6	ND	0.006			0.006
	,	beta chaosarian	E - 7	3	ND	ND			
			P - 5	1	ND	ND	ND	ND	
			T-1	i	110	ND		-: 67	
			U-11	i	ND	ND			

Table V-6 (Continued)

SAMPLING DATA ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrate Day 2	Day 3) Average
	97.	endosulfan sulfate	B - 6	6	ND	0.010			0.010
			£ - 7	3	ND	0.012			0.012
			 P - 5	Ĭ	ND	ND	ND	ND	
			T - 1	1		ND			
			U-11	1	ND	ND			
	98.	endrin	B-6	6	**	0.010			0.010
			E-7	3	ND	0.066			0.066
			P - 5	1	ND	ND	ND	ND	
			T - 1	1		ND			
			U – 1 1	1	ND	ND			
	99.	endrin aldehyde	B-6	6	ND	ND			
			E-7	3	ND	0.014			0.014
			P - 5	1	ND	ND	ND	ИD	
			T - 1	1		0.058			0.058
			U – 1 1	1	ND	ND			
	102.	alpha-BHC	B-6	6	ИD	0.013			0.013
			E - 7	3	**	ND			
			P-5	1	ND	ИD	ND	ND	
205			T - 1	1		ND			
5			U-11	1	ND	ND			
	103.	beta-BHC	B-6	6	**	ND			
			E - 7	3	**	ND			
			P - 5	1	ND	ND	ND	ИN	
			T - 1	1		0.018			0.018
			U-11	1	ND	ND			
	106.	PCB-1242 (b)	B-6	6	**	1.100			1.100
	107.	PCB-1254 (b)	E - 1	3	**	0.076			0.076
	108.	PCB-1221 (b)	P - 5	1	ND	ND	ИD	ND	
			T - 1	1		0.063			0.063
			U – 1 1	Ì	ND	ИD			
	109.	PCB-1232 (c)	B - 6	6	**	1.800			1.800
	110.	PCB-1248 (c)	E - 7	3	**	0.160			0.160
	111.	PCB-1260 (c)	P-5	1	ND	ND	ND	ND	
	112.	PCB-1016 (c)	T - 1	1		0.065			0.065
			U-11	1	ND	ND			
	114.	antimony	EE-10	1	<0.002		0.023		0.023

Table V-6 (Continued)

SAMPLING DATA ROLLING WITH EMULSIONS SPENT EMULSIONS RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
	115.	arsenic	B-6 E-7 EE-10	6 3 1	<0.01 <0.010 0.002	0.05 <0.010	<0.010 0.294	<0.010	0.05 <0.010 0.294
			P - 5 U - 4	1	0.001 <0.002	0.016 <0.002	0.019	0.013	0.016 <0.002
	117.	beryllium	U-11 EE-10	1	<0.002 <0.010	<0.002	<0.010		<0.002 <0.010
	118.	cadmium	B - 6	6		<0.002			<0.002
			E-7 EE-10	3	<0.002 <0.010	<0.0002	<0.0002 0.054	<0.0002	<0.0002 0.054
			P - 5 U - 4 U - 1 1	1 1 1	<0.0005 0.002 0.002	0.014 0.065 0.180	0.016	0.014	0.015 0.065 0.180
	119.	chromium	B - 6	6	/O 005	1	ZO 001	0.001	1 <0.001
			E-7 EE-10 P-5	3 1 1	<0.005 0.011 0.002	0.001	<0.001 0.495 0.070	0.001	0.495 0.041
206			U - 4 U - 1 1	1	<0.001 <0.001	0.115 0.124			0.115 0.124
0	120.	copper	B-6 E-7	6	0.009	1 0.009	0.003	0.009	1 0.007
			EE-10 P-5 U-4 U-11	1 1 1	<0.010 0.009 0.013 0.013	1.10 7.40 4.14	3.52 ND	0.780	3.52 0.94 7.40 4.14
	121.	cyanide	B-6 D-2 E-7 P-5 U-4	1 1 1 1		0.019 0.059 0.053 0.16 <0.02	0.016 2.5	0.055 0.17	0.019 0.059 0.041 0.9 <0.02
	122.	lead	U-11 B-6 E-7 EE-10 P-5 U-4 U-11	6 3 1 1	<0.020 <0.100 0.002 0.010 0.010	<0.02 0.4 0.005 2.10 12.10 56.90	<0.002 <0.100 2.40	0.003 1.50	<0.02 0.4 <0.003 <0.100 2.00 12.10 56.90

Table V-6 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
123. mercury	B-6	6		0.0001			0.0001	
ŕ	E - 7	3	0.0004	<0.020	<0.100	<0.100	<0.073	
	EE-10	1	<0.005		<0.005		<0.005	
	P - 5	1	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
	U - 4	1	0.005	0.004			0.004	
	U-11	1	0.005	0.007			0.007	
124. nickel	B-6	6		1			1	
	E-7	3	<0.005	<0.001	<0.001	<0.001	<0.001	
	EE-10	1	0.036		0.280		0.280	
	P - 5	1	<0.001	0.070	0.140	0.049	0.086	
	U – 4	1	0.016	0.214			0.214	
	U-11	1	0.016	0.130			0.130	
125. selenium	EE-10	1	<0.005		<0.005		<0.005	
126. silver	EE-10	1	<0.001		0.002		0.002	
127. thallium	EE-10	1	<0.001		<0.001		<0.001	
128. zinc	B-6	6		5			5	
	E - 7	3	<0.050	0.008	<0.005	0.008	<0.007	
	EE-10	Ĭ	0.530		16.0	0.000	16.0	
	P - 5	1	<0.010	1.3	1.7	1.1	1.4	
	U-4	1	<0.010	4.200			4.200	
	U-11	1	<0.010	2.200			2.200	
Nonconventional								
acidity	EE-10	1	<1		NA			
alkalinity	E-7 EE-10	3	ND 160	330.0	290.0 NA	220.0	280.0	
	U-4	i	100	440	MU		440	
	Ŭ-11	i		620			620	
aluminum	E - 7	3	<0.09	350	130	310	260	
	EE-10	1	0.065		25.6		25.6	
	P = 5	1	<0.5	52	41	40	44	
	U - 4	1	<0.1	210			210	
	U-11	1	<0.1	20			20	
barium	EE-10	1	0.066		2.35		2.35	
boron	EE-10	1	<0.050		<0.050		<0.050	

Table V-6 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l Day 3) Average
Nonconventional							
calcium	E-7 EE-10 P-5 U-4 U-11	3 1 1 1	68 139 96.0 58.7 58.7	<19.3 19.0 26.7 18.1	<22.3 32.9 30.0	19.3	<20.3 32.9 22.0 26.7 18.1
chemical oxygen demand (COD)	D-2 E-7 EE-10 P-5 U-4 U-11	6 3 1 1 1	<5 3.2 <5	1,520,000 85.8 22,100 109,900 148,500	75.5 20,000 36,800	78.1 30,300	1,520,000 79.8 20,000 29,730 109,900 148,500
cobalt	EE-10	1	<0.010		0.032		0.032
dissolved solids	EE-10 U-4 U-11	1 1 1	280	26,700 34,300	900		900 26,700 34,300
iron	EE-10	1	<0.020		90		90
magnesium	E-7 EE-10 P-5 U-4 U-11	3 1 1 1	3.8 10.9 26.00 7.44 7.44	22.3 9.50 11.50 16.70	<22.3 28.0 14.00	<22.3 9.00	<22.3 28.00 10.83 11.50 16.70
manganese	EE-10	1	0.030		1.89		1.89
molybdenum	EE-10	1	<0.020		1.38		1.38
phenols (total; by 4-AAP method)	D-2 E-7 P-5 U-4 U-11	1 1 1 1		49.00 0.249 0.228 0.466 0.248	0.098 0.258		
sulfate	E-7 EE-10	3 1	ND 20	<0.025	<0.025 290	<0.025	<0.025 290
tin	EE-10	1	<0.020		0.028		0.028
titanium	EE-10	1	0.018		0.149		0.149
	Nonconventional calcium chemical oxygen demand (COD) cobalt dissolved solids iron magnesium manganese molybdenum phenols (total; by 4-AAP method) sulfate tin	Nonconventional	Nonconventional Section Sectio	Nonconventional Source Nonconventional Source S	Nonconventional Section Sectio	Nonconventional Nonconvent	Nonconventional Section Source Day 1 Day 2 Day 3 Nonconventional Section Secti

Table V-6 (Continued)

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	Nonconventional							
	total organic carbon (TOC)	D-2 E-7 EE-10 P-5 U-4 U-11	6 3 1 1 1	1 <1 2,000	560,000 48.6 1,280 6,800 23,000	37.0 5,200 2,950	30.3 1,140	560,000 38.0 5,200 1,790 6,800 23,000
	vanadium	EE-10	1	<0.020		<0.020		<0.020
	yttrium	EE-10	1	<0.020		<0.020		<0.020
	chloride	EE-10	1	34		9.4		9.4
	fluoride	EE-10	1	0.41		0.67		0.67
	ammonia nitrogen	EE-10	1	<0.05		<0.05		<0.05
	phosphate	EE-10	1	<4		19		19
209	total solids (TS)	EE-10	1	250		130,000		130,000
_	cyanide (total)	EE-10	1	<0.02		<0.02		<0.02
	Conventional							
	oil and grease	D-2 E-7 EE-10 P-5 T-1 U-4 U-11	1 1 1 1 1	<1	802,000 21,300 12,500 1,277 28,400 30,700	13,000 NA 2,300	18,400 1,380	802,000 17.6 5,390 1,277 28,400 30,700
	suspended solids	D-2 E-7 EE-10 P-5 U-4 U-11	6 3 1 1	<1 2.3 5	2,700 0.540 2,200 3,910 890	1.060 124,540 1,700	0.680 3,500	2,700 0,760 124,540 2,500 3,910 890
	pH (standard units)	EE-10 P-5	1	6.97	7.1	9.74 6.9		

⁽a), (b), (c) Reported together.

Table V-7
ROLL GRINDING SPENT LUBRICANT

Water		r Use	Percent	Wastewater		
Plant	<u>l/kkg</u>	<pre>gal/ton</pre>	Recycle	<u>l/kkg</u>	gal/ton	
1	*	*	100	0	0	
2	*	*	100	0	0	
3	*	*	*	0.15	0.036	
4	*	*	P	0.6779	0.1626	
5	*	*	*	0.93	0.22	
6	*	*	*	7.659	1.837	
7	*	*	P	18.00	4.317	
8	0.0576	0.0138	P	*	*	
9	*	*	*	*	*	

^{*}Sufficient data not available to calculate these values.

P Total recycle with periodic discharge.

Statistical Summary

Minimum	0	0
Maximum	18.00	4.317
Mean	3.917	0.939
Median	0.6779	0.1626
Sample:	7 of 9	plants
Nonzero Mean	5.5	1.3
Sample:	5 of 9	plants

Table V-8

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		' Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	1	1		1		
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1	1			
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	1	1	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1,2-dichloroethane	0.010	1	1	1			
11.	1,1,1-trichloroethane	0.010	1	1	1			
12.	hexachloroethane	0.010	1	1	ţ			
13.	1,1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	1			
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1			
16.	chloroethane	0.010	1	1	1			
17.	bis(chloromethyl)ether	0.010	1	1	1			
18.	bis(chloroethyl)ether	0.010	1	1	1			
19.	2-chloroethyl vinyl ether	0.010	1	1	1			
20.	2-chloronaphthalene	0.010	1	1	1			
21.	2,4,6-trichlorophenol	0.010	1	1	1			
22.	p-chloro-m-cresol	0.010	1	1	1			
23.	chloroform	0.010	1	1	1			
24.	2-chlorophenol	0.010	1	1	1			
25.	1,2-dichlorobenzene	0.010	1	1	1			
26.	1,3-dichlorobenzene	0.010	1	1	1			
27.	1,4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	1	1	1			
31.	2,4-dichlorophenol	0.010	1	1	1			
32.	1,2-dichloropropane	0.010	1	1	1			
33.	1,3-dichloropropene	0.010	1	1	1			
34.	2,4-dimethylphenol	0.010	1	1	1			
35.	2,4-dinitrotoluene	0.010	1	1	1			
36.	2,6-dinitrotoluene	0.010	1	1	1			
37.	1,2-diphenylhydrazine	0.010	1	1	1			
38.	ethylbenzene	0.010	1	1	1			
39.	fluoranthene	0.010	1	1	1			

Table V-8 (Continued)

		Analytical Quantification	Number of	Number of		in Sampl	imes Obsei es (mg/l)	cved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyl phenyl ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	1	1			
44.	methylene chloride	0.010	1	1	1			
45.	methyl chloride (chloromethane)	0.010	1	1	1			
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	1	1			
49.	 trichlorofluoromethane 	0.010	1	1	1			
50.	dichlorodifluoromethane	0.010	1	i	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	1	1			
53.	hexachlorocyclopentadiene	0.010	1	1	1			
54.	isophorone	0.010	1	1	1			
55.	naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	1	1	1			
57.	2-nitrophenol	0.010	1	1	1			
58.	4-nitrophenol	0.010	1	1	1			
59.	2,4-dinitrophenol	0.010	1	1	1			
60.	4,6-dinitro-o-cresol	0.010	1	1	1			
61.	N-nitrosodimethylamine	0.010	1	1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	1	1	1			
64.	pentachlorophenol	0.010	1	1	1			
65.	phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	1	1			
67.	butyl benzyl phthalate	0.010	1	1	1			
68.	di-n-butyl phthalate	0.010	1	i	1			
69.	di-n-octyl phthalate	0.010	1	1	i			
70.	diethyl phthalate	0.010	1	1	1			
71.	dimethyl phthalate	0.010	1	1	1			
72.	benzo(a)anthracene	0.010	1	1	1			
73.	benzo(a)pyrene	0.010	1	1	1			
74.	benzo(b)fluoranthene	0.010	1	1	1			
75.	benzo(k)fluoranthene	0.010	1	1	1			
76.	chrysene	0.010	1	1	1			
77.	acenaphthylene	0.010	1	1	1			
78.	anthracene (a)	0.010	1	1	1			

Table V-8 (Continued)

		Analytical Quantification	Number of	Number of	Nui -ND-	mber of T	es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	0.010	0.011-	1.000	1.000+
79. benz	zo(ghi)perylene	0.010	1	1	1			
80. fluo	orene	0.010	1	1	1			
	nanthrene (a)	0.010	-	-				
82. dibe	enzo(a,h)anthracene	0.010	1	1	1			
83. inde	eno (1,2,3-c,d)pyrene	0.010	1	į	1			
84. pyre	ene	0.010	1	1	1			
85. tetr	rachloroethylene	0.010	1	1)			
86. tolu		0.010	1	1	1			
87. tric	chloroethylene	0.010	1	1	1			
88. viny	yl chloride (chloroethylene)	0.010	1	1	1			
89. aldr	rin	0.005	1	1	1			
90. diel	ldrin	0.005	1	1	1			
	ordane	0.005	1	1	1			
92. 4,4'	'-DDT	0.005	1	1	1			
93. 4,4'	'-DDE	0.005	1	1	1			
94. 4,4'	'-DDD	0.005	1	1	1			
95. alph	na-endosulfan	0.005	1	1	1			
96. beta	a-endosulfan	0.005	1	1	1			
97. endo	osulfan sulfate	0.005	1	1	1			
98. endr	rin	0.005	1	1	1			
99. endr	rin aldehyde	0.005	1	1	1			
	tachlor	0.005	1	1	1			
101. hept	tachlor epoxide	0.005	1	1	1			
	na-BHC	0.005	1	1	1			
	a-BHC	0.005	i	1	1			
104. gamm	na-BHC	0.005	1	1	1			
	ta-BHC	0.005	1	1	1			
106. PCB-	-1242 (b)	0.005	1	1	1			
107. PCB-	-1254 (b)	0.005	_	_				
108. PCB-	-1221 (b)	0.005	-	-				
	-1232 (b)	0.005	_	-				
110. PCB-	-1248 (c)	0.005	3	1	1			
111. PCB-	-1260 (c)	0.005	=	=				
112. PCB-	-1016 (c)	0.005	-	-				
	aphene	0.005	1	1	1			
	imony	0.100	3	3	2	1		
	enic	0.010	4	4	3	1		
116. asbe	estos	10 MFL	O	Ü				

fable V-8 (Continued)

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	- ช.าชีก-	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	4	4	4			
118.	cadmium	0.002	4	4	3	1		
119.	chromium (total)	0.005	4	4		2	2	
120.	copper	0.009	4	4	3		1	
121.	cyanide (total)	0.01	4	4	4			
122.	lead	0.020	4	4	3	1		
123.	mercury	0.0001	4	4	4			
124.	nickel	0.005	4	4	1	3		
125.	selenium	0.01	3	3	3			
126.	silver	0.02	3	3	3			
127.	thallium	0.100	3	3	3			
128.	zinc	0.050	4	4	2		2	
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	U	0				

⁽a), (b), (c) Reported together.

Table V-9

SAMPLING DATA ROLL GRINDING SPENT EMULSION RAW WASTEWATER

Pollutant	Stream Code	Sample Type	Source		centrations (mg/l) ny 2 Day 3	Average
Toxic Pollutants						
2. acrolein	U-7	1	ND	0.050		0.050
114. antimony	CC-2	1	<0.010	<0.010		<0.010
	EE-11	1	<0.002		0.026	0.026
	EE-12	1	<0.002		0.002	0.002
115. arsenic	CC-2	1	<0.010	<0.010		<0.010
	EE-11	1	0.021		0.105	0.105
	EE-12	1	0.021		0.006	0.006
117. beryllium	CC-2	1	<0.005	<0.005		<0.005
·	EE-11	1	<0.010		<0.010	<0.010
	EE-12	1	<0.001		<0.010	<0.010
118. cadmium	CC-2	1	<0.020	<0.020		<0.020
	EE-11	1	<0.010		0.013	0.013
	EE-12	1	<0.010		<0.010	<0.010
119. chromium	CC-2	1	<0.020	0.360		0.360
	EE-11	1	0.021		0.063	0.063
	EE-12	1	0.021		0.057	0.057
	U - 7	ţ	<0.001	0.850		0.850
120. copper	CC - 2	1	<0.050	<0.050		<0.050
	EE-11	1	<0.010		<0.010	<0.010
	EE-12	1	<0.010		<0.010	<0.010
	V - 7	1	0.013	0.150		0.150
121. cyanide	CC - 2	1	<0.02	<0.02		<0.02
	EE-11	ŧ	<0.02		<0.02	<0.02
	EE-12	1	<0.02		<0.02	<0.02
122. lead	CC - 2	1	<0.050	0.050		0.050
	EE-11	1	<0.100		<0.100	<0.100
	EE-12	1	<0.100		<0.100	<0.100
	U - 7	1	0.010	0.006		0.006
123. mercury	CC - 2	1	0.0004	<0.0002		<0.0002
-	EE-11	1	<0.005		<0.005	<0.005
	EE-12	1	<0.005		<0.005	<0.005
	U - 7	1	0.005	0.005		0.005

Table V-9 (Continued)

SAMPLING DATA ROLL GRINDING SPENT EMULSION RAW WASTEWATER

Pollutant	Stream _Code	Sample Type	Source	Day 1	Concentrations (mg/1) Day 2 Day 3	Average
		,	40. OF 0	0.010		0.050
124. nickel	CC+2	1	<0.050	0.050	0.033	0.050 0.033
	EE-11 EE-12	1	<0.020 <0.020		<0.033	<0.020
	U-7	1	0.016	0.044	\0.020	0.044
	0-7	•	0.010	0.044		0.011
125. selenium	CC-2	1	<0.010	<0.010		<0.010
1231	EE-11	1	<0.005		<0.005	<0.005
	EE-12	1	<0.005		<0.005	<0.005
126. silver	CC-2	1	<0.005	<0.005		<0.005
120. Silvei	EE-11	1	<0.001		<0.001	<0.001
	EE-12	1	<0.001		<0.001	<0.001
107 111	CC-2	•	<0.010	<0.040*		<0.040
127. thallium	EE-11	1	<0.001	\0.040°	<0.001	<0.001
	EE-12	1	<0.001		<0.001	<0.001
	55-12	•	(0.001		(0.001	(0.00)
128. zinc	CC-2	1	1.10	0.520		0.520
7201 22110	EE-11	1	0.064		0.224	0.224
	EE-12	1	0.064		<0.020	<0.020
Nonconventional						
aluminum	CC-2	1	1.10	4.30		4.30
aramentam	EE-11	1	0.011		2.30	2.30
	EE-12	1	0.011		554.002	554.002
	U - 7	1	<0.1	<0.1		<0.1
barium	CC - 2	1	<0.050	<0.050		<0.050
Dallum	EE-11	1	0.021	(0.030	0.020	0.020
	EE-12	i	0.021		0.035	0.035
boron	CC-2	1	0.400	242.0		242.0
	EE-11	1	<0.050		6.28	6.28
	EE-12	1	<0.050		<0.050	<0.050
calcium	CC-2	1	36.9	14.3		14.3
	EE-11	1	4.62		4.24	4.24
	EE-12	1	4.62		11.3	11.3
	U - 7	1	58.7	69.8		69.8
cobalt	CC-2	1	<0.050	<0.050		<0.050
0004.0	EE-11	i	<0.010		<0.010	<0.010
	EE-12	i	<0.010		<0.010	<0.010
	· -					

Table V-9 (Continued)

SAMPLING DATA ROLL GRINDING SPENT EMULSION RAW WASTEWATER

		Stream	Sample			Concentrat	ions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	iron	CC-2 EE-11 EE-12	1 1 1	0.050 0.081 0.081	32.6		2.88 3.80	32.6 2.88 3.80
	magnesium	CC-2 EE-11 EE-12 U-7	1 1 1	7.0 1.68 1.68 7.44	5.6		1.59 .12.4	5.6 1.59 12.4 10.5
	manganese	CC-2 EE-11 EE-12	1 1 1	<0.050 0.016 0.016	0.100		0.143 0.053	0.100 0.143 0.053
	molybdenum	CC - 2 EH - 1 1 EE - 1 2	1 1 1	<0.050 0.030 0.030	0.100		0.036 0.060	0.100 0.036 0.060
	sodium	CC-2	1	6.80	29.3			29.3
217	tin	CC-2 EE-11 EE-12	1 1 1	<0.050 <0.020 <0.020	<0.050		<0.020 <0.020	<0.050 <0.020 <0.020
	titanium	CC - 2 EE - 11 EE - 12	1	<0.050 <0.010 <0.010	<0.050		0.017 0.017	<0.050 0.017 0.017
	vanadium	CC - 2 EE - 11 EE - 12	1 1 1	<0.050 <0.020 <0.020	<0.050		<0.020 <0.020	<0.050 <0.020 <0.020
	yttrium	CC - 2 EE - 11 EE - 12	1 1 1	<0.050 <0.020 <0.020	<0.050		<0.020 <0.020	<0.050 <0.020 <0.020
	acidity	CC - 2 EE - 1 1 EE - 1 2	1	<1 <1 <1	<1		<1 <1	<1 <1 <1
	alkalinity	CC - 2 EE - 1 1 EE - 1 2 U - 7	1 1 1	49 22 22	2,600		650 480	2,600 650 480 180

Table V-9 (Continued)

SAMPLING DATA ROLL GRINDING SPENT EMULSION RAW WASTEWATER

Dalling	Stream	Sample	Courac	Day 1	Concentrations (mg/L Day 2 Day 3	
Pollutant	_Code	Type	Source	Day 1	Day 2 Day 3	Average
chloride	CC - 2	1	24	31		31
	EE-11	1	<0.05		<0.05	<0.05
	EE-12	1	<0.05		34	34
chemical oxygen demand (COD)	EE-11	1	48		310	310
	EE-12	1	48		850	850
	U - 7	1		230		230
fluoride	CC-2	1	0.73	0.69		0.69
	EE-11	1	0.67		0.28	0.28
	EE-12	1	0.67		0.20	0.20
ammonia nitrogen	EE-11	1	<0.05		<0.05	<0.05
,,	EE-12	1	<0.05		2.5	2.5
sulfate	CC-2	1	75	120		120
	EE-11	1	21		350	350
	EE-12	1	21		39	39
	U - 7	1		59		59
phenol (total, by 4-AAP method)	U-7	1		0.007		0.007
total organic carbon (TOC)	EE-11	1	<1		17	17
,	EE-12	1	<1		165	165
	U - 7	1		2.5		2.5
total dissolved solids (TDS)	CC - 2	1	300	2,200		2,200
	EE-11	1	28		1,140	1,140
	EE-12	1	28		340	340
phosphate	EE-11	1	818		19	19
,	EE-12	1	818		13	13
total solids	CC-2	1	204	3,920		3,920
	EE-11	1	30	•	1,300	1,300
	EE-12	ì	30		440	440
Conventional						
oil and grease	CC-2	1	<1	780		780
• • • • • • • • • • • • • • • • • • •	EE-11	1	3		310	310
	EE-12	1	3 3		11	11
	U-7	1		107		107

Table V-9 (Continued)

SAMPLING DATA ROLL GRINDING SPENT EMULSION RAW WASTEWATER

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
suspended solids	CC-2	1	<1	17			17
	EE-11	1	3			120	120
	EE-12	1	3			9.0	9.0
	U-7	1		118			118
pH (standard units)	CC-2	1	5.35	9.07			
	EE-11	1	6.05			9.51	
	EE-12	1	6.05			8.72	
	U - 7	1	8.0	6.0			

Table V-10
EXTRUSION DIE CLEANING BATH

	Water	. Use	Percent	Waste	water
Plant	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	*	*	**	0	0
2	51.87	12.44	**	0	0
3	*	*	**	0	0
4	0.2506	0.0601	**	0.2506	0.0601
5	*	*	**	0.69	0.17
6	2.472	0.5929	**	2.060	0.4941
7	*	*	**	2.66	0.64
8	2.811	0.6742	**	2.811	0.6742
9	4.009	0.9615	**	3.341	0.8013
10	5.833	1.399	**	5.833	1.399
11	12.52	3.003	**	12.52	3.003
12	13.90	3.333	**	13.90	3.333
13	13.99	3.356	**	13.99	3.356
14	*	*	**	16.6	4.0
15	39.68	9.517	**	39.68	9.517
16	53.45	12.82	**	53.45	12.82
17	9.957	2.388	**	*	*

^{*}Data not available.

Statistical Summary

Minimum	0.2506	0.0601	0	0
Maximum	53.45	12.82	53.45	12.82
Mean	17.56	4.212	10.49	2.52
Median	11.24	2.696	3.076	0.738
Sample:	12 of 37	plants	16 of 3	37 plants
Nonzero	17.56	4.212	12.9	3.1
Mean				
Sample:	12 of 37	plants		37 plants
Nonzero	17.56	4.212	14.79	3.546
Mean (Pro	posal)			
Sample:	12 of 37	plants	10 of 3	37 plants

Note: Table does not include 23 plants which provided insufficient information to calculate water use and wastewater values.

^{**}Not applicable.

Table V-11
EXTRUSION DIE CLEANING RINSE

	Wate	r Use	Percent	Waste	water
Plant	1/kkg	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	*	*	100	0	0
2	0.7025	0.1685	0	0.7025	0.1685
3	4.009	0.9615	*	3.341	0.8013
4	5.833	1.399	0	5.833	1.399
5	8.285	1.987	0	8.285	1.987
6	9.957	2.388	0	9.957	2.388
7	11.78	2.826	0	11.78	2.826
8	*	*	*	18.65	4.473
9	53.45	12.82	0	53.45	12.82
10	155.6	37.33	*	118.6	28.44

^{*}Data not available.

Statistical Summary

Minimum	0.7025	0.1685	0	0
Maximum	155.6	37.33	118.6	28.44
Mean	31.21	7.485	23.06	5.530
Median	9.121	2.188	9.121	2.188
Sample:	8 of 30) plants	10 of	30 plants
Nonzero	31.21	7.485	25.62	6.145
Mean				
Sample:	8 of 30) plants	9 of	30 plants

Note: Table does not include 20 plants which provided insufficient information to calculate water use and wastewater values.

Table V-12
FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
EXTRUSION DIE CLEANING BATH
RAW WASTEWATER

		Analytical Quantification	Number of	Number of		nber ot T in Sample	es $(mg/1)$	rved
	Pollutant .	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
114.	antimony	0.100	3	3	2	1		
115.	arsenic	0.010	3	3		υ	U	3
116.	asbestos	10 MFL	0	0				
117.	beryllium	0.010	3	3	3		0	
118.	cadmium	0.002	3	3	3			0
119.	chromium (total)	0.005	3	3		1		2
120.	copper	0.009	3	3				3
121.	cyanide (total)	0.01	3	3	3	0		
122.	lead	0.020	3	3	1			2
123.	mercury	0.0001	3	3	3			
124.	nickel	0.005	3	3	3			
125.	selenium	0.01	3	3	2	1	0	
126.	silver	0.02	3	3	3	0		
127.	thallium	0.100	3	3	3	U		
128.	zinc	0.050	3	3				3
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	υ				

(a), (b), (c) Reported together.

Table V-13

SAMPLING DATA
EXTRUSION DIE CLEANING BATH
RAW WASTEWATER

			Stream	Sample			Concentrati		
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	114.	antimony	AA - 1	1	<0.010	0.100			0.100
		,	BB-3	1	<0.025		<1.000*		<0.1000
			DD-3	1	<0.002			0.002	0.002
	115.	arsenic	AA - 1	1	<0.010	8.0			8.0
			BB - 3	1	<0.010		2.000		2.000
			DD-3	1	<0.001			11	11
	11/.	beryllium	AA - 1	1	<0.005	<0.500			<0.500
		•	BB-3	1	<0.015		<0.500		<0.500
			DD- 3	1	<0.010			<0.010	<0.010
	118.	cadmium	AA - 1	1	<0.020	<2.000			<2.000
			BB-3	1	<0.060		<2.000		<2.000
			DD-3	1	<0.010			<0.010	<0.010
	119.	chromium	AA - 1	1	<0.020	8.0			8.0
2			BB-3	1	<0.060		6.000		6.000
223			DD- 3	1	<0.020			0.090	0.090
	120.	copper	AA - 1	1	<0.050	75.0			75.0
			BB-3	1	<0.150		15.00		15.00
			DD-3	1	0.013			1.62	1.62
	121.	cyanide (total)	AA - 1	1	<0.02	<0.02			<0.02
		•	BB-3	1	<0.02		<0.02		<0.02
			DD - 3	1	<0.02			<0.02	<0.02
	122.	lead	AA - 1	1	<0.050	10.0			10.0
			BB - 3	1	<0.150		<5.000		<5.000
			DD-3	1	<0.100			1.02	1.02
	123.	mercury	AA - 1	1	<0.0002	<0.002			<0.002
			BB - 3	1	<0.0002		<0.002		<0.002
			DD-3	1	<0.005			<0.005	<0.005
	124.	nickel	AA - 1	1	<0.050	<5.0			<5.0
			BB-3	1	<0.150		<5.000		<5.000
			DD-3	1	<0.050			<0.020	<0.020

fable V-13 (Continued)

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	125.	selenium	AA - 1 BB - 3 DD - 3	1 1 1	<0.010 <0.010 <0.005	chemic	cal interfer <1.000*	ence 0.027	<1.000 0.027
	126.	silver	AA - 1 BB - 3 DD - 3	1 1 1	<0.010 <0.010 <0.001	<0.100	<0.100	0.002	<0.100 <0.100 0.002
	127.	thallium	AA - 1 BB - 3 DD - 3	1 1	<0.010 <0.001 <0.001	<0.100	<0.100	0.004	<0.100 <0.100 0.004
	128.	zinc	AA - 1 BB - 3 DD - 3	1 1 1	<0.020 <0.060 <0.010	138.0	8.000	5.88	138.0 8.000 5.88
	Noncoi	nventional							
224	alumi	num	AA - 1 BB - 3 DD - 3	1 1 1	<0.100 0.500 <0.050	15,800	43,700	35,200	15,800 43,700 35,200
	bariu	m	AA-1 BB-3 DD-3	1 1 1	0.250 <0.150 0.179	<5.0	<5.000*	<0.02	<5.0 <5.000 <0.02
	boron		AA - 1 BB - 3 DD - 3	1 1 1	<0.100 0.800 <0.100	20.0	<10.000*	1.40	20.0 <10.000 1.40
	calci	um	AA - 1 BB - 3 DD - 3	1 1 1	117 4.800 5.68	<10.0	20,000	0.158	<10.0 20,000 0.158
	cobal	t	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 <0.010	<5.0	<5.000*	0.079	<5.0 <5.000 0.079
	iron		AA - 1 BB - 3 DD - 3	1 1 1	2.85 <0.150 0.054	145	80.000	1.57	145 80.000 1.57

Table V-13 (Continued)

*		Stream Sample				Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
	magnesium	AA - 1 BB - 3 DD - 3	1 1 1	33.9 0.500 108	10.0	140.000	0.140	10.0 140.000 0.140	
	manganese	AA - 1 BB - 3 DD - 3	1 1 1	<5.0 <0.100 <0.010	35.0	<5.000	0.045	35.0 <5.000 0.045	
	molybdenum	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 <0.020	<5.0	<5.000	* 0.125	<5.0 <5.000 0.125	
	sodium	AA - 1 BB - 3	1 1	4.8 76.7	159,000	167,000		159,000 167,000	
~♥	tin	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 <0.020	<5.0	<5.000°	* 1.45	<5.0 <5.000 1.45	
225	titanium	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 <0.010	<5.0	<5.000°	*	<5.0 <5.000 <0.010	
	vanadium	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 0.026	<5.0	<5.000°	* 0.692	<5.0 <5.000 0.692	
	yttrium	AA - 1 BB - 3 DD - 3	1 1 1	<0.050 <0.150 <0.020	<5.0	< 5. 000 ⁻³	<0.02	<5.0 <5.000 <0.02	
•	acidity	AA - 1 BB - 3 DD - 3	1 1 1	<1 <1 <1	<1	<1	<1	< 1 < 1 < 1	
	alkalinity	AA - 1 BB - 3 DD - 3	1 1	270 160 274	740,000	400,000	280,000	740,000 400,000 280,000	
	chloride	AA - 1 BB - 3 DD - 3	1 1 1	24 17 61	7,200	3,960	3,000	7,200 3,960 3,000	

Table V-13 (Continued)

		Stream	Sample			Concentr	ations (mg/l	.)
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	chemical oxygen demand (COD)	AA - 1	1	23 9	1,550			1,550
		BB - 3	1			1,550		1,550
		DD-3	1	<0.5			2,600	2,600
	fluoride	AA - 1	1	0.17	2.2			2.2
		BB-3	1	<0.05		1.1		1.1
		DD-3	1	0.29			3.5	3.5
	ammonia nitrogen	AA - 1	1	0.10	<0.05			<0.05
	4	BB - 3	1	0.05		2.4		2.4
		DD - 3	1	<0.01			U.49	0.49
	phenols (total; by 4-AAP method)	AA - 1	1	<0.005	<0.005			<0.005
	phenozo (cocar, b) mic means by	BB - 3	1	0.026		0.03	υ	0.030
	sulfate	AA - 1	1	115	150			150
	Surrace	BB - 3	1	90	. •	120		120
		DD-3	ĵ	180			240	240
226	dissolved solids	AA - 1	1	530	600,000			600,000
9	010001700 001100	BB - 3	i	310		2,360		2,360
		DD-3	ì	670		_,	250,000	250,000
	total organic carbon (TOC)	AA - 1	1	<1	260			260
	total organic carbon (100)	BB - 3	i	<1		10		10
		DD-3	1	<1			29	29
	phosphate	AA - 1	1	<3	<3			<3
	phosphace	BB - 3	i	21	,,	<3		<3
		DD-3	1	20			400	400
	total solids (TS)	AA - 1	1	590	700,000			700,000
	total sorras (15)	BB - 3	ĺ	267		40,000		40,000
		DD-3	1	380		,	550,000	550,000
	Conventional							
	suspended solids	AA - I	1	17	2,970			2,970
	suspended sorrus	BB - 3	1	8	2.710	3,830		3,830
		DD-3	1	1		5,050	310	310
		כ - טט	,	,			210	310

Table V-13 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
pH (standard units)	AA - 1	1	7.44	12.03				
	BB-3	1	7.68		12.92			
	DD-3	1	7.03			12.86		
oil and grease	AA - 1	1	<0.5	<1			<1	
	BB-3	1	<1		<1		<1	
	DD-3	1	<1			22	22	

^{*}Detection limit raised due to interference.

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING RINSE RAW WASTEWATER

		Analytical Quantitication	Number of	Number of		Number ot Times Observed in Samples (mg/l)		
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0. f0f- 1.000	1.000+
1.	acenaphthene	0.010	2	2	2			
2.	acrolein	0.010	2	2	2			
3.	acrylonitrile	0.010	2	2	2			
4.	benzene	0.010	2	2	2			
5.	benzidine	0.010	2	2	2			
6.	carbon tetrachloride	0.010	2	2	2			
7.	chlorobenzene	0.010	2	2	2			
8.	1,2,4-trichlorobenzene	0.010	2	2	2			
9.	hexachlorobenzene	0.010	2	2	2			
10.	1,2-dichloroethane	0.010	2	2	2			
11.	1,1,1-trichloroethane	0.010	2	2	2			
12.	hexachloroethane	0.010	2	2	2			
13.	1.1-dichloroethane	0.010	2	2	2			
14.	1,1,2-trichloroethane	0.010	2	2	2			
15.	1,1,2,2-tetrachloroethane	0.010	2	2	2			
16.	chloroethane	0.010	2	2	2			
17.	bis(chloromethyl)ether	0.010	2	2	2			
18.	bis(chloroethy1)ether	0.010	2	2	2			
19.	2-chloroethyl vinyl ether	0.010	2	2	2			
20.	2-chloronaphthalene	0.010	2	2	2			
21.	2,4,6-trichlorophenol	0.010	2	2	2			
22.	p-chloro-m-cresol	0.010	2	2	2			
23.	chloroform	0.010	2	2	2			
24.	2-chlorophenol	0.010	2	2	2			
25.	1.2-dichlorobenzene	0.010	2	2	2			
26.	1,3-dichlorobenzene	0.010	$\bar{2}$	2	2			
27.	1.4-dichlorobenzene	0.010	2	2	2			
28.	3.3'-dichlorobenzidine	0.010	$\bar{2}$	2	2			
29.	1,1-dichloroethylene	0.010	$\overline{2}$	2	2			
30.	1,2-trans-dichloroethylene	0.010	$\bar{2}$	2	2			
31.	2.4-dichlorophenol	0.010	2	2	2			
32.	1,2-dichloropropane	0.010	2	$\overline{2}$	$\bar{2}$			
33.	1,3-dichloropropylene	0.010	$\tilde{2}$	$\frac{\overline{2}}{2}$	2			
34.	2,4-dimethylphenol	0.010	$\overline{2}$	2	2			
35.	2,4-dinitrotoluene	0.010	2	$\frac{1}{2}$	2			
36.	2,6-dinitrotoluene	0.010	2	$\frac{1}{2}$	$\frac{2}{2}$			
37.	1,2-diphenylhydrazine	0.010	2	2	2			
38.	ethylbenzene	0.010	2	2	2			
39.	fluoranthene	0.010	2	2	2			
37.	LIUULanthene	0.010	~	~	4-			

Table V-14 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING RINSE RAW WASTEWATER

		Analytical Quantification	Number of	Number of		Number of Times Observed in Samples (mg/1)		
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	2	2	2			
41.	4-bromophenyl phenyl ether	0.010	2	2	2			
42.	bis(2-chloroisopropyl)ether	0.010	2	2	2			
43.	bis(2-chloroethoxy)methane	0.010	2	2	2			
44.	methylene chloride	0.010	2	2		2		
45.	methyl chloride (chloromethane)	0.010	2	2	2			
46.	methyl bromide (bromomethane)	0.010	2	2	2			
47.	bromoform (tribromomethane)	0.010	2	2	2			
48.	dichlorobromomethane	0.010	2	2	2			
49.	trichlorofluoromethane	0.010	2	2	2			
50.	dichlorodifluoromethane	0.010	2	2	2			
51.	chlorodibromomethane	0.010	$\overline{2}$	2	2			
52.	hexachlorobutadiene	0.010	2	2	2			
53.	hexachlorocyclopentadiene	0.010	2	2	2			
54.	isophorone	0.010	2	2	2			
55.	naphthalene	0.010	2	2	2			
56.	nitrobenzene	0.010	2 2	2	2			
57.	2-nitrophenol	0.010	2	2	2			
58.	4-nitrophenol	0.010	2	2	2			
59.	2,4-dinitrophenol	0.010	2	2	2			
60.	4,6-dinitro-o-cresol	0.010	2	2	2			
61.	N-nitrosodimethylamine	0.010	2	2	2			
62.	N-nitrosodiphenylamine	0.010	2	2	2			
63.	N-nitrosodi-n-propylamine	0.010	2	2	2			
64.	pentachlorophenol	0.010	2	2	2			
65.	phenol	0.010	2	2	2	_		
66.	bis (2-ethylhexyl) phthalate	0.010	2	2	1	1		
67.	butyl benzyl phthalate	0.010	2	2	2			
68.	di-n-butyl phthalate	0.010	2	2	2			
69.	di-n-octyl phthalate	0.010	2	2	2			
70.	diethyl phthalate	0.010	2	2	2			
71.	dimethyl phthalate	0.010	2	2	2			
72.	benzo(a)anthracene	0.010	2	2	2			
73.	benzo(a)pyrene	0.010	2	2	2			
74.	benzo(b)fluoranthene	0.010	2	2	2			
75.	benzo(k)fluoranthene	0.010	2	2	2			
76.	chrysene	0.010	2	2	2			
77.	acenaphthylene	0.010	2	2	2			
78.	anthracene (a)	0.010	2	2	2			

Table V-14 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING RINSE RAW WASTEWATER

		Analytical Quantitication	Number of	Number of	Number of Times Observed in Samples (mg/1)				
		Level	Streams	Samples	ND-	0.011-	0.101-		
	<u>Pollutant</u>	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+	
79.	benzo(ghi)perylene	0.010	2	2	2				
80.	fluorene	0.010	2	2	2				
81.	phenanthrene (a)	0.010	-	_					
82.	dibenzo(a,h)anthracene	0.010	2	2	2 2				
83.	indeno (1,2,3-c,d)pyrene	0.010	2	2	2				
84.	pyrene	0.010	2	2	2				
85.	tetrachloroethylene	0.010	2	2	2				
86.	toluene	0.010	2	2	2				
87.	trichloroethylene	0.010	2	2	2				
88.	vinyl chloride (chloroethylene)	0.010	2	2	2				
89.	aldrin	0.005	2	2	2				
90.	dieldrin	0.005	2	2	2				
91.	chlordane	0.005	2	2	2				
92.	4,4'-DDT	0.005	2	2	2				
93.	4,4'-DDE	0.005	2	2	2				
94.	4,4'-DDD	0.005	2	2	2				
95.	alpha-endosulfan	0.005	2	2	2				
96.	beta-endosulfan	0.005	2	2	2				
97.	endosulfan sulfate	0.005	2	2	2				
98.	endrin	0.005	2	2	2				
99.	endrin aldehyde	0.005	2	2	2				
100.	heptachlor	0.005	2	2	2				
101.	heptachlor epoxide	0.005	2	2	2				
102.	alpha-BHC	0.005	2	2	2				
103.	beta-BHC	0.005	2	2	2				
104.	gamma-BHC	0,005	2	2	2				
105.	delta-BHC	0.005	2	2	2				
106.	PCB-1242 (b)	0.005	2	2	2				
107.	PCB-1254 (b)	0.005	_	_					
108.	PCB-1221 (b)	0.005	-	-					
109.	PCB-1232 (b)	0.005	×	_					
110.	PCB-1248 (c)	0.005	2	2	2				
111.	PCB-1260 (c)	0.005	_	_					
112.	PCB-1016 (c)	0.005	-	-					
113.	toxaphene	0.005	2	2	2				
114.	antimony	0.100	3	5	$\bar{2}$	3			
115.	arsenic	0.010	$\tilde{\mathfrak{z}}$	5	4	1			
116.	asbestos	10 MFL	ő	ő		•			
, , , , .	4000000		-	ū					

Table V-14 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING RINSE RAW WASTEWATER

		Analytical Quantification	Number of	Number of	in Sampl		imes Observed es (mg/l)	
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	3	5	5			
118.	cadmium	0.002	3	5	3	2		
119.	chromium (total)	0.005	3	5	O	4	1	
120.	copper	0.009	3	5			4	1
121.	cyanide (total)	0.010	3	5	2	3		
122.	lead	0.020	3	5			5	
123.	mercury	0.0001	3	5	5			
124.	nickel	0.005	3	5	3	2		
125.	selenium	0.01	3	5	4	1		
126.	silver	0.02	3	5	4	1		
127.	thallium	0.100	3	5	4	1		
128.	zinc	0.050	3	5		2	2	1
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-15

		Stream Sample			Concentrations (mg/l)				
		Pollutant	Code	Туре	Source	Day 1	Day Z	Day 3	Average
	Toxic	Pollutants							
			_						
	4.	benzene	F - 7 V - 2	1 1	ND *	ND *			*
			V - Z	'					
	11.	1,1,1-trichloroethane	F - 7	1	ND	ND *			*
			V- 2	1	ND	•			^
	44.	methylene chloride	F-7	1	0.024	0.036			0.036
		•	V - 2	1	0.015	0.021			0.021
	66.	bis(2-ethylhexyl) phthalate	F - 7	1	0.025	0.027			0.027
232	00.	bio(z cenjinenji) pnenarace	V-2	1	*	*			*
	86.	toluene	F-7	1	*	ND			
	80.	Coldene	V-2	i	*	*			*
	• • •		F-7	1	<0.1	<0.1			<0.1
	114.	antimony	V-2	1	<0.001	0.013			0.013
			W-6	2	0.003	0.035	<0.001	0.015	<0.017
	115		F - 7	1	<0.01	<0.01			<0.01
	115.	arsenic	V-2	i	<0.005	0.042			0.042
			W-6	2	<0.005	0.004	0.009	<0.005	<0.006
	118.	cadmium	F-7	1	<0.002	0.020			0.020
	110.	Cadiiriuii	V-2	1	<0.001	0.020			0.020
			W-6	2	<0.001	0.001	<0.001	<0.001	<0.001
	119.	chromium	F-7	1	<0.005	0.090			0.090
	117.	CITI OIII LUII	V-2	i	<0.001	0.210			0.210
			W-6	2	0.004	0.037	0.030	0.045	0.037
	120.	copper	F - 7	1	<0.009	0.200			0.200
	120.	copper	V-2	i	0.027	0.320			0.320
			W-6	2	0.010	2.4	0.930	0.300	1.2
	121.	cyanide	F-7	1		0.002			0.002
	1210	cyanite	V - 2	ì	0.0042	0.0042			0.0042
			W-6	1	0.030	0.015	0.015	0.015	0.015
	122.	lead	F-7	1	<0.020	0.600			0.600
	1 4 4 .	200	V-2	i	0.079	0.270			0.270
			W-6	2	0.009	0.830	0.130	0.550	0.503

Table V-15 (Continued)

	Stream Sample				Concentrations $(mg/1)$					
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
	123. mercury	F-7 V-2 W-6	1 1 2	0.0006 <0.0002 <0.002	0.0007 <0.0002 <0.002	<0.002	<0.002	0.0007 <0.0002 <0.002		
	124. nickel	F-7 V-2 W-6	1 1 2	<0.005 0.009 0.060	<0.005 0.10 0.010	0.021	<0.009	<0.005 0.10 <0.013		
	125. selenium	F-7 V-2 W-6	1 1 2	<0.01 0.020 0.015	<0.01 <0.005 0.100	<0.005	<0.005	<0.01 <0.005 <0.037		
	126. silver	F-7 V-2 W-6	1 1 2	<0.02 0.05 0.02	<0.02 <0.001 0.02	<0.001	<0.001	<0.02 <0.001 <0.01		
	127. thallium	F-7 V-2 W-6	1 1 2	<0.1 <0.001 <0.001	<0.1 <0.001 0.002	<0.001	0.057	<0.1 <0.001 <0.026		
233	128. zinc	F-7 V-2 W-6	1 1 2	<0.050 0.500 0.030	0.100 0.100 1.500	0.300	0.26	0.100 0.100 0.69		
	Nonconventional									
	alkalinity	F-7 V-2 W-6	1 1 2	170	ND 5,400 3,200	1,700	3,100	5,400 2,700		
	aluminum	F - 7 V - 2 W - 6	1 1 2	0.09 0.06	430 48 4.8	23	0.42	430 48 9		
	calcium	F - 7 V - 2 W - 6	1 1 2	9.8 55	<0.03 6.9 55	20	3.7	<0.03 6.9 26		
	chemical oxygen demand (COD)	F-7 V-2 W-6	1 1 1	<1 12	12 28 20	60	12	12 28 31		

Table V-15 (Continued)

SAMPLING DATA EXTRUSION DIE CLEANING RINSE RAW WASTEWATER

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	lons (mg/l) Day 3	Average
	dissolved solids	F - 7 V - 2 W - 6	1 1 2	3	3,237 7,200 3,700	2,200	3, 800	3,237 7,200 3,200
	magnesium	F-7 V-2 W-6	1 1 2	63 19	0.03 2.7 12	11	1.6	0.03 2.7 8
	phenols (total; by 4-AAP method)	F-7 V-2 W-6	1 1 1	0.062 1.0	0.005 0.019 0.012	0.088	0.060	0.005 0.019 0.053
	sulfate	F-7 V-2 W-6	1 1 2	81	60 290 110	170	180	60 290 150
	total organic carbon (TOC)	F-7 V-2 W-6	i 1 1	4.7 0	19 120 7	20	11	19 120 13
224	Conventional							
	oil and grease	F-7 V-2 W-6	1 1 1	16 6.6	8 17 6.8	<1	<1	8 17 <3
	suspended solids	F-7 V-2 W-6	1 1 2	<1	28 120 26	130	44	28 120 67
	pH (standard units)	F-7 V-2 W-6	1 1 1	7.55 7.3 7.7	10.85 10.3 11.5	11.7	7.8	

Table V-16

EXTRUSION DIE CLEANING SCRUBBER LIQUOR

Plant	Wate	r Use	Percent	Waste	ewater
	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	258.8	62.08	0	258.8	62.08
2	292.2	70.08	0	292.2	70.08
Statistica.	l Summary				
Mean Sample:	275.5 2 of 2	66.08 plants		275.5 2 of 2	66.08 plants

Table V-17

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
EXTRUSION DIE CLEANING SCRUBBER LIQUOR
RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1		0.010	O	0				
1.	acenaphthene	0.010	0	0				
2.	acrolein	0.010	0	0				
3.	acrylonitrile	0.010	Ü	0				
4.	benzene	0.010	0	0				
5.	benzidine	0.010	0	0				
6.	carbon tetrachloride		0	0				
7.	chlorobenzene	0.010	0	0				
8.	1,2,4-trichlorobenzene	0.010	0	0				
9.	hexachlorobenzene	0.010	0	-				
10.	1,2-dichloroethane	0.010		0				
11.	1,1,1-trichloroethane	0.010	0	0				
12.	hexachloroethane	0.010	0	0				
13.	l,1-dichloroethane	0.010	0	0				
14.	1,1,2-trichloroethane	0.010	0	0				
15.	1,1,2,2-tetrachloroethane	0.010	0	0				
16.	chloroethane	0.010	0	0				
17.	bis(chloromethyl)ether	0.010	0	0				
18.	bis(chloroethyl)ether	0.010	0	0				
19.	2-chloroethyl vinyl ether	0.010	0	0				
20.	2-chloronaphthalene	0.010	0	0				
21.	2.4.6-trichlorophenol	0.010	O	0				
22.	p-chloro-m-cresol	0.010	O	O				
23.	chloroform	0.010	0	0				
24.	2-chlorophenol	0.010	0	0				
25.	1,2-dichlorobenzene	0.010	0	U				
26.	1,3-dichlorobenzene	0.010	0	0				
27.	1.4-dichlorobenzene	0.010	Ö	0				
28.	3.3'-dichlorobenzidine	0.010	Ü	Ű				
29.	1,1-dichloroethylene	0.010	Ö	0				
30.	1,2-trans-dichloroethylene	0.010	ő	ŏ				
31.	2.4-dichlorophenol	0.010	0	ŏ				
32.	1,2-dichloropropane	0.010	ŭ	Ü				
33.	1,3-dichloropropene	0.010	ŭ	ŏ				
34.		0.010	ő	Ű				
-	2,4-dimethylphenol	0.010	0	Ü				
35.	2,4-dinitrotoluene	0.010	0	0				
36.	2,6-dinitrotoluene	0.010	0	0				
37.	1,2-diphenylhydrazine							
38.	ethylbenzene	0.010	0 0	0				
39.	fluoranthene	0.010	U	U				

Table V-17 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nur	_	imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	O	0				
41.	4-bromophenyl phenyl ether	0.010	O	U				
42.	bis(2-chloroisopropyl)ether	0.010	0	0				
43.	bis(2-chloroethoxy)methane	0.010	0	0				
44.	methylene chloride	0.010	0	0				
45.	methyl chloride (chloromethane)	0.010	0	0				
46.	methyl bromide (bromomethane)	0.010	0	0				
47.	bromoform (tribromomethane)	0.010	0	0				
48.	dichlorobromomethane	0.010	0	0				
49.	trichlorofluoromethane	0.010	O	Ü				
50.	dichlorodifluoromethane	0.010	0	0				
51.	chlorodibromomethane	0.010	O	0				
52.	hexachlorobutadiene	0.010	0	U				
53.	hexachlorocyclopentadiene	0.010	0	0				
54.	isophorone	0.010	U	0				
55.	naphthalene	0.010	0	0				
56.	nitrobenzene	0.010	0	0				
57.	2-nitrophenol	0.010	0	0				
58.	4-nitrophenol	0.010	0	Ü				
59.	2,4-dinitrophenol	0.010	0	Ú				
60.	4,6-dinitro-o-cresol	0.010	0	Ö				
61.	N-nitrosodimethylamine	0.010	Ü	Ü				
62.	N-nitrosodiphenylamine	0.010	0	0				
63.	N-nitrosodi-n-propylamine	0.010	0	0				
64.	pentachlorophenol	0.010	0	Ü				
65.	phenol	0.010	Ō	Ü				
66.	bis (2-ethylhexyl) phthalate	0.010	Ō	Ö				
67.	butyl benzyl phthalate	0.010	Ö	Ŏ				
68.	di-n-butyl phthalate	0.010	Ü	Ŭ				
69.	di-n-octyl phthalate	0.010	Ō	Ö				
70.	diethyl phthalate	0.010	ŏ	Ŏ				
71.	dimethyl phthalate	0.010	Ö	Ö				
72.	benzo(a)anthracene	0.010	Ö	ŭ				
73.	benzo(a)pyrene	0.010	ŭ	ŭ				
74.	benzo(b)fluoranthene	0.010	Ö	Ö				
75.	benzo(k)fluoranthene	0.010	ő	ő				
76.	chrysene	0.010	Ö	ŏ				
77.	acenaphthylene	0.010	ŏ	ő				
78.	anthracene (a)	0.010	0	0				
	\ - /		0	0				

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of		Number of Times Observe in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+	
79.	benzo(ghi)perylene	0.010	O	O					
80.	fluorene	0.010	0	0					
81.	phenanthrene (a)	0.010	-	_					
82.	dibenzo(a,h)anthracene	0.010	0	0					
83,	indeno (1,2,3-c,d)pyrene	0.010	0	0					
84.	pyrene	0.010	0	0					
85.	tetrachloroethylene	0.010	0	0					
86.	toluene	0.010	O	0					
87.	trichloroethylene	0.010	0	0					
88.	vinyl chloride (chloroethylene)	0.010	0	0					
89.	aldrin	0.005	0	0					
90.	dieldrin	0.005	0	0					
91.	chlordane	0.005	0	0					
92.	4,4'-DDT	0.005	0	0					
93.	4, 4'-DDE	0.005	0	0					
94.	4,4'-DDD	0.005	0	U					
95.	alpha-endosulfan	0.005	0	0					
96.	beta-endosulfan	0.005	0	0					
97.	endosulfan sulfate	0.005	U	0					
98.	endrin	0.005	0	O					
99.	endrin aldehyde	0.005	0	0					
100.	heptachlor	0.005	0	0					
101.	heptachlor epoxide	0.005	0	0					
102.	alpha-BHC	0.005	0	0					
103.	beta-BHC	0.005	O	0					
104.	gamma-BHC	0.005	U	0					
105.	delta-BHC	0.005	0	0					
106.	PCB-1242 (b)	0.005	0	0					
107.	PCB-1254 (b)	0.005	-	•					
108.	PCB-1221 (b)	0.005	-	-					
109.	PCB-1232 (b)	0.005	-	-					
110.	PCB-1248 (c)	0.005	0	0					
111.	PCB-1260 (c)	0.005	-	=					
112.	PCB-1016 (c)	0.005	-	-					
113.	toxaphene	0.005	0	0					
114.	antimony	0.100	1	3	2	1			
115.	arsenic	0.010	1	3	3				
116.	asbestos	10 MFL	Ó	Ō					
	4054000								

Table V-17 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DIE CLEANING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nur		imes Obser es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	1	3	3			
118.	cadmium	0.002	1	3	3			
119.	chromium (total)	0.005	1	3	3			
120.	copper	0.009	1	3	3			
121.	cyanide (total)	0.010	1	3		3		
122.	lead	0.020	1	3	2	1		
123.	mercury	0.0001	1	3	3			
124.	nickel	0.005	1	3	3			
125.	selenium	0.01	1	3	3			
126.	silver	0.02	1	3	3			
127.	thallium	0.100	1	3	3			
128.	zinc	0.050	1	3		3		
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

⁽a), (b), (c) Reported together.

Table V-18

SAMPLING DATA EXTRUSION DIE CLEANING SCRUBBER LIQUOR RAW WASTEWATER

	Stream	Sample				ions $(mg/1)$	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
Toxic Pollutants							
114. antimony	W-5	2	0.003	0.013	<0.001	<0.001	<0.005
118. cadmium	W-5	2	<0.001	<0.001	0.001	<0.001	<0.00
119. chromium	W - 5	2	0.004	0.004	0.003	0.003	0.003
120. copper	W-5	2	0.010	0.006	0.006	0.006	0.000
121. cyanide	W-5	1	0.030	0.020	0.013	0.020	0.018
122. lead	W-5	2	0.009	0.005	0.024	0.006	0.012
124. nickel	W-5	2	0.060	<0.001	<0.001	0.003	<0.002
125. selenium	W-5	2	0.015	0.005	0.005	<0.005	<0.00
126. silver	W-5	2	0.02	0.001	<0.001	<0.001	<0.00
127. thallium	W-5	2	<0.001	0.010	<0.001	<0.001	<0.004
128. zinc	W-5	2	0.03	0.04	0.03	0.02	0.03
Nonconventional							
alkalinity	W-5	2	170	200	190	220	203
aluminum	W - 5	2	0.06	1.3	0.65	0.60	0.9
calcium	W - 5	2	55	49	30	30	36
chemical oxygen demand (COD)	W - 5	2	12	7.7	7.5	<1	<5
dissolved solids	W-5	2	3	270	300	420	330
magnesium	W-5	2	19	18	16	15	16
phenols (total; by 4-AAP method)	W-5	1	1.00	0.0095	0.095	0.14	0.08
sulfate	W-5	2	81	70	65	80	71
total organic carbon (TOC)	W-5	2	0	5	5	4	5
Conventional							
oil and grease	W-5	1	6.6	160	7.1	5.7	58
suspended solids	W-5	2	<1	1	4	2	2
pH (standard units)	W-5	2	7.7	8.1	8.2	8.3	

240

Table V-19
EXTRUSION PRESS SCRUBBER LIQUOR

	Wate	er Use	Percent	Wastewater			
Plant	1/kkg	gal/ton	Recycle	<u>l/kkg</u>	gal/ton		
1	2,071	496.7	0	2,071	496.7		
2	*	*	*	*	*		

^{*}Data not available.

Sample: 1 of 2 plants

1 of 2 plants

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	0	0				
2.	acrolein	0.010	0	0				
3.	acrylonitrile	0.010	U	U				
4.	benzene	0.010	U	O				
5.	benzidine	0.010	O	U				
6.	carbon tetrachloride	0.010	0	0				
7.	chlorobenzene	0.010	0	U				
8.	1,2,4-trichlorobenzene	0.010	0	0				
9.	hexachlorobenzene	0.010	0	0				
10.	1.2-dichloroethane	0.010	0	0				
11.	1,1,1-trichloroethane	0.010	0	0				
12.	hexachloroethane	0.010	0	0				
13.	1.1-dichloroethane	0.010	0	0				
14.	1,1,2-trichloroethane	0.010	0	0				
15.	1,1,2,2-tetrachloroethane	0.010	U	0				
16.	chloroethane	0.010	0	O				
17.	bis(chloromethyl)ether	0.010	0	0				
18.	bis(chloroethyl)ether	0.010	0	0				
19.	2-chloroethyl vinyl ether	0.010	0	υ				
20.	2-chloronaphthalene	0.010	0	0				
21.	2,4,6-trichlorophenol	0.010	0	O				
22.	p-chloro-m-cresol	0.010	Õ	Ü				
23.	chloroform	0.010	Ō	Ū				
24.	2-chlorophenol	0.010	Ŏ	Ü				
25.	1,2-dichlorobenzene	0.010	ΰ	Ü				
26.	1,3-dichlorobenzene	0.010	Ö	Ö				
27.	1,4-dichlorobenzene	0.010	Ö	Ö				
28.	3.3'-dichlorobenzidine	0.010	ŏ	ŭ				
29.	1,1-dichloroethylene	0.010	ŏ	Ű				
30.	1,2-trans-dichloroethylene	0.010	ΰ	ŏ				
31.	2,4-dichlorophenol	0.010	ŏ	ŭ				
32.	1,2-dichloropropane	0.010	ő	ő				
33.	1,3-dichloropropene	0.010	ű	ő				
34.	2,4-dimethylphenol	0.010	ő	Ű				
35.	2.4-dinitrotoluene	0.010	0	Ű				
36.	2,6-dinitrotoluene	0.010	0	Ű				
37.	1,2-diphenylhydrazine	0.010	Ö	Ü				
38.	ethylbenzene	0.010	Ö	ő				
39.	fluoranthene	0.010	0	Ü				
37.	truoranthene	0.010	U	U				

Table V-20 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	of of	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- U.010	0.011-	0.101- 1.000	1.000+	
40.	4-chlorophenyl phenyl ether	0.010	0	0					
41.	4-bromophenyl phenyl ether	0.010	U	U					
42.	bis(2-chloroisopropyl)ether	0.010	0	U					
43.	bis(2-chloroethoxy)methane	0.010	U	0					
44.	methylene chloride	0.010	0	O					
45.	methyl chloride (chloromethane)	0.010	O	υ					
46.	methyl bromide (bromomethane)	0.010	0	0					
47.	bromoform (tribromomethane)	0.010	0	U					
48.	dichlorobromomethane	0.010	0	0					
49.	trichlorofluoromethane	0.010	0	0					
50.	dichlorodifluoromethane	0.010	0	0					
51.	chlorodibromomethane	0.010	0	0					
52.	hexachlorobutadiene	0.010	0	0					
53.	hexachlorocyclopentadiene	0.010	0	0					
54.	isophorone	0.010	0	0					
55.	naphthalene	0.010	0	0					
56.	nitrobenzene	0.010	0	0					
57.	2-nitrophenol	0.010	0	0					
58.	4-nitrophenol	0.010	0	0					
59.	2,4-dinitrophenol	0.010	0	0					
60.	4,6-dinitro-o-cresol	0.010	0	U					
61.	N-nitrosodimethylamine	0.010	0	0					
62.	N-nitrosodiphenylamine	0.010	0	U					
63.	N-nitrosodi-n-propylamine	0.010	0	0					
64.	pentachlorophenol	0.010	0	0					
65.	phenol	0.010	0	U					
66.	bis (2-ethylhexyl) phthalate	0.010	O	0					
67.	butyl benzyl phthalate	0.010	0	0					
68.	di-n-butyl phthalate	0.010	0	0					
69.	di-n-octyl phthalate	0.010	0	U					
70.	diethyl phthalate	0.010	0	U					
71.	dimethyl phthalate	0.010	0	O					
72.	benzo(a)anthracene	0.010	U	U					
73.	benzo(a)pyrene	0.010	0	O					
74.	benzo(b)fluoranthene	0.010	0	0					
75.	benzo(k)fluoranthene	0.010	0	0					
76.	chrysene	0.010	0	0					
77.	acenaphthylene	0.010	υ	0					
78.	anthracene (a)	0.010	0	0					

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+	
79.	benzo(ghi)perylene	0.010	0	0					
80.	fluorene	0.010	U	0					
81.	phenanthrene (a)	0.010	-	-					
82.	dibenzo(a,h)anthracene	0.010	0	0					
83.	indeno (1,2,3-c,d)pyrene	0.010	0	0					
84.	pyrene	0.010	0	0					
85.	tetrachloroethylene	0.010	0	0					
86.	toluene	0.010	0	0					
87.	trichloroethylene	0.010	0	0					
88.	vinyl chloride (chloroethylene)	0.010 0.005	Ö	0					
89.	aldrin	0.005	0	0					
90.	dieldrin	0.005	0	Ü					
91.	chlordane	0.005	ŏ	ΰ					
92.	4,4'-DDT	0.005	Ů	Ü					
93.	4, 4'-DDE	0.005	0	0					
94.	4, 4' - DDD	0.005	0	Ü					
95.	alpha-endosulfan	0.005	Ö	0					
96.	beta-endosulfan	0.005	0	0					
97.	endosulfan sulfate	0.005	0	Ö					
98.	endrin	0.005	Ű	Ű					
99.	endrin aldehyde	0.005	0	ő					
100.	heptachlor	0.005	ő	Ű					
101.	heptachlor epoxide	0.005	ő	ő					
102. 103.	alpha-BHC	0.005	Ö	Ű					
	beta-BHC	0.005	Ű	Ű					
104. 105.	gamma-BHC delta-BHC	0.005	ŭ	ŏ					
106.	PCB-1242 (b)	0.005	ő	ŏ					
107.	PCB-1254 (b)	0.005	-	-					
107.	PCB-1221 (b)	0.005	_	_					
109.	PCB-1232 (b)	0.005	_	_					
110.	PCB-1248 (c)	0.005	0	0					
111.	PCB-1260 (c)	0.005	-	-					
112.	PCB-1016 (c)	0.005	-	_					
113.	toxaphene	0.005	Ü	0					
114.	antimony	0.100	ĭ	š	2	1			
114.	arsenic	0.010	i	ž	3	•			
116.	arsenic	10 MFL	Ö	ő	•				
110.	asuestus	TO THE B	v	V					

Table V-20 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of			imes Obse es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
117.	beryllium	0.010	1	3	3			
118.	cadmium	0.002	1	3	3			
119.	chromium (total)	0.005	1	3	3			
120.	copper	0.009	1	3	1	2		
121.	cyanide (total)	0.010	1	3		3		
122.	lead	0.020	1	3	2	1		
123.	mercury	0.0001	1	3	3			
124.	nickel	0.005	1	3	3			
125.	selenium	0.01	1	3	2	1		
126.	silver	0.02	1	3	3			
127.	thallium	0.100	1	3	2	1		
128.	zinc	0.050	1	3		3		
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-21

SAMPLING DATA EXTRUSION PRESS SCRUBBER LIQUOR RAW WASTEWATER

	Stream Sample Concentrations (mg/l)					ons (mg/l)		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
Toxic Pollutants								
114. antimony	W - 7	2	0.003	0.005	0.002	0.013	0.007	
115. arsenic	W-7	2	<0.005	0.003	<0.005	<0.005	<0.004	
116. cadmium	W - 7	2	<0.001	<0.001	<0.001	0.001	<0.001	
119. chromium	W - 7	2	0.004	0.006	0.002	0.005	0.004	
120. copper	W - 7	2	0.010	0.056	0.005	0.012	0.024	
121. cyanide	W - 7	1	0.030	0.020	0.022	0.013	0.018	
122. lead	W - 7	2	0.009	0.059	0.010	0.006	0.025	
123. mercury	W - 7	2	<0.002	<0.0002	<0.0002	0.0002	<0.0002	
125. selenium	W - 7	2	0.015	<0.005	0.021	0.005	<0.010	
127. thallium	W-7	2	<0.001	<0.001	<0.001	0.012	<0.005	
128. zinc	W - 7	2	0.03	0.05	0.05	0.04	0.05	
Nonconventional								
alkalinity	W-7	2	170	200	190	220	203	
aluminum	W - 7	2	0.06	0.40	5.7	0.30	2.1	
calcium	W – 7	2	55	30	31	30	30	
chemical oxygen demand (COD)	W - 7	2	12	16	100	7.9	41	
dissolved solids	W - 7	2	3	400	240	430	360	
magnesium	W - 7	2	19	17	19	16	17	
phenols (total; by 4-AAP method)	W - 7	1	1.0	0.011	0.012	0.012	0.012	
sulfate	W - 7	2	81	72	86	80	79	
total organic carbon (TOC)	W-7	2	0	2	8	15	8	
Conventional								
oil and grease	W - 7	1	6.6	5.6	6.9	9.3	7.3	
suspended solids	W - 7	2	<1	3	6	5	5	
pH (standard units)	W - 7		7.7	8.4	8.3	8.1		

246

Table V-22
EXTRUSION DUMMY BLOCK CONTACT COOLING WATER

Water Use			Percent	Wastewater		
Plant	1/kkg	gal/ton	Recycle	1/kkg	gal/ton	
1	2,072	497.0	0	2,072	497.0	
2	2,172	521.0	0	2,172	521.0	
3	*	*	0	*	*	

^{*}Data not available.

Statistical Summary

 Mean
 2,122
 509.0
 2,122
 509.0

 Sample:
 2 of 3 plants
 2 of 3 plants

		Analytical Ouantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	1	1	1			
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1	1			
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	1	1	}			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1,2-dichloroethane	0.010	1	1	}			
11.	1,1,1-trichloroethane	0.010	1	1	1			
12.	hexachloroethane	0.010	1	1	3			
13.	1,1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	ļ			
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1			
16.	chloroethane	0.010	1	1	i			
17.	bis(chloromethyl)ether	0.010	1	1	1			
18.	bis(chloroethyl)ether	0.010	1	1	1			
19.	2-chloroethyl vinyl ether	0.010	1	I	ļ			
20.	2-chloronaphthalene	0.010	1	1	!			
21.	2,4,6-trichlorophenol	0.010	1	1	1			
22.	p-chloro-m-cresol	0.010	1	1	1			
23.	chloroform	0.010	1)		1		
24.	2-chlorophenol	0.010	Ţ	1	1			
25.	1,2-dichlorobenzene	0.010	1	}	1			
26.	1,3-dichlorobenzene	0.010	1	!	!			
27.	l,4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	j	1	!			
31.	2,4-dichlorophenol	0.010	1	j	i			
32.	1,2-dichloropropane	0.010	1	1	1			
33.	1,3-dichloropropene	0.010	1	!	!			
34.	2,4-dimethylphenol	0.010	ļ	1	!			
35.	2,4-dinitrotoluene	0.010	1]	!			
36.	2,6-dinitrotoluene	0.010	1	1	!			
37.	1,2-diphenylhydrazine	0.010	1	1]			
38.	ethylbenzene	0.010	1	})			
39.	fluoranthene	0.010	ŧ	}	ì			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DUMMY BLOCK CONTACT COOLING WATER RAW WASTEWATER

		Analytical	Number	Number	Number of Times Observed			rved
		Quantification	of	of			es (mg/l)	
		Level	Streams	Samples	ND-	0.011-	0.101-	
	<u>Pollutant</u>	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyl phenyl ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	i	1			
43.	bis(2-chloroethoxy)methane	0.010	1	1	;			
44.	methylene chloride	0.010	' 1	1	i			
45.	methyl chloride (chloromethane)	0.010	1	,	i			
46.	methyl bromide (bromomethane)	0.010	1	' 1	i			
47.	bromoform (tribromomethane)	0.010	1	,	i			
48.	dichlorobromomethane	0.010	1	'	;			
49.	trichlorofluoromethane	0.010	1	1	1			
50.	dichlorodifluoromethane	0.010	1		,			
51.	chlorodibromomethane	0.010	1	1				
52.	hexachlorobutadiene	0.010	1	1	,			
53.		0.010	1	1	'			
54.	hexachlorocyclopentadiene	0.010	1	1	1			
55.	isophorone naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	'	1	,			
57.	2-nitrophenol	0.010	1	1	- 1			
58.	4-nitrophenol	0.010	1	1	1			
59.	2.4-dinitrophenol	0.010	1	1	1			
60.	4,6-dinitro-o-cresol	0.010	1	1	<u> </u>			
61.	N-nitrosodimethylamine	0.010	i	1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	,	1	1			
64.	pentachlorophenol	0.010	i i	j	1			
65.	phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	;	1			
67.	butyl benzyl phthalate	0.010	1	1	1			
68.	di-n-butyl phthalate	0.010	1	i	1			
69.	di-n-octyl phthalate	0.010	1	1	ì			
70.	diethyl phthalate	0.010	<u>'</u>	i	1			
71.	dimethyl phthalate	0.010	1	1	i			
72.	benzo(a)anthracene	0.010	1	1	1			
73.	benzo(a)pyrene	0.010	1	1	i			
74.	benzo(b)fluoranthene	0.010	i	i	1			
75.	benzo(k)fluoranthene	0.010	1	1	i			
76.	chrysene	0.010	1	1	1			
77.	acenaphthylene	0.010	1	1	i			
78.	anthracene (a)	0.010	ì	i	1			
,	anone acone (a)	0.010	ı	•	'			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DUMMY BLOCK CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sample	mes Obser es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	i			
80.	fluorene	0.010	1	1	1			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	1	1	1			
84.	pyrene	0.010	1	1	1			
85.	tetrachloroethylene	0.010	1	1	1			
86.	toluene	0.010	1	1	1			
87.	trichloroethylene	0.010	1	1	1			
88.	vinyl chloride (chloroethylene)	0.010	1	1	1			
89.	aldrin	0.005	1	1	1			
90.	dieldrin	0.005	1	1	1			
91.	chlordane	0.005	1	1	1			
92.	4,4'-DDT	0.005	1	1	1			
93.	4, 4'-DDE	0.005	1	1	1			
94.	4, 4'-DDD	0.005	1	1	1			
95.	alpha-endosulfan	0.005	1	1	1			
96.	beta-endosulfan	0.005	1	1	1			
97.	endosulfan sulfate	0.005	1	1	1			
98.	endrin	0.005	1	1	1			
99.	endrin aldehyde	0.005	1	1	1			
100.	heptachlor	0.005	1	1	1			
101.	heptachlor epoxide	0.005	1	ī	1			
102.	alpha-BHC	0.005	1	1	1			
103.	beta-BHC	0.005	1	1	1			
104.	gamma-BHC	0.005	1	1	1			
105.	delta-BHC	0.005	1	1	1			
106.	PCB-1242 (b)	0.005	1	1	1			
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	1	1	1			
111.	PCB-1260 (c)	0.005	-	-				
112.	PCB-1016 (c)	0.005	-	_				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	1	1	1			
115.	arsenic	0.010	1	1	1			
116.	asbestos	10 MFL	0	0				

Table V-23 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION DUMMY BLOCK CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			ved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	1	1	1			
118,	cadmium	0.002	1	1	1			
119.	chromium (total)	0.005	1	1	1			
120.	copper	0.009	1	1	1			
121.	cyanide (total)	0.010	1	1	1			
122.	lead	0.020	1	1	1			
123.	mercury	0.0001	1	1	1			
124.	nickel	0.005	1	1	1			
125.	selenium	0.01	U	0				
126.	silver	0.02	O	0				
127.	thallium	0.100	O	O				
128.	zinc	0.050	1	1	1			
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-24

SAMPLING DATA EXTRUSION DUMMY BLOCK COOLING RAW WASTEWATER

Pollutant	Stream Code	Sample Type	Source	Day f	Concentrat Day 2	lons (mg/l) Day 3	Average
Toxic Pollutants							
23. chloroform	L-4	1	0.100	0.080			0.080
Nonconventional							
alkalinity	L-4	2		32			32
aluminum	L-4	2	<0.5	<0.5			<0.5
calcium	L-4	2	9	10			10
chemical oxygen demand (COD)	L-4	2	<5	<5			<5
dissolved solids	L-4	2		50			50
magnesium	L-4	2	2.24	2.1			2.1
phenols (total; by 4-AAP method)	L-4	2		0.002			0.002
sulfate	L-4	2		72			72
total organic carbon (TOC)	L-4	2	2.8	2.40			2.40
Conventional							
oil and grease	L-4	1		74			74
suspended solids	L-4	2	<2	<2			<2
pH (standard units)	L-4	2		7.8			

Table V-25

DRAWING WITH NEAT OILS SPENT LUBRICANT

Plant	Wate <u>l/kkg</u>	er Use gal/ton	Percent <u>Recycle</u>	Waste l/kkg	ewater gal/ton
1	*	*	100	0	0
2	*	*	100	0	0
3	*	*	*	5.420	1.300
4	*	*	*	8.147	1.954
5	5.879	1.410	*	*	*

^{*}Data not available.

Statistical Summary

Minimum	0	0
Maximum	8.147	1.954
Mean	3.392	0.8135
Median	2.710	0.6500
Sample:	4 of 6	6 plants
Nonzero Mean	6.784	1.627
Sample:	2 of 6	6 plants

Note: Table does not include 61 plants which provided insufficient information to calculate water use and wastewater values.

Table V-26
DRAWING WITH EMULSIONS OR SOAPS SPENT EMULSION

Plant	Water <u>l/kkg</u>	Use gal/ton	Percent Recycle		ewater gal/ton
1	*	*	*	0	0
2	*	*	P	3.377	0.8100
3	*	*	P	11.72	2.810
4	*	*	Р	26.18	6.279
5	*	*	P	260.6	62.50
6	*	*	*	1,084	260.0
7	*	*	99 P	1,113	267.0
8	1,072,000	257,100	0 1	,072,000	257,100
9	*	*	*	*	*
10	*	*	*	*	*
11	*	*	*	*	*
12	*	*	*	*	*
13	*	*	*	*	*

^{*}Data not available. P Periodic discharge.

Statistical Summary

Minimum Maximum Mean	0 1,072,000 134,300	0 257,100 32,210
Median	143.4	34.39
Sample:	8 of 13	
Nonzero Mean	153,500	
Sample:	7 of 13	plants
Nonzero Mean with Recycle	416.5	
Sample:	6 of 13	plants

Table V-27

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
DRAWING WITH EMULSIONS OR SOAPS SPENT EMULSION
RAW WASTEWATER

		Analytical Quantification	Number Number of of		Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	Ö	Ó				
3.	acrylonitrile	0.010	Ō	0				
4.	benzene	0.010	0	Ü				
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	Ö	Ó				
7.	chlorobenzene	0.010	0	Ō				
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	i	i	i			
10.	1.2-dichloroethane	0.010	Ó	Ú				
11.	1.1.1-trichloroethane	0.010	0	Ō				
12.	hexachloroethane	0.010	ĭ	ĭ	1			
13.	1.1-dichloroethane	0.010	ò	ò				
14.	1,1,2-trichloroethane	0.010	ŏ	ő				
15.	1,1,2,2-tetrachloroethane	0.010	Ŏ	ŏ				
16.	chloroethane	0.010	Ű	ŏ				
17.	bis(chloromethyl)ether	0.010	1	ĭ	1			
18.	bis(chloroethyl)ether	0.010	i	ί	í			
19.	2-chloroethyl vinyl ether	0.010	'n	Ó	•			
20.	2-chloronaphthalene	0.010	1	1	1			
21.	2,4,6-trichlorophenol	0.010	1	i	1			
22.	p-chloro-m-cresol	0.010	i	i	•	1		
23.	chloroform	0.010	'n	ò		•		
24.	2-chlorophenol	0.010	1	1			1	
25.	1, 2-dichlorobenzene	0.010	1	i	1		•	
26.	1,3-dichlorobenzene	0.010	1	i	i			
27.	1.4-dichlorobenzene	0.010	1	;	1			
28.	3,3'-dichlorobenzidine	0.010	i	1	i			
29.	1,1-dichloroethylene	0.010	Ó	'n	•			
30.	1,2-trans-dichloroethylene	0.010	0	0				
31.	2,4-dichlorophenol	0.010	1	1	1			
32.	1,2-dichloropropane	0.010	Ó		ı			
33.	1,3-dichloropropene	0.010	0	0				
34.	2,4-dimethylphenol	0.010) 1	1	1			
35.	2.4-dimethylphenol 2.4-dinitrotoluene	0.010	1	,	*	1		
36.	2,6-dinitrotoluene	0.010	1	: 1	1	•		
30. 37.	·		1	1	1	1		
38.	1,2-diphenylhydrazine	0.010 0.010	1	1 0		ı		
38. 39.	ethylbenzene fluoranthene	0.010	0	U	1			
39.	truoranthene	0.010	ı	('			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DRAWING WITH EMULSIONS OR SOAPS SPENT EMULSION RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times O in Samples (mg		es (mg/l)	(1)	
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	0.010	0.011- 0.100	1.000	1.000+	
40.	4-chlorophenyl phenyl ether	0.010	1	1	1				
41.	4-bromophenyl phenyl ether	0.010	1	1	1				
42.	bis(2-chloroisopropyl)ether	0.010	1	1	!				
43.	bis(2-chloroethoxy)methane	0.010	1	1	1				
44.	methylene chloride	0.010	0	0					
45.	methyl chloride (chloromethane)	0.010	0	0					
46.	methyl bromide (bromomethane)	0.010	0	0					
47.	bromoform (tribromomethane)	0.010	0	0					
48.	dichlorobromomethane	0.010	0	0					
49.	trichlorofluoromethane	0.010	0	0					
50.	dichlorodifluoromethane	0.010	0	0					
51.	chlorodibromomethane	0.010	0	Ú	1				
52.	hexachlorobutadiene	0.010	1	1	1				
53.	hexachlorocyclopentadiene	0.010	1		,	1			
54.	isophorone	0.010	1	1	1	ı			
55.	naphthalene	0.010	!	•	!				
56.	nitrobenzene	0.010	1	l 1	1				
57.	2-nitrophenol	0.010	1	!	1				
58.	4-nitrophenol	0.010	1	1	1				
59.	2,4-dinitrophenol	0.010	1	1	1				
60.	4,6-dinitro-o-cresol	0.010	1	1	1				
61.	N-nitrosodimethylamine	0.010	i	1	1				
62.	N-nitrosodiphenylamine	0.010	1	1	1				
63.	N-nitrosodi-n-propylamine	0.010	1	,	i				
64.	pentachlorophenol	0.010 0.010	, 1	1	i				
65.	phenol		1	1	•	1			
66.	bis (2-ethylhexyl) phthalate	0.010 0.010	1	1	1	'			
67.	butyl benzyl phthalate	0.010	1	1	'	1			
68.	di-n-butyl phthalate	0.010	1	1		i			
69.	di-n-octyl phthalate	0.010	1	1	ı	•			
70.	diethyl phthalate	0.010	1	1	i				
71.	dimethyl phthalate	0.010	1	1	i				
72.	benzo(a)anthracene	0.010	i	i	i				
73.	benzo(a)pyrene	0.010	1	1	i				
74.	benzo(b)fluoranthene	0.010	; i	i	i				
75.	benzo(k)fluoranthene	0.010	,	1	1				
76.	chrysene	0.010	1	i	i				
77.	acenaphthylene	0.010	1	1	i				
78.	anthracene (a)	0.010	'	'	•				

256

Table V-27 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DRAWING WITH EMULSIONS OR SOAPS SPENT EMULSION RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of in Samp		imes Obse es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	1			
80.	fluorene	0.010	1	1	1			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	1]	!			
84.	pyrene	0.010	1	1	ı			
85.	tetrachloroethylene	0.010	0	0				
86.	toluene	0.010	0	0				
87.	trichloroethylene	0.010	0	0				
88.	vinyl chloride (chloroethylene)	0.010	0	0	•			
89.	aldrin	0.005	1	l 1	l 1			
90. 91.	dieldrin	0.005	1	1	!			
92.	chlordane 4,4'-DDT	0.005 0.005	<u>'</u>	1	1			
93.	4, 4'-DDE	0.005	' '	1	1			
94.	4,4'-DDD	0.005	1	1	1			
95.	alpha-endosulfan	0.005	1	1	1			
96.	beta-endosulfan	0.005	1	1	1			
97.	endosulfan sulfate	0.005	1	1	ì			
98.	endosurran surrace endrin	0.005	1	1	i			
99.	endrin aldehyde	0.005	i	i	i			
100.	heptachlor	0.005	1	i	i			
101.	heptachlor epoxide	0.005	i	i	i			
102.	alpha-BHC	0.005	i	i	i			
103.	beta-BHC	0.005	i	i	i			
104.	gamma-BHC	0.005	i	i	i			
105.	delta-BHC	0.005	1	1	1			
106.	PCB-1242 (b)	0.005	1	i	1			
107.	PCB-1254 (b)	0.005	-	- -				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	_	-				
110.	PCB-1248 (c)	0.005	1	1	1			
111.	PCB-1260 (c)	0.005	~	~				
112.	PCB-1016 (c)	0.005	-	-				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	0	0				
115.	arsenic	0.010	0	O				
116.	asbestos	10 MFL	O	0				

Table V-27 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DRAWING WITH EMULSIONS OR SOAPS SPENT EMULSION RAW WASTEWATER

		Analytical Quantification	Number of	Number of	in Samp		Times Observed Les (mg/l)		
	<u>Pollutant</u>	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+	
117.	beryllium	0.010	0	O					
118.	cadmium	0.002	O	0					
119.	chromium (total)	0.005	0	0					
120.	copper	0.009	0	U					
121.	cyanide (total)	0.010	0	0					
122.	lead	0.020	υ	υ					
123.	mercury	0.0001	0	0					
124.	nickel	0.005	0	O					
125.	selenium	0.01	O	0					
126.	silver	0.02	0	0					
127.	thallium	0.100	O	0					
128.	zinc	0.050	0	0					
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	O	0					

(a), (b), (c) Reported together.

Fable V-28

SAMPLING DATA
DRAWING WITH EMULSIONS OR SOAPS SPENF EMULSION

RAW WASTEWATER

0.11	Stream	Sample	· · · · · · · · · · · · · · · · · · ·			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3 Average
Toxic Pollutants						
22. p-chloro-m-cresol	S-2	1	ND	0.028		0.028
24. 2-chlorophenol	S-2	1	ND	0.130		0.130
35. 2,4-dinitrotoluene	S-2	1	ND	0.077		0.077
37. I,2-diphenylhydrazine	S-2	1	ND	0.071		0.071
54. isophorone	S-2	1	ND	0.039		0.039
66. bis(2-ethylhexyl) phthalate	S-2	1	*	0.034		0.034
68. di-n-butyl phthalate	S-2	1	ND	0.023		0.023
69. di-n-octyl phthalate	S - 2	1	*	0.023		0.023
Conventional						
oil and grease	S-2	1	5	51,540		51,540

259

Table V-29
SAWING SPENT LUBRICANT

	Wate	r Use	Percent	Waste	water
Plant	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	0.5212	0.1250	0	0	0
2	*	*	*	0.4586	0.0110
3	*	*	*	0.6671	0.1600
4	*	*	*	1.167	0.2800
5	1.438	0.3450	0	1.438	0.3450
6	*	*	*	6.379	1.530
7	*	*	*	19.14	4.590
8	*	*	*	*	*
9	*	*	*	*	*
10	*	*	*	*	*
11	*	*	*	*	*
12	*	*	*	*	*

^{*}Sufficient data not available to calculate these values.

Statistical Summary

Minimum	0	0
Maximum	19.14	4.590
Mean	4.119	0.9880
Median	1.167	0.2800
Sample:	7 of 12	2 plants
Nonzero Mean	4.807	1.153
Sample:	6 of 12	2 plants

Table V-30

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS SAWING SPENT LUBRICANT RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)				
		Level	Streams	Samples	พบ-	0.011-	0.101-		
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+	
1.	acenaphthene	0.010	t	1	1				
2.	acrolein	0.010	1	1	1				
3.	acrylonitrile	0.010	1	1	1				
4.	benzene	0.010	1	1	1				
5.	benzidine	0.010	1	1	1				
6.	carbon tetrachloride	0.010	1	1	1				
7.	chlorobenzene	0.010	1	1	1				
8.	1,2,4-trichlorobenzene	0.010	1	1	1				
9.	hexachlorobenzene	0.010	1	1	1				
10.	1,2-dichloroethane	0.010	1	1	1				
11.	1,1,1-trichloroethane	0.010	1	1	1				
12.	hexachloroethane	0.010	1	1	1				
13.	1,1-dichloroethane	0.010	1	1	1				
14.	1,1,2-trichloroethane	0.010	1	1	1				
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1				
16.	chloroethane	0.010	1	1	1				
17.	bis(chloromethyl)ether	0.010	1	1	1				
18.	bis(chloroethyl)ether	0.010	1	1	1				
19.	2-chloroethyl vinyl ether	0.010	1	1	1				
20.	2-chloronaphthalene	0.010	1	1	1				
21.	2,4,6-trichlorophenol	0.010	1	1	1				
22.	p-chloro-m-cresol	0.010	1	1	1				
23.	chloroform	0.010	1	1	1				
24.	2-chlorophenol	0.010	1	1	1				
25.	1,2-dichlorobenzene	0.010	1	1	1				
26.	1,3-dichlorobenzene	0.010	1	1	1				
27.	1,4-dichlorobenzene	0.010	1	1	1				
28.	3,3'-dichlorobenzidine	0.010	1	1	1				
29.	1,1-dichloroethylene	0.010	1	1	1				
30.	1,2-trans-dichloroethylene	0.010	1	1	1				
31.	2,4-dichlorophenol	0.010	1	1	1				
32.	1,2-dichloropropane	0.010	1	1	1				
33.	1,3-dichloropropene	0.010	1	1	1				
34.	2,4-dimethylphenol	0.010	1	1	1				
35.	2,4-dinitrotoluene	0.010	1	1	1				
36.	2,6-dinitrotoluene	0.010	1	1	1				
37.	1,2-diphenylhydrazine	0.010	1	1	1				
38.	ethylbenzene	0.010	1	1	1				
39.	fluoranthene	0.010	1	1	1				

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS SAWING SPENT LUBRICANT RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times C in Samples (mg		es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyl phenyl ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	Ţ	!			
44.	methylene chloride	0.010]	1	1			
45.	methyl chloride (chloromethane)	0.010	1	1	!			
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	}	}	1			
48.	dichlorobromomethane	0.010	j]	!			
49.	trichlorofluoromethane	0.010	1	!	l			
50.	dichlorodifluoromethane	0.010	!]	!			
51.	chlorodibromomethane	0.010	1	1	!			
52.	hexachlorobutadiene	0.010]	1	!			
53.	hexachlorocyclopentadiene	0.010	i 1	ł	!			
54.	isophorone	0.010	1	1	!			
55.	naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	1	1	:			
57.	2-nitrophenol	0.010	1	1	;			
58.	4-nitrophenol	0.010	!	!	,			
59.	2,4-dinitrophenol	0.010	1	1	1			
60.	4,6-dinitro-o-cresol	0.010	1	1	:			
61.	N-nitrosodimethylamine	0.010	1	i 1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	!	1	1			
64.	pentachlorophenol	0.010	1	1	1			
65.	phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	1	1			
67.	butyl benzyl phthalate	0.010 0.010	i 1	1	1			
68.	di-n-butyl phthalate		1	1	1			
69.	di-n-octyl phthalate	0.010	1	i 1	1			
70.	diethyl phthalate	0.010 0.010	1	1	1			
71.	dimethyl phthalate		1	1	1			
72.	benzo(a)anthracene	0.010	1	1	1			
73.	benzo(a)pyrene	0.010	1	1	1			
74.	benzo(b)fluoranthene	0.010	r 1	<u>'</u>	1			
75.	benzo(k)fluoranthene	0.010 0.010	1 1	1	1			
76.	chrysene	0.010	1	i	i			
77.	acenaphthylene	0.010	1	1	1			
78.	anthracene (a)	0.010	ı	ı	'			

Table V-30 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS SAWING SPENT LUBRICANT RAW WASTEWATER

		Analytical	Number	Number	Nui		imes Obse	rved
		Quantification	of	of			es (mg/l)	
	0.11	Level	Streams	Samples	ND-	0.011-	0.101-	1 000.
	<u>Pollutant</u>	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	1			
80.	fluorene	0.010	1	1	1			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	1	1	1			
84.	pyrene	0.010	1	1	1			
85.	tetrachloroethylene	0.010	1	1				1
86.	toluene	0.010	1	1	1			
87.	trichloroethylene	0.010	1	1	1			
88.	vinyl chloride (chloroethylene)	0.010	1	1	1			
89.	aldrin	0.005	1	1	1			
90.	dieldrin	0.005	1	1	1			
91.	chlordane	0.005	1	1	1			
92.	4,4'-DDT	0.005	1	1	1			
93.	4, 4'-DDE	0.005	1	1	1			
94.	4,4'-DDD	0.005	1	. 1	1			
95.	alpha-endosulfan	0.005	1	1	1			
96.	beta-endosulfan	0.005	1	1	1			
97.	endosulfan sulfate	0.005	1	1	1			
98.	endrin	0.005	1	1	1			
99.	endrin aldehyde	0.005	1	1	1			
100.	heptachlor	0.005	1	1	1			
101.	heptachlor epoxide	0.005	1	1	1			
102.	alpha-BHC	0.005	1	1	1			
103.	beta-BHC	0.005	1	1	1			
104.	gamma-BHC	0.005	1	1	1			
105.	delta-BHC	0.005	1	i	1			
106.	PCB-1242 (b)	0.005	1	i	1			
107.	PCB-1254 (b)	0.005	<u>-</u>					
108.	PCB-1221 (b)	0.005	_	-				
109.	PCB-1232 (b)	0.005	-	_				
110.	PCB-1248 (c)	0.005	1	1	1			
111.	PCB-1260 (c)	0.005	<u>.</u>	· _	,			
112.	PCB-1016 (c)	0.005	_	_				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	3	À	,		1	
115.	arsenic	0.010	3	4	3	0	i	0
116.	asbestos	10 MFL	0	$\vec{0}$,	J	•	J
110.	4000000	10 111 11	v	•				

Table V-30 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS SAWING SPENT LUBRICANT RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+	
117.	beryllium	0.010	3	4	4	O		0	
118.	cadmium	0.002	3	4	2	2		0	
119.	chromium (total)	0.005	3	4	3	0	1	U	
120.	copper	0.009	3	4	1	1	1	1	
121.	cyanide (total)	0.010	3	4	4	O			
122.	lead	0.020	3	4	1	0	3		
123.	mercury	0.0001	3	4	4				
124.	nickel	0.005	3	4	2	1	1		
125.	selenium	0.01	3	4	4	0			
126.	silver	0.02	3	4	4		0		
127.	thallium	0.100	3	4	4	0			
128.	zinc	0.050	3	4		0	2	2	
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	Ü					

⁽a), (b), (c) Reported together.

Table V-31 SAMPLING DATA SAWING SPENT LUBRICANT RAW WASTEWATER

			Stream				Concentrati		
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	114.	antimony	AA - 10	4	<0.010	0.010	<0.010		<0.055
		,	CC-3	1	<0.010	0.210			0.210
			DD-2	1	<0.002		0.007		0.007
	115.	arsenic	AA-10	4	<0.010	<0.010	<0.100		<0.055
			CC-3	1	<0.010	<0.020*			<0.020
			DD-2	1	<0.001		0.208		0.208
	117.	beryllium	AA-10	4	<0.005	<5.0	<0.050		<2.525
		•	CC-3	1	<0.005	<0.005			<0.005
			DD-2	1	<0.010		<0.010		<0.010
	118.	cadmium	AA-10	4	<0.020	<0.020	<2.000		<1.01
			CC-3	1	<0.020	0.020			0.020
			DD-2	1	<0.010		0.012		0.012
	119.	chromium	AA-10	4	<0.020	<0.020	<2.000		<1.01
265			CC-3	1	<0.020	0.160			0.160
S			DD-2	1	<0.020		<0.020		<0.020
	120.	copper	AA-10	4	<0.050	0.100	<5.000		<2.55
			CC-3	1	<0.050	1.250			1.250
			DD-2	1	0.013		0.390		0.390
	121.	cyanide (total)	AA-10	4	<0.02	<0.02	<0.02		<0.02
			CC-3	1	<0.02	<0.02			<0.02
			DD-2	1	<0.02		<0.02		<0.02
	122.	lead	AA-10	4	<0.050	0.150	0.500		0.325
			CC-3	1	<0.050	0.450			0.450
			DD-2	1	<0.100		<0.100		<0.100
	123.	mercury	AA-10	4	<0.0002	<0.0002	<0.0002		<0.0002
			CC-3	1	0.0004	<0.0002			<0.0002
			DD-2	1	<0.005		<0.005		<0.005
	124.	nickel	AA-10	4	<0.050	<0.050	<0.500		<0.275
			CC-3	1	<0.050	0.050			0.050
			DD-2	1	<0.050		0.122		0.122

Table V-31 (Continued)

SAMPLING DATA SAWING SPENT LUBRICANT RAW WASTEWATER

	Stream	Sample			Concentrations (mg/l)				
Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3 Average			
125. selenium	AA-10	4	<0.010	<0.010	<0.100	<0.055			
	CC - 3	1	<0.010	<0.020*		<0.020			
	DD-2	1	<0.005		<0.005	<0.005			
126. silver	AA - 10	4	<0.010	<0.010	<0.100	<0.055			
	CC - 3	1	<0.005	<0.005		<0.005			
	DD-2	1	<0.001		0.002	0.002			
127. thallium	AA - 10	4	<0.010	<0.010	<0.100	<0.055			
	CC-3	1	<0.010	<0.010		<0.010			
	DD-2	1	<0.001		<0.001	<0.001			
128. zinc	AA-10	4	<0.020	0.180	0.600	0.390			
1207	CC-3	1	1.10	12.9		12.9			
	DD-2	1	<0.010		6.76	6.76			
Nonconventional									
aluminum	AA-10	4	<0.100	2.4	16.0	9.2			
	CC-3	1	1.10	75.4		75.4			
	DD-2	1	<0.050		185	185			
barium	AA-10	4	0.250	0.100	<0.500	<0.300			
	CC-3	1	<0.050	0.400		0.400			
	DD-2	1	0.179		0.229	0.229			
boron	AA-10	4	<0.100	2.8	<1.00	<1.9			
	CC-3	1	0.400	0.300		0.300			
	DD-2	1	<0.100		<0.100	<0.100			
calcium	AA - 10	4	117	74.1	84.0	79.1			
	CC - 3	1	36.9	88.1		88.1			
	DD-2	1	5.68		5.72	5.72			
cobalt	AA - 1 0	4	<0.050	<0.050	<0.500	<0.275			
	CC-3	1	<0.050	<0.050		<0.050			
	DD-2	1	<0.010		<0.010	<0.010			
iron	AA - 1 0	4	2.85	2.05	10.5	6.275			
	CC-3	1	0.050	8.1		8.1			
	DD-2	1	0.054		18.0	18.0			

Table V-31 (Continued)

SAMPLING DATA SAWING SPENT LUBRICANT RAW WASTEWATER

		Stream	Sample				ions (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
267	magnesium	AA - 10	4	33.9	40.0	43.0		41.5
	· ·	CC-3	1	7.0	25.1			25.1
		DD-2	1	108		62.0		62.0
	manganese	AA-10	4	<5.0	0.200	<0.500		<0.350
	·	CC-3	1	<0.050	1.800			1.800
		DD-2	1	<0.010		18.0		18.0
	molybdenum	AA -10	4	<0.050	<0.050	<0.500		<0.275
		CC-3	1	<0.050	0.050			0.050
		DD-2	1	<0.020		<0.020		<0.020
	sodium ·	AA-10	4	4.8	122	14.0		68
		CC-3	1	6.80	714.0			714.0
	tin	AA - 10	4	<0.050	<0.050	<0.500		<0.275
		CC - 3	1	<0.050	1.150			1.150
		DD-2	1	<0.020		<0.020		<0.020
	titanium	AA - 10	4	<0.050	<0.050	1.00		<0.525
		CC - 3	1	<0.050	<0.050			<0.050
		DD-2	1	<0.010		<0.010		<0.010
	vanadium	AA - 10	4	<0.050	<0.050	<0.500		<0.275
		CC-3	1	<0.050	<0.050			<0.050
		DD-2	1	0.026		<0.020		<0.020
	yttrium	AA - 10	4	<0.050	<0.050	<0.500		<0.275
		CC - 3	1	<0.050	<0.050			<0.050
		DD-2	1	<0.020		<0.020		<0.020
	acidity	AA - 10	4	<1	<1	<1		<1
		CC - 3	1	<1	<1			<1
		DD-2	1	<1		<1		<1
	alkalinity	AA - 10	4	270	600	740		670
		CC - 3	1	2,600	3,300			3,300
		DD-2	1	274		4,000		4,000
	chloride	AA - 10	4	24	47	34		41
		CC-3	1	24	120			120
		DD-2	1	61		100		100

Table V-31 (Continued)

SAMPLING DATA SAWING SPENT LUBRICANT RAW WASTEWATER

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat:	ions (mg/l) Day 3 Average
chemical oxygen demand (COD)	AA - 10 DD - 2	4	23 <0.5	7,370	12,400 25,600	9,890 25,600
fluoride	AA - 10 CC - 3 DD - 2	4 1 1	0.17 0.73 0.29	0.74 0.97	1.6 0.75	1.2 0.97 0.75
ammonia nitrogen	AA - 10 DD - 2	4 1	0.10 <0.01	0.21	0.36 6.2	0.29 6.2
phenols (total; by 4-AAP method)	AA - 10	4	<0.005	0.11	0.048	0.079
sulfate	AA - 10 CC - 3 DD - 2	4 1 1	115 75 180	150 1,200	150 900	150 1,200 900
dissolved solids	AA - 10 CC - 3 DD - 2	4 1 1	530 300 670	1,910 14,000	6,800 2,600	4,360 14,000 2,600
total organic carbon (TOC)	AA - 1 0 DD - 2	4	<1 <1	670	7,700 6,600	4,190 6,600
phosphate	AA -10 DD-2	4 1	<3 20	<3	<3 60	<3 60
total solids (TS)	AA-10 CC-3 DD-2	4 1 1	590 204 380	6,790 32,300	36,700 21,000	21,750 32,300 21,000
Conventional						
suspended solids	AA - 10 CC - 3 DD - 2	4 1 1	17 <1 1	1,170 495	660 3,200	920 495 3,200
pH (standard units)	AA-10 CC-3 DD-2	4 1 1	7.44 5.35 7.03	7.17 8.93	6.89 8.34	
oil and grease	AA - 1 0 CC - 3 DD - 2	4 1 1	<0.5 <1 <1	5,100 23,000	4,200 6,900	4,650 23,000 6,900

^{*}Detection limit raised due to interference.

Table V-32

FREQUENCY OF OCCURRENCE OF FOXIC POLLUTANTS DEGREASING SPENT SOLVENTS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l) ND- 0.011- 0.101-			rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	0.010	0.011- 0.100	0.101- 1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	1	1	1			
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1	1			
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	1	1	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1,2-dichloroethane	0.010	1	1	1			
11.	1.1.1-trichloroethane	0.010	1	ì	i			
12.	hexachloroethane	0.010	1	i	i			
13.	1.1-dichloroethane	0.010	1	1	i			
14.	1,1,2-trichloroethane	0.010	1	1	1			
15.	1,1,2,2-tetrachloroethane	0.010	1	ì	i			
16.	chloroethane	0.010	i	i	i			
17.	bis(chloromethyl)ether	0.010	1	i	i			
18.	bis(chloroethyl)ether	0.010	i	i	i			
19.	2-chloroethyl vinyl ether	0.010	i	i	i			
20.	2-chloronaphthalene	0.010	ì	i	ì			
21.	2,4,6-trichlorophenol	0.010	i	i	1			
22.	p-chloro-m-cresol	0.010	i	í	i			
23.	chloroform	0.010	1	i	i			
24.	2-chlorophenol	0.010	1	1	i			
25.	1,2-dichlorobenzene	0.010	1	ì	1			
26.	1,3-dichlorobenzene	0.010	,	1	;			
27.	1.4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	1	1	i			
31.	2,4-dichlorophenol	0.010	1	1	,			
32.	1,2-dichloropropane	0.010	1	1	1			
33.			1	1	•			
33. 34.	1,3-dichloropropene	0.010	1	1	1			
34. 35.	2,4-dimethylphenol	0.010	1	! 1	;			
36.	2,4-dinitrotoluene	0.010	l 1	1	1			
30. 37.	2,6-dinitrotoluene	0.010	1	1				
	1,2-diphenylhydrazine	0.010	1	!	!			
38.	ethylbenzene	0.010	!	!	!			
39.	fluoranthene	0.010	1	1	ł			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DEGREASING SPENT SOLVENTS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	in Samples (mg/l		es $(mg/1)$	cved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
			1111111/	<u></u>		<u> </u>		
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyl phenyl ether	0.010	1	j	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	1	1			
44.	methylene chloride	0.010	1	1	1			
45.	methyl chloride (chloromethane)	0.010	1	1	1			
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	ì	1			
49.	trichlorofluoromethane	0.010	1	i	1			
50.	dichlorodifluoromethane	0.010	1	1	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	1	1			
53.	hexachlorocyclopentadiene	0.010	1	1	1			
54.	isophorone	0.010	1	1	1			
55.	naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	1	1	1			
57.	2-nitrophenol	0.010	1	1	1			
58.	4-nitrophenol	0.010	1	1	1			
59.	2,4-dinitrophenol	0.010	1	1	1			
60.	4,6-dinitro-o-cresol	0.010	1	1	1			
61.	N-nitrosodimethylamine	0.010	1	1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	1	1	1			
64.	pentachlorophenol	0.010	1	1	1			
65.	phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	1	1			
67.	butyl benzyl phthalate	0.010	1	1	1			
68.	di-n-butyl phthalate	0.010	1	1	1			
69.	di-n-octyl phthalate	0.010	1	1	1			
70.	diethyl phthalate	0.010	1	l	1			
71.	dimethyl phthalate	0.010	1	1	1			
72.	benzo(a)anthracene	0.010	1	i	1			
73.	benzo(a)pyrene	0.010	1	1	1			
74.	benzo(b)fluoranthene	0.010	1	i	ī			
75.	benzo(k)fluoranthene	0.010	1	i	i			
76.	chrysene	0.010	1	1	1			
77.	acenaphthylene	0.010	Í	ĺ	1			
78.	anthracene (a)	0.010	1	i	1			
,		••	·	•	-			

DEGREASING SPENT SOLVENTS RAW WASTEWATER

		Analytical Quantification	n of o	Number of	Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	1			
80.	fluorene	0.010	1	1	1			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	1	1	1			
84.	pyrene	0.010	1	1	1			
85.	tetrachloroethylene	0.010	1	1				1
86.	toluene	0.010	1	1	1			
87.	trichloroethylene	0.010	1	1	1			
88.	vinyl chloride (chloroethylene)	0.010	1	1	1			
89.	aldrin	0.005	1	1	1			
90.	dieldrin	0.005	1	1	1			
91.	chlordane	0.005	1	1	1			
92.	4,4'-DDT	0.005	ŧ	1	1			
93.	4, 4'-DDE	0.005	1	1	1			
94.	4,4'-DDD	0.005	1	1	1			
95.	alpha-endosulfan	0.005	1	1	1			
96.	beta-endosulfan	0.005	1	1	1			
97.	endosulfan sulfate	0.005	1	1	1			
98.	endrin	0.005	1	1	1			
99.	endrin aldehyde	0.005	1	1	1			
100.	heptachlor	0.005	1	1	1			
101.	heptachlor epoxide	0.005	1	1	1			
102.	alpha-BHC	0.005	1	1	1			
103.	beta-BHC	0.005	1	t	1			
104.	gamma-BHC	0.005	1	1	1			
105.	delta-BHC	0.005	1	1	1			
106.	PCB-1242 (b)	0.005	t	1	1			
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	ì	1	1			
111.	PCB-1260 (c)	0.005	-	_				
112.	PCB-1016 (c)	0.005	-	_				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	i	i	i			
115.	arsenic	0.010	ò	Ö	i			
116.	asbestos	10 MFL	ŏ	ŏ	-			
		* **						

Table V-32 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DEGREASING SPENT SOLVENTS RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nun	nber of T in Sample	imes Obser es (mg/l)	ved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011 - 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	1	1	1			
118.	cadmium	0.002	1	1	1			
119.	chromium (total)	0.005	1	1	1			
120.	copper	0.009	1	1				1
121.	cyanide (total)	0.010	1	1	1			
122.	lead	0.020	1	1		1		
123.	mercury	0.0001	1	1	1			
124.	nickel	0.005	1	1	1			
125.	selenium	0.01	1	1	1			
126.	silver	0.02	1	1	1			
127.	thallium	0.100	1	1	1			
128.	zinc	0.050	1	1		1		
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

⁽a), (b), (c) Reported together.

Table V-33

SAMPLING DATA DEGREASING SPENT SOLVENTS RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day T	Concentra Day 2	tions (mg/l Day 3	Average
	Toxic	Pollutants							
	66.	bis(2-ethylhexyl) phthalate	B - 2	1	0.01	*			*
	85.	tetrachloroethylene	B-2	1	ND	500,000.000			500,000.000
	91.	chlordane	B-2	1	ND	**			**
	95.	alpha-endosulfan	B-2	1	ND	**			**
	96.	beta-endosulfan	B - 2	1	ND	**			**
	102.	alpha-BHC	B-2	1	ND	**			**
	104.	gamma-BHC	B-2	1	**	**			**
	120.	copper	B - 2	1	ND	2			2
	121.	cyanide	B - 2	1		0.004			0.004
	122.	lead	B - 2	1	ND	0.02			0.02
	123.	mercury	B - 2	1	ИN	0.0005			0.0005
٥ 7	128.	zinc	B - 2	1	ND	0.06			0.06
.)	Nonco	nventional							
	alumi	num	B-2	1		0.1			0.1
	calci	um	B - 2	1		<5			<5
	chemi	cal oxygen demand (COD)	B - 2	1		330			330
	magne	sium	B - 2	1		<0.1			<0.1
	pheno	ls (total; by 4-AAP method)	B-2	1		0.072			0.072
	total	organic carbon (TOC)	B - 2	1	35	143			143
	Conve	ntional							
	oil a	nd grease	B-2	1		2,180			2,180
	suspe	nded solids	8-2	1	138	23			23

Table V-34
ANNEALING ATMOSPHERE SCRUBBER LIQUOR

	Water	c Use	Percent	Wastewater		
Plant	1/kkg	gal/ton	Recycle	1/kkg	gal/ton	
1	6,171	1,480	99.6	26.35	6.320	

Table V-35

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ANNEALING ATMOSPHERE SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sample	imes Obser es (mg/l)	ved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	í	i	1			
3.	acrylonitrile	0.010	1	1	ì			
4.	benzene	0.010	i	i	i			
5.	benzidine	0.010	1	i	i			
6.	carbon tetrachloride	0.010	1	i	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	i	i	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1.2-dichloroethane	0.010	1	i	1			•
11.	1,1,1-trichloroethane	0.010	i	i	i			
12.	hexachloroethane	0.010	1	1	1			
13.	1.1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	i			
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1			
16.	chloroethane	0.010	1	1	1			
17.	bis(chloromethyl)ether	0.010	1	1	1			
18.	bis(chloroethyl)ether	0.010	1	i	1			
19.	2-chloroethyl vinyl ether	0.010	1	1	1			
20.	2-chloronaphthalene	0.010	1	1	1			
21.	2,4,6-trichlorophenol	0.010	1	1	1			
22.	p-chloro-m-cresol	0.010	1	1	1			
23.	chloroform	0.010	1	1	1			
24.	2-chlorophenol	0.010	1	1	1			
25.	1.2-dichlorobenzene	0.010	1	1	1			
26.	1,3-dichlorobenzene	0.010	1	1	1			
27.	1,4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	1	1	1			
31.	2,4-dichlorophenol	0.010	1	1	1			
32.	1,2-dichloropropane	0.010	1	1	1			
33.	1.3-dichloropropene	0.010	1	1	1			
34.	2,4-dimethylphenol	0.010	1	1	1			
35.	2,4-dinitrotoluene	0.010	1	1	1			
36.	2,6-dinitrotoluene	0.010	1	1	1			
37.	1,2-diphenylhydrazine	0.010	1	1	1			
38.	ethylbenzene	0.010	1	1	1			
39.	fluoranthene	0.010	t	ι	t			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ANNEALING ATMOSPHERE SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	in Samples (es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	1 000
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyĺ phenyĺ ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	1	1			
44.	methylene chloride	0.010	1	1	1			
45.	methyl chloride (chloromethane)	0.010	1	1	1			
46.	methyl bromide (bromomethane)	0.010	τ	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	1	1			
49.	trichlorofluoromethane	0.010	1	1	1			
50.	dichlorodifluoromethane	0.010	1	1	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	1	1			
53.	hexachlorocyclopentadiene	0.010	1	1	1			
54.	isophorone	0.010	1	1	1			
55.	naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	1	1	1			
57.	2-nitrophenol	0.010	1	1	1			
58.	4-nitrophenol	0.010	1	1	1			
59.	2,4-dinitrophenol	0.010	1	1	1			
60.	4.6-dinitro-o-cresol	0.010	1	ŧ	1			
61.	N-nitrosodimethylamine	0.010	1	1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	1	i	1			
64.	pentachlorophenol	0.010	1	1	1			
65.	phenol	0.010	i	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	1	1			
67.	butyl benzyl phthalate	0.010	1	1	1			
68.	di-n-butyl phthalate	0.010	1	1	1			
69.	di-n-octyl phthalate	0.010	1	1	1			
70.	diethyl phthalate	0.010	1	1	1			
71.	dimethyl phthalate	0.010	1	1	1			
72.	benzo(a)anthracene	0.010	1	1	1			
73.	benzo(a)pyrene	0.010	1	1	1			
74.	benzo(b)fluoranthene	0.010	1	1	1			
75.	benzo(k)fluoranthene	0.010	1	1	1			
76.	chrysene	0.010	1	1	1			
77.	acenaphthylene	0.010	1	1	1			
78.	anthracene (a)	0.010	1	1	1			

Table V-35 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ANNEALING ATMOSPHERE SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number on of Streams	of	Number of Times Observed in Samples (mg/l)			
		Level			ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	1			
80.	fluorene	0.010	i	i	i			
81.	phenanthrene (a)	0.010	<u>.</u>		•			
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	i	1	i			
84.	pyrene	0.010	i	i	i			
85.	tetrachloroethylene	0.010	1	i	i			
86.	toluene	0.010	i	i	i			
87.	trichloroethylene	0.010	i	i	i			
88.	vinyl chloride (chloroethylene)	0.010	i	i	i			
89.	aldrin	0.005	i	i	i			
90.	dieldrin	0.005	i	i	i			
91.	chlordane	0.005	i	1	i			
92.	4, 4'-DDT	0.005	i	i	i			
93 .	4, 4'-DDE	0.005	i	i	i			
94.	4, 4'-DDD	0.005	i	i	i			
95.	alpha-endosulfan	0.005	i	1	i			
96.	beta-endosulfan	0.005	i	i	i			
97.	endosulfan sulfate	0.005	i	1	i			
98.	endrin	0.005	i	i	i			
99 .	endrin aldehyde	0.005	i	i	i			
100.	heptachlor	0.005	ì	ì	ì			
101.	heptachlor epoxide	0.005	i	i	i			
102.	alpha-BHC	0.005	i	i	i			
103.	beta-BHC	0.005	i	1	i			
104.	gamma-BHC	0.005	1	i	i			
105.	delta-BHC	0.005	i	1	i			
106.	PCB-1242 (b)	0.005	i	i	i			
107.	PCB-1254 (b)	0.005	,	<u>'</u>	•			
108.	PCB-1221 (b)	0.005	_	_				
109.	PCB-1232 (b)	0.005	_	_				
110.	PCB-1248 (c)	0.005	1	1	1			
111.	PCB-1260 (c)	0.005	,	,	,			
112.	PCB-1016 (c)	0.005		_				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	0	Ö	ı			
115.	arsenic	0.010	1	1	1			
116.			0	0	'			
110.	asbestos	10 MFL	U	U				

Table V-35 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ANNEALING ATMOSPHERE SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of		ın Sampl	imes Obser es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	1	1	1			
118.	cadmium	0.002	1	1	1			
119.	chromium (total)	0.005	1	1		1		
120.	copper	0.009	1	1		1		
121.	cyanide (total)	0.010	1	1	1			
122.	lead	0.020	1	1		1		
123.	mercury	0.0001	1	1	1			
124.	nickel	0.005	t	1	1			
125.	selenium	0.01	1	1	1			
126.	silver	0.02	1	1	1			
127.	thallium	0.100	1	1	1			
128.	zinc	0.050	1	1			1	
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

⁽a), (b), (c) Reported together.

Table V-36

SAMPLING DATA ANNEALING ATMOSPHERE SCRUBBER LIQUOR RAW WASTEWATER

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
Toxic Pollutants							
119. chromium	N - 7	1	<0.001	0.016			0.016
120. copper	N - 7	1	0.008	0.021			0.021
122. lead	N - 7	1	0.010	0.016			0.016
123. mercury	N-7	1	0.0091	0.0087			0.0087
128. zinc	N - 7	1	<0.010	0.220			0.220
Nonconventional							
alkalinity	N-7	1		110			110
aluminum	N - 7	1	<0.5	<0.5			<0.5
calcium	N - 7	1	28	76			76
chemical oxygen demand (COD)	N - 7	1	5	18			18
dissolved solids	N - 7	1		18			18
magnesium	N - 7	1	4.39	11.41			11.41
phenols (total; by 4-AAP method)	N - 7	1		0.008			0.008
total organic carbon (TOC)	N - 7	1	2.7	7			7
Conventional							
suspended solids	N - 7	1	<0.002	4			4
pH (standard units)	N - 7	1	7.1	6.2			

5/7

Table V-37

ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER

	Water	r Use	Percent	Wastew	ater
<u>Plant</u>	1/kkg	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	*	*	100	0	0
2 3	41.59	9.974	100	0	0
3	67.54	16.20	0	20.01	4.800
4 5	*	*	*	1,478	354.4
5	2,110	506.0	0	2,110	506.0
6 7	2,585	620.0	0	2,585	620.0
7	*	*	0 0	*	*
8 9	*	*	0	*	*
9	52,950	12,700	*	*	*
10	145,100	34,800	*	*	*
Statisti	cal Summary				
Minimum	41.59	9.974		0	0
Maximum	145,100			2,585	620.0
Mean		8,109		1,032	247.5
Median	2,347	563.0		748.8	179.6
	6 of 9 ₁	plants		6 of 9	
Nonzero Mean	33,810	8,109		1,548	371.3
Sample:	6 of 9 ₁	plants		4 of 9	plants

Note: This table includes data from one plant which discharges from two rolling heat treatment operations.

Table V-38

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
ROLLING SOLUTION HEAT TREATMENT CONFACT COOLING WATER
RAW WASTEWATER

		Analytical	Number	r Number of	Number of Times Observed in Samples (mg/l)				
		Quantification Level	of Streams	or Samples	_ND	0.011-	0.101-		
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+	
	rollucant	(118/1)	Allalyzeu	Allalyzeu	0.010	0.100	1.000	1.000	
1.	acenaphthene	0.010	3	5	5				
2.	acrolein	0.010	3	9	9				
3.	acrylonitrile	0.010	3	9	9				
4.	benzene	0.010	3	9	9				
5.	benzidine	0.010	3	5	5				
6.	carbon tetrachloride	0.010	3	9	9				
7.	chlorobenzene	0.010	3	9	9				
8.	1,2,4-trichlorobenzene	0.010	3	5	5				
9.	hexachlorobenzene	0.010	3	5	5				
10.	1,2-dichloroethane	0.010	3	9	9				
11.	1,1,1-trichloroethane	0.010	3	9	8	1			
12.	hexachloroethane	0.010	3	5	5				
13.	1,1-dichloroethane	0.010	3	9	9				
14.	1,1,2-trichloroethane	0.010	3	9	9				
15.	1,1,2,2-tetrachloroethane	0.010	3	9	9				
16.	chloroethane	0.010	3	9	9				
17.	bis(chloromethyl)ether	0.010	3	9	9				
18.	bis(chloroethyl)ether	0.010	3	5	5				
19.	2-chloroethyl vinyl ether	0.010	3	9	9				
20.	2-chloronaphthalene	0.010	3	5	5				
21.	2,4,6-trichlorophenol	0.010	3	5	5				
22.	p-chloro-m-cresol	0.010	3	5	5				
23.	chloroform	0.010	3	9	7	2			
24.	2-chlorophenol	0.010	3	5	5				
25.	1,2-dichlorobenzene	0.010	3	5	5				
26.	1,3-dichlorobenzene	0.010	3	5	5				
27.	1,4-dichlorobenzene	0.010	3	5	5				
28.	3,3'-dichlorobenzidine	0.010	3	5	5				
29.	1,1-dichloroethylene	0.010	3	9	9				
30.	1,2-trans-dichloroethylene	0.010	3	9	9				
31.	2,4-dichlorophenol	0.010	3	5	5				
32.	1,2-dichloropropane	0.010	3	9	9				
33.	1,3-dichloropropene	0.010	3	9	9				
34.	2,4-dimethylphenol	0.010	3	5	5				
35.	2,4-dinitrotoluene	0.010	3	5	5				
36.	2,6-dinitrotoluene	0.010	3	5	5				
37.	1,2-diphenylhydrazine	0.010	3	5	5				
38.	ethylbenzene	0.010	3	9	9				
39.	fluoranthene	0.010	3	5	5				

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observe in Samples (mg/l)			rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	3	5	5			
41.	4-bromophenyl phenyl ether	0.010	3	5	5			
42.	bis(2-chloroisopropyl)ether	0.010	3	5	5			
43.	<pre>bis(2-chloroethoxy)methane</pre>	0.010	3	5	5			
44.	methylene chloride	0.010	3	9	6	1	2	
45.	methyl chloride (chloromethane)	0.010	3	9	9			
46.	methyl bromide (bromomethane)	0.010	3	9	9			
47.	bromoform (tribromomethane)	0.010	3	9	9			
48.	dichlorobromomethane	0.010	3	9	9			
49.	trichlorofluoromethane	0.010	3	9	9			
50.	dichlorodifluoromethane	0.010	3	9	9			
51.	chlorodibromomethane	0.010	3	9	9			
52.	hexachlorobutadiene	0.010	3	5	5			
53.	hexachlorocyclopentadiene	0.010	3	5	5			
54.	isophorone	0.010	3	5	5			
55.	naphthalene	0.010	3	5	5			
56.	nitrobenzene	0.010	3	5	5			
57.	2-nitrophenol	0.010	3	5	5			
58.	4-nitrophenol	0.010	3	5	5			
59.	2,4-dinitrophenol	0.010	3	5	5			
60.	4,6-dinitro-o-cresol	0.010	3	5	5			
61.	N-nitrosodimethylamine	0.010	3	5	5			
62.	N-nitrosodiphenylamine	0.010	3	5	5			
63.	N-nitrosodi-n-propylamine	0.010	3	5	5			
64.	pentachlorophenol	0.010	3	5	5			
65.	phenol	0.010	3	5	5			
66.	bis (2-ethylhexyl) phthalate	0.010	3	5	5			
67.	butyl benzyl phthalate	0.010	3	5	5	•		
68.	di-n-butyl phthalare	0.010	3	5	4	1		
69.	di-n-octyl phthalate	0.010	3	5	5			
70.	diethyl phthalate	0.010	3	5	5			O
71.	dimethyl phthalate	0.010	3	5	5			
72.	benzo(a)anthracene	0.010	3	5	5			
73.	benzo(a)pyrene	0.010	3	5	5			
74.	benzo(b)fluoranthene	0.010	3	5	5			
75.	benzo(k)fluoranthene	0.010	3	5	5			
76.	chrysene	0.010	3	5	5			
77.	acenaphthylene	0.010	3	5	5			
78.	anthracene (a)	0.010	3	5	5			

Table V-38 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING SOLUTION HEAT TREATMENT CONFACT COOLING WATER RAW WASTEWATER

		Analytical Quantification		Number of	Number of Times Observed in Samples (mg/l)			
	<u>Pollutant</u>	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	3	5	5 5			
80.	fluorene	0.010	3	5	5			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	3	5	5			
83.	indeno (1,2,3-c,d)pyrene	0.010	3	5	5			
84.	pyrene	0.010	3	5	5			
85.	tetrachloroethylene	0.010	3	9	8	1		
86.	toluene	0.010	3	9	9			
87.	trichloroethylene	0.010	3	9	9			
88.	vinyl chloride (chloroethylene)	0.010	3	9	9			
89.	aldrin	0.005	3	5	5 5			
90.	dieldrin	0.005	3)	5			
91.	chlordane	0.005 0.005	3 3	2	2			
92.	4, 4' - DDT		3	,	, 5			
93.	4, 4' - DDE	0.005 0.005	3	,	5			
94. 95.	4,4'-DDD	0.005	, }	, S	, 5			
96.	alpha-endosulfan beta-endosulfan	0.005	3	,	5			
90. 97.		0.005) 1	, ,	, 5			
98.	endosulfan sulfate endrin	0.005	3	5	5			
99.		0.005	3	5	5			
100.	endrin aldehyde	0.005	3	,	, 5			
101.	heptachlor heptachlor epoxide	0.005	3	5	,			
102.		0.005	3	,	5			
103.	alpha-BHC	0.005	3	5	5			
104.	beta-BHC	0.005		5	5			
104.	gamma-BHC delta-BHC	0.005	3	5	5			
106.	PCB-1242 (b)	0.005	3	5	5			
107.	PCB-1254 (b)	0.005	-	-	J			
108.	PCB-1221 (b)	0.005	_	_				
109.	PCB-1232 (b)	0.005	- -	~				
110.	PCB-1248 (c)	0.005	3	5	5			
111.	PCB-1240 (c)	0.005	, 	, -	,			
112.	PCB-1016 (c)	0.005	_	-				
113.	toxaphene	0.005	3	5	5			
114.	antimony	0.100	3	5	5			
115.	arsenic	0.010	3	5	2	3		
116.	asbestos	10 MFL	0	ő	4	J		
110.	asucsius	10 III L	v	J				

Table V-38 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nui		imes Obser es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	3	5	5			
118.	cadmium	0.002	3	5	5			
119.	chromium (total)	0.005	3	5	4	1		
120.	copper	0.009	3	5	2	2	1	
121.	cyanide (total)	0.010	3	5	5			
122.	lead	0.020	3	5	1	2	1	1
123.	mercury	0.0001	3	5	5			
124.	nickel	0.005	3	5	3	2		
125.	selenium	0.01	3	5	5			
126.	silver	0.02	3	5	4		1	
127.	thallium	0.100	3	5	5			
128.	zinc	0.050	3	5	4		1	
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-39

SAMPLING DATA
ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentra Day 2	tions (mg/l) Day 3	Average
	Toxic	Pollutants							
	4.	benzene	D-10 D-11 U-5	1 1 1	ND ND *	ND ND *	ND ON ON	ND * ND	* *
	11.	1,1,1-trichloroethane	D-10 D-11 U-5	1 1 1	ND ND *	ND 0.039 ND	ND * ND	ND * ND	0.014
	23.	chloroform	D-10 D-11 U-5	1 1 1	0.020 0.020 *	* 0.038 ND	* * ND	* 0.012 ND	* 0.020
	44.	methylene chloride	D-10 D-11 U-5	1 1 1	* * *	* * 0.400	* *	0.110 0.095 *	0.037 0.035 0.133
285	48.	dichlorobromomethane	D-10 D-11 U-5	1 1 1	* *	ND ND ND	ND * ND	ND * ND	*
ĞΊ	66.	bis(2-ethylhexyl) phthalate	D-10 D-11 U-5	6 6 3	* *	ND * *	*	*	* *
	68.	di-n-butyl phthalate	D-10 D-11 U-5	6 6 3	* *	0.015 * *	ND	*	0.015 * *
	69.	di-n-octyl phthalate	D-10 D-11 U-5	6 6 3	ND ND ND	ND ND ND	*	ND	*
	70.	diethyl phthalate	D-10 D-11 U-5	6 6 3	ND ND *	* * *	*	*	* *
	85.	tetrachloroethylene	D-10 D-11 U-5	1 1 1	ND ND ND	ND 0.011 ND	ND ND ND	ND * ND	*
	87.	trichloroethylene	D-10 D-11 U-5	1 1 1	* * ND	ND * ND	ND ND ND	ND * ND	*

Table V-39 (Continued)

SAMPLING DATA ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Stream	Sample				ions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
115.	arsenic	D-10 D-11 U-5	6 6 3	<0.010 <0.010 <0.002	<0.010 <0.010 0.028	0.032	0.032	<0.010 <0.010 0.031
118.	cadmium	D-10 D-11 U-5	6 6 3	<0.002 <0.002 0.002	<0.001 <0.001 0.002	0.002	0.002	<0.001 <0.001 0.002
119.	chromium	D-10 D-11 U-5	6 6 3	<0.005 <0.005 <0.001	0.007 0.006 0.059	0.008	0.009	0.007 0.006 0.025
120.	copper	D-10 D-11 U-5	6 6 3	<0.009 <0.009 0.013	0.010 <0.009 0.160	0.026	0. 026	0.010 <0.009 0.071
121.	cyanide	D-10 D-11 U-5	1 1 1		0.002 <0.001 <0.02	<0.02	<0.02	0.002 <0.001 <0.02
9 122.	lead	D-10 D-11 U-5	6 6 3	<0.020 <0.020 0.010	<0.020 0.030 0.380	1.740	0.018	<0.020 0.030 0.713
123.	mercury	D-10 D-11 U-5	6 6 3	0.0006 0.0006 0.005	0.0005 0.0004 0.002	0.003	0.003	0.0005 0.0004 0.003
124.	nickel	D-10 D-11 U-5	6 6 3	<0.005 <0.005 0.016	<0.005 0.020 0.006	0.016	0.007	<0.005 0.020 0.010
126.	silver	D-10 D-11 U-5	6 6 3	<0.020 <0.020 ND	<0.020 <0.020 0.118	ND	ND	<0.020 <0.020 0.118
128.	zinc	D-10 D-11 U-5	6 6 3	<0.050 <0.050 <0.010	<0.050 <0.050 0.190	<0.010	<0.010	<0.050 <0.050 <0.070
None	conventional							
alka	linity	D-10 D-11 U-5	6 6 3	ND ND ND	130 120	220	220	130 120 220

Table V-39 (Continued)

SAMPLING DATA ROLLING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample _Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	aluminum	D-10 D-11 U-5	6 6 3	0.2 0.2 <0.1	0.4 <0.2 <0.1	<0.1	<0.1	0.4 <0.2 <0.1
	calcium	D-10 D-11 U-5	6 6 3	38 38 58.7	51 41 93.4	90.3	85.4	51 41 89.7
	chemical oxygen demand (COD)	D-10 D-11 U-5	6 6 3	ND ND ND	<5 7 <5	11	1;	<5 7 <9
	dissolved solids	D-10 D-11 U-5	6 6 3	ND ND ND	412 334 610	580	550	412 334 580
	magnesium	D-10 D-11 U-5	6 6 3	12 12 7.44	20 11 18.9	20.8	21.1	20 11 20.3
287	phenols (total; by 4-AAP method)	D-10 D-11 U-5	6 6 1	ND ND ND	0.011 0.01 0.009	0.006	v. 009	0.011 0.01 0.008
	sulfate	D-10 D-11 U-5	6 6 3	ND ND ND	70 <10	110	110	70 <10 110
	total organic carbon (TOC)	D-10 D-11 U-5	6 6 3	ND ND ND	2 <1 3.8	3.5	3.4	2 <1 3.6
	Conventional							
	oil and grease	D-10 D-11 U-5	1 1 1	ND ND ND	13 12 <5	<5	6	13 12 <5
	suspended solids	D-10 D-11 U-5	6 6 3	ND ND ND	2 3 37	۷	4.6	2 3 15
	pH (standard units)	D-10 D-11 U-5	1 1 1		7.1 8.1	6.8 8.2 7	7.4 7.5	

Table V-40 EXTRUSION PRESS HEAT TREATMENT CONTACT COOLING WATER

	Water	Use	Percent	Waster	water
Plant	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	*	*	100	0	0
2	*	*	100	0	0
3	1,924	461.5	100	0	0
4	76.30	18.30	0	65.46	15.70
5	80.05	19.20	0	68.80	16.50
6	833.9	200.0	0	81.35	19.51
7	113.0	27.10	0	96.73	23,20
8	116.7	28.00	0	100.1	24.00
9	433.6	104.0	0	433.6	104.0
10	554.5	133.0	0	554.5	133.0
11	*	*	*	1,057	253.4
12	*	*	0	1,447	347.0
13	1,768	424.0	0	1,768	424.0
14	26,600	6,380	92	2,218	532.0
15†	2,522	605.0	0	2,522	605.0
16	2,668	640.0	0	2,668	640.0
17	2,831	679.0	0	2,831	679.0
18	3,185	764.0	0	3,185	764.0
19	*	*	0	3,536	848.0
20	5,670	1,360	*	5,670	1,360
21	10,760	2,580	0	10,760	2,580
22	16,700	4,076	0	16,700	4,076
23	21,890	5,250	0	21,890	5,250
24	25,850	6,200	0	25,850	6,200
25	28,690	6,880	0	28,690	6,880
26	*	*	*	*	*
27	*	*	. 0	*	*
28	*	*	*	*	*
29	*	*	*	*	*
30	*	*	0	*	*

Statistical Summary

Minimum	76.30	18.30	0	0
Maximum	28,690	6,880	28,690	6,880
Mean	7,676	1,841	5,299	1,271
Median	2,596	622.5	1,768	424.0
Sample:	20 of 29 p	lants	25 of	29 plants
Nonzero Mean	7,676	1,841	6,021	1,444
Sample:	20 of 29 p	lants	22 of	29 plants

Note: This table includes data from one plant which discharges from two extrusion press heat treatment operations.

^{*}Data not available. †Combination of two presses.

Table V-41

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
EXTRUSION PRESS HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER

		Analytical	Number		Nui	Number of Times Observed in Samples (mg/l)				
		Quantification	of	of	- 17/5					
	D. 11.	Level	Streams	Samples	ND-	0.011-	0.101-	1.000+		
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+		
1.	acenaphthene	0.010	6	8	8					
2.	acrolein	0.010	6	9	9					
3.	acrylonitrile	0.010	6	9	9					
4.	benzene	0.010	6	9	8	1				
5.	benzidine	0.010	6	8	8					
6.	carbon tetrachloride	0.010	6	9	9					
7.	chlorobenzene	0.010	6	9	9					
8.	1,2,4-trichlorobenzene	0.010	6	8	8					
9.	hexachlorobenzene	0.010	6	8	8					
10.	1,2-dichloroethane	0.010	6	9	9					
11.	1,1,1-trichloroethane	0.010	6	9	9					
12.	hexachloroethane	0.010	6	8	8					
13.	1.1-dichloroethane	0.010	6	9	9					
14.	1,1,2-trichloroethane	0.010	6	9	9					
15.	1,1,2,2-tetrachloroethane	0.010	6	9	9					
16.	chloroethane	0.010	6	9	9					
17.	bis(chloromethyl)ether	0.010	6	9	9					
18.	bis(chloroethyl)ether	0.010	6	8	8					
19.	2-chloroethyl vinyl ether	0.010	6	9	9					
20.	2-chloronaphthalene	0.010	6	8	8					
21.	2,4,6-trichlorophenol	0.010	6	8	ક					
22.	p-chloro-m-cresol	0.010	6	8	8					
23.	chloroform	0.010	6	9	5	4				
24.	2-chlorophenol	0.010	6	8	7	i				
25.	1,2-dichlorobenzene	0.010	6	8	8					
26.	1.3-dichlorobenzene	0.010	6	8	8					
27.	1,4-dichlorobenzene	0.010	ő	8	8					
28.	3.3'-dichlorobenzidine	0.010	6	8	8					
29.	1.1-dichloroethylene	0.010	6	9	9					
30.	1,2-trans-dichloroethylene	0.010	6	ģ	8	1				
31.	2,4-dichlorophenol	0.010	6	8	8					
32.	1,2-dichloropropane	0.010	6	ÿ	9					
33.	1.3-dichloropropene	0.010	6	ý	ý					
34.	2,4-dimethylphenol	0.010	6	á	8					
35.	2.4-dinitrotoluene	0.010	6	8	8					
36.	2,6-dinitrotoluene	0.010	6	8	8					
37.	1,2-diphenylhydrazine	0.010	6	8	8					
38.	ethylbenzene	0.010	6	9	9					
39.	fluoranthene	0.010	6	8	8					
リフ•	LIUULAHUHEHE	0.010	U	U	9					

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	ion of of	Number of Times Observed in Samples (mg/l)				
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	6	8	8			
41.	4-bromophenyĺ phenyĺ ether	0.010	6	8	8			
42.	bis(2-chloroisopropyl)ether	0.010	6	8	8			
43.	bis(2-chloroethoxy)methane	0.010	6	8	8			
44.	methylene chloride	0.010	6	9	3	3	3	
45.	methyl chloride (chloromethane)	0.010	6	9	9			
46.	methyl bromide (bromomethane)	0.010	6	9	9			
47.	bromoform (tribromomethane)	0.010	6	9	9			
48.	dichlorobromomethane	0.010	6	9	9			
49.	trichlorofluoromethane	0,010	6	9	9			
50.	dichlorodifluoromethane	0.010	6	9	9			
51.	chlorodibromomethane	0.010	6	9	9			
52.	hexachlorobutadiene	0.010	6	8	8			
53.	hexachlorocyclopentadiene	0.010	6	8	8			
54.	isophorone	0,010	6	8	8			
55.	naphthalene	0.010	6	8	8			
56.	nitrobenzene	0,010	6	8	8			
57.	2-nitrophenol	0.010	6	8	8			
58.	4-nitrophenol	0.010	6	8	7	1		
59.	2,4-dinitrophenol	0.010	6	8	8			
60.	4,6-dinitro-o-cresol	0,010	6	8	8			
61.	N-nitrosodimethylamine	0,010	6	8	8			
62.	N-nitrosodiphenylamine	0.010	6	8	8			
63.	N-nitrosodi-n-propylamine	0,010	6	8	8			
64.	pentachlorophenol	0,010	6	8	š			
65.	phenol	0,010	6	8	7			1
66.	bis (2-ethylhexyl) phthalate	0.010	6	8	4	3	1	•
67.	butyl benzyl phthalate	0,010	6	8	5	$\frac{3}{2}$	i	
68.	di-n-butyl phthalate	0,010	6	8	5	3	•	
69.	di-n-octyl phthalate	0.010	6	8	7	ĭ		
70.	diethyl phthalate	0,010	6	8	8	•		
71.	dimethyl phthalate	0.010	6	8	8			
72.	benzo(a)anthracene	0.010	6	8	8			
73.		0.010	6	8	8			
	benzo(a)pyrene	0.010	6	8	8			
74.	benzo(b)fluoranthene	0.010	6	8	8			
75.	benzo(k)fluoranthene	0.010	6	8	8			
76.	chrysene		6	8	8			
77.	acenaphthylene	0.010	6	8	8			
78.	anthracene (a)	0.010	O	O	O			

290

Table V-41 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Ob in Samples (mg/		es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	6	8	8			
80.	fluorene	0.010	6	8	8			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	6	8	8			
83.	indeno (1,2,3-c,d)pyrene	0.010	6	8	8			
84.	pyrene	0.010	6	8	8			
85.	tetrachloroethylene	0.010	6	9	9			
86.	toluene	0.010	6	9	9			
87.	trichloroethylene	0.010	6	9	9			
88.	vinyl chloride (chloroethylene)	0.010	6	9	9			
89.	aldrin	0.005	6	8	8			
90.	dieldrin	0.005	6	8	8			
91.	chlordane	0.005	6	8	7	1		
92.	4,4'-DDT	0.005	6	8	8			
93.	4, 4'-DDE	0.005	6	8	8			
94.	4,4'-DDD	0.005	6	8	8			
95.	alpha-endosulfan	0.005	6	8	7		1	
96.	beta-endosulfan	0.005	6	8	7		1	
97.	endosulfan sulfate	0.005	6	8	7		1	
98.	endrin	0.005	6	8	7		1	
99.	endrin aldehyde	0.005	6	8	7	1		
100.	heptachlor	0.005	6	8	7		1	
101.	heptachlor epoxide	0.005	6	8	6	2		
102.	alpha-BHC	0.005	6	8	8			
103.	beta-BHC	0.005	6	8	8			
104.	gamma-BHC	0.005	6	8	8			
105.	delta-BHC	0.005	6	8	8			
106.	PCB-1242 (b)	0.005	6	8	8			
107.	PCB-1254 (b)	0.005	-	_				
108.	PCB-1221 (b)	0.005	-	_				
109.	PCB-1232 (b)	0.005	_	_				
110.	PCB-1248 (c)	0.005	6	8	8			
111.	PCB-1260 (c)	0.005	_	_	-			
112.	PCB-1016 (c)	0.005	_	_				
113.	toxaphene	0.005	6	8	8			
114.	antimony	0.100	6	8ั	8			
115.	arsenic	0.010	6	8	8			
116.	asbestos	10 MFL	ŏ	ŏ	•			
			Ŭ	•				

Table V-41 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sample		cved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	5	7	7			
118.	cadmium	0.002	5	1	1			
119.	chromium (total)	0.005	5	1	7			
120.	copper	0.009	5	7	1	6		
121.	cyanide (total)	0.010	6	8	5	3		
122.	lead	0.020	5	7	3	4		
123.	mercury	0.0001	5	7	4	3		
124.	nickel	0.005	5	7	5	2		
125.	selenium	0.01	6	8	8			
126.	silver	0.02	6	8	7	1		
127.	thallium	0.100	6	8	8			
128.	zinc	0.050	5	7	4	3		
129.	2.3.7.8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-42

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat	ions (mg/l) Day 3	Average
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	Average
Toxi	c Pollutants							
4.	benzene	F-6	1	ND	*	ND		*
		G-3	1	*	ND	*	*	*
		G-4	1	*	*			*
		G-5	1	*	*			*
		G-6	1	*	0.014			0.014
		V - 5	1	0.004	ND			
23.	chloroform	F-6	1	0.012	0.018	0.021		0.020
		G-3	1	0.015	*	0.011	*	*
		G-4	1	0.015	*			*
		G-5	1	0.015	*			*
		G-6	1	0.015	0.023			0.023
		V – 5	1	ND	ND			
24.	2-chlorophenol	F-6	2	ND	0.020			0.020
		G-3	2	ND	ND	ND	ND	
		G-4	2 2 2 6	ND	ND			
		G-5	6	ND	ND			
		G-6	2 2	ND	ND			
N		V - 5	2	ND	ND			
293	1,2-trans-dichloroethylene	F-6	1	ND	ND	ND		
		G-3	1	ND	*	ND	ND	*
		G-4	1	ND	*			*
		G-5	1	ND	0.013			0.013
		G-6	1	ND	ND			
		V - 5	1	ND	ND			
44.	methylene chloride	F-6	1	ND	0.011	0.110		0.061
	•	G-3	1	0.563	<0.290	<0.550	<0.175	<0.338
		G-4	1	0.563	0.110			0.110
		G-5	1	0.563	0.049			0.049
		G-6	1	0.563	0.800			0.800
		V - 5	1	0.015	0.028			0.028
58.	4-nitrophenol	F-6	2	ND	ND			
		G-3		ND	*	ND	0.017	*
		G-4	2	ND	ND			
		G-5	6	ND	ND			
		G-6	2 2 6 2 2	ND	ND			
		V - 5	2	ND	ND			
65.	phenol	F - 6	2 2	ND	ND			
		G-3	2	*	ND	ND	2.700	2.700
		G-4	2 6 2	*	ND			
		G-5	6	*	ND			
		G-6	2	*	ND			
		V-5	2	ND	*			*

		Stream	Sample			Concentrati		
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
66.	bis(2-ethylhexyl) phthalate	F-6	2	0.025	ND			
		G-3	2	*	0.190	0.035	U.085	0.103
		G-4	2	*	* 0.000			*
		G-5 G-6	6 2	*	0.032 *			0.032 *
		V + 5	2	0.008	ND			
			٥					
67.	butyl benzyl phthalate	F-6	2	ND	ND	0 027	0.046	0.047
		G-3	2	ND	0.130 *	0.026	0.046	0.067 *
		G-4	2 6	ND	*	•		*
		G-5	2	ND	*			*
		G-6 V-5	2	ND ND	ND			
		V - J		ND	ND			
68.	di-n-butyl phthalate	F-6	2	*	ND			
	•	G-3	2	*	0.022	0.013	0.015	0.017
		G-4	2	*	*			*
		G-5	6	*	*			*
		G-6	2	*	*			*
		V - 5	2	ND	ND			
69.	di-n-octyl phthalate	F-6	2	ND	ND			
	, ,	G-3	2	ND	ND	0.011	ND	0.011
		G-4	2	ND	ND			
		G-5	6	ND	*			*
		G-6	2	ND	*			*
		V-5	2	ND	ND			
91.	chlordane	F-6	2		**			**
		G-3	2		ND	ND	ND	
		G-4	2		ND			
		G-5	6		0.0140			0.0140
		G-6	2		0.010			0.010
		V - 5	2	ND	ND			
95.	alpha-endosulfan	F-6	2	ND	ND			
	•	G-3	2	ND	ND	ND	ΝĎ	
		G-4	2	ND	ND			
		G-5	6	ND	0.500			0.500
		G-6	2	ND	**			**
		V- 5	2	ND	ИD			
96.	beta-endosulfan	F-6	2	ND	**			**
-		G-3	2	ND	ND	ND	ND	
		G-4	2	ND	ND			
		G - 5	6	ND	**			**
		G-6	2	ND	0.200			0.200
		V - 5	2	ND	ND			

294

Table V-42 (Continued)

	Pollutant	Stream Code	Sample	Source	Day 1	Concentrat	ions (mg/l)	Augraga
	rollucant	Code	Type	Source	Day 1	Day 2	Day 3	Average
97	. endosulfan sulfate	F-6	2	ND	ND			
		G-3	2	**	ND	ND	ND	
		G-4	2	**	**			**
		G-5	6	**	0.200			0.200
		G-6	2	**	ND			
		V-5	2	ND	ND			
98	. endrin	F-6	2	ND	ND			
		G-3	2	ND	ND	ND	ND	
		G-4	2 6	ND	ND			
		G-5	6	ND	ND			
		G-6	2	ND	0.200			0.200
		V - 5	2	ND	ND			
99	. endrin aldehyde	F-6	2 2	ND	0.011			0.011
	•	G-3	2	ND	ND	ND	ND	
		G-4	2	ND	ND			
		G-5	6	ND	ND			
		G-6	2 2	ND	ND			
		V - 5	2	ND	ND			
, 100	· heptachlor	F-6	2	**	**			**
295	•	G-3	2	ND	ИD	ND	ND	
51		G-4	2 2 2 6	ND	0.200			0.200
		G-5	6	ND	ND			
		G-6	2	ND	NĐ			
		V - 5	2	ND	ND			
101	. heptachlor epoxide	F-6	2	*	0.100			0.100
	,	G-3	2	**	ND	ND	ND	
		G-4	2	**	0.100			0.100
		G-5	2 6	**	ND			
		G-6	2 2	**	**			**
		V-5	2	ND	ND			
102	. alpha-BHC	F-6	2 2 2 6	ND	ND			
		G-3	2	ND	ND	ND	ИD	
		G-4	2	ND	ND			
		G - 5	6	ИD	**			**
		G-6	2	ND	**			**
		V - 5	2	ND	ND			
115	. arsenic	F-6	2	<0.01	<0.01			<0.01
		G-3	2	<0.01	<0.01	<0.01	<0.01	<0.01
		G-4	2	<0.01	<0.01			<0.01
		G-5	6	<0.01	<0.01			<0.01
		G-6	2	<0.01	<0.01			<0.01
		V-5	2	<0.005	0.010			0.010

			Stream	Sample		i	Concentrati	Concentrations (mg/l)			
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
	118.	cadmium	G-3	2	<0.002	<0.002	<0.002	<0.002	<0.002		
			G-4	2	<0.002	<0.002			<0.002		
			G-5	6	<0.002	<0.002			<0.002		
			G-6	2	<0.002	<0.002			<0.002		
			V - 5	2	<0.001	0.003			0.003		
	119.	chromium	G-3	2	<0.005	0.010	<0.005	<0.005	<0.007		
			G-4	2	<0.005	<0.005			<0.005		
			G-5	6	<0.005	<0.005			<0.002		
			G-6	$\tilde{2}$	<0.005	<0.005			<0.005		
			V-5	2	<0.001	0.002			0.002		
	120.	copper	G-3	2	<0.009	0.040	0.030	0.030	0.033		
	, 20.	0001	G-4	2	<0.009	<0.009			<0.009		
			G-5	6	<0.009	0.100			0.100		
			G-6	2	<0.009	0.040			0.040		
			V-5	$\frac{2}{2}$	0.027	0.024			0.024		
	121.	cyanide	F-6	2	ND	<0.001			<0.001		
	121.	cyanitae	G-3	$\bar{2}$	ND	0.012	0.006	0.014	0.011		
			G-4	2 2	ND	0.001	••••	• • • • • • • • • • • • • • • • • • • •	0.001		
			Ğ-5	6	ND	0.029			0.029		
			G-6	2	ND	0.004			0.004		
296			V-5	1	0.0042	0.0042			0.0042		
Ò	122.	lead	G-3	2	<0.020	0.040	0.040	<0.020	<0.033		
	1 4 4 .	Teau	G-4	2	<0.020	0.020	0.0,0	(0.020	0.020		
			G-5	6	<0.020	<0.020			<0.020		
			G-6	9	<0.020	<0.020			<0.020		
			V-5	2 2	0.079	0.021			0.021		
	123.	mercury	G-3	9	0.0005	0.030	0.030	0.030	0.030		
	123.	mercury	G-4	2 2	0.0005	0.0005	0.030	0.030	0.0005		
			G-5	6	0.0005	0.0004			0.0004		
				0	0.0005	0.0004			0.0002		
			G-6 V-5	2 2	<0.0003	<0.0002			<0.0002		
	124	nickel	G-3	2	<0.005	0.040	<0.005	<0.005	<0.017		
	124.	HICKEI	G-4	$\frac{2}{2}$	<0.005	<0.005	(0.00	(******	<0.005		
			G-5	6	<0.005	<0.005			<0.005		
			G-6	2	<0.005	<0.005			<0.005		
				2		0.017			0.017		
			V-5	2	0.009	0.017					
	126.	silver	F-6	2 2	<0.020 <0.020	<0.02 <0.020	<0.020	<0.020	<0.02 <0.020		
			G-3	2			\0.020	\0.020	<0.020		
			G-4	2	<0.020	<0.020			<0.020		
			G-5	6	<0.020	<0.020			<0.020		
			G-6	2	<0.020	<0.020					
			V-5	2	0.05	0.07			0.07		

Table V-42 (Continued)

		Stream	Sample			Concentrat	ions (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	127. thallium	F-6	2	<0.100	<0.100			<0.100
		G-3	2	<0.100	<0.100	<0.100	<0.100	<0.100
		G-4	2	<0.100	<0.100			<0.100
		G-5	6	<0.100	<0.100			<0.100
		G-6	2	<0.100	<0.100			<0.100
		V - 5	2	<0.001	0.010			0.010
	128. zinc	G-3	2	<0.050	0.050	<0.050	<0.050	<0.050
		G-4	2	<0.050	<0.050			<0.050
		G-5	6	<0.050	<0.050			<0.050
		G-6	2	<0.050	0.050			0.050
		V - 5	2	0.50	0.05			0.05
	Nonconventional							
	alkalinity	F-6	2		140	140		140
		G-3	2		410	125	180	238
		G-4	2		280			280
		G-5	6		450			450
\sim		V - 5	2		320			320
97	aluminum	F-6	2	<0.090	<0.100	1.700		<0.900
		G-3	2	<0.090	0.300	0.300	0.800	0.467
		G-4	2	<0.090	<0.100			<0.100
		G-5	6	<0.090	0.200			0.200
		G-6	2	<0.090	0.200			0.200
		V - 5	2	0.09	2.1			2.1
	calcium	F-6	2	<5.000	0.680	0.220		0.450
		G-3	2	<5.000	<3.500	<2.800	<3.900	<3.400
		G-4	2	<5.000	3.1			3.1
		G-5	6	<5.000	ND			
		G-6	2	<5.000	<5.000			<5.000
		V-5	2	9.8	3.4			3.4
	chemical oxygen demand (COD)	F-6	2		<5			< 5
		G-3	2		218	127	295	213
		G-4	2		<5			<5
		G - 5	6		76			76
		G-6	2		74			74
		V - 5	2	<1	4			4

	Stream	Sample			Concentrati	ions (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
magnesium	F-6	2	<0.100	0.110	0.080		0.095
	G-3	2	0.300	0.200	0.200	0.300	0.233
	G-4	2	0.300	0.300			0.300
	G-5	6	0.300	0.500			0.500
	G-6	2	0.300	<0.100			<0.100
	V - 5	2	63	0.79			0.79
phenols (total, by 4-AAP method)	F-6	2		<0.001			<0.001
•	G-3	2		U.017	0.015	0.010	0.014
	G-4	2		0.011			0.011
	G-5	6		0.015			0.015
	V - 5	1	.062	0.015			0.015
sulfate	F-6	2		10	20		15
	G-3	2		10	5	<25	<13
	G-4	2		74			74
	G-5	6		95			95
	V - 5	2		42			42
total organic carbon (TOC)	F-6	2		<1			<1
,	G-3	2		106	35	122	88
	G-4	$\bar{2}$		5			5
	G-5	6		46			46
	G-6	$\overset{\circ}{2}$		27			27
	V - 5	2	4.7	79			79
Conventional							
oil and grease	F-6	1		9			9
• •	G-3	1		59	36	280	125
	G-4	1		8			8
	G-5	1		20			20
	G-6	1		17			17
	V-5	1	16	7.4			7.4
suspended solids	F-6	2		<1			<1
•	G-3	2		41	61	74	59
	G-4	2		2			2
	G-5	2 6		28			28
	G-6	2		3			3
	V - 5	2		20			20
pH (standard units)	F-6	1	7.55	7.1	7.7		
	G-3	2		8.2	7.1	7.3	
	G-4	1		7.8			
	G-5	1		8.6			
	G-6	1		9.2			

298

Table V-43
EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER

	Water	Use	Percent	Waste	ewater
Plant	<u>l/kkg</u>	gal/ton	Recycle	1/kkg	gal/ton
1	*	*	100	0	0
2	161,800	38,800	100	0	0
3	9,631	2,310	91	0	0
4	*	*	100	0	0
4 5 6 7	1,268	304.0	0	181.0	43.40
6	41,420	9,933	99	879.7	211.0
	39,690	9,520	80	1,993	478.0
8 9	2,635	632.0	0	2,635	632.0
9	41,690	10,000	87	3,056	733.0
10	3,394	814.0	0	3,381	811.0
11	5,003	1,200	0	5,003	1,200
12	8,547	2,050	0	6,421	1,540
13	7,130	1,710	0	7,130	1,710
14	10,730	2,573	0	10,730	2,573
15	15,680	3, 760	0	15,680	3,760
16	*	*	*	30,020	7,200
17	*	*	*	44,150	10,590
18	*	*	0	*	*
19	*	*	0	*	*
20	*	*	0	*	*
21	*	*	. 0	*	*
22	*	*	*	*	*
23	*	*	*	*	*
24	*	*	0	*	*
25	*	*	*	*	*
26	*	*	0	*	*
27	4,962	1,190	*	*	*

^{*}Data not available.

Statistical Summary

Minimum	1,268 304.	0 0	0
Maximum	161,800 38,800	44,150	10,590
Mean	25,250 6,057	7,901	1,895
Median	9,089 2,180	3,056	733.0
Sample:	14 of 27 plants	17 of	27 plants
Nonzero	25,250 6,057	10,330	2,478
Mean			
Sample:	14 of 27 plants	13 of	27 plants

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number ot	Number of Times Observers on Samples (mg/l)		cved	
	Pollutant	I.evel 	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
1.	acenaphthene	0.010	3	3	3			
2.	acrolein	0.010	3	5	5			
3.	acrylonitrile	0.010	3	5	5			
4.	benzene	0.010	3	5	5			
5.	benzidine	0.010	3	3	3			
6.	carbon tetrachloride	0.010	3	5	5			
· 7.	chlorobenzene	0.010	3	5	5			
8.	1,2,4-trichlorobenzene	0.010	3	3	3			
9.	hexachlorobenzene	0.010	3	3	3			
10.	1,2-dichloroethane	0.010	3	5	5			
11.	1,1,1-trichloroethane	0.010	3	5	5			
12.	hexachloroethane	0.010	3	3	3			
13.	1,1-dichloroethane	0.010	3	5	5			
14.	1,1,2-trichloroethane	0.010	3	5	5			
15.	1,1,2,2-tetrachloroethane	0.010	3	5	5			
16.	chloroethane	0.010	3	5	5			
17.	bis(chloromethyl)ether	0.010	3	5	5			
18.	bis(chloroethyl)ether	0.010	3	3	3			
19.	2-chloroethyl vinyl ether	0.010	3	5	5			
20.	2-chloronaphthalene	0.010	3	3	3			
21.	2,4,6-trichlorophenol	0.010	3	3	3			
22.	p-chloro-m-cresol	0.010	3	3	3			
23.	chloroform	0.010	3	5	5			
24.	2-chlorophenol	0.010	3	3	3			
25.	1,2-dichlorobenzene	0.010	3	3	3			
26.	1,3-dichlorobenzene	0.010	3	٤	3			
27.	1,4-dichlorobenzene	0.010	3	3	3			
28.	3,3'-dichlorobenzidine	0.010	3	3	3			
29.	1,1-dichloroethylene	0.010	3	5	5			
30.	1,2- <u>trans</u> -dichloroethylene	0.010	3	5	5			
31.	2,4-dich∏orophenol	0.010	3	3	3			
32.	1,2-dichloropropane	0.010	3	5	5			
33.	1,3-dichloropropene	0.010	3	5	5			
34.	2,4-dimerhylphenol	0.010	3	3	3			
35.	2,4-dinitrotoluene	0.010	3	3	3			
36.	2,6-dinitrotoluene	0.010	3	3	3			
37.	1,2-diphenylhvdrazine	0.010	3	3	3			
38.	ethylbenzene	0.010	3	5	5			
39.	fluoranthene	0.010	3	3	3			

Table V-44 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	3	3	3			
41.	4-bromophenyl phenyl ether	0.010	3	3	3			
42,	bis(2-chloroisopropyl)ether	0.010	3	3	3			
43.	bis(2-chloroethoxy)methane	0.010	3	3	3			
44.	methylene chloride	0.010	3	5	3	1	1	
45.	methyl chloride (chloromethane)	0.010	3	5	5			
46.	methyl bromide (bromomethane)	0.010	3	5	5			
47.	bromoform (tribromomethane)	0.010	3	5	5			
48.	dichlorobromomethane	0.010	3	5	5			
49.	trichlorofluoromethane	0.010	3	5	5			
50.	dichlorodifluoromethane	0.010	3	5	5			
51.	chlorodibromomethane	0.010	3	5	5			
52.	hexachlorobutadiene	0.010	3	3	3			
53.	hexachlorocyclopentadiene	0.010	3	3	3			
54.	isophorone	0.010	3	3	3			
55.	naphthalene	0.010	$\bar{3}$	3	3			
56.	nitrobenzene	0.010	3	3	3			
57.	2-nitrophenol	0.010	3	3	3			
58.	4-nitrophenol	0.010	3	3	3			
59.	2,4-dinitrophenol	0.010	3	3	3			
60.	4,6-dinitro-o-cresol	0.010	3	3	3			
61.	N-nitrosodimethylamine	0.010	3	3	3			
62.	N-nitrosodiphenylamine	0.010	3	3	3			
63.	N-nitrosodi-n-propylamine	0.010	3	3	3			
64.	pentachlorophenol	0.010	3	3	j			
65.	phenol	0.010	3	3	3			
66.	bis (2-ethylhexyl) phthalate	0.010	3	3	3			
67.	butyl benzyl phthalate	0.010	3	3	3			
68.	di-n-butyl phthalate	0.010	3	3	3			
69.	di-n-octyl phthalate	0.010	3	}	3			
70.	diethyl phthalate	0.010	3	3	3			
71.	dimethyl phthalate	0.010	3	3	3			
72.	benzo(a)anthracene	0.010	3	3	3			
73.	benzo(a)pyrene	0.010	3	3	š			
74.	benzo(b)fluoranthene	0.010	3	3	3			
75.	benzo(k)fluoranthene	0.010	3	š	3			
76.	chrysene	0.010	<u>š</u>	3	3			
77.	acenaphthylene	0.010	š	3	ž			
78.								

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observ		rved	
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	3	3	3			
80.	fluorene	0.010	3	3	3			
81.	phenanthrene (a)	0.010	-	2	2			
82.	dibenzo(a,h)anthracene	0.010	3	3	3 3			
83.	indeno (1,2,3-c,d)pyrene	0.010 0.010	}	3	3			
84.	pyrene	0.010	3	, ,	5			
85. 86.	tetrachloroethylene toluene	0.010	3	5	5			
87.	trichloroethylene	0.010	3	5	5			
88.	vinyl chloride (chloroethylene)	0.010	3	ś	5			
89.	aldrin	0.005	$\tilde{3}$	3	$\tilde{3}$			
90.	dieldrin	0.005	3	3	$\tilde{3}$			
91.	chlordane	0.005	3	3	3			
92.	4,4'-DDT	0.005	3	3	3			
93.	4, 4'-DDE	0.005	3	3	3			
94.	4, 4'-DDD	0.005	3	3	3			
95.	alpha-endosulfan	0.005	3	3	3			
96.	beta-endosulfan	0.005	3	3	3			
97.	endosulfan sulfate	0.005	3	3	3			
98.	endrin	0.005	3	3	3			
99.	endrin aldehyde	0.005	3	3	3			
100.	heptachlor	0.005	3	3	3			
101.	heptachlor epoxide	0.005	3	3	3			
102.	alpha-BHC	0.005	3	3	3			
103.	beta-BHC	0.005	3	3	3			
104.	gamma-BHC	0.005	3	3	3			
105.	delta-BHC	0.005	3	3	3			
106.	PCB-1242 (b)	0.005	3	3	3			
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	3	3	3			
111.	PCB-1260 (c)	0.005	-	-				
112.	PCB-1016 (c)	0.005	-	- 2	9			
113.	toxaphene	0.005	3	3	3	1		
114.	antimony	0.100	2	4	3	1		
115.	arsenic	0.010	4	6	4	2		
116.	asbestos	10 MFL	0	O				

Table V-44 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of		mber of Ti in Sample		cved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	4	6	6			
118.	cadmium	0.002	4	6	6			
119.	chromium (total)	0.005	4	6	4	1		1
120.	copper	0.009	4	6	2	4		
121.	cyanide (total)	0.010	4	6	3	3		
122.	lead	0.020	4	6	5	1		
123.	mercury	0.0001	4	6	6			
124.	nickel	0.005	4	6	4	2		
125.	selenium	0.01	2	4	2	1	1	
126.	silver	0.02	2	4	4			
127.	thallium	0.100	2	4	4			
128.	zinc	0.050	4	6		6		
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	O				

⁽a), (b), (c) Reported together.

Table V-45

		D. 11.		Sample		Concentrations (mg/l)			
	Pollutant		Code	Туре	Source	Day I	Day 2	Day 3	Average
	Toxic	Pollutants							
	4.	benzene	N - 2	1	ND	ИП	ND	ИD	
			R - 5	1	ND	ND			
			V-6	1	*	*			*
	11.	1,1,1-trichloroethane	N-2	1	ND	ИD	ND	ND	
			R – 5	1	ND	ND			
			V-6	1	ND	*			*
	23.	chloroform	N-2	1	*	ND	ND	ND	
			R - 5	1	0.040	ND			
			V-6	1	ND	*			*
	44.	methylene chloride	N - 2	1	ND	*	*	0.630	0.210
		·	R = 5	1	*	*			*
			V-6	1	0.015	0.021			0.021
	66.	bis(2-ethylhexyl) phthalate	N - 2	6	ND	*			*
			R - 5	6	*	*			*
304			V - 6	1	*	*			*
	86.	toluene	N-2	1	ND	ND	ND	ND	
			R-5	1	ND	ND			
			V-6	1	*	*			*
	114.	antimony	V-6	1	<0.001	0.002			0.002
		ŕ	W-4	1	0.003	0.032	<0.001	0.009	<0.014
	115.	arsenic	N - 2	6	<0.0002	<0.0002			<0.0002
			R-5	6	0.0037	0.0032			0.0032
			V-6	1	<0.005	<0.005			<0.005
			W-4	1	<0.005	0.020	<0.005	0.018	<0.014
	118.	cadmium	N - 2	6	<0.0005	<0.0005			<0.0005
			R-5	6	<0.0005	0.0011			0.0011
			V-6	1	<0.001	0.002			0.002
			W-4	1	<0.001	<0.001	<0.001	<0.001	<0.001
	119.	chromium	N-2	6	<0.001	0.018			0.018
			R-5	6	<0.001	5.100			5.100
			V-6	1	<0.001	0.005			0.005
			W - 4	1	0.004	0.004	0.006	0.003	0.004
	120.	copper	N-2	6	0.008	0.015			0.015
			R-5	6	0.010	0.013			0.013
			V-6	1	0.027	0.024			0.024
			W-4	1	0.010	0.008	0.001	0.060	0.023

Table V-45 (Continued)

Pollutant	Stream	Sample	Course			ions (mg/l)	- A.: 0 M G G G
rollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
121. cyanide	N - 2	6		<0.02			<0.02
	R - 5	1		<0.02			<0.02
	V-6	1	0.0042	0.010			0.010
	W-4	1	0.030	0.015	0.013	0.020	0.016
122. lead	N - 2	6	0.010	0.012			0.012
	R-5	6	<0.001	0.004			0.004
	V-6	1	0.079	0.003			0.003
	W - 4	1	0.009	0.004	0.004	0.008	0.005
123. mercury	N - 2	6	0.0041	0.009			0.009
	R - 5	6	0.0007	<0.0001			<0.0001
	V-6	1	<0.0002	<0.0002			<0.0002
	W - 4	1	<0.002	<0.002	<0.002	<0.002	<0.002
124. nickel	N - 2	6	<0.001	<0.001			<0.001
	R-5	6	<0.001	0.018			0.018
	V-6	1	0.009	0.038			0.038
	W-4	1	0.060	<0.001	<0.001	<0.001	<0.001
125. selenium	V-6	1	0.020	0.24			0.24
	W-4	1	0.015	<0.005	<0.005	0.013	<0.008
127. thallium	V-6	1	<0.001	<0.001			<0.001
	W-4	1	<0.001	<0.001	<0.001	0.002	<0.001
128. zinc	N - 2	6	<0.010	0.038			0.038
	R - 5	6	0.053	0.038			0.038
	V-6	1	0.50	0.08			0.08
	W-4	1	0.03	0.03	0.03	0.03	0.03
Nonconventional							
alkalinity	N - 2	6		110			110
,	R - 5	6		34			34
	V-6	1		280			280
	W - 4	1	170	150	160	160	160
aluminum	N - 2	6	<0.500	<0.500			<0.500
	R - 5	6	<0.500	0.540			0.540
	V-6	1	0.09	0.20			0.20
	W-4	1	0.06	0.24	0.58	1.4	0.7
calcium	N + 2	6	28	38			38
	R - 5	6	60	58			58
	V-6	1	9.8	78			78
	W-4	1	55	29	54	31	38

305

SAMPLING DATA EXTRUSION SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

	Stream	Sample			Concentrat	ions (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
chemical oxygen demand (COD)	N-2	6	5	7			7
, ,	R - 5	6		20			20
	V-6	1	<1 12	4			4
	W-4	1	12	3.8	7.5	3.9	5.1
magnesium	N - 2	6	4.39	5.3			5.3
· ·	R - 5	6	22.1	24.5			24.5
	V-6	1	63	50			50
	W-4	1	19	24	28	18	23
phenols (total; by 4-AAP method)	N-2	6	ND	0.014			0.014
prictions (cocar, by 4 mm meanor)	R-5	ĭ		0.007			0.007
	V-6	1	0.062	0.130			0.130
	W-4	1	1.0	0.088	0.010	0.013	0.037
sulfate	N - 2	6		7			7
Sattace	R-5	6		120			120
	Ÿ-6	ĭ		43			43
	W-4	1	81	86	77	92	85
total dissolved solids	N - 2	6		160			160
cotal dibbolited bolies	R-5	6		580			580
	₩-6	ĭ		390			390
	W-4	i	3	320	240	400	320
total organic carbon (TOC)	N-2	6	2.7	1.8			1.8
total organic carbon (100)	R-5	6	-•.	2.7			2.7
	V-6	ĭ	4.7	28			28
	W-4	i	o	5	10	6	7
Conventional							
oil and grease	N - 2	1	<5	68	14		41
Quality (Accessed	V-6	1	16	5.8			5.8
	W-4	1	6.6	4.0	1.5	4.8	3.4
suspended solids	N-2	6	<2	<2			<2
- 1	R-5	6		<2			<2
	V-6	1		11			11
	W-4	1	<1	11	<1	<1	<4
pH (standard units)	N - 2	1	7.1	7.3	7.3	7.2	
• • •	R-5	6		7.3			
	V-6	1	7.3	7.2			
	W-4	1	7.7	7.3	7.7		

Table V-46
FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wast 1/kkg	ewater gal/ton
1 14110	271000	<u> 541/ COII</u>	Recycle	171008	841/4011
1	833.9	200.0	0	0	0
2	1,151	276.0	0	1,109	266.0
3	2,956	709.0	*	2,148	515.2
4	2,502	600.0	0	2,502	600.0
5	3, 235	776.0	0	3,235	776.0
6	4,169	1,000	0	3,752	900
7	21,120	5,065	0	21,120	5,065
8	32,230	7,730	0	32,230	7,730
9	*	*	*	32,320	7,752
10	*	*	0	*	*
11	*	*	*	*	*
12	*	*	0	*	*

^{*}Data not available.

Statistical Summary

Minimum Maximum Mean Median Sample: Nonzero	833.9 200 32,230 7,730 8,524 2,045 3,096 742 8 of 12 plants 8,524 2,045	32,320 10,940 .5 3,235 9 of	0 7,752 2,623 776.0 12 plants 2,951
Mean Sample:	8 of 12 plants	8 of	12 plants

Table V-47

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	4	6	6			
2.	acrolein	0.010	3	5	5			
3.	acrylonitrile	0.010	3	5	5			
4.	benzene	0.010	3	5	5			
5.	benzidine	0.010	4	6	6			
6.	carbon tetrachloride	0.010	3	5	5			
7.	chlorobenzene	0.010	3	5	5			
8.	1,2,4-trichlorobenzene	0.010	4	6	6			
9.	hexachlorobenzene	0.010	4	6	6			
10.	1.2-dichloroethane	0.010	3	5	5			
11.	1,1,1-trichloroethane	0.010	3	5	5			
12.	hexachloroethane	0.010	4	6	6			
13.	1.1-dichloroethane	0.010	3	5	5			
14.	1,1,2-trichloroethane	0.010	3	5	5			
15.	1,1,2,2-tetrachloroethane	0.010	3	5	5			
16.	chloroethane	0.010	3	5	5			
17.	bis(chloromethyl)ether	0.010	3	5	5			
18.	bis(chloroethyl)ether	0.010	4	6	6			
19.	2-chloroethyl vinyl ether	0.010	3	5	5			
20.	2-chloronaphthalene	0.010	4	6	6			
21.	2,4,6-trichlorophenol	0.010	4	6	6			
22.	p-chloro-m-cresol	0.010	4	6	6			
23.	chloroform	0.010	3	5	3	2		
24.	2-chlorophenol	0.010	4	6	6			
25.	1.2-dichlorobenzene	0.010	4	6	6			
26.	1.3-dichlorobenzene	0.010	4	6	6			
27.	1.4-dichlorobenzene	0.010	4	6	6			
28.	3,3'-dichlorobenzidine	0.010	4	6	6			
29.	1.1-dichloroethylene	0.010	3	5	5			
30.	1.2-trans-dichloroethylene	0.010	3	5	5			
31.	2,4-dichlorophenol	0.010	4	6	6			
32.	1,2-dichloropropane	0.010	3	5	5			
33.	1.3-dichloropropene	0.010	3	5	5			
34.	2,4-dimethylphenol	0.010	4	ó	6			
35.	2,4-dinitrotoluene	0.010	4	6	6			
36.	2.6-dinitrotoluene	0.010	4	6	6			
37.	1,2-diphenylhydrazine	0.010	4	6	6			
38.	ethylbenzene	0.010	3	5	5			
39.	fluoranthene	0.010	4	6	6			
J7.	Liuoranchene	0.010	~	•	9			

Table V-47 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of			imes Obse es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	4	6	6			
41.	4-bromophenyl phenyl ether	0.010	4	6	6			
42.	bis(2-chloroisopropyl)ether	0.010	4	6	6			
43.	bis(2-chloroethoxy)methane	0.010	4	6	6			
44.	methylene chloride	0.010	3	5	4	1		
45.	methyl chloride (chloromethane)	0.010	3	5	5			
46.	methyl bromide (bromomethane)	0.010	3	5	5			
47.	bromoform (tribromomethane)	0.010	3	5	4	1		
48.	dichlorobromomethane	0.010	3	5	5			
49.	trichlorofluoromethane	0.010	$\bar{3}$	5	5			
50.	dichlorodifluoromethane	0.010	3	5	5			
51.	chlorodibromomethane	0.010	3	5	5			
52.	hexachlorobutadiene	0.010	4	6	6			
53.	hexachlorocyclopentadiene	0.010	4	6	6			
54.	isophorone	0.010	4	6	6			
55.	naphthalene	0.010	4	6	6			
56.	nitrobenzene	0.010	4	6	6			
57.	2-nitrophenol	0.010	4	6	6			
58.	4-nitrophenol	0.010	4	6	6			
59.	2,4-dinitrophenol	0.010	4	6	6			
60.	4.6-dinitro-o-cresol	0.010	4	6	6			
61.	N-nitrosodimethylamine	0.010	4		_			
62.		0.010	4	6 6	6			
63.	N-nitrosodiphenylamine		4	-	6			
	N-nitrosodi-n-propylamine	0.010	•	6	6			
64.	pentachlorophenol	0.010	4	6	6			
65.	phenol	0.010	4	6	6			
66.	bis (2-ethylhexyl) phthalate	0.010	4	8	6	1	1	
67.	butyl benzyl phthalate	0.010	4	6	6			
68.	di-n-butyl phthalate	0.010	4	6	6			
69.	di-n-octyl phthalate	0.010	4	6	6			
70.	diethyl phthalate	0.010	4	6	6			
71.	dimethyl phthalate	0.010	4	6	6			
72.	benzo(a)anthracene	0.010	4	6	6			
73.	benzo(a)pyrene	0.010	4	6	6			
74.	benzo(b)fluoranthene	0.010	4	6	6			
75.	benzo(k)fluoranthene	0.010	4	6	6			
76.	chrysene	0.010	4	6	6			
77.	acenaphthylene	0.010	4	6	6			
78.	anthracene (a)	0.010	4	6	6			

Table V-47 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

79. benzo(ghi)perylene			Analytical Quantification	Number of	Number of	Nui	mber of T in Sample	imes Obse es (mg/l)	rved
Pollutant (mg/1) Analyzed Analyzed 0.010 0.100 1.000 1.000- 79. benzo(ghi)perylene 0.010 4 6 6 80. fluorene 0.010 4 6 6 81. phenanthrene (a) 0.010 - 82. dibenzo(a,h)anthracene 0.010 4 6 6 83. indeno (1,2,3-c,d)pyrene 0.010 4 6 6 84. pyrene 0.010 4 6 6 85. tetrachloroethylene 0.010 3 5 5 86. toluene 0.010 3 5 5 87. trichloroethylene 0.010 3 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4 4			Level	Streams	Samples	ND-	0.011-	0.101-	
80. fluorene 0.010 4 6 6 81. phenanthrene (a) 0.010 82. dibenzo(a,h)anthracene 0.010 4 6 6 83. indeno (1,2,3-c,d)pyrene 0.010 4 6 6 84. pyrene 0.010 4 6 6 85. tetrachloroethylene 0.010 3 5 5 86. toluene 0.010 3 5 5 87. trichloroethylene 0.010 3 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4 4		Pollutant	(mg/l)	Analyzed		0.010	0.100	1.000	1.000+
81. phenanthrene (a) 0.010 82. dibenzo(a,h)anthracene 0.010 4 6 6 83. indeno (1,2,3-c,d)pyrene 0.010 4 6 6 84. pyrene 0.010 4 6 6 6 85. tetrachloroethylene 0.010 3 5 5 86. toluene 0.010 3 5 5 5 87. trichloroethylene 0.010 3 5 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4 4		benzo(ghi)perylene							
82. dibenzo(a,h)anthracene				4	6	6			
83. indeno (1,2,3-c,d)pyrene				-	-				
84. pyrene 0.010 4 6 6 85. tetrachloroethylene 0.010 3 5 5 86. toluene 0.010 3 5 5 87. trichloroethylene 0.010 3 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4									
85. tetrachloroethylene 0.010 3 5 5 86. toluene 0.010 3 5 5 5 87. trichloroethylene 0.010 3 5 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 5 89. aldrin 0.005 4 4 4		indeno (1,2,3-c,d)pyrene							
86. toluene 0.010 3 5 5 87. trichloroethylene 0.010 3 5 5 88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4 4				•					
87. trichloroethylene	85.	tetrachloroethylene		-	5	5			
88. vinyl chloride (chloroethylene) 0.010 3 5 5 89. aldrin 0.005 4 4	86.				5	5			
89. aldrin 0.005 4 4				•	5	5			
		vinyl chloride (chloroethylene)		-	5	-			
00 dialdain		aldrin			4				
yo. dicidili	90.	dieldrin	0.005	4	4	4			
91. chlordane 0.005 4 4 4	91.	chlordane	0.005	4	4	•			
92. 4,4'-DDT 0.005 4 4 4	92.	4,4'-DDT		•	4	· ·			
93. 4,4'-DDE 0.005 4 4 4	93.	4,4'-DDE	0.005	4	4				
94. 4,4'-DDD 0.005 4 4 4	94.		0.005	4	4				
95. alpha-endosulfan 0.005 4 4 4	95.	alpha-endosulfan	0.005	4	4	4			
96. beta-endosulfan 0.005 4 4 4	96.		0.005	4	4	4			
97. endosulfan sulfate 0.005 4 4 4	97.	endosulfan sulfate	0.005	4	4	4			
98. endrin 0.005 4 4 4	98.	endrin	0.005	4	4				
99. endrin aldehyde 0.005 4 4 4	99.	endrin aldehyde	0.005	4	4	4			
100. heptachlor 0.005 4 4 4	100.	heptachlor	0.005	4	4	4			
101. heptachlor epoxide 0.005 4 4 4	101.		0.005	4	4	4			
102. alpha-BHC 0.005 4 4 4	102.		0.005	4	4	4			
103. beta-BHC 0.005 4 4 4	103.	beta-BHC	0.005	4	4	4			
104. gamma-BHC 0.005 4 4 4	104.	gamma-BHC	0.005	4	4				
105. delta-BHC 0.005 4 4 4	105.	delta-BHC	0.005	4	4	4			
106. PCB-1242 (b) 0.005 4 4 4	106.	PCB-1242 (b)	0.005	4	4	4			
107. PCB-1254 (b) 0.005	107.		0.005	-	-				
108. PCB-1221 (b) 0.005		PCB-1221 (b)		-	-				
109. PCB-1232 (b) 0.005		PCB-1232 (b)	0.005	~	-				
110. PCB-1248 (c) 0.005 4 4 4			0.005	4	4	4			
111. PCB-1260 (c) 0.005			0.005		-				
112. PCB-1016 (c) 0.005		• •		-	-				
113. toxaphene 0.005 4 4 4		· ·	0.005	4	4				
114. antimony 0.100 5 7 6 1			0.100				1		
115. arsenic 0.010 8 12 11 1				8	12	11	1		
116. asbestos 10 MFL 0 0									

Table V-47 (Continued)

		Analytical Quantification	Number of	Number of		nber of Ti in Sample		rved
	D 11	Level	Streams	Samples	ND-	0.011-	0.101-	1 000
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	8	12	12			
118.	cadmium	0.002	8	12	11	1		
119.	chromium (total)	0.005	8	12	4	4	2	2
120.	copper	0.009	8	12	2	9	1	
121.	cyanide (total)	0.010	8	12	6			6
122.	lead	0.020	8	12	6	4	1	3
123.	mercury	0.0001	8	12	12			
124.	nickel	0.005	8	12	1.1	1		
125.	selenium	0.01	5	7	7			
126.	silver	0.02	5	7	7			
127.	thallium	0.100	5	7	5	2		
128.	zinc	0.050	8	12		9	2	1
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-48

SAMPLING DATA FORGING SOLUTION HEAT TREATMENT CONFACT COOLING WATER RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	Day 3	Average
	Toxic	Pollutants							
	23.	chloroform	J-3 Q-3 R-4	1 1 1	0.019 ND 0.040	0.016 ND ND	*	0.043	0.023
	44.	methylene chloride	J - 3 Q - 3 R - 4	1 1 1	ND <0.010 <0.005	0.015 *	*	*	* *
	47.	bromoform	J-3 Q-3 R-4	! 1 1	ND ND ND	ND ND ND	ND	0.016	0.016
	66.	bis(2-ethylhexyl) phthalate	A - 2 J - 3 Q - 3 R - 4	1, 2, 2 1 6	0.200 ND <0.010 <0.005	0.890 * * 0.050	*	*	0.890 * * 0.050
312	114.	antimony	A-2 W-8 W-9 W-10 W-11	1 1 1 1	<0.1 0.003 0.003 0.003 0.003	<0.1 <0.001 0.008 0.007 0.038	0.003	<0.001	<0.1 <0.002 0.008 0.007 0.038
	115.	arsenic	A - 2 J - 3 Q - 3 R - 4 W - 8 W - 9 W - 10 W - 11	1 1 6 1 1	<0.01 <0.01 0.0028 0.0037 <0.005 <0.005 <0.005 <0.005	<0.01 <0.01 0.037 0.0039 <0.005 0.001 <0.005 0.001	<0.01 <0.005	<0.01 <0.005	<0.01 <0.01 0.037 0.0039 <0.005 0.001 <0.005
	118.	cadmium	A-2 J-3 Q-3 R-4 W-8 W-9 W-10 W-11	1, 2, 2 1, 6 1 1	<pre><0.002 <0.01 <0.0005 <0.0005 <0.001 <0.001 <0.001 <0.001</pre>	<pre><0.002 <0.01 0.0011 0.012 <0.001 <0.001 <0.001 <0.001</pre>	<0.01 0.002	<0.01 0.001	<pre><0.002 <0.01 0.0011 0.012 <0.001 <0.001 <0.001 <0.001</pre>

Table V-48 (Continued)

SAMPLING DATA FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

			Stream	Sample			Concentrati	ons (mg/l)	,
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	119.	chromium	A-2	1	<0.005	0.007			0.007
			J-3	1,2,2	<0.03	0.05	0.13	0.13	0.01
			Q-3	1	0.004	72			72
			R-4	6	<0.0001 0.004	46 0.012	0.002	0.004	46 0.006
			W-8 W-9	1	0.004	0.012	0.002	0.004	0.006
			W-10	i	0.004	0.014			0.014
			W-11	1	0.004	0.030			0.030
	120.	copper	A - 2	1	0.01	0.1			0.1
		, ,	J-3	1,2,2	0.03	<0.02	0.07	0.06	<0.05
			Q-3	1	0.026	0.07			0.07
			R-4	6	0.01	0.38	0.010	0.010	0.38
			W-8 W-9	1	0.010 0.010	0.039 0.08	0.019	0.019	0.026 0.08
			W-10	1	0.010	0.07			0.07
			W-11	i	0.010	0.005			0.005
	121.	cyanide	A - 2	1		<0.001			<0.001
313		•	J-3	1		0.002	<0.002	0.006	<0.003
ω			Q-3	1		<0.02			<0.02
			R - 4	1		<0.02		4.0	<0.02
			W-8	1	30 30	15 2.2	19	18	$\begin{array}{c} 17 \\ 2.2 \end{array}$
			W-9 W-10	1	30 30	530			530
			W-11	i	30	15			15
	122.	lead	A - 2	1	<0.02	0.06			0.06
			J-3	1,2,2	<0.050	<0.05	<0.05	<0.05	<0.05
			Q-3	1	0.006	ND			
			R-4	6	<0.001	17	0.000	0.050	17
			W-8 W-9	! 1	0.009 0.009	0.007 0.019	0.032	0.250	0.096 0.019
			W-10	1	0.009	0.046			0.046
			W-11	i	0.009	0.005			0.005
	123.	mercury	A - 2	1	0.0006	0.0005			0.0005
		,	J - 3	1,2,2	<0.0004	<0.0004	<0.0002	<0.0002	<0.0003
			Q - 3	1	<0.0001	<0.0001			<0.0001
			R-4	6	0.0007	<0.00005	ZO 300	70. 000	<0.00005
			W-8	1	<0.0002	<0.0002	<0.002	<0.002	<0.001 <0.0002
			W-9 W-10	I 1	<0.0002 <0.0002	<0.0002 <0.0002			<0.0002
			W-10 W-11	1	<0.0002	<0.0002			<0.0002
			W = 1 !	1	\U. UUUZ	\0.0002			\0.0002

SAMPLING DATA FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	124.	nickel	A-2 J-3 Q-3	1, 2, 2 1	<0.005 <0.02 <0.001	<0.005 <0.02 0.006	<0.02	<0.02	<0.005 <0.02 0.006
			R-4 W-8 W-9 W-10 W-11	6 1 1 1	<0.001 0.060 0.060 0.060 0.060	<0.008 0.018 <0.001 0.006 0.004	<0.001	<0.001	<0.008 <0.007 <0.001 0.006 0.004
	125.	selenium	A-2 W-8 W-9 W-10 W-11	1 1 1 1	<0.01 0.015 0.015 0.015 0.015	<0.01 <0.005 <0.005 <0.005 <0.005	0.007	<0.005	<0.01 <0.006 <0.005 <0.005 <0.005
	127.	thallium	A-2 W-8 W-9 W-10 W-11	1 1 1 1	<0.1 <0.001 <0.001 <0.001 <0.001	<0.1 0.002 0.006 0.013 <0.001	<0.001	0.042	<0.1 <0.015 0.006 0.013 <0.001
314	128.	zinc	A-2 J-3 Q-3 R-4 W-8 W-9 W-10 W-11	1 1,2,2 1 6 1 1	0.06 0.04 <0.01 0.053 0.03 0.03 0.03 0.03	0.05 0.03 0.19 5.2 0.03 0.02 0.18 0.03	0.07	0.08	0.05 0.06 0.19 5.2 0.03 0.02 0.18 0.03
	Nonco	nventional							
	alkal	inity	A-2 J-3 Q-3 R-4 W-8	1,2,2 1 6	117 170	92 140 170 170 100	100	109	92 116 170 170 113
			W-9 W-10 W-11	1	170 170 170 170	200 1,200 140	100	(40	200 1,200 140
	alumi	num	A-2 J-3 C-3 R-4 W-8 W-9	1, 2, 2 1 6 1 1	<0.09 <0.1 <0.5 <0.5 0.06 0.06	<0.15 0.9 1.2 9 0.86 0.90 1.0	1.2 0.78	0.14	<pre><0.15 1.1 1.2 9 0.59 0.90 1.0 0.65</pre>
			W-11	1	0.96	0.45			0.45

Table V-48 (Continued)

SAMPLING DATA FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Stream	Sample			Concentra	tions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	calcium	A-2	1	39	49			49
		J-3	1,2,2	ND	40	36	37	38
		Q-3	1	61	17			17
		R - 4	6	60	80			80
		W-8	1	55	22	22	2.3	15
		W-9	1	55	14			14
		W-10	1	55	7.0			7.0
		W-11	1	5.5	28			28
	chemical oxygen demand (COD)	A - 2	1	8	18			18
	· -	J-3	1,2,2	8 5	6	<5	<5	<5
		Q-3	1		6			6
		Ř-4	6		56			56
		W-8	1	12	79	15	16	37
		W-9	1	12	96			96
		W-10	1	12	3,300			3,300
		W-11	1	12	80			80
	dissolved solids	A - 2	1		188			188
		J-3	1,2,2	177	206	202	2,723	1,044
ڔ		Q-3	1		1,370		- • · ·	1,370
		Ř-4	6		720			720
		W-8	1	3	690	660	380	580
		W-9	1	3	1,200			1,200
		W-19	1	3	4,400			4,400
		W - 1 1	1	3	360			360
	magnesium	A - 2	1	8.7	8.1			8.1
		J-3	1,2,2	ND	13	12	12	12
		Q-3	1	12.2	35			35
		R-4	6	22.1	30.5			30.5
		W-8	1	19	11	13	16	13
		W-9	1	19	9.7			9.7
		W-10	1	19	0.40			0.40
		W - 1 1	1	19	15			15
	phenols (total, by 4-AAP method)	A - 2	1		0.019			0.019
		J-3	1,2,2		1.6	0.01		0.8
		Q-3	1		<0.002			<0.002
		R-4	6		0.003			0.003
		W-8	1	1.0	12.0	23.0	0.098	11.7
		W-9	1	1.0	0.17			0.17
		W-10	1	1.0	0.01			0.01
		W-11	1	1.0	0.01			0.01

 $\frac{3}{2}$

Table V-48 (Continued)

SAMPLING DATA FORGING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

		Stream	Sample			Concentra	tions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	sulfate	A - 2 J - 3 Q - 3 R - 4	1 1,2,2 1 6	<10	70 30 330 190	30	30	70 30 330 190
		W-8 W-9 W-10 W-11	1 1 1	81 81 81 81	30 670 110 70	290	86	135 670 110 70
	total organic carbon (TOC)	A - 2 J - 3 Q - 3 R - 4	1,2,2 1 6	9 <1	14 <1 3.4 3.4	4	1	14 <2 3.4 3.4
		W-8 W-9 W-10 W-11	1 1 1	0 0 0	40 10 1,200 30	56	11	36 10 1,200 30
	Conventional							
316	oil and grease	A-2 J-3 Q-3 R-4 W-8 W-9 W-10	1 1 1 1 1 1	6.6 6.6 6.6	14 <5 7 * 7.3 5.1 3.1	4 248 96	5 <5 22	14 5 <5 <87 39 7.3 5.1 3.1
	suspended solids	A-2 J-3 Q-3 R-4 W-8 W-9 W-10 W-11	1 1,2,2 1 6 1 1 1	<1 14 <1 <1 <1 <1 <1	4 34 7 240 8 6 17	21 15	12	4 22 7 240 9 6 17
	pH (standard units)	J-3 C-3 R-4 W-8 W-9 W-10 W-11	1 1 1 1 1 1	7.7 7.7 7.7 7.7	7.8 8.2 7.9 7.7 8.4 9.6 7.8	7.5 7.9 7.4	7.8 8.2 7.9	

Table V-49

DRAWING SOLUTION HEAT TREATMENT CONTACT COOLING WATER

	Water	· Use	Percent	Waste	vater
<u>Plant</u>	1/kkg	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	13,430	3,220	95	0	0
2	119.2	28.60	0	119.2	28.60
3	496.2	119.0	0	328.1	78.70
4	921.4	221.0	0	921.4	221.0
5	3,002	720.0	0	3,002	720.0
6	*	*	*	27,850	6,680
7	*	*	*	´*	, *
8	*	*	87.5	*	*
9	*	*	*	*	*
10	*	*	*	*	*
11	*	*	*	*	*

^{*}Data not available.

Statistical Summary

Minimum Maximum Mean Median Sample:	119.2 13,430 3,593 921.4 5 of 11		0 27,850 5,370 624.8 6 of 11	I .
Nonzero Mean	3,593	861.7	6,446	I .
Sample:	5 of 11	plants	5 of 11	plants

		Analytical Quantification	Number of	Number of		Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+	
1.	acenaphthene	0.010	2	6	4	2			
2.	acrolein	0.010	2	6	6				
3.	acrylonitrile	0.010	2	6	6				
4.	benzene	0.010	2	6	4	1		1	
5.	benzidine	0.010	2	6	6				
6.	carbon tetrachloride	0.010	2	6	6				
7.	chlorobenzene	0.010	2	6	6				
8.	1,2,4-trichlorobenzene	0.010	2	6	6				
9.	hexachlorobenzene	0.010	2	6	6				
10.	1,2-dichloroethane	0.010	2	6	6				
11.	1,1,1-trichloroethane	0.010	2	6	6				
12.	hexachloroethane	0.010	2	6	6				
13.	1,1-dichloroethane	0.010	$\frac{2}{2}$	6	6				
14.	1,1,2-trichloroethane	0.010	2	6	6				
15.	1,1,2,2-tetrachloroethane	0.010	2	6	6				
16.	chloroethane	0.010	2 2	6	6				
17.	bis(chloromethyl)ether	0.010	2	6	6				
18.	bis(chloroethyl)ether	0.010	2	6	6				
19.	2-chloroethyl vinyl ether	0.010	2	6	6				
20.	2-chloronaphthalene	0.010	2	6	6				
21.	2,4,6-trichlorophenol	0.010	2	6	6				
22.	p-chloro-m-cresol	0.010	2	6	6				
23.	chloroform	0.010	2	6	4	1		1	
24.	2-chlorophenol	0.010	2	6	6				
25.	1,2-dichlorobenzene	0.010	2	6	6				
26.	1,3-dichlorobenzene	0.010	2	6	6				
27.	1,4-dichlorobenzene	0.010	2	6	6				
28.	3,3'-dichlorobenzidine	0.010	2	6	6				
29.	1,1-dichloroethylene	0.010	2	6	6				
30.	1,2-trans-dichloroethylene	0.010	2	6	6				
31.	2,4-dichlorophenol	0.010	2	6	6				
32.	1,2-dichloropropane	0.010	2	6	6				
33.	1,3-dichloropropene	0.010	2	6	6				
34.	2,4-dimethylphenol	0.010	2	6	6				
35.	2.4-dinitrotoluene	0.010	2	6	6				
36.	2.6-dinitrotoluene	0.010	2	6	6				
37.	1,2-diphenylhydrazine	0.010	2	6	6				
38.	ethylbenzene	0.010	2	6	6				
39.	fluoranthene	0.010	2	6	6				

Table V-50 (Continued)

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	2	6	6			
41.	4-bromophenyl phenyl ether	0.010	2	6	6			
42.	bis(2-chloroisopropyl)ether	0.010	2 2	6	6			
43.	bis(2-chloroethoxy)methane	0.010	2	6	6			
44.	methylene chloride	0.010	2	6	2	1	2	1
45.	methyl chloride (chloromethane)	0.010	2 2	6	6			
46.	methyl bromide (bromomethane)	0.010	2	6	6			
47.	bromoform (tribromomethane)	0.010	2	6	6			
48.	dichlorobromomethane	0.010	2	6	6			
49.	trichlorofluoromethane	0.010	2	6	6			
50.	dichlorodifluoromethane	0.010	2	6	6			
51.	chlorodibromomethane	0.010	2	6	6			
52.	hexachlorobutadiene	0.010	2	6	6			
53.	hexachlorocyclopentadiene	0.010	2	6	6			
54.	isophorone	0.010	2	6	6			
55.	naphthalene	0.010	2	6	6			
56.	nitrobenzene	0.010	2 2	6	6			
57.	2-nitrophenol	0.010	2	6	6			
58.	4-nitrophenol	0.010	2	6	6			
59.	2,4-dinitrophenol	0.010	2	6	6			
60.	4,6-dinitro-o-cresol	0.010	2	6	6			
61.	N-nitrosodimethylamine	0.010	2 2	6	6			
62.	N-nitrosodiphenylamine	0.010	2	6	6			
63.	N-nitrosodi-n-propylamine	0.010	2	6	6			
64.	pentachlorophenol	0.010	2 2	6	6			
65.	phenol	0.010	2	6	4	2		
66.	bis (2-ethylhexyl) phthalate	0.010	2	6	3	2	1	
67.	butyl benzyl phthalate	0.010	2	6	6			
68.	di-n-butyl phthalate	0.010	2	6	4	1	1	
69.	di-n-octyl phthalate	0.010	2	6	6			
70.	diethyl phthalate	0.010	2	6	4	1	1	
71.	dimethyl phthalate	0.010	2	6	4	2		
72.	benzo(a)anthracene	0.010	2	6	6			
73.	benzo(a)pyrene	0.010	2 2	6	6			
74.	benzo(b)fluoranthene	0.010	2	6	6			
75.	benzo(k)fluoranthene	0.010	2	6	6			
76.	chrysene	0.010	2	6	6			
77.	acenaphthylene	0.010	2	6	6			
78.	anthracene (a)	0.010	2	6	6			

Table V-50 (Continued)

Pollutant (mg/1) Analyzed Analyzed 0.010 0.100 1.000 1.000+ 79. benzo(ghi)perylene 0.010 2 6 6 8 8 1 compared 0.010 2 6 6 6 8 1 8 1 compared 0.010 2 6 6 6 8 1 1 compared 0.010 2 6 6 6 8 8 1 compared 0.010 2 6 6 6 8 8 1 compared 0.010 2 6 6 6 8 1 8 1 compared 0.010 2 6 6 6 6 8 1 1 8 1 compared 0.010 2 6 6 6 6 7 1 8 1 compared 0.010 2 6 6 5 3 1 1 8 1 compared 0.010 2 6 6 5 3			Analytical Quantification	Number of	Number of			es (mg/l)	rved
80. fluorene (a) 0.010 2 6 6 6 81. phenanthrene (a) 0.010 2 6 6 6 82. dibenzo(a,h)anthracene 0.010 2 6 6 6 83. indeno (1,2,3-c,d)pyrene 0.010 2 6 6 6 84. pyrene 0.010 2 6 6 6 85. tetrachloroethylene 0.010 2 6 5 6 6 86. toluene 0.010 2 6 5 7 1 87. trichloroethylene 0.010 2 6 5 6 7 1 88. vinyl chloride (chloroethylene) 0.010 2 6 5 6 7 1 89. aldrin 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 92. 4,4'-DDT 0.005 2 4 4 4 93. 4,4'-DDE 0.005 2 4 4 4 94. 4,4'-DDD 0.005 2 4 4 4 95. alpha-endosulfan 0.005 2 4 4 4 96. beta-endosulfan 0.005 2 4 4 4 97. endosulfan sulfate 0.005 2 4 4 4 98. endrin 0.005 2 4 4 4 99. endrin 0.005 2 4 4 4 101. heptachlor epoxide 0.005 2 4 4 4 101. heptachlor epoxide 0.005 2 4 4 4 101. heptachlor epoxide 0.005 2 4 4 4 102. alpha-BHC 0.005 2 4 4 4 103. beta-BHC 0.005 2 4 4 4 104. gama-BHC 0.005 2 4 4 4 105. delca-BHC 0.005 2 4 4 4 106. PCB-1242 (b) 0.005 2 4 4 4 107. PCB-1254 (c) 0.005 2 4 4 4 108. PCB-1221 (b) 0.005 2 4 4 4 109. PCB-1232 (b) 0.005 2 4 4 4 100. PCB-1248 (c) 0.005 2 4 4 4 101. PCB-1268 (c) 0.005 2 4 4 4 101. PCB-1260 (Pollutant		Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
81. phenanthrene (a) 0.010 - 6 6 6 82 82 dibenzo(a, h)anthracene 0.010 2 6 6 6 83. indeno (1,2,3-c,d)pyrene 0.010 2 6 6 6 84. pyrene 0.010 2 6 6 6 85. tetrachloroethylene 0.010 2 6 5 5 1 86. toluene 0.010 2 6 5 5 1 88. vinyl chloride (chloroethylene) 0.010 2 6 5 5 1 88. vinyl chloride (chloroethylene) 0.010 2 6 6 5 1 88. vinyl chloride (chloroethylene) 0.010 2 6 6 6 6 89. aldrin 0.005 2 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		benzo(ghi)perylene							
82. dibenzo(a,h)anthracene				2	6	6			
83. indeno (1,2,3-c,d)pyrene					~				
84. pyrene		dibenzo(a,h)anthracene							
85					6	_			
86. coluene 0.010 2 6 2 3 1 8 87. trichloroethylene 0.010 2 6 5 5 1 88. vinyl chloride (chloroethylene) 0.010 2 6 6 6 89. aldrin 0.005 2 4 4 4 90. dieldrin 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 92. 4,4'-DDT 0.005 2 4 4 4 93. 4,4'-DDT 0.005 2 4 4 4 93. 4,4'-DDD 0.005 2 4 4 4 95. alpha-endosulfan 0.005 2 4 4 4 95. alpha-endosulfan 0.005 2 4 4 4 95. alpha-endosulfan 0.005 2 4 4 4 96. beta-endosulfan 0.005 2 4 4 4 97. endosulfan 0.005 2 4 4 4 97. endosulfan 0.005 2 4 4 4 99. endrin 0.005 2 4 4 4 90. diameter 0.005 2 4 4 90. diameter 0.005 2 4 90. diameter 0.005 2 4 90. diameter 0.005 2				2	6	6			
87. trichloroethylene					6	5	_	_	Ţ
88. vinyl chloride (chloroethylene) 0.010 2 6 6 89. aldrin 0.005 2 4 4 4 90. dieldrin 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 91. chlordane 0.005 2 4 4 4 92. 4,4'-DDT 0.005 2 4 4 4 92. 4,4'-DDT 0.005 2 4 4 4 93. 4,4'-DDD 0.005 2 4 4 4 94. 4,4'-DDD 0.005 2 4 4 4 94. 95. alpha-endosulfan 0.005 2 4 4 4 95. alpha-endosulfan 0.005 2 4 4 98. endrin 0.005 2 4 4 98. endrin 0.005 2 4 4 99. endrin aldehyde 0.005 2 4 4 99. endrin aldehyde 0.005 2 4 4 99. endrin aldehyde 0.005 2 4 4 9 90. endrin aldehyde 0.005 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					6	2	3	1	
89, aldrin 0.005 2 4 4 90. dieldrin 0.005 2 4 4 91. chlordane 0.005 2 4 4 92. 4,4'-DDT 0.005 2 4 4 93. 4,4'-DDE 0.005 2 4 4 94. 4'-DDD 0.005 2 4 4 95. alpha-endosulfan 0.005 2 4 4 96. beta-endosulfan 0.005 2 4 4 97. endosulfan sulfate 0.005 2 4 4 98. endrin 0.005 2 4 4 99. endrin aldehyde 0.005 2 4 4 100. heptachlor 0.005 2 4 4 101. heptachlor epoxide 0.005 2 4 4 105. delta-BHC 0.005 2 4 4 106. PCB-1242 (b) 0.005 2 4 4 107. PCB-1254 (b) 0.005 2 4 4 107. PCB-1254 (b) 0.005 2 4 4 107. PCB-1232 (b) 0.005 3 109. PCB-1232 (b) 0.005 3 109. PCB-1232 (b) 0.005 3 109. PCB-1248 (c) 0.005 3 111. PCB-1260 (c) 0.005 3 112. PCB-1016 (c) 0.005 3 113. toxaphene 0.005 1 113. toxaphene 0.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					6	5			1
90. dieldrin		vinyl chloride (chloroethylene)			-	6			
91. chlordane	89.	aldrin		2	•	4			
92. 4,4'-DDT	90.	dieldrin		2		4			
93. 4,4'-DDE				2	•	4			
94. 4,4'-DDD	92.	4,4'-DDT	0.005		•	4			
95. alpha-endosulfan	93.	4,4'-DDE	0.005		4	4			
96. beta-endosulfan 97. endosulfan sulfate 98. endrin 99. endrin aldehyde 99. endrin aldehyde 99. endrin aldehyde 90.005 90. endrin aldehyde 90. endrin aldehyde 90.005 90. endrin aldehyde 90.005 90. endrin aldehyde 90. endrin aldehyde 90.005 90. endrin aldehyde 90	94.	4,4'-DDD			•	4			
97. endosulfan sulfate 98. endrin 99. endrin aldehyde 99. endrin aldehyde 99. endrin aldehyde 90. o005 100. heptachlor 101. heptachlor epoxide 102. alpha-BHC 103. beta-BHC 104. gamma-BHC 105. delta-BHC 106. PCB-1242 (b) 107. PCB-1254 (b) 108. PCB-1254 (b) 109. PCB-1232 (b) 109. PCB-1232 (b) 109. PCB-1248 (c) 110. PCB-1248 (c) 111. PCB-1260 (c) 112. PCB-1016 (c) 113. toxaphene 105. delta in imony 115. arsenic 107. PCB-1016 (c) 117. PCB-1016 (c) 118. Toxaphene 119. Toxaphene 110. PCB-1016 (c) 111. Toxaphene	95.	alpha-endosulfan	0.005	2	4	4			
98. endrin			0.005	2	4	4			
98. endrin 99. endrin aldehyde 0.005 2 4 4 100. heptachlor 0.005 2 4 4 101. heptachlor epoxide 0.005 2 4 4 102. alpha-BHC 0.005 2 4 4 103. beta-BHC 0.005 2 4 4 104. gamma-BHC 0.005 2 4 4 105. delta-BHC 0.005 2 4 4 106. PCB-1242 (b) 0.005 2 4 4 107. PCB-1242 (b) 0.005 2 4 4 107. PCB-1254 (b) 0.005 2 4 4 107. PCB-1232 (b) 0.005 109. PCB-1232 (b) 0.005 110. PCB-1248 (c) 0.005 111. PCB-1260 (c) 0.005 112. PCB-1016 (c) 0.005 113. toxaphene 114. antimony 115. arsenic	97.	endosulfan sulfate	0.005		4	4			
99. endrin aldehyde		endrin	0.005	2	4	4			
101. heptachlor epoxide 102. alpha-BHC 103. beta-BHC 104. gamma-BHC 105. delta-BHC 106. PCB-1242 (b) 107. PCB-1254 (b) 108. PCB-1221 (b) 109. PCB-1221 (b) 109. PCB-1248 (c) 110. PCB-1248 (c) 111. PCB-1260 (c) 112. PCB-1016 (c) 113. toxaphene 114. antimony 115. arsenic 100. 005 100.		endrin aldehyde	0.005	2	4	4			
101. heptachlor epoxide 102. alpha-BHC 103. beta-BHC 104. gamma-BHC 105. delta-BHC 106. PCB-1242 (b) 107. PCB-1254 (b) 108. PCB-1221 (b) 109. PCB-1221 (b) 109. PCB-1248 (c) 110. PCB-1248 (c) 111. PCB-1260 (c) 112. PCB-1016 (c) 113. toxaphene 114. antimony 115. arsenic 100. 005 100.			0.005	2	4	4			
102. alpha-BHC		heptachlor epoxide	0.005	2	4	4			
103. beta-BHC				2	4	4			
104. gamma-BHC				2	4	4			
105. delta-BHC 106. PCB-1242 (b) 107. PCB-1254 (b) 108. PCB-1221 (b) 109. PCB-1232 (b) 110. PCB-1248 (c) 111. PCB-1260 (c) 112. PCB-1016 (c) 113. toxaphene 114. antimony 115. arsenic 105. delta-BHC 100.005			0.005	2	4	4			
106. PCB-1242 (b) 0.005 2 4 4 107. PCB-1254 (b) 0.005 - - 108. PCB-1221 (b) 0.005 - - 109. PCB-1232 (b) 0.005 - - 110. PCB-1248 (c) 0.005 2 4 4 111. PCB-1260 (c) 0.005 - - 112. PCB-1016 (c) 0.005 - - 113. toxaphene 0.005 2 4 4 114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				2	4	4			
107. PCB-1254 (b) 0.005	106.		0.005		4	4			
108. PCB-1221 (b) 0.005				-	-				
109. PCB-1232 (b) 0.005				-	-				
110. PCB-1248 (c) 0.005 2 4 4 4 111. PCB-1260 (c) 0.005 112. PCB-1016 (c) 0.005 113. toxaphene 0.005 2 4 4 114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				_	-				
111. PCB-1260 (c) 0.005 - - 112. PCB-1016 (c) 0.005 - - 113. toxaphene 0.005 2 4 4 114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				2	4	4			
112. PCB-1016 (c) 0.005 - - 113. toxaphene 0.005 2 4 4 114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				-	-				
113. toxaphene 0.005 2 4 4 114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				_	-				
114. antimony 0.100 4 12 11 1 115. arsenic 0.010 4 12 9 2 1				2	4	4			
115. arsenic 0.010 4 12 9 2 1		•					1		
The desired	115							1	
TID. ASDESTOS TV PPT V	116.	asbestos	10 MFL	Ö	ō	-	_		

Table V-50 (Continued)

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	4	12	12			
118.	cadmium	0.002	4	12	12			
119.	chromium (total)	0.005	4	12	10	2		
120.	copper	0.009	4	12	3	9		
121.	cyanide (total)	0.010	4	12	3	6		3
122.	lead	0.020	4	12	6	5	1	
123.	mercury	0.0001	4	12	11	1		
124.	nickel	0.005	4	12	10	2		
125.	selenium	0.01	4	12	9	3		
126.	silver	0.02	4	12	8	4		
127.	thallium	0.100	4	12	12			
128.	zinc	0.050	4	12	3	3	6	
129.	2,3,7.8-tetrachlorodibenzo-p-dioxin	0.005	Ů	0	,	3	· ·	

(a), (b), (c) Reported together.

Table V-51

SAMPLING DATA

DRAWING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Type	Source	Day	Concentrati Day 2	ions (mg/l) Day 3	Average
Toxic	Pollutants							
1.	acenaphthene	E-4 V-4	1 2	* ND	ND ND	ND 0.018	0.012 ND	0.012 0.018
4.	benzene	E - 4 V - 4	1 1	ND 0.004	6.300 0.064	*	ND *	3.154 0.026
11.	1,1,1-trichloroethane	E-4 V-4	1 1	ND ND	ND *	* *	ND *	*
23.	chloroform	E-4 V-4	1	<0.100 ND	35.000 *	0.030 ND	* ND	11.677 *
38.	ethylbenzene	E-4 V-4	1 1	ND ND	ND ND	ND *	ND *	*
44.	methylene chloride	E - 4 V - 4	1 1	0.017 0.015	92.00 0.056	0.170 *	0.120 *	30.763 0.025
65.	phenol	E-4 V-4	1 2	* ND	ND 0.021	ND ND	0.031 ND	0.031 0.021
66.	bis(2-ethylhexyl phthalate)	E-4 V-4	1 2	* 0.008	0.840 ND	0.036 *	0.048 *	0.308 *
68.	di-n-butyl phthalate	E - 4 V - 4	1 2	* ND	0.990 ND	ND 0.017	* ND	0.495 0.017
70.	diethyl phthalate	E - 4 V - 4	1 2	* ND	0.470 ND	ND 0.033	ND ND	0.470 0.033
71.	dimethyl phthalate	E - 4 V - 4	1 2	* ND	ND ND	ND 0.011	0.050 ND	0.050 0.011
85.	tetrachloroethylene	E - 4 V - 4	1 1	ND ND	12.000 ND	ND UN	* ND	6.000
86.	toluene	E - 4 V - 4	1 1	ND 0.002	0.95 0.014	* 0.041	ND 0.029	0.475 0.028
87.	trichloroethylene	E-4 V-4	1 1	ND ND	1.300 ND	ND ND	* ND	0.650

Table V-51 (Continued)

SAMPLING DATA DRAWING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

Pollutant Code Type Source Day 1 Day 2 Day 3 Average			Stream	Sample			Concentrati	ons (mg/l)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114.	antimony				<0.200			<0.133
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
115. arsenic E-4 1				2					
118. cadmium			W-3	2	0.003	0.004	0.030	<0.001	<0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115.	arsenic	E-4				<0.01	<0.01	<0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2	<0.005	<0.005	0.24	<0.005	<0.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2		<0.005		<0.005	<0.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			W-3	2	<0.005	0.006	0.011	0.012	0.010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	118.	cadmium	E-4	1	<0.002	<0.002	<0.002	<0.002	<0.002
N-2 2 (0.001 (0.001 0.001 (0.001 (0.001 (0.001 (0.001 (0.001 (0.001 (0.001 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.003 (V-4	2	<0.001				
119. chromium				2					<0.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	119.	chromium	E-4	1	<0.005	<0.005	0.01	<0.005	<0.01
120. copper				2				0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\tilde{2}$					
V-4				2					
V-4	120.	copper	E-4	1	<0.009	0.020	<0.009	0.020	<0.016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1 -		2					0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
V-4				$\frac{1}{2}$					
V-4	121.	cvanide	E-4	1		1.3	1.38	1.26	1.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0) (1112 42		i	0.0042				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	122.	lead	E - 4	1	<0.020	<0.020	<0.020	<0.020	<0.020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\frac{1}{2}$					0.078
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	123.	mercury	F 4	1	0.004	0.02	0.01	0.0003	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. –	- · ,		2					
W-3 2 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 124. nickel E-4 1 <0.005 <0.005 <0.005 <0.005 <0.005 V-4 2 0.009 0.006 0.004 0.003 0.004 W-2 2 0.060 <0.001 0.019 0.007 <0.009				<u>,</u>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.	nickel	E-4	1	<0.005	<0.005	<0.005	<0.005	<0.005
W-2 2 0.060 <0.001 0.019 0.007 <0.009									
				$\overline{2}$					
				$\overline{2}$					

Table V-51 (Continued)

SAMPLING DATA DRAWING SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER

Pollutant	Stream _Code	Sample Type	Source	Day 1	Concentrat Day 2	Day 3	Average
125. selenium	E - 4 V - 4	1 2	<0.01 0.020	<0.01 0.031	<0.01 0.007	<0.01 <0.005	<0.01 <0.014
	W - 2 W - 3	2 2	0.015 0.015	0.051 <0.005	0.017 <0.005	<0.005 <0.005	<0.024 <0.005
126. silver	E-4 V-4	1 2	<0.02 0.05	<0.04 0.05	<0.02 <0.001	<0.02 <0.001	<0.03 <0.02
	W-2 W-3	2 2	0.02 0.02	0.04 0.05	<0.001 0.02	<0.001 <0.001	<0.01 <0.02
128. zinc	E-4 V-4	1	<0.050 0.50	<0.050 0.02	<0.050 0.04	<0.050 0.04	<0.050 0.03
	W-2 W-3	2 2 2	0.03	0.02 0.21 0.32	0.19 0.11	0.22 0.40	0.21 0.28
Nonconventional							
alkalinity	E - 4 V - 4	† 2		340 280	400 280	370 280	370 280
	W-2 W-3	2 2	170 170	140 250	240 240	250 250	210 250
aluminum	E-4 V-4	1 2	<0.09 0.09	<0.295 0.10	<0.845 0.21	<0.395 0.12	<0.512 0.14
	W-2 W-3	2 2 2	0.09 0.06 0.06	0.92 2.6	0.27 0.97 0.32	0.96 2.6	0.95 1.8
calcium	E-4	1 0	68	35	22	36	31
	V-4 W-2 W-3	2 2 2	9.8 55 55	860 35 66	78 34 56	76 59 36	338 43 53
chemical oxygen demand (COD)	E - 4 V - 4	1 2	<5 <1	79,600 12	98,400 32	97,700 32	91,900 25
	W-2 W-3	1	12 12	1,900 1,200	1,500 1,000	1,900 1,100	1,800 1,100
dissolved solids	E-4	1		5,005	8,326	13,500	8,944
	V - 4 W - 2 W - 3	2 2 2	3	400 680 680	420 780 730	410 780 740	410 750 720

fable V-51 (Continued)

SAMPLING DATA DRAWING SOLUTION HEAT TREATMENT CONTACT GOOLING WATER RAW WASTEWATER

	Stream	Sample			Concentra	tions (mg/l)	
Pollutant	Code	_Type_	Source	Day 1	Day 2	Day 3	Average
magnesium	E-4	1	3.8	26	<9.05	30	<22
	V - 4	2	63	60	55	54	56
	W-2	2	19	51	36	33	40
	W - 3	2	19	21	4.4	27	1 7
phenolics (total by 4-AAP method)	E-4	1		0.005		0.005	0.005
	V - 4	1	0.062	0.009	0.007	0.025	0.014
	W - 2	1	1.00	0.150	0.400		0.283
	W - 3	1	1.00	0.800	0.720	0.900	0.807
sulfate	E - 4	1		400	280	298	326
	V - 4	2		32	23	29	28
	W-2	2	81	98	100	97	98
	W - 3	2	81	100	100	85	95
total organic carbon (TOC)	E-4	1	1	20,000	20,300	18,400	19,600
	V - 4	2	4.7	14	8.2	28	17
	W-2	1	0	660	690	900	750
	W - 3	1	0	450	110	500	350
Conventional							
oil and grease	E-4	1		17	18	26	20
	V-4	1	16		6.3	8.0	7.2
	W - 2	1	6.6	350	370	120	280
	W-3	1	6.6	150	120	120	130
suspended solids	E-4	1	<1	21	19	17	19
·	V - 4	2		12	13	7	11
	W-2	2	<1	98	93	87	93
	W - 3	2	<1	57	39	50	49
pH (standard units)	E-4	1		7.9	8.2	8.4	
•	V-4	1	7.3	7.3	7.5	7.4	
	W - 2	1	7.7	8.7			
	W - 3	1	7.7	7.8	7.7		

Table V-52
CLEANING OR ETCHING BATH

	Wat	er Use		Waste	water
Plant	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	gal/ton
1	*	*	**	0	0
2	*	*	**	0	0
3	*	*	**	0	0
4	*	*	**	0	0
5	*	*	**	0	0
6	*	*	**	0	0
6 7	*	*	**	0	0
8 9	*	*	**	0	0
9	*	*	**	0.9	0.22
10	*	*	**	1.430	0.3430
11	*	*	**	5.816	1.395
12	*	*	**	8.406	2.016
13	*	*	**	9.498	2.278
14	*	*	**	28.35	6.800
15	*	*	**	38.0	9.0
16	*	*	**	69.0	17.0
17	*	*	**	121.0	29.0
18	*	*	**	156.0	51.5
19	*	*	**	192.4	46.15
20	*	*	**	280.0	67.0
21	*	*	**	346.4	83.08
22	*	*	**	355.0	85.0
23	*	*	**	446.5	107.1
24	*	*	**	800.5	192.0

^{*}Data not available.

**Not applicable.

Statistical Summary

Minimum Maximum Mean Median Sample: Nonzero Mean Sample: Nonzero Mean	178.7	0 192 28.33 2.15 4 plants 42.9 4 plants 49.02
(Proposal) Sample:		0 plants

Table V-52 (Continued)

CLEANING OR ETCHING BATH

Note: This table includes only plants that discharge or haul away the baths and provided enough data for calculation of the wastewater value.

Note: This table individually lists data from four plants which have both cleaning and etch line bath discharges.

		Analytical Quantification	Number of	Number of		Number of Times in Samples (rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
1.	acenaphthene	0.010	6	6	6			
2.	acrolein	0.010	4	4	4			
3.	acrylonitrile	0.010	4	4	4			
4.	benzene	0.010	4	4	4			
5.	benzidine	0.010	6	6	6			
6.	carbon tetrachloride	0.010	4	4	4			
7.	chlorobenzene	0.010	4	4	4			
8.	1,2,4-trichlorobenzene	0.010	6	6	6			
9.	hexachlorobenzene	0.010	6	6	6			
10.	1,2-dichloroethane	0.010	4	4	4			
11.	1,1,1-trichloroethane	0.010	4	4	4			
12.	hexachloroethane	0.010	6	6	6			
13.	1,1-dichloroethane	0.010	4	4	4			
14.	1,1,2-trichloroethane	0.010	4	4	4			
15.	1,1,2,2-tetrachloroethane	0.010	4	4	4			
16.	chloroethane	0.010	4	4	4			
17.	bis(chloromethyl)ether	0.010	4	4	4			
18.	bis(chloroethyl)ether	0.010	6	6	6			
19.	2-chloroethyl vinyl ether	0.010	4	4	4			
20.	2-chloronaphthalene	0.010	6	6	6			
21.	2,4,6-trichlorophenol	0.010	6	6	6			
22.	p-chloro-m-cresol	0.010	6	6	5	1		
23.	chloroform	0.010	4	4	3	1		
24.	2-chlorophenol	0.010	6	6	6			
25.	1,2-dichlorobenzene	0.010	6	6	6			
26.	1,3-dichlorobenzene	0.010	6	6	6			
27.	1,4-dichlorobenzene	0.010	6	6	6			
28.	3,3'-dichlorobenzidine	0.010	6	6	6			
29.	1,1-dichloroethylene	0.010	4	4	4			
30.	1,2-trans-dichloroethylene	0.010	4	4	4			
31.	2,4-dichlorophenol	0.010	6	6	6			
32.	1,2-dichloropropane	0.010	4	4	4			
33.	1,3-dichloropropene	0.010	4	4	4			
34.	2,4-dimethylphenol	0.010	6	6	5	1		
35.	2,4-dinitrotoluene	0.010	6	6	6			
36.	2,6-dinitrotoluene	0.010	6	6	6			
37.	1,2-diphenylhydrazine	0.010	6	6	6			
38.	ethylbenzene	0.010	4	4	4			
39.	fluoranthene	0.010	6	6	5	1		

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	6	6	6			
41.	4-bromophenyl phenyl ether	0.010	6	6	6			
42.	bis(2-chloroisopropyl)ether	0.010	6	6	6			
43.	bis(2-chloroethoxy)methane	0.010	6	6	6			
44.	methylene chloride	0.010	4	4	1	3		
45.	methyl chloride (chloromethane)	0.010	4	4	4			
46.	methyl bromide (bromomethane)	0.010	4	4	4			
47.	bromoform (tribromomethane)	0.010	4	4	4			
48.	dichlorobromomethane	0.010	4	4	4			
49.	trichlorofluoromethane	0.010	4	4	4			
50.	dichlorodifluoromethane	0.010	4	4	4			
51.	chlorodibromomethane	0.010	4	4	4			
52.	hexachlorobutadiene	0.010	6	6	6			
53.	hexachlorocyclopentadiene	0.010	6	6	6			
54.	isophorone	0.010	6	6	6			
55.	naphthalene	0.010	6	6	6			
56.	nitrobenzene	0.010	6	6	6			
57.	2-nitrophenol	0.010	6	6	6			
58.	4-nitrophenol	0.010	6	6	6			
59.	2,4-dinitrophenol	0.010	ő	6	4		1	1
60.	4.6-dinitro-o-cresol	0.010	6	6	6		•	•
61.	N-nitrosodimethylamine	0.010	6	6	6			
62.	N-nitrosodiphenylamine	0.010	6	6	6			
63.	N-nitrosodi-n-propylamine	0.010	6	6	6			
64.	pentachlorophenol	0.010	6	6	5	1		
65.	phenol	0.010	6	6	, ,	3		
66.	bis (2-ethylhexyl) phthalate	0.010	6	6	3	3		
67.	butyl benzyl phthalate	0.010	6	6	6	,		
68.	di-n-butyl phthalate	0.010	6	6	4	2		
69.	di-n-octyl phthalate	0.010	6	6	5	1		
70.	diethyl phthalate	0.010	6	6	5	ì		
71.	dimethyl phthalate	0.010	6	6	Ś	1		
72.	benzo(a)anthracene	0.010	6	6	6	•		
73.	benzo(a)pyrene	0.010	6	6	6			
73. 74.					6			
75.	benzo(b)fluoranthene benzo(k)fluoranthene	0.010 0.010	6 6	6 6	6			
	, ,		_	-	-			
76.	chrysene	0.010	6	6	6			
77.	acenaphthylene	0.010	6	6	6			
78.	anthracene (a)	0.010	6	6	6			

		Analytical Number Quantification of		Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant		Analyzed	Analyzed	0.010	0.100	1.000	1 000+
	Pollutant	(mg/1)	Analyzeu	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	6	6	6			
80.	fluorene	0.010	6	6	6			
81.	phenanthrene (a)	0.010	-	-	6			
82.	dibenzo(a,h)anthracene	0.010	6	6	6			
83.	indeno (1,2,3-c,d)pyrene	0.010	6	6	6			
84.	pyrene	0.010	6	6	6			
85.	tetrachloroethylene	0.010	4	4	4			
86.	toluene	0.010	4	4	4			
87.	trichloroethylene	0.010	4	4	4			
88.	vinyl chloride (chloroethylene)	0.010	4	4	4			
89.	aldrin	0.005	6	6	6			
90.	dieldrin	0.005	6	6	6			
91.	chlordane	0.005	6	6	6			
92.	4,4'-DDT	0.005	6	6	6			
93.	4, 4'-DDE	0.005	6	6	6			
94.	4, 4'-DDD	0.005	6	6	6			
95.	alpha-endosulfan	0.005	6	6	6			
96.	beta-endosulfan	0.005	6	6	6			
97.	endosulfan sulfate	0.005	6	6	6			
98.	endrin	0.005	6	6	6			
99.	endrin aldehyde	0.005	6	6	6			
100.	heptachlor	0.005	6	6	6			
101.	heptachlor epoxide	0.005	6	6	6			
102.	alpha-BHC	0.005	6	ő	6			
103.	beta-BHC	0.005	6	6	6			
104.	gamma-BHC	0.005	6	6	6			
105.	delta-BHC	0.005	6	6	6			
106.	PCB-1242 (b)	0.005	6	6	6			
107.	PCB-1254 (b)	0.005		-	v			
107.	PCB-1221 (b)	0.005	_	_				
109.	PCB-1232 (b)	0.005	- -	_				
110.	PCB-1248 (c)	0.005	6	6	6			
111.		0.005	0	-	U			
	• •	0.005	-	_				
112.	PCB-1016 (c)		<u>-</u>	6	_			
113.	toxaphene	0.005	6	20	6 12	/.	/.	
114.	antimony	0.100	15			4 1	4 6	7
115.	arsenic	0.010	15	20	6	1	O	/
116.	asbestos	10 MFL	0	U				

Table V-53 (Continued)

		Analytical Quantification	Number of	Number of			es (mg/l)	rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	14	19	18		į	
118.	cadmium	0.002	14	19	17	1		1
119.	chromium (total)	0.005	14	19	5	2	2	10
120.	copper	0.009	14	19	5	3	5	6
121.	cyanide (total)	0.010	17	22	16	4	2	
122.	lead	0.020	14	19	12		5	2
123.	mercury	0.0001	14	19	18	1		
124.	nickel	0.005	14	19	6	4	5	4
125.	selenium	0.01	17	22	19	3		
126.	silver	0.02	15	20	18	2		
127.	thallium	0.100	15	20	20			
128.	zinc	0.050	14	19	2	4	11	2
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	O	Ú	-			_

⁽a), (b), (c) Reported together.

Table V-54

			Stream	Sample			Concentra	tions (mg/l)
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	22.	parachlorometa cresol	A-6 A-7 B-11 B-12 C-10 C-11	1 1 1 1 1	ND ND ND ND ND	0.021 ND ND * ND ND			0.021 *
	23.	chloroform	B-11 B-12 C-10 C-11	1 1 1	0.010 0.010 0.055 0.055	* * * 0.020			* * * 0.020
332	34.	2,4-dimethylphenol	A-6 A-7 B-11 B-12 C-10 C-11	1 1 1 1 1	ND ND ND ND ND	ND ND * ND 0.034			* * 0.034
32	39.	fluoranthene	A-6 A-7 B-11 B-12 C-10 C-11	1 1 1 1 1	ND ND ND ND ND ND	* ND * 0.018 ND ND			* * 0.018
	44.	methylene chloride	B-11 B-12 C-10 G-11	1 1 1	* * 0.220 0,220	0.062 * 0.039 0.015			0.062 * 0.039 0.015
	59.	2,4-dinitrophenol	A-6 A-7 B-11 B-12 C-10 C-11	1 1 1 1 1	ND ND ND ND ND ND	2.900 ND 0.146 * ND ND			2.900 0.146
	64.	pentachlorophenol	A-6 A-7 B-11 B-12 C-10 C-11	1 1 1 1 1	ND ND ND ND ND	ND ND * 0.012 ND ND			* 0.012

		Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1 Day	2 Day 3	Average	
65.	phenol	A - 6	1		0.0160		0.0160	
	·	A - 7	1		0.035		0.035	
		B-11	1		ND			
		B-12	1		0.0160		0.0160	
		C-10	1	ND	ND		********	
		C-11	1	ND	ND			
66.	bis(2-ethylhexyl) phthalate	A-6	1	0.200	0.033		0.033	
		A - 7	1	0.200	0.025		0.025	
		B - 11	1	*	*		*	
		B - 12	1	*	*		*	
		C-10	1	*	0.021		0.021	
		C-11	1	*	ND		3.32.	
68.	di-n-butyl phthalate	A-6	1	0.076	0.032		0.032	
	, ,	A - 7	1	0.076	0.012		0.012	
		B - 1 1	1	*	*		*	
		B-12	1	*	*		*	
		C-10	1	*	*		*	
		C-11	1	*	ND			
69.	di-n-octyl phthalate	A-6	1	ND	*		*	
	,	A – 7	1	ND	ND			
		B-11	1	ND	ND			
		B - 12	1	ND	ND			
		C-10	1	ND	ИD			
		C-11	1	ND	0.050		0.050	
70.	diethyl phthalate	A - 6	1	ND	ND			
	•	A - 7	1	ND	ИÐ			
		B – 1 1	1	*	*		*	
		B - 12	1	*	ND			
		C-10	1	*	*		*	
		C-11	ĺ	*	0.036		0.036	
71.	dimethyl phthalate	A - 6	1	ND	ND			
		A - 7	1	ND	ND			
		B - 1 1	1	ND	ND			
		B-12	1	ND	0.013		0.013	
		C-10	i	ND	ND		2.2.3	
		C-11	1	ND	ND			
			*					

Table V-54 (Continued)

	Stream	Sample			Concentrati		*
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
99. endrin aldehyde	A-6	1	ND	ND			
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A - 7	1	ND	ND			
	B-11	1	ND	ND			
	B-12	1	ND	**			**
	C-10	1	**	**			**
	C-11	1	**	0.0052			0.0052
114. antimony	BB-3	1	<0.025			<0.100*	<0.100
Train differmonty	BB - 5	8	<0.025	0.390	0.420	0.420	0.410
	BB-7	1	<0.025	<0.010			<0.010
	BB-9	1	<0.025		<0.010		<0.010
	CC-4	1	<0.010	<0.10			<0.10
	DD-4	1	<0.002	0.860			0.860
	DD-6	8	<0.002	<0.020**	<0.020**	<0.020**	0.020
	DD-8	1	<0.002		0.019		0.019
	DD-9	1	<0.002			<0.002	<0.002
	EE-1	9	<0.002	0.058			0.058
	EE-3	8	<0.002		0.080	0.045	0.063
ω 115. arsenic	B - 11	1	<0.010	0.14			0.14
ω 115. arsenic ω 4	B-12	1	<0.010	<0.01			<0.01
	C-10	1	<0.020	0.01			0.01
	C-11	1	<0.020	<0.02			<0.02
	BB-3	1	<0.010			0.320	0.320
	BB-5	8	<0.010	5.000	5.100	4.700	4.933 <0.010
	BB-7	1	<0.010	<0.010			<0.010
	BB-9	1	<0.010		<0.010		<0.010 <0.010
	CC-4	1	<0.010	<0.010			<0.010
	DD-4	1	<0.001	0.017			0.017
	DD-6	8	<0.001	0.154	2.35	26.5	9.67
	DD-8	ì	<0.001		2.18		2.18
	DD-9	1	<0.001			1.5	1.5
	EE-1	9	<0.021	0.315			0.315
	EE-3	8	<0.021		0.210	0.126	0.168
117. beryllium	BB-3	1	<0.015			<0.050	<0.050
,	BB ~ 5	8	<0.015	<0.050	<0.050	<0.050	<0.050
	BB-7	1	<0.015	<0.005			<0.005
	BB-9	1	<0.015		<0.005		<0.005
	CC-4	1	<0.005	<0.005			<0.005
	DD-4	1	<0.010	0.105			0.105
	DD-6	8	<0.010	<0.010	<0.010	<0.010	<0.010
	DD-8	1	<0.010		<0.010		<0.010
	DD-9	1	<0.010			<0.010	<0.010
	EE-1	9	<0.010	<0.010			<0.010
	EE-3	8	<0.010		<0.010	<0.010	<0.010

Table V-54 (Continued)

			Stream	Sample			Concentrat	ions $(mg/1)$	
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	118.	cadmium	B - 1 1	1	ND	0.050			0.050
			C-10	1	<0.002	0.005			0.005
			C - 1 1	ĺ	<0.002	3.000			3.000
			BB-3	1	<0.060			<0.200	<0.200
			BB-5	8	<0.060	<0.200	<0.200	<0.200	<0.200
			BB - 7	1	<0.060	<0.020			<0.020
			BB-9	1	<0.060		<0.020		<0.020
			CC-4	1	<0.020	<0.020			<0.020
			DD-4	1	<0.010	<0.010			<0.010
			DD-6	8	<0.010	<0.010	<0.010	<0.010	<0.010
			DD-8	Ī	<0.010		<0.010		<0.010
			DD-9	1	<0.010			<0.010	<0.010
			EE-1	9	<0.010	<0.010		(• • • • •	<0.010
			EE-3	8	<0.010	(0)	<0.010	<0.010	<0.010
	119.	chromium	В - 11	1	ND	0.020			0.020
			C-10	1	0.007	0.400			0.400
			C-11	1	0.007	10.00			10.00
335			BB-3	1	<0.060			<0.200	<0.200
တ်			BB-5	8	<0.060	2.600	2.600	2.800	2.667
			88-7	1	<0.060	<0.020			<0.020
			BB-9	1	<0.060	(0.000	<0.020		<0.020
			CC-4	1	<0.020	<0.020	(0.020		⟨0.020
			DD-4	1	<0.020	<0.100			<0.100
			DD-6	8	<0.020	1.44	2.77	1.60	1.94
			DD-8	ĭ	₹0.020	, , , , ,	1.14	7.00	1.14
			DD-9	1	<0.020		,,,,	1.6	1.6
			EE-1	9	<0.021	0.025		1.0	0.025
			EE-3	8	<0.021	0.023	1.05	0.563	0.807
				O			1.05	0, 303	
	120.	copper	B – 1 1	1	ND	20			20
			C-10	1	0.020	20			20
			C-11	1	0.02000	<5.00			<5.00
			BB-3	1	<0.150			0.500	0.500
			BB~5	8	<0.150	13.5	13.0	11.5	12.667
			BB - 7	1	<0.150	<0.050			<0.050
			BB-9	1	<0.150		<0.050		<0.050
			CC-4	i	<0.050	<0.050	(0,000		₹0.050
			DD-4	1	0.013	0.173			0.173
			DD-6	8	0.013	0.049	0.020	0.028	0.032
			DD-8	1	0.013	0.047	<0.010	0.020	<0.010
			DD-9	1	0.013		(0.0,0	1.63	1.63
			EE-1	9	<0.010	0.684		1.03	0.684
			EE-1	8	<0.010	0.084	0.131	0.110	0.121
			14 E -)	U	(0.010		0.131	0,,10	0.141

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
121.	cyanide	A-6	1	ND	0.408			0.408
		A - 7	1	ND	0.082			0.082
		B-11	1	ND	0.196			0.196
		B-12	1	ND	0.003			0.003
		C-10]	ND	0.054			0.054
		C-11	1	ND	<0.001		40.00	<0.001
		88-3	1	<0.02			<0.02	<0.02
		BB-5	8	<0.02	<0.02	<0.02	<0.02	<0.02
		BB-7	1	<0.02	<0.02			<0.02
		BB-9	1	<0.02		<0.02		<0.02
		CC-4	1	<0.02	<0.02			<0.02
		DD-4	1	<0.02	0.063			0.063
		DD-6	8	<0.02	<0.02	<0.02	<0.02	<0.02
		DD-8	1	<0.02		<0.02		<0.02
		DD-9	1	<0.02			<0.02	<0.02
		EE-1	9	<0.02	0.033			0.033
		EE-3	8	<0.02		<0.02	<0.02	<0.02
ω 122 .	lead	B-11	1	ND	2.000			2.000
336 122.	1040	C-10	1	0.030	0.400			0.400
6		C-11	1	0.030	90.0			90.0
		BB-3	i	<0.150			<0.500	<0.500
		BB-5	8	<0.150	<5.000	<5.000	<5.000	<5.000
		BB-7	ĩ	<0.150	0.200		, , , , , , ,	0.200
		BB-9	1	<0.150		<0.500		<0.500
		CC-4	1	<0.050	<0.050	(= 0.500		<0.050
		DD-4	1	<0.100	<0.100			<0.100
		DD-6	8	<0.100	0.796	0.740	0.819	0.785
		DD-8	1	<0.100		<0.10		<0.10
		DD-9	1	<0.100			<0.100	<0.100
		EE-1	9	<0.100	<0.100			<0.100
		EE-3	8	<0.100		<0.100	<0.100	<0.100
123.	mercury	B-11	1	ND	0.0004			0.0004
		C-10	1	0.0004	0.001			0.001
		C-11	i	0.0004	0.020			0.020
		BB-3	i	<0.0002	0.020		<0.0002	<0.0002
		BB-5	8	<0.0002	0.0017	0.0013	0.0011	0.0014
		BB-7	1	<0.0002	<0.0002	0,0013	0.001,	<0.0002
		BB-9	i	<0.0002	(0,0002	<0.0002		<0.0002
		CC-4	i	0.0004	<0.0002			<0.0002
		DD-4	1	<0.005	<0.005			<0.005
		DD-4 DD-6	8	<0.005	<0.005	<0.005	<0.005	<0.005
		DD-8	1	<0.005	(0.00)	<0.005	(0,00)	<0.005
		DD-9	i	<0.005		(0,00)	<0.005	<0.005
			ġ	<0.005 <0.005	<0.005		(0.00)	<0.005
		EE - 1 EE - 3	9 8	<0.005 <0.005	(0.00)	<0.005	<0.005	<0.005

Table V-54 (Continued)

			Stream	Sample			Concentratio	ons (mg/l)	
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	124.	nickel	B-11	1	ND	0.100			0.100
			C-10	1	0.030	0.500			0.500
			C-11	1	0.030	<3.000			<3.000
			BB-3	1	<0.150			<0.500	<0.500
			BB-5	8	<0.150	2.000	2.000	2.000	2.000
			BB - 7	1	<0.150	<0.050			<0.050
			BB-9	1	<0.150		486		486
			CC-4	1	<0.050	<0.050			<0.050
			DD-4	1	<0.050	<0.020			<0.020
			DD-6	8	<0.050	0.235	0.126	0.114	0.158
			DD-8	1	<0.050		0.518		0.518
			DD-9	1	<0.050			<0.020	<0.020
			EE-1	9	<0.020	0.034			0.034
			EE-3	8	<0.020		0.059	0.076	0.068
	125.	selenium	BB-3	1	<0.010			<0.050*	<0.050*
			BB - 5	8	<0.010	Chemical	Interference	<0.100*	<0.100(?)
ယ			BB-7	1	<0.010	<0.010			<0.010
337			BB-9	1	<0.010		<0.010		<0.010
-			CC-4	1	<0.010	<0.010			<0.010
			DD-4	1	<0.005	<0.005			<0.005
			DD-6	8	<0.005	0.025	0.026	0.026	0.026
			DD-8	1	<0.005		0.006		0.006
			DD-9	1	<0.005			<0.005	<0.005
			EE-1	9	<0.005	<0.005			<0.005
			EE-3	8	<0.005		<0.005	<0.005	<0.005
	126.	silver	BB-3	1	<0.010			<0.010	<0.010
			BB-5	8	<0.010	<0.010	<0.010	<0.010	<0.010
			BB-7	ĭ	<0.010	<0.010			<0.010
			BB-9	1	<0.010	*** * *	<0.010		<0.010
			CC-4	1	<0.005	<0.005			<0.005
			DD-4	1	<0.001	0.001			0.001
			DD-6	8	<0.001	0.009	0.012	0.020	0.014
			DD-8	ĺ	<0.001		0.010	 	0.010
			DD-9	i	<0.001		,	<0.001	<0.001
			EE-1	9	<0.001	<0.001		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0.001
			EE-3	8	<0.001	(3.30)	<0.001	<0.001	<0.001

		Stream	Sample				ions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day_3	Average
	127. thallium	BB ~ 3	1	<0.010			<0.010	<0.010
		BB-5	8	<0.010	<0.050	<0.050*	<0.050*	
		BB-7	1	<0.010	<0.010			<0.010
		BB-9	1	<0.010		<0.010		<0.010
		CC-4	1	<0.010	<0.020	k		<0.020*
		DD-4	1	<0.001	<0.001			<0.001
		DD-6	8	<0.001	<0.010	**	* <0.010 *	* <0.010*
		DD-8	1	<0.001		<0.010*		<0.010*
		DD-9	1	<0.001			<0.001	<0.001
		EE-1	9	<0.001	<0.001			<0.001
		EE-3	8	<0.001		<0.001	<0.001	<0.001
	128. zinc	B – 1 1	1	ND	0.500			0.500
		C-10	1	0.200	0.900			0.900
		C-11	1	0.200	<30.00			<30.00
		BB-3	1	<0.060			1.000	1.000
		BB-5	8	<0.060	0.400	0.400	0.400	0.400
		BB-7	1	<0.060	0.020			0.020
		BB-9	1	<0.060		1.5		1.5
		CC-4	1	1.10	0.060			0.060
w		DD-4	i	<0.010	0.029			0.029
338		DD-6	8	<0.010	0.514	0.373	0.995	0.627
ω		DD-8	ĺ	<0.010		<0.010		<0.010
		DD-9	i	<0.010		,	1.25	1.25
		EE-1	9	0.064	0.030			0.030
		EE-3	8	0.064	2.20	0.197	0.128	0.163
	Nonconventional							
	acidity	88-3	1	<1			< 1	<1
	actorcy	BB - 5	6	₹1	<10,000	<10,000 <		<10,000
		BB - 7	ĭ	ζi	<1	,	,	<1
		BB-9	i	ζi	``	<1		<1
		CC-4	1	₹1	<1	• •		<1
		DD-4	i	< 1	₹1			ζi
		DD-6	6	ζi	2,100	195	75	790
		DD-0 DD-9	1	<1	2,100	1 / 3	<1	, , , , , , , , , , , , , , , , , , ,
		EE-1	3	<1	<1		` '	ζi
			4	<u> </u>	\1	<1	<1	₹1
		EE-3	4	\1		\1	`'	\ 1

Table V-54 (Continued)

		Stream	Sample			Concentra	ations (mg/l))
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	alkalinity	BB-3	1	160			5,100	5,100
		BB-5	6	160	<1	<1	<1	<1
		BB-7	1	160	156			156
		88-9	1	160		630		630
		CC-4	1	49	370			370
		DD-4	1	274	8,800			8,800
		DD-6	6	274	<1	<1	<1	<1
		DD-8	1	274		<1		<1
		DD-9	1	274			160	160
		EE-1	3	22	1,850			1,850
		EE-3	4	22		1,740	1,230	1,485
	aluminum	B-11	1		2,200			2,200
		B-12	1		2,000			2,000
		C-10	1	2	30			30
بب		C-11	1	2	70,000			70,000
339		BB-3	1	0.500			84	84
		BB-5	8	0.500	15,500	15,300	15,400	15,400
		BB-7	1	0.500	0.300			0.300
		BB-9	1	0.500		0.300)	0.300
		CC-4	1	1.10	24			24
		DD-4	1	<0.050	248			248
		DD-6	8	<0.050	910	161	147.0	373.3
		DD-8	1	<0.050		382.0		382.0
		DD-9	1	<0.050			800	800
		EE-1	9	0.011	89.8			89.8
		EE-3	8	0.011		278	89.5	183.75
	ammonium nitrogen	BB-3	1	0.05			0.08	0.08
		BB-5	8	0.05	17	25	28	23.33
		BB-7	1	0.05	0.38			0.38
		BB-9	1	0.05		0.96		0.96
		DU-4	1	<0.01	1.09			1.09
		DD-6	8	<0.01	1.2	1.14	8.9	3.8
		DD-8	1	<0.01		440		440
		DD-9	1	<0.01			470	470
		EE-1	9	<0.05	0.69			0.69
		EE-3	8	<0.05		120	0.18	60.09

ယ္က

Table V-54 (Continued)

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	Torracant	<u> </u>	<u>17Pc</u> _	Boarce	<u> </u>	247 -	547 3	
	barium	BB - 3	1	<0.150			<0.500	<0.500
		BB-5	8	<0.150	<0.500	<0.500	<0.500	<0.500
		BB-7	1	<0.150	<0.050			<0.050
		BB-9	1	<0.150		<0.050		<0.050
		CC-4	1	<0.050	0.050			0.050
		DD-4	1	0.179	0.095			0.095
		DD-6	8	0.179	<0.020	<0.020	<0.020	<0.020
		DD-8	1	U.179		0.061		0.061
		DD-9	1	0.179			0.027	0.027
		EE-1	9	0.021	0.022			0.022
		EE-3	8	0.021		0.030	0.047	0.039
	boron	BB-3	1	0.800			1,390	1,390
		BB-5	8	0.800	3.000	<1.000	<1.000	<1.667
		BB-7	1	0.800	0.300			0.300
		BB-9	1	0.800		0.500		0.500
		CC-4	1	0.400	0.100			0.100
\sim		DD-4	1	<0.100	<0.100			<0.100
Ö		DD-6	8	<0.100	<0.100	<0.100	<0.100	<0.100
		DD-8	1	<0.100		<0.100		<0.100
		DD-9	1	<0.100			<0.100	<0.100
		EE-1	9	<0.050	<0.050			<0.050
		EE-3	8	<0.050		<0.050	<0.050	<0.050
	calcium	B-11	1		18			18
		B-12	1		<0.03			<0.03
		C-10	1	12	36			36
		C-11	1	12	<2,500			<2,500
		BB-3	1	4.800			5.000	5.000
		BB-5	8	4.800	7.000	7.000	8.000	7.333
		BB-7	1	4.800	6.600			6.000
		BB-9	1	4.800		10.9		10.9
		CC-4	1	36.9	59.7			59.7
		DD-4	1	5.68	320			320
		DD-6	8	5.68	38.2	200	530	256
		DD-8	1	5.68		5.75	.	5.75
		DD-9	1	5.68			3.23	3.23
		EE-1	9	4.62	0.043			0.043
		EE-3	8	4.62		1.67	1.64	1.66

Table V-54 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
chloride	BB - 3	1	17			40	40
	BB-5	8	17	20	17	20	19
	BB - 7	1	17	22	• ,	20	22
	BB-9	i	17		41		41
	CC - 4	i	24	110	• •		110
	DD-4	1	61	320			320
		- 8	61	49	11	49	36
	DD-8	ĭ	61	•	41	• • •	41
	DD-9	1	61		• •	37	37
	EE-1	9	<0.05	<0.3		•	₹0.3
	EE-3	8	<0.05	,,,,	<0.05	<0.05	<0.05
	.,,,	· ·	(0.03		(0,03	(0.03	(0,03
chemical oxygen demand (COD)	A-6	1	8.00	3,780			3,780
Citematic Configuration (Configuration)	A - 7	1	8.00	207			207
	B-11	1	82.0	1			i
	B-12	1	82.0	17			17
	C-10	1	<5.000	1.0			1.0
	C-11	1	<5.000	9,270			9,270
	BB-3	1	9	,		4,318	4,318
	BB-5	8	9	51	23	103	59
	BB - 7	ĺ	9	276			276
	BB-9	1	9		869		869
	DD-4	1	<0.5	4,100			4,100
	DD-6	8	<0.5	24,000	23,800	24,500	24,100
	DD-8	1	<0.5	·	7,600	·	7,600
	DD-9	1	<0.5		,	2,700	2,700
	EE-1	9	48	420		•	420
	EE-3	8	48		810	660	735
cobalt	BB-3	1	<0.150			<0.500	<0.500
	BB - 5	8	<0.150	<0.500	<0.500	<0.500	<0.500
	BB-7	1	<0.150	<0.050	,	(= , = ,	<0.050
	BB-9	1	<0.150	(3.330	0.150		0.150
	CC-4	1	<0.050	<0.050			<0.050
	DD-4	1	<0.010	<0.010			<0.010
	DD-6	8	<0.010	0.071	0.060	0.081	0.071
	DD-8	Ī	<0.010		1.010		1.010
	DD-9	1	<0.010		. , , ,	0.572	0.572
	EE-1	9	<0.010	0.021			0.021
	EE-3	8	<0.010		0.025	<0.010	<0.018

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentra Day 2	tions (mg/l Day 3) Average
dissolved solids	A - 6	1		83,856			83,856
010001760 001100	A - 7	1		284,000			284,000
	B - 11	1		27,619			27,619
	B - 12	1		43,647			43,647
	C-10	1		27,620			27,620
	BB-3	1	310			24,000	24,000
	BB-5	8	310	173,000	180,000	195,000	182,666.667
	BB-7	1	310	586	2 100		586
	BB-9	1	310	1 (00	2,200		2,200
	CC-4	1	300	1,600			1,600
	DD-4	ا ن	670 670	24,000	260,000	300,000	24,000 256,700
	DD-6	8	670	210,000	,	300,000	81,000
	DD-8 DD-9	1	670		81,000	18,000	18,000
	EE-1	u u	28	5,400		10,000	5,400
	EE-3	9 8	28	3,400	5,600	3,200	4.400
	17.12 - 3	0	2.0		3,000	3,200	4.400
fluoride	BB-3	1	<0.05			1.9	1.9
	BB-5	8	<0.05	2.0	5.4	4.7	4.033
	BB-7	1	<0.05	0.10			0.10
	BB-9	1	<0.05		0.14		0.14
	CC-4	1	0.73	0.17			0.17
	DD-4	1	0.29	0.89			0.89
	DD-6	8	0.29	3.7	2.11	3.1	2.97
	DD-8	1	0.29		0.37	0 //	0.37
	DD-9	l o	0.29	0.73		0.44	0.44
	EE-1	9	0.67	0.42	7 /	1 6	0.42 4.45
	EE-3	8	0.67		7.4	1.5	4.47
iron	BB-3	1	<0.150			11.000	11.000
	BB-5	8	<0.150	164	167	169	166.667
	BB-7	1	<0.150	0.100			0.100
	BB-9	ì	<0.150		0.300)	0.300
	CC-4	1	0.050	0.700			0.700
	DD-4	1	0.054	0.603			0.603
	DD-6	8	0.054	170	115	94.0	126
	DD-8	1	0.054		1.53		1.53
	DD-9	1	0.054			<0.010	<0.010
	EE-1	9	0.081	0.537			0.537
	EE-3	8	0.081		0.482	0.379	0.431

SAMPLING DATA CLEANING OR ETCHING BATH RAW WASTEWATER

	Stream	Stream Sample			Concentrations (mg/l)			
Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3	Average	
magnesium	B-11	1		980			980	
	B-12	1		0.06			0.06	
	C-10	1	4.6	5.9			5.9	
	C-11	1	4.6	<50			<50	
	BB-3	1	0.500			34	34	
	BB-5	8	0.500	118	120	120	119.333	
	BB-7	1	0.500	0.600			0.600	
	BB-9	1	0.500		1.700		1.700	
	CC-4	1	7.0	30.6			30.6	
	DD-4	1	108	0.618			0.618	
	DD-6	8	108	8.76	11.8	3.70	8.09	
	DD-8	1	108		124.0		124.0	
	DD-9	1	108			<0.050	<0.050	
	EE-1	9	1.68	8.5			8.5	
	EE-3	8	1.68		9.46	9.5	9.48	
manganese	BB-3	1	<0.150			<0.500	<0.500	
	BB-5	8	<0.150	1.500	1.500	1.500	1.500	
	BB-7	1	<0.150	<0.050			<0.050	
	BB-9	1	<0.150		<0.050		<0.050	
	CC-4	1	<0.050	0.050			0.050	
	DD-4	1	<0.010	0.026			0.026	
	DD-6	8	<0.010	1.90	1.36	2.68	1.98	
	DD-8	1	<0.010		1.20		1.20	
	DD-9	1	<0.010			0.774	0.774	
	EE-1	9	0.016	0.617			0.617	
	EE-3	8	0.016		0.273	0.225	0.249	
molybdenum	BB - 3	1	<0.150			<0.500	<0.500	
,	BB-5	8	<0.150	<0.500	<0.500	<0.500	<0.500	
	BB-7	1	<0.150	<0.050			<0.050	
	BB-9	1	<0.150		<0.050		<0.050	
	CC-4	1	<0.050	<0.050			<0.050	
	DD-4	1	<0.020	<0.020			<0.020	
	DD-6	8	<0.020	<0.020	<0.020	<0.020	<0.020	
	DD-8	1	<0.020		0.024		0.024	
	DD-9	1	<0.020			<0.020	<0.020	
	EE-1	9	0.030	0.033			0.033	
	EE-3	8	0.030		0.031	<0.020	<0.026	

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentra Day 2	tions (mg/l) Day 3	Average
phenols (total; by 4-AAP method)	A-6 A-7 B-11 B-12 C-10 C-11 BB-3 BB-5 BB-7 BB-9	1 1 1 1 1 1 1 8 1	0.026 0.026 0.026 0.026	0.039 0.174 0.005 0.040 <0.001 0.197 2.9 <0.005	0.32 0.16	<0.005 0.027	0.039 0.174 0.005 0.040 <0.001 0.197 <0.005 1.082 <0.005 0.16
phosphate	BB-3 BB-5 BB-7 BB-9 DD-4 DD-6 DD-8 DD-9 EE-1 EE-3	1 8 1 1 1 8 1 1 9 8	21 21 21 21 20 20 20 20 20 8.8 8.8	3,000 <3 1,200 210 2,000	3,000 <3 300 36 1,710	2,500 3,000 <4 48 980	2,500 3,000 <3 <3 1,200 <171 36 48 2,000 1,345
sodium	BB-3 BB-5 BB-7 BB-9 CC-4	1 8 1 1	76.7 76.7 76.7 76.7 6.80	104 158 107.0	103 242	6,190 103	6,190 103.333 158 242 107.0
sulfate	A-6 A-7 B-11 B-12 BB-3 BB-5 BB-7 BB-9 CC-4 DD-4 DD-6 DD-8 DD-9 EE-1 EE-3	1 1 1 1 8 1 1 1 8 1 9 8	90 90 90 90 75 180 180 180 180 21	213.0 <10.0 10 200 96,000 90 540 1,300 30	96,000 120 30 6	6,600 9,500 26 3,600 56	213.0 <10.0 10 200 6,600 67,166.667 90 120 540 1,300 29 6 3,600 24 31.2

SAMPLING DATA CLEANING OR ETCHING BATH RAW WASTEWATER

	Stream	Sample			Concentrati	ions (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
tin	BB - 3	1	<0.150			<0.500	<0.500
	BB-5	8	<0.150	<0.500	<5.000*	<0.500	<2.000
	BB-7	1	<0.150	<0.050			<0.050
	BB-9	1	<0.150		<0.050		<0.050
	CC-4	1	<0.050	<0.050			<0.050
	DD-4	1	<0.020	<0.020			<0.020
	DD-6	8	<0.020	<0.020	<0.020	0.905	<0.315
	DD-8	i	<0.020		<0.020		<0.020
	DD-9	1	<0.020			<0.020	<0.020
	EE-1	9	<0.020	0.048			0.048
	EE-3	8	<0.020		<0.020	<0.020	<0.020
titanium	BB-3	1	<0.150			<0.500	<0.500
	BB-5	8	<0.150	2.500	2.500	2.500	2.500
	BB-7	1	<0.150	<0.050			<0.050
	BB-9	1	<0.150		<0.050		<0.050
	CC-4	1	<0.050	<0.050			<0.050
	DD-4	1	<0.010	<0.010			<0.010
	DD-6	8	<0.010	0.327	0.331	0.199	0.286
	DD-8	1	<0.010		<0.010		<0.010
	DD-9	1	<0.010			0.212	0.212
	EE-1	9	<0.010	<0.010			<0.010
	EE-3	8	<0.010		0.027	0.020	0.024
total organic carbon (TOC)	A-6	1	9.000	755			755
	B - 11	1	35.00	<1.000			<1.000
	B-12	1	35.00	60			60
	C-10	1	<1.000	1.000			1.000
	C-11	1	<1.000	3,550			3,550
	BB-3	1	<1			1,500	1,500
	88-5	8	<1	13	18	10	13.667
	BB-7	1	<1	100			100
	BB-9	1	<1		810		810
	01)-4	1	<1	1,110			1,110
	DD-6	8	<1	9,510	8,600	670	6.260
	DD-8	1	<1		1,680		1,680
	DD-9	1	<1			4,860	4,860
	EE-1	9	<1	150			150
	EE-3	8	<1		320	240	280

SAMPLING DATA CLEANING OR ETCHING BATH RAW WASTEWAIER

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
total solids (TS)	BB - 3	1	267			25,600	25,600	
2022 3022-2 (22)	BB-5	8	267	969	330,000	300,000	210,323	
	BB-7	1	267	707			707	
	BB-9	1	267		2,500		2,500	
	CC-4	1	204	2,090			2,090	
	DD-4	1	380	25,000			25,000	
	DD-6	8	380	330,000	360,000	350,000	347,000	
	DD-8	1	380		100,000		100,000	
	DD-9	1	380			29,000	29,000	
	EE-1	9	30	5,100			5,100	
	EE-3	8	30		5,600	3,600	4,600	
vanadium	BB - 3	1	<0.150			<0.500	<0.500	
Variation Cam	BB-5	8	<0.150	<0.500	<0.500	<0.500	<0.500	
	BB-7	1	<0.150	<0.050			<0.050	
	BB-9	1	<0.150		<0.050		<0.050	
	CC-4	1	<0.050	<0.050			<0.050	
	DD-4	1	0.026	0.105			0.105	
	DD-6	8	0.026	0.026	0.022	0.061	0.036	
	DD-8	1	0.026		<0.020		<0.020	
	DD-9	1	0.026			<0.020	<0.020	
	EE-1	9	<0.020	0.023			0.023	
	EE-3	8	<0.020		<0.020	<0.020	<0.020	
yttrium	BB-3	1	<0.150			<0.500	<0.500	
y correction.	BB-5	8	<0.150	<0.500	<0.500	<0.500	<0.500	
	BB-7	1	<0.150	<0.050			<0.050	
	BB-9	1	<0.150		<0.050		<0.050	
	CC-4	1	<0.050	<0.050			<0.050	
	DD-4	1	<0.020	<0.020			<0.020	
	DD-6	8	<0.020	<0.020	<0.020	<0.020	<0.020	
	DD-8	1	<0.020		<0.020		<0.020	
	DD-9	1	<0.020			<0.020	<0.020	
	EE-1	9	<0.020	<0.020			<0.020	
	EE-3	8	<0.020		<0.020	<0.020	<0.020	

SAMPLING DATA CLEANING OR ETCHING BATH RAW WAS TEWATER

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	tions (mg/l Day 3) Average
	Conventional							
	oil and grease	A - 6	1		100			100
	C. C	Λ - 7	i		7			7
		B-11	1		12			12
		B-12	1		12			12
		C-10	1		11			11
		C-11	1		11			11
		BB-3	1	<1			160	160
		BB-5	8	<1	<1	43	<1	<15
		BB - 7	1	<1	<1			<1
		BB-9	1	<1		10		10
		CC - 4	1	<1	1,900			1,900
		DD-4	1	<1	38			38
		DD-6	8	<1	38 5	<1	4	₹3
		8-dd	1	<1		4		4
		DD-9	1	<1			6	6
		EE-1	9	3	18			18
347		EE-3	8	3 3		290	260	275
7	suspended solids	A-6	1	<1.000	166			166
	·	A-7	1	<1.000	279			279
		B-11	1	138	27			27
		B-12	1	138	73			73
		C-10	1	<1.00	9			ÿ
		C-11	1	<1.00	348			348
		BB-3	1	8			110	110
		BB-5	8	8	1,540	996	280	938.667
		BB - 7	1	8	[*] 30			30
		BB-9	1	8		23		23
		CC-4	1	<1	230			230
		DD-4	1	1	1,100			1,100
		DD-6	8	1	1,100 12	37	26	25
		B-dd	1	1		80		80
		DD-9	1	1			62	62
		EE-1	9	3	1.0			1.0
		EE-3	8	3		12.7	11	11.85

Table V-54 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
pH (standard units)	B-11	1		0.5			
	B - 1 2	1		11.4			
	BB-3	1	7.68			9.09	
	BB-5	8	7.68	0.10	0.15	0.15	
	BB - 7	1	7.68	6.38			
	88-9	1	7.68		5.61		
	CC - 4	1	5.35	7.69			
	DD-4	1	7.03	9.14			
	DD-6	8	7.03	0.79	2.97	0.31	
	8-DQ	1	7.03		1.10		
	DD-9	1	7.03			5.75	
	EE-1	9	6.05	10.11			
	EE-3	8	6.05		10.01	9.90	

^{*}Detection limit raised due to interference.

^{**}Denotes matrix interference problems. A value was obtained, but due to low recovery, confirmation will be needed.

Table V-55
CLEANING OR ETCHING RINSE

<u>Plant</u>	Water <u>l/kkg</u>	Use gal/ton	Percent Recycle	Wastew <u>l/kkg</u>	gater gal/ton
1 2 3 4 5 6 7 8 9	21,180 15,800 * * 8,339 * 102.1	5,080 3,790 * 2,000 * 24.49	* * * * * * * *	1.430 2.635 14.48 61.00 80.05 98.97 102.1 143.8	0.3430 0.6320 3.472 14.63 19.20 23.7 24.49 34.5
10 11 12 13 14	* 400.3 500.3 5,003 9,727 141,600	* 96.00 120.0 1,200 2,333 33,970	* 0 0 * 94.3 99.6	178.0 333.6 500.3 500.3 558.3 600.0	42.70 80.00 120.0 120.0 133.3 143.9
15 16 17 18 19 20 21	1,063 3,490 * 1,313 2,377 * 1,780	255.0 837.0 * 315.0 570.0 *	0 * * 0 * *	938.1 1,163 1,227 1,313 1,591 1,692 1,780	225.0 279.0 294 315.0 381.6 406 427.0
22 23 24 25 26 27 28	2,224 * * 50,030 5,212	* 533.3 * * 12,000 1,250	* * * * 90.0	1,853 2,110 2,330 3,386 3,519 5,003 5,212	445 506.0 558.8 812.6 844 1,200 1,250
29 30 31 32 33 34	* * * 10,670 *	* * 2,560 * *	* * () * *	5,653 5,683 9,795 10,670 11,525 14,480	1,356 1,363 2,350 2,560 2,765 3,473
35 36 37 38 39 40 41	16,120 41,690 * 23,520 * *	3,865 10,000 * 5,640 * *	0 50.0 * 0 * *	16,120 20,850 23,350 23,520 36,390 43,950 63,920	3,865 5,000 5,600 5,640 8,727 10,540 15,330

CLEANING OR ETCHING RINSE

Water		er Use	Use Percent		Wastewater			
Plant	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	gal/ton			
42	75,430	18,090	0	75,430	18,090			
43	89,350	21,430	0	89,350	21,430			
44	250,200	60,000	0	125,100	30,000			

^{*}Data not available.

Statistical Summary

Minimum	102.1	24.49	1.430	0.3430
Maximum	250,000	60,000	125,100	30,000
Mean	32,380	7,766	13,912	3,338
Median	9,033	2,167	1,982	476
Sample:	24 of 30	0 plants	44 of 44	plants

Note: This table individually lists data from six plants which have both cleaning and etch line rinse discharges.

Table V-56

FREQUENCY OF OCCURRENCE OF FOXIC POLLUTANTS
CLEANING OR ETCHING RINSE
RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	20	36	35	1		
2.	acrolein	0.010	20	42	42			
3.	acrylonitrile	0.010	20	42	42			
4.	benzene	0.010	20	42	36	6		
5.	benzidine	0.010	20	36	36			
6.	carbon tetrachloride	0.010	20	42	42			
7.	chlorobenzene	0.010	20	42	42			
8.	1,2,4-trichlorobenzene	0.010	20	36	36			
9.	hexachlorobenzene	0.010	20	36	36			
10.	1,2-dichloroethane	0.010	20	42	42			
11.	1,1,1-trichloroethane	0.010	20	42	42			
12.	hexachloroethane	0.010	20	36	36			
13.	1.1-dichloroethane	0.010	20	42	42			
14.	1,1,2-trichloroethane	0.010	20	42	42			
15.	1,1,2,2-tetrachloroethane	0.010	20	42	42			
16.	chloroethane	0.010	20	$4\overline{2}$	42			
17.	bis(chloromethyl)ether	0.010	20	42	42			
18.	bis(chloroethyl)ether	0.010	20	36	36			
19.	2-chloroethyl vinyl ether	0.010	20	42	42			
20.	2-chloronaphthalene	0.010	20	36	36			
21.	2,4,6-trichlorophenol	0.010	20	36	36			
22.	p-chloro-m-cresol	0.010	20	36	36			
23.	chloroform	0.010	20	42	18	23	1	
24.	2-chlorophenol	0.010	20	36	36			
25.	1,2-dichlorobenzene	0.010	20	36	36			
26.	1,3-dichlorobenzene	0.010	20	36	36			
27.	1,4-dichlorobenzene	0.010	20	36	36			
28.	3, 3'-dichlorobenzidine	0.010	20	36	36			
29.	1,1-dichloroethylene	0.010	20	42	42			
30.	1,2-trans-dichloroethylene	0.010	20	42	41		1	
31.	2,4-dichlorophenol	0.010	20	36	36		•	
32.	1,2-dichloropropane	0.010	20	42	42			
33.	1.3-dichloropropene	0.010	20	42	42			
34.	2,4-dimethylphenol	0.010	20	36	35	1		
35.	2.4-dinitrotoluene	0.010	20	36	36	•		
36.	2,6-dinitrotoluene	0.010	20	36	36			
37.	1,2-diphenylhydrazine	0.010	20	36	36			
38.	ethylbenzene	0.010	20	42	42			
39.	fluoranthene	0.010	20	36	36			
J7.	LIUVLanthene	0.010	20	50	30			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING RINSE RAW WASTEWATER

		Analytical Quantification	Number of	οf	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+	
40.	4-chlorophenyl phenyl ether	0.010	20	36	36				
41.	4-bromophenvl phenyl ether	0.010	20	36	36				
42.	bis(2-chloroisopropyl)ether	0.010	20	36	36				
43.	<pre>bis(2-chloroethoxy)methane</pre>	0.010	20	36	36				
44.	methylene chloride	0.010	20	42	20	8	11	3	
45.	methyl chloride (chloromethane)	0.010	20	42	42				
46.	methyl bromide (bromomethane)	0.010	20	42	42				
47.	bromoform (tribromomethane)	0.010	20	42	42				
48.	dichlorobromomethane	0.010	20	42	42				
49.	trichlorofluoromethane	0.010	20	42	42				
50.	dichlorodifluoromethane	0.010	20	42	42				
51.	chlorodibromomethane	0.010	20	42	40	2			
52.	hexachlorobutadiene	0.010	20	36	36				
53.	hexachlorocyclopentadiene	0.010	20	36	36				
54.	isophorone	0.010	20	36	35		1		
55.	naphthalene	0.010	20	36	35	1			
56.	nitrobenzene	0.010	20	36	36				
57.	2-nitrophenol	0.010	20	36	36				
58.	4-nitrophenol	0.010	20	36	36				
59.	2,4-dinitrophenol	0.010	20	36	36				
60.	4,6-dinitro-o-cresol	0.010	20	36	36				
61.	N-nitrosodimethylamine	0.010	20	36	36				
62.	N-nitrosodiphenylamine	0.010	20	36	36				
63.	N-nitrosodi-n-propylamine	0.010	20	36	36				
64.	pentachlorophenol	0.010	20	36	36	0			
65.	phenol	0.010	20	36	34	2			
66.	bis (2-ethylhexyl) phthalate	0.010	20	36	28	8			
67.	butyl benzyl phthalate	0.010	20	36	35	1			
68.	di-n-butyl phthalate	0.010	20	36	34 34	2 2			
69.	di-n-octyl phthalate	0.010	20	36		3			
70.	diethyl phthalate	0.010	20	36	33 36	3			
71.	dimethyl phthalate	0.010	20	36	36 36				
72.	benzo(a)anthracene	0.010	20	36					
73.	benzo(a)pyrene	0.010	20	36 36	36				
74.	benzo(b)fluoranthene	0.010	20	36	36 36				
75.	benzo(k)fluoranthene	0.010	20	36					
76.	chrysene	0.010	20	36	36				
77.	acenaphthylene	0.010	20	36	36				
78.	anthracene (a)	0.010	20	36	36				

Table V-56 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING RINSE RAW WASTEWATER

		Analytical	Number	Number	Nui	mber of T	imes Obse	rved
		Quantification	of	ο£			es (mg/l)	
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	20	36	36			
80.	fluorene	0.010	20	36	36			
81.	phenanthrene (a)	0.010	-	-				
82.	dibenzo(a,h)anthracene	0.010	20	36	36			
83.	indeno (1,2,3-c,d)pyrene	0.010	20	36	36			
84.	pyrene	0.010	20	36	36			
85.	tetrachloroethylene	0.010	20	42	42			
86.	toluene	0.010	20	42	42			
87.	trichloroethylene	0.010	20	42	42			
88.	vinyl chloride (chloroethylene)	0.010	20	42	42			
89.	aldrin	0.005	19	27	27			
90.	dieldrin	0.005	19	27	27			
91.	chlordane	0.005	19	27	27			
92.	4,4'-DDT	0.005	19	27	27			
93.	4, 4'-DDE	0.005	19	27	27			
94.	4,4'-DDD	0.005	19	27	27			
95.	alpha-endosulfan	0.005	19	27	27			
96.	beta-endosulfan	0.005	19	27	27			
97.	endosulfan sulfate	0.005	19	27	27			
98.	endrin	0.005	19	27	27			
99.	endrin aldehyde	0.005	19	27	27			
100.	heptachlor	0.005	19	27	27			
101.	heptachlor epoxide	0.005	19	27	27			
102.	alpha-BHC	0.005	19	27	27			
103.	beta-BHC	0.005	19	27	27			
104.	gamma-BHC	0.005	19	27	27			
105.	delta-BHC	0.005	19	27	27			
106.	PCB-1242 (b)	0.005	19	27	26 -	1		
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	19	27	26	1		
111.	PCB-1260 (c)	0.005	-	-		•		
112.	PCB-1016 (c)	0.005		-				
113.	toxaphene	0.005	19	27	27			
114.	antimony	0.100	21	39	39			
115.	arsenic	0.010	30	60	36	13	7	4
116.	asbestos	10 MFL	0	Ű	3.7	. 🤟	,	•
	4000000	10 111 14	V	V				

Table V-56 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING RINSE RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+	
117.	beryllium	0.010	29	58	57		1		
118.	cadmium	0.002	29	58	49	8	1		
119.	chromium (total)	0.005	29	58	20	11	12	15	
120.	copper	0.009	29	58	15	12	20	11	
121.	cyanide (total)	0.010	31	62	56	6			
122.	lead	0.020	29	58	30	10	11	7	
123.	mercury	0.0001	29	58	57	1			
124.	nickel	0.005	$\overline{29}$	58	45	6	5	2	
125.	selenium	0.01	21	39	38	1			
126.	silver	0.02	21	39	39				
127.	thallium	0.100	21	39	39				
128.	zinc	0.050	29	58	15	17	11	15	
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	0				. -	

(a), (b), (c) Reported together.

Table V-57

Toxic Pollutants Toxic		Stream	Sample			Concentrations (mg/l)			
1	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
1	Toxic Pollutants								
## A-4									
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	 acenaphthene 	A-3	1	ND					
C-6		Λ-4	1	ND				*	
C-7		B – 5	1	ND	ND				
D-3			1		ND				
D-5			1	ND					
E-5 3		D-3	6	ND					
# 1		D-5			0.017			0.017	
# 1-5		E-5	3		ND	ND	ND		
## 1		H-4	1		ND				
No		H-5	1						
R-3			1	*	ND	ND			
L-5 7 ND		K – 2	1	ND	ND				
L-5 7 ND		K - 3	1	ND	ND	ИD	ND		
1-6		L-5	7		ND				
N-6		L-6	3	ND	ND	ND	ND		
N-8		N - 6	6	ND	ND				
\$\begin{array}{cccccccccccccccccccccccccccccccccccc									
R-7 3 ND ND ND ND ND 4. benzene A-3 1 * ND ND ND A-4 1 * * * * * * * * * * * * * * * * * *	\mathcal{G}		3			ND	ND		
4. benzene A-3 A-4 B-5 1 ND ND ND ND ND ND ND ND A-4 1 * B-5 1 ND ND ND ND ND ND ND ND ND	űn	Ř-6	3	ND		ND	ND		
A-4 1 * * * * * * * * * * * * * * * * * *		R - 7	3						
A-4 1 * * * * * * * * * * * * * * * * * *	4. benzene	A-3	1	*	ND				
B-5 1 ND ND ND C-6 1 ND			1	*				*	
C-6		B - 5	1	ND	ND				
C-7		C-6	1	ND	ND				
D-3		C - 7	1	ND					
D-5			1			ND	*	*	
E-5		D-5	1	ND	ND	ND	*	*	
H-4		E - 5	1				ND	0.043	
H-5		H - 4	1	0.023				*	
H-6		H-5	i	0.023	*	0.031		0.016	
K-2			1		0.033				
K-3		к - 2	i	0.029			ND	*	
L-5		K - 3	i	0.029		0.042		0.034	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		î 5	1			0.042	0.017	0.054	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		L-6	i	NI)	ND	ND	ND		
N-8 1 ND ND ND ND ND ND ND			i		ND	ND	ND		
$_{ m N^{-2}}$, which is the state of the			í			110			
			1	(1)		20	-		
		<u> </u>	•	*** ***	X!•	-11:			

SAMPLING DATA CLEANING OR ETCHING RINSE RAW WASTEWATER

		Stream	Sample				ions $(mg/1)$	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
23.	chloroform	A-3	1	0.052	0.024			0.024
23.		A-4	1	0.052	0.019			0.019
		B-5	i	*	*			*
		C-6	1	0.055	*			*
		C-7	1	0.055	*			*
		D-3	1	0.020	*	0.011	*	*
		D-5	1	0.020	*	0.011	0.017	*
		E-5	1	*	0.069	0.110	*	0.060
		H-4	1	0.066	0.029			0.029
		H-5	1	0.066	0.071	0.057		0.064
		H-6	1	0.066	0.044	0.030		0.037
		K-2	1	0.045	*	*	*	*
		K-3	1	0.045	0.057	0.067	0.100	0.075
		L-5	1	0.100	ND			
		L-6	1	0.100	0.025	0.030	0.020	0.025
		N-6	1	0.040	*	*	*	*
		N - 8	1	0.040	ND			
		Q-2	1	ND	ND	ND	*	*
		R-6	1	0.040	0.020	0.030	0.030	0.027
		R-7	1	0.040	0.020	0.020	0.020	0.020
35 ₆ 30.	1,2-trans-di-chloroethylene	A-3	1	ND	ND			
0, 0.1	,	A-4	1	ND	ND			
		B-5	1	ND	ND			
		C-6	1	ND	ND			
		C-7	1	ND	ND			
		D-3	1	ND	ND	ND	ND	_
		D-5	1	ND	ND	ND	*	*
		E-5	1	ND	ND	ND	ND	
		H-4	1	*	0.110			0.110
		H - 5	1	*	ND	ND		*
		H-6	1	*	*	ND	.115	*
		K - 2	1	ND	ND	ND	ND	
		K-3	1	ND	ND	ND	ND	
		L-5]	ND	ND	4115	ND	
		L-6	1	ND	ND	ND	ND	
		N-6	!	ND	ND	ND	ND	
		8-N	1	ND	ND	47.5	6115	
		Q-2	1	ND	ND	ND	ND	
		R-6	1	ND	ND	ND	N D N D	
		R - 7	ı	ND	ND	ND	MD	

•

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
	34.	2,4-dimethylphenol	A-3 A-4 B-5 C-6 C-7 D-3 D-5	1 1 1 1 6 6	ND ND ND ND ND	ND ND ND ND ND ND			
			E-5 H-4 H-5 H-6 K-2 K-3	3 1 1 1 1	0.013 ND ND ND ND ND	ND O.019 ND ND ND ND	ND ND ND ND ND	N D N D N D	0.019
			L-5 L-6 N-6 N-8 Q-2 R-6 R-7	7 3 6 1 3 3	ND ND ND ND ND	ND ND ND ND ND	ND ND ND	ND ND ND	
357	44.	methylene chloride	A-3 A-4 B-5 C-6 C-7 D-3 D-5	1 1 1 1 1	ND 0.130 0.130 * 0.220 0.220	ND 0.150 0.510 0.020 0.018 *	ND ND 0.058	ND 0.520 0.280	0.150 0.510 0.020 0.018 * 0.260 0.113
			E-5 H-4 H-5 H-6 K-2 K-3 L-5	1 1 1 1 1 1	0.017 1.100 1.100 1.100 1.300 1.300 ND	0.150 0.120 0.318 0.873 0.040 0.940 0.030	6.100 1.300 0.017 0.034 0.840	0.120 0.038 2.200	2.123 0.120 0.809 0.445 0.037 1.327 0.030
			L-6 N-6 N-8 Q-2 R-6 R-7	1 1 1 1 1	ND ND ND * *	* ND ND * *	ND * * *	ND ND * *	* * * *

		Stream	Sample			Concentrat	ions (mg/l)		
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	51.	chlorodibromomethane	A-3	1	*	*			*
	J 1 •	ell for out of tomonic entire	A-4	i	*	*			*
			B - 5	1	ND	ND			
			C-6	1	ND	ND			
			C - 7	i	ND	ND			
			D-3	1	ND	*	ND	ND	*
			D-5	1	ND	ND	ND	ND	
			E-5	1	ND	ND	ND	ND	
			H – 4	1	ND	ND			
			H – 5	1	ND	*	ND		*
			H-6	1	ND	ND	ND		
			K – 2	1	ND	ND	ND	ND	
			K – 3	1	ND	ND	ND	ND	
			L-5	1	*	ND			
			16	1	*	ND	*	ИD	*
			N-6	1	ND	ND	ND	ND	
			N - 8	1	ND	ND			
			Q-2	1	ND	ND	ND	ND	
			R - 6	1	0.020	ND	ND	ND	
ය ර			R – 7	1	0.020	*	0.020	0.020	0.013
c٦	54.	isophorone	A-3	1	ND	ND			
	3 . •		A - 4	1	ND	ND			
			B - 5	1	ND	ND			
			C-6	1	ND	ND			
			C - 7	1	ND	ND			
			D-3	6	ND	ND			
			D-5	6	ND	0.160			0.160
			E-5	3	ND	ND	ND	*	*
			H-4	1	0.011	ND			
			H-5	1	0.011	ND	ND		
			H-6	1	0.011	ND	ND		
			K - 2	1	ND	ND	ND	ND	
			K-3	1	ND	ND	ND	ND	
			L-5	7		ND			
			L-6	3	ND	ND	ND	ND	
			N-6	6	ND	ИD			
			N-8	1	ND	ИD			
			Q-2	3	ND	ND	ND	ND	
			Ř-6	ž	ND	ND	ND	ND	
			R - 7	3	ND	ND	ND	ND	
			** '	-	• • •	= - =-			

Table V-57 (Continued)

		Stream	Sample	Concentrations (mg/l)				
	Pollutant	Code	Туре	Source	Day T	Day 2	Day 3	Average
55.	naphthalene	Λ-3	1	ND	ND			
		A - 4	1	ND	ND			
		B - 5	1	ND	ND			
		C-6	1	ND	ND			
		C - 7	1	ND	ND			
		D-3	6	ND	ND			
		D - 5	6	ND	ND			
		E-5	3	ND	ND	*	*	*
		H-4	1	*	ND			
		H - 5	1	*	ND	ND		
		H-6	1	*	ND	ND		
		K - 2	1	ND	ND	ND	ND	
		K - 3	1	ND	ND	ND	ND	
		L-5	7		0.050			0.050
		L-6	3	ND	ND	ND	ND	
		N-6	6	ND	ND			
		N - 8	1	ND	ND			
		Q-2	3	ND	ND	ND	ND	
		R - 6	3	ND	ND	ND	ND	
		R - 7	3	ND	ND	ND	ND	
65.	phenol	A - 3	1	*	ND			
		A - 4	1	*	*			
		B – 5	1	*	ND			
		C-6	1	ND	0.012			0.012
		C - 7	1	ND	ND			
		D-3	6	ND	*			*
		D-5	6	ND	ND			
		E-5	3	*	ND	*	ND	*
		H-4	1	ND	0.063			0.063
		H-5	1	ND	ND	ND		
		н-6	1	ND	ND	ND		
		K - 2	1	ND	ND	ND	ND	
		K-3	1	ND	*	ND	ND	*
		L-5	7	ND	*			*
		L-6	3	ND	*	*	ND	*
		N - 6	6	ND	ND			
		8 - N	1	ND	ND			
		Q-2	3	ND	*	*	ND	*
		R - 6	3 3	ND	*	ND	ND	*
		R - 7	3	ND	ND	ND	ИD	

		Stream	Sample			Concentrat	ions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
66.	bis(2-ethylhexyl) phthalate	A-3	1	0.200	*			*
• • •	11 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Λ-4	1	0.200	0.041			0.041
		B - 5	1	*	*			*
		C-6	1	*	*			*
		C-7	1	*	*			*
		D-3	6	*	*			*
		D-5	6	*	0.078			0.078
		E-5	3	*	0.089	0.032	0.019	0.047
		H-4	i	0.065	0.098			0.098
		H-5	1	0.065	0.020	*		*
		H-6	1	0.065	*	*	i	*
		K - 2	1	ND	0.021	*	*	*
		K - 3	1	ND	*	*	*	*
		L-5	7		ЙD			
		16	3	ND	*	*	ND	*
		N-6	6	ND	*			*
		N-8	1	ND	ND			*
		Q-2	3	*	*	*	*	*
		R-6	3	*	*	*	*	*
		R - 7	3	*	ND	ND	ND	
67.	butyl benzyl phthalate	A-3	1	*	ND			
		A-4	1	*	ND			
		B - 5	1	*	ND			
		C-6	1	ND	ND			
		C-7	1	ND	ND			
		D - 3	6	ND	ND			
		D-5	6	ND	ND			
		E-5	3	*	ИD	ИD	ND	
		H - 4	1	ND	0.066			0.066
		H - 5	1	ND	*	ND		*
		H-6	1	ND	ND	ND		
		K - 2	1	ND	ND	*	*	*
		K-3	1	ИD	ND	ND	*	*
		L-5	7		ND			4.
		L-6	3	ND	*	ND	ND	*
		N-6	6	ND	*			*
		N-8	1	ND	*			*
		Q-2	3	ИD	ND	ND	ND	
		R-6	3	ND	ND	ND	ND	
		R - 7	3	ND	ND	ND	ND	

SAMPLING DATA CLEANING OR ETCHING RINSE RAW WASTEWATER

	Pollutant	Stream	Sample	Sau waa	Day 1	Concentra Day 2	tions (mg/l)) Average
	Fortucanc	Code	Type	Source	Day !	pay 2	Day 3	VACTURE
68.	di-n-butyl phthalate	A-3	1	0.076	*			*
	,	A-4	1	0.076	*			*
		B - 5	1	*	*			*
		C-6	1	ND	*			*
		C - 7	1	ND	ND			
		D-3	6	*	*			*
		D-5	6	*	ND			
		E-5	3	*	0.033	ND	*	0.017
		H-4	1	*	0.068			0.068
		H-5	1	*	*	*		*
		H-6	1	*	*	*		*
		K - 2	1	ND	*	*	*	*
		K-3	1	ND	*	*	ND	*
		L-5	7		ND			
		16	3	ND	ND	ND	ND	
		N-6	6	ND	*			*
		N-8	1	ND	ND			
		Q-2	3	ND	ND	ND	ND	1
		R - 6	3	*	ND	ND	*	*
		R - 7	3	*	ND	*	ND	*
69.	di-n-octyl phthalate	A-3	1	ND	ND			
	, ,	A-4	1	ND	ND			
		B - 5	1	NĐ	ND			
		C-6	1	ND	ND			
		C - 7	1	ND	ND			
		D-3	6	ND	ND			
		D-5	6	ИD	ИИ			
		E - 5	3	ND	ND	ND	*	*
		H - 4	1	ND	0.038			0.038
		H-5	1	ND	*	HD		*
		H-6	1	ND	ND	ИÐ		
		K - 2	1	ND	0.029	ИD	ND	0.029
		K-3	1	ND	ND	ND	ND	
		L-5	7		ND			
		L-6	3	ND	ND	ИD	ND	
		N-6	6	ND	ND			
		N - 8	1	ND	ND			
		Q-2	3	ND	ND	ND	ND	
		R-6	3	ND	ND	ND	ND	
		R - 7	3	ND	ND	ND	ND	

Stream Sample			Concentrations (mg/l)					
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
70.	diethyl phthalate	A – 3	1	ND	ND			
	•	A-4	1	ND	ND			
		B - 5	1	*	ND			
		C-6	1	ND	ИŊ			
		C - 7	1	ND	ND			
		D-3	6	ND	ND			
		D-5	6	ND	*			*
		E - 5	3	*	0.011	ND	*	*
		H-4	1	*	0.022			0.022
		H-5	1	*	ND	ND		*
		H-6]	*	0.013	ND	.4.	0.013 *
		K-2	1	ND	ND	ND	* *	*
		K - 3	1	ND	ND	ND	*	*
		L-5	7	**5	ND		110	
		L-6	3	ND	ND	ND	ND	
		N-6	6	ND	ND			
		N-8	1	ND	ND	4775	N.D.	
		Q-2	3	ND	ND	ND	ND	
		R-6	3	ND	ND	ND	ND	
		R - 7	3	ND	ND	ND	ND	
106.	PCB-1242 (a)	A-4	1	ND	**			**
107.	PCB-1254 (a)	B - 5	1	**	**			**
108.	PCB-1221 (a)	C-6	i	**	ND			
	100 1221 (4)	C-7	i	**	**			**
		D-3	6	**	**			* *
		D-5	6	**	**			**
		E-5	3	**	**			**
		H - 4	1	**	0.016			0.016
		H-5	1	**	ND			
		H-6	1	**	**			**
		K-2	1	ND	**			**
		K-3	1	ND	**			**
		L-5	7	ND	ND			
		16	3	ND	ND	ND	ND	
		N-6	6	ND	ND			
		N-8	1	ND	ND			
		Q-2	3	ND	ND	ND	ND	
		Ř-6	3	ND	ND	ND	ИD	
		R - 7	3	ND	ND	ND	ND	

Table V-57 (Continued)

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentration Day 2	ions (mg/l) Day 3	Average
109.	PCB-1232 (b)	A – 4	1	0.130	**			**
110.	PCB-1248 (b)	B - 5	1	0.400	**			**
111.	PCB-1260 (b)	C-6	1	0.610	ND			
112.	PCB-1016 (b)	C - 7	1	0.610	**			**
		D-3	6	0.290	**			**
		D-5	6	0.290	**			**
		E-5	3	0.200	**			**
		H-4	1	1.100	0.020			0.020
		H-5	1	1.100	ND			
		H-6	1	**	**			**
		K - 2	1	ND	**			**
		K-3	1	ND	**			**
		L-5	7	ND	ND			
		L-6	3	ND	ND	ND	ND	
		N-6	6	ND	ND			
		8 - N	1	ND	ND			
		Q-2	3	ND	ND	ND	ND	
		R-6	3	ND	ND	ND	ND	
,		R - 7	3	ND	ND	ND	ND	
114.	antimony	BB-4	9	<0.025	<0.010	<0.010	<0.010	<0.010
	,	BB-6	8	<0.025	<0.010	<0.010	<0.010	<0.010
		BB-8	1	<0.025			<0.010	<0.010
		BB-10	1	<0.025			<0.010	<0.010
		CC-5	3	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-5	9	<0.002	<0.002	<0.002	<0.002	<0.002
		DD-7	8	<0.002	0.002	0.003	0.003	0.003
		DD-10	8	<0.002	<0.002	<0.002	<0.002	<0.002
		DD-11	1	<0.002			<0.020†	<0.020+
		DD-12	ý	<0.002	0.002	<0.002	0.007	<0.004
		EE-2	8	<0.002		<0.002	,	<0.002
		EE-4	8	<0.002		0.002	0.002	0.002

†Matrix interference problem - value was determined but, due to low recovery, confirmation will be needed.

Pollutant Code Type Source Day 1 Day 2 Day 3 Average		Stream	Sample			Concentrat	ions (mg/l)	
No. of the content	Pollutant	_Code_		Source	Day 1	Day 2	Day 3	Average
B-5	115. arsenic	A - 3	1	<0.010	<0.010			<0.010
C-6			1	<0.010	<0.010			<0.010
C-7 1 (0,020 (0,010 (0,			1	<0.020	<0.010			<0.010
D-3		C - 7	1		<0.010			<0.010
E-5 3 ⟨0.010			6	<0.010				<0.010
H-5 1		D-5	6	<0.010	<0.010			<0.010
H-6 1		E-5	3	<0.010	0.010	<0.010		<0.010
H-6		H-5	1	<0.010	<0.010	<0.010		<0.010
K-3			1	<0.010	<0.010	<0.010		<0.010
K-3		K-2	1	<0.010	<0.010	<0.010	<0.010	
L-5 7			1	<0.010	<0.010	<0.010	<0.010	<0.010
N-6 6 (0.0002 0.004 0.006 0.0010 0.013 0.022 0.005 0.003 0.022 0.004 0.005 0.			7		0.0071			0.0071
N-8 1 ⟨0.0002 0.004 0.004 0.004 0.004 0.006 0.009 0.004		L-6	3	<0.0002	0.056	0.039	0.026	0.040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-6	6	<0.0002	0.004			0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	<0.0002				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	<0.0028	0.025	0.013	0.027	
R-7 3 0.0037 0.014 0.016 0.010 0.013 BB-4 9 ⟨0.010 ⟨0.01			3	<0.0037	0.280	0.190	0.120	0.197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	0.0037	0.014	0.016	0.010	0.013
BB-6 8			9	<0.010	<0.010	<0.010	<0.010	<0.010
BB-8	ω		8	<0.010	<0.010	0.060		
BB-10	01 4		1	<0.010			<0.010	<0.010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1				<0.010	
DD-5 9			3	<0.010	<0.010	<0.010	<0.010	<0.010
DD-7 8			9	<0.001	1.50	0.007	1.60	1.04
DD-10 8 <0.001 0.004 0.016 0.009 0.010 DD-11 1 <0.001 1.32 1.32 DD-12 9 <0.001 0.120 <0.001 1.30 0.47 EE-2 8 0.021 0.126 0.126			8	<0.001		0.060	0.080	0.060
DD-11 1			8		0.004	0.016	0.009	0.010
DD-12 9 <0.001 0.120 <0.001 1.30 0.47 EE-2 8 0.021 0.126 0.126			ī	<0.001			1.32	1.32
EE-2 8 0.021 0.126 0.126			ģ		0.120	<0.001		
								0.126
							0.147	0.137

		Stream	Sample			Concentrati	ons (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
117. be	ryllium	A - 3	1	<0.001	<0.001			<0.001
		B - 5	1		0.200			0.200
		C - 7	1	<0.001	<0.001			<0.001
		D-3	6	<0.001	<0.001			<0.001
		E - 5	3	<0.001	<0.001	<0.001		<0.001
		H – 4	1	<0.001	<0.020			<0.020
		H-5	1	<0.001	<0.001	<0.001		<0.001
		H-6	1	<0.001	<0.001			<0.001
		K - 2	1	<0.020	<0.020	<0.020	<0.020	<0.020
		K-3	1	<0.020	<0.020	<0.020	<0.020	<0.020
		L-5	7	<0.0005	<0.0005			<0.0005
		L-6	3	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
		N - 6	6	<0.0005	<0.0005			<0.0005
		N - 8	1	<0.0005	<0.0005			<0.0005
		Q-2	3	<0.0005	<0.0005	0.0025	0.0029	<0.0020
		R - 6	3	<0.0017	0.0038	0.0067	0.0083	0.0063
		R - 7	3	<0.0017	0.0038	<0.0005	<0.0005	<0.0016
		BB-4	9	<0.015	<0.005	<0.005	<0.005	<0.005
.)		BB-6	8	<0.015	<0.005	<0.005	<0.005	<0.005
ž		BB-8	1	<0.015			<0.005	<0.005
ת		BB-10	1	<0.015			<0.005	<0.005
		CC-5	3	<0.005	<0.005	<0.005	<0.005	<0.005
		DD - 5	9	<0.010	<0.010	<0.010	<0.010	<0.010
		DD - 7	8	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-10	8	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-11	1	<0.010			<0.010	<0.010
		DD-12	9	<0.010	<0.010	<0.010	<0.010	<0.010
		EE - 2	8	<0.010		<0.010		<0.010
		EE-4	8	<0.010		<0.010	<0.010	<0.010

	Stream	Sample		Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
118. cadmium	A - 3	1	<0.002	<0.002			<0.002		
	B - 5	1		0.200			0.200		
	C - 7	1	<0.002	<0.002			<0.002		
	D- 3	6	<0.002	0.009			0.009		
	E-5	3	<0.002	0.010	0.030		0.020		
	H - 4	1	<0.002	<0.040			<0.040		
	H - 5	1	<0.002	0.008	0.030		0.019		
	H-6	1	<0.002	0.003			0.003		
	K – 2	1	<0.010	<0.010	<0.010	<0.010	<0.010		
	K - 3	1	<0.010	<0.010	<0.010	<0.010	<0.010		
	L-5	7	<0.0005	<0.0028			<0.0028		
	L-6	3	<0.0005	<0.0005	<0.0005	<0.0008	<0.0006		
	N - 6	6	<0.0005	<0.0005			<0.0005		
	N - 8	1	<0.0005	<0.0005			<0.0005		
	Q-2	3	<0.0005	<0.0005	<0.0005	<0.0011	<0.0007		
	R - 6	3	<0.0005	0.027	0.024	0.030	0.027		
	R - 7	3	<0.0005	0.0035	0.002	<0.0005	<0.002		
	BB-4	9	<0.060	<0.020	<0.020	<0.020	<0.020		
	BB-6	8	<0.060	<0.020	<0.020	<0.020	<0.020		
	88-8	1	<0.060			<0.020	<0.020		
	BB-10	1	<0.060			<0.020	<0.020		
	CC-5	3	<0.020	<0.020	<0.020	<0.020	<0.020		
	บบ- 5	9	<0.010	0.010	<0.010	<0.010	<0.010		
	DD - 7	8	<0.010	<0.010	0.038	0.028	<0.025		
	DD-10	8	<0.010	<0.010	<0.010	<0.010	<0.010		
	DD-11	1	<0.010			0.027	0.027		
	DD-12	9	<0.010	<0.010	<0.010	<0.010	<0.010		
	EE-2	8	<0.010		<0.010		<0.010		
	EE-4	8	<0.010		<0.010	<0.010	<0.010		

Table V-57 (Continued)

	Stream	Sample		Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
119. chromium	A-3	1	<0.005	0.007			0.007		
	B = 5	1		280			280		
	C - 7	1	0.007	0.020			0.020		
	D-3	6	<0.005	0.040			0.040		
	E-5	3	<0.005	0.060	0.080		0.070		
	H - 4	1	<0.005	<0.100			<0.100		
	H-5	1	<0.005	0.050	0.200		0.125		
	н-6	1	<0.005	0.200			0.200		
	K - 2	1	<0.030	2.3	3.2	3.7	3.1		
	K-3	1	<0.030	2.7	3.0	0.190	2.0		
	L-5	7	<0.001	104			104		
	L-6	3	<0.001	0.009	0.008	0.024	0.014		
	N - 6	6	<0.001	0.007			0.007		
	N-8	1	<0.001	0.013			0.013		
	Q-2	3	0.004	0.340	0.310	0.390	0.347		
	R-6	3	<0.001	2.6	1.7	1.7	2.0		
	R - 7	3	<0.001	4.6	1.9	4.7	3.7		
	BB-4	9	<0.060	<0.020	<0.020	<0.020	<0.020		
	BB-6	8	<0.060	<0.020	0.080	0.040"2"			
	BB-8	1	<0.060			<0.020	<0.020		
	BB-10	1	<0.060			<0.020	<0.020		
	CC-5	3	<0.020	<0.020	<0.020	<0.020	<0.020		
	DD-5	9	<0.020	0.022	<0.020	<0.020	<0.021		
	DD - 7	8	<0.020	0.133	0.539	0.089	0.254		
	DD-10	8	<0.020	<0.020	<0.020	<0.020	<0.020		
	DD-11	1	<0.020			0.126	0.126		
	DD-12	9	<0.020	0.106	0.902	0.117	0.375		
	EE-2	8	0.021		<0.020		<0.020		
	EE-4	8	0.021		4.95	2.91	3.93		

Table V-57 (Continued)

	Stream	Sample				ions (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
120. copper	A-3	1	0.010	0.060			0.060
	B - 5	1		480			480
	C-7	1	0.020	0.200			0.200
	D-3	6	<0.009	3.0			3.0
	E-5	3	<0.009	1.0	1.0		1.0
	H-4	1	0.010	4.0			4.0
	H-5	1	0.010	0.400	1.0		0.7
	H-6	1	0.010	5.0			5.0
	K - 2	1	<0.020	0.160	0.200	0.280	0.213
	K-3	1	<0.020	0.020	0.030	0.030	0.027
	L-5	7	U.01	0.04			0.04
	L-6	3	0.01	0.2	0.27	0.23	0.2
	N-6	6	0.008	0.0011			0.0011
	N-8	1	0.008	0.009			0.009
	Q-2	3	0.026	3.5	2.7	3.4	3.2
	R-6	3	0.010	38	38	27	34
	R-7	3	0.010	0.4	0.28	0.28	0.3
	BB-4	9	<0.150	0.150	0.100	0.100	0.120
	BB-6	8	<0.150	0.100	4.15	0.350"2'	
	BB-5	1	<0.150			<0.050	<0.050
	88-10	1	<0.150			<0.050	<0.050
	CC-5	3	<0.050	<0.050	<0.050	<0.050	<0.050
	DD-5	9	0.013	0.016	<0.010	<0.010	<0.012
	DD - 7	8	0.013	0.010	0.031	0.030	0.024
	DD-10	8	0.013	<0.010	<0.010	<0.010	<0.010
	DD-11	1	0.013			0.038	0.038
	DD-12	9	0.013	0.140	0.021	U.064	0.075
	EE-2	8	<0.010		<0.010		<0.010
	EE-4	8	<0.010		0.032	<0.010	<0.021

Table V-57 (Continued)

		Stream	Sample		C	Concentrations (mg/l)				
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
121.	cyanide	A - 3	1		0.007			0.007		
		A - 4	1		0.009			0.009		
		B - 5	1		< 0.001			<0.001		
		C-6	1		<0.001			<0.001		
		C-7	1		0.003			0.003		
		D-3	6		0.007			0.007		
		D-5	6		0.002			0.002		
		E-5	3		0.033	0.021	0.042	0.032		
		H - 5	1		<0.001	<0.001		<0.001		
		H-6	1		<0.001	0.001		<0.001		
		K - 2	1		0.010	0.008	0.008	0.009		
		K - 3	1		<0.001	0.001	0.001	<0.001		
		L-5	1	ND	<0.02			<0.02		
		L-6	3		<0.02	<0.02	<0.02	<0.02		
		N - 6	6		<0.020			<0.020		
		N - 8	1		<0.020			<0.020		
		Q-2	1		<0.02	<0.02	<0.02	<0.02		
		R-6	1		0.00028	0.00059	0.00002	0.00030		
)		R – 7	1		<0.02	<0.02	0.03	<0.02		
)		BB-4	9	<0.02	<0.02	<0.02	<0.02	<0.02		
		BB-6	8	<0.02	<0.02	<0.02	<0.02	<0.02		
		BB-8	1	<0.02			<0.02	<0.02		
		BB-10	1	<0.02			<0.02	<0.02		
		CC - 5	3	<0.02	<0.02	<0.02	<0.02	<0.02		
		DD-5	9	<0.02	<0.02	<0.02	<0.02	<0.02		
		DD - 7	8	<0.02	<0.02	<0.02	<0.02	<0.02		
		DD-10	8	<0.02	<0.02	<0.02	<0.02	<0.02		
		DD-11	1	<0.02			0.038	0.038		
		DD-12	9	<0.02	<0.02	<0.02	<0.02	<0.02		
		EE - 2	8	<0.02		0.033		0.033		
		EE-4	8	<0.02		<0.02	<0.02	<0.02		

		Stream	Sample		Concentrations (mg/l)				
	Pollutant	Code	Type	Source	Day 1	Day 2		Average	
122.	lead	A - 3	1	<0.020	0.020			0.020	
		B - 5	1		7.0			7.0	
		C - 7	1	0.030	<0.020			<0.020	
		D-3	6	<0.020	0.200			0.200	
		E - 5	3	<0.020	0.500	0.800		0.650	
		H – 4	1	<0.020	<0.300			<0.300	
		H = 5	1	<0.020	0.200	0.800		0.500	
		H - 6	1	<0.020	0.4			0.4	
		K - 2	1	<0.050	<0.050	<0.050	<0.050	<0.050	
		K - 3	1	<0.050	<0.050	<0.050	<0.050	<0.050	
		L-5	7	0.014	0.03			0.03	
		L-6	3	0.014	0.030	0.021	0.025	0.025	
		N - 6	6	0.010	0.020			0.020	
		N - 8	1	0.010	0.012			0.012	
		Q-2	3	0.006	1.6	1.1	2.2	1.6	
		R - 6	3	<0.001	7.9	11	11	10	
		R − 7	3	<0.001	0.013	0.05	0.01	0.02	
		BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050	
		BB-6	8	<0.150	0.050	0.300	0.200"2"	0.180	
		88-8	1	<0.150			<0.050	<0.050	
370		BB-10	1	<0.150			<0.050	<0.050	
70		CC - 5	3	<0.050	<0.050	<0.050	<0.050	<0.050	
		DD-5	9	<0.100	<0.100	<0.100	<0.100	<0.100	
		DD - 7	8	<0.100	0.153	0.220	<0.100	<0.160	
		DD-10	8	<0.100	<0.100	<0.100	<0.100	<0.100	
		DD-11	1	<0.100			0.119	0.119	
		DD-12	9	<0.100	<0.100	<0.100	<0.100	<0.100	
		EE-2	8	<0.100		<0.100		<0.100	
		EE-4	8	<0.100		<0.100	<0.100	<0.100	

Table V-57 (Continued)

	Stream	Sample			Concentrati	ons (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
123. mercury	A - 3	1	0.0006	0.0005			0.0005
	B - 5	1		0.0006			0.0006
	C - 7	1	0.0004	0.0005			0.0005
	D-3	6	0.0006	0.0008			0.0008
	E - 5	3	0.0004	0.0005	0.0013		0.0009
	H-4	1	0.0004	<0.001			<0.001
	H – 5	1	0.0004	0.004	0.003		0.004
	H-6	1	0.0004	0.0004			0.0004
	K-2	1	<0.0004	<0.004	<0.002	<0.002	<0.003
	K-3	1	<0.0004	<0.002	<0.002	<0.002	<0.002
	L-5	7	0.0073	0.0034			0.0034
	L-6	3	0.0073	0.0022	0.0019	0.0015	0.0019
	N - 6	6	0.0091	0.0021			0.0021
	N-8	1	0.0091	0.021			0.021
	Q-2	3	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	R - 6	3	0.0007	<0.0001	<0.0001	<0.0001	<0.0001
	R - 7	3	0.0007	<0.0001	<0.0001	<0.0001	<0.0001
	BB-4	9	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	BB-6	8	<0.0002	<0.0002	<0.0002	0.0006	<0.0003
) 7	BB-8	1	<0.0002			<0.0002	<0.0002
<u>.</u>	BB-10	1	<0.0002			<0.0002	<0.0002
	CC-5	3	<0.0004	0.0002	<0.0002	<0.0002	<0.0002
	DD-5	9	<0.005	<0.005	<0.005	<0.005	<0.005
_	DD - 7	8	<0.005	<0.005	<0.005	<0.005	<0.005
	DD-10	8	<0.005	<0.005	<0.005	<0.005	<0.005
	DD-11	1	<0.005			<0.005	<0.005
	DD-12	9	<0.005	<0.005	<0.005	<0.005	<0.005
	EE-2	8	<0.005		<0.005		<0.005
	EE-4	8	<0.005		<0.005	<0.005	<0.005

		Stream	Sample			Concentrat	ions $(mg/1)$	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
124.	nickel	A - 3	1	<0.005	<0.005			<0.005
		B - 5	1		160			160
		C-7	ţ	0.030	<0.005			<0.005
		D-3	6	<0.005	<0.005			<0.005
		E-5	3	<0.005	<0.005	<0.005		<0.005
		H-4	1	<0.005	<0.100			<0.100
		H - 5	1	<0.005	<0.005	<0.005		<0.005
		H-6	1	<0.005	0.007			0.007
		K-2	1	<0.020	<0.020	<0.020	<0.020	<0.020
		K-3	1	<0.020	<0.020	0.020	<0.020	<0.020
		L-5	7	<0.001	0.025			0.025
		L-6	3	<0.001	<0.001	<0.001	0.003	<0.002
		N-6	6	<0.001	<0.001			<0.001
		N-8	1	<0.001	<0.001			<0.001
		Q-2	3	<0.001	0.011	0.005	0.016	0.011
		R-6	3	<0.001	0.42	0.3	0.23	0.3
		R-7	3	<0.001	<0.001	0.012	0.003	<0.005
		BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050
		88-6	8	<0.150	<0.050	<0.050	<0.050	<0.050
37		BB-8	1	<0.150			<0.050	<0.050
72		BB-10	1	<0.150			10.7	10.7
, 0		CC - 5	3	<0.050	<0.050	<0.050	<0.050	<0.050
		DD-5	9	<0.050	<0.020	<0.020	<0.020	<0.020
		DD-7	8	<0.050	<0.020	<0.020	<0.020	<0.020
		DD-10	8	<0.050	<0.020	0.200	<0.020	<0.080
		DD-11	1	<0.050			<0.020	<0.020
		DD-12	9	<0.050	<0.020	0.638	<0.020	<0.226
		EE-2	8	<0.020		<0.020		<0.020
		EE-4	8	<0.020		0.036	<0.020	<0.028

Table V-57 (Continued)

		Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
125.	selenium	BB-4	9	<0.010	<0.010	<0.010	<0.010	<0.010
		BB-6	8	<0.010	<0.010	<0.010	<0.010	<0.010
		BB-8	1	<0.010			<0.010	<0.010
		BB-10	1	<0.010			<0.010	<0.010
		CC-5	3	<0.010	<0.010	<0.010	<0.010	<0.010
		DD - 5	9	<0.005	<0.005	<0.005	0.035	<0.015
		DD-7	8	<0.005	<0.005	<0.005	<0.005	<0.005
		DD-10	8	<0.005	<0.005	<0.005	<0.005	<0.005
		DD-11	1	<0.005			<0.005	<0.005
		DD-12	9	<0.005	<0.005	<0.005	<0.005	<0.005
		EE-2	8	<0.005		<0.005		<0.005
		EE-4	8	<0.005		<0.005	<0.005	<0.005
126.	silver	BB-4	9	<0.010	<0.010	<0.010	<0.010	<0.010
		BB - 6	8	<0.010	<0.010	<0.010	<0.010	<0.010
		88-8	1	<0.010			<0.010	<0.010
		BB-10	1	<0.010			<0.010	<0.010
		CC-5	3	<0.005	<0.005	<0.005	<0.005	<0.005
		ນນ - 5	9	<0.001	<0.001	<0.001	<0.001	<0.001
		DD - 7	8	<0.001	0.001	0.001	0.001	0.001
		DD-10	8	<0.001	<0.001	<0.001	0.001	<0.001
		DD-11	1	<0.001			<0.001	<0.001
		DD-12	9	<0.001	<0.001	<0.001	<0.001	<0.001
		EE-2	8	<0.001		<0.001		<0.001
		EE-4	8	<0.001		<0.001	<0.001	<0.001
127.	thallium	BB-4	9	<0.010	<0.010	<0.010	<0.010	<0.010
		BB-6	8	<0.010	<0.010	<0.010	<0.010	<0.010
		BB-8	1	<0.010			<0.010	<0.010
		BB-10	1	<0.010			<0.010	<0.010
		CC - 5	3	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-5	9	<0.001	<0.001	<0.001	<0.001	<0.001
		DD-7	8	<0.001	<0.001	<0.001	<0.001	<0.001
		DD-10	8	<0.001	<0.001	<0.001	<0.001	<0.001
		DD-11	1	<0.001			<0.001	<0.001
		DD-12	9	<0.001	<0.001	<0.001	<0.001	<0.001
		EE-2	8	<0.001		<0.001		<0.001
		EE-4	8	<0.001		<0.001	<0.001	<0.001

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
128. zinc	A-3	1	0.060	0.100			0.100
	B - 5	1		410			410
	C-7	1	0.200	0.070			0.070
	D-3	6	<0.050	3.0			3.0
	€-5	3	<0.050	0.5	0.5		υ.5
	H - 4	1	0.100	3.0			3.0
	H-5	1	0.100	0.200	0.400		0.300
	н-6	1	0.100	6.0			6.0
	K - 2	1	<0.020	0.080	0.120	0.150	0.117
	K-3	1	<0.020	0.020	0.040	<0.020	<0.027
	L-5	7	0.053	0.11			0.11
	L-6	3	0.053	0.053	0.053	<0.01	<0.04
	N - 6	6	<0.010	0.068			0.068
	N -8	1	<0.010	0.098			0.098
	Q-2	3	<0.010	10	6.6	10	9
	R-6	3	0.053	48	51	46	48
	R-7	3	0.053	36	6.8	3.8	16
	BB-4	9	<0.060	0.060	0.040	0.040	0.047
	BB-6	8	<0.060	0.360	2.38	4.78"2"	2.51
	BB-8	1	<0.060			<0.020	<0.020
37	BB-10	1	<0.060			0.080	0.080
74	CC-5	3	1.10	<0.020	<0.020	<0.020	<0.020
	DD-5	9	<0.010	<0.010	<0.010	<0.010	<0.010
	DD - 7	8	<0.010	<0.020	0.089	0.166	<0.092
	00-10	8	<0.010	<0.010	<0.010	<0.010	<0.010
	DD-11	Ī	<0.010			0.046	0.046
	DD-12	9	<0.010	0.091	<0.010	<0.010	<0.037
	EE-2	8	0.064		0.076		0.076
	EE-4	8	0.064		0.109	0.147	0.128

Table V-57 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day T	Concentra Day 2	ations (mg/l Day 3) Average
Nonconventional Pollutants							
acidity	BB-4	9	<1	<1	<1	<1	<1
acturcy	BB-6	8	<1	<1	9,500	9,400	<6,300
	BB-8	í	<u> </u>	\ 1	9, 300	<1	<1
	BB-10	i	₹1			₹1	<1
	CC - 5	3	≷i	< 1	<1	≷i	<u> </u>
	DD-5	9	₹1	₹1	ξί	₹1	₹1
	DD-7	8	<1	2,800	800 800	≥ 5	>3.600
	DD-10	8	ζi	<1	<1	(1	73.000 <1
	DD-11	ĭ	ξi	` '	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	λi	₹1
	DD-12	ý	₹1	<1	<1	₹1	₹1
	EE-2	8	<1	``	₹1	ν.	₹1
	EE-4	8	₹1		ζί	<1	\(\)
alkalinity	Λ-3	1		68	86		77
,	A-4	1		70	205		138
	B - 5	1		6			6
	C-6	1		U			0
	C - 7	1		0			U
.)	D - 3	6		0			0
7 T	D-5	6		530			530
ינ	E-5	3		0	0	0	0
	H-4	1	107	3,500			3,500
	H - 5	1	107	110	0		55
	H-6	1	107	40	20		30
	K 2	1	96	U	0	0	U
	K-3	1	96	40	O	U	13
	L-5	7		<10			<10
	L-6	3		<10	<10	<10	< 10
	N-6	6		310			310
	N - 8	1		90			90
	Q-2	3	150	60	130	130	110
	R - 6	3	170	12	16	66	31
	R - 7	1	170	110	160	83	118
	BB-4	9	160	360	280	280	310
	BB-6	8	160	<1	<1	<1	<1
	BB-8	1	160			181	181
	BB-10	1	160			120	120
	CC - 5	3	49	62	68	72	67
	DD-5	9	274	320	300	360	330
	DD - 7	8	274	<1	<1	<1	<1
	DD-10	8	274	190	110	185	162
	DD-11	1	274			6.0	6.0
	DD-12	9	274	580	160	785	508
	EE-2	8	22		100		100
	EE-4	8	22		104	48	76

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
aluminum	BB - 4	9	0.500	0.100	<0.100	<0.100	<0.100
almitim	BB-6	8	0.500	382	359	395	379
	BB-8	Ĭ	0.500	33-		0.300	0.300
	BB-10	1	0.500			0.300	0.300
	CC - 5	3	1.10	14.4	15.6	11.8	13.9
	DD-5	9	<0.050	60.3	57.7	4.1	40.7
	DD- 7	8	<0.050	108	696	161.0	322
	DD-10	8	<0.050	1.62	4.31	2.44	2.79
	DD-11	1	<0.050			0.608	0.608
	DD-12	9	<0.050	1 54	82	270	169
	EE-2	8	0.011		53.8		53.8
	EE-4	8	0.011	(0.01	11.1	49.7	30.4
	A - 3		<0.09	<0.01	1.0		<0.6
	A - 4	1	<0.09	110	150		130
	B-5	 	2	1,200			1,200 1,200
	C-6	1	2 2	î,200 1,4			1,200
	C - 7 D - 3	1	0.2	110			110
	υ-3 D-5	6 6	0.2	100			100
	E-5	3	<0.09	330	750	450	510
	H - 4	, 1	<0.09	200	7 50	730	200
I	H-5	i	<0.09	130	300		215
1	H-6	i	<0.09	9.8	16		13
	K - 2	í	<0.1	9.7	13	16	13
	K - 3	í	₹0.1	270	350	280	300
	L-5	7	(00)	56.5			56.5
	L-6	3		170	130	120	140
	N - 6	6	<0.5	4()			40
	N - 8	1	<0.5	7.1			7.1
	Q - 2	3	<0.5	94	51	14)()	82
	R-6	3	<0.5	1,300	64	640	668
	R - 7	3	<0.5	54	56	43	51
ammonia nitrogen	BB-4	9	0.05	0.35	0.53	<0.05	<0.31
•	88-6	8	0.05	1.9	0.26	0.20	0.79
	88-8	1	0.05			0.04	0.04
	BB-10	1	0.05			0.04	0.04
	DD-5	9	<0.01	0.34	0.36	0.30	0.33
	DD-7	8	<0.01	5.80	0.28	<0.05	<2.04
	DD-10	8	<0.01	0.48	0.94	6.3	2.57
	DD-11	1	<0.01			1.65	1.65
	DD-12	9	<0.01	0.34	0.39	2.3	1.01
	EE-2	8	<0.05		0.19	4) 4) 5	0.19
	EE-4	8	<0.05		70	< 0.05	< 35

Table V-57 (Continued)

		Stream	Sample	Concentrations (mg/l)				
Po	llutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
barium		BB-4	9	<0.150	0.150	0.200	0.200	0.180
		BB-6	8	<0.150	<0.050	<0.050	<0.050	<0.050
		BB-8	1	<0.150			<0.050	<0.050
		BB-10	1	<0.150			<0.050	<0.050
		CC-5	3	<0.050	0.100	0.150	0.100	0.120
		DD-5	9	0.179	0.079	0.061	0.089	0.076
		υD - 7	8	0.179	0.074	0.133	0.092	0.099
		DD-10	8	0.179	0.077	0.075	0.101	0.084
		DD-11	1	0.179			<0.020	<0.020
		DD-12	9	0.179	0.089	0.099	0.172	0.120
		EE - 2	8	<0.021		<0.020		<0.020
		EE-4	8	<0.021		<0.020	0.025	<0.023
boron		BB-4	9	0.800	<0.100	<0.100	<0.100	<0.100
		BB-6	8	0.800	0.300	0.200	0.200	0.230
		BB-8	1	0.800			0.200	0.200
		BB-10	1	0.800			0.300	0.300
		CC-5	3	0.400	U.100	0.400	0.300	0.270
		DD-5	9	<0.100	<0.100	<0.100	<0.100	<0.100
		DD - 7	8	<0.100	<0.100	<0.100	<0.100	<0.100
ω		DD-10	8	<0.100	<0.100	<0.100	<0.100	<0.100
77		DD-11	1	<0.100			<0.100	<0.100
7		DD-12	9	<0.100	<0.100	<0.100	<0.100	<0.100
		EE-2	8	<0.050		<0.050		<0.050
		EE-4	8	<0.050		<0.050	<0.050	<0.050

	Stream	Sample		Concentrations (mg/l)						
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average			
calcium	A-3	1	39	42	31		37			
Cateram	A-4	1	39	8.1	0.9		4.5			
	B - 5	1		0.34			0.34			
	C-6	1	12	<0.03			<0.03			
	C - 7	1	12	31			31			
	D-3	6	38	20			20			
	D - 5	6	38	16			16			
	E-5	3	68	0.14	<0.03	0.08	<0.08			
	H - 4	1	52	0.6			0.6			
	H - 5	1	52	3.2	0.2		1.7			
	н-6	1	52	56	66		61			
	K – 2	1	ND	38	38	38	38			
	K – 3	1	ND	1.4	1.5	υ.7	1.2			
	L~5	7		10			10			
	16	3		11	10	9	10			
	N-6	6	28	24			24			
	N - 8	1	28	38			38			
	Q-2	3	61	48	57	62	56			
	R - 6	3	60	54	66	48	56			
	R - 7	3	60	49	60	52	54			
	BB-4	9	4.800	78.7	84.1	84.3	82.4			
37	BB-6	8	4.800	<0.020	5.000	5.000	<3.34			
78	BB-8	1	4.800			4.600	4.600			
	BB-10	1	4.800			7.100	7.100			
	CC-5	3	36.9	127.0	132.0	134.0	131.0			
	DD-5	9	5.68	116	536	5.42	219			
	DD-7	8	5.68	604	5,210	200	2,000			
	DD-10	8	5.68	48.92	335	5.68	130			
	DD-11	1	5.68			1.37	1.37			
	DD-12	9	5.68	500	471	112	361			
	EE-2	8	4.62		4.20		4.20			
	EE-4	8	4.62		4.3	3.96	4.13			

Table V-57 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
chemical oxygen demand (COD)	A-3	1	8	5			5	
	A-4	1	8 8	12			12	
	B-5	1	<5	<5			<5	
	C-6	1	< 5	230			230	
	C - 7	1	<5 <5	<5			<5	
	D-3	6		35			35	
	D-5	6		75			15	
	E-5	3	<5	184	357	89	210	
	H-5	1		12	28		20	
	H-6	1		< 5	7		<6 9	
	K – 2	1	5 5 <5 5 5	8	8	10	9	
	K-3	1	5	23	27	20	23	
	L-5	7	<5	20			20	
	L-6	3	< 5	10	7	9	9	
	N - 6	6	5	243			243	
	N - 8	1	5	36			36	
	Q-2	3		14	127	20	54	
	R-6	3		392	251	82	242	
	R - 7	1		20	20	8	16	
379	BB-4	9	9	685	691	590	655	
9	BB-6	8	9	<1	<1	45	<16	
	BB-8	1	9			23	23	
	BB-10	η		, E	nο	838	838	
	DD - 5 DD - 7	9 8	<0.5 <0.5	45 98	98 290	29	57 216	
	DD-10	8	<0.5	<0.5	50 50	260 38	<30	
	DD-10 DD-11	1	<0.5	(0.5	50	230	230	
	DD-11 DD-12	ģ	<0.5	85	140	82	102	
	EE-2	8	48	6)	75	02	75	
	EE-4	8	48		80	200	140	
	1115-4	O	40			200	140	
chloride	BB-4	9	17	21 15	19	17	19	
	BB-6	8	17	15	14	15	15	
	BB-8	1	17			16	16	
	BB-10	1	17			1.7	17	
	CC - 5	3	24	62	37	74	58	
	DD-5	9	61	61	61	62	61	
	DD-7	8	61	59	60	59	59	
	DD-10	8	61	61	60	60	60	
	DD-11	l C	61	<i>(</i>		<3	<3	
	DD-12	9	61	65	66	69	67	
	EE - 2	8	<0.05		<0.3	20 OF	<0.3	
	EE-4	8	<0.05		<0.05	<0.05	<0.05	

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
cobalt	BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050
Conaic	BB-6	8	<0.150	<0.050	<0.050	<0.050	<0.050
	88-8	1	₹0.150	(0.030		<0.050	<0.050
	BB-10	i	<0.150			<0.050	<0.050
	CC-5	3	<0.050	<0.050	<0.050	<0.050	<0.050
	DD-5	9	<0.010	0.015	<0.010	<0.010	<0.012
	DD-7	8	<0.010	<0.010	<0.010	200	<67
	DD-10	8	<0.010	<0.010	<0.010	<0.010	<0.010
	DD-11	1	<0.010	(0.010	(0.0.0	0.031	0.031
	DD-11	9	<0.010	0.015	<0.010	<0.010	<0.012
	EE-2	8	<0.010	0.013	0.025	(0.010	0.025
	EE-4	8	<0.010		<0.010	<0.010	<0.010
	EE-4	0	\0.010		(0.010	\0.010	(0.010
dissolved solids	A - 3	1		160	162		161
	A - 4	1		601	772		687
	B - 5	1		20			20
	C-6	1		5,972			5,972
	C - 7	1		206			206
	D - 3	6		2,053			2,053
	D-5	6		760			760
ມ ກ ດີ	Ē - Š	3		2,530	4,430		3,480
õ	H - 4	ĭ	173	18,720	.,		18,720
	H - 5	1	173	649	1,809		1,229
	H - 6	1	173	505	469		487
	K - 2	i	164	386	445	378	403
	K-3	i	164	1,157	1,647	210	1,005
	Ĺ-5	7	, , ,	770	.,		770
	L-6	, 3		160	690	550	470
	N - 6	6		660	0,0		660
	N-8	ĺ		250			250
	ų - 2	3	346	650	450	580	560
	R-6	ź	3.0	2,430	3,660	2,410	2,830
	R-7	1		660	560	980	730
	BB-4	ģ	310	781	490	480	580
	BB-6	8	310	3,120	2,730	3, 200	3,020
	BB-8	1	310	3,120	2,730	220	220
	BB-10	'i	310			950	950
	CC - 5	3	300	620	495	110	410
				590	850	460	630
	DD-5	9	670 670		2,300	3,500	2,550
	DD-7	8	670	1,840		500	630
	DD-10	8	670	650	750		
	DD-11	1	670	1 200	1 1/0	380	380
	DD-12	9	670	1,200	1,140	1,300	1,210
	EE-2	8	28		310	100	310
	EE-4	8	28		380	180	280

380

Table V-57 (Continued)

	Stream	Sample			Concentrat	10 ns (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
fluoride	BB - 4	9	<0.05	<0.05	0.34	0.67	<0.35
	BB-6	8	<0.05	<0.05	<0.05	<0.05	<0.05
	BB-8	1	<0.05			0.16	0.16
	BB-10	1	<0.05			0.69	0.69
	CC - 5	3	0.73	2.2	0.18	<0.05	<0.81
	DD-5	9	0.29	0.18	0.26	0.60	0.35
	DD-7	8	0.29	0.11	0.11	0.22	0.15
	DD-10	8	0.29	0.27	0.23	0.70	0.40
	DD-11	j	0.29			0.28	0.28
	DD-12	9	0.29	0.27	0.35	0.31	0.31
	EE-2	8	0.67		0.39		0.39
	EE-4	8	0.67		82	26	54
iron	BB-4	9	<0.150	1.8	1.3	1.4	1.5
	BB-6	8	<0.150	6.15	6.25	6.75	6.38
	BB-8	1	<0.150			<0.050	<0.050
	BB-10	1	<0.150			0.350	0.350
	CC-5	3	0.050	0.050	0.100	<0.050	<0.070
	υD-5	9	0.054	0.106	0.081	0.062	0.083
	DD - 7	8	0.054	4.79	4.18	3.53	4.17
	DD-10	8	0.054	0.294	0.270	1.92	0.828
	DD-11	1	0.054			0.112	0.112
	DD-12	9	0.054	4.20	1.10	3.79	3.03
	EE-2	8	0.081		0.131		0.131
	EE-4	8	0.081		0.327	1.33	0.83

381

		Pollutant	Stream _Code	Sample Type	Source	Day [1	Concentrat Day 2	lons (mg/l) Day 3	Average
r	magnesium		A - 3	1		6.8	6.0		6.4
			A - 4	1		0.33	2.2		1.3
			B - 5	1		0.19			0.19
			C-6	1		0.09			0.09
			C - 7 D - 3	6		4.8 17			4.8 17
			D- 5	6		9.9			9.9
			E-5	3		0.4	0.02	1.0	0.4
			H-4	1		18.0	0.02	,	18.0
			H - 5	1		0.3	<0.02		<0.2
			H-6	1		8.0	11.0		9.5
			K-2	1		9.2	9.6	10.0	9.6
			K - 3	1		1.0	0.5	<0.01	<0.5
			L-5	7		3.47			3.47
			16	3		2.59	2.50	2.62	2.57
			N-6	6	4.39	4.87			4.87
			N - 8	1	4.39	10.33			10.33
			Q-2	3		13.6	14.0	17.5	15.0
			R - 6	3		38.2	34.4	39.0	37.2
			R - 7	3	0.500	22.9	21.5	19.1	21.2
			BB-4	9	0.500	25.8 3.300	26.9	27.3	26.7 3.400
	(u)		BB-6	8	0.500 0.500	3.300	3.200	3.600 0.200	0.200
	3 3 2		BB-8 BB-10	1	0.500			0.200	0.300
	N		CC-5	3	7.0	12.3	13.0	10.6	12.0
			DD-5	9	108	20	82	9.9	37
			DD-7	8	108	1.70	827	145	325
			DD-10	8	108	12.2	6.8	4.66	7.9
			DD-11	ĭ	108	7		0.196	0.196
			DD-12	9	108	2.8	3.42	101	35.7
			EE-2	8	1.68		4.93		4.93
			EE - 2	8	1.68		746.5	4.74	376
	manganese		BB-4	9	<0.150	0.100	0.100	0.100	0.100
4			BB - 6	8	<0.150	0.050	0.050	0.050	0.050
			BB-8	1	<0.150			<0.050	<0.050
			BB-10	Ţ	<0.150	40.050	40.050	<0.050	<0.050
			CC-5	3	<0.050	<0.050	<0.050	<0.050	<0.050
			DD-5	9	<0.010	0.011	<0.010	<0.010	<0.010 0.093
			DD - 7	8	<0.010	0.098	0.087	0.093	<0.017
			DD-10	8	<0.010	0.031	<0.010	<0.010 <0.010	<0.017
			DD-11 DD-12	1	<0.010 <0.010	0.103	0.015	0.054	0.057
			DD-12 EE-2	9 8	0.016	0.103	0.013	0.094	0.086
			EE-4	8 8	0.016		0.028	0.109	0.069
			r, r 4	ø	0.010		0.020	0.109	0.007

Table V-57 (Continued)

•		Stream	Sample			Concentrat	ions (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	molybdenum	BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050
	mo ty b derram	BB-6	8	<0.150	<0.050	<0.050	<0.050	<0.050
		88-8	ĭ	<0.150	(0,0)0	(0.030	<0.050	<0.050
		BB-10	1	<0.150			<0.050	<0.050
		CC - 5	3	<0.050	<0.050	<0.050	<0.050	<0.050
		DD-5	9	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-7	8	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-10	8	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-11	1	<0.020	(0,020	(0.020	<0.020	₹0.020
		DD-12	ý	<0.020	<0.020	<0.020	<0.020	<0.020
		EE-2	8	0.030	(0.020	<0.020	(0.020	<0.020
		EE-4	8	0.030		<0.020	<0.020	<0.020
			-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , ,
	phenols (total; by 4-AAP	A - 3	1		0.008	0.015		0.012
	method)	A - 4	1		0.003	0.009		0.006
		B-5	1		0.012			0.012
•		C-6	1		0.039			0.039
•		C – 7	1		0.013			0.013
, ,		D-3	6		0.011			0.011
383		D-5	6		0.014			0.014
W		E - 5	1		0.009	0.031	0.012	0.017
		H-5	1		0.004	0.008		0.006
		H-6	1		<0.001	0.008		0.005
		K - 2	1		0.007	0.005	<0.001	<0.004
		K - 3	1		0.004	0.006	<0.001	<0.004
		l5	1		0.003			0.003
		L-6	2		0.01	0.004	0.006	0.01
		N-6	6			0.008		0.008
		N - 8	1		0.008			0.008
		Q-2	1		0.066	0.009	0.012	0.029
		R-6	1		0.012	0.004		0.008
		R - 7	1		0.026	0.003	0.002	0.010
•		88-4	9	0.026	0.14	0.019	0.021	0.060
		BB-6	8	0.026	0.015	< 0.005	0.010	<0.010
		BB-8	1	0.026			<0.005	<0.005
		BB-10	1	0.026			0.028	0.028

Table V-57 (Continued)

Pollutant	Stream Code	Sample Type	Source	Ďay 1	Concentrat Day 2	ions (mg/l) Āverāge
	BB - 4	9	21	<3	< 3	.	< 3
phosphate	вв-4 ВВ-5	8	21	66	<3	₹3 90	<53
		1	21	00	\	₹3	3
	BB-8 BB-10	1	21			₹3	₹3
	DD-5	9	20	12	8.2	14	11.4
	DD-7	8	20	8	25	20	18
	DD-10	8	20	8.8	4.5	6.1	6.5
	DD-10 DD-11	ĺ	20	3.0	,	< 4	<4
	DD-12	ý	20	10	<4	9.2	<1.7
	EE-2	8	8.8		80		80
	EE-4	8	8.8		130	57	94
sodium	BB-4	9	76.7	124.0	43.8	41.2	69.7
SOGEUM	BB - 6	8	76.7	97.5	99.100	96.9	97.8
	BB-8	ì	76.7	,,,,	,,,,,,	99.7	99.7
	BB-10	i	76.7			172.	172
	CC-5	7	6.80	35.8	36.4	33.6	35.3
0.16.50	A-3	1		30	50		40
sulfate	A-4	1		30	50		40
	B-5	'n		1	,0		1
	C-6	i		<25			<25
	C - 7	i		40			40
	D-3	6		1, 263			1,263
	D-5	6		70			70
	E-5	3		39	<25	50	<38
	H-4	ĩ	<10	130			130
	H - 5	1	<10	30	130		80
	H-6	i	<10	30	20		25
	K - 2	1	<10	40	50	50	50
	K-3	1	<10	60	39	70	56
	L-5	7		11			11
	L-6	3		250	280	460	330
	N-6	6		40			40
	8-11	1		ь0			60
	Q-2	3	67	35	9	53	32
	R-6	3		150	48	17	72
	R - 7	1		170	150	190	170
	BB-4	9	90	90	82	96	89
	BB-6	8	90	4,500	180	7,500	4,060
	BB-8	1	90			20	20
	BB-10	1	90			180	180
	CC-5	3	75	300	300	300	300
	DD-5	9	180	36	60	40	45
	DD - 7	8	180	6,000	1.2	4,500	3,500
	DD-10	8	180	120	225	140	162
	DD-11	1	180			105	105
	DD-12	9	180	450	750	510	570
	EE-2	8	21		12		12
	EE-4	8	21		17	36	27

364

Table V-57 (Continued)

•			Stream	Sample			Concentrati	ons $(mg/1)$	
	Pollu	tant	$\operatorname{Code}_{}$	Туре	Source	Day 1	Day 2	Day 3	Average
	tin		BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050
			BB-6	8	<0.150	<0.500	<0.500	<0.500	<0.500
			BB-8	1	<0.150			<0.050	<0.050
			BB-10	1	<0.150			<0.050	<0.050
			CC - 5	3	<0.050	<0.050	<0.050	<0.050	<0.050
			DD-5	9	<0.020	<0.020	<0.020	<0.020	<0.020
			DD - 7	8	<0.020	0.087	<0.020	<0.020	<0.042
			DD - 10	8	<0.020	<0.020	4.81	<0.020	<1.62
			DD-11	1	<0.020			<0.020	<0.020
			DD-12	9	<0.020	0.527	<0.020	0.082	<0.210
			EE-2	8	<0.020		<0.020		<0.020
			EE-4	8	<0.020		0.021	<0.020	<0.021
	titanium		BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050
			BB-6	8	<0.150	0.100	0.100	0.100	0.100
			88-8	1	<0.150			<0.050	<0.050
• ,	`		BB-10	1	<0.150			<0.050	<0.050
C	Ö		CC - 5	3	<0.050	<0.050	<0.050	<0.050	<0.050
ر	л		DD-5	9	<0.010	<0.010	<0.010	<0.010	<0.010
			DD - 7	8	<0.010	<0.010	<0.010	<0.010	<0.010
			DD-10	8	<0.010	<0.010	<0.010	<0.010	<0.010
			DD-11	1	<0.010			<0.010	<0.010
			DD-12	9	<0.010	<0.010	0.115	<0.010	<0.045
			EE, -2	8	<0.010		<0.010		<0.010
			hE-4	8	<0.010		0.017	0.018	0.018

	Pollutant	Stream _Code	Sample Type	Source	Day 1	Concentra Day 2	Day 3	Average
	total organic carbon (TOC)	A-3	1	9 9	3			3
		A - 4	1	9	7			7
		B – 5	1	35	<1			<1
		C-6	1	<1	109			109
		C-7	i	<1	<1			<1
		D-3	6		5			5
		D-5	6		45			45
		E-5	3	1	51	138	21	70
		H-5	1		10	5		8
		H-6	1		<1	7		<4
		K - 2	1	6 6	8	6	<1	<5
		K-3	1	6	8	14	7	10
		L-5	7	2.8	13			13
		L-6	3	2.8	6	7.4	2.8	. 5
		N - 6	6	2.7	184			184
		N-8	1	2.7	16			16
		Q-2	3		1.5	1.8	0.67	1.3
		R-6	3		30	53	13	32
		R-7	1		3.7	9.2	3.3	5.4
5		BB-4	9	<1	160	170	121	150
)		BB-6	8	<1	<1	6.6	4	<3.9
		BB-8	1	<1			<1	<1
		BB-10	1	<1	0.5		400	400
		DD-5	9	<1	2.5	<1	<1	<1.5
		DD-7	8	<1	94	99	110	101
		DD-10	8	<1	<1	2.0	3.8	<2.3
		DD-11	1	<1			87	87
		DD-12	9	<1	31	12	20	21
		EE-2	8	<1		11		11
		EE-4	8	<1		41	24	33
	total solids (TS)	BB-4	9	267	917	690	610	739
	, ,	BB-6	8	267	8,310	6,000	8,840	7,120
		BB-8	1	267	,		300	300
		BB-10	1	267			967	967
		CC-5	3	204	703	718	130	517
		DD-5	9	380	510	540	540	530
		DD-7	8	380	5,000	5,600	7,350	5,980
		DD-10	8	380	550	690	550	600
		DD-11	1	380			320	320
		DD-12	9	380	2,300	1,900	2,400	2,200
		EE-2	8	30	-,	290	,	290
		EE-4	8	30		380	190	285
		1515 = 14	O	30		JOU	1 70	20)

386

Table V-57 (Continued)

	Stream Sample			Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
vanadium	BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050		
	BB-6	8	<0.150	<0.050	<0.050	<0.050	<0.050		
	88-8	1	<0.150			<0.050	<0.050		
	BB-10	1	<0.150			<0.050	<0.050		
	CC-5	3	<0.050	<0.050	<0.050	<0.050	<0.050		
	DD-5	9	0.026	0.030	<0.020	<0.020	<0.023		
	DD-7	8	0.026	<0.020	<0.020	<0.020	<0.020		
	DD-10	8	0.026	<0.020	<0.020	<0.020	<0.020		
	DD-11	1	0.026			<0.020	<0.020		
	DD-12	9	0.026	0.027	0.027	0.023	0.026		
	EE-2	8	<0.020		<0.020		<0.020		
	EE-4	8	<0.020		<0.020	<0.020	<0.020		
yttrium	BB-4	9	<0.150	<0.050	<0.050	<0.050	<0.050		
•	BB-6	8	<0.150	<0.050	<0.050	<0.050	<0.050		
	BB-8	1	<0.150			<0.050	<0.050		
	BB-10	1	<0.150			<0.050	<0.050		
	CC-5	3	<0.050	<0.050	<0.050	<0.050	<0.050		
	DD-5	9	<0.020	<0.020	<0.020	<0.020	<0.020		
	DD - 7	8	<0.020	<0.020	<0.020	<0.020	<0.020		
	DD-10	8	<0.020	<0.020	<0.020	<0.020	<0.020		
	DD-11	1	<0.020			<0.020	<0.020		
	DD-12	9	<0.020	<0.020	<0.020	<0.020	<0.020		
	EE-2	8	<0.020		<0.020		<0.020		
	EE-4	8	<0.020		<0.020	<0.020	<0.020		

Table V-57 (Continued)

	Stream	Sample			Concentra	tions (mg/l)
Pollutant	Code	Туре	Source	Day 1	Day Z	Day 3	Average
Conventional Pollutants							
suspended solids	A - 3	1	<1	2			2
	A - 4	1	<1	310			310
	B - 5	1	138	1			1
	C-6	1	<1	90			90
	C - 7	1	<1	<1			<1
	D-3	6		23			23
	D - 5	6		120			120
	E-5	3	<1	200	300	170	223
	H - 5	1		363	298		331
	H-6	1		49	48		49
	K - 2	1	13	13	151	10	58
	K - 3	1	13	249	49	1	100
	L-5	7	<2	<2			<2
	16	3	$\overline{\langle 2}$	622	512	494	543
	N - 6	6	<2 <2	52			52
	N-8	ī	$\langle \overline{2}$	19			19
	Q-2	3	\ <u>-</u>	352	188	360	300
	Ř-6	3		3,640	2,140	2,230	2,670
)	R - 7	1		250	230	160	210
	BB-4	9	8	31	120	73	75
)	88-6	8	8	18	19	<1	<13
	88-8	ĭ	8	. •	-	<1	<1
	BB-10	1	8			25	25
	CC-5	}	<1	25	29	7	20
	DD-5	9	1	81	66	101	83
	DD-7	8	i	4.7	17	17	13
	DD-10	8	i	3	36	61	33
	DD-11	ĭ	i	<u>~</u>		1.0	1.0
	DD-12	9	1	1,200	840	1,200	1,080
	EE-2	8	3	.,200	1.0		1.0
	EE-4	8	3		11.7	12	11.9

Table V-57 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Da y 2	Day 3	Average	
pH (standard units)	A - 3	1		8			8	
	Λ-4	1		6			6	
	B - 5	1		6.9			6.9	
	C-6	1		11.8			11.8	
	C-7	1		2.2			2.2	
	D-3	1		3.5	4	3.3	4	
	D - 5	1		11.2	10.8	11.2	11.1	
	E-5	1		9.8	11.6	10.5	10.6	
	K – 2	1		2.5	2.5	2.2	2.4	
	K-3	1		11.3	11.7	10.8	11.3	
	L-5	1		2.5			2.5	
	L-6	1		3.6	2.1	2.0	2.6	
	N - 6	1	7.1	9.4	9.1	9.4	9.3	
	N-8	1	7.1	8.1			8.1	
	Q - 2	1		5.7	8.9		7.3	
	R - 6	1		9.2	7.7	7.3	8.1	
	R − 7	1		6.3			6.3	
	BB-4	9	7.68	8.74	7.59	7.74	8.02	
ω	BB-6	8	7.68	0.99	1.14	1.00	1.04	
389	BB-8	1	7.68			6.38	6.38	
	BB-10	1	7.68			5.22	5.22	
	CC-5	3	5.35	8.79	6.39	7.19	7.46	
	DD- 5	9	7.03	7.55	7.82	7.98	7.78	
	DD - 7	8	7.03	0.87	1.30	0.55	0.91	
	DD-10	8	7.03	6.97	6.41	6.63	6.67	
	DD-11	1	7.03			6.49	6.49	
	DD-12	9	7.03	9.09	8.74	9.65	9.16	
	EE-2	8	6.05		8.51		8.51	
	EE-4	8	6.05		7.06	6.99	7.03	

	Stream Sample			Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
oil and grease	A - 3	1		4			4	
, ,	A-4	1		2			2	
	C-6	1		16			16	
	C - 7	1		11			11	
	D-3	1		5			5	
	D-5	1		47			47	
	E - 5	1		76	22	31	43	
	H-5	1		16	18		17	
	H-6	1		14	13		14	
	K - 2	1	3	10	7	7	8	
	K - 3	1	3	15	6	3	8	
	L-5	1		5			5	
	L-6	1		53	7	5	22	
	N-6	1	<5	10	<5	17	<11	
	Q-2	1		<5	<5	<5	<5	
	R - 6	1		14	105	6	42	
	R − 7	1		<5	146	13	<55	
	BB-4	9	<1	200	470	490	390	
	88-6	8	<1	<1	16	<1	<6	
	BB-8	1	<1			<1	<1	
	BB-10	1	<1			2.3	2.3	
	CC - 5	3	<1	7	<1	<1	<3	
	DD- 5	9	<1	<1	4	5	<3	
	DD - 7	8	<1	5	<1	6	<4	
	DD-10	8	<1	<1	2	4	<2	
	DD - 11	1	<1			<1	<1	
	DD-12	9	<1	<1	4	6	<4	
	EE - 2	8	3		11		11	
	EE-4	8	3		48	14	31	

"2" Average of duplicates.

(a), (b) Reported together.

Table V-58
CLEANING OR ETCHING SCRUBBER LIQUOR

	Wate	r Use	Percent	Wastewater			
<u>Plant</u>	1/kkg	gal/ton	Recycle	1/kkg	gal/ton		
1	*	*	*	1,880	451.0		
2	*	*	*	1,985	476.0		
3	*	*	*	12,002	2,880		
4	47,780	11,460	0	47,780	11,460		
5	*	*	*	*	*		
6	*	*	*	*	*		
7	*	*	*	*	*		

^{*}Data not available.

Statistical Summary

Minimum	1,880	451.0
Maximum	47,780	11,460
Mean	15,911	3,817
Median	6,994	1,678
Sample:	4 of	7 plants

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			rved
	Pollutant Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	1	1	1			
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1	1			
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	1	1	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1,2-dichloroethane	0.010	1	1	1			
11.	1,1,1-trichloroethane	0.010	1	1	1			
12.	hexachloroethane	0.010	1	1	1			
13.	1,1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	1			
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1			
16.	chloroethane	0.010	1	1	1			
17.	bis(chloromethyl)ether	0.010	1	1	1			
18.	bis(chloroethyl)ether	0.010	1	1	1			
19.	2-chloroethyl vinyl ether	0.010	1	1	1			
20.	2-chloronaphthalene	0.010	1	1	1			
21.	2,4,6-trichlorophenol	0.010	1	1	1			
22.	p-chloro-m-cresol	0.010	1	1	1			
23.	chloroform	0.010	1	1	1			
24.	2-chlorophenol	0.010	1	1	1			
25.	1,2-dichlorobenzene	0.010	1	1	1			
26.	1,3-dichlorobenzene	0.010	1	1	1			
27.	1.4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	1	1	1			
31.	2,4-dichlorophenol	0.010	1	1	1			
32.	1,2-dichloropropane	0.010	1	1	1			
33.	1,3-dichloropropene	0.010	1	1	1			
34.	2,4-dimethylphenol	0.010	1	1	1			
35.	2,4-dinitrotoluene	0.010	1	1	1			
36.	2,6-dinitrotoluene	0.010	1	1	1			
37.	1,2-diphenylhydrazine	0.010	1	1	1			
38.	ethylbenzene	0.010	1	1	1			
39.	fluoranthene	0.010	1	1	1			

Table V-59 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observ in Samples (mg/l)			rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	t	1			
41.	4-bromophenyl phenyl ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	1	1			
44.	methylene chloride	0.010	1	1		1		
45.	methyl chloride (chloromethane)	0.010	1	1	1			
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	1	1			
49.	trichlorofluoromethane	0.010	1	1	1			
50.	dichlorodifluoromethane	0.010	1	1	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	1	1			
53.	hexachlorocyclopentadiene	0.010	1	1	1			
54.	isophorone	0.010]	1	1			
55.	naphthalene	0.010	1	1	1			
56.	nitrobenzene	0.010	1	1	1			
57.	2-nitrophenol	0.010	1	1	1			
58.	4-nitrophenol	0.010	1	1	1			
59.	2,4-dinitrophenol	0.010	1	1	1			
60.	4,6-dinitro-o-cresol	0.010	1	1	1			
61.	N-nitrosodimethylamine	0.010	1	1	1			
62.	N-nitrosodiphenylamine	0.010	1	1	1			
63.	N-nitrosodi-n-propylamine	0.010	1	1	1			
64.	pentachlorophenol	0.010	1	1	1			
65.	phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010]	1	1			
67.	butyl benzyl phthalate	0.010	1	1	1			
68.	di-n-butyl phthalate	0.010]]	1			
69.	di-n-octyl phthalate	0.010	1	1	1			
70.	diethyl phthalate	0.010	1	1	1			
71.	dimethyl phthalate	0.010	1	1	1			
72.	benzo(a)anthracene	0.010]	}	1			
73.	benzo(a)pyrene	0.010	1	1	1			
74.	benzo(b)fluoranthene	0.010	1	1	1			
75.	benzo(k)fluoranthene	0.010]	Ţ	1			
76.	chrysene	0.010	1	1	1			
77.	acenaphthylene	0.010	1	}	!			
78.	anthracene (a)	0.010	1	1	ı			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples $(mg/1)$			rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	1	1			
80.	fluorene	0.010	1	1	1			
81.	phenanthrene (a)	0.010	· •	<u>-</u>				
82.	dibenzo(a,h)anthracene	0.010	1	1	1			
83.	indeno (1,2,3-c,d)pyrene	0.010	1	1	1			
84.	pyrene	0.010	1	1	1			
85.	tetrachloroethylene	0.010	1	1	1			
86.	toluene	0.010	1	1	1			
87.	trichloroethylene	0.010	1	1	1			
88.	vinyl chloride (chloroethylene)	0.010	1	1	1			
89.	aldrin	0.005	1	1	1			
90.	dieldrin	0.005	1	1	1			
91.	chlordane	0.005	1	1	1			
92.	4,4'-DDT	0.005	1	1	1			
93.	4, 4'-DDE	0.005	1	1	1			
94.	4, 4'-DDD	0.005	1	1	1			
95.	alpha-endosulfan	0.005	1	1	1			
96.	beta-endosulfan	0.005	1	1	1			
97.	endosulfan sulfate	0.005	1	1	1			
98.	endrin	0.005	1	1	1			
99.	endrin aldehyde	0.005	1	1	1			
100.	heptachlor	0.005	1	1	1			
101.	heptachlor epoxide	0.005	1	1	1			
102.	alpha-BHC	0.005	1	1	1			
103.	beta-BHC	0.005	1	1	1			
104.	gamma-BHC	0.005	1	1	1			
105.	delta-BHC	0.005	1	1	1			
106.	PCB-1242 (b)	0.005	1	1	1			
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	1	1	1			
111.	PCB-1260 (c)	0.005	-	-				
112.	PCB-1016 (c)	0.005	-	-				
113.	toxaphene	0.005	1	1	1			
114.	antimony	0.100	1	1	1			
115.	arsenic	0.010	1	1	1			
116.	asbestos	10 MFL	O	0				

Table V-59 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS CLEANING OR ETCHING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nur	Number of Times Observed in Samples (mg/l)		
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	1	1	1			
118.	cadmium	0.002	1	1	1			
119.	chromium (total)	0.005	1	1	1			
120.	copper	0.009	1	1	1			
121.	cyanide (total)	0.010	1	1	1			
122.	lead	0.020	1	1	1			
123.	mercury	0.0001	1	1	1			
124.	nickel	0.005	1	1	i			
125.	selenium	0.01	1	1	1			
126.	silver	0.02	1	1	1			
127.	thallium	0.100	1	1	1			
128.	zinc	0.050	1	1	1			
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	O				

(a), (b), (c) Reported together.

Table V-60

SAMPLING DATA CLEANING OR ETCHING SCRUBBER LIQUOR RAW WASTEWATER

	Stream	Sample		Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average		
Toxic Pollutants									
44. methylene chloride	6-3	1	0.220	0.014			0.014		
120. copper	C-8	1	0.020	0.010			0.010		
124. mercury	C - 8	1	0.0004	0.0003			0.0003		
Nonconventional									
alkalinity	C-8	1		110			110		
aluminum	C-8	1	2	5.1			5.1		
calcium	C-8	1	12	27			27		
chemical oxygen demand (COD)	C-8	1	<5	<5			<5		
dissolved solids	C-8	1		159			159		
magnesium	C - 8	1	4.6	5.2			5.2		
phenols (total; by 4-AAP method)	C-8	1		0.016			0.016		
sulfate	C-8	1		40			40		
total organic carbon (TOC)	C-8	1	<1	<1			<1		
Conventional									
oil and grease	C - 8	1		13			13		
suspended solids	C-8	1	<1	12			12		
рН (standard units)	C-8	1	8.1	8.1					

Table V-61
FORGING SCRUBBER LIQUOR

	Wate	r Use	Percent	Wast	ewater
Plant	<u>l/kkg</u>	gal/ton	Recycle	1/kkg	<pre>gal/ton</pre>
1	*	*	P	28.85	6.920
2	*	*	P	159.7	38.31
3	5,937	1,424	0	4,453	1,068
4	*	*	*	*	*

^{*}Data not available. P Periodic discharge.

Statistical Summary

Minimum	28.85	6.920
Maximum	4,453	1,068
Mean	1,547	371.1
Median	159.7	38.31
Sample:	3 of	4 plants

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)		rved	
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.181-7 1.000	1.000+
1.	acenaphthene	0.010	1	1	1			
2.	acrolein	0.010	1	1	1			
3.	acrylonitrile	0.010	1	1	1			
4.	benzene	0.010	1	1	1			
5.	benzidine	0.010	1	1	1			
6.	carbon tetrachloride	0.010	1	1	1			
7.	chlorobenzene	0.010	1	1	1			
8.	1,2,4-trichlorobenzene	0.010	1	1	1			
9.	hexachlorobenzene	0.010	1	1	1			
10.	1,2-dichloroethane	0.010	1	1	1			
11.	1,1,1-trichloroethane	0.010	1	1	1			
12.	hexachloroethane	0.010	1	1	1			
13.	1,1-dichloroethane	0.010	1	1	1			
14.	1,1,2-trichloroethane	0.010	1	1	1			
15.	1,1,2,2-tetrachloroethane	0.010	1	1	1			
16.	chloroethane	0.010	1	1	1			
17.	bis(chloromethyl)ether	0.010	1	1	1			
18.	bis(chloroethyl)ether	0.010	1	1	1			
19.	2-chloroethyl vinyl ether	0.010	1	1	1			
20.	2-chloronaphthalene	0.010	1	1	1			
21.	2,4,6-trichlorophenol	0.010	1	1	1			
22.	p-chloro-m-cresol	0.010	1	1	1			
23.	chloroform	0.010	1	1	1			
24.	2-chlorophenol	0.010	1	1]			
25.	1,2-dichlorobenzene	0.010	1	1	1			
26.	1,3-dichlorobenzene	0.010	1	1	1			
27.	1,4-dichlorobenzene	0.010	1	1	1			
28.	3,3'-dichlorobenzidine	0.010	1	1	1			
29.	1,1-dichloroethylene	0.010	1	1	1			
30.	1,2-trans-dichloroethylene	0.010	1	1	!			
31.	2,4-dichlorophenol	0.010	1	1	l			
32.	1,2-dichloropropane	0.010	1	l .	1			
33.	1,3-dichloropropene	0.010	!	1	!			
34.	2,4-dimethylphenol	0.010	1	1	i i			
35.	2,4-dinitrotoluene	0.010	1	1	ļ			
36.	2,6-dinitrotoluene	0.010	1	1	!			
37.	1,2-diphenylhydrazine	0.010	1	Ī	l 2			
38.	ethylbenzene	0.010	1	1	1	•		
39.	fluoranthene	0.010	1	ì		1		

Table V-62 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical	Number	Number	Number of Times Observed			rved
		Quantification	of	οť		in Sample		
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	1	1			
41.	4-bromophenyl phenyl ether	0.010	1	1	1			
42.	bis(2-chloroisopropyl)ether	0.010	1	1	1			
43.	bis(2-chloroethoxy)methane	0.010	1	,	1			
44.	methylene chloride	0.010	1	1	'		1	
45.	methyl chloride (chloromethane)	0.010	1	1	1		'	
46.	methyl bromide (bromomethane)	0.010	1	1	1			
47.	bromoform (tribromomethane)	0.010	1	1	1			
48.	dichlorobromomethane	0.010	1	1	1			
49.	trichlorofluoromethane	0.010	,	1	1			
50.	dichlorodifluoromethane	0.010	1	1	1			
51.	chlorodibromomethane	0.010	1	1	1			
52.	hexachlorobutadiene	0.010	1	1	1			
53.		0.010	1	1	1			
54.	hexachlorocyclopentadiene	0.010	1	1	1			
55.	isophorone	0.010	1	1	,			
56.	naphthalene nitrobenzene	0.010	,	1	1			
57 .		0.010	, 1	1	1			
57. 58.	2-nitrophenol	0.010	1		!			
59.	4-nitrophenol	0.010	1	1	1			
60.	2,4-dinitrophenol	0.010	1	1	1			
61.	4,6-dinitro-o-cresol	0.010	1	1	1			
62.	N-nitrosodimethylamine N-nitrosodiphenylamine	0.010	1	1	ŧ	1		
63.		0.010	1	1	1	•		
64.	N-nitrosodi-n-propylamine	0.010	,	1	1			
65.	pentachlorophenol phenol	0.010	1	1	1			
66.	bis (2-ethylhexyl) phthalate	0.010	1	1	•	1		
67.	butyl benzyl phthalate	0.010	1	1	1	•		
68.	di-n-butyl phthalate	0.010	1	1	1			
69.	di-n-octyl phthalate	0.010	1	1	<u> </u>			
70.	, i	0.010	<u>'</u>	;	1			
71.	diethyl phthalate	0.010		!	,			
72.	dimethyl phthalate benzo(a)anthracene	0.010	1	1	1	1		
73.	` ,	0.010	1	1	1	'		
	benzo(a)pyrene		! 1	1	1			
74.	benzo(b)fluoranthene	0.010	1	1	1			
75.	benzo(k)fluoranthene	0.010	1	†	ı	1		
76. 77.	chrysene	0.010	1	ļ	•	J		
	acenaphthylene	0.010	1	1	ı	•		
78.	anthracene (a)	0.010	1	ŧ		ļ		

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)				
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+	
79.	benzo(ghi)perylene	0.010	1	1	1				
80.	fluorene	0.010	1	1	1				
81.	phenanthrene (a)	0.010	-	-	_				
82.	dibenzo(a,h)anthracene	0.010	1]	1				
83.	indeno (1,2,3-c,d)pyrene	0.010	1	1	I				
84.	pyrene	0.010	1	i i	4	1			
85.	tetrachloroethylene	0.010	1	1	1				
86.	toluene	0.010	1	!	!				
87.	trichloroethylene	0.010	1	1	!				
88.	vinyl chloride (chloroethylene)	0.010	1	!	!				
89.	aldrin	0.005	!	ì					
90.	dieldrin	0.005	1	!	!				
91.	chlordane	0.005	1		1				
92.	4,4'-DDT	0.005	!	1	!				
93.	4, 4'-DDE	0.005	1	!	ļ				
94.	4,4'-DDD	0.005	1	1	!				
95.	alpha-endosulfan	0.005	ì	!	l 1				
96.	beta-endosulfan	0.005	!		!				
97.	endosulfan sulfate	0.005	1	!	!				
98.	endrin	0.005	l i	l 1	!				
99.	endrin aldehyde	0.005	1		ļ				
100.	heptachlor	0.005	1	!	!				
101.	heptachlor epoxide	0.005	1	!	!				
102.	alpha-BHC	0.005	1	!	!				
103.	beta-BHC	0.005	1	i .	!				
104.	gamma-BHC	0.005	1	l •	j				
105.	delta-BHC	0.005	1	1	!				
106.	PCB-1242 (b)	0.005	1	ł	ı				
107.	PCB-1254 (b)	0.005	-	-					
108.	PCB-1221 (b)	0.005	~	-					
109.	PCB-1232 (b)	0.005	-	-	_				
110.	PCB-1248 (c)	0.005	1	1	1				
131.	PCB-1260 (c)	0.005	-	-					
112.	PCB-1016 (c)	0.005	-	-					
113.	toxaphene	0.005	1	1]				
114.	antimony	0.100	1	ļ ,	1				
115.	arsenic	0.010	1	I .	1				
116.	asbestos	10 MFL	0	U					

Table V-62 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS FORGING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantitication	Number of	Number of		Number of Times Observed in Samples (mg/l)			
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.10T- 1.000	1.000+	
	1 of fueding		Maryzed	Milatyzed	0.010	0.700	1.000	1.000	
117.	beryllium	0.010	1	1	1				
118.	cadmium	0.002	1	1	1				
119.	chromium (total)	0.005	1	1	1				
120.	copper	0.009	1	1	1				
121.	cyanide (total)	0.010	1	1	1				
122.	lead	0.020	1	1				1	
123.	mercury	0.0001	1	1	1				
124.	nickel	0.005	1	1	1				
125.	selenium	0.01	1	1	1				
126.	silver	0.02	1	ì	1				
127.	thallium	0.100	1	1	1				
128.	zinc	0.050	1	1			1		
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0					

(a), (b), (c) Reported together.

Table V-63

SAMPLING DATA FORGING SCRUBBER LIQUOR RAW WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	Toxic	Pollutants							
	39.	fluoranthene	A-5	1	ND	0.018			0.018
	44.	methylene chloride	A-5	1	0.130	0.950			0.950
	62.	N-nitrosodiphenylamine	A - 5	1	ND	0.017			0.017
	66.	bis (2-ethylhexyl) phthalate	A-5	1	0.200	0.075			0.075
	72.	benzo(a)anthracene	A- 5	1	ND	0.019			0.019
	76.	chrysene	A - 5	1	ND	0.019			0.019
	78. 81.	anthracene (a) phenanthrene (a)	A - 5	1	ND	0.028			0.028
	84.	pyrene	A-5	1	ND	0.021			0.021
4	120.	copper	A - 5	1	0.010	0.010			0.010
402	122.	lead	A - 5	1	<0.20	2.000			2.000
	123.	mercury	A - 5	1	0.0006	0.0005			0.0005
	128.	zinc	A - 5	1	0.060	0.300			0.300
	Nonco	nventional							
	alkal	inity	A - 5	1		110			110
	alumi	num	A-5	1	<0.09	0.5			0.5
	calci	um	A - 5	1	39	59			59
	chemi	cal oxygen demand (COD)	A - 5	1	8	349			349
	disso	lved solids	A - 5	1		388			388
	magne	sium	A - 5	1	8.7	10.4			10.4

Table V-63 (Continued)

SAMPLING DATA FORGING SCRUBBER LIQUOR RAW WASTEWATER

	Stream	Sample			Concentrat	ions (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
phenols (total; by 4-ΛΑΡ method)	A - 5	1		0.067			0.067
sulfate	A - 5	1		95			95
total organic carbon (TOC)	A - 5	1	9	98			98
Conventional							
oil and grease	A - 5	1		162			162
suspended solids	A-5	1	<1	2			2

(a) Reported together.

Table V-64

DIRECT CHILL CASTING CONTACT COOLING WATER (ALUMINUM FORMING PLANTS)

Plant	Water <u>l/kkg</u>	Use gal/ton	Percent Recycle	Waste <u>l/kkg</u>	water gal/ton
1 2 3 4 5 6 7 8 9 10	* 2,743 * * * * * 8.339 82,050 105,000	* 658.0 * * 2.000 19,680 25,190	100 100 50 97 100 100 100 100* 100 99	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0.0717 0.0780
12 13 14 15 16 17 18 19 20	86,430 82,640 908.9 30,670 37,530 31,340 392.8 *	20,730 19,820 218.0 7,355 9,000 7,516 94.20	100 99 0 98 97 99 0 *	0.4169 0.4169 120.9 150.1 250.2 313.4 392.8 496.2 514.5	0.1000 0.1000 29.00 36.00 60.00 75.16 94.20 119.0 123.4
21 22 23 24 25 26 27 28 29 30 31	73,800 31,440 3,819 14,090 35,320 36,980 177,900 70,880 62,960 72,130 43,360	17,700 7,540 916.0 3,380 8,470 8,870 42,670 17,000 15,100 17,300 10,400	97 98 0 93 94 97 99 96 96 94	612.9 629.6 779.7 963.1 1,113 1,167 1,483 1,534 1,534 1,955 2,397 2,753	147.0 151.0 187.0 231.0 267.0 280.0 355.6 368.0 469.0 575.0 660.4
32 33 34 35 36 37 38 39 40 41	3,394 * 5,041 * 9,089 9,506 23,060 28,390 35,500 52,540	814.0 * 1,209 * 2,180 2,280 5,530 6,810 8,514 12,600	0 * 0 * 0 0 0 0	3,002 4,003 5,041 5,337 9,089 9,506 16,590 28,390 35,500 52,540	720.0 960.0 1,209 1,280 2,180 2,280 3,980 6,810 8,514 12,600

Table V-64 (Continued)

DIRECT CHILL CASTING CONTACT COOLING WATER (ALUMINUM FORMING PLANTS)

		r Use	Percent		ewater
<u>Plant</u>	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
42	58,370	14,000	0	58,370	14,000
42 43	91,310	21,900	Ö	91,310	21,900
44	*	*	98	*	*
45	*	*	96	*	*
46	*	*	*	*	*
47	*	*	*	*	*
48	*	*	0	*	*
49	*	*	0	*	*
50	*	*	*	*	*
51	*	*	0	*	*
52	*	*	*	*	*
53	*	*	0	*	*
54	*	*	*	*	*
55	*	*	*	*	*
56	50,030	12,000	100	*	*
57	*	*	*	*	*
58	*	*	*	*	*
59	*	*	0	*	*
60	*	*	90	*	*
61	*	*	*	*	*

^{*}Data not available.

Table V-65
DIRECT CHILL CASTING CONTACT COOLING WATER

Primary Aluminum Subcategory

Plant	Water <u>l/kkg</u>	Use gal/ton	Percent Recycle	Wast 1/kkg	ewater gal/ton
1	*	*	99+	123	29.52
	*	*	99	459	110.2
3	*	*	98	1,801	432.2
4	*	*	98	9,549	2,292
5	*	*	94	3,303	792.7
6	*	*	82	2,610	626.4
2 3 4 5 6 7 8 9	*	*	48	600	144.0
8	*	*	20	19,473	4,674
	*	*	0	6,964	1,671
10	*	*	0	12,552	3,012
11	*	*	0	15,638	3,753
12	*	*	0	27,188	6,525
13	*	*	0	32,860	7,886
14	*	*	0	34,903	8,377
15	*	*	0	38,406	9,217
16	*	*	0	45,870	11,009
17	*	*	0	57,129	13,711
18	*	*	0	59,214	14,211
19	*	*	0	79,230	19,015
20	*	*	93 *	NA	NA
21 22	*	*	*	NA NA	NA NA
23	*	*	0	NA NA	NA NA
24	*	*	*	NA NA	NA NA
25	*	*	*	NA NA	NA NA
23				1421	1421
	Sec	ondary Alumi	inum Subca	tegory	
26	*	*	99	0.300	2 0.0720
27	*	*	100	0	0
28	*	*	100	0	0
29	*	*	100	0	0
30	*	*	100	0	0

^{*}Data not available.

Table V-65 (Continued)

DIRECT CHILL CASTING CONTACT COOLING WATER

Statistical Summary†

Minimum	8.339	2.000	0	0
Maximum	177,900	42,670	91,310	21,900
Mean	43,900	10,530	1,329	318.9
Median	35,500	8,514	1,483	355.6
Sample:	33 of 91	plants	67 of	91 plants

[†]The statistical summary includes direct chill casting data for aluminum forming, primary aluminum, and secondary aluminum plants with 90 percent recycle or greater.

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	12	20	18		2	
2.	acrolein	0.010	12	23	23			
3.	acrylonitrile	0.010	12	23	23			
4.	benzene	0.010	12	23	22	1		
5.	benzidine	0.010	12	20	20			
6.	carbon tetrachloride	0.010	12	23	23			
7.	chlorobenzene	0.010	12	23	23			
8.	1,2,4-trichlorobenzene	0.010	12	20	20			
9.	hexachlorobenzene	0.010	12	20	20			
10.	1,2-dichloroethane	0.010	12	23	23			
11.	1,1,1-trichloroethane	0.010	12	23	23			
12.	hexachloroethane	0.010	12	20	20			
13.	1,1-dichloroethane	0.010	12	23	23			
14.	1,1,2-trichloroethane	0.010	12	23	23			
15.	1,1,2,2-tetrachloroethane	0.010	12	23	23			
16.	chloroethane	0.010	12	23	23			
17.	bis(chloromethyl)ether	0.010	12	23	23			
18.	bis(chloroethyl)ether	0.010	12	20	20			
19.	2-chloroethyl vinyl ether	0.010	12	23	23			
20.	2-chloronaphthalene	0.010	12	20	20			
21.	2,4,6-trichlorophenol	0.010	12	20	20			
22.	p-chloro-m-cresol	0.010	12	20	20			
23.	chloroform	0.010	12	23	12	10	1	
24.	2-chlorophenol	0.010	12	20	19	1		
25.	1,2-dichlorobenzene	0.010	12	20	20			
26.	1.3-dichlorobenzene	0.010	12	20	20			
27.	1,4-dichlorobenzene	0.010	12	20	20			
28.	3,3'-dichlorobenzidine	0.010	12	20	20			
29.	1.1-dichloroethylene	0.010	12	23	23			
30.	1,2-trans-dichloroethylene	0.010	12	23	23			
31.	2,4-dichlorophenol	0.010	12	20	20			
32.	1,2-dichloropropane	0.010	12	23	23			
33.	1,3-dichloropropene	0.010	12	23	23			
34.	2,4-dimethylphenol	0.010	12	20	20			
35.	2,4-dinitrotoluene	0.010	12	20	20			
36.	2.6-dinitrotoluene	0.010	12	20	20			
37.	1,2-diphenylhydrazine	0.010	12	20	20			
38.	ethylbenzene	0.010	12	23	23			
39.	fluoranthene	0.010	12	20	20			

Table V-66 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Number of Times Observed in Samples (mg/l)			
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	12	20	20			
41.	4-bromophenyĺ phenyĺ ether	0.010	12	20	20			
42.	bis(2-chloroisopropyl)ether	0.010	12	20	20			
43.	bis(2-chloroethoxy)methane	0.010	12	20	20			
44.	methylene chloride	0.010	12	23	10	5	8	
45.	methyl chloride (chloromethane)	0.010	12	23	23			
46.	methyl bromide (bromomethane)	0.010	12	23	23			
47.	bromoform (tribromomethane)	0.010	12	23	23			
48.	dichlorobromomethane	0.010	12	23	23			
49.	trichlorofluoromethane	0.010	12	23	23			
50.	dichlorodifluoromethane	0.010	12	23	23			
51.	chlorodibromomethane	0.010	12	23	23			
52.	hexachlorobutadiene	0.010	12	20	20			
53.	hexachlorocyclopentadiene	0.010	12	20	20			
54.	isophorone	0.010	12	20	18	2		
55.	naphthalene	0.010	12	20	20			
56.	nitrobenzene	0.010	12	20	20			
57.	2-nitrophenol	0.010	12	20	20			
58.	4-nitrophenol	0.010	12	20	20			
59.	2,4-dinitrophenol	0.010	12	20	19	1		
60.	4,6-dinitro-o-cresol	0.010	12	20	19	1		
61.	N-nitrosodimethylamine	0.010	12	20	20			
62.	N-nitrosodiphenylamine	0.010	12	20	18	2		
63.	N-nitrosodi-n-propylamine	0.010	12	20	20			
64.	pentachlorophenol	0.010	12	20	20			
65.	phenol	0.010	12	20	17	2	1	
66.	bis (2-ethylhexyl) phthalate	0.010	12	20	11	5	4	
67.	butyl benzyl phthalate	0.010	12	20	15	1	4	
68.	di-n-butyl phthalate	0.010	12	20	12	8		
69.	di-n-octyl phthalate	0.010	12	20	18	1	1	
70.	diethyl phthalate	0.010	12	20	17	2	1	
71.	dimethyl phthalate	0.010	12	20	19	1		
72.	benzo(a)anthracene	0.010	12	20	20			
73.	benzo(a)pyrene	0.010	12	20	20			
74.	benzo(b)fluoranthene	0.010	12	20	20			
75.	benzo(k)fluoranthene	0.010	12	20	20			
76.	chrysene	0.010	12	20	20			
77.	acenaphthylene	0.010	$1\overline{2}$	20	19	1		
78.	anthracene (a)	0.010	12	20	18		2	

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

		Quantification of o		Number of		Number of Times Observed in Samples (mg/l)			
	Dalles and	Level	Streams	Samples	ND- 0.010	0.100	0.101- 1.000	1.000+	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+	
79.	benzo(ghi)perylene	0.010	12	20	20				
80.	fluorene	0.010	12	20	18	2			
81.	phenanthrene (a)	0.010	-	→					
82.	dibenzo(a,h)anthracene	0.010	12	20	20				
83.	indeno (1,2,3-c,d)pyrene	0.010	12	20	20				
84.	pyrene	0.010	12	20	20				
85.	tetrachloroethylene	0.010	12	23	23				
86.	toluene	0.010	12	23	23				
87.	trichloroethylene	0.010	12	23	23				
88.	vinyl chloride (chloroethylene)	0.010	12	23	23				
89.	aldrin	0.005	12	16	16				
90.	dieldrin	0.005	12	16	16				
91.	chlordane	0.005	12	16	16				
92.	4,4'-DDT	0.005	12	16	16				
93.	4, 4'-DDE	0.005	12	16	16				
94.	4,4'-DDD	0.005	12	16	16				
95.	alpha-endosulfan	0.005	12	16	16				
96.	beta-endosulfan	0.005	12	16	16				
97.	endosulfan sulfate	0.005	12	16	16				
98.	endrin	0.005	12	16	16				
99.	endrin aldehyde	0.005	12	16	16				
100.	heptachlor	0.005	12	16	16				
101.	heptachlor epoxide	0.005	12	16	16				
102.	alpha-BHC	0.005	12	16	16				
103.	beta-BHC	0.005	12	16	16				
104.	gamma-BHC	0.005	12	16	16				
105.	delta-BHC	0.005	12	16	16				
106.	PCB-1242 (b)	0.005	12	16	14	2			
107.	PCB-1254 (b)	0.005	-	-					
108.	PCB-1221 (b)	0.005	-	_					
109.	PCB-1232 (b)	0.005	-	-					
110.	PCB-1248 (c)	0.005	12	16	14	2			
111.	PCB-1260 (c)	0.005	_	_					
112.	PCB-1016 (c)	0.005	-	-					
113.	toxaphene	0.005	12	16	16				
114.	antimony	0.100	7	11	11				
115.	arsenic	0.010	12	20	20				
116.	asbestos	10 MFL	O	0					

Table V-66 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nur	in Sample		rved
	<u>Pollutant</u>	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011-	0.101- 1.000	1.000+
117.	beryllium	0.010	12	20	20			
118.	cadmium	0.002	12	20	19	1		
119.	chromium (total)	0.005	12	20	18	1		1
120.	copper	0.009	12	20	9	11		
121.	cyanide (total)	0.010	12	20	20			
122.	lead	0.020	12	20	10	10		
123.	mercury	0.0001	12	20	19	1		
124.	nickel	0.005	12	20	19	1		
125.	selenium	0.01	7	11	11			
126.	silver	~0.02	7	11	11			
127.	thallium	0.100	7	11	11			
128.	zinc	0.050	12	20	6	5	9	
129.	2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

⁽a), (b), (c) Reported together.

Table V-67

SAMPLING DATA DIRECT CHILL CASTING CONFACT COOLING WATER RAW WASTEWATER

	Stream	Sample Type	Source		Concentrations (mg/l)			
Pollutant	Code			Day 1	Day 2	Day 3	Average	
Toxic Pollutants								
1. acenaphthene	D-7	2	ND	ИИ				
1. acenaphenene	E - 2	$\overline{2}$	*	0.440			0.440	
	E-3	3	*	0.280	ND	ND	0.280	
	F - 2	í	ND	ND				
	F-3	6	ND	ND				
	H - 1	ž	*	ND				
	H - 2	3	*	ND	ND	ИD		
	L-1	1	ND	ND				
	N - 3	6	ND	ND				
	P - 2	3	ND	ND	ND	ND		
	R - 2	í	ND	ND				
	Ŭ-2	3	ND	ND	ND	ND		
	0 2	,						
4. benzene	D-7	1	ND	*			*	
4. Delizelle	E - 2	i	ND	ND	*	*	*	
	E-3	i	ND	ND				
	F-2	1	ND	0.013			0.013	
	F-3	í	ND	ND	ND	*	*	
.	H-1	i	0.023	*			*	
<u>.</u>	H-2	ì	0.023	*	k	*	*	
)	L-1	i	ND	*				
	N-3	í	ND	ND	*	ND	*	
	P-2	1	ND	ND	ND	ND		
	R - 2	í	ND	ND	ND.	112		
	U-2	1	*	*	ND		*	
	0-2	,			ND			
23. chloroform	D-7	1	0.020	*			*	
23. Chioroform	E-2	i	*	0.065			0.065	
	E-3	i	*	0.066	0.072	0.150	0.096	
	F-2	i	2.012	0.036	0.072	***************************************	0.036	
	F-3	1	0.012	0.012	0.019	0.015	0.015	
	H-1	1	0.066	0.014	0.017	0.013	0.014	
	H-2	1	0.066	0.027	0.012	*	Ŭ. Ŭ13	
	L-1	1	0.100	*	0.012		*	
	N-3	1	0.040	*	ND	*	*	
	N - 3 P - 2	1	ND	ND	ND	*	*	
		1	0.040	*	110		*	
	R-2) 1	0.040 *	ND	ND			
	U-2	ı	^	ND	MD			

Table V-67 (Continued)

SAMPLING DATA DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

			Stream	Sample		Concentrations (mg/l)			
		Pollutant	Code	Туре	Source	Day T	Day 2	Day 3	Average
•	24	4. 2-chlorophenol	D-7	2	ND	ND			
		,	E - 2	2	ND	ИD			
			E-3	3	ND	ND	ND	ND	
			F - 2	1	ND	0.012			0.012
			F-3	6	ND	ND			
			H – 1	2	ND	ND			
			H - 2	3	ND	ND	ND	ND	
			L - 1	7	ND	ND			
			N - 3	6	ND	ND			
			P - 2	3	ND	ND	ND	ND	
			R − 2	1	ND	ND			
			U - 2	3	ND	ND	ND	ND	
	4.0	. methylene chloride	D-7	1	*	0.230			0.230
			E - 2	1	0.017	*			*
			E-3	1	0.170	0.013	0.058	0.393	0.155
			F-2	į	0.024	0.185	3.030	0.373	0.185
			F - 3	1	0.024	0.040	0.084	0.160	0.095
			H-1	1	1.100	0.150			0.150
			H - 2	ĺ	1.100	0.110	0.140	0.034	0.095
	4		L-1	i	ND	*		••••	*
	413		N-3	1	ND	*	*	*	*
	ω		P - 2	1	*	*	*	*	
			R-2	1	*	*			*
			U - 2	i	*	0.470	*		0.235
	5 4	. isophorone	D-7	2	ND	ND			
			E - 2	$\overline{2}$	ND	ND			
			E - 3	3	ND	ND	0.035	0.023	0.029
			F - 2	ĺ	ND	ND		3, 323	0.027
			F - 3	6	ND	ND			
			Ĥ - 1	ž	0.011	ND			
			H - 2	- 3	0.011	ND	ND	ND	
			I - 1	ž	ND	ND	*1165	***	
			N - 3	6	ND	ND			
•			P-2	ĭ	ND	ND	ND	ND	
			R - 2	1	ND	ND	1412	(D	
			U - 2	3	ND	ND	ND	ND	

5.11		Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
59.	2,4-dinitrophenol	D- 7	2	ND	ND			
	,	E-2	2	ND	ND			
		E - 3	3	ND	0.042	ND	ND	0.042
		F-2	1	ND	ND			
		F-3	6	ND	ND			
		H – 1	2	ND	ND			
		H - 2	3	ND	ND	ND	ND	
		L-1	7	ND	ND			
		N - 3	6	ND	ND			
		P-2	3	ND	ND	ND	ND	
		R - 2	1	ND	ND			
		U - 2	3	ND	ND	ND	ND	
60.	4,6-dinitro-o-cresol	D - 7	2 2	ND	ND			
	·	E-2	2	ND	ND			
		E-3	3	ND	0.053	ND		0.053
		F-2	1	ND	ND			
		F-3	6	ND	ND			
		H – 1	2	ND	ND			
		H - 2	3	ND	ND	ND	ND	
		L-1	7	ND	ND			
		N-3	6	ND	ND			
		P - 2	3	ND	NÐ	ИD	ND	
		R - 2	1	ND	ND			
		U – 2	3	ИD	ND	ND	ИD	
62.	N-nitrosodiphenylamine	D - 7	2	ND	ND			
		E-2	2 2	ND	ND			
		E - 3	3	ND	ND	0.044	0.057	0.051
		F-2	1	ND	ND			
		F - 3	6	ND	ND			
		H – 1	2	ND	ND			
		H-2	3	ND	ND	ND	ND	
		L-1	7	ND	ND			
		N - 3	6	ND	ND			
		P - 2	3	ND	ND	ND	ND	
		R - 2	1	ND	ND			
		U-2	3	ND	ND	ND	ND	

Table V-67 (Continued)

		Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
65.	phenol	D-7	2	ND	ND			
	·	E-2	2	*	0.056			0.056
		E-3	3	*	ND	ИD	ND	
		F-2	1	ND	ND			
		F-3	6	ND	ND			
		H - 1	2	ND	ND			
		H - 2	3	ND	*	ND	ND	*
		L-1	7	ND	ND			
		N - 3	6	ND	0.050			0.050
		P-2	3	ND	*	*	*	*
		R - 2	1	ND	0.500			0.500
		U-2	3	ND	ND	ND	ND	
66.	bis(2-ethylhexyl) phthalate	D-7	2	*	0.046			0.046
• • • • • • • • • • • • • • • • • • • •		E-2	2 2	*	0.064			0.064
		E-3	3	*	0.140	ND	ND	0.140
		F-2	1	0.025	0.023			0.023
		F-3	6	0.025	*			*
		H - 1	2	0.065	0.280			0.280
		H-2	3	0.065	0.066	0.200	0.180	0.149
		L-1	7	ND	ND			
		N-3	6	ND	ND			
		P - 2	3	*	ND	*	*	*
		R - 2	1	*	ND			
		U - 2	3	*	0.020	*	*	*
67.	butyl benzyl phthalate	D-7	2	ND	0.037			0.037
0,,	odey 2 och 2 y 2 phonarace	E-2	$\bar{2}$	*	ND			
		E-3	3	*	ND	*	ND	*
		F - 2	ī	*	ND			
		$\tilde{F} = 3$	6	*	ND			
		H - 1	2	ND	0.230			0.230
		H - 2	3	ND	0.130	0.340	0.600	0.360
		L-1	7	ND	ND			
		N - 3	6	ND	ND			
		P-2	3	1 D	ND	ND	ND	
		R - 2	1	ND	ND			
		11 = 2	3	N1)	ND	N1)	ND	

nte V-67 (Continued)

		Pollutant	Stream Code	Sample Type	cource	Day 1	Concentrati Day 2	Day 3	Average
	68.	di-n-butyl phthalate	D-7	2	*	ND			
		<u> </u>	E-2	2	*	0.043			0.043
			E-3	3	*	0.055	0.013	*	0.023
			F-2	1	*	0.011			0.011
			F-3	6	*	ND			
			H-1	2	*	0.029			0.029
			H - 2	3	*	0.015	0.022	0.022	0.020
			L-1	7	ND	ИD			
			N - 3	6	ND	ND			
			P - 2	3	ND	*	ND	ND	*
			R - 2	1	*	ND			
			U-2	3	ND	ИD	*	*	*
	69.	di-n-octyl phthalate	D - 7	2	ND	ИD			
	٠,٠	01 11 001 / 1	E-2	2	ND	ND			
			E-3	3	ND	ND	ND	ND	
			F - 2	1	ИD	ND			
			F-3	6	ND	ND			
_			H-1	2	ND	0.094			0.094
416			H-2	3	ND	ND	0.120	ND	0.120
9			L-1	7	ND	ND			
			N-3	6	ND	ND			
			P-2	3	ND	ИD	ND	ND	
			R-2	1	ND	ND			
			U-2	3	ND	*	ИД	ИД	*
	70.	diethyl phthalate	D-7	2	ND	ND			
	,	diedity i pitettaria	E-2	2	*	0.073			0.073
			E-3	3	*	0.110	ND	ND	0.110
			$\overline{\mathbf{F}} - \overline{2}$	1	ND	*			*
			F - 3	6	ND	0.012			0.012
			H – 1	Ž	*	ND			
			H-2	3	*	*	ND	ND	*
			L-1	Ž	ND	ND			
			N-3	6	ND	ND			
			P - 2	3	ND	ND	ИD	ND	
			R - 2	ī	ND	ND			
			U-2	3	*	*	*	*	*

Table V-67 (Continued)

		Stream	Sample			Concentrat	ions (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
71.	dimethyl phthalate	D-7	2	ND	ND			
		E-2	2	*	ND			
		E-3	3	*	0.053	ND	ND	0.053
		F- 2	1	ND	*			*
		F-3	6	ND	ND			
		H – 1	2	*	ND			
		H - 2	3	*	ND	ND	ND	
		L-1	7	ИD	ИD			
		N - 3	6	ND	*			*
		P - 2	3	ND	*	ND	ND	*
		R - 2	1	ND	ND			
		U – 2	3	ND	ND	*	*	*
77.	acenaphthylene	D-7	2	ND	ND			
	, ,	E-2	2	*	ИD			
		E-3	3	*	ND	0.012	*	*
		F-2	1	*	ND			
		F-3	6	*	ND			
		H – 1	2	*	ND			
		H-2	3	*	ND	ND	ND	
		L-1	7	ND	ND			
		N-3	6	ND	ИD			
		P - 2	3	ND	ND	ND	ND	
		R-2	1	ND	ИD			
		U – 2	3	ND	ND	ND	ND	
78.	anthracene (a)	D-7	2	ND	ND			
81.	phenanthrene (a)	E-2	2	ND	ND			
	,	$\overline{E} - \overline{3}$	2 3	ND	ND	0.130	0.148	0.139
		F - 2	1	ND	ND			
		F - 3	6	ND	ND			
		H - 1	2	ND	ND			
		H – 2	3	ND	ND	ND	ND	
		L-1	7	ND	ND			
		N - 3	6	ND	*			*
		P - 2	3	ND	ND	ND	ND	
		R - 2	1	ND	ND			
		Ŭ - 2	3	ND	*	ND	ИD	*

Table V-67 (Continued)

SAMPLING DATA DIRECT CHILL CASTING CONTACT COOLING WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/1) Day 3	Average
80.	fluorene	1) - 7	2	ND	ND			
		E - 2	2	*	ND			
		E - 3	3	*	ND	0.024	0.023	0.024
		F-2	1	ND	ND			
		F-3	6	ND	ND			
		H – 1	2	*	ND			
		H-2	3	*	ND	ND	ND	
		L-1	7	ND	ND			
		N - 3	6	ИD	ND			
		P-2	3	ND	ND	ND	ND	
		R - 2	1	ND	ND			
		U-2	3	ND	ND	ND	ND	
91.	chlordane	D-7	2	**	**			**
		E-2	2	**	0.0075			0.0075
		E-3	3	**	0.0056			0.0056
		F-2	1	**	**			**
		F-3	6	**	**			**
		H-1	2	**	ND			
		H-2	3	**	**			**
		L-1	7	ND	ND			
		N - 3	6	ND	ND			
		P-2	3	ND	ND	ND	ND	
		R - 2	1	ND	ND			
		U-2	3	ИD	ND	ND	ND	
106.	PCB-1242 (b)	D-7	2	**	**			**
107.	PCB-1254 (b)	E-2	$\overline{2}$	**	0.032			0.032
108.	PCB-1221 (b)	E-3	3	88.000	0.025			0.025
	(0)	F-2	Ī	**	ND			
		F-3	6	**	**			**
		ห-1	$\tilde{2}$	0.015	ND			
		H-2	3	0.015	ND			
		L-1	7	ND	ND			
		N-3	6	ND	ND			
		P-2	3	ND	ND	ND	ND	
		R-2	ī	ND	ND			
		Ü-2	3	ND	ND	ND	ND	

fable V-67 (Continued)

			Stream	Sample		Concentrations (mg/l)			
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	109.	PCB-1232 (c)	D-7	2	**	**			**
	110.	PCB-1248 (c)	E-2	2	**	0.032			0.032
	111.	PCB-1260 (c)	E-3	3	**	0.027			0.027
	112.	PCB-1016 (c)	F-2	1	**	ND			
		, ,	F - 3	6	**	**			**
			H - 1	2	**	**			**
			H - 2	3	**	ND			
			L-1	7	ND	ND			
			N - 3	6	ND	ND			
			P - 2	3	ND	ND	ND	ND	
			R - 2	1	ND	ND			
			U - 2	3	ND	ND	ИD	ИD	
	118.	cadmium	D-7	2	<0.002	<0.002			<0.002
			E-2	2	<0.002	<0.002			<0.002
			E-3	3	<0.002	<0.002	<0.002	<0.002	<0.002
			F - 2	1	<0.002	<0.002			<0.002
419			F-3	6	<0.002	<0.002			<0.002
9			H – 1	2	<0.002	<0.002			<0.002
			H - 2	3	<0.002	<0.002	<0.002	<0.002	<0.002
			L-1	7	<0.0005	0.0011			0.0011
			N - 3	6	<0.0005	0.0008			0.0008
			P - 2	3	0.0011	<0.0005	0.0026	<0.0005	<0.0012
			R - 2	1	<0.0005	0.020			0.020
			U-2	3	0.002	0.002	0.002	<0.001	<0.002
	119.	chromium	D-7	2	<0.005	0.007			0.007
			E-2	2	<0.005	<0.005			<0.005
			E-3	3	<0.005	<0.005	<0.005	<0.005	<0.005
			F - 2	1	<0.005	<0.005			<0.005
			F - 3	6	<0.005	<0.005			<0.005
			H – 1	2	<0.005	<0.005			<0.005
			H - 2	3	<0.005	<0.005	<0.005	<0.005	<0.005
			L - 1	7	<0.001	<0.001			<0.001
			N - 3	6	<0.001	<0.001			<0.001
			P - 2	3	<0.001	0.002	0.053	0.004	0.020
			R - 2	1	<0.0001	1.600			1.600
			U-2	3	<0.001	0.002	<0.001	<0.001	<0.001

Table V-67 (Continued)

		Stream	Sample			Concentrati	ons (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
120.	copper	D - 7	2	<0.009	0.010			0.010
		E-2	2	<0.009	0.010			0.010
		E-3	3	<0.009	<0.009	0.010	0.010	<0.010
		F - 2	1	<0.009	<0.009			<0.009
		F-3	6	<0.009	<0.009			<0.009
		H – 1	2	0.010	0.020			0.020
		H – 2	3	0.010	0.020	0.020	0.020	0.020
		L-1	7	0.010	0.004			0.004
		N - 3	6	0.008	0.007			0.007
		P - 2	3	0.004	0.030	0.020	0.019	0.023
		R - 2	1	0.001	0.015	0.017	0.011	0.015
		U – 2	3	0.013	0.012	0.016	0.011	0.013
122.	lead	D-7	2	<0.020	0.020			0.020
		E-2	2	<0.020	0.020			0.020
		E-3	3	<0.020	<0.020	<0.020	<0.020	<0.020
		F - 2	1	<0.020	<0.020			<0.020
		F - 3	6	<0.020	<0.020			<0.020
		H-1	2	<0.020	0.100			0.100
		H - 2	3	<0.020	0.090	0.090	0.090	0.090
		L-1	7	0.014	0.021			0.021
		N - 3	6	0.010	0.014			0.014
		P - 2	3	0.002	0.002	0.006	0.004	0.004
		R - 2	1	<0.001	0.006			0.006
		U - 2	3	0.010	0.012	0.007	0.011	0.010
123.	mercury	D-7	2	0.0006	0.0005			0.0005
		E - 2	2	0.0004	0.0005			0.0005
		E-3	3	0.0004	0.0004	0.0008	0.0004	0.0005
		F - 2	1	0.0006	0.020			0.020
		F-3	6	0.0006	<0.0001			<0.0001
		H – 1	2	0.0004	0.0002			0.0002
		H - 2	3	0.0004	<0.0001	0.0002	0.005	<0.002
		L-1	7	0.0073	0.0076			0.0076
		N - 3	6	0.0091	0.003			0.003
		P – 2	3	<0.0001	<0.0001	<0.0004	<0.0001	<0.0002
		R - 2	1	<0.0007	<0.001	0		<0.001
		U - 2	3	0.005	0.002	0.002	0.002	0.002

Table V-67 (Continued)

		Stream	Sample			Concentrat	ions $(mg/1)$	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	124. nickel	D-7	2	<0.005	<0.005			<0.005
		E - 2	2	<0.005	<0.005		0.005 0.001 0.003 0.100 0.200 0.200	<0.005
		E-3	3	<0.005	<0.005	Day 2 Day 3 A <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 0.003 <0.003 0.100 0.100 0.300 0.200 <0.010 <0.010	<0.005	
		F-2	1	<0.005	<0.005			<0.005
		F-3	6	<0.005	<0.005			<0.005
		H - 1	2	<0.005	<0.005			<0.005
		H - 2	3	<0.005	<0.005	<0.005	<0.005	<0.005
		L-1	7	<0.001	<0.001			<0.001
		N-3	6	<0.001	<0.001			<0.001
		P - 2	3	<0.001	<0.001	<0.001	<0.001	<0.001
		R - 2	1	<0.001	<0.001			<0.001
		U - 2	3	0.016	0.020	0.003	<0.003	<0.009
	128. zinc	D-7	2	<0.050	0.100			0.100
		E-2	2	<0.050	0.100			0.100
		E - 3	3	<0.050	0.100	0.100	0.100	0.100
		F - 2	1	<0.050	<0.050			<0.050
		F - 3	6	<0.050	<0.050			<0.050
_		H – 1	2	0.100	0.200			0.200
421		H-2	3	0.100	0.300	0.300	0.200	0.270
ш		L-1	7	0.053	<0.010			<0.010
		N-3	6	<0.010	0.370			0.370
		P – 2	3	<0.010	<0.010	<0.010	<0.010	<0.010
		R - 2	1	0.053	1.0			1.0
		U – 2	3	ND	0.220	0.240	0.140	0.200
	Nonconventional							
	alkalinity	D-7	2		140			140
		E - 2	$\overline{2}$		90			90
		E-3	1		90	84	76	83
		F - 2	j		140			140
		F - 3	6		130	130	150	137
		H – 1	2	107	97	-	-	97
		H - 2	ī		100	134	150	128
		L-1	6		41			41
		N - 3	6		70			70
		P - 2	$\tilde{2}$		28	22	22	24
		R - 2	1		160			160
		Û - 2	1		64	69	82	72

Table V-67 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day T	Concentrat Day 2	ions (mg/l) Day 3	Average
Nonconventional							
aluminum	D - 7 E - 2	2 2	0.200 <0.09	0.7 <0.295	70. D.F	<0.195	0.7 <0.295 <0.245
	E - 3 F - 2 F - 3	3 1 6	<0.09 <0.09 <0.09	<0.295 0.200 0.2	<0.245 2	2	0.200 1
	H-1 H-2 L-1	2 3 7	<0.09 <0.09 <0.5	0.9 0.700 <0.5	0.800	0.700	0.9 0.733 <0.5
	N - 3 P - 2	6 3	<0.5 <0.5	<0.050 0.88	0.97	0.97	<0.050 0.94
	R - 2 U - 2	3	<0.500	<0.100	<0.100	<0.100	<0.100
calcium	D-7 E-2	2	38 68	55 77 73	72	11	55 17 74
	E - 3 F - 2 F - 3	1 6	68 <5 <5	2.8 2.8	0.63	0.42	2.8 1.3
	H - 1 H - 2 L - 1	2 1 6	52 52 9	56 56 13	69	78	56 68 13
	N + 3 P - 2	6 2	28 0.300	30 101	106	107	30 105
	R - 2 U - 2	1	60	80 13.2	86.9	150	80 83
chemical oxygen demand (COD)	D-7 €-2	2	< 5	62 281	Ma		62 281
	E - 3 F - 2 F - 3	3 1 6	₹5	236 <5 12	350	3/3	320 <5 12
	H = 1 H = 2 L = 1	1 3 7	<5	419 374 24	312	343	419 343 24
	N - 3 P - 2 K - 2	6 3 1	5 <5	82 24 396	32	39	82 32 396
	Ü-2	3		14	25	3 3	24

Table V-67 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
dissolved solids	D-7	2		236			236
	E-2	2		327			327
	E-3	1		336	385	372	364
	F-2	1		255			255
	F-3	6		224	220		222
	H ~ 1	2	173	237			237
	H ~ 2	1	173	246	273	272	264
	L-1	6		150			150
	N - 3	6		230			230
	P-2	2		810	860	810	827
	R - 2	ì		790			790
	U-2	1		830	820	810	820
magnesium	D-7	2	12	14			14
	E-2	2	3.8	3.7			3.7
	E-3	1	3.8	3.6	3.6	3.6	3.6
	F-2	1	<0.1	0.12			0.12
	F-3	6	<0.1	0.200	0.210	0.160	0.190
	H-1	2	3.6	4.2			4.2
	H ~ 2	1	3.6	4.5	5.6	5.8	5.3
	L-1	6	2.24	3.07			3.07
	N-3	6	4.39	7.97			7.97
	P - 2	2	0.08	40	41	39	40
	R ~ 2	1	22.1	2.61			2.61
	U - 2	1		16.9	14.9	16.9	16.2
phenols (total; by 4-AAP method)	D-7	2		0.01			0.01
	E-2	2		0.003			0.003
	E-3	1		0.004	0.005	0.014	0.008
	F-2	1		<0.001			<0.001
	F-3	6		0.002			0.002
	H - 1	2		0.014			0.014
	H - 2	1		0.032	0.016	0.011	0.020
	L-1	6		0.004			0.004
	N - 3	6		0.077			U.077
	P-2	2		0.006	0.012		0.009
	R - 2	1		0.117			0.117
	U – 2	1		0.018	0.027		0.022

Table V-67 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day T	Concentrat Day 2	ions (mg/l Day 3) Average
sulfate	D-7	2		50			50
Juliace	E-2	2 2		90			90
	E - 3	1		130	110	90	110
	F-2	1		10			10
	F-3	6		10	10	10	10
	H-1	2	<10	31			31
	H - 2	1	<10	42	18	20	27
	L-1	6		9			9
	N-3	6		40			40
	P-2	2		24	21	23	23
	R - 2	1		230			230
	U - 2	1		370	340	350	353
total organic carbon (TOC)	D - 7	2		25			25
	E-2	2	1	150			150
	E-3	3	1	136	119	153	136
	F-2	1		1			1
•	F-3	6		5			5 93 63
	H-1	1		93			93
•	H - 2	3		38	76	74	63
	L-1	7	2.8	5.9			5.9
	N-3	6	2.7	19		,	19 5
	P - 2	3	2	5.6	4	4	3
	R – 2	1		13	2 2	. 1	13 3.7
	U – 2	3		2.8	3.3	5.1	3. /
Conventional							
oil and grease	D- 7.	1		27			27
•	E-2	1		137			137
	E - 3	1		226	236	181	214
	F-2	1		5			5
	F-3	1		7	10	15	11
	H-1	1		50			50
	H - 2	1		65	155	140	120
	L-1	1		19			19
	N - 3	6	<5	103	32		68
	P - 2	1		15	7	8	10
	R-2	1		198		.	198
	U-2	1		<5	8	59	<24

Table V-67 (Continued)

	Stream	Sample			Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day T	Day 2	Day 3	Average	
suspended solids	D - 7	2		37			37	
	E-2.	2	<1	44			44	
	E - 3	3	<1	26	45	40	37	
	F-2	1		<1			<1	
	F-3	6		6			6	
	H - 1	1		164			164	
	H = 2	3		113	135	149	132	
	L-1	6	<2	7			7	
	N-3	6	<2 <2	3			3	
	P - 2	3	5	14	14	19	16	
	R - 2	ĺ	_	220		. ,	220	
	U - 2	3		4	5	7	5	
pH (standard units)	D - 7	1		7.9	7.5			
F - (· · - · - · - · · - · · · · · · ·	E - 2	1		7				
	E - 3	1		6.8	7.9	7.0		
	F - 2	1	7.55	7.6	-			
4	F - 3	1	7.55	7.5	7.45	7.55		
O .	H – 1	1		7.2				
л	H - 2	1		7.8				
	L-1	1		7.4	7.4			
	N-3	1	7.1	7.1	7.9	6.9		
	P - 2	1	,	7.8	8.4	8.1		
	R - 2	1		7.9	• • •	3.		
	Ü – 2	1	8	6				

(a), (b), (c) Reported together.

Note: Stream N-3 treated by oil separation.

Table V-68

CONTINUOUS ROD CASTING CONTACT COOLING WATER (ALUMINUM FORMING PLANTS)

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Waste l/kkg	ewater gal/ton
1	0	0	Dry	0	0
2	1,555	375	0	1,555	375
3	*	*	P	*	*

P Total recycle with periodic discharge.

Statistical Summary

Minimum	0	0	0	0
Maximum	1,555	375	1,555	375
Mean	777.5	187.5	777.5	187.5
Median	777.5	187.5	777.5	187.5
Sample:	2 of 3 pla	nts	2 of 3 pla	nts
Nonzero	1,555	375	1,555	375
Mean Sample:	1,333 1 of 3 pla		1,333 1 of 3 pla	

^{*}Sufficient data not available to calculate these values.

Table V-69

CONTINUOUS ROD CASTING CONTACT COOLING WATER (PRIMARY ALUMINUM PLANTS)

Plant Code	Percent Recycle	Production Normalized Discharge Flow
1	*	*
2	99	415
3	99+	11.3

^{*}Data unknown.

Table V-70
CONTINUOUS ROD CASTING SPENT LUBRICANT

	Wate	r Use	Percent	Waste	ewater
Plant	<u>l/kkg</u>	gal/ton	Recycle	1/kkg	gal/ton
1	*	*	100	0	0
2	*	*	100 (P)	*	*
3	*	*	* ` ´	*	*

^{*}Sufficient data not available to calculate these values. P Periodic discharge.

Table V-71
CONTINUOUS SHEET CASTING SPENT LUBRICANT

	Wate	er Use	Percent	Waste	ewater
Plant	<u>l/kkg</u>	gal/ton	Recycle	<u>l/kkg</u>	<pre>gal/ton</pre>
1	*	*	100	0	0
2	5.087	1.220	* (P)	1.017	0.2440
3	*	*	* (P)	2.668	0.6400
4	*	*	* (P)	*	*
5	*	*	* (P)	*	*

^{*}Sufficient data not available to calculate these values. P Periodic discharge.

Statistical Summary

Minimum	0	0
Maximum	2.668	0.6400
Mean	1.229	0.2947
Median	1.017	0.2440
Sample:	3 of 5	plants
Nonzero	1.964	New
Mean		
Sample:	2 of 5	plants

Note: An additional seven continuous sheet casting plants did not mention the use of a lubricant, but one is probably used. Also, three additional plants did not provide sufficient data to characterize water use or discharge.

Table V-72
DEGASSING SCRUBBER LIQUOR (PRIMARY ALUMINUM PLANTS)

	Wate	r Use	Percent	Waste	ewater
Plant	l/kkg	gal/ton	Recycle	l/kkg	gal/ton
1	2,842	682	0	2,842	682
2	3,125	750	ŏ	3,125	750
3	1,854	445	0	1,854	445
4 (a)	*	*	*	*	*

^{*}Data not available or not applicable.

Statistical Summary

Minimum Maximum Mean	1,854 3,125 2,607	445 750 626	1,854 3,125 2,607	445 750 626
Median	2,842	682	2,842	682
<pre>-ample:</pre>	3 of 4 p	lants	3 of 4 p	lants

⁽a) Data is reported with potline and potroom scrubbing and can not be separated.

Table V-73

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS
DEGASSING SCRUBBER LIQUOR
RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sampl	imes Obse es (mg/l)	
	Pollutant	Level	Streams	Samples	ND- 0.010	0.011-	0.101- 1.000	1.000+
	rollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	1	3	3			
2.	acrolein	0.010	1	3	3			
3.	acrylonitrile	0.010	1	3	3			
4.	benzene	0.010	1	3	3			
5.	benzidine	0.010	1	3	3			
6.	carbon tetrachloride	0.010	1	3	3			
7.	chlorobenzene	0.010	1	3	3			
8.	1,2,4-trichlorobenzene	0.010	1	3	3			
9.	hexachlorobenzene	0.010	1	3	3			
10.	1,2-dichloroethane	0.010	1	3	3			
11.	1,1,1-trichloroethane	0.010	1	3	3			
12.	hexachloroethane	0.010	1	3	3			
13.	1,1-dichloroethane	0.010	1	3	3			
14.	1,1,2-trichloroethane	0.010	1	3	3			
15.	1,1,2,2-tetrachloroethane	0.010	1	3	3			
16.	chloroethane	0.010	1	3	3			
17.	bis(chloromethyl)ether	0.010	1	3	3			
18.	bis(chloroethyl)ether	0.010	1	3	3			
19.	2-chloroethyl vinyl ether	0.010	1	3	3			
20.	2-chloronaphthalene	0.010	1	3	3			
21.	2,4,6-trichlorophenol	0.010	1	3	3			
22.	p-chloro-m-cresol	0.010	1	3	3			
23.	chloroform	0.010	1	3	2	1		
24.	2-chlorophenol	0.010	1	3	3			
25.	1,2-dichlorobenzene	0.010	1	3	3			
26.	1,3-dichlorobenzene	0.010	1	3	3			
27.	1,4-dichlorobenzene	0.010	1	3	3			
28.	3,3'-dichlorobenzidine	0.010	1	3	3			
29.	1,1-dichloroethylene	0.010	1	3	3			
30.	1,2-trans-dichloroethylene	0.010	1	3	3			
31.	2,4-dichlorophenol	0.010	1	3	3			
32.	1,2-dichloropropane	0.010	1	3	3			
33.	1,3-dichloropropene	0.010	1	3	3			
34.	2,4-dimethylphenol	0.010	1	3	3			
35.	2,4-dinitrotoluene	0.010	1	3	3			
36.	2,6-dinitrotoluene	0.010	1	3	3			
37.	1,2-diphenylhydrazine	0.010	1	3	3			
38.	ethylbenzene	0.010	1	3	3			
39.	fluoranthene	0.010	1	3	3			

		Analytical Quantification Level	Number of Streams	Number of Samples	ND-	nber of Ti in Sample 0.011-	s (mg/1) = 0.101 -	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	1	3	3			
41.	4-bromophenyl phenyl ether	0.010	1	3	3			
42.	bis(2-chloroisopropyl)ether	0.010	1	3	3			
43.	bis(2-chloroethoxy)methane	0.010	1	3	3			
44.	methylene chloride	0.010	1	3	3			
45.	methyl chloride (chloromethane)	0.010	1	3	3			
46.	methyl bromide (bromomethane)	0.010	1	3	3			
47.	bromoform (tribromomethane)	0.010	1	3	3			
48.	dichlorobromomethane	0.010	1	3	3			
49.	trichlorofluoromethane	0.010	1	3	3			
50.	dichlorodifluoromethane	0.010	1	3	3			
51.	chlorodibromomethane	0.010	1	3	3			
52.	hexachlorobutadiene	0.010	1	3	3			
53.	hexachlorocyclopentadiene	0.010	1	3	3			
54.	isophorone	0.010	1	3	3			
55.	naphthalene	0.010	1	3	3			
56.	nitrobenzene	0.010	1	3	3			
57.	2-nitrophenol	0.010	1	3	3			
58.	4-nitrophenol	0.010	1	3	3			
59.	2.4-dinitrophenol	0.010	1	3	3			
60.	4.6-dinitro-o-cresol	0.010	1	3	3			
61.	N-nitrosodimethylamine	0.010	1	3	3			
62.	N-nitrosodiphenylamine	0.010	1	3	3			
63.	N-nitrosodi-n-propylamine	0.010	1	3	3			
64.	pentachlorophenol	0.010	1	3	3			
65.	phenol	0.010	1	3	3			
66.	bis (2-ethylhexyl) phthalate	0.010	1	3	3			
67.	butyl benzyl phthalate	0.010	1	3	3			
68.	di-n-butyl phthalate	0.010	1	3	3			
69.	di-n-octyl phthalate	0.010	1	3	3			
70.	diethyl phthalate	0.010	1	3	3			
71.	dimethyl phthalate	0.010	1	3	3			
72.	benzo(a)anthracene	0.010	1	3	3			
73.	benzo(a)pyrene	0.010	1	3	3			
74.	benzo(b)fluoranthene	0.010	1	3	3			
75.	benzo(k)fluoranthene	0.010	1	3	3			
76.	chrysene	0.010	1	3	3			
77.	acenaphthylene	0.010	1	3	3			
78.	anthracene (a)	0.010	1	3	3			

Table V-73 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DEGASSING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical	Number	Number	Nui	mber of Ti		rved
		Quantification	of	of		in Sample		
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	1	3	3			
80.	fluorene	0.010	i	$\ddot{3}$	3			
81.	phenanthrene (a)	0.010	<u>.</u>	-	3			
82.	dibenzo(a,h)anthracene	0.010	1	3	3			
83.	indeno (1,2,3-c,d)pyrene	0.010	1	3	3			
84.	pyrene	0.010	i	3	3			
85.	tetrachloroethylene	0.010	1	3	3			
86.	toluene	0.010	1	3	3			
87.	trichloroethylene	0.010	1	3	3 .			
88.	vinyl chloride (chloroethylene)	0.010	1	3	3			
89.	aldrin	0.005	1	3	3			
90.	dieldrin	0.005	1	3	3			
91.	chlordane	0.005	1	3	3			
92.	4,4'-DDT	0.005	1	3	3			
93.	4, 4'-DDE	0.005	1	3	3			
94.	4,4'-DDD	0.005	1	3	3			
95.	alpha-endosulfan	0.005	1	3	3			•
96.	beta-endosulfan	0.005	1	3	3			
97.	endosulfan sulfate	0.005	1	3	3			
98.	endrin	0.005	1	3	3			
99.	endrin aldehyde	0.005	1	3	3			
100.	heptachlor	0.005	1	3	3			
101.	heptachlor epoxide	0.005	1	3	3			
102.	alpha-BHC	0.005	1	3	3			
103.	beta-BHC	0.005	1	3	3			
104.	gamma-BHC	0.005	1	3	3			
105.	delta-BHC	0.005	1	3	3			
106.	PCB-1242 (b)	0.005	1	3	3			
107.	PCB-1254 (b)	0.005	-	-				
108.	PCB-1221 (b)	0.005	-	-				
109.	PCB-1232 (b)	0.005	-	-				
110.	PCB-1248 (c)	0.005	1	3	3			
111.	PCB-1260 (c)	0.005	-	-				
112.	PCB-1016 (c)	0.005	-	-				
113.	toxaphene	0.005	!	3	3			
114.	antimony	0.100	1	3	3			
115.	arsenic	0.010	1	3	3			
116.	asbestos	10 MFL	0	O				

Table V-73 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS DEGASSING SCRUBBER LIQUOR RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nun	nber of Ti		rved
	Pollutant	Level (mg/l)	Streams Analyzed	Samples Analyzed	ND- 0.010	0.011- 0.100	0.101- 1.000	1.000+
117.	beryllium	0.010	1	3	3			
118.	cadmium	0.002	1	3	2	1		
119.	chromium (total)	0.005	1	3		3		
120.	copper	0.009	1	3		2	1	
121.	cyanide (total)	0.010	1	3	3			
122.	lead	0.020	1	3		2	1	
123.	mercury	0.0001	1	3	3			
124.	nickel	0.005	1	3	2	1		
125.	selenium	0.01	1	3	3			
126.	silver	0.02	1	3	3			
127.	thallium	0.100	1	3	3			
128.	zinc	0.050	1	3			2	1
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-74

SAMPLING DATA
DEGASSING SCRUBBER LIQUOR
RAW WASTEWATER

	Stream	Sample			Concentrati		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
Toxic Pollutants							
23. chloroform	R-3	3	0.04	*	<0.02	0.02	<0.01
118. cadmium	R-3	3	<0.0005	0.011	0.0014	0.0008	0.004
119. chromium	R-3	3	<0.0001	0.09	0.022	0.014	0.04
120. copper	R-3	3	0.01	0.25	0.025	0.017	0.097
122. lead	R-3	3	<0.001	0.45	0.09	0.019	0.19
124. nickel	R-3	3	<0.001	0.023	0.008	<0.001	<0.011
128. zinc	R-3	3	0.053	1.3	0.22	0.13	0.6
Nonconventional							
alkalinity	R-3	3		44	89	91	75
aluminum	R-3	3	<0.5	10	<0.5	<0.5	<4
calcium	R-3	3	60	35	51	52	46
chemical oxygen demand (COD)	R-3	3		92	31	24	49
dissolved solids	R-3	3		530	410	420	450
magnesium	R-3	3	22.1	12.3	16.7	19.6	16.2
phenols (total; by $4-AAP$ method)	R-3	1		0.21	0.011	0.009	0.08
sulfate	R-3	3		100	140	140	130
total organic carbon (TOC)	R-3	3		7.3	5	4.8	6
Conventional							
oil and grease	R-3	1		<5	<5	<5	<5
suspended solids	R-3	3		102	10	<2	<38
pH (standard units)	R-3	1		7.8	7.2	7.2	

Table V-75
EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

	Wate	er Use	Percent	Waste	ewater
Plant	<u>l/kkg</u>	gal/ton	<u>Recycle</u>	1/kkg	gal/ton
1	*	*	99P	258	61.8
2	*	*	99P	337	81
3	*	*	0	452	108
4	*	*	0	1,429	343
5	*	*	0	2,554	613

^{*} Data not available.

P Periodic discharge.

Statistical Summary

Minimum Maximum Mean Median Sample Mean (no recycle) Sample Mean (recycle)	1,478 3 of 5	61.8 613 241.4 108 plants 354.7 plants 71.4
Mean (recycle) Sample	298 2 of 5	71.4 plants

Table V-76

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

		Analytical Quantification	Number of	Number of			imes Obser es (mg/l)	rved
	D-11	Level	Streams	Samples	ND-	0.011-	0.101-	1 000+
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
1.	acenaphthene	0.010	2	6	6			
2.	acrolein	0.010	2	6	6			
3.	acrylonitrile	0.010	2	6	6			
4.	benzene	0.010	2	6	6			
5.	benzidine	0.010	2	6	6			
6.	carbon tetrachloride	0.010	2	6	6			
7.	chlorobenzene	0.010	2	6	6			
8.	1,2,4-trichlorobenzene	0.010	2	6	6			
9.	hexachlorobenzene	0.010	2	6	6			
10.	1,2-dichloroethane	0.010	2	6	6			
11.	1,1,1-trichloroethane	0.010	2	6	5	1		
12.	hexachloroethane	0.010	2	6	6			
13.	1,1-dichloroethane	0.010	2	6	6			
14.	1,1,2-trichloroethane	0.010	2	6	6			
15.	1,1,2,2-tetrachloroethane	0.010	2	6	6			
16.	chloroethane	0.010	2	6	6			
17.	bis(chloromethyl)ether	0.010	2	6	6			
18.	bis(chloroethyl)ether	0.010	2	6	6			
19.	2-chloroethyl vinyl ether	0.010	2	6	6			
20.	2-chloronaphthalene	0.010	2	6	6			
21.	2,4,6-trichlorophenol	0.010	2	6	6			
22.	p-chloro-m-cresol	0.010	2	6	5			1
23.	chloroform	0.010	2	6	6			
24.	2-chlorophenol	0.010	2	6	6			
25.	1,2-dichlorobenzene	0.010	2	6	6			
26.	1,3-dichlorobenzene	0.010	2	6	6			
27.	1,4-dichlorobenzene	0.010	2	6	6			
28.	3,3'-dichlorobenzidine	0.010	2	6	6			
29.	1,1-dichloroethylene	0.010	2	6	6			
30.	1,2-trans-dichloroethylene	0.010	2	6	6			
31.	2,4-dichlorophenol	0.010	2	6	6			
32.	1,2-dichloropropane	0.010	2	6	6			
33.	1,3-dichloropropene	0.010	2	6	6			
34.	2,4-dimethylphenol	0.010	2	6	6			
35.	2,4-dinitrotoluene	0.010	2	6	6			
36.	2,6-dinitrotoluene	0.010	2	6	6			
37.	1,2-diphenylhydrazine	0.010	2	6	6			
38.	ethylbenzene	0.010	2	6	6			
39.	fluoranthene	0.010	2	6	6			

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

		Analytical Quantification	Number of	Number of		in Sampl	imes Obser es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	<u>Pollutant</u>	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
40.	4-chlorophenyl phenyl ether	0.010	2	6	6			
41.	4-bromophenyl phenyl ether	0.010	2	6	6			
42.	bis(2-chloroisopropyl)ether	0.010	$\tilde{2}$	6	6			
43.	bis(2-chloroethoxy)methane	0.010	$\overline{2}$	6	6			
44.	methylene chloride	0.010	2	6	1	5		
45.	methyl chloride (chloromethane)	0.010	$\tilde{2}$	6	6	_		
46.	methyl bromide (bromomethane)	0.010	$\frac{\overline{2}}{2}$	6	6			
47.	bromoform (tribromomethane)	0.010	2	6	6			
48.	dichlorobromomethane	0.010	2	6	6			
49.	trichlorofluoromethane	0.010	$\bar{2}$	6	6			
50.	dichlorodifluoromethane	0.010	2	6	6			
51.	chlorodibromomethane	0.010	$\bar{2}$	6	6			
52.	hexachlorobutadiene	0.010	2	6	6			
53.	hexachlorocyclopentadiene	0.010	$\overline{2}$	6	6			
54.	isophorone	0.010	2	6	6			
55.	naphthalene	0.010	2	6	6			
56.	nitrobenzene	0.010	2	6	6			
57.	2-nitrophenol	0.010	2	6	6			
58.	4-nitrophenol	0.010	2	6	6			
59.	2.4-dinitrophenol	0.010	$\frac{2}{2}$	6	6			
60.	4,6-dinitro-o-cresol	0.010	2	6	6			
61.	N-nitrosodimethylamine	0.010	2	6	6			
62.		0.010	2	6	6			
63.	N-nitrosodiphenylamine N-nitrosodi-n-propylamine	0.010	2	6	6			
		0.010	2	6	6			
64.	pentachlorophenol	0.010	2	6	1		2	3
65. 66.	<pre>phenol bis (2-ethylhexyl) phthalate</pre>	0.010	2	6	6		2	3
67.		0.010	2	6	6			
68.	butyl benzyl phthalate	0.010	2	6	5	1		
	di-n-butyl phthalate	0.010	2	6	6	•		
69. 70.	di-n-octyl phthalate	0.010	2	6	6			
	diethyl phthalate	0.010	2	6	6			
71.	dimethyl phthalate	0.010	2	6	6			
72.	benzo(a)anthracene	0.010	2	6	6			
73.	benzo(a)pyrene	0.010	2	6	6			
74.	benzo(b)fluoranthene		2	-	6			
75.	benzo(k)fluoranthene	0.010	2	6 6	o 5	1		
76.	chrysene	0.010	2	-	6	ŧ		
77.	acenaphthylene	0.010		6				
78.	anthracene (a)	0.010	2	6	6			

Table V-76 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

		Analytical Quantification	Number of	Number of			imes Obse es (mg/l)	rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/l)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
79.	benzo(ghi)perylene	0.010	2	6	6			
80.	fluorene	0.010	2 2	6	6			
81.	phenanthrene	0.010	2	6	5	1		
82.	dibenzo(a,h)anthracene	0.010	2 2	6	6			
83.	indeno (1,2,3-c,d)pyrene	0.010	2	6	6			
84.	pyrene	0.010	2 2	6	6			
85.	tetrachloroethylene	0.010	2	6	6			
86.	toluene	0.010	2	6	6			
87.	trichloroethylene	0.010	2	6	6			
88.	vinyl chloride (chloroethylene)	0.010	2	6	6			
89.	aldrin	0.005	$\bar{2}$	6	6			
90.	dieldrin	0.005	2 2	6	6			
91.	chlordane	0.005	$\overline{2}$	6	6			
92.	4, 4! - DDT	0.005	$\tilde{2}$	6	6			
93.	4, 4' - DDE	0.005	2 2 2	6	6			
94.	4, 4'-DDD	0.005	2	6	6			
95.	alpha-endosulfan	0.005	$\tilde{2}$	6	6			
96.	beta-endosulfan	0.005	2 2	,	ő			
97.	endosulfan sulfate	0.005	$\tilde{2}$	6	6			
98.	endrin	0.005	2	6	6			
99.	endrin aldehyde	0.005	2 2	6	6			
100.	heptachlor	0.005	$\tilde{2}$	6	6			
101.	heptachlor epoxide	0.005		6	6			
102.	alpha-BHC	0.005	2 2 2	6	6			
103.	beta-BHC	0.005	2	6	6			
104.	gamma-BHC	0.005	2	6	6			
105.	delta-BHC	0.005	2	6	6			
106.	PCB-1242 (b)	0.005	2	6	6			
107.	PCB-1254 (b)	0.005	-	-	Ü			
108.	PCB-1221 (b)	0.005	_	_				
109.	PCB-1232 (b)	0.005	~	_				
110.	PCB-1248 (c)	0.005	2	6	3			3
111.	PCB-1260 (c)	0.005	~	U	J			J
112.	PCB-1016 (c)	0.005	-	-				
113.			2	6	6			
114.	toxaphene antimony	0.005 0.100	2	6	6 6			
115.	arsenic		$\frac{2}{2}$		6			
		0.010	0	6 0	О			
116.	asbestos	10 MFL	U	U				

Table V-76 (Continued)

FREQUENCY OF OCCURRENCE OF TOXIC POLLUTANTS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

		Analytical Quantification	Number of	Number of	Nur	nber of Ti in Sample		rved
		Level	Streams	Samples	ND-	0.011-	0.101-	
	Pollutant	(mg/1)	Analyzed	Analyzed	0.010	0.100	1.000	1.000+
117.	beryllium	0.010	2	6	6			
118.	cadmium	0.002	2	6	6			
119.	chromium (total)	0.005	2	6	6			
120.	copper	0.009	2	6		2	1	3
121.	cyanide (total)	0.010	2	6	6			
122.	lead	0.020	2	6	6			
123.	mercury	0.0001	2	6	6			
124.	nickel	0.005	2	6	6			
125.	selenium	0.01	2	6	6			
126.	silver	0.02	2	6	6			
127.	thallium	0.100	2	6	6			
128.	zinc	0.050	2	6	1	3	2	
129.	2,3,7,8-tetrachlorodibenzo-p-dioxin	0.005	0	0				

(a), (b), (c) Reported together.

Table V-77

SAMPLING DATA
EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER

			Stream	Sample			Concentrations	(mg/l)	
		<u>Pollutant</u>	_Code	Type	Source	Day 1	Day 2	Day 3	Average
	11.	1,1,1-trichloroethane	AA-4 AA-5	8 8	ND ND	ND 0.0605	ND ND	ND ND	ND 0.0605
	22.	p-chloro-m-cresol	AA - 4 AA - 5	8 8	ND ND	ND 2.47	ND ND	ND ND	ND 2.47
	37.	1,2-diphenylhydrazine	AA - 4 AA - 5	8 8	ND ND	ND ND	* ND	ND ND	* ND
	44.	methylene chloride	AA ~ 4 AA ~ 5	8 8	0.0148 0.0148	0.0785 0.0785	ND 0.00536	0.0865 0.0199	0.0825 0.0507
441	65.	phenol	AA - 4 AA - 5	8 8	ND ND	0.326 22.8	0.181 17.4	ND 32.3	0.234 24.2
	68.	di-n-butyl phthalate	AA - 4 AA - 5	8 8	* *	0.0458 ND	* ND	ND ND	0.0262 ND
	72.	benzo(a)anthracene	AA - 4 AA - 5	8 8	ND ND	ND ND	* ND	ND ND	* ND
<u></u>	76.	chrysene	AA - 4 AA - 5	8 8	ND ND	ND ND	0.0116 ND	ND ND	0.0116 ND
	81.	phenanthrene	AA - 4 AA - 5	8 8	ND ND	ND ND	0.0159 ND	ND ND	0.0159 ND
	110. 111. 112.	PCB-1248 (a) PCB-1260 (a) PCB-1016 (a)	AA - 4 AA - 5	8 8	ND ND	ND 2.181	ND 4.244	ND 3.057	ND 3.161
	114.	antimony	AA - 4 AA - 5	8 8	<0.010 <0.010	<0.010 <0.100	<0.010 <0.10	<0.010 <0.10	<0.010 <0.100
	115.	arsenic	AA - 4 AA - 5	8 8	<0.010 <0.010	<0.010 <0.100	<0.010 <0.10	<0.010 <0.10	<0.010 <0.100
	117.	beryllium	AA - 4 AA - 5	8 8	<0.005 <0.005	<0.005 <0.050	<0.005 <0.050	<0.005 <0.050	<0.005 <0.050

⁽a) Reported together.

SAMPLING DATA EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrations Day 2	(mg/l) Day 3	Average
11	8. cadmium	AA - 4 AA - 5	8 8	<0.020 <0.020	<0.020 <0.200	<0.020 <0.200	<0.020 <0.200	<0.020 <0.200
11	9. chromium	AA - 4 AA - 5	8 8	<0.020 <0.020	<0.020 <0.200	<0.020 <0.200	<0.020 <0.200	<0.020 <0.200
1 2	20. copper	AA ~ 4 AA ~ 5	8 8	<0.050 <0.050	0.150 1.5	0.050 1.5	0.100 1.5	0.100 1.5
12	1. cyanide (total)	AA - 4 AA - 5	8 8	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
1 2	2. lead	AA - 4 AA - 5	8 8	<0.050 <0.050	<0.050 <0.500	<0.050 <0.500	<0.050 <0.500	<0.050 <0.500
12	3. mercury	AA - 4 AA - 5	8 8	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002
442	24. nickel	AA ~ 4 AA ~ 5	8 8	<0.050 <0.050	<0.050 <0.500	<0.050 <0.500	<0.050 <0.500	<0.050 <0.500
	5. selenium AA-4		8 8	<0.010 <0.010	<0.010 <0.100	<0.010 <0.10	<0.010 <0.10	<0.010 <0.100
1 2	6. silver	AA - 4 AA - 5	8 8	<0.010 <0.010	<0.010 <0.100	<0.010 <0.10	<0.010 <0.10	<0.010 <0.100
12	7. thallium	AA-4 8 <0.010 <0.010 <0.010 AA-5 8 <0.010 <0.100 <0.10			<0.010 <0.10	<0.010 <0.100		
1 2	28. zinc	AA - 4 AA - 5	8 8	<0.020 <0.020	0.060 0.200	0.040 <0.200	0.040 0.200	0.050 <0.200
No	nconventional							
al	uminum	AA - 4 AA - 5	8 8	<0.100 <0.100	0.100 <1.0	<0.100 <1.0	<0.100 <1.0	<0.100 <1.00
ba	rium	AA - 4 AA - 5	8 8	0.250 0.250	0.150 <0.500	0.200 <0.500	0.200 <0.500	0.180 <0.500

Table V-77 (Continued)

SAMPLING DATA EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

		Stream	Sample			Concentration	s (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	boron	AA - 4	8	<0.100	<0.100	<0.100	<0.100	<0.100
		AA-5	8	<0.100	6.000	6.0	6.0	6.00
	calcium	AA-4	8	117	78.7	84.1	84.3	82.4
		AA - 5	8	117	24.0	23.0	23.0	23.0
	cobalt	AA-4	8	<0.050	<0.050	<0.050	<0.050	<0.050
		AA - 5	8	<0.050	<0.50	<0.50	<0.50	<0.50
	iron	AA~4	8	2.85	1.8	1.3	1.4	1.5
		AA - 5	8	2.85	5.50	4.50	5.50	5.20
	magnesium	AA-4	8	33.9	25.8	26.9	27.3	26.7
		AA - 5	8	33.9	22.0	22.0	22.0	22.0
	manganese	AA - 4	8	<5.0	0.100	0.100	0.100	0.100
		AA - 5	8	<5.0	<0.50	<0.50	<0.50	<0.50
	molybdenum	AA-4	8	<0.050	<0.050	<0.050	<0.050	<0.050
7		AA-5	8	<0.050	<0.50	<0.50	<0.50	<0.50
443	sodium	AA-4	8	4.8	124.0	43.8	41.2	69.7
		AA - 5	8	4.8	293.0	288.0	290.0	290.0
	tin	AA - 4	8	<0.050	<0.050	<0.050	<0.050	<0.050
		AA - 5	8	<0.050	<0.50	<0.50	<0.50	<0.50
	titanium	AA-4	8	<0.050	<0.050	<0.050	<0.050	<0.050
		AA - 5	8	<0.050	<0.50	<0.50	0.50	<0.50
	vanadium	AA - 4	8	<0.050	<0.050	<0.050	<0.050	<0.050
		AA – 5	8	<0.050	1.00	<0.50	<0.50	<0.67
	yttrium	ΑΛ - 4	8	<0.050	<0.050	<0.050	<0.050	<0.050
		AA - 5	8	<0.050	<0.50	<0.50	<0.50	<0.050
	acidity	AA - 4	8	<1	<1	<1	<1	<1
		AA – 5	8	<1	<1	<1	<1	<1
	alkalinity	AA - 4	8	270	360	280	280	370
		AA - 5	8	270	900	1,100	900	970

Table V-77 (Continued)

SAMPLING DATA EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER

	D 11	Stream	Sample			Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
	chloride	AA - 4 AA - 5	8 8	24 24	21 43.5	19 260	17 55	19 120	
	chemical oxygen demand (COD)	AA - 4 AA - 5	8 8	23 23	685 7,770	691 33,300	590 16,300	655 19,120	
	fluoride	AA - 4 AA - 5	8 8	0.17 0.17	<0.05 1.7	0.34 0.98	0.67 1.4	0.35 1.4	
	ammonia nitrogen	AA - 4 AA - 5	8 8	0.10 0.10	0.35 0.83	0.53 0.62	<0.05 0.45	<0.31 0.63	
	phenols (total; by 4-AAP method)	AA - 4 AA - 5	8 8	<0.005 <0.005	0.14 10	0.019 5.3	0.021 0.038	0.06 5.1	
	sulfate	AA - 4 AA - 5	8 8	115 115	90 190	82 200	96 210	89 200	
	total dissolved solids (TDS)	AA - 4 AA - 5	8 8	530 530	781 3,900	490 3,900	480 4,500	584 4,100	
444	total organic carbon (TOC)	AA - 4 AA - 5	8 8	<1 <1	160 1,020	170 4,300	121 1,000	150 2,110	
	phosphate	AA - 4 AA - 5	8 8	<3 <3	<3 600	<3 600	<3 750	<3 650	
	total solids (TS)	AA - 4 AA - 5	8 8	590 590	917 13,900	690 12, 200	610 12,300	740 12,800	
	Conventional								
	suspended solids	AA - 4 AA - 5	8 8	1 7 1 7	31 568	120 1,090	73 1,300	75 986	
	pH (standard units)	AA - 4 AA - 5	8 8	7.44 7.44	8.74 7.18	7.59 7.35	7.74 7.51		
	oil and grease	AA - 4 AA - 5	8 8	<0.5 <0.5	200 6,300	470 6, 300	490 7,300	390 6,630	

^{*}Detection limit raised due to interference.

Table V-78

SAMPLING DATA
ADDITIONAL WASTEWATER
RAW WASTEWATER

			Pollutant	Stream _Code	Sample Type	Source	Day 1	Concentrat: Day 2	ions (mg/l) Day 3	Average
•		Toxic	Pollutants							
		1.	acenaphthene	D-6 F-4	3	ND ND	ND *	0.790	ND	0.790 *
		4.	benzene	D-6 D-8 F-4 F-8 J-4 R-8	1 3 1 2 1	ND ND ND ND *	ND ND 0.016 ND *	* ND 0.057 * ND	* * * ND	* 0.016 0.029 *
		21.	2,4,6-trichlorophenol	V - 7 B - 9 C - 2	2 3 1	0.004 * ND	* * 1.800	* 0.015	ND	* * 1.800
	2			D-6 F-5 F-8 N-4 N-5	3 3 3 3 2	ND ND ND ND ND	* ND ND ND *	ND * ND	ND * ND *	* * * *
	445	23.	chloroform	B-9 C-2 C-5 D-6 D-8 F-4 F-5 F-8 L-3 L-4 N-4 N-5 R-8	1 1 1 3 1 2 2 1	* 0.055 0.055 0.020 0.02 0.012 0.012 0.1 0.1 0.1 0.04 0.04 0.040	0.013 * 0.520 0.013 * 0.042 0.017 0.017 * 0.080 *	0.015 0.011 * 0.066 0.072 ND * 0.030 ND	0.012 0.022 * 0.014 0.02 ND * 0.030 0.020	0.013 * 0.520 0.015 * 0.042 0.032 0.036 * 0.080 * 0.033
•		24.	2-chlorophenol	C-2 D-6 D-8 F-5	1 3 3 3	ND ND ND ND	0.620 0.013 * ND	ND ND *	ND ND 0.015	0.620 0.013 *

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	$\frac{\text{Day } 3}{2}$	Average
34.	2,4-dimethylphenol	8-9	3	ND	ND	0.020	ND	0.020
		C-5	1	ND	*			*
		D-6	3	*	0.018	ND	ND	0.018
		D-8	3	*	0.018	ND	ND	0.018
		J-4	1	ND	*	ИD		*
		L-3	2	ND	*	*	ND	*
20	ethylbenzene	B - 9	1	ND	ND	*	ND	*
38.	ethytoenzene	J-4	1	ND	ND	0.018	ND	0.018
		R-8	i	ND	*	ND	ND	*
		K-Q	,	WD.		112	110	
39.	fluoranthene	J-5	3	ND	0.028	*	ND	0.014
44.	methylene chloride	B - 9	1	*	0.017	0.012	0.016	0.015
44.	meenty tene enforted	C-2	1	0.220	0.092			0.092
		C - 5	1	0.220	2.100			2.100
		D-6	i	*	*	*	0.620	0.207
		D-8	3	*	*	0.018	0.093	0.037
7		F-4	1	0.024	0.233			0.233
446		F-5	2	0.024	0.051	2.000	0.103	0.718
9		F-8	$\overline{2}$	0.024	0.079	0.510		0.295
		J-4	1	ND	0.050	ND	0.014	0.032
		J-5	ĺ	ND	*	0.250	0.012	0.087
		L-3	1	ND	*	ND	ND	*
		N - 4	3	ND	*	*	ИD	*
		R - 7	1	*	*	*	*	*
		R-8	1	*	*	ND	0.090	0.045
		V - 7	2	0.015	0.030	0.016		0.023
55.	naphthalene	D-6	3	ND	ND	ND	*	*
	•	L-3	2	ND	*	*	ND	*
		N - 4	2 3	ND	ND	ND	*	*
		N - S	2	ND	0.170			0.170
58.	4-nitrophenol	J-5	3	ND	0.025	*	*	*
59.	2,4-dinitrophenol	B - 9	3	ND	ND	ND	0.045	0.045
	•	C-2	1	ND	10.000			10.000
		C-5	1	ND	*			*
		F-5	3	ND	ND	ND	*	*
		J-5	3	ИD	0.012	0.100	ND	0.056

Table V-78 (Continued)

		Stream	Sample		Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
62.	N-nitrosodiphenylamine	J-5	3	ND	Ир	0.200	ND	0.200
64.	pentachlorophenol	C-2	1	ND	5.200			5.200
65.	phenol	B-9	3	*	0.036	*	ND	0.018
		D-6	3	ND	ND	*	*	*
		D-8	3	ND	ND	ND	*	*
		V - 7	2	ND	0.260	0.140		0.200
66.	bis(2-ethylhexyl) phthalate	C-2	1	*	1.500			1.500
		D-6	1	*	350.000	640.000		495.000
		F-5	3	ND	ND	*	*	*
		J-4	1	ND		ND	*	*
		J-5	3	ND	0.072	0.038	0.016	0.042
		L-3	2	ND	0.020	0.020	0.020	0.020
		N - 4	3	ND	*	*	*	*
		R-8	3	ND	ND	ND	*	*
		V - 7	2	0.008	*	*		*
67.	butyl benzyl phthalate	J-5	3	ND	0.031	*	*	*
68.	di-n-butyl phthalate	B ~ 9	3	*	*	*	ND	*
	, ,	D-6	3	*	ND	*	*	*
		D-8	3	*	ND	*	0.024	0.012
		F-4	Ĭ	*	*			*
		F-5	3	*	*	*	*	*
		F-8	3	*	*	ND	ND	*
		J-5	3	0.041	0.250	0.022	ND	0.136
70.	diethyl phthalate	J-5	3	*	0.027	ND	NĐ	0.027
73.	benzo(a)pyrene	J-5	3	ND	0.015	ND	ND	0.015
74. 75.	3,4-benzo-fluoranthene (a) benzo(a)-fluoranthene (a)	J-5	3	ND	0.023	ND	ND	0.023
76.	chrysene	D-6	3	ND	*	ИD	*	*
	•	F-5	3	*	ND	0.014	ND	0.014
		F-8	3	*	*	NĐ	ND	*
		J~5	3	ND	0.030	ND	ND	0.030
		N-4	3	ND	ND	*	*	*

		Stream Sample			Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
7	acenaphthylene	F - 4	1	*	*			*
,	,	L-3	2	ND	*	*	ND	*
7	8. anthracene (b)	J-5	3	ND	0.067	*	*	0.022
	1. phenanthrene (b)							
8	0. fluorene	F - 4	1	ND	*			*
		F-5	3	ND	*	ND	*	*
		F-8	3	ND	0.013	ND	ND	0.013
		N - 5	2	ND	*			*
8	4. pyrene	J - 5	3	*	0.048	*	ND	0.024
я	5. tetrachloroethylene	D-6	1	ND	*	*	*	*
V	, cectaoniotocen, tene	D-8	3	ND	ND	ND	*	*
		F-4	Ĭ	ND	*			*
		F-5	2	ND	ND	*	*	*
		F-8	2	ND	*	ND	*	*
		J-4	1	ND	*	ND	*	*
		v - 7	$\dot{2}$	0.002	ND	*		*
86	6. toluene	D-6	1	ND	ND	ND	*	*
445 8	o. cordene	F-5	2	*	ND	0.036	ND	0.036
		F-8	2	*	NĐ	0.037	ND	0.037
		J-4	1	ND	ND	*	*	*
		L-3	2	ND	*	ND	*	*
		N ~ 4	3	ND	ND	ND	*	*
		N - 5	$\frac{3}{2}$	ND	*	ND	*	*
		R-8	1	ND	0.020	ND	*	0.010
	7		3	ATES	*	0.015	*	*
8	7. trichloroethylene	J-5	3	ND		0.013		
8	9. aldrin	C-2	1	ND	0.011			0.011
9	5. alpha-endosulfan	B - 9	3	ИD	ND	ИD	**	**
		C-2	1	ND	0.028			0.028
9	7. endosulfan sulfate	B-9	3	ND	ND	**	ND	**
,		C-2	1	ND	0.016			0.016
		D-8	3	ND	**			**
		F-4	1	ND	**			**
		F - 5	3	ND	**			**
		F-8	3	ND	**			**

Table V-78 (Continued)

			Stream	Sample		Concentrations (mg/l)			
		Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3	Average
	102.	alpha-BHC	B - 9	3	ИD	ND	**	ND	**
		·	C - 2	1	**	0.018			0.018
			C - 5	1	**	**			**
			D-6	3	**	**			**
	105.	delta-BHC	C-2	1	ND	0.011			0.011
	114.	antimony	AA - 2		<0.010	<0.010			<0.010
			AA - 3		<0.010		<0.010		<0.010
			AA - 8		<0.010	<0.020*			<0.020*
		•	AA-9		<0.010	<0.010			<0.010
			EE-5	8	<0.002	0.032			0.032
	115.	arsenic	L-3	2	<0.0002	0.0004	<0.0002	<0.0002	<0.0003
			R-8	3	0.0037	0.036	0.028	0.024	0.029
			V - 7	2	<0.005	<0.005	0.014		<0.010
			AA-2		<0.010	<0.010			<0.010
			AA-3		<0.010		<0.010		<0.010
			AA-8		<0.010	2.0			2.0
			AA-9		<0.010	1.5			1.5
449			EE-5	8	0.021	0.126			0.126
ڡٛ	117.	beryllium	R-8	3	0.0017	0.0075	<0.0005	<0.0005	<0.0028
			V - 7	2	<0.001	<0.001	0.001		(0.301
			AA - 2	1	<0.005	<0.005			<0.005
			AA - 3	1	<0.005		<0.005		<0.005
			AA-8	1	<0.005	<0.500			<0.005
			AA-9	1	<0.005	<0.500			<0.005
			EE-5	8	<0.010	<0.010			<0.010
	118.	cadmium	B - 9	3		0.006			0.006
			J-5	3	<0.010	0.180	0.180	0.180	0.180
			N - 4	3	<0.0005	<0.0005	0.0013	<0.0005	<0.0008
			R-8	3	<0.0005	0.0075	0.0096	0.0096	0.0089
			V - 7	2	<0.001	0.002	0.001		0.002
			AA - 2	1	<0.020	<0.020			<0.020
			AA - 3	1	<0.020		<0.020		<0.020
			AA-8	1	<0.020	<2.0			<2.0
			AA - 9	1	<0.020	<2.0			<2.0
			EE - 5	8	<0.010	<0.010			<0.010

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/1) Day 3	Average
119.	chromium	C-2	1	0.007	0.05			0.05
		J-4	1	<0.03	0.140	0.370		0.255
		J-5	3	<0.03	1,050	875	770	898
		L-1	1	<0.001	0.03			0.03
		N - 4	3	<0.001	0.01	0.009	0.008	0.01
		R-8	3	<0.001	1.9	2	1.6	2
		V - 7	2	<0.001	0.054	0.028		0.041
		AA - 2	1	<0.020	<0.020			<0.020
		AA - 3	1	<0.020		<0.020		<0.020
		8-AA	1	<0.020	<2.0			<2.0
		AA - 9	1	<0.020	<2.0			<2.0
		EE-5	8	0.021	0.262			0.262
120.	copper	B-9	3		0.02	0.02	0.02	0.02
		C-2	1	0.02	0.3			0.3
		D-8	3	<0.009	0.010	<0.009		<0.010
		J-4	1	<0.03	15	2.7		9
		J-5	3	<0.03	2,000	2,260	2,270	2,180
		L-2	1	0.01	0.006			0.006
		L-3	2	0.01	0.011	0.004	0.01	0.01
		N-4	3	0.008	0.017	0.018	0.015	0.017
,		N-5	2	0.008	0.005			0.005
		R-8	3	0.01	4	4.7	3.6	4
		V - 7	2	0.027	5.5	1.8		3.7
		AA-2	1	<0.050	<0.050			<0.050
		AA-3	1	<0.050		<0.050		<0.050
		AA - 8	1	<0.050	<5.0			<5.0
		AA - 9	1	<0.050	<5.0			<5.0
		EE-5	8	<0.010	0.604			0.604
121.	cyanide	B-9	1		0.051	0.046	0.031	0.043
		D-6	1		0.001	0.006	<0.001	<0.003
		D-8	1	ND	<0.001	<0.001	0.002	<0.001
		F-8	3		0.001	<0.001	<0.001	<0.001
		J-4	1		0.004	0.002	0.003	0.003
		J-5	1	ND	0.069	0.027	0.028	0.041
		R-8	1		0.02	0.24	<0.02	<0.09
		AA - 2	1	<0.02	<0.02			<0.02
		AA-3	1	<0.02		<0.02		<0.02
		AA-8	1	<0.02	<0.02			<0.02
		AA-9	1	<0.02	<0.02			<0.02
		EE-5	8	<0.02	0.033			0.033

Table V-78 (Continued)

			Stream	Sample			Concentrati		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	122.	lead	C-2	1	0.03	0.3			0.3
			J-4	1	<0.05	0.05	ı		1
			J-5	3	<0.05	4.0	2.8	2.9	3.2
			L-2	1	0.014	0.023			0.023
			L-3	2	0.014	0.009	0.006	0.004	0.006
			N - 4	3	0.01	0.015	0.015	0.034	0.021
			N - 5	2	0.01	0.005			0.005
			R-8	3	<0.001	0.11	1.7	1.5	1.1
			V - 7	2	0.079	0.50	0.18		0.34
			AA - 2	1	<0.050	<0.050			<0.050
			AA - 3	1	<0.050		<0.050		<0.050
			AA -8	1	<0.050	<5.0			<5.0
			AA - 9	1	<0.050	<5.0			<5.0
			EE-5	8	<0.100	<0.100			<0.100
	123.	mercury	B-9	3		0.0006	0.003	0.0006	0.001
		,	C-5	1	0.0004	0.0003	-		0.0003
			D-8	3	0.0006	0.0007	0.001		0.001
			F-4	i	0.0006	0.0005			0.0005
			F-5	3	0.0006	0.0005	0.0003	<0.0001	<0.0003
4			F-8	3	0.0006	0.0002	0.0001		0.0002
451			L-2	1	0.0073	0.012			0.012
			L-3	2	0.0073	0.0065	0.009	0.0023	0.006
			N - 4	3	0.0091	0.0093	0.011	0.007	0.009
			N - 5	2	0.0091	0.0082			0.0082
			AA - 2	1	<0.0002	<0.0002			<0.0002
			AA - 3	1	<0.0002		<0.0002		<0.0002
			AA - 8	1	<0.0002	<0.002*			<0.002*
			AA - 9	1	<0.0002	0.0004			0.0004
			EE-5	8	<0.005	<0.005			<0.005
;	124.	nickel	J-4	1	<0.020	<0.02	0.07		<0.05
			J-5	3	<0.020	2.5	2.7	2.6	2.6
			R-8	3	<0.001	0.039	0.03	0.02	0.03
			V - 7	2	0.009	0.048	0.022		0.035
			AA - 2	- 1	<0.050	<0.050			<0.050
			AA - 3	1	<0.050	, , , , , , ,	<0.050		<0.050
			AA - 8	1	<0.050	<5.0			<5.0
			AA-9	1	<0.050	<5.0			<5.0
			EE-5	8	<0.020	<0.020			<0.020

	Pollutant	Stream Code_	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
	rorrucant		1,7,00	bource	<u> </u>			
125.	selenium	V-7	2	0.020	0.017	<0.005		<0.011
5 0		AA - 2	1	<0.010	<0.010			<0.010
		AA-3	1	<0.010		<0.010		<0.010
		AA-8	1	<0.010	<0.500t			<0.500t
		AA-9	1	<0.010	<0.500†			<0.500†
		EE-5	8	<0.005	<0.005			<0.005
126.	silver	AA-2	1	<0.010	<0.010			<0.010
		AA - 3	1	<0.010		<0.010		<0.010
		AA-8	1	<0.010	<0.020t			<0.020†
		AA-9	1	<0.010	<0.010			<0.010
		EE-5	8	<0.001	0.001			0.001
127.	thallium	AA - 2	1	<0.010	<0.010			<0.010
	•	AA - 3	1	<0.010		<0.010		<0.010
		AA-8	1	<0.010	<0.010			<0.010
		AA-9	1	<0.010	<0.010			<0.010
		EE-5	8	<0.001	<0.001			<0.001
128.	zinc	C-2	1	0.2	0.400			0.400
		J-4	1	<0.04	0.620	4.8		2.7
		J-5	3	<0.04	1,950	2,000	2,000	1,980
		L-2	1	0.053	0.66			0.66
		N-4	3	<0.01	0.13	0.14	0.13	0.13
		N - 5	2	<0.01	0.038			0.038
		R-8	3	0.053	5.5	7.1	6.8	6.5
		V - 7	2	0.50	1.8	7.0		4.4
		AA - 2	1	<0.020	0.060			0.060
		AA-3	1	<0.020		0.140		0.140
		8- AA	1	<0.020	172			172
		AA - 9	1	<0.020	30.0			30.0
		EE-5	8	0.064	0.039			0.039
Nonco	nventional							
acidi	ty	AA - 2	1	<1	<1			<1
	,	AA-3	1	<1		<1		<1
		AA-8	1	<1	<1			<1
		AA - 9	1	<1	<1			<1
		EE-5	8	<1	<1			<1

tDetection limit raised due to interference.

Table V-78 (Continued)

	Stream	Sample			Concentrat	ions (mg/	1)
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
alkalinity	AA - 2	1	270	260			260
	AA - 3	1	270		242		242
	AA - 8	1	270	128,000			128,000
	AA-9	1	270	86,000			86,000
	EE-5	8	22	800			800
aluminum	AA - 2	1	<0.100	1.2			1.2
	AA - 3	1	<0.100		0.1		0.1
	AA-8	1	<0.100	2,090			2,090
	AA-9	1	<0.100	1,990			1,990
	EE-5	8	0.011	87.8			87.8
ammonia nitrogen	AA - 2	1	0.10	<0.05			<0.05
O	AA-3	1	0.10		<0.02		<0.02
	AA-8	1	0.10	16			16
	AA - 9	1	0.10	7.2			7.2
	EE-5	8	<0.05	0.133			0.133
barium	AA - 2	1	0.250	0.100			0.100
	AA - 3	1	0.250		0.100		0.100
	AA-8	1	0.250	<5.0			<5.0
	AA - 9	1	0.250	<5.0			<5.0
	EE-5	8	0.021	<0.020			<0.020
boron	AA - 2	1	<0.100	0.100			0.100
	AA - 3	1	<0.100		0.100		0.100
	AA-8	1	<0.100	20.0			20.0
	AA - 9	i	<0.100	10.0			10.0
	EE-5	8	<0.050	<0.050			<0.050
calcium	AA - 2	1	117	102.0			102.0
	AA - 3	1	117		101		101
	AA - 8	1	117	<10.0	-		<10.0
	ΑΛ-9	1	117	<10.0			<10.0
	EE-5	8	4.62	4.80			4.80

	Stream	Sample			Concentrat	ions (mg/	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
chemical oxygen demand (COD)	B - 9	3	82	60	67	73	67
enemied in general warm (var)	C - 2	1	<5	19,800			19,800
	C-5	1	< 5	30			30
	D-6	3		17	13	13	14
	D-8	3		71	56	51	59
	F - 5	3		53	12	10	25
	F-8	3		24	14	17	18
	J-4	1	5	1,190	296		743
	J-5	3	5	289	260	238	262
	L-2	1	<5 <5	22			22
	L-3	2	<5	28	31	42	34
	N - 4	3	5	17	19	26	21
	N - 5	2	5	35			35
	R-8	1		440	274	212	309
	V-17	2	<1	1,300	840		1,070
	AA - 2	1	23	102			102
	AA – 3	1	23		24		24
	AA - 8	1	23	198			198
	AA - 9	1	23	78			78
	EE-5	8	48	440			440
chloride	AA - 2	1	24	63			63
	AA - 3	1	24		42		42
	8- AA	1	24	1,300			1,300
	AA - 9	1	24	780			780
	EE-5	8	<0.005	<0.3			<0.3
cobalt	AA - 2	1	<0.050	0.050			0.050
	AA - 3	1	<0.050		<0.050		<0.050
	AA -8	1	<0.050	<5.0			<5.0
	AA - 9	1	<0.050	<5.0			<5.0
	EE-5	8	<0.010	<0.010			<0.010
dissolved solids	AA - 2	1	530	472			472
	AA - 3	1	530		450		450
	AA-8	1	530	100,000			100,000
	AA-9	1	530	61,200			61,200
	EE-5	8	28	2,400			2,400
fluoride	AA - 2	1	0.17	1.8			1.8
	AA-3	1	0.17		1.9		1.9
	AA-8	1	0.17	3.7			3.7
	AA-9	1	0.17	0.24			0.24
	EE-5	7	0.67	0.32			0.32

Table V-78 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
iron	AA - 2	1	2.85	0.100			0.100
	AA - 3	1	2.85		0.500		0.500
	AA-8	1	2.85	<5.0	0.300		<5.0
	AA-9	1	2.85 2.85	₹5.0			₹5.0
	EE-5	8	0.081	0.568			0.568
magnesium	AA - 2	1	33.9	29.6			29.6
	AA - 3	1	33.9		30.7		30.7
	AA - 8	1	33.9	<10.0			<10.0
	AA - 9	1	33.9	<10.0			<10.0
	EE-5	8	1.68	9.3			9.3
manganese	AA - 2	1	<5.0	0.250			0.250
	AA - 3	1	<5.0		0.250		0.250
	AA - 8	1	<5.0	<5.0			<5.0
	AA - 9	1	<5.0	<5.0			<5.0
	EE-5	8	0.016	0.244			0.244
molybdenum	AA - 2	1	<0.050	<0.050			0.050
	AA - 3	1	<0.050		<0.050		<0.050
	AA-8	1	<0.050	<5.0			<5.0
	AA - 9	1	<0.050	<5.0			<5.∪
	EE-5	8	0.030	<0.020			<0.020
phenols (total; by 4-AAP method)	B-9	3		0.108	0.092	0.142	0.114
	C - 2	1		2.77			2.77
	C-5	1		0.005			0.005
	D-6	3		0.003	0.009	0.011	0.008
	D-8	1		0.006	0.003	0.024	0.011
	F-5	3		<0.001	0.001	0.006	<0.003
	F-8	3		0.005	0.002	0.003	0.003
	J-4	1		0.012	0.015	0.006	0.011
	J-5	1		0.001	0.005		0.003
	L-2	1		0.012			0.012
	L-3	2		0.114	0.099	0.102	0.105
	L-4			0.002			0.002
	N - 4	1		0.015	0.012	0.012	0.013
	N - 5	1		0.025			0.025
	R-8	1		0.062	0.034	0.010	0.035
	V - 7	1	62.000	0.380	0.250		0.315
	AA - 2	1	<0.005	0.014			0.014
	AA - 3	1	<0.005		0.014		0.014
	AA-8	1	<0.005	0.012			0.012
	AA - 9	1	<0.005	0.054			0.054

Table V-78 (Continued)

	Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
	phosphate	AA - 2	1	<3 <3	4.5			4.5
		AA-3	1	<3		<3		<3
		AA-8	1	<3	12			12
		AA - 9	1	<3	10			10
		EE-5	8	8.8	1,000			1,000
	sodium	AA-2	1	4.8	20.5			20.5
		AA-3	1	4.8		20.0		20.0
		AA-8	1	4.8	47,600			47,600
		AA-9	1	4.8	34,800			34,800
	sulfate	AA - 2	1	115	78			78
		AA - 3	1	115		81		81
		AA-8	1	115	120			120
		AA-9	1	115	105			105
		EE-5	8	21	54			54
4	tin	AA - 2	t	<0.050	<0.050			<0.050
456		4A - 3	1	<0.050		<0.050		<0.050
0.		AA -8	1	<0.050	<5.0			<5.0
		AA-9	1	<0.050	<5.0			<5.0
		EE-5	8	<0.020	<0.020			<0.020
	titanium	AA-2	1	<0.050	<0.050			<0.050
		AA - 3	1	<0.050		<0.050		<0.050
		AA -8	1	<0.050	<5.0			<5.0
		AA - 9	1	<0.050	<5.0			<5.0
		EE-5	8	<0.010	<0.010			<0.010

Table V-78 (Continued)

	Stream	Sample			Concentrati	ions (mg/	1)
Pollutant	_Coqe	Type	Source	Day 1	Day 2	Day 3	Average
total organic carbon (TOC)	B-9	3	35 <1	22	23	24	23
	(:-2	1	<1	9,360			9, 360
	C-5	1	<1	11			11
	D-6	3		8	20	7	12
	D-8	3		24	24	25	24
	F-4	1		2			2
	F-5	3		5 9	9	1	5
	F-8	3		9	4	3	5
	J-4	Ĭ.		350	34		192
	J-5	3	<1	76	71	79	75
	L-2	1	2.8	5.9	* 4	• /	5.9
	L-3	2	2.8	5.3	10	16	10
	L-4	,	2.8	2.40	c .	7 .	2.40
	N - 4	3	2.7	4.4	5.7	7.6	5.9
	N - 5	2	2.7	16	1 /	0.5	16
	R - 8 V - 7	1	4.7	15	14 250	9.5	13
		1		900	230		580
	AA - 2	1	< 1 < 1	18	15		18 15
	AA - 3 AA - 8	1	<1	13	נו		13
	AA - 9	1	<1	19			19
	EE-5	8	₹1	91			91
	56-)	0	\ 1	71			71
total solids	AA - 2	1	590	496			496
	AA - 3	1	590		580		580
	AA-8	1	590	108,000			108,000
	AA - 9	1	590	74,000			14,000
	EE - 5	8	30	2,600			2,600
vanadium	AA - 2	1	<0.050	<0.050			<0.050
	AA - 3	1	<0.050		0.050		<0.050
	AA - 8	1	<0.050	< 5.0			< 5.0
	AA - 4	1	<0.050	· 5.0			<5.0
	EE - 5	8	<0,020	0.020			<0.020
yttrium	AA - 2	1	0,050	< 0.050			< 0.050
	AA - 3	1	0.050		· 0.050		<0.050
	AA - 8	1	< 0 , 050	. 5.0			< 5.0
	AA - 9	1	0.050	5.0			.5.0
	EE - 5	8	< 0.020	· 0.020			< (1, 1) 2(1)

Pollutant Code		Stream	Sample			Concentra	tions (mg/	1)
oil and grease B-9	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
C-2	Conventional							
C-2	oil and grease		1			16	25	
D-6			1		6,060			6,060
D-8			1			13	7	
F-4			i			420		
F-8		F-4	1		8			8
J-4			2			8	8	
J-5			1		24	15 21	/	15
L-2 1 1 12 12 12 12 13 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15			1		182	40	35	86
L-3 1			i		12			12
N-4		L-3	1			86	<5	<32
N-7			1	45			0	74
N-7		N-4) 1	<5		160	9 35	₹8 70
AA-2 1		к-о V-7	i	16		100	3,7	440
AA-3			1	<0.5				
Suspended solids B-9 3 138 16 18 13 16 C-2 1 <1 2,612 2,612 C-5 1 <1 8 8 D-6 3 3 17 17 17 20 18 F-5 3		AA-3	1	<0.5		8		8
suspended solids B-9 3 138 16 18 13 16 C-2 1 <1		AA - 8	1					2.1
suspended solids B-9 3 138 16 18 13 16 C-2 1 (1 2,612 2,612 C-5 1 (1 8 8 D-6 3 3 (1 4 (3 D-8 3 17 17 20 18 F-5 3 (1 5 5 (4 F-8 3 (1 7 (1 (3 J-4 1 14 1,540 2,670 2,110 J-5 3 14 547 422 380 450 L-2 1 (2 55 5 55 N-4 3 (2 (2 3 4 (3 R-8 1 470 410 360 410 V-7 2 29 39 34 AA-2 1 17 15 15 AA-3 1 17 1,930 1,930 AA-9 1 17 1,200 1,200		AA - 9 FF - 5	l R					13.1 40
C-2		1113 - 3	Ů	3	40			,,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	suspended solids			138	16	18	13	16
D-6 3 3 17 17 20 18 D-8 3 17 17 20 18 F-5 3 41 5 5 5 F-8 3 41 7 41 5 43 J-4 1 14 1,540 2,670 2,110 J-5 3 14 547 422 380 450 L-2 1 22 55 N-4 3 22 22 3 4 23 R-8 1 470 410 360 410 V-7 2 2 29 39 34 AA-2 1 17 15 15 AA-3 1 17 15 61 AA-8 1 17 1,930 1,930 AA-9 1 17 1,200 1,200		C-2		<1				
D-8 3 17 17 20 18 F-5 3 <1 5 5 <4 F-8 3 <1 7 <1 <3 J-4 1 14 1,540 2,670 2,110 J-5 3 14 547 422 380 450 L-2 1 <2 55 N-4 3 <2 2 3 4 <3 R-8 1 470 410 360 410 V-7 2 29 39 34 AA-2 1 17 15 15 AA-3 1 17 15 AA-3 1 17 1,930 1,930 AA-9 1 17 1,200 1,200				<1	8 2	71	4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3		17	17		18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F-5			<1	5	5	<4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3		<1		<1	<3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	14	1,540	2,670	200	2,110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		J-5	3	14	547 55	422	380	450 55
R-8 1 470 410 360 410 V-7 2 29 39 34 AA-2 1 17 15 15 AA-3 1 17 61 61 AA-8 1 17 1,930 1,930 AA-9 1 17 1,200			3	\(\frac{2}{2}\)	<2	3	4	₹ 3
AA-2		R-8	1	, -	470	410		410
AA-3 1 17 61 61 AA-8 1 17 1,930 1,930 AA-9 1 17 1,200 1,200			2		29	39		34
AA-8 1 17 1,930 1,930 AA-9 1 17 1,200 1,200		AA - 2	1	17	15			
AA-9 1 17 1,200 1,200 EE-5 8 3 1.3		AA - 3	1		1 020	61		1 030
EE-5 8 3 1.3		AA-9	1	17	1, 200			1,200
			8		1.3			1.3

45

Table V-78 (Continued)

	Stream	Sample			Concentrat	ions (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
pH (standard units)	B - 9	1		7.64	8.1	7.86	
•	C-2	1		6.9			
	C-5	1		8.2			
	D-6	1		8.0	8.0	11.2	
	D-8	1		7.4	8.0	7.6	
	F-4	1	7.55	7.5			
	F-5	1	7.55	7.5	7.3	7.48	
	F-8	1	7.55	7.6	7.7	7.4	
	J-4	1		6.2			
	J-5	1		3.6	1.5	3.4	
	L-2	1		7.7			
	L-3	1		7.1	7.4	7.4	
	N-4	1	7.1	7.4	7.1	7.0	
	N - 5	1	7.1	7.2	7.2	7.3	
	R ~ 8	1		7.5	8.0	8.4	
	AA-2	1	7.44	7.63			
	AA-3	1	7.44		7.33		
	AA ~ 8	1	7.44	11.22			
	AA - 9	1	7.44	11.70			
	EE-5	8	6.05	9.53			

(a), (b) Reported together.

Note: Only detected values are reported on this table. The additional wastewater streams sampled are B-9, C-2, C-5, D-6, D-8, F-4, F-5, F-8, J-4, J-5, L-2, L-3, L-4, N-4, N-5, R-8, V-7, AA-2, AA-3, AA-8, AA-9, and EE-5.

Table V-79
MISCELLANEOUS NONDESCRIPT WASTEWATER

Plant	Wate 1/kkg	r Use gal/ton	Percent Recycle	Waste <u>l/kkg</u>	water gal/ton
1 2 3 4	* * *	* * *	0 0 0 0	3.7 60.6 70.8 353.8	0.89 14.5 17 84.9
*Data not Statistica	available.				
Minimum Maximum Mean Median Sample				3.7 353.8 122 65.7 4 of 4	0.89 84.9 29 15.8 plants

Table V-80

				Sample		Concentrations (mg/l)			
		<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	1.	acenaphthene	B - 7 B - 8	2 2	ND ND	ND *	ND ND	ND ND	*
	7.	chlorobenzene	B-7 B-8	2 2	ND ND	ND 0.033	ND ND	N D N D	0.033
	15.	1,1,2,2-tetrachloroethane	B - 7 B - 8	2 2	ND ND	ND ND	ND ND	3.200 ND	3.200
	21.	2,4,6-trichlorophenol	B ~ 7 B ~ 8	2 2	* *	ND ND	ND ND	1.500 ND	1.500
	23.	chloroform	B-7 B-8	2 2	*	0.017 0.097	* 0.053	1.700 0.028	0.572 0.059
	30.	1,2- <u>trans</u> -dichloroethylene	B - 7 B - 8	2 2	ND ND	0.840 2.300	0.570 0.480	0.280 0.110	0.563 0.963
. 461	34.	2,4-dimethlyphenol	B - 7 B - 8	2 2	ND ND	3.900 3.200	0.850 1.100	ND ND	2.375 2.150
<u>ب</u>	38.	ethylbenzene	B-7 B-8	2 2	ND ND	<0.030 0.026	* *	0.029 0.021	<0.020 0.016
	44.	methlyene chloride	B - 7 B - 8	2 2	<0.010 <0.010	0.067 0.320	0.155 0.420	3.290 0.310	1.171 0.350
	55.	naphthalene	B-7 B-8	2 2	ND ND	ND 0.110	ND 0.033	ND 0.056	0.066
	59.	2,4-dinitrophenol	B-7 B-8	2 2	ND ND	ND ND	ND ND	ND 18.000	18.000
	65.	phenol	B - 7 B - 8	2 2	<0.010 <0.010	10.000 8.000	12.000 10.000	1.600 11.000	7.867 9.667
	66.	bis(2-ethylhexyl) phthalate	B-7 B-8	2 2	*	1.000 0.022	0.500 *	0.950 ND	0.817 0.011
	68.	di-n-butyl phthalate	B-7 B-8	2 2	*	0.280 0.012	ND 0.012	ND 0.015	0.280 0.013

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
		FOILULANC	_code_	Туре	Bource	Day !	<u> </u>	547 3	
	70.	diethyl phthalate	B - 7 B - 8	2 2	*	0.330 0.011	ND 0.015	ND ND	0.330 0.013
	85.	tetrachloroethylene	B - 7 B - 8	2 2	ND ND	0.052 0.011	0.040 0.065	7.700 0.300	2.597 0.125
	86.	toluene	B-7 B-8	2 2	ND ND	* ND	*	0.038 *	0.013
	87.	trichloroethylene	B - 7 B - 8	2 2	ND ND	0.021 ND	0.064 0.042	ND ND	0.043 0.042
	89.	aldrin	B - 7 B - 8	2 2	ND ND	** ND	** ND	0.010 ND	**
	93.	4,4'-DDE	B-7 B-8	2 2	** **	0.006 **	ND ND	0.015 **	0.011 **
762	95.	alpha-endosulfan	B - 7 B - 8	2 2	ND ND	** ND	0.0055 ND	** ND	**
S	97.	endosulfan sulfate	B - 7 B - 8	2 2	ND ND	ND ND	0.0065 ND	0.0067 ND	0.0066
	99.	endrin aldehyde	B - 7 B - 8	2 2	ND ND	ND ND	** ND	0.0089 ND	**
	101.	heptachlor epoxide	B - 7 B - 8	2 2	** **	0.015 **	ND ND	ND ND	0.015 **
	102.	alpha-BHC	B-7 B-8	2 2	ND ND	0.006 ND	** **	0.024 **	0.010 **
	103.	beta-BHC	B - 7 B - 8	2 2	** **	ND ND	0.014 ND	ND **	0.014 **
	105.	delta-BHC	B - 7 B - 8	2 2	0.00001 0.00001	0.015 **	ND ND	ND ND	0.015 **
	106. 107. 108.	PCB-1242 (a) PCB-1254 (a) PCB-1221 (a)	B - 7 B - 8	2 2	** **	0.200 **	0.085 **	0.039 **	0.108 **

Table V-80 (Continued)

			Stream	Sample			Concentrat	ions (mg/l)		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
	109. 110. 111. 112.	PCB-1232 (b) PCB-1248 (b) PCB-1260 (b) PCB-1016 (b)	B-7 B-8	2 2	** **	0.250 **	0.160 **	0.660 **	0.357 **	
	115.	arsenic	B-7 B-8 B-10	2 2 1	<0.01 <0.01 <0.01	<0.01 <0.01 0.400	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01 0.400	
	118.	cadmium	8-8 8-10	2 1	ND ND	<0.002 0.400	<0.002	<0.002	<0.002 0.400	
	119.	chromium	B - 8 B - 10	2 1	ND ND	0.100 70	0.100	<0.005	<0.068 70	
	120.	copper	B-8 B-10	2 1	ND ND	0.01 50	<0.009	<0.009	€0.01 50	
463	122.	lead	B-8 B-10	2 1	ND ND	0.02 20	0.03	<0.02	<0.02 20	
	123.	mercury	B-8	2	ND	0.003	0.001	0.0002	0.001	
	124.	nickel	B-8 B-10	2 1	ND ND	<0.005 20	0.02	<0.005	<0.01 20	
	128.	zinc	B-8 B-10	2	ND ND	<0.05 50	<0.05	<0.05	<0.05 50	
	Nonco	nventional								
	chemi	cal oxygen demand (COD)	B-7 B-8	2 2	82 82	7,980 2,700	5,850 2,540	78,320 2,070	30,720 2,440	
	pheno	ls (total; by 4-AAP method)	B - 7 B - 8	2 2		16.7	21.7 17.5	27.1 13.5	21.8 15.5	
	total	organic carbon (TOC)	B - 7 B - 8	2 2	35 35	4,960 1,250	4,050 971	26,270 839	11,760 1,020	

Table V-80 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	B - 7 B - 8	1		95 22	1,540 52	38,180 267	13,270 114
suspended solids	B - 7 B - 8	2 2	138 138	1,262 26	791 19	5,676 13	2,576 19
pH (standard units)	B - 7 B - 8	1 1		8.04 7.85	7.6 7.6	8.1 8.2	

(a), (b) Reported together.

Table V-81

			Stream	Sample			rations (mg/l)	
		Pollutant	Code	Type	Source	Day 1 Day 2	Day 3	Average
	Toxic	Pollutants						
	23.	chloroform	C - 9	1	0.055	0.066		0.066
	44.	methylene chloride	C-9	1	0.220	0.630		0.630
	59.	2,4-dinitrophenol	C - 9	1	ND	0.800		0.800
	65.	phenol	C - 9	1	ND	0.820		0.820
	66.	bis(2-ethylhexyl) phthalate	C - 9	1	*	0.130		0.130
	102.	alpha-BHC	C-9	1	**	0.00012		0.00012
	106. 107. 108.	PCB-1242 (a) PCB-1254 (a) PCB-1221 (a)	C-9	1	**	0.006		0.006
465	109. 110. 111. 112.	PCB-1232 (b) PCB-1248 (b) PCB-1260 (b) PCB-1016 (b)	C-9	1	**	0.008		0.008
	119.	chromium	C-9	1	0.007	0.009		0.009
	120.	copper	C-9	1	0.02	0.02		0.02
	123.	mercury	C-9	1	0.0004	0.002		0.002
	Nonco	nventional						
	chemi	cal oxygen demand (COD)	C-9	1	<5	2,520		2,520
	pheno	ols (total; by 4-AAP method)	C-9	1		1.65		1.65
	total	organic carbon (TOC)	C-9	1	<1	850		850
	Conve	entional						
	oil a	and grease	C-9	1		98		98
	total	suspended solids	C-9	1	<1	46		46

⁽a), (b) Reported together.

Table V-82

	20 all lut ont		Stream	Sample		والمالة فالرحاب بالمدر	Concentrat	ions (mg/l)	
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	1.	acenaphthene	D-4	3	ND	*	ND	ND	*
			D-9a	6	ND	0.030			0.030
			D-14	3	ND	ND	ND	ND	
			D-15	6	ND	ND	-		
			D-16 ^b	3	ИД	ND	*	ИD	*
	4.	benzene	D-4	1	ND	*	ИD	ND	*
			D-9	1	ND	ND	ND	*	*
			D-14	1	ND	*	*	0.016	*
			D-15	1	ND	ND		*	* *
			D-16	1	ND	ND	ND	*	*
	21.	2,4,6-trichlorophenol	0-4	3	ND	ND	ND	ND	
		, ,	D-9	6	ND	0.014			0.014
			D-14	3	ND	*	*	*	*
			D-15	6	ND	ND			
•			D-16	3	ИD	ND	ND	*	*
,	23.	chloroform	D-4	1	0.020	*	*	0.500	0.167
			D-9	1	0.020	*	0.011	*	0.004
			D-14	1	0.020	0.011	0.037	0.028	0.025
			D-15	1	0.020	0.012	0.015		0.014
			D-16	1	0.020	*	*	*	*
	30.	1,2-trans-dichloroethylene	D-4	1	ND				
	, .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D-9	1	ND	ND	ND	*	*
			D-14	1	ND	ИD	*	*	*
			D-15	1	ND	ND	ND		
			D-16	1	ND	ND	ND	ND	
	44	methylene chloride	D-4	1	*	*	*	0.450	0.150
	4.4.	ille (Hyreine - effection	D-9	i	*	*	0.048	0.150	0.066
			D-14	1	, *	ИD	0.780	1.100	0.940
			D-15	1	*	0.150	0.110		0.130
			D-16	1	*	0.140	*	0.440	0.193
	54.	isophorone	D-4	3	ND	*	ND	ND	*
	,4.	rsophorone	D-4 D-9	6	ND	ND	1-17	140	
			D-14	3	ND	ND	ND	0.014	0.014
			D-15	6	ND	ND		***	
			D-16	3	ND	0.030	ND	ND	0.030

Table V-82 (Continued)

			Stream	Sample			Concentrations (mg/l)			
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
	64.	pentachlorophenol	D-4	3	0.014	ND	*	*	*	
			D-9	6	0.014	0.013			0.013	
			D-14	3	0.014	*	*	ND	*	
			D-15	6	0.014	ND				
			D-16	3	0.014	ND	*	ND	*	
	65.	phenol	D-4	3	ND	0.042	0.027	*	0.023	
			D-9	6	ND	ND				
			D-14	3	ND	*	*	*	*	
			D-15	6	ND	ND				
			D-16	3	ND	0.040	*	0.015	0.018	
	66.	bis(2-ethylhexyl) phthalate	D-4	3	*	0.023	*	*	*	
			D-9	6	*	0.057			0.057	
			D-14	3	*	*	*	*	*	
			D-15	6	*	0.130			0.130	
			D-16	3	*	0.150	0.010	*	0.053	
467	67.	butyl benzyl phthalate	D-4	3	ND	*	ND	*	*	
7		, ,	D-9	6	ND	ND				
			D-14	3	ND	*	*	*	*	
			D-15	6	ND	0.049			0.049	
			D-16	3	ND	0.270	*	*	0.090	
	68.	di-n-butyl phthalate	D-4	3	*	0.017	*	*	*	
			D-9	6	*	ND				
			D-14	3	*	*	*	*	*	
			D-15	6	*	0.022			0.022	
			D-16	3	*	0.016	*	*	*	
	69.	di-n-octyl phthalate	D-4	3	ND	ND	ND	ND		
			D-9	6	ND	ND				
			D-14	3	ND	ND	ND	ND		
			D-15	6	ND	0.026			0.026	
			D-16	3	ND	0.140	ND	ND	0.140	
	71.	dimethyl phthalate	D-4	3	ND	ND	*	*	*	
			D-9	6	ND	ND				
			D-14	3	ND	0.026	0.043	*	0.023	
			D-15	6	ND	ND				
			D-16	3	ND	*	*	*	*	

		Stream	Sample Concentrat					ions (mg/l)		
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average		
87.	trichloroethylene	D-4	1	*	0.024	0.073	0.053	0.050		
	•	D-9	1	*	ND					
		D-14	1	*	0.025	0.039	0.033	0.032		
		D-15	1	*	0.150	*		0.075		
		D-16	1	*	0.080	0.045	0.020	0.048		
115.	arsenic	D-4	3	<0.010	<0.001	<0.001	<0.001	<0.001		
		D-9	6	<0.010	0.040			0.040		
		D-13*	1	<0.010	0.750			0.750		
		D-14	3	<0.010	<0.010	<0.010	<0.010	<0.010		
		D-15	6	<0.010	ND					
		D-16	3	<0.010	<0.010	<0.010	<0.010	<0.010		
119.	chromium	D-4	3	<0.005	1.000	0.800	1.000	0.933		
		D- 9	6	<0.005	ND					
		D-13*	1	<0.005	ND					
		D-14	3	<0.005		0.020	0.040	0.030		
		D-15	6	<0.005	ND					
		D-16	3	<0.005	2.000	0.700	2.000	1.567		
120.	copper	D-4	3	<0.009	0.010	0.010	0.010	0.010		
		D-9	6	<0.009	ND					
		D-13*	1	<0.009	ND					
		D-14	3	<0.009		<0.009	0.010	<0.010		
		D-15	6	<0.009	ND					
		D-16	3	<0.009	0.020	0.010	0.010	0.013		
121.	cyanide	D-4	1	ND	0.005	0.001	0.001	0.002		
	·	D-9	6	ND	0.006			0.006		
		D-13*	1	ND	0.004			0.004		
		D-14	1	ND	0.015	<0.001	0.029	<0.015		
		D-15	6	ND	0.002			0.002		
		D-16	1	ND	0.004	0.002	0.001	0.002		
122.	lead	D-4	3	<0.020	<0.020	<0.020	0.040	<0.027		
		D-9	6	<0.020	ND					
		D-13*	1	<0.020						
		D-14	3	<0.020		<0.020	<0.020	<0.020		
		D-15	6	<0.020	ND			40.00:		
		D-16	3	<0.020	0.030	<0.020	0.020	<0.023		

Table V-82 (Continued)

SAMPLING DATA PLANT D TREATED WASTEWATER

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ons (mg/l) Day 3	Average
123. mercury	D-4 D-9	3 6	0.0006 0.0006	0.0006 ND	<0.010	0.0003	0.004
	D-13* D-14 D-15	1 3 6	0.0006 0.0006 0.0006	ND ND	<0.0001	<0.0007	<0.0004
	D-16	3	0.0006	0.060	<0.0001	0.0005	0.020
128. zinc	D-4 D-9	3 6	<0.050 <0.050	0.090 ND	0.060	0.060	0.070
	D-13* D-14 D-15	3	<0.050 <0.050 <0.050	ND ND	<0.050	<0.050	<0.050
	D-16	3	<0.050	0.100	<0.050	0.070	<0.073
Nonconventional							
alkalinity	D-15	6		0.380			0.380
aluminum	D-4 D-9 D-13*	3 6 1	0.200 0.200 0.200	4.0 170.0 ND	2.0	2.0	2.7 170.0
	D-14 D-15	3	0.200 0.200	8.3	0.100 4.0	<0.090 4.0	<0.095 8.3 4.7
	D-16	3	0.200	6.0			
calcium	D-4 D-9	3 6	38 38	53.0 7.3	56.0	56.0	55.0 7.3
	D-14 D-15	3 6	38 38	* 50.0	52.0	46.0	32.7 50.0
	D-16	3	38	64.0	110.0	89.0	87.7
chemical oxygen demand (COD)	D-4	3		73	44	52	56
	D-9 D-14	6 3		59 32	22	28	59 27
	D-15 D-16	6 3		903 79	90	86	903 85
magnesium	D-4	3	12	16.0	14.0	14.0	14.7
	D-9 D-14	6 3	12 12	21.0 13.0	13.0	13.0	21.0 13.0
	D-15 D-16	6 3	12 12	32.0 24.0	59.0	37.0	32.0 40.0

è

Table V-82 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l) Day 3	Average
phenols (total; by 4-AAP method)	D-4 D-9 D-14 D-15	1 6 1 6		0.414 <0.001 0.547 15.6	0.072 0.001	0.110 0.477	0.199 <0.001 0.347 15.6
	D-16	1		0.015	1.34	0.01	0.46
sulfate	D-9 D-15	6 6		3.366 1.284			3.366 1.284
total organic carbon (TOC)	D-4 D-9 D-14	3 6 3		29 31 12	4 3	21 17	18 31 11
	D-15 D-16	6 3		381 36	66	48	381 50
Conventional							
oil and grease	D-4 D-9 D-14 D-15	1 1 1 1		15 16 14 36 66	21 10 72	5 7 54	14 16 10 36 64
suspended solids	D-16 D-4 D-9 D-14 D-15 D-16	3 6 3 6 3		43 13 3 93 119	44 <1 1,100	51 12 215	46 13 <5 93 478
pH (standard units)	D-4 D-9 D-14 D-15 D-16	3 6 3 6 3		6.8 2.1 7.2 6.7 5.9	8.4 2.4 7.8 6.5 7.4	8.2 2.8 7.1 7.8	

^{*}Stream D-13 was analyzed for metals only.

aRaw waste is from nonscope operations.

binfluent to central treatment system stream--some contributing streams are partially treated.

Table V-83

SAMPLING DATA
PLANT E

TREATED WASTEWATER

		Stream	Sample		Concentrations $(mg/1)$				
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
Toxic	Pollutants								
1.	acenaphthene	E-6 ^a E-8	3 2 2 3 3	*	ND 0.055	ND	ND	0.055	
		E-9	2	*	*			*	
		E-10	3	*	0.025	ND	ND	0.025	
		E-11	3	*	ND	ND	ND		
4.	benzene	E-6	1	ND	ND	0.011	*	*	
		E-8	1	ND	*			*	
		E-9	1	ND	*			*	
		E-10	1	ND	ND	0.011	*	*	
		E - 1 1	1	ПN	ND	*	ND	*	
5.	benzidine	E-6	3	ND	ND	ND	ND		
		E-8	2	ND	ND				
		E-9	2	ND	ИD				
		E-10	3	ND	ND	0.026	0.016	0.021	
		E-11	3	ND	ND	0.016	0.033	0.025	
7.	chlorobenzene	E-6	3	ND	ND	ND	ND		
		E-8	2 2	ND	*			*	
		E-9	2	ИD	ND				
		E-10	3	ND	ИD	ИD	ND		
		E-11	3	ND	ND	*	*	*	
13.	1,1-dichloroethane	E-6	3	ND	ND	ND	ND		
		E-8	2	ИD	0.058			0.058	
		E-9	2 3	ND	0.020			0.020	
		E-10	3	ND	ND	ND	ND		
		E-11	3	ND	ND	ND	ND		
21.	2,4,6-trichlorophenol	E-6	3	*	ND	*	ND	*	
		E-8	2 2	*	ND				
		E-9	2	*	ND				
		E-10	3	*	0.013	*	*	*	
		E-11	3	*	ND	*	ND	*	
22.	p-chloro-m-cresol	E-6	3 2 2	ND	ND	*	ND	*	
		E-8	2	ND	ND				
		E - 9	2	ND	ИD	_			
		E-10	3	ND	*	ИD	*	*	
		E-11	3	ND	0.013	*	ND	*	

		Stream	Sample			Concentrations (mg/l)		
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
23.	chloroform	E-6	1	*	*	*	*	*
20.	CHIOLOTOLII	E-8	i	*	0.032			0.032
		E-9	1	*	0.020			0.020
		Ē-10	i	*	0.035	0.023	0.045	0.034
		E-11	1	*	0.012	*	*	*
30.	1,2-trans-dichloroethylene	E-6	3	ND	ND	ND	ND	
	,	E-8	2	ND	0.850			0.850
		E-9	2 2	ND	0.360			0.360
		E-10	3	ND	ND	ND	ND	
		E-11	3	ИD	ИD	ND	ND	
35.	2,4-dinitrotoluene	E-6	3	ND	ND	ND	ND	
	•	E-8	2	ND	ND			
		E-9	2 2 3	ND	ND			
		E-10		ИD	ИD	0.021	ND	0.021
		E-11	3	ИD	ND	ND	0.060	0.060
36.	2,6-dinitrotoluene	E-6	3	ND	ND	ND	ND	
		E-8	2	ND	ND			
		E-9	2 2 3	ИD	ИD			
		E-10		ИD	ИD	0.044	ND	0.044
		E-11	3	ND	ND	ND	*	*
38.	ethylbenzene	E-6	1	ND	ND	ND	ND	
		E-8	1	ND	0.013			0.013
		E-9	1	ND	*			*
		E-10	1	ND	ND	ND	ND	
		E-11	1	ND	*	ИD	ND	*
44.	methylene chloride	E-6	1	0.017	*	0.140	0.130	0.090
		E-8	1	0.017	0.130			0.130
		E-9	1	0.017	1.700			1.700
		E-10	i	0.017	0.052	0.474	0.130	0.219
		E-11	2	0.017	0.089	0.076	0.100	0.088
54.	isophorone	E - 6	3	ND	ND	ND	ND	
		E-8	2	ND	ИÐ			
		E-9	2	ND	0.280			0.280
		E-10	3	ND	ND	0.170	ND	0.170
		E-11	3	ND	ND	ND	0.222	0.222

Table V-83 (Continued)

		Stream	Sample			Concentrati	ons (mg/l)	
	Pollutant	Code	Туре	Source	Day T	Day 2	Day 3	Average
55.	naphthalene	E-6	3	ND	ND	*	ND	*
	·	E-8		ND	0.017			0.017
		E-9	2 2 3	ND	ND			
		E-10	3	ND	ND	ND	ND	
		E-11	3	ND	ND	ND	*	*
56.	nitrobenzene	E-6	3	ND	ND	ND	ND	
		E-8	2	ND	ND			
		E-9	2 2 3	ND	ND			
		E-10	3	ND	ND	0.025	ND	0.025
		E-11	3	ND	ND	ND	ND	
59.	2,4-dinitrophenol	E-6	3	ND	ND	ND	ND	
		E-8	2	ND	ND			
		E-9	2 2 3	ND	ND			
		E-10	3	ND	0.032	ND	*	0.016
		E-11	3	ND	0.011	*	ND	0.006
62.	N-nitrosodiphenylamine	E-6	3	ND	ND	ND	ND	
		E-8	2	ND	ND			
		E-9	3 2 2 3	ND	ND			
		E-10	3	ND	ND	0.083	ND	0.083
		E-11	3	ИВ	ND	ND	0.091	0.091
65.	phenol	E-6	3	*	ND	ND	*	*
		E-8	2	*	ND			
		E-9	3 2 2 3	*	ND			
		E-10	3	*	*	ND	*	*
		E-11	3	*	ND	*	ND	*
66.	bis(2-ethylhexyl) phthalate	E-6	3	*	*	*	0.019	0.006
		E-8	2 2 3	*	0.390			0.390
		E-9	2	*	0.044			0.044
		E-10	3	*	0.056	ND	0.013	0.035
		E-11	3	*	*	*	ND	*
68.	di-n-butyl phthalate	E-6	3	*	*	ND	ND	*
		E-8	2 2	*	0.390			0.390
		E-9	2	*	0.049			0.049
		E-10	3	*	ND	*	ND	*
		E-11	3	*	0.019	*	*	0.006

			Stream	Sample			Concentrat	ions $(mg/1)$	
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	70.	diethyl phthalate	E-6	3	*	*	0.023	ND	0.012
	,	azee.,, z p	E-8	2	*	0.720			0.720
			E - 9	2	*	0.065			0.065
			E-10	3	*	0.056	ND	ND	0.056
			E-11	3	*	ND	ИD	ND	
	71.	dimethyl phthalate	E-6	3	*	ND	ND	ND	
		, ,	E-8	2	*	ND			
			E-9	2	*	ND			
			E-10	3	*	ND	*	ND	*
			E-11	3	*	ND	ND	ND	
	72.	benzo(a)anthracene	E-6	3	*	ND	ND	ND	
		` '	E-8	2	*	ND			
			E-9	2	*	ND			
			E-10	3	*	ND	*	ND	*
			E-11	3	*	ND	ND	0.011	0.011
474	78.	anthracene (a)	E-6	3	ND	ND	ND	ND	
+-	81.	phenanthrene (a)	E-8	2	ND	ND			
		F ,	E-9	2	ND	ИD			
			E-10	3	ND	ND	0.119	ŊD	0.119
			E-11	3	ND	ND	*	0.100	0.050
	80.	fluorene	E-6	3	*	ND	*	ND	*
			E-8	2	*	ND			
			E-9	2	*	ND			
			E-10	3	*	ND	0.050	ND	0.050
			E-11	3	*	ND	ND	0.035	0.035
	84.	pyrene	E-6	3	ND	ND	*	ND	*
	•	F)	E-8	2	ND	ND			
			E-9	2	ND	ИD			
			E-10	3	ND	ND	ND	ND	
			E-11	3	ND	ND	*	*	*
	85.	tetrachloroethylene	E-6	1	ND	ŊD	*	ND	*
		-	E-8	1	ND	0.021			0.021
			E-9	1	ND	0.014			0.014
			E-10	i	ND	*	*	*	*
			E-11	1	ND	0.011	*	*	0.004

Table V-83 (Continued)

			Stream	Sample			Concentrati		,
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	86.	toluene	E-6	1	ND	ND	ND	ND	
			E-8	1	ND	0.013			0.013
			E - 9	1	ND	*			*
			E-10	1	ND	0.031	*	ND	0.016
			E-11	1	ND	*	ND	ND	*
	87.	trichloroethylene	E-6	3	ND	ND	ND	ND	
			E-8	2	ND	0.012			0.012
			E-9	2	ND	*			*
			E-10	3	ND	ND	*	*	*
			E - 11	3	ND	ND	*	*	*
	91.	chlordane	E-6	3	**	**			**
			E-8	2	**	ND			
			E - 9	2	**	**			**
			E-10	3	**	**			**
			E - 1 1	3	**	**			**
475	98.	endrin	E-6	3	ND	ND			
01			E-8	2	ND	**			**
			E-9	2	ND	ND			
			E-10	3	ND	**			**
			E-11	3	ND	**			**
	106.	PCB-1242 (b)	E - 6	3	**	**			**
	107.	PCB-1254 (b)	E-8	2	**	0.016			0.016
	108.	PCB-1221 (b)	E-9	2	**	**			**
	100.	1GB-1221 (b)	E-10	3	**	0.006			0.006
			E-10 E-11	3	**	**			**
	109.	PCB-1232 (c)	r. 4)	**	**			**
		PCB-1232 (c)	E-6	3	**				
	110. 111.	PCB-1246 (C)	E-8 E-9	2 2	**	0.027 **			0.027 **
	112.	PCB-1016 (c)			**				
	112.	reb-1010 (c)	E-10 E-11	3 3	**	0.0053 **			0.0053 **
	110	a a dm i um	P (2	70.00 2	ZO 002	ZO 000	ZO 000	ZO 002
	118.	cadmium	E-6	3	<0.002	<0.002	<0.002	<0.002	<0.002
			E-8	2	<0.002	<0.002			<0.002
			E-9	2	<0.002	0.005	(0.000	40.000	0.005
			E-10	3	<0.002	<0.002	<0.002	<0.002	<0.002
			E-11	3	<0.002	<0.002	<0.002	<0.002	<0.002

			Stream	Sample			Concentrati		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	119.	chromium	E-6	3	<0.005	0.070	0.060	0.040	0.057
	1,,,,	0131 01112 0111	E-8	2	<0.005	0.010			0.010
			E-9	2	<0.005	0.020			0.020
			E-10	3	<0.005	0.090	0.060	0.020	0.057
			E-11	3	<0.005	<0.005	<0.005	<0.005	<0.005
	120.	copper	E-6	3	0.009	<0.009	<0.009	<0.009	<0.009
	. 20.	Copper	E-8	2	0.009	0.050			0.050
			E-9	2	0.009	<0.009			<0.009
			E-10	$\bar{3}$	0.009	0.200	0.300	0.060	0.187
			E-11	3	0.009	<0.009	0.100	<0.009	<0.039
	121.	cyanide	E-6	1	ND	0.002	<0.001	<0.001	<0.001
	121.	Cyanitae	E-8	2	ND	0.006			0.006
			E-9	2	ND	0.003			0.003
			Ĕ-10	ī	ND	0.034	0.006	0.006	0.015
			E-11	i	ND	0.004	0.003	0.003	0.003
_	122.	lead	E-6	3	<0.020	<0.020	<0.020	<0.020	<0.020
476	122.	leau	E-8	$\tilde{2}$	₹0.020	0.050	(******		0.050
9			E-9	2	<0.020	0.030			0.030
			E-10	3	<0.020	0.020	<0.020	<0.020	<0.020
			E-11	3	<0.020	<0.020	<0.020	<0.020	<0.020
	1 2 2		E-6	3	0.0004	0.0009	0.0004	0.0011	0.0008
	123.	mercury	E-8		0.0004	<0.010	0.0004	0.0011	<0.010
			E-9	2 2 3	0.0004	0.0006			0.0006
			E-10	2	0.0004	0.0006	0.0022	0.0005	0.0011
			E-11	3	0.0004	0.0006	0.0008	0.0006	0.0007
	1.27	m i mla m l	E-6	3	<0.005	0.020	0.006	<0.005	<0.010
	124.	nickel	E-8	2	<0.005	0.010	0.000	(3,003	0.010
			E-9	2	<0.005	0.040			0.040
			E-10	2 3	<0.005	<0.005	<0.005	<0.005	<0.005
			E-10 E-11	3	<0.005	<0.005	<0.005	<0.005	<0.005
	1.00		E-6	3	<0.050	<0.050	<0.050	<0.050	<0.050
	128.	zinc				0.100	70.030	(0.030	0.100
			E-8	2	<0.050	0.100			0.200
			E-9	2	<0.050	0.200	0.200	0.100	0.167
			E-10)	<0.050			<0.050	<0.050
			E-11	3	<0.050	<0.050	<0.050	(0.0)0	\0.030

Table V-83 (Continued)

Pallana A	Stream	Sample	C			ions (mg/l)	Average
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
Nonconventional							
alkalinity	E-6 E-8	3 2 2 3	ND ND	26 240.0	28	76	43 240.0
	E-9	$\tilde{2}$	ND	12.0			12.0
	E-10	3	ND	ND	ND	ND	
	E-11	3	ND	ND	ND	ND	
aluminum	E-6	3	<0.090	<0.145	<0.195	<0.195	<0.178
	E-8	3 2 2 3	<0.090	4.7			4.7
	E-9	2	<0.090	7.6			7.6
	E-10	3	<0.090	20	10	6	12
	E-11	3	<0.090	0.100	<0.090	<0.090	<0.093
calcium	E-6	3	68	320.0	370.0	320.0	336.7
	E-8	2 2 3	68	28.0			28.0
	E-9	2	68	43.0			43.0
	E-10	3	68	50 51	48	47	48
	E-11	3	68	51	51	50	51
chemical oxygen demand (COD)	E-6	3	<0.005	6٤	17	22	36
	E-8	2	<0.005	9,890			9,890
	E-9	2 2 3	<0.005	828			828
	E-10	3	<0.005	270	346	395	337
	E-11	3	<0.005	84	103	93	93
magnesium	E-6	3	3.8	22.0	23.0	18.0	21.0
	E-8	2 2	3.8	9.7			9.7
	E-9	2	3.8	14.0			14.0
	E-10	3	3.8	5.8	6.1	4.9	5.6
	E-11	3	3.8	5.2	5.4	5.4	5.3
phenols (total; by 4-AAP method)	E-6	1		0.008	0.007	0.010	0.008
	E~8	2		0.217			0.217
	E-9	2		0.213			0.213
	E-10	1		0.009		0.006	0.008
	E-11	1		0.011		0.008	0.010

1/

Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrat Day 2	ions (mg/l Day 3) Average
sulfate	E - 6 E - 8 E - 9	3 2 2	ND ND ND	790 <0.025	848	788	809 <0.025
	E-10 E-11	3	ND ND	ND ND	ND ND	N D N D	
total organic carbon (TOC)	E-6 E-8 E-9 E-10 E-11	3 2 2 3 3	0.001 0.001 0.001 0.001 0.001	22 3,130 262 166 27	8 180 34	7 152 27	12 3,130 262 166 29
Conventional							
oil and grease	E-6 E-8 E-9 E-10 E-11	1 1 1 1		9 3,320 42 189 35	20 227 31	18	16 3,320 42 208 27
suspended solids	E-6 E-8 E-9 E-10 E-11	3 2 2 3 3	<0.001 <0.001 <0.001 <0.001 <0.001	10 137.0 12 121 24	1 140 24	1 89 24	137.0 12 117 24
pH (standard units)	E - 6 E - 8 E - 9	1 1 1		6.7 5.5 4.8	7,5	7.0	
	E-10 E-11	1 1			6.2 7.0	6.5 7.3	

⁽a), (b), (c) Reported together.

^aRaw waste is from nonscope operations.

Table V-84

			Stream	Sample				ions (mg/l)		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average	
	Toxic Po	llutants								
	4. ber	nzene	H-3	1	0.023	*	ND	*	*	
	23. ch	loroform	H-3	1	0.066	0.023	0.028	0.017	0.023	
	44. met	thylene chloride	H-3	1	1.100	0.205	0.031	0.034	0.090	
	66. bis	s(2-ethylhexyl) phthalate	H-3	3	ND	*	ND	ND	*	
	68. di	-n-butyl phthalate	H-3	3	*	0.011	0.022	*	0.011	
	85. te	trachloroethylene	H-3	1	*	*	*.	*	*	
	86. to	luene	H-3	1	*	*	ND	ND	*	
	93. 4,	4'-DDE	H-3	3	ND	**			**	
	107. PCI	B-1242 (a) B-1254 (a) -1221 (a)	н-3	3	**	**			**	
479	110. PCI	B-1232 (b) B-1248 (b) B-1260 (b) B-1016 (b)	н-3	3	**	**			**	
	121. cya	anide	H-3	1		0.025	0.005	0.011	0.014	
	122. lea	ad	H-3	3	<0.02	0.07	0.05	0.03	0.05	
	123. men	rcury	H-3	3	0.0004	0.0003	0.0003	0.0003	0.0003	
	128. zir	ne	H-3	3	0.1	0.2	0.2	0.1	0.2	
	Nonconver	ntional								
	chemical	oxygen demand (COD)	H-3	3		222	179	96	166	
	phenols	(total, by 4-AAP method)	H-3	1		0.014	0.01	0.017	0.01	
	total org	ganie earbon (TOC)	H-3	3		47	44	25	39	

	Stream	Sample			Concentrations (mg/l)		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	H - 3 H - 7ª H - 8ª	1 1 1		131 69 154	59	168	119 69 154
suspended solids	H-3	3		54	72	38	55
pH (standard units)	H - 3 H - 7 H - 8	1 1 1		7.4 7.3 7.3	7		

⁽a), (b) Reported together.

aoil samples analyzed for oil and grease only.

Table V-85

SAMPLING DATA
PLANT J

TREATED WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ions (mg/l)	Average
	Toxic	Pollutants							
	44.	methylene chloride	J-6	1	ND	*	0.021		0.011
	58.	4-nitrophenol	J-6	1	ND	0.045	ND	0.018	0.032
	66.	bis(2-ethylhexyl) phthalate	J-6	1	ND	0.140	0.160	0.024	0.108
	68.	di-n-butyl phthalate	J-6	1	0.041	0.031	0.018	ND	0.025
	69.	di-n-octyl phthalate	J-6	1	ND	0.019	0.016	ND	0.018
	78. 81.	anthracene (a) phenanthrene (a)	J-6	1	ND	*	ND	ND	*
	87.	trichloroethylene	J-6	1	ND	*	*		*
	115.	arsenic	J-6	1	<0.010	<0.010	<0.010	0.010	<0.010
481	118.	cadmium	J-6	1	<0.010	0.180	0.190	0.190	0.187
<u></u>	119.	chromium	J-6	1	<0.030	870	735	770	792
	120.	copper	J-6	1	0.030	2,000	2,530	2,190	2,240
	121.	cyanide	J-6	1	ND	0.018	0.034	0.023	0.025
	122.	lead	J-6	1	<0.050	0.650	1.200	1.200	1.017
	123.	mercury	J-6	1	<0.0004	<0.0002	0.0002	<0.0002	<0.0002
	124.	nickel	J-6	1	<0.020	2.100	2.500	2.600	2.400
	128.	zinc	J-6	1	0.040	1,950	1,200	2,200	1,780
	Nonco	nventional							
	chemi	cal oxygen demand (COD)	J-6	1	5	297	289	255	280
	pheno	ls (total, v 4-AAP method)	J-6	1		0.001	0.004	0.002	0.002
	tər il	organic c on (EOC)	J-6	1	<1	77	66	79	74

Table V-85 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
Conventional								
150. oil and grease	J-6	1		18	15	13	15	
152. suspended solids	J-6	1	14	354	1,070	704	709	
159. pH (standard units)	J-6	1		3.6	3.5	4.1		

(a) Reported together.

Table V-86 SAMPLING DATA PLANT K TREATED WASTEWATER

		Pollutant	Stream Code	Sample Type	Source	Day 1	Concentrati Day 2	ions (mg/l) Day 3	Average
	Toxic	Pollutants					-		
	4.	benzene	K - 4 K - 5	1 1	0.019 0.029	* *	0.051 0.015	* *	0.017 0.005
	23.	chloroform	K-4 K-5	1 1	0.045 0.045	0.018 0.024	0.037 0.021	0.043 0.035	0.033 0.027
	44.	methylene chloride	K-4 K-5	1 1	1.300 1.300	0.650 0.970	0.860 1.800	1.400 0.360	0.970 1.040
	48.	dichlorobromomethane	K-4 K-5	1 1	0.016 0.016	0.011 *	* *	* *	0.004 *
	55.	naphthalene	K-4 K-5	3 3,2,2		0.016 0.015	*		0.016 0.008
483	65.	phenol	K-4 K-5	3 3,2,2		0.013 *	*		0.013
ω	66.	bis(2-ethylhexyl) phthalate	K-4 K-5	3 3,2,2		* 0.035	* *	0.041 *	0.014 0.012
	71.	dimethyl phthalate	K-4 K-5	3 3,2,2		* *	0.011	* *	* 0.004
	119.	chromium	K-4 K-5	3 2	<0.03 <0.03	0.920	0.120	1.400 0.050	1.160 0.085
	120.	copper	K-4 K-5	3 2	<0.02 <0.02	0.120	<0.020	0.090 <0.020	0.105 <0.020
	124.	nickel	K-4 K-5	3 2	<0.020 <0.020	<0.020	0.020	<0.020 <0.020	<0.020 <0.020
	128.	zinc	K - 4 K - 5	3 2	<0.02 <0.02	0.110	<0.020	0.060 0.020	0.085 <0.020

5.11	Stream	Sample	Sauraa	Concentrations (mg/l) Le Day 1 Day 2 Day 3 Av			
Pollutant	Code	Type	Source	Day 1	Day Z	Day J	Average
Nonconventional							
alkalinity	K-4 K-5	3 2	0.096 0.096	118.0 120.0	107.0	76.0 81.0	97.0 102.7
aluminum	K - 4 K - 5	3 2	<0.10 <0.10	34.0 13.0	12.0	57.0 15.0	45.5 13.3
calcium	K - 4 K - 5	3 2		22.0	24.0	29.0	25.0
chemical oxygen demand (COD)	K-4 K-5	3 2	5 5	52	22	61 22	57 22
dissolved solids	K-4 K-5	3 2	0.164 0.164	674.0 760.0	737.0	742.0 677.0	708.0 724.7
magnesium	K - 4 K - 5	3 2		6.00	6.20	6.60	6.27
phenols (total, by 4-AAP method)	K - 4 K - 5	1		0.004 0.012	0.006 0.016	0.008 0.011	0.006 0.013
sulfate	K - 4 K - 5	3 2	<0.010 <0.010	15.0 70.0	64.0	21.0 52.0	18.0 62.0
total organic carbon (TOC)	K-4 K-5	3 2	6 6	24 11	13	20 9	22 11
Conventional							
oil and grease	K - 4 K - 5	1 1	3 3	8 18	8 7	3 8	6 11
suspended solids	K - 4 K - 5	3 2	13 13	150	11	181 10	166 11
pH (standard units)	K-4 K-5	1 1		8.6 9.3	5.7 7.0	6.7 7.3	

Table V-87

SAMPLING DATA
PLANT L

TREATED WASTEWATER

Pollutant	Stream Code	Sample Type	Source	Day T	Concentrat: Day 2	ions (mg/l) Day 3	Average
Toxic Pollutants							
44. methylene chloride	18	1	ИИ	0.090	ИD	0.090	0.090
55. naphthalene	L-7a L-8	1		ND *	0.050	*	0.017
66. bis(2-ethylhexyl) phthalate	L-7 ^a L-8	1	ND ND	<5.000 *	ทบ	ND	<5.000 *
68. di-n-butyl phthalate	L-7 ^a L-8	1		<5.000 ND	ND	ND	<5.000
70. diethyl phthalate	L-7 ^a L-8	1		<5.000 ND	ND	ND	<5.000
71. dimethyl phthalate	L-7 ^a L-8	1 1		<5.000 ND	ND	ND	<5.000
119. chromium	L-8	ţ	<0.001	0.110	0.090	0.080	0.093
123. mercury	L-8	1	0.0073	0.0022	0.014	<0.0001	<0.005
Nonconventional							
aluminum	L-8	1	<0.5	0.77	5.8	2.4	3.0
calcium	L-8	1	9.0	120	221	104	148
chemical oxygen demand (COD)	L-8	1	<5	37	28	24	30
magnesium	L-8	1	2.24	8.23	0.34	4.56	4.38
phenols (total; by 4-AAP method)	L-8	1		0.017	0.004	0.005	0.009
total organic carbon (TOC)	L-8	1	2.8	6.1	12	11	10
Conventional							
oil and grease	L-8	1		<5	<5	276	<95
suspended solids	L-8	1	<2	<2	< 2	11	< 5
pH (standard units)	L-8	1		7.9	11.4	10.1	

^aStream L-7 was not analyzed for volatile organics and metals. Sludge sample.

Table V-88

		Stream	Sample			Concentrati		
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
Toxic	Pollutants							
44.	methylene chloride	P-7	1	*	0.310	0.070	0.260	0.213
55.	naphthalene	P-7	1	ND	0.380	0.230	0.020	0.210
57.	2-nitrophenol	P-7 P-8	1 1	ND ND	0.100 ND	0.150	0.020	0.090
62.	N-nitrosodiphenylamine	P-7 P-8	1	ND ND	0.110 ND	0.030	ND	0.070
65.	phenol	P-7 P-8	1 1	ND ND	0.020 ND	0.020	0.090	0.043
66.	bis(2-ethylhexyl) phthalate	P-7 P-8	1 1	*	0.100 45.500	ND	ND	0.100 45.500
78. 81.	anthracene (a) phenanthrene (a)	P-7 P-8	1 1	ND ND	* <41.000	ND	ND	* <41.000
85.	tetrachloroethylene	P - 7 P - 8	1	ND ND	* ND	0.230	0.070	0.103
86.	toluene	P-7 P-8	1	ND ND	0.020 ND	0.030	*	0.020
115.	arsenic	P - 7	1	0.0011	0.01	0.015	0.0086	0.01
118.	cadmium	P-7	1	<0.0005	0.003	<0.0041	<0.0005	<0.003
119.	chromium	P - 7	1	0.002	0.008	0.007	0.009	0.008
120.	copper	P - 7	1	0.009	0.06	0.07	0.066	0.07
121.	cyanide	P-7	1		0.32	1.4	0.09	0.6
122.	lead	P-7	t	0.002	0.21	0.4	0.071	0.2
124.	nickel	P-7	1	<0.001	0.082	0.105	0.018	0.068
128.	zinc	P-7	1	<0.01	0.42	0.83	0.24	0.50

Table V-88 (Continued)

	Stream	Sample		Concentrations (mg/l)				
Pollutant	_Code	Type	Source	Day 1	Day 2	Day 3	Average	
Nonconventional								
aluminum	P-7	1	<0.5	4.1	1.035	1.3	2.1	
calcium	P-7	1	96	27	39	22	29	
chemical oxygen demand (COD)	€ P-7	1	<5	3,200	13,100	1,910	6,070	
magnesium	P-7	1	26	11	16	11	13	
phenols (total; by 4-AAP method)	P-7	1		0.323	0.234	0.313	0.290	
total organic carbon (TOC)	P - 7	1	2	950	1,790	881	1,207	
Conventional								
oil and grease	P-7	1		27	52	18	32	
suspended solids	P-7	1	5	153	187	63	134	

⁽a) Reported together.

Table V-89

					Sample		Concentrations (mg/l)			
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
	Toxic	Pollutants								
	44.	methylene chloride	()-4	1	*	0.030	*	*	0.010	
	66.	bis(2-ethylhexyl) phthalate	Q-4 Q-5 ^a	3 6	* *	* 0.030	*	*	* 0.030	
	115.	arsenic	Q-4 Q-5	3 1	0.0028 0.0028	0.13 0.018	0.088	0.69	0.30 0.018	
	117.	beryllium	Q-4 Q-5	3	<0.0005 <0.0005	0.018 <0.0005	0.0067	0.019	0.015 <0.0005	
	118.	cadmium	Q-4 Q-5	3 1	<0.0005 <0.0005	0.0029 0.0008	0.0017	0.0022	0.0023 0.0008	
	119.	chromium	Q-4 Q-5	3 1	0.004 0.004	2.000 0.34	1.2	2.9	2.0 0.34	
488	120.	copper	Q-4 Q-5	3 1	0.026 0.026	17	10	16	14	
	122.	lead	Q-4 Q-5	3 1	0.006 0.006	8 1.8	5.2	9.5	8 1.8	
	123.	mercury	Q-4 Q-5	3 1	<0.0001 <0.0001	0.002 0.0006	0.0015	<0.0004	<0.001 0.0006	
	124.	nickel	Q-4 Q-5	3 1	<0.001 <0.001	0.054 <0.001	0.013	0.04	0.04 <0.001	
	128.	zinc	Q-4 Q-5	3	<0.01 <0.01	43 9.8	24	40	36 9.8	
	Nonco	onventional								
	alkal	linity	Q-4	3		320	77	78	158	
	alumi	inum	Q-4 Q-5	3	<0.5 <0.5	450 72	240	390	360 72	

Table V-89 (Continued)

	Stream	Sample				ions (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
calcium	Q-4 Q-5	3 1	61 61	76 60	70	94	80 60
chemical oxygen demand (COD)	Q-4	3		55	16	25	32
dissolved solids	Q-4	3		1,050	570	650	760
magnesium	Q-4 Q-5	3 1	12.2 12.2	21.9 15.9	18	27.6	23 15.9
sulfate	Q-4	3		140	68	84	97
phenols (total; by 4-AAP method)	Q-4	1		0.024	0.004	0.009	0.012
total organic carbons (TOC)	Q-4	3		1.4	0.74	1.7	1.3
Conventional							
oil and grease	Q-4	1		8			8
suspended solids	Q-4	3		2,460	1,010	1,360	1,610

^aSludge sample.

Table V-90

		Stream Sample			Concentrations (mg/l)				
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average	
Toxic	Pollutants								
1.	acenaphthene	U-3 U-8 U-9 U-10 ^b	1 3 1	ND ND ND	ND ND 0.060 ND	ND ND 0.140	ND ND 0.140	0.113	
2.	acrolein	U-3 U-8 U-9	1 3 1	ND ND	ND ND 0.040	ND ND 0.020	ND ND 0.050	0.037	
5.	benzidine	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	ND ND ND	ND ON	ND ND 0.020	0.020	
11.	1,1,1-trichloroethane	U-3 U-8 U-9	1 1 1	* *	ND * 0.160	ND ND 0.120	ND * 0.140	* 0.140	
13.	1,1-dichloroethane	U-3 U-8 U-9	1 1 1	* * *	ND ND 0.020	ND * 0.030	ND * 0.030	* 0.027	
44.	methylene chloride	U-3 U-8 U-9	1 1	* *	* * *	* * *	0.050 * *	0.017 * *	
55.	naphthalene	U-3 U-8 U-9 U-10	1 3 1	ND ND ND	ND 0.070 0.050 ND	ND 0.200 0.030	ND 0.120 0.070	0.130 0.050	
65.	phenol	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	ND ND ND ND	ND 0.050 ND	N D ND ND	0.050	
66.	bis(2-ethylhexyl) phthalate	U-3 U-8 U-9 U-10	1 3 1	* * *	* 0.140 ND 300.000	0.020 ND 0.080	* NU 0.080	0.007 0.140 0.080 300.000	

Table V-90 (Continued)

SAMPLING DATA PLANT U TREATED WASTEWATER

Concentrations (mg/l)

		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	68.	di-n-butyl phthalate	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	0.030 0.180 0.020 90.000	* 0.090 0.080	* 0.040 0.150	0.010 0.103 0.083 90.000
	69.	di-n-octyl phthalate	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	ND ND ND ND	ND ND 0.020	ND ND 0.030	0.025
	70.	diethyl phthalate	U~3 U~8 U~9 U~10	1 3 1	ND ND ND ND	0.020 0.120 ND 53.000	* ND 0.030	* 0.070 ND	0.007 0.095 0.030 53.000
	78. 81.	anthracene (a) phenanthrene (a)	U-3 U-8 U-9 U-10	1 3 1 1	ND ND ND ND	ND <0.180 <0.120 <110.000	* <0.230 <0.140	ND <0.110 <0.170	* <0.173 <0.143 <110.000
491	80.	fluorene	U-3 U-8 U-9 U-10	1 3 1 1	ND ND ND ND	ND 0.030 ND ND	ND ND 0.020	ND ND	0.030 0.020
	84.	pvrene	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	ND * * ND	ND ND *	* 0.020 ND	* 0.010 *
	85.	tetrachloroethylene	U-3 U-8 U-9	1 1 1	ND ND ND	NI) * *	ND 0.020 *	ND * *	0.007 *
	86.	toluene	U-8 U-9	1 1 1	ND ND ND	ND 0.020 0.040	ND 0.050 0.040	ND 0.050 0.050	0.040 0.043
1	118.	cadmium	U-3 U-8 U-9 U-10	1 3 1	0.002 0.002 0.002 0.002	0.002 0.029 0.003 0.440	0.002 0.030 0.011	<0.001 0.022 0.012	<0.002 0.027 0.009 0.440

Sample

Stream

			Stream	Sample			Concentrat		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
	119.	chromium	U-3 U-8 U-9 U-10	1 3 1	<0.001 <0.001 <0.001 <0.001	<0.001 0.042 0.002 8.6	<0.001 0.169 0.005	<0.001 0.064 0.005	<0.001 0.092 0.004 8.6
	120.	copper	U-3 U-8 U-9 U-10	1 3 1 1	0.013 0.013 0.013 0.013	0.011 0.680 0.340 13.00	0.011 1.160 0.430	0.014 0.640 0.420	0.012 0.827 0.397 13.00
	122.	lead	U-3 U-8 U-9 U-10	1 3 1	0.010 0.010 0.010 0.010	0.006 7.090 4.300 4.900	0.006 20.600 8.400	0.008 15.200 7.800	0.007 14.297 6.833 4.900
	123.	mercury	U - 3 U - 8 U - 9 U - 1 0	1 3 1 1	0.005 0.005 0.005 0.005	0.003 0.002 0.003 0.006	0.003 0.005 0.003	0.003 0.002 0.002	0.003 0.003 0.003 0.006
492	124.	nickel	U-3 U-8 U-9 U-10	1 3 1 1	0.016 0.016 0.016 0.016	0.013 0.088 0.067 3.520	0.005 0.089 0.032	<0.001 0.049 0.047	<0.006 0.075 0.049 3.520
	128.	zinc	U-3 U-8 U-9 U-10	1 3 1	ND ND ND ND	0.230 0.510 11.000 12.00	0.240 0.800 0.680	0.300 0.650 0.540	0.257 0.653 4.073 12.00
	Nonco	nventional							
	alkal	inity	U-3	1		59.00	66.00	82.00	69.00
	alumi	num	U-3 U-8 U-9 U-10	1 3 1 4		<0.100 23.00 2.000 1,322	<0.100 25.00 2.000	<0.100 13.00 2.000	<pre></pre>
	calci	um	U - 3 U - 8 U - 9 U - 1 O	1 3 1 4		143.0 59.60 92.20 417.0	148.0 89.40 89.00	138.0 98.00 88.80	143.0 82.33 90.00 417.0

493

Table V-90 (Continued)

	Stream	Sample)		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
chemical oxygen demand (COD)	U-3 U-8 U-9 U-10	1 3 1 4		11 4,860 1,210 880,000	18 2,940 981	108 1,700 4,070	46 3,170 2,087 880,000
dissolved solids	U-3	1		830.0	830.0	840.0	833.3
magnesium	U-3 U-8 U-9 U-10	1 3 1 4		16.40 12.70 13.30 47.00	13.30 12.70 11.50	18.00 11.80 12.70	15.90 12.40 12.50 47.00
sulfate	U-3	1		360	350	400	370
phenols (total; by 4-AAP method)	U-3 U-8 U-10	1 1 4		0.010 0.043 2.7	0.021 0.135	0.020 0.081	0.017 0.086
total organic carbon (TOC)	U-3 U-8 U-9 U-10	1 3 1 4		2.8 470 228 7,200	3.3 470 265	5.6 244 129	3.9 395 207 7,200
Conventional							
oil and grease	U-3 U-8 U-9 U-10	1 1 1		5 4,000 1,340 938,000	25 46,700 1,150	4,490 3,120 1,250	1,507 17,940 1,250 938,000
suspended solids	U-3 U-8 U-9 U-10	1 3 1 4		3.8 1,369 490 2,750	11 6,050 498	139 4,110 392	51 3,843 460 2,750
pH (standard units)	U-3	1			7.0		

⁽a) Reported together.

b Oil sample.

Table V-91

			Stream	Sample			Concentrat		
		Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Average
	Гохіс	Pollutants							
	11.	1,1,1-trichloroethane	V-8	2		ND	*	*	*
	44.	methylene chloride	V-8	2		0.031	*	*	0.015
	65.	phenol	V-8	1		1.600	0.920	0.540	1.020
	66.	bis(2-ethylhexyl) phthalate	V-8	2		*	*	*	*
	68.	di-n-butyl phthalate	V-8	2		ND	*	ND	*
	70.	diethyl phthalate	V-8	2		ND	*	ND	*
	78. 81.	anthracene (a) phenanthrene (a)	V-8	2		*	ND	ND	*
	86.	toluene	8-V	2		ND	*	*	*
494	115.	arsenic	V-8	2		<0.005	0.085	<0.005	<0.032
-	118.	cadmium	V-8	2		<0.001	0.002	0.001	<0.001
	119.	chromium	V-8	2		0.005	0.004	0.006	0.005
	120.	copper	V-8	2		0.027	0.027	0.07	0.04
	122.	lead	V-8	2		<0.001	0.004	0.003	<0.003
	124.	nickel	V-8	2		0.004	0.006	0.005	0.005
	128.	zinc	V-8	2		0.06	0.08	0.35	0.16
į	Nonco	nventional							
	alkal	inity	V-8	2		270	250	250	260
,	alumi	num	V-8	2		6.1	3.8	2.2	4.0
	calci	um	V-8	2		68	67	81	72
	chemi	cal oxygen demand (COD)	V-8	2		120	44	150	105

Table V-91 (Continued)

	Stream	Sample				ions $(mg/1)$	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Average
dissolved solids	V-8	2		830	950	660	810
magnesium	V-8	2		53	50	62	55
phenols (total; by 4-AAP method)	V-8	2		2.400	1.800	0.440	1.547
sulfate	V-8	2		210	220	91	174
total organic carbon (TOC)	V-8	2		42	42	63	49
Conventional							
oil and grease	V-8	1		15	11	15	14
suspended solids	V-8	2		36	36	33	35

⁽a) Reported together.

-	P	>
•	۷	7
•	3	١

Pollu	stant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
Toxic	Pollutants							
114.	antimony	AA - 6 AA - 7	3 3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
115.	arsenic	AA - 6 AA - 7	3 3	<0.010 <0.010	0.010 <0.010	<0.060 <0.010	<0.010 <0.010	<0.040 <0.010
117.	beryllium	AA-6 AA-7	3	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
118.	cadmium	AA - 6 AA - 7	3 3	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020
119.	chromium	AA - 6 AA - 7	3	<0.020 <0.020	<0.020 <0.020	0.080 <0.020	0.040"2" <0.020	<0.047 <0.020
120.	copper	AA - 6 AA - 7	3	<0.050 <0.050	0.100 0.050	4.15 0.050	0.350"2" <0.050	1.53 <0.050
121.	cyanide (total)	AA-6 AA-7	3 3	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
122.	lead	AA-6 AA-7	3 3	<0.050 <0.050	<0.050 <0.050	0.300 <0.050	0.200"2" <0.050	<0.183 <0.050
123.	mercury	AA - 6 AA - 7	3 3	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	0.0006 <0.0002	<0.0003 <0.0002
124.	nickel	AA-6 AA-7	3 3	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
125.	selenium	AA - 6 AA - 7	3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
126.	silver	AA - 6 AA - 7	3 3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
127.	thallium	AA - 6 AA - 7	3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
128.	zinc	AA - 6 AA - 7	3 3	<0.020 <0.020	0.360 0.80	2.38 0.140	4.78"2" 0.100	2.51 0.35

Table V-92 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
Nonconventional							
acidity	AA - 6 AA - 7	3 3	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
alkalinity	AA ~ 6 AA ~ 7	3	270 270	235 170	570 610	270 240	358 340
aluminum	AA - 6 AA - 7	3 3	<0.100 <0.100	0.700 4.4	61.0 2.1	13.0"2"	25.0 2.5
ammonia nitrogen	AA - 6 AA - 7	3 3	0.10 0.10	0.48 0.89	1.2 0.05	0.49 0.04	0.72 0.33
barium	AA - 6 AA - 7	3 3	0.250 0.250	0.200 0.100	0.250 0.150	0.400 0.150	0.293 0.130
boron	AA - 6 AA - 7	3 3	<0.100 <0.100	<0.100 <0.100	0.100 0.100	0.100 <0.100	<0.100 <0.100
calcium	AA - 6 AA - 7	3 3	117 117	109 165.0	128.0 117.0	130.0 113.0	122.0 132.0
chemical oxygen demand (COD)	AA - 6 AA - 7	3 3	23 23	220 113	484 78	512 93	405 95
chloride	AA-6 AA-7	3 3	24 24	100 110	92 130	115 120	102 120
cobalt	AA -6 AA - 7	3 3	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
dissolved solids	AA - 6 AA - 7	3	530 530	3,040 656	620 1,100	570 720	1,410 825
fluoride	AA - 6 AA - 7	3 3	0.17 0.17	0.88 1.5	0.2 1.0	0.12 0.07	0.4 0.9
iron	AA - 6 AA - 7	3	2.85 2.85	1.55 0.200	4.80 0.550	7.10"2" 0.100	4.48 0.280
magnesium	AA - 6 AA - 7	3 3	33.9 33.9	31.3 29.2	49.1 31.1	38.2 33.0	39.5 31.1

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
manganese	AA - 6	3	<5.0	0.100	0.450	0.300"2"	0.300
	AA - 7	3	<5.0	0.050	0.100	0.050	0.07
molybdenum	AA - 6	3	<0.050	<0.050	<0.050	<0.050	<0.050
	AA - 7	3	<0.050	<0.050	<0.050	<0.050	<0.050
phenols (total; by 4-AAP method)	AA - 6	3	<0.005	0.24	0.25	0.018	0.17
	AA - 7	3	<0.005	16	1.72	0.093	5.94
phosphate	AA-6	3	<3	<3	<3	<3	<3
	AA-7	3	<3	<3	<3	<3	<3
sodium	AA - 6	3	4.8	40.7	89.0	39.7	56.5
	AA - 7	3	4.8	62.6	194.0	68.9	43.8
sulfate	AA - 6 AA - 7	3 3	115 115	90 300	90 490	99 150	93 313
tín	AA - 6	3	<0.050	<0.050	<0.050	<0.050	<0.050
	AA - 7	3	<0.050	<0.050	<0.050	<0.050	<0.050
titanium	AA - 6	3	<0.050	<0.050	0.100	0.100	<0.080
	AA - 7	3	<0.050	<0.050	<0.050	<0.050	<0.050
total organic carbon (TOC)	AA - 6	3	<1	61	100	88	83
	AA - 7	3	<1	36	21	18	25
total solids (TS)	AA - 6	3	590	703	1,530	1,260	1,164
	AA - 7	3	590	878	1,200	760	946
vanadium	AA - 6 AA - 7	3	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
yttrium	AA - 6	3	<0.050	<0.050	<0.050	<0.050	<0.050
	AA - 7	3	<0.050	<0.050	<0.050	<0.050	<0.050

Table V-92 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	AA - 6 AA - 7	3 3	<0.5 <0.5	41 8.4	25 1.4	160 15	75 8.3
pH (standard units)	AA - 6 AA - 7	3	7.44 7.44	7.02 6.92	6.38 6.48	7.02 7.19	
suspended solids	AA - 6 AA - 7	3 3	1 7 1 7	2,060 95	820 32	655 9	1,178 45

[&]quot;2" Average of duplicates.

Table V-93

	Pollu	tant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	114.	antimony	BB-11 BB-12	9 9	<0.025 <0.025	<0.010 <0.020†	<0.010 <0.020t	<0.010 0.080	<0.010 <0.04†
	115.	arsenic	BB-11 BB-12	9 9	<0.010 <0.010	0.060 <0.020†	<0.090"2" <0.020t	0.040 Chem. Inter.	<0.060 <0.020†
	117.	beryllium	BB-11 BB-12	9 9	<0.015 <0.015	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
	118.	cadmium	BB-11 BB-12	9 9	<0.060 <0.060	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020
	119.	chromium	BB-11 BB-12	9 9	<0.060 <0.060	0.020 <0.020	<0.020 <0.020	0.040 <0.020	<0.03 <0.020
	120.	copper	BB-11 BB-12	9 9	<0.150 <0.150	0.150 <0.050	0.200 <0.050	0.250 <0.050	0.200 <0.050
	121.	cyanide (total)	BB-11 BB-12	9 9	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
2	122.	lead	BB-11 BB-12	9 9	<0.150 <0.150	0.100 <0.050	0.200 <0.050	0.250 <0.050	0.180 <0.050
	123.	mercury	BB-11 BB-12	9 9	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	0.0006 <0.0002	<0.0003 <0.0002
	124.	níckel	BB-11 BB-12	9 9	<0.150 <0.150	0.400 <0.050	0.100 <0.050	0.850 <0.050	0.450 <0.050
	125.	selenium	BB-11 BB-12	9 9	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.050t	<0.010 <0.020†
	126.	silver	BB-11 BB-12	9	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
	127.	thallium	BB-11 BB-12	9 9	<0.001 <0.001	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
	128.	zinc	BB-11 BB-12	9 9	<0.060 <0.060	0.060 0.040	0.080 0.040	0.140 <0.020	0.090 0.030

Table V-93 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
Nonconventional							
acidity	BB-11	9	<1	<1	<1	<1	<1
	BB-12	9	<1	<1	<1	<1	<1
alkalinity	BB-11	9	160	77	<1	1,960	<679
	BB-12	9	160	150	150	300	200
aluminum	BB-11	9	0.500	96.500	146	132	125
	BB-12	9	0.500	1.800	3.000	6.6	3.800
ammonia nitrogen	BB-11	9	0.05	0.38	0.14	<0.05	<0.19
	BB-12	9	0.05	0.18	0.11	0.03	0.11
barium	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050
boron	BB-11	9	0.800	2.100	1.800	2.200	2.000
	BB-12	9	0.800	2.100	1.800	1.400	1.800
calcium	BB-11	9	4.800	5.000	4.900	5.300	5.100
	BB-12	9	4.800	3.900	3.300	1.300	2.800
chemical oxygen demand (COD)	BB-11	9	9	28	81	153	87
	BB-12	9	9	6	82	85	58
chloride	BB-11	9	17	18	21	41	27
	BB-12	9	17	28	25	46	33
cobalt	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050
dissolved solids	BB-11	9	310	3,280	1,400	3,030	2,570
	BB-12	9	310	1,482	1,750	5,020	2,751
fluoride	BB-11	9	<0.05	0.33	0.32	<0.05	<0.23
	BB-12	9	<0.05	<0.05	0.21	0.66	<0.31
iron	BB-11	9	<0.150	3.200	3.800	6.800	4.600
	BB-12	9	<0.150	0.050	0.050	0.100	0.070
magnesium	BB-11	9	0.500	1.300	1.200	1.900	1.200
	BB-12	9	0.500	1.400	1.100	0.500	1.000

Table V-93 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
manganese	BB-11 BB-12	9	<0.100 <0.100	<0.050 <0.050	<0.050 <0.050	0.050 <0.050	<0.050 <0.050
molybdenum	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050
phenols (total; by 4-AAP method)	BB-11	9	0.026	<0.005	<0.005	0.032	<0.014
	BB-12	9	0.026	<0.005	0.017	0.005	<0.009
phosphate	BB - 11	9	21	<3	<3	75	<27
	BB - 12	9	21	<3	33	<3	<13
sodium	BB-11	9	76.7	272.000	393.000	1,020	562.000
	BB-12	9	76.7	642.000	532.000	1,560	911.000
sulfate	8B-11	9	90	450	750	750	650
	BB-12	9	90	900	260	2,600	1,253
tin	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050†	<0.050†
titanium	BB-11	9	<0.150	<0.050	<0.050	0,100	<0.070
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050
total organic carbon (TOC)	BB-11	9	<1	15	13	9	12
	BB-12	9	<1	19	5	11	12
total solids (TS)	BB ~ 11	9	267	1.310	2,000	3, 261	2,190
	BB ~ 12	9	267	2,030	1,800	5, 040	2,957
vanadium	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050
yttrium	BB-11	9	<0.150	<0.050	<0.050	<0.050	<0.050
	BB-12	9	<0.150	<0.050	<0.050	<0.050	<0.050

Table V-93 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	BB-11 BB-12	9 9	<1 <1	<1 <1	1.5	<1 <1	<1.2 <1
pH (standard units)	BB-11 BB-12	9 9	7.68 7.68	6.12 6.72	6.26 7.03	9.40 8.49	
suspended solids	BB-11 BB-12	9 9	8 8	383 9	590 24	37 <1	337 <11

[†]Detection limit raised due to interference.

[&]quot;2" Average of duplicates.

Table V-94

Po	ollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
To	oxic Pollutants							
1	14. antimony	DD-13 D0-14	9 1	< .002 < .002	0.002 0.003	<0.002	0.004	<0.003 0.003
		DD-15 DD-16	9 9	< .002 < .002	0.006 <0.002	0.002 <0.002	0.004 <0.002	0.004 <0.002
1 1	15. arsenic	DD-13 DD-14	9 1	<0.001 <0.001	0.004 .012	0.001	.154	0.053 .012
		DD-15 DD-16	9 9	<0.001 <0.001	0.006 0.001	0.005 0.010	.418 1.320	0.143 0.444
1	17. beryllium	DD-13 DD-14	9 1	<0.010 <0.010	<0.010 <0.020	<0.010	<0.010	<0.010 <0.020
		DD-15 DD-16	9 9	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
	18. cadmium	DD-13 DD-14	9 1	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010	<0.010 <0.010
504		DD-15 DD-16	9 9	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
1	19. chromium	DD-13 DD-14	9 1	<0.020 <0.020	<0.020 <0.020	<0.020	<0.020	<0.020 <0.020
		DD-15 DD-16	9 9	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020
1:	20. copper	DD-13 DD-14	9 1	.013	<0.010 .331	<0.010	<0.010	<0.010 .331
		DD-15 DD-16	9 9	.013	.080 <0.010	<0.010 <0.010	.074 <0.010	<0.055 <0.010
1:	21. cyanide (total)	DD-13 DD-14	9 1	<0.02 <0.02	<0.02 0.034	<0.02	<0.02	<0.02 0.034
		DD-15 DD-16	9 9	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
12	22. lead	DD-13 DD-14	9 1	<0.100 <0.100	<0.100 <0.100	<0.100	<0.100	<0.100 <0.100
		DD-15 DD-16	9 9	<0.100 <0.100	<0.100 <0.100	<0.100 <0.100	<0.100 <0.100	<0.100 <0.100

Table V-94 (Continued)

SAMPLING DATA PLANT DD TREATED WASTEWATER

	Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	123. mercury	DD-13 DD-14	9	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005	<0.005 <0.005
		DD-15	9	<0.005	<0.005	<0.005	<0.005	<0.005
		DD-16	9	<0.005	<0.005	<0.005	<0.005	<0.005
	124. nickel	DD-13	9	<0.050	<0.020	. 529	<0.020	<0.190
		DD-14	1	<0.050	<0.020			<0.020
		DD-15	9	<0.050	<0.020	<0.020	<0.020	<0.020
		DD-16	9	<0.050	<0.020	<0.020	<0.020	<0.020
	125. selenium	DD-13	9	<0.005	0.011	<0.005	<0.005	<0.007
		DD-14	1	<0.005	<0.005			<0.005
		DD-15	9	<0.005	<0.005	<0.005	<0.005	<0.005
		DD-16	9	<0.005	<0.005	<0.005	<0.005	<0.005
	126. silver	DD-13	9	<0.001	0.021	<0.001	<0.001	<0.008
		DD-14	1	<0.001	<0.001			<0.001
		DD-15	9	<0.001	0.007	<0.001	<0.001	<0.003
יי כ		DD-16	9	<0.001	<0.001	<0.001	<0.001	<0.001
ר	127. thallium	DD-13	9	<0.001	<0.001	<0.001	<0.001	<0.001
		DD-14	1	<0.001	<0.001			<0.001
		DD-15	9	<0.001	<0.001	<0.001	<0.001	<0.001
		DD-16	9	<0.001	<0.001	<0.001	<0.001	<0.001
	128. zinc	DD-13	9	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-14	1	<0.010	.090			.090
		DD-15	9	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-16	9	<0.010	0.010	<0.010	<0.010	<0.010
	Nonconventional							
	acidity	DD-13	9	<1	<1	<1	<1	<1
		DD-14	1	<1	<1			<1
		DD-15	9	<1	<1	<1	<1	<1
		DD-16	9	<1	<1	<1	<1	<1
	alkalinity	DD-13	9	274	170	177	190	179
	•	DD-14	1	274	1,000			1,000
		DD-15	9	274	304	190	290	261
		DD-16	9	274	180	183	190	184

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
aluminum	DD-13	9	<0.050	43.6	31.4	5.46	26.8
arumrnum	DD-14	í	<0.050	156	31.4	3.40	156
	DD-15	9	<0.050	129	40.6	132	101
	DD-16	9	<0.050	1.54	4.27	4.96	3.59
ammonia nitrogen	DD-13	9	<0.01	<0.01	0.43	0.15	<0.20
ammenta interegal	DD-14	1	<0.01	0.34			0.34
	DD-15	9	<0.01	0.12	0.33	0.69	0.38
	DD-16	9	<0.01	0.064	0.38	0.63	0.36
barium	DD-13	9	.179	.027	<0.020	.060	<0.036
	DD-14	1	.179	.125			.125
	DD-15	9	.179	.069	<0.020	.163	<0.084
	DD-16	9	.179	<0.020	.042	.130	<0.064
boron	DD-13	9	<0.100	<0.100	<0.100	<0.100	<0.100
	DD-14	1	<0.100	<0.100			<0.100
	DD-15	9	<0.100	<0.100	<0.100	<0.100	<0.100
	DD-16	9	<0.100	<0.100	<0.100	<0.100	<0.100
calcium	DD-13	9	5.68	560	492	5.26	352
	DD-14	1	5.68	430			430
	DD-15	9	5.68	418	91	5.72	172
	DD-16	9	5.68	353	5.73	5.74	121.49
chemical oxygen demand (COD)	DD-13	9	<0.5	54	76	50	60
	DD-14	1	<0.5	36			36
	DD-15	9	<0.5	66	150	62	93
	DD-16	9	<0.5	42	110	100	84
chloride	DD-13	9	61	120	120	120	120
	DD-14	1	61	60			60
	DD-15	9	61	79	80	82	80
	DD-16	9	61	92	83	90	88
cobalt	DD-13	9	<0.010	<0.010	<0.010	<0.010	<0.010
	DD-14	1	<0.010	<0.010			<0.010
	DD-15	9	<0.010	<0.010	<0.010	<0.010	<0.010
	DD-16	9	<0.010	<0.010	<0.010	<0.010	<0.010

Table V-94 (Continued)

	Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	dissolved solids	DD-13	9	670	1,340	1,300	1,040	1,230
		DD-14	1	670	1,500			1,500
		DD-15	9	670	1,160	1,300	1,280	1,250
		DD-16	9	670	1,360	1,300	1,000	1,220
	fluoride	DD-13	9	0.29	0.29	0.22	0.30	0.27
		DD-14	1	0.29	0.31			0.31
		DD-15	9	0.29	0.33	0.25	0.51	0.36
		DD-16	9	0.29	0.15	0.24	0.35	0.25
	iron	DD-13	9	.054	.198	.279	.554	0.344
		DD-14	1	.054	7.10			7.10
		DD-15	9	.054	2.59	<0.020	3.25	<1.95
		DD-16	9	.054	0.054	0.022	<0.020	<0.032
	magnesium	DD-13	9	108	14	5.29	7.10	8.80
		DD-14	1	108	172			172
77		DD-15	9	108	315	5.52	8.50	110
507		DD-16	9	108	5.68	7.845	5.69	6.41
	manganese	DD-13	9	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-14	1	<0.010	.111	****	,,,,,,	0.111
		DD-15	9	<0.010	.038	<0.010	.033	<0.027
		DD-16	9	<0.010	<0.010	<0.010	<0.010	<0.010
	molybdenum	DD-13	9	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-14	1	<0.020	<0.020	,		<0.020
		DD-15	9	<0.020	₹0.020	<0.020	<0.020	<0.020
		DD-16	9	<0.020	<0.020	<0.020	<0.020	<0.020
	phosphate	DD-13	9	20	12	8.9	5.9	8.9
	•	DD-14	1	20	<4	-	•	<4
		DD-15	9	20	8.1	4.9	5.4	6.1
		DD-16	ģ	20	15	<4	7.1	<8.7
			-	•	-	* *	•	

	Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	sulfate	DD-13	9	180	450	450	500	470
	surface	DD-14	í	180	300	450	300	300
		DD-15	9	180	510	450	680	550
		DD-16	ģ	180	510	497	600	540
	tin	DD-13	9	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-14	1	<0.020	<0.020			<0.020
		DD-15	9	<0.020	<0.020	<0.020	.034	<0.025
		DD-16	9	<0.020	<0.020	<0.020	<0.020	<0.020
	titanium	DD-13	9	<0.010	<0.010	<0.010	<0.010	<0.010
		DD-14	1	<0.010	<0.010			<0.010
		DD-15	9	<0.010	<0.010	<0.010	.144	<0.055
		DD-16	9	<0.010	<0.010	.062	<0.010	<0.027
	total organic carbon (TOC)	DD-13	9	<1	6.1	4.9	4.9	5.9
	30002 01/34112 0112 111	DD-14	1	<1	12			12
		DD-15	9	<1	20	8.4	14	14
80z		DD-16	9	<1	13	11	12	12
$\widetilde{\infty}$	total solids (TS)	DD-13	9	380	1,060	1,150	1,060	1,090
	(/	DD-14	1	380	2,300			2,300
		DD-15	9	380	1,710	1,140	1,940	1,600
		DD-16	9	380	1,060	1,080	1,000	1,050
	vanadium	DD-13	9	.026	<0.020	<0.020	<0.020	<0.020
		DD-14	1	.026	<0.020			<0.020
		DD-15	9	.026	.022	<0.020	.016	<0.019
		DD-16	9	.026	<0.020	<0.020	<0.020	<0.020
	yttrium	DD-13	9	<0.020	<0.020	<0.020	<0.020	<0.020
	, 	DD-14	1	<0.020	<0.020			<0.020
		DD-15	9	<0.020	<0.020	<0.020	<0.020	<0.020
		DD-16	9	<0.020	<0.020	<0.020	<0.020	<0.020

Table V-94 (Continued)

Pollutant	Stream Code	Sample <u>Type</u>	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	DD-13 DD-14 DD-15 DD-16	9 1 9	<1 <1 <1 <1	<1 <1 4 <1	7 4 3.2	8 3 5	<5 <1 4 <3.1
pH (standard units)	DD-13 DD-14 DD-15 DD-16	9 1 9	7.03 7.03 7.03 7.03	7.92 8.48 7.41 7.77	7.96 8.25 8.23	8.54 8.00 8.32	
suspended solids	DD-13 DD-14 DD-15 DD-16	9 1 9	1 1 1	69 1,060 660 19	71 120 12	89 770 8	76 1,060 520 13

	<u>Pollu</u>	tant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	Toxic	Pollutants							
	114.	antimony	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.002 <0.002 <0.002 <0.002	0.045 0.041 <0.001 <0.002	0.023 0.011 0.002 <0.002	0.002 0.010 0.002 <0.002	0.023 0.021 <0.002 <0.002
	115.	arsenic	EE-6 EE-7 EE-8 EE-9	8 2 3 2	0.021 0.021 0.021 0.021	0.026 0.210 0.006 0.003	0.147 0.042 0.294 0.063	0.777 0.042 0.231 0.006	0.317 0.098 0.177 0.024
	117.	beryllium	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.001 <0.001 <0.001 <0.001	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010
51	118.	cadmium	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010	0.021 <0.010 <0.010 <0.010	0.086 <0.010 <0.010 <0.010	<0.117 <0.010 <0.010 <0.010
0	119.	chromium	EE-6 EE-7 EE-8 EE-9	8 2 3 2	0.021 0.021 0.021 0.021	1.50 105 0.858 0.069	0.084 31.5 0.236 <0.020	0.549 22.5 0.139 0.024	0.711 53 0.411 <0.038
	120.	copper	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.010 <0.010 <0.010' <0.010	0.847 1.32 <0.010 <0.010	<0.010 0.179 0.017 <0.010	<0.010 0.160 <0.010 <0.010	<0.289 0.553 <0.012 <0.010
	121.	cyanide (total)	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.02 <0.02 <0.02 <0.02	0.039 0.044 0.032 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.026 <0.028 <0.024 <0.02
	122.	lead	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100 <0.100

Table V-95 (Continued)

-	Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
	123. mercury	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
	124. nickel	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.020 <0.020 <0.020 <0.020	0.043 0.039 0.024 <0.020	0.053 0.072 <0.020 <0.020	0.286 <0.020 0.057 0.043	0.127 <0.044 <0.034 <0.028
``.	125. selenium	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
. ₩	126. silver	EE - 6 EE - 7 EE - 8 EE - 9	8 2 3 2	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001
511	127. thallium	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001
	128. zinc	EE-6 EE-7 EE-8 EE-9	8 2 3 2	0.064 0.064 0.064 0.064	2.07 1.34 <0.020 0.020	2.38 0.547 <0.020 0.073	17.48 0.618 <0.020 0.046	7.31 0.835 <0.020 0.046
	Nonconventional							
>	acidity	EE-6 EE-7 EE-8 EE-9	8 2 3 2	<1 <1 <1 :1	1,800 <1 <1	1,580 <1 <1 <1	690 <1 <1 <1	1,360 <1 <1 <1
	alkalinity	EE - 6 EE - 7 EE - 8 EE - 9	8 2 3 2	22 22 22 22	<1 700 30 <1	<1 14 750 40	<1 11 230 25	<1 242 340 22

Pollutant	Stream Code	Sample Type	Source	_Day 1	Day 2	Day 3	Average
aluminum	EE-6	8	0.011	35.6	50.1	146	77.2
	EE-7	2	0.011	45.5	41.0	63.9	50.1
	EE-8	3	0.011	2.38	3.15	13.5	6.34
	EE-9	2	0.011	.123	0.082	0.087	0.097
ammonia nitrogen	EE-6	8	<0.05	5.73	46	12	21.2
	EE-7	2	<0.05	1.24	37	1.8	13.3
	EE-8	3	<0.05	0.32	22	2.9	8.4
	EE-9	2	<0.05	1.67	5.7	0.24	2.54
barium	EE-6	8	0.021	0.192	0.234	0.243	0.223
	EE-7	2	0.021	0.094	0.050	0.050	0.065
	EE-8	3	0.021	<0.020	0.039	0.034	<0.031
	EE-9	2	0.021	<0.020	<0.020	<0.020	<0.020
boron	EE-6	8	<0.050	<0.050	<0.050	0.349	<0.150
	EE - 7	2	<0.050	0.474	<0.050	<0.050	<0.191
	EE-8	3	<0.050	<0.050	<0.050	<0.050	<0.050
	EE-9	2	<0.050	<0.050	<0.050	<0.050	<0.050
calcium	EE-6	8	4.62	60.6	64.7	124	83.1
	EE-7	2	4.62	8.60	34.8	192	78.5
	EE-8	2 3	4.62	140.5	175.0	59.6	125.0
	EE-9	2	4.62	41.3	6.58	6.57	18.2
chemical oxygen demand (COD)	EE-6	8	48	2,400	1,700	1,900	2,000
	EE-7	2	48	410	330	470	400
	EE-8	3	48	76	310	390	260
	EE-9	2	48	810	<0.05	50	<290
chloride	EE-6	8	<0.05	<0.3	<0.05	7.6	<2.7
	EE-7	2	<0.05	<0.3	<0.05	<0.05	<0.13
	EE-8	3	<0.05	<0.3	10	7.6	<6.0
	EE-9	2	<0.05	<0.3	<0.05	<0.05	<0.13
cobalt	EE-6	8	<0.010	0.030	0.032	0.085	0.049
	EE-7	2	<0.010	0.030	0.031	<0.010	<0.024
	EE-8	3	<0.010	<0.010	<0.010	<0.010	<0.010
	EE-9	2	<0.010	0.028	0.027	<0.010	<0.022

Table V-95 (Continued)

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
dissolved solids	EE-6	8	28	1,430	1,370	6,300	3,030
	EE-7	2	28	2,600	1,390	1,300	1,760
	EE-8	3	28	50	1,810	1,360	1,070
	EE-9	2	28	3,200	58	32	1,100
fluoride	EE-6	8	0.67	1.6	1.6	0.63	1.3
	EE-7	2	0.67	26	330	34	130
	EE-8	3	0.67	1.7	61	23	29
	EE-9	2	0.67	140	0.87	0.34	47
iron	EE-6	8	0.081	1.08	24.0	140	55
	EE-7	2	0.081	6.28	3.44	5.26	4.99
	EE-8	3 2	0.081	.174	.172	1.56	0.64
	EE-9	2	0.081	0.126	0.043	0.121	0.097
magnesium	EE-6	8	1.68	2.16	3.10	10.5	5.25
	EE-7	2	1.68	87.0	14.0	10.8	37.3
	EE-8	3	1.68	1.03	0.303	0.355	0.563
	EE-9	2	1.68	1.85	1.70	1.70	1.75
manganese	EE-6	8	0.016	0.295	0.384	2.75	1.14
	EE-7	2	0.016	0.367	0.187	0.206	0.253
	EE-8	3	0.016	.026	0.030	<0.010	<0.022
	EE-9	2	0.016	<0.010	<0.010	0.011	<0.010
molybdenum	EE-6	8	0.030	0.464	0.236	0.226	0.309
	EE-7	2	0.030	0.088	0.054	0.047	0.063
	EE-8	3 2	0.030	0.048	0.061	0.062	0.057
	EE-9	2	0.030	0.033	<0.020	<0.020	<0.024
phosphate	EE-6	8	818	58	30	100	63
	EE-7	2	818	<4	190	140	<110
	EE-8	3	818	<4.0	11	880	<300
	EE-9	2	818	1,000	<4	20	<340

513

ω

Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	Average
sulfate	EE-6	8	21	2,100	2,900	5,600	3, 535
	EE-7	2	21	1,200	760	920	960
	EE-8	3	21	40	800	4.5	282
	EE-9	2	21	2,500	16	7.4	841
tin	EE-6	8	<0.020	<0.020	0.034	<0.020	<0.020
	EE-7	2	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-8	3	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-9	2	<0.020	<0.020	<0.020	<0.020	<0.020
titanium	EE-6	8	<0.010	<0.010	0.020	0.067	<0.030
	EE-7	2	<0.010	0.031	0.019	0.018	0.023
	EE-8	3	<0.010	<0.010	<0.010	<0.010	<0.010
	EE-9	2	<0.010	<0.010	<0.010	<0.010	<0.010
total organic carbon (TOC)	EE-6	8	<1	550	615	4,100	1,755
	EE-7	2	<1	94	150	120	121
	EE-8	3	<1	2.1	92	120	71
	EE-9	2	<1	290	1.7	<1	98
total solids (TS)	EE-6	8	30	4,300	4,500	8,400	5,733
, .	EE-7	2	30	2,600	2,000	1,720	2,107
	EE-8	3	30	150	2,000	1,500	1,217
	EE-9	2	30	3,400	58	60	1,743
vanadium	EE-6	8	<0.020	<0.020	<0.020	0.046	<0.030
	EE-7	2	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-8	3	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-9	2	<0.020	<0.020	<0.020	<0.020	<0.020
yttrium	EE-6	8	<0.020	<0.020	<0.020	<0.020	<0.020
·	EE-7	2	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-8	3	<0.020	<0.020	<0.020	<0.020	<0.020
	EE-9	2	<0.020	<0.020	<0.020	<0.020	<0.020

Table V-95 (Continued)

Pollutant	Stream Code	Sample <u>Type</u>	Source	Day 1	Day 2	Day 3	Average
Conventional							
oil and grease	EE-6 EE-7 EE-8 EE-9	8 2 3 2	3 3 3 3	310 4.5 3.0 150	170 160 <1 <1	22 73 <1 4	167 79 <2 <52
рН (standard units)	EE-6 EE-7 EE-8 EE-9	8 2 3 2	6.05 6.05 6.05 6.05	1.70 11.30 11.00 2.72	1.89 4.76 11.62 9.12	1.94 4.82 11.03 6.15	
suspended solids	EE-6 EE-7 EE-8 EE-9	8 2 3 2	3 3 3 3	67 67 1.0 160	40.3 62 65 <1	52 470 70 2.3	53 200 45 <54

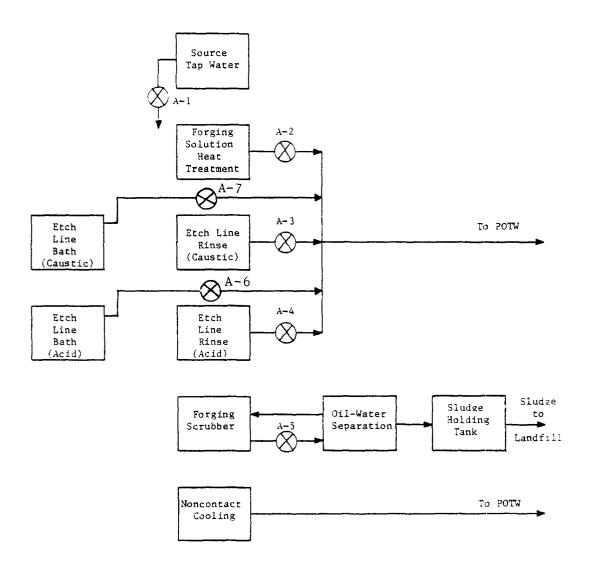


Figure V-1
WASTEWATER SOURCES AT PLANT A

ŧ

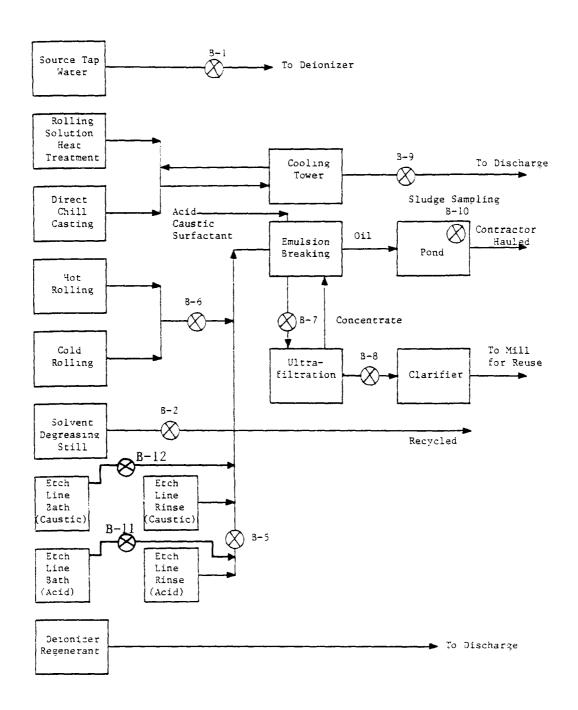


Figure V-2
WASTEWATER SOURCES AT PLANT B

ŧ

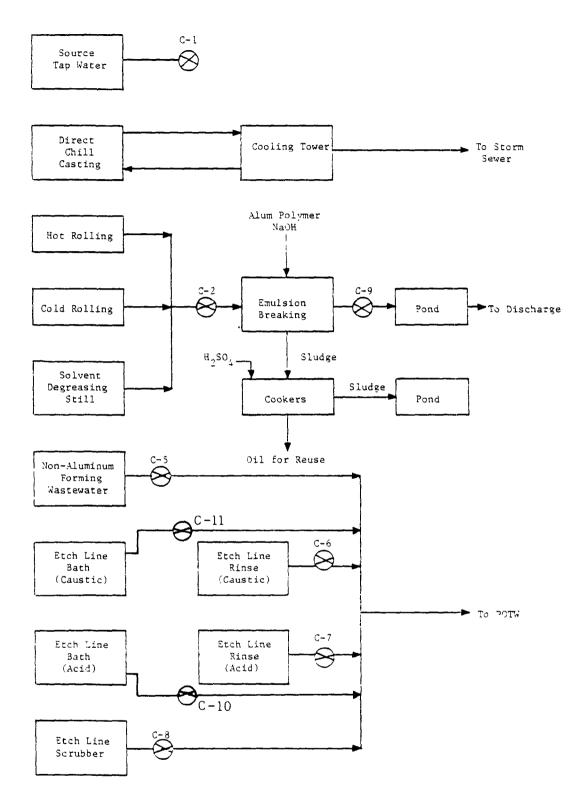


Figure V-3
WASTEWATER SOURCES AT PLANT C

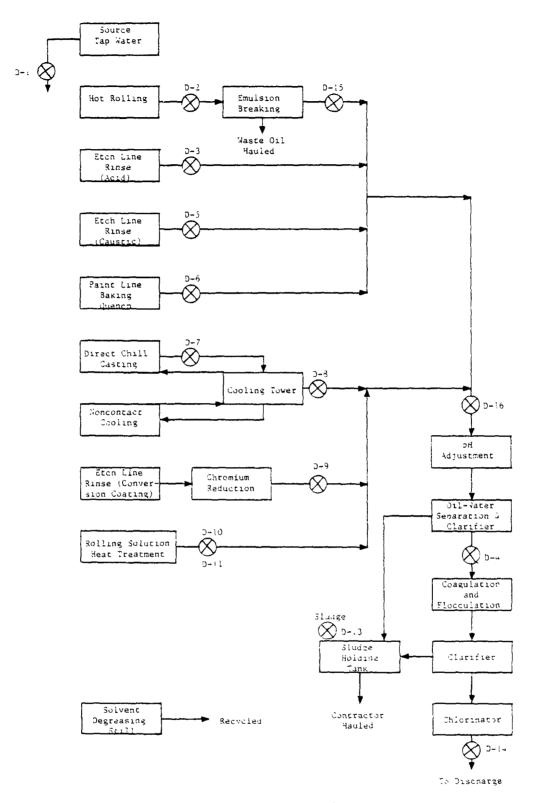


Figure V-4
WASTEWATER SOURCES AT PLANT D

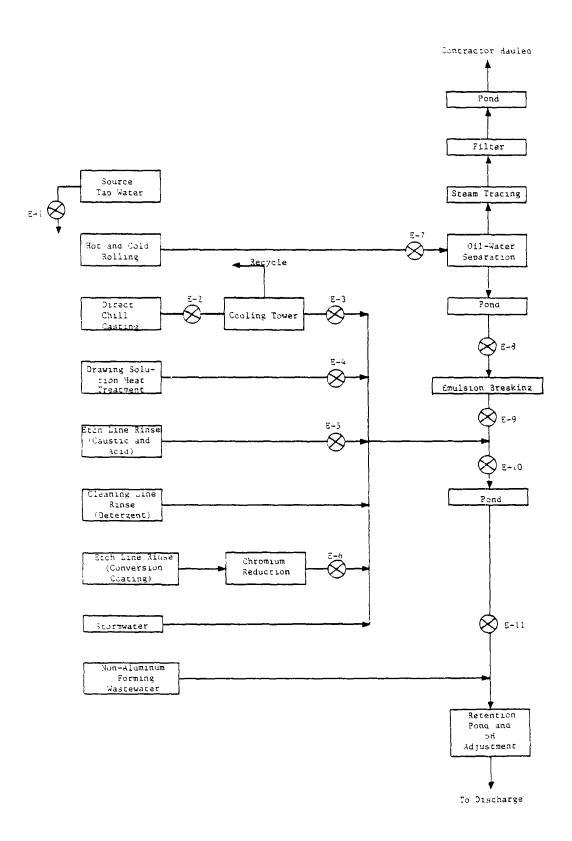


Figure V-5
WASTEWATER SOURCES AT PLANT E

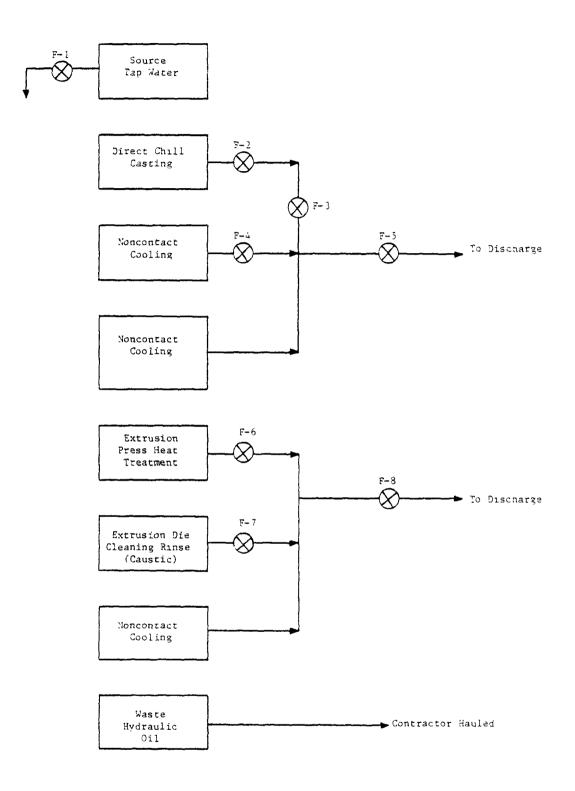


Figure V-6
WASTEWATER SOURCES AT PLANT F

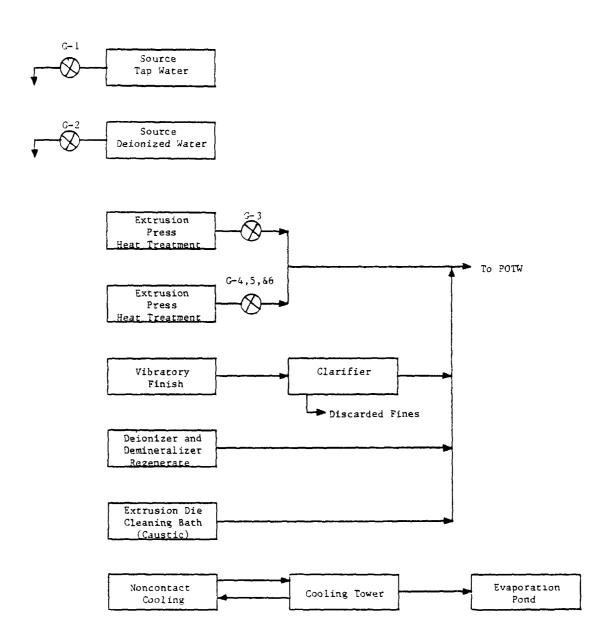


Figure V-7
WASTEWATER SOURCES AT PLANT G

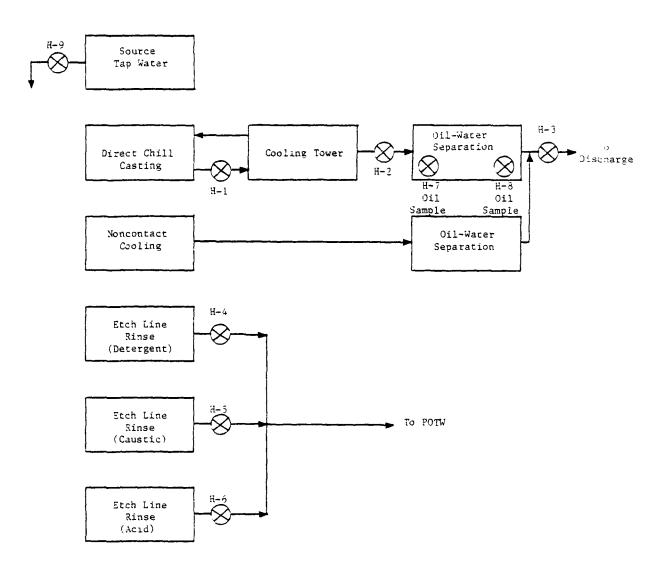


Figure V-8
WASTEWATER SOURCES AT PLANT H

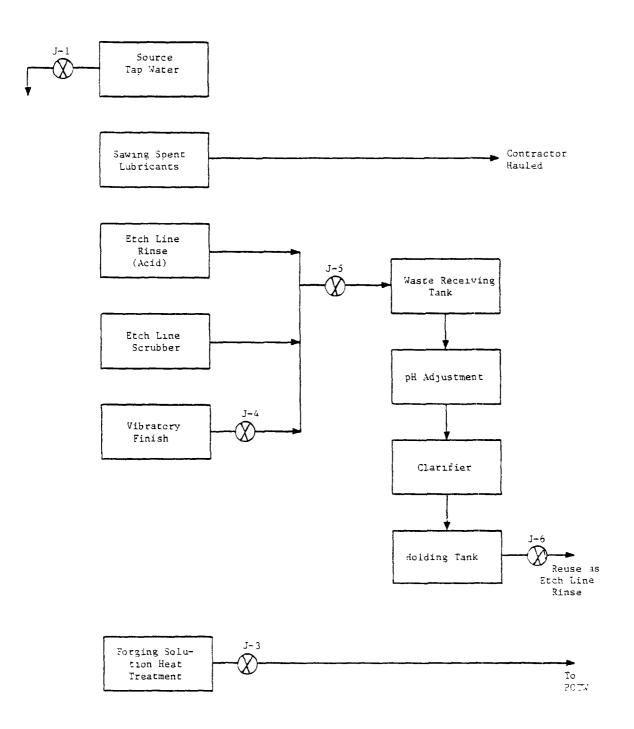


Figure V-9
WASTEWATER SOURCES AT PLANT J

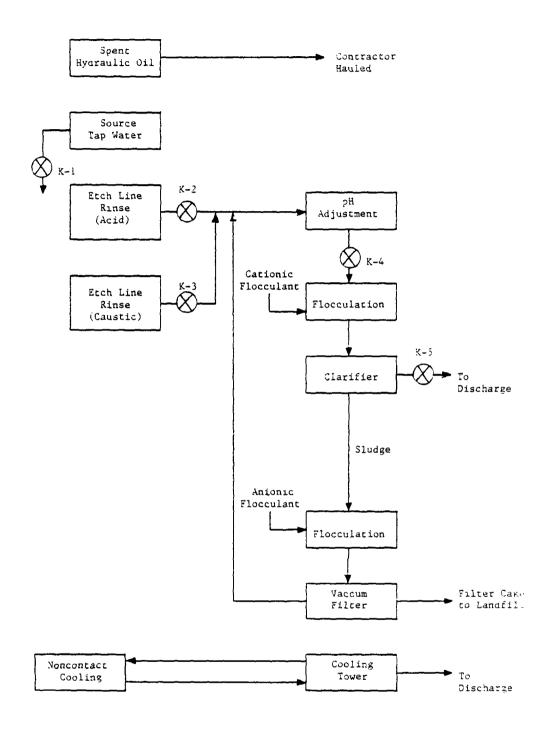


Figure V-10
WASTEWATER SOURCES AT PLANT K

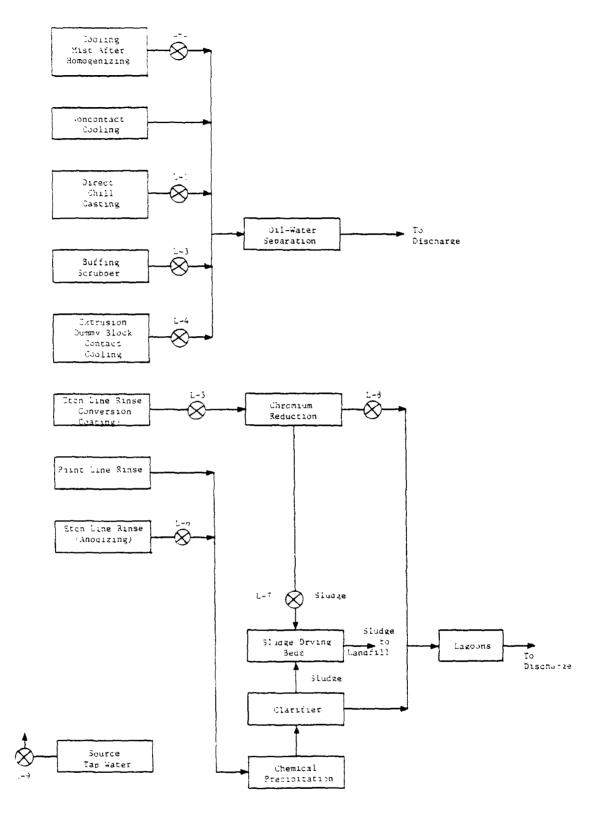
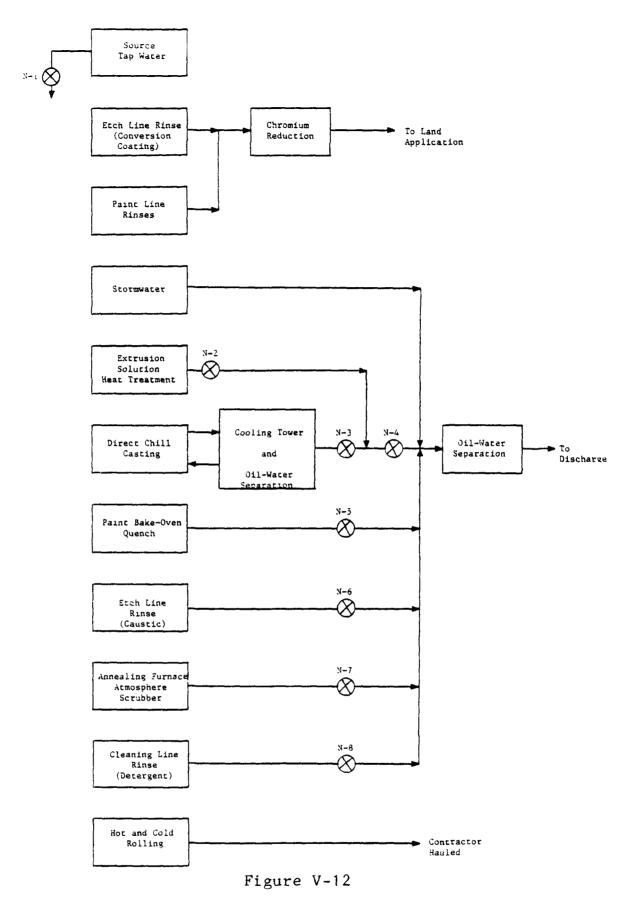



Figure V-11
WASTEWATER SOURCES AT PLANT L

WASTEWATER SOURCES AT PLANT N

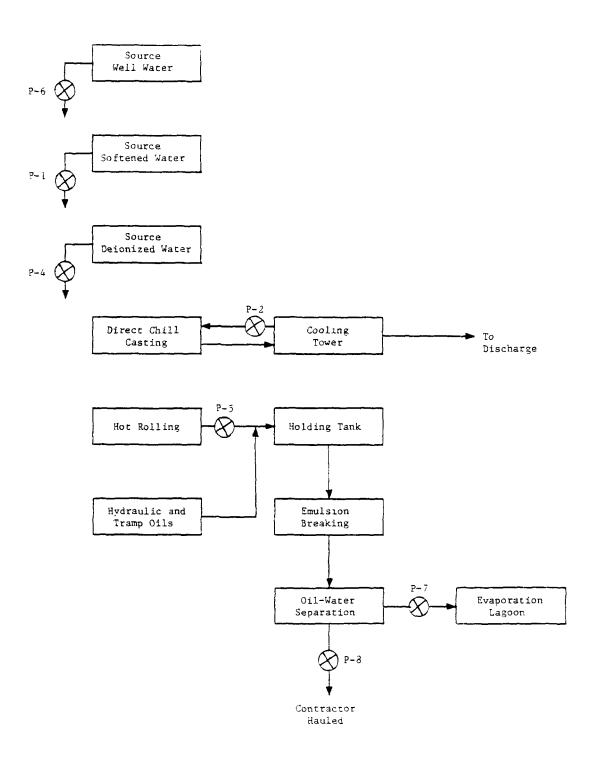


Figure V-13
WASTEWATER SOURCES AT PLANT P

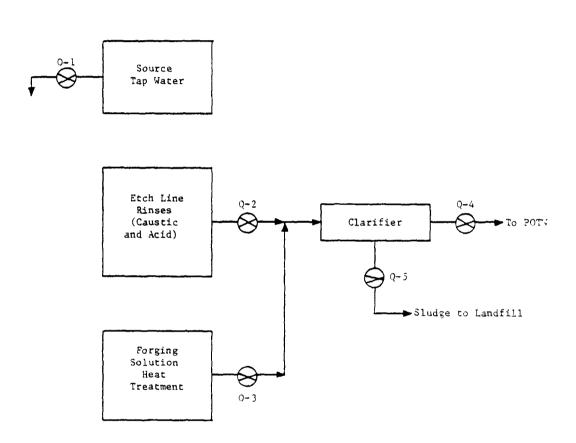


Figure V-14
WASTEWATER SOURCES AT PLANT Q

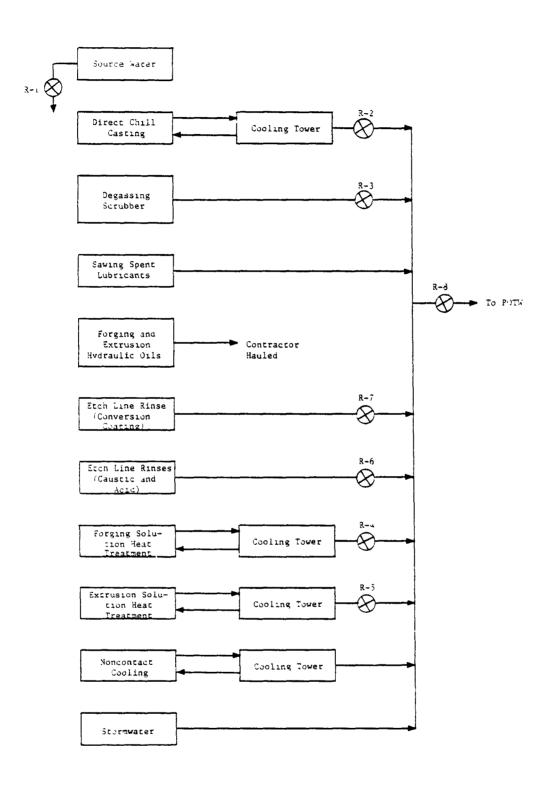


Figure V-15
WASTEWATER SOURCES AT PLANT R

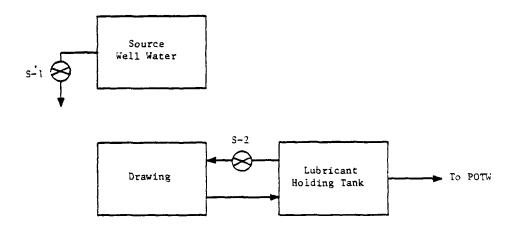


Figure V-16
WASTEWATER SOURCES AT PLANT S

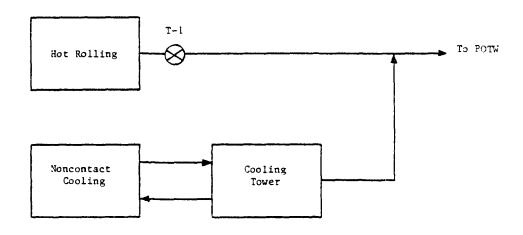


Figure V-17
WASTEWATER SOURCES AT PLANT T

Figure V-18
WASTEWATER SOURCES AT PLANT U

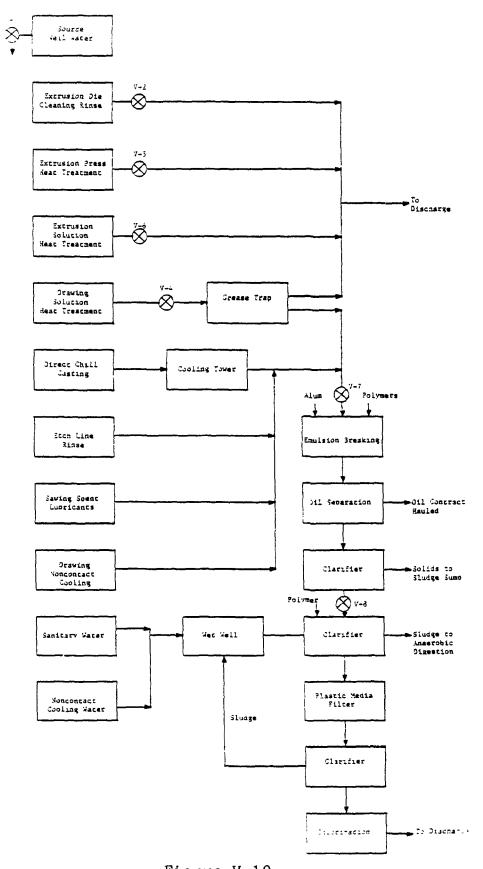


Figure V-19
WASTEWATER SOURCES AT PLANT V

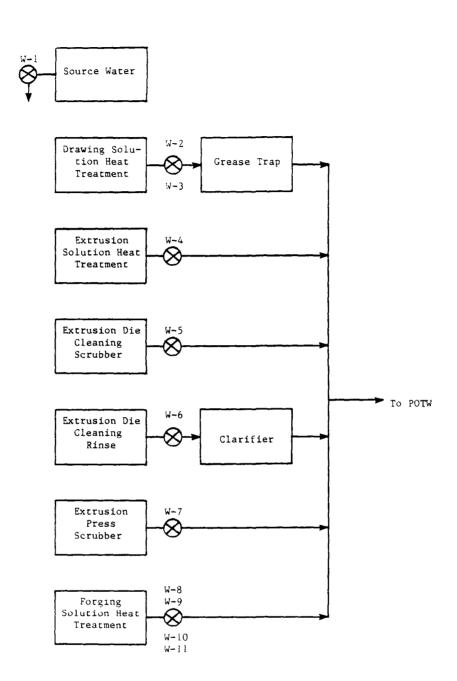


Figure V-20 WASTEWATER SOURCES AT PLANT W

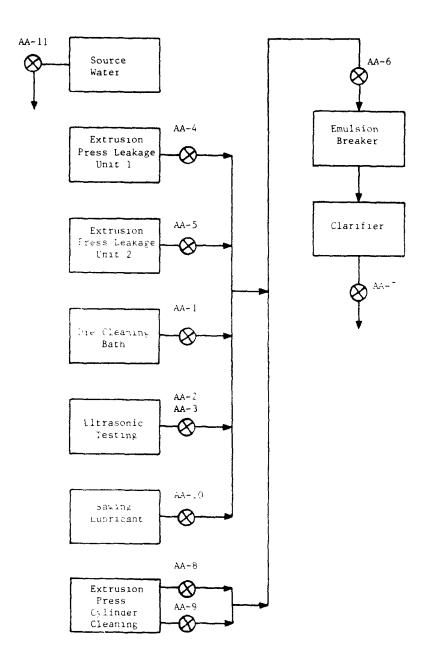


Figure V-21
WASTEWATER SOURCES AT PLANT AA

Ĺ

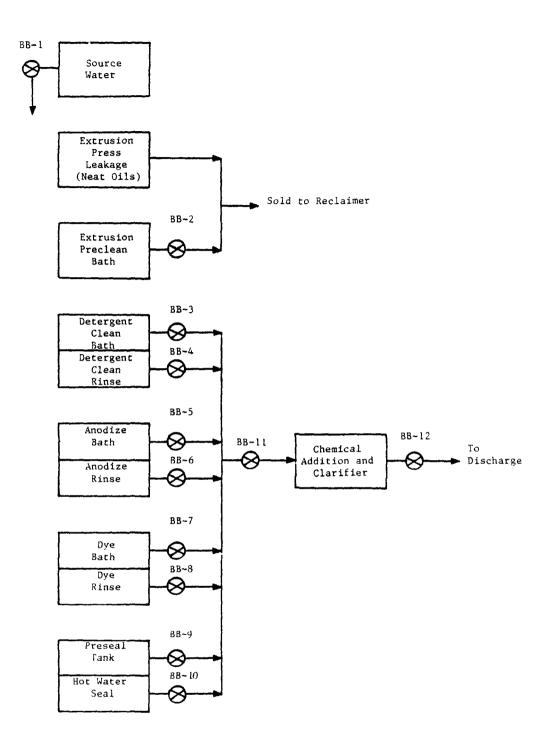


Figure V-22
WASTEWATER SOURCES AT PLANT BB

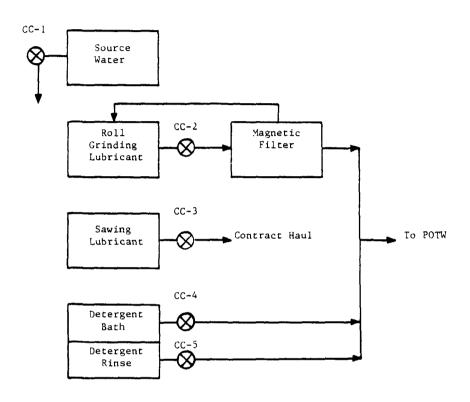


Figure V-23
WASTEWATER SOURCES AT PLANT CC

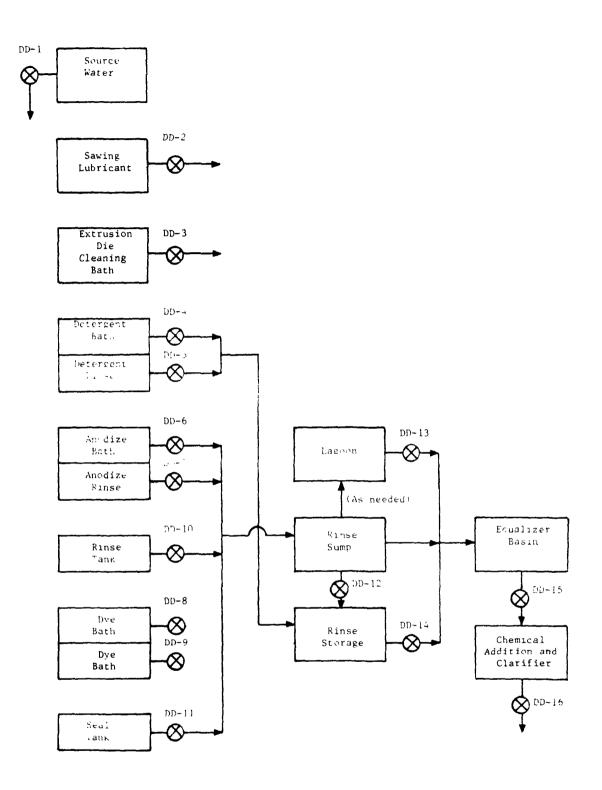


Figure V-24
WASTEWATER SOURCES AT PLANT DD

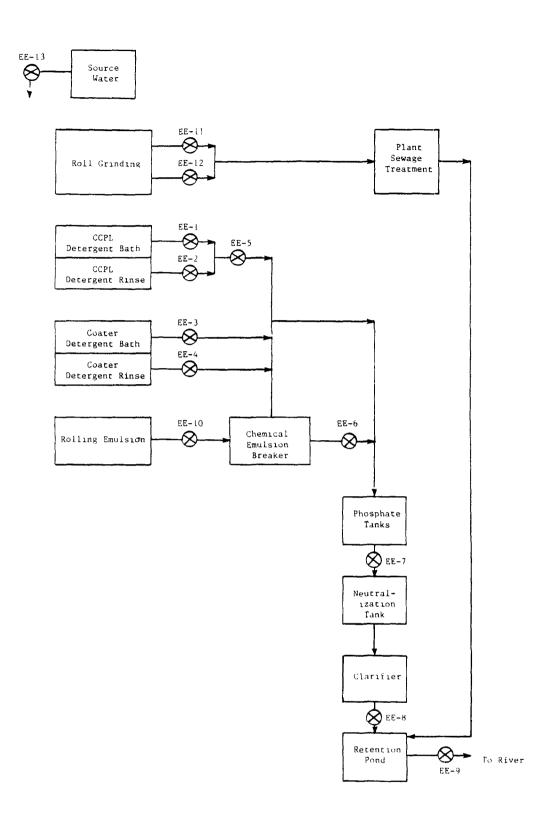


Figure V-25
WASTEWATER SOURCES AT PLANT EE

Section VI

SELECTION OF POLLUTANT PARAMETERS

The Agency has studied aluminum forming wastewaters to determine the presence or absence of toxic, conventional and selected non conventional pollutants. The toxic pollutants and nonconventional pollutants are subject to BAT effluent limitations and guidelines. Conventional pollutants are considered in establishing BPT, BCT, and NSPS limitations.

One hundred and twenty-nine toxic pollutants (known as the 129 priority pollutants) were studied pursuant to the requirements of the Clean Water Act of 1977 (CWA). These pollutant parameters, which are listed in Table VI-1, are members of the 65 pollutants and classes of toxic pollutants referred to as Table 1 in Section 307(a)(1) of the CWA.

From the original list of 129 pollutants, three pollutants have been deleted in two separate amendments to 40 CFR Subchapter N, Part 401. Dichlorodifluoromethane and trichlorofluoromethane were deleted first (46 FR 2266, January 8, 1981) followed by the deletion of bis-(chloromethyl) ether (46 FR 10723, February 4, 1981). The Agency has concluded that deleting these compounds will not compromise adequate control over their discharge into the aquatic environment and that no adverse effects on the aquatic environment or on human health will occur as a result of deleting them from the list of toxic pollutants.

Past studies by EPA and others have identified many nontoxic pollutant parameters useful in characterizing industrial wastewaters and in evaluating treatment process removal efficiencies. Certain of these and other parameters may also be selected as reliable indicators of the presence of specific toxic pollutants. For these reasons, a number of nontoxic pollutants were also studied for the aluminum forming category.

The conventional pollutants considered (total suspended solids, oil and grease, and pH) traditionally have been studied to characterize industrial wastewaters. These parameters are especially useful in evaluating the effectiveness of wastewater treatment processes.

Several nonconventional pollutants were considered. These included aluminum, chemical oxygen demand (COD), phenols (total), and total organic carbon (TOC). In addition, calcium, magnesium, alkalinity, total dissolved solids and sulfate were measured to provide data to evaluate the cost of chemical precipitation and sedimentation treatment of certain wastewater streams. Of these

pollutants, only the pollutant aluminum was considered for regulation in establishing effluent limitations guidelines, since it is found in significant concentrations in aluminum forming process wastewater streams and is removed by the BAT model treatment technology. It is found in all aluminum forming contact waste water streams because it is the metal being processed.

RATIONALE FOR SELECTION OF POLLUTANT PARAMETERS

The Settlement Agreement in Natural Resources Defense Council, Inc. vs. Train, 8 ERC 2120 (D.D.C. 1976), modified 12 ERC 1833 (D.D.C. 1979), which preceded the Clean Water Act, contains provisions authorizing the exclusion from regulation in certain instances of particular pollutants, categories, and subcategories.

Paragraph 8(a)(iii) of the Settlement Agreement allows Administrator to exclude from regulation toxic pollutants not detectable by Section 304(h) analytical methods or other Pollutants that were never detected, or of-the- art methods. that were never found above their analytical quantification therefore eliminated from consideration. were analytical quantification level for a pollutant is the minimum concentration at which that pollutant can be reliably measured. For the toxic pollutants in this study, the analytical quantification levels are: 0.005 mg/l for pesticides, PCB's, chromium, and nickel; 0.010 mg/l for the remaining organic toxic pollutants and cyanide, arsenic, beryllium, and selenium; 10 million fibers per liter (10 MFL) for asbestos; 0.020 mg/l for lead and silver; 0.009 mg/l for copper; 0.002 mg/l for cadmium; and 0.0001 mg/l for mercury.

The pesticide TCDD (2,3,7,8-tetrachloridibenzo-p-dioxin) was not analyzed for because a standard sample was unavailable to the analytical laboratories. Samples collected by the Agency's contractor were not analyzed for asbestos. Data on asbestos content are available for a very small number of samples relevant to this study as a result of the first phase of a screening program for asbestos in a wide range of industrial categories. Of these samples, only a few appear to contain asbestos at analytically significant levels.

Paragraph 8(a)(iii) also allows the Administrator to exclude from regulation toxic pollutants detected in amounts too small to be effectively reduced by technologies known to the Administrator. Pollutants which were detected below levels considered to be achievable by specific available treatment methods were therefore eliminated from further consideration. For the toxic metals, the chemical precipitation, sedimentation, and filtration technology

treatment effectiveness values, which are presented in Section VII (Table VII-20, p. 807), were used. For the toxic organic pollutants detected above their analytical quantification level, treatment effective values for activated carbon technology were These treatment effectiveness values represent the most stringent treatment options considered for pollutant removal. allows for the most conservative pollutant exclusion based on pollutants detected below treatable levels. In addition to outlined above, Paragraph 8(a)(iii) provisions Settlement Agreement (1) allows the Administrator to exclude from regulation toxic pollutants detectable in the effluent from only a small number of sources within the subcategory because they are sources, and (2) allows the related to those uniquely Administrator tor to exclude from regulation toxic pollutants which will be effectively controlled by the technologies upon which are based other effluent limitations and guidelines, or pretreatment standards.

Waste streams in the aluminum forming category have been grouped together into core and ancillary waste streams in the subcategorization scheme, which has been described in Section IV. The pollutant exclusion procedure was applied for the following:

- (1) Rolling With Neat Oils Core Waste Streams
- (2) Rolling With Emulsions Core Waste Streams
- (3) Extrusion Core Waste Streams
- (4) Forging Core Waste Streams
- (5) Drawing With Neat Oils Core Waste Streams
- (6) Drawing With Emulsions Or Soaps Core Waste Streams
- (7) Ancillary Waste Streams

Toxic pollutants remaining after the application of the exclusion process were then selected for further consideration in establishing specific regulations.

DESCRIPTION OF POLLUTANT PARAMETERS

The following discussion addresses the pollutant parameters detected above their analytical quantification level in any sample of aluminum forming wastewater. The description of each pollutant provides the following information: the source of the pollutant; whether it is a naturally occuring element, processed metal, or manufactured compound; general physical properties and the form of the pollutant; toxic effects of the pollutant in humans other animals; and behavior of the pollutant in a POTW at concentrations that might be expected from industrial discharges.

Acenaphthene (1). Acenaphthene (1,2-dihydroacenaphthylene, or 1,8-ethylene-naphthalene) is a polynuclear aromatic hydrocarbon (PAH) with molecular weight of 154 and a formula of Cl_2H_{10} .

Acenaphthene occurs in coal tar produced during high temperature coking of coal. It has been detected in cigarette smoke and gasoline exhaust condensates.

The pure compound is a white crystalline solid at room temperature with a melting range of 95C to 97C and a boiling range of 278C to 280C. Its vapor pressure at room temperature is less than 0.02 mm Hg. Acenaphthene is slightly soluble in water (100 mg/l), but even more soluble in organic solvents such as ethanol, toluene, and chloroform. Acenaphthene can be oxidized by oxygen- or ozone in the presence of certain catalysts. It is stable under laboratory conditions.

Acenaphthene is used as a dye intermediate, in the manufacture of some plastics, and as an insecticide and fungicide.

So little research has been performed on acenaphthene that its mammalian and human health effects are virtually unknown. The water quality criterion of 0.02~mg/l is recommended to prevent the adverse effects on humans due to the organoleptic properties of acenaphthene in water.

No detailed study of acenaphthene behavior in a POTW is available. However, it has been demonstrated that none of the organic toxic pollutants studied so far can be broken down by biological treatment processes as readily as fatty acids, carbohydrates, or proteins. Many of the toxic pollutants have been investigated, at least in laboratory-scale studies, at concentrations higher than those expected to be contained by most municipal waste waters. General observations relating molecular structure to ease of degradation have been developed for all of the toxic organic pollutants.

The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of acenaphthene. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation.

Its water solubility would allow acenaphthene present in the influent to pass through a POTW into the effluent. The hydrocarbon character of this compound makes it sufficiently hydrophobic that adsorption onto suspended solids and retention in the sludge may also be a significant route for removal of acenaphthene from the POTW.

Acenaphthene has been demonstrated to affect the growth of plants through improper nuclear division and polyploidal chromosome number. However, it is not expected that land application of sewage sludge containing acenaphthene at the low concentrations

which are to be expected in a POTW sludge would result in any adverse effects on animals ingesting plants grown in such soil.

Acrolein (2). The available data for acrolein indicate that acute and chronic toxicity to freshwater aquatic life occur at concentrations as low as 68 and 21 ug/l, respectively, and would occur at lower concentrations among species that are more sensitive than those tested.

For the protection of human health from the toxic properties of acrolein ingested through contaminated aquatic organisms, the ambient water criterion is determined to be 320 ug/l. For the protection of human health from the toxic properties of acrolein ingested though contaminated aquatic organisms alone, the ambient water criterion is determined to be 780 ug/l.

Acrolein has a wide variety of applications. It is used directly as a biocide for aquatic weed control; for algae, weed, mollusk control in recirculating process water systems; for slime in the paper industry; and to protect liquid fuels against microorganisms. Acrolein is also used directly for crosslinking protein collagen in leather tanning and for tissue fixation in histological samples. It is widely used as an inter mediate in the chemical industry. Its dimer, which is prepared by a thermal, uncatalyzed reaction, has several applications, including use as an intermediate for crosslinking agents, humectants, plasticizers, polyurethane intermediates, copolymers and homopolymers, and creaseproofing cotton. The monomer is utilized in synthesis via the Diels-Alder reaction Acrolein widely dienophile or а diene. is copolymerization, but its homopolymers do not appear commercially important. The copoly-mers of acrolein are used in photography, for textile treatment, in the paper industry, as builders in laundry and dishwasher detergents, and as coatings for aluminum and steel panels, as well as other applications. In 1975, worldwide production was about 59 kilotons. Its largest market was for methionine manufacture. Worldwide capacity was estimated at 102 kilotons/year, of which U.S. capacity kilotons/year.

Acrolein (2-propenal) is a liquid with a structural formula of CH_2 =CHCHO and a molecular weight of 56.07. It melts at -86.95C, boils at 52.5 to 53.5C, and has a density of 0.8410 at 20C. The vapor pressure at 20C is 215 mm Hg, and its water solubility is 20.8 percent by weight at 20C.

A flammable liquid with a pungent odor, acrolein is an unstable compound that undergoes polymerization to the plastic solid disacryl, especially under light or in the presence of alkali or strong acid. It is the simplest member of the class of

unsaturated aldehydes, and the extreme reactivity of acrolein is due to the presence of a vinyl group $(H_2C=H-)$ and an aldehyde group on such a small molecule. Additions to the carbon-carbon double bond of acrolein are catalyzed by acids and bases. The addition of halogens to this carbon-carbon double bond proceeds readily.

Acrolein can enter the aquatic environment by its use as an aquatic herbicide, from industrial discharge, and from the chlorination of organic compounds in wastewater and drinking water treatment. It is often present in trace amounts in foods and is a component of smog, fuel combustion, wood, and possibly other fire, and cigarette smoke. An evaluation of available data indicates that, while industrial exposure to manufactured acrolein is unlikely, acrolein from nonmanufactured sources is pervasive. Acrolein exposure will occur through food ingestion and inhalation. Exposure through the water or dermal route is less likely. However, analysis of municipal effluents of Dayton, Ohio showed the presence of acrolein in six of 11 samples, with concentrations ranging from 20 to 200 ug/l.

Benzene (4). Benzene (C_6H_6) is a clear, colorless liquid obtained mainly from petroleum feedstocks by several different processes. Some is recovered from light oil obtained from coal carbonization gases. It boils at 80C and has a vapor pressure of 100 mm Hg at 26C. It is slightly soluble in water (1.8 g/l at 25C) and it dissolves in hydrocarbon solvents. Annual U.S. production is three to four million tons.

Most of the benzene used in the U.S. goes into chemical manufacture. About half of that is converted to ethylbenzene which is used to make styrene. Some benzene is used in motor fuels.

Benzene is harmful to human health, according to numerous published studies. Most studies relate effects of inhaled benzene vapors. These effects include nausea, loss of muscle coordination, tion, and excitement, followed by depression and coma. Death is usually the result of respiratory or cardiac failure. Two specific blood disorders are related to benzene exposure. One of these, acute myelogenous leukemia, represents a carcinogenic effect of benzene. However, most human exposure data is based on exposure in occupational settings and benzene carcinogenesis is not considered to be firmly established.

Oral administration of benzene to laboratory animals produced leukopenia, a reduction in mumber of leukocytes in the blood. Subcutaneous injection of benzene-oil solutions has produced suggestive, but not conclusive, evidence of benzene carcinogenesis.

Benzene demonstrated teratogenic effects in laboratory animals, and mutagenic effects in humans and other animals.

For maximum protection of human health from the potential carcinogenic effects of exposure to benzene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of benzene estimated to result in additional lifetime cancer risk at levels of 10-7, 10-6, and 10-5 are 0.00015 mg/l, 0.0015 mg/l, and 0.015 mg/l, respectively.

Some studies have been reported regarding the behavior of benzene in a POTW. Biochemical oxidation of benzene under laboratory conditions, at concentrations of 3 to 10 mg/l, produced 24, 27, 24, and 20 percent degradation in 5, 10, 15, and 20 days, respectively, using unacclimated seed cultures in fresh water. Degradation of 58, 67, 76, and 80 percent was produced in the same time periods using acclimated seed cultures. Other studies pro duced similar results. The EPAs most recent study of the behavior of toxic organics in a POTW indicates that benzene is 78 per cent removed. Other reports indicate that most benzene entering a POTW is removed to the sludge and that influent concentrations of 1 g/l inhibit sludge digestion. There is no information about possible effects of benzene on crops grown in soils amended with sludge containing benzene.

Carbon Tetrachloride (6). Carbon tetrachloride (CCl₄), also called tetrhloromethane, is a colorless liquid produced primarily by the chlorination of hydrocarbons - particularly methane. Carbon tetrachloride boils at 77C and has a vapor pressure of 90 mm Hg at 20C. It is slightly soluble in water (0.8 gm/l at 25C) and soluble in many organic solvents. Approximately one-third of a million tons is produced annually in the U.S.

Carbon tetrachloride, which was displaced by perchloroethylene as a dry cleaning agent in the 1930's, is used principally as an intermediate for production of chlorofluoromethanes for refrigerants, aerosols, and blowing agents. It is also used as a grain fumigant.

Carbon tetrachloride produces a variety of toxic effects in humans. Ingestion of relatively large quantities - greater than five grams - has frequently proved fatal. Symptoms are burning sensation in the mouth, esophagus, and stomach, followed by abdominal pains, nausea, diarrhea, dizziness, abnormal pulse, and coma. When death does not occur immediately, liver and kidney damage are usually found. Symptoms of chronic poisoning are not as well defined. General fatigue, headache, and anxiety have been observed, accompanied by digestive tract and kidney discomfort or pain.

Data concerning teratogenicity and mutagenicity of carbon tetrachloride are scarce and inconclusive. However, carbon tetrachloride has been demonstrated to be carcinogenic in laboratory animals. The liver was the target organ.

For maximum protection of human health from the potential carcinogenic effects of exposure to carbon tetrachloride through ingestion of water and contaminated aquatic organisms, the ambient water concentration of zero. Concentrations of carbon tetrachloride estimated to result in additional lifetime cancer risk at risk levels of 10-7, 10-6, and 10-5 are 0.000026 mg/l, 0.00026 mg/l, and 0.0026 mg/l, respectively.

Many of the toxic organic pollutants have been investigated, in laboratory-scale studies, at concentrations higher than those expected to be found in most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces a moderate degree of of removal carbon tetrachloride in a POTW. No information was found regarding the possible interference of carbon tetrachloride with treatment processes. The EPA's most recent study behavior of toxic organics in a POTW indicates that carbon tetrachloride is 50 percent removed. Based on the water solubility of carbon tetrachloride, and the vapor pressure of this compound, it is expected that some of the undegraded carbon tetrachloride will pass through to the POTW effluent and some will be volatilized in aerobic processes.

Chlorobenzene (7). Chlorobenzene (C_6H_5Cl), also called monochlorobenzene is a clear, colorless, liquid manufactured by the liquid phase chlorination of benzene over a catalyst. It boils at 132C and has a vapor pressure of 12.5 mm Hg at 25C. It is almost insoluble in water (0.5 g/l at 30C), but dissolves in hydrocarbon solvents. U.S. annual production is near 150,000 tons.

Principal uses of chlorobenzene are as a solvent and as an intermediate for dyes and pesticides. Formerly it was used as an intermediate for DDT production, but elimination of production of that compound reduced annual U.S. production requirements for chlorobenzene by half. Data on the threat to human health posed by chlorobenzene are limited in number. Laboratory animals, administered large doses of chlorobenzene subcutaneously, died as a result of central nervous system depression. At slightly lower dose rates, animals died of liver or kidney damage. Metabolic disturbances occurred also. At even lower dose rates of orally administered chlorobenzene similar effects were observed, but some animals survived longer than at higher dose rates. No

studies have been reported regarding evaluation of the teratogenic, mutagenic, or carcinogenic potential of chlorobenzene.

For the prevention of adverse effects due to the organoleptic properties of chlorobenzene in water the recommended criterion is 0.020~mg/l.

Laboratory studies of the biochemical oxidation of chlorobenzene have been carried out at concentrations greater than those expected to normally be present in POTW influent. Results showed the extent of degradation to be 25, 28, and 44 percent after 5, 10, and 20 days, respectively. In another, similar study using a phenol-adapted culture 4 percent degradation was observed after 3 hours with a solution containing 80 mg/l. On the basis of these results and general conclusions about the relationship of molecular structure to biochemical oxidation, it is concluded that chlorobenzene remaining intact is expected to volatilize from the POTW in aeration processes. The estimated half-life of chlorobenzene in water based on water solubility, vapor pressure and molecular weight is 5.8 hours. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that chlorobenzene is 67 percent removed.

1,1,1-Trichloroethane (11). 1,1,1-Trichloroethane is one of the two possible trichlorethanes. It is manufactured by hydrochlorinating vinyl chloride to 1,1-dichloroethane which is then chlorinated to the desired product. 1,1,1-Trichloroethane is a liquid at room temperature with a vapor pressure of 96 mm Hg at 20C and a boiling point of 74C. Its formula is CCl₃CH₃. It is slightly soluble in water (0.48 g/l) and is very soluble in organic solvents. U.S. annual production is greater than one-third of a million tons.

1,1,1-Trichloroethane is used as an industrial solvent and degreasing agent.

Most human toxicity data for 1,1,1-trichloroethane relates to inhalation and dermal exposure routes. Limited data are available for determining toxicity of ingested 1,1,1-trichloroethane, and those data are all for the compound itself, not solutions in water. No data are available regarding its toxicity to fish and aquatic organisms. For the protection of human health from the toxic properties of 1,1,1-trichloroethane ingested through the comsumption of water and fish, the ambient water criterion is 15.7 mg/l. The criterion is based on bioassays for possible carcinogenicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated, at least in laboratory scale studies, at

concentrations higher than commonly expected in municipal waste water. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of these limited data is that biological treatment produces a moderate degree of degradation of 1,1,1-trichloroethane. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation. However, for degradation to occur, a fairly constant input of the compound would be necessary.

Its water solubility would allow 1,1,1-trichloroethane, present in the influent and not biodegradable, to pass through a POTW into the effluent. The Agency's most recent study of the behavior of toxic organics in a POTW indicates that 1,1,1-trichlorethane is 87 percent removed. One factor which has received some attention, but no detailed study, is the volatilization of the lower molecular weight organics from a POTW. If 1,1,1-trichloroethane is not biodegraded, it will volatilize during aeration processes in the POTW. It has been demonstrated that none of the toxic organic pollutants of this type can be broken down by biological treatment processes as readily as latty acids, carbohydrates, or proteins.

1,1-Dichloroethane (13). 1,1-Dichloroethane, also called ethylidene dichloride and ethylidene chloride, is a colorless liquid manufactured by reacting hydrogen chloride with vinyl chloride in 1,1-dichloroethane solution in the presence of a catalyst. However, it is reportedly not manufactured commercially in the U.S. 1,1-Dichloroethane boils at 57C and has a vapor pressure of 182 mm Hg at 20C. It is slightly soluble in water (5.5 g/l at 20C) and very soluble in organic solvents.

1,1-Dichloroethane is used as an extractant for heat-sensitive substances and as a solvent for rubber and silicone grease.

1,1-Dichloroethane is less toxic than its isomer (1,2-dichloroethane), but its use as an anesthetic has been discontinued because of marked excitation of the heart. It causes central nervous system depression in humans. There are insufficient data to derive water quality criteria for 1,1-dichloroethane.

Many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces only a moderate removal of 1,1-dichloroethane in a POTW by degradation. The EPA's most

recent study of the behavior of toxic organics in a POTW indicates that 1,1-dichloroethane is 76 percent removed.

The high vapor pressure of 1,1-dichloroethane is expected to result in volatilization of some of the compound from aerobic processes in a POTW. Its water solubility will result in some of the 1,1-dichloroethane which enters the POTW leaving in the effluent from the POTW.

- 1,1,2-Trichloroethane (14). 1,1,2-Trichloroethane is one of the two possible trichloroethanes and is sometimes called ethane trichloride or vinyl trichloride. It is used as a solvent for fats, oils, waxes, and resins, in the manufacture of 1,1-dichloro-ethylene, and as an intermediate in organic synthesis.
- 1,1,2-Trichloroethane is a clear, colorless liquid at room temperature with a vapor pressure of 16.7 mm Hg at 20°C, and a boiling point of 113°C. It is insoluble in water and very soluble in organic solvents. The formula is $CHCl_2CH_2Cl$.

Human toxicity data for 1,1,2-trichloroethane does not appear in the literature. The compound does produce liver and kidney damage in laboratory animals after intraperitoneal administration. No literature data was found concerning teratogenicity or mutagenicity of 1,1,2-trichloroethane. However, mice treated with 1,1,2-trichloroethane showed increased incidence of hepatocellular carcinoma. Although bioconcentration factors are not available for 1,1,2-trichloroethane in fish and other freshwater aquatic organisms, it is concluded on the basis of octanol-water partition coefficients that bioconcentration does occur.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 1,1,2-trichloroethane through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of this compound estimated to result in additional lifetime cancer risks at risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00006 mg/l, 0.0006 mg/l, and 0.006 mg/l, respectively. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the water concentration should be less than 0.418 mg/l to keep the increased lifetime cancer risk below 10^{-5} . Available data show that adverse effects on aquatic life occur at concentrations higher than those cited for human health risks.

It is reported that small amounts of 1,1,2-trichloroethane are formed by chlorination processes and that this compound persists in the environment (greater than two years) and is not biologically degraded. This information is not completely consistent with the conclusions based on laboratory scale biochemical oxidation studies and relating molecular structure to ease of

degradation. That study concluded that biological treatment in a POTW will produce moderate removal of 1,1,2-trichloroethane. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that 1,1,2-trichloroethane is 96 percent removed.

The lack of water solubility and the relatively high vapor pressure may lead to removal of this compound from a POTW by volatilization.

2,4,6-Trichlorophenol (21). 2,4,6-Trichlorophenol (Cl $_3$ C $_6$ H $_2$ OH, abreviated here to 2,4,6-TCP) is a colorless, crystalline solid at room temperature. It is prepared by the direct chlorination of phenol. 2,4,6-TCP melts at 68°C and is slightly soluble in water (0.8 gm/l at 25°C). This phenol does not produce a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." No data were found on production volumes.

2,4,6-TCP is used as a fungicide, bactericide, glue and wood preservative, and for antimildew treatment. It is also used for the manufacture of 2,3,4,6-tetrachlorophenol and pentachlorophenol.

No data were found on human toxicity effects of 2,4,6-TCP. Reports of studies with laboratory animals indicate that 2,4,6-TCP produced convulsions when injected interperitoneally. Body temperature was elevated also. The compound also produced inhibition of ATP production in isolated rat liver mitochondria, increased mutation rates in one strain of bacteria, and produced a genetic change in rats. No studies on teratogenicity were found. Results of a test for carcinogenicity were inconclusive.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 2,4,6-TCP through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero based on the non-threshold assumption for this chemical. However, zero level may not be attainable at the present time. Therefore, the levels which may result in incremental increase of cancer risk over the lifetime are estimated at 10^{-5} , 10^{-6} , and 10^{-7} . The corresponding criteria are 0.012 mg/l, 0.0012 mg/l, and 0.00012 mg/l respectively.

Although no data were found regarding the behavior of 2,4,6-TCP in a POTW, studies of the biochemical oxidation of the compound have been made at laboratory scale at concentrations higher than those normally expected in municipal wastewaters. Biochemical oxidation of 2,4,6-TCP at 100 mg/l produced 23 percent degradation using a phenol-adapted acclimated seed culture. Based on these results, biological treatment in a POTW is expected to produce a moderate degree of degradation. Another study indicates

that 2,4,6-TCP may be produced in a POTW by chlorination of phenol during normal chlorination treatment.

Para-chloro-meta-cresol (22). Para-chloro-meta-cresol (C1C H₆OH) is thought to be a 4-chloro-3-methyl-phenol (4-chloro-meta-cresol, or 2-chloro-5-hydroxy-toluene), but is also used by some authorities to refer to 6-chloro-3-methylphenol (6-chloro-meta-cresol, or 4-chloro-3-hydroxy-toluene), depending on whether the chlorine is considered to be para to the methyl or to the hydroxy group. It is assumed for the purposes of this document that the subject compound is 2-chloro-5-hydroxytoluene. This compound is a colorless crystalline solid melting at 66 to 68° C. It is slightly soluble in water (3.8 gm/l) and soluble in organic solvents. This phenol reacts with 4-aminoantipyrene to give a colored product and therefore contributes to the nonconventional pollutant parameter designated "Total Phenols." No information on manufacturing methods or volumes produced was found.

Para-chloro-meta cresol (abbreviated here as PCMC) is marketed as a microbicide, and was proposed as an antiseptic and disinfectant more than 40 years ago. It is used in glues, gums, paints, inks, textiles, and leather goods. PCMC was found in raw wastewaters from the die casting quench operation from one subcategory of foundry operations.

Although no human toxicity data are available for PCMC, studies on laboratory animals have demonstrated that this compound is toxic when administered subcutaneously and intravenously. Death was preceded by severe muscle tremors. At high dosages kidney damage occurred. On the other hand, an unspecified isomer of chlorocresol, presumed to be PCMC, is used at a concentration of 0.15 percent to preserve mucous heparin, a natural product administered intravenously as an anticoagulant. The report does not indicate the total amount of PCMC typically received. No information was found regarding possible teratogenicity, or carcinogenicity of PCMC.

Two reports indicate that PCMC undergoes degradation in biochemical oxidation treatments carried out at concentrations higher than are expected to be encountered in POTW influents. One study showed 50 percent degradation in 3.5 hours when a phenol-adapted acclimated seed culture was used with a solution of 60 mg/l PCMC. The other study showed 100 percent degradation of a 20 mg/l solution of PCMC in two weeks in an aerobic activated sludge test system. No degradation of PCMC occurred under anaerobic conditions. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that PCMC is 89 percent removed.

Chloroform (23). Chloroform, also called trichloromethane, is a colorless liquid manufactured commercially by chlorination of

methane. Careful control of conditions maximizes chloroform production, but other products must be separated. Chloroform boils at 61° C and has a vapor pressure of 200 mm Hg at 25°C. It is slightly soluble in water (8.22 g/l at 20°C) and readily soluble in organic solvents.

Chloroform is used as a solvent and to manufacture refrigerants, pharmaceuticals, plastics, and anesthetics. It is seldom used as an anesthetic.

Toxic effects of chloroform on humans include central nervous system depression, gastrointestinal irritation, liver and kidney damage and possible cardiac sensitization to adrenalin. Carcinogenicity has been demonstrated for chloroform on laboratory animals.

For the maximum protection of human health from the potential carcinogenic effects of exposure to chloroform through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of chloroform estimated to result in additional lifetime cancer risks at the levels of 10^{-7} , 10^{-6} , and 10^{-5} were 0.000019 mg/l, 0.00019 mg/l, and 0.0019 mg/l, respectively.

The biochemical oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After 5, 10, and 20 days no degradation of chloroform was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of chloroform in a POTW.

The high vapor pressure of chloroform is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. Remaining chloroform is expected to pass through into the POTW effluent. In addition, the most recent EPA study of the behavior of toxic organics in a POTW indicates that chloroform is 61 percent removed.

2-Chlorophenol (24). 2-Chlorophenol (ClC₆H₄OH), also called ortho-chlorophenol, is a colorless liquid at room temperature, manufactured by direct chlorination of phenol followed by distillation to separate it from the other principal product, 4-chlorophenol. 2-Chlorophenol solidifies below 7° C and boils at 176° C. It is soluble in water (28.5 gm/l at 20° C) and soluble in several types of organic solvents. This phenol gives a strong color with 4-aminoantipyrene and therefore contributes to the nonconventional pollutant parameter "Total Phenols." Production statistics could not be found. 2-Chlorophenol is used almost exclusively as a chemical intermediate in the production of

pesticides and dyes. Production of some phenolic resins uses 2-chlorophenol.

Very few data are available on which to determine the effects of 2-chlorophenol on humans. The compound is more toxic to laboratory mammals when administered orally than when administered subcutaneously or intravenously. This affect is attributed to the fact that the compound is almost completely in the un-ionized state at the low pH of the stomach and hence is more readily absorbed into the body. Initial symptoms are restlessness increased respiration rate, followed by motor weakness and convulsions induced by noise or touch. Coma follows. Following lethal doses, kidney, liver, and intestinal damage were observed. No studies were found which addressed the teratogenicity or mutagenicity of 2-chlorophenol. Studies of 2-chlorophenol as a promoter of carcinogenic activity of other carcinogens were conducted by dermal application. Results do not bear a determinable relationship to results of oral administration studies.

For the prevention of adverse effects due to the organoleptic properties of 2-chlorophenol in water, the criterion is $0.0003 \, \text{mg/l}$.

Laboratory scale studies of the behavior of 2-chlorophenol have been conducted at concentrations higher than those expected to be found in municipal wastewaters. At 1 mg/l of 2-chlorophenol, acclimated culture produced 100 percent degradation by biochemical oxidation after 15 days. Another study showed 45, 70, and 79 percent degradation by biochemical oxidation after 5, 10, and The conclusion reached by the study of these days, respectively. limited data, and general observations on all toxic organic pollutants relating molecular structure to ease of biochemical oxidation, is that 2-chlorophenol is removed to a high degree or completely by biological treatment in a POTW. The most recent EPA study of the behavior of toxic organics in a POTW indicates that 2-chlorophenol is 50 percent removed. Undegraded 2-chlorophenol is expected to pass through a POTW into the effluent because of the water solubility. Some 2-chlorophenol is also expected to be generated by chlorination treatments of POTW effluents containing phenol.

1,1-Dichloroethylene (29). 1,1-Dichloroethylene (1,1-DCE), also called vinylidene chloride, is a clear colorless liquid manufactured by dehydrochlorination of 1,1,2-trichloroethane. 1,1-DCE has the formula CCl₂CH₂. It has a boiling point of 32°C, and a vapor pressure of 591 mm Hg at 25°C. 1,1-DCE is slightly soluble in water (2.5 mg/l) and is soluble in many organic solvents. U.S. production is in the range of hundreds of thousands of tons annually.

1,1-DCE is used as a chemical intermediate and for copolymer coatings or films. It may enter the wastewater of an industrial facility as the result of decomposition of 1,1,1-trichloro-ethylene used in degreasing operations, or by migration from vinylidene chloride copolymers exposed to the process water. Human toxicity of 1,1-DCE has not been demonstrated; however, it is a suspected human carcinogen. Mammalian toxicity studies have focused on the liver and kidney damage produced by 1,1-DCE. Various changes occur in those organs in rats and mice ingesting 1,1-DCE.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to 1,1-dichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero based on the non-threshold assumption for this chemical. However, a zero level may not be attainable at the present time. Therefore, the levels which may result in an incremental increase of cancer risk over the lifetime are estimated at 10^{-5} , 10^{-6} , and 10^{-7} . The corresponding criteria are 0.00033 mg/l, 0.000033 mg/l, respectively.

Under laboratory conditions, dichloroethylenes have been shown to be toxic to fish. The primary effect of acute toxicity of the dichloroethylenes is depression of the central nervous system. The octanol/water partition co-efficient of 1,1-DCE indicates it should not accumulate significantly in animals.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of 1,1-dichloroethylene. No evidence is available for drawing conclusions about the possible toxic or inhibitory effect of 1,1-DCE on POTW operation. Because of water solubility, 1,1-DCE which is not volatilized or degraded is expected to pass through a POTW. Very little 1,1-DCE is expected to be found in sludge from a POTW.

The most recent EPA study of the behavior of toxic organics in a POTW indicates that 1,1-DCE is 80 percent removed. The very high vapor pressure of 1,1-DCE is expected to result in release of significant percentages of this material to the atmosphere in any treatment involving aeration. Degradation of dichloroethylene in air is reported to occur, with a half-life of eight weeks.

1,2-trans-Dichloroethylene (30). 1,2-Dichloroethylene (1,2-trans-DCE) is a clear, colorless liquid with the formula

CHClCHCl. 1,2-trans-DCE is produced in mixture with the <u>cis</u>-isomer by chlorination of acetylene. The <u>cis</u>-isomer has distinctly different physical properties. Industrially, the mixture is used rather than the separate isomers. 1,2-trans-DCE has a boiling point of 48°C, and a vapor pressure of 234 mm Hg at 25°C.

The principal use of 1,2-dichloroethylene (mixed isomers) is to produce vinyl chloride. It is used as a lead scavenger in gasoline, general solvent, and for synthesis of various other organic chemicals. When it is used as a solvent, 1,2-trans-DCE can enter wastewater streams.

Although 1,2-trans-DCE is thought to produce fatty degeneration of mammalian liver, there are insufficient data on which to base any ambient water criterion.

In the reported toxicity test of 1,2- $\underline{\text{trans}}$ -DCE on aquatic life, the compound appeared to be about half as toxic as the other dichloroethylene (1,1-DCE) on the toxic pollutants list.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by the study of the limited data is that biochemical oxidation produces little or no degradation of 1,2-trans-dichloroethylene. No evidence is available for drawing conclusions about the possible toxic or inhibitory effect of 1,2-trans-dichloroethylene on POTW operation. It is expected that its low molecular weight and degree of water solubility will result in 1,2-trans-DCE passing through a POTW to the effluent if it is not degraded or volatilized. Very little 1,2-trans-DCE is expected to be found in sludge from a POTW.

In EPA's most recent study of the behavior of toxic organics in a POTW, 1,2-trans-DCE is shown to be 72 percent removed. The high vapor pressure of 1,2-trans-DCE is expected to result in release of a significant percentage of this compound to the atmosphere in any treatment involving aeration. Degradation of the dichloroethylenes in air is reported to occur, with a half-life of eight weeks.

 $\frac{2,4-\text{Dimethylphenol}}{\text{called 2,4-xylenol,}}$ is a colorless, crystalline solid at room temperature (25°C), but melts at 27°C to 28°C. 2,4-DMP is slightly soluble in water and, as a weak acid, is soluble in alkaline solutions. Its vapor pressure is less than 1 mm Hg at room temperature.

2,4-DMP is a natural product, occurring in coal and petroleum sources. It is used commercially as an intermediate for manufacture of pesticides, dye stuffs, plastics and resins, and surfactants. It is found in the water runoff from asphalt surfaces. It can find its way into the wastewater of a manufacturing plant from any of several adventitious sources.

Analytical procedures specific to this compound are used for its identification and quantification in wastewaters. This compound does not contribute to "Total Phenols" determined by the 4-aminoantipyrene method.

Three methylphenol isomers (cresols) and six dimethylphenol isomers (xylenols) generally occur together in natural products, industrial processes, commercial products, and phenolic wastes. Therefore, data are not available for human exposure to 2,4-DMP alone. In addition to this, most mammalian tests for toxicity of individual dimethylphenol isomers have been conducted with isomers other than 2,4-DMP.

In general, the mixtures of phenol, methylphenols, and dimethylphenols contain compounds which produced acute poisoning in laboratory animals. Symptoms were difficult breathing, rapid muscular spasms, disturbance of motor coordination, and asymmetrical body position. In a 1977 National Academy of Science publication the conclusion was reached that, "In view of the relative paucity of data on the mutagenicity, carcinogenicity, teratogenicity, and long term oral toxicity of 2,4-dimethylphenol, estimates of the effects of chronic oral exposure at low levels cannot be made with any confidence." No ambient water quality criterion can be set at this time. In order to protect public health, exposure to this compound should be minimized as soon as possible.

Toxicity data for fish and freshwater aquatic life are limited; however, in reported studies of 2,4-dimethylphenol at concentrations as high as 2 mg/l no adverse effects were observed.

Biological degradability of 2,4-DMP as determined in one study, showed 94.5 percent removal based on chemical oxygen demand (COD). Another study determined that persistance of 2,4-DMP in the environment is low, and thus any of the compound which remained in the sludge or passed through the POTW into the effluent would be degraded within moderate length of time (estimated as two months in the report). The EPA's most recent study of the behavior of toxic organics in a POTW indicates that 2,4-DMP is 59 percent removed.

As a weak acid, the behavior of 2,4-DMP may be somewhat dependent on the pH of the influent to the POTW. However, over the normal limited range of POTW pH, little effect of pH would be expected.

2,4-Dinitrotoluene (35). 2,4-Dinitrotoluene $[(NO_2)_2C_6H_4CH_3]$, a yellow crystalline compound, is manufactured as a coproduct with the 2,6-isomer by nitration of nitrotoluene. It melts at 71°C. 2,4-Dinitrotoluene is insoluble in water (0.27 g/l at 22°C) and soluble in a number of organic solvents. Production data for the 2,4-isomer alone are not available. The 2,4-and 2,6-isomers are manufactured in an 80:20 or 65:35 ratio, depending on the process used. Annual U.S. commercial production is about 150 thousand tons of the two isomers. Unspecified amounts are produced by the U.S. government and further nitrated to trinitrotoluene (TNT) for military use. The major use of the dinitrotoluene mixture is for production of toluene diisocyanate used to make polyurethanes. Another use is in production of dyestuffs.

The toxic effect of 2,4-dinitrotoluene in humans is primarily methemoglobinemia (a blood condition hindering oxygen transport by the blood). Symptoms depend on severity of the disease, but include cyanosis, dizziness, pain in joints, headache, and loss of appetite in workers inhaling the compound. Laboratory animals fed oral doses of 2,4-dinitrotoluene exhibited many of the same symptoms. Aside from the effects in red blood cells, effects are observed in the nervous system and testes.

Chronic exposure to 2,4-dinitrotoluene may produce liver damage and reversible anemia. No data were found on teratogenicity of this compound. Mutagenic data are limited and are regarded as confusing. Data resulting from studies of carcinogenicity of 2,4-dinitrotoluene point to a need for further testing for this property.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 2,4-dinitrotoluene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of 2,4-dinitrotoluene estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.000011 mg/l, 0.00011 mg/l, and 0.0011 mg/l, respectively.

Data on the behavior of 2,4-dinitrotoluene in a POTW are not available. However, biochemical oxidation of 2,4-dinitrophenol was investigated on a laboratory scale. At 100 mg/l of 2,4-dinitrotoluene, a concentration considerably higher than that expected in municipal wastewaters, biochemical oxidation by an acclimated, phenol-adapted seed culture produced 52 percent degradation in three hours. Based on this limited information and general observations relating molecular structure to ease of

degradation for all the toxic organic pollutants, it was concluded that biological treatment in a POTW removes 2,4-dinitrotoluene to a high degree or completely. No information is available regarding possible interference by 2,4-dinitrotoluene in POTW treatment processes, or on the possible detrimental effect on sludge used to ammend soils in which food crops are grown.

1,2-Diphenylhydrazine (37). Toxicity tests with 1,2-diphenylhydrazine and the bluegill and Daphnia magna indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 0.27 mg/l and would occur at lower concentrations among species that are more sensitive. No data are available concerning the chronic toxicity of 1,2-diphenylhydrazine to sensitive freshwater aquatic life.

For the maximum protection of human health from the potential carcinogenic effects due to exposure of diphenylhydrazine through ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentrations should be zero based on the non-threshold assumption for this chemical. However, zero level may not be attainable at the present time. Therefore, the levels which may result in incremental increase of cancer risk over the lifetime are estimated at 10^{-5} , 10^{-6} , and 10^{-7} . The corresponding recommended criteria are 0.00042 mg/l, 0.000042 mg/l, and 0.000004 mg/l, respectively. For consumption of aquatic organisms only, excluding consumption of water, the levels are 0.0056 mg/l, 0.00056 mg/l, and 0.000056 mg/l, respectively.

Diphenylhydrazine exists as an asymmetrical isomer, 1,1-diphenylhydrazine, and a symmetrical isomer, 1,2-diphenylhydrazine (hydrazobenzene). The hydrochloride of 1,1-diphenylhydrazine is used as a reagent for the sugars, arabinose and lactose. 1,2-Diphenylhydrazine is used in the synthesis of phenylbutazone and as the starting material in the manufacture of benzidine, an intermediate in the production of dyes.

In 1977 the commercial production of 1,2-diphenylhydrazine was in excess of 1,000 lbs. However, this figure is probably an underestimate of the amount of diphenylhydrazine that was actually available. Diphenylhydrazine is produced in several synthetic processes as an intermediate or as a contaminant, but it is not possible to estimate these quantities, which are probably substantial.

The reaction of 1,2-diphenylhydrazine with acid results in the benzidine rearrangement. In the stomach, 1,2-diphenylhydrazine can be converted into benzidene, a known human carcinogen.

No data were found on the environmental presence or persistence of diphenylhydrazines, except for one report of detection in drinking water at a concentration of 0.001 ma/1. Diphenylhydrazine and 1,2-diphenylhydrazine have been characterized as slightly soluble and insoluble in No quantitative data were found for the water respectively. of these solubilities and vapor pressures consequently, no predictions can be made about their persistence in water. 1,2-Diphenylhydrazine has a molecular weight of 184.24. It melts at 131°C and boils at 220°C.

No information on POTW removal efficiencies are available at this time.

Ethylbenzene (38). Ethylbenzene is a colorless, flammable liquid manufactured commercially from benzene and ethylene. Approximately half of the benzene used in the U.S. goes into the manufacture of more than three million tons of ethylbenzene annually. Ethylbenzene boils at 136°C and has a vapor pressure of 7 mm Hg at 20°C. It is slightly soluble in water (0.14 g/l at 15°C) and is very soluble in organic solvents.

About 98 percent of the ethylbenzene produced in the U.S. goes into the production of styrene, much of which is used in the plastics and synthetic rubber industries. Ethylbenzene is a constituent of xylene mixtures used as diluents in the paint industry, agricultural insecticide sprays, and gasoline blends.

Although humans are exposed to ethylbenzene from a variety of sources in the environment, little information on effects of ethylbenzene in man or animals is available. Inhalation can irritate eyes, affect the respiratory tract, or cause vertigo. In laboratory animals ethylbenzene exhibited low toxicity. There are no data available on teratogenicity, mutagenicity, or carcinogenicity of ethylbenzene.

Criteria are based on data derived from inhalation exposure limits. For the protection of human health from the toxic properties of ethylbenzene ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 1.4 mg/l.

Laboratory scale studies of the biochemical oxidation of ethylbenzene at concentrations greater than would normally be found in municipal wastewaters have demonstrated varying degrees of degradation. In one study with phenol-acclimated seed cultures, 27 percent degradation was observed in a half day at 250 mg/l ethylbenzene. Another study at unspecified conditions showed 32, 38, and 45 percent degradation after 5, 10, and 20 days, respectively. Based on these results and general observations relating

molecular structure of degradation, the conclusion was reached that biological treatment produces only moderate removal of ethylbenzene in a POTW by degradation.

Other studies suggest that most of the ethybenzene entering a POTW is removed from the aqueous stream to the sludge. The ethylbenzene contained in the sludge removed from the POTW may volatilize.

In addition, the most recent EPA study of the behavior of toxic organics in POTW indicates that ethylbenzene is approximately 84 percent removed.

Fluoranthene (39). Fluoranthene (1,2-benzacenaphthene) is one of the compounds called polynuclear aromatic hydrocarbons (PAH). A pale yellow solid at room temperature, it melts at 111° C and has a negligible vapor pressure at 25°C. Water solubility is low (0.2 mg/l). Its molecular formula is $C_{16}H_{10}$.

Fluoranthene, along with many other PAH's, is found throughout the environment. It is produced by pyrolytic processing of organic raw materials, such as coal and petroleum, at high temperature (coking processes). It occurs naturally as a product of plant biosyntheses. Cigarette smoke contains fluoranthene. Although it is not used as the pure compound in industry, it has been found at relatively higher concentrations (0.002 mg/l) than most other PAH's in at least one industrial effluent. Furthermore, in a 1977 EPA survey to determine levels of PAH in U.S. drinking water supplies, none of the 110 samples analyzed showed any PAH other than fluoranthene.

Experiments with laboratory animals indicate that fluoranthene presents a relatively low degree of toxic potential from acute exposure, including oral administration. Where death occurred, no information was reported concerning target organs or specific cause of death.

There is no epidemiological evidence to prove that PAH in general, and fluoranthene, in particular, present in drinking water are related to the development of cancer. The only studies directed toward determining carcinogenicity of fluoranthene have been skin tests on laboratory animals. Results of these tests show that fluoranthene has no activity as a complete carcinogen (i.e., an agent which produces cancer when applied by itself), but exhibits significant cocarcinogenicity (i.e., in combination with a carcinogen, it increases the carcinogenic activity).

For the protection of human health from the toxic properties of fluoranthene ingested through water and through contaminated

aquatic organisms, the ambient water criterion is determined to be 0.042 mg/l.

The available data for fluoranthene indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 3.980 mg/l and would occur at lower concentrations among species that are more sensitive than those tested.

Results of studies of the behavior of fluoranthene in conventional sewage treatment processes found in a POTW have been published. Removal of fluoranthene during primary sedimentation was found to be 62 to 66 percent (from an initial value of 0.00323 to 0.04435 mg/l to a final value of 0.00122 to 0.0146 mg/l), and the removal was 91 to 99 percent (final values of 0.00028 to 0.00026 mg/l) after biological purification with activated sludge processes.

A review was made of data on biochemical oxidation of many of the toxic organic pollutants investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of fluoranthene. The same study, however, concludes that fluoranthene would be readily removed by filtration and oil-water separation and other methods which rely on water insolubility, or adsorption on other particulate surfaces. This latter conclusion is supported by the previously cited study showing significant removal by primary sedimentation.

No studies were found to give data on either the possible interference of fluoranthene with POTW operation, or the persistance of fluoranthene in sludges or POTW effluent waters. Several studies have documented the ubiquity of fluoranthene in the environment and it cannot be readily determined if this results from persistence of anthropogenic fluoranthene or the replacement of degraded fluoranthene by natural processes such as biosynthesis in plants.

Methylene Chloride (44). Methylene chloride, also called dichloromethane (CH_2Cl_2), is a colorless liquid manufactured by chlorination of methane or methyl chloride followed by separation from the higher chlorinated methanes formed as coproducts. Methylene chloride boils at 40°C, and has a vapor pressure of 362 mm Hg at 20°C. It is slightly soluble in water (20 g/l at 20°C), and very soluble in organic solvents. U.S. annual production is about 250,000 tons.

Methylene chloride is a common industrial solvent found in insecticides, metal cleaners, paint, and paint and varnish removers.

Methylene chloride is not generally regarded as highly toxic to humans. Most human toxicity data are for exposure by inhalation. Inhaled methylene chloride acts as a central nervous system depressant. There is also evidence that the compound causes heart failure when large amounts are inhaled.

Methylene chloride does produce mutation in tests for this In addition, a bioassay recognized for its extremely effect. high sensitivity to strong and weak carcinogens produced results Thus potential which were marginally significant. carcinogenic effects of methylene chloride are not confirmed or denied, but are under continuous study. These studies are difficult to conduct for two reasons. First, the low boiling point (40°C) of methylene chloride makes it difficult to maintain the compound at 37°C during incubation. Secondly, all impurities must be removed because the impurities themselves may be carcinogenic. complications also make the test results difficult to interpret.

For the protection of human health from the potential carcinogenic effects due to exposure to methylene chloride through ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero based on the non-threshold assumption for this chemical. However, zero level may not be attainable at the present time. Therefore, the levels hwich may result in incremental increase of cancer risk over the lifetime are estimated at 10^{-5} , 10^{-6} and 10^{-7} . The corresponding recommended criteria are 0.0019 mg/l, 0.00019 mg/l, and 0.000019 mg/l.

The behavior of methylene chloride in POTW has not been studied in any detail. However, the biochemcial oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After five days no degradation of methylene chloride was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of methylene chloride in POTW.

The high vapor pressure of methylene chloride is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. It has been reported that methylene chloride inhibits anaerobic processes in a POTW. Methylene chloride that is not volatilized in the POTW is expected to pass through into the effluent.

The most recent EPA study of POTW removal of toxic organics indicates that methylene chloride is approximately 58 percent removed.

Isophorone (54). Isophorone is an industrial chemical produced at a level of tens of millions of pounds annually in the U.S. The chemical name for isophorone is 3,5,5-trimethyl-2cyclohexenlone and it is also known as trimethyl cyclohexanone and iso-acetophorone. The formula is $C_6H_5(CH_3)_3O$. Normally, it is produced as the gamma isomer; technical grades contain about 3 percent of the beta isomer (3,5,5-trimethyl-3-cyclohexen-1-one). cyclohexen-1-one). The pure gamma isomer is a water-white liquid, with vapor pressure less than 1 mm Hg at room temperature, and a boiling point of 215.2° C. It has a camphor- or peppermint-like odor and yellows upon standing. It is slightly soluble (12 mg/l) in water and dissolves in fats and oils.

Isophorone is synthesized from acetone and is used commercially as a solvent or cosolvent for finishes, lacquers, polyvinyl and nitrocellulose resins, pesticides, herbicides, fats, oils, and gums. It is also used as a chemical feedstock.

Because isophorone is an industrially used solvent, most toxicity data are for inhalation exposure. Oral administration to laboratory animals in two different studies revealed no acute or chronic effects during 90 days, and no hematological or pathological abnormalities were reported. Apparently, no studies have been completed on the carcinogenicity of isophorone.

Isophorone does undergo bioconcentration in the lipids of aquatic organisms and fish.

Based on subacute data, the ambient water quality criterion for isophorone ingested through consumption of water and organisms is set at 5.2 mg/l for the protection of human health from its toxic properties.

Studies of the effects of isophorone on fish and aquatic organisms reveal relatively low toxicity, compared to some other toxic pollutants.

The behavior of isophorone in a POTW has not been studied. However, the biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by the study of the limited data is that biochemical treatment in a POTW produces moderate removal of isophorone. This conclusion is consistent with the

findings of an experimental study of microbiological degradation of isophorone which showed about 45 percent oxidation in 15 to 20 days in domestic wastewater, but only 9 percent in salt water. No data were found on the persistence of isophorone in sewage sludge.

Naphthalene (55). Naphthalene is an aromatic hydrocarbon with two orthocondensed benzene rings and a molecular formula of As such it is properly classed as a polynuclear hydrocarbon (PAH). Pure naphthalene is a white crystalline solid 80°C. For a solid, it has a relatively high vapor pressure (0.05 mm Hg at 20°C), and moderate water solubility (19 mg/l at 20°C). Napthalene is the most abundant single component of coal tar. Production is more than a third of a million tons the U.S. About three fourths of the production is annually in used as feedstock for phthalic anhydride manufacture. remaining production goes into manufacture of insecticide, dyestuffs, pigments, and pharmaceuticals. Chlorinated partially hydrogenated naphthalenes are used in some solvent mixtures. Naphthalene is also used as a moth repellent.

Naphthalene, ingested by humans, has reportedly caused vision loss (cataracts), hemolytic anemia, and occasionally, renal disease. These effects of naphthalene ingestion are confirmed by studies on laboratory animals. No carcinogenicity studies are available which can be used to demonstrate carcinogenic activity for naphthalene. Naphthalene does bioconcentrate in aquatic organisms.

There are insufficient data on which to base any ambient water criterion.

Only a limited number of studies have been conducted to determine the effects of naphthalene on aquatic organisms. The data from those studies show only moderate toxicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces a high removal by degradation of naphthalene. One recent study has shown that microorganisms can degrade naphthalene, first to a dihydro compound, and ultimately to carbon dioxide and water.

Naphthalene has been detected in sewage plant effluents at concentrations up to 0.022 mg/l in studies carried out by the U.S. EPA. Influent levels were not reported. The most recent EPA

study of the behavior of toxic organics in POTW indicates that naphthalene is approximately 61 percent removed.

<u>4-Nitrophenol</u> (58). 4-Nitrophenol (NO₂C₆H₄OH), also called paranitrophenol, is a colorless to yellowish crystalline solid manufactured commercially by hydrolysis of 4-chloro-nitrobenzene with aqueous sodium hydroxide. 4-Nitrophenol melts at 114°C. Vapor pressure is not cited in the usual sources. 4-Nitrophenol is slightly soluble in water (15 g/l at 25°C) and soluble in organic solvents. This phenol does not react to give a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is about 20,000 tons.

Paranitrophenol is used to prepare phenetidine, acetaphenetidine, azo and sulfur dyes, photochemicals, and pesticides.

The toxic effects of 4-nitrophenol on humans have not been extensively studied. Data from experiments with laboratory animals indicate that exposure to this compound results in methmoglobinemia (a metabolic disorder of blood), shortness of breath, and stimulation followed by depression. Other studies indicate that the compound acts directly on cell membranes, and inhibits certain enzyme systems in vitro. No information regarding potential teratogenicity was found. Available data indicate that this compound does not pose a mutagenic hazard to humans. Very limited data for 4-nitrophenol do not reveal potential carcinogenic effects, although the compound has been selected by the national cancer institute for testing under the Carcinogenic Bioassay Program.

No U.S. standards for exposure to 4-nitrophenol in ambient water have been established.

Data on the behavior of 4-nitrophenol in a POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation using adapted cultures from various sources produced 95 percent degradation in three to six days in one study. Similar results were reported for other studies. Based on these data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that complete or nearly complete removal of 4-nitrophenol occurs during biological treatment in a POTW.

2,4,-Dinitrophenol (59). 2,4-Dinitrophenol [(NO₂)₂C₆H₈OH], a yellow crystalline solid, is manufactured commercially by hydrolysis of 2,4-dinitro-1-chlorobenzene with sodium hydroxide. 2,4-Dinitrophenol sublimes at 114° C. Vapor pressure is not cited in usual sources. It is slightly soluble in water (7.0 g/l

at 25° C) and soluble in organic solvents. This phenol does not react with 4-aminoantipyrene and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is about 500 tons.

2,4-Dinitrophenol is used to manufacture sulfur and azo dyes, photochemicals, explosives, and pesticides.

The toxic effects of 2,4-dinitrophenol in humans is generally attributed to their ability to uncouple oxidative phosphorylation. In brief, this means that sufficient 2,4-dinitrophenol short-circuits cell metabolism by preventing utilization of energy provided by respiration and glycolysis. Specific symptoms are gastrointestinal disturbances, weakness, dizziness, headache, and loss of weight. More acute poisoning includes symptoms such as: burning thirst, agitation, irregular breathing, and abnormally high fever. This compound also inhibits other enzyme systems; and acts directly on the cell membrane, inhibiting chloride permeability. Ingestion of 2,4-dinitrophenol also causes cataracts in humans.

Based on available data it appears unlikely that 2,4-dinitrophenol poses a teratogenic hazard to humans. Results of studies of mutagenic activity of this compound are inconclusive as far as humans are concerned. Available data suggest that 2,4-dinitrophenol does not possess carcinogenic properties.

To protect human health from the adverse effects of 2,4-dinitrophenol ingested in contaminated water and fish, the suggested water quality criterion is 0.070~mg/l.

Data on the behavior of 2,4-dinitrophenol in a POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation using a phenoladapted seed culture produced 92 percent degradation in 3.5 hours. Similar results were reported for other studies. Based on these data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that complete or nearly complete removal of 2,4-dinitrophenol occurs during biological treatment in a POTW.

4,6-Dinitro-o-cresol (60). 4,6-Dinitro-o-cresol (DNOC) is a yellow crystalline solid derived from o-cresol. DNOC melts at 85.8° C and has a vapor pressure of 0.000052 mm Hg at 20° C. DNOC is sparingly soluble in water (100 mg/l at 20° C), while it is readily soluble in alkaline aqueous solutions, ether, acetone, and alcohol. DNOC is produced by sulfonation of o-cresol followed by treatment with nitric acid.

DNOC is used primarily as a blossom thinning agent on fruit trees and as a fungicide, insecticide, and miticide on fruit trees during the dormant season. It is highly toxic to plants in the growing stage. DNOC is not manufactured in the U.S. as an agricultural chemical. Imports have been decreasing recently with only 30,000 lbs being imported in 1976.

While DNOC is highly toxic to plants, it is also very toxic to humans and is considered to be one of the more dangerous agricultural pesticides. The available literature concerning humans indicates that DNOC may be absorbed in acutely toxic amounts through the respiratory and gastrointestinal tracts and through the skin, and that it accumulates in the blood. Symptoms of poisoning include profuse sweating, thirst, loss of weight, headache, malaise, and yellow staining to the skin, hair, sclera, and conjunctiva.

There is no evidence to suggest that DNOC is teratogenic, mutagenic, or carcinogenic. The effects of DNOC in the human due to chronic exposure are basically the same as those effects resulting from acute exposure. Although DNOC is considered a cumulative poison in humans, cataract formation is the only chronic effect noted in any human or experimental animal study. It is believed that DNOC accumulates in the human body and that toxic symptoms may develop when blood levels exceed 20 mg/kg.

For the protection of human health from the toxic properties of dinitro-o-cresol ingested through water and contaminated aquatic organisms, the ambient water criterion is determined to be $0.0134\,\mathrm{mg/l}$. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is determined to be $0.765\,\mathrm{mg/l}$. No data are available on which to evaluate the adverse effects of 4,6-dinitro-o-cresol on aquatic life.

Some studies have been reported regarding the behavior of DNOC in POTW. Biochemical oxidation of DNOC under laboratory conditions at a concentration of 100 mg/l produced 22 percent degradation in 3.5 hours, using acclimated phenol adapted seed cultures. In addition, the nitro group in the number 4 (para) position seems to impart a destabilizing effect on the molecule. Based on these data and general conclusions relating molecular structure to biochemical oxidation, it is expected that 4,6-dinitro-o-cresol will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in POTW.

N-nitrosodiphenylamine (62). N-nitrosodiphenylamine $[(C_6H_5)_2NNO]$, also called nitrous diphenylamide, is a yellow crystalline solid manufactured by nitrosation of diphenylamine. It melts at 66°C and is insoluble in water, but soluble in

several organic solvents other than hydrocarbons. Production in the U.S. has approached 1,500 tons per year. The compound is used as a retarder for rubber vulcanization and as a pesticide for control of scorch (a fungus disease of plants).

N-nitroso compounds are acutely toxic to every animal species tested and are also poisonous to humans. N-nitrosodiphenylamine toxicity in adult rats lies in the mid range of the values for 60 N-nitroso compounds tested. Liver damage is the principal toxic effect. N-nitrosodiphenylamine, unlike many other N-nitroso-amines, does not show mutagenic activity. N-nitrosodiphenylamine has been reported by several investigations to be non-carcinogenic. However, the compound is capable of trans-nitrosation and could thereby convert other amines to carcinogenic N-nitroso-amines. Sixty-seven of 87 N-nitrosoamines studied were reported to have carcinogenic activity. No water quality criterion have been proposed for N-nitrosodiphenylamine.

data are available on the behavior of N-nitrosodiphenylamine in a POTW. Biochemical oxidation of many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained in most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no removal of N-nitrosodiphenylamine in a POTW. No information is available regarding possible interference by N-nitrosodiphenylamine in POTW processes, or on the possible detrimental effect on sludge used to amend soils in which crops are grown. However, no interference or detrimental effects are expected because N-nitroso compounds are widely distributed in the soil and water environment, at low concentrations, as a result of microbial action on nitrates nitrosatable compounds.

Pentachlorophenol (64). Pentachlorophenol (C_6Cl_5OH) is a white crystalline solid produced commercially by chlorination of phenol or polychlorophenols. U.S. annual production is in excess of 20,000 tons. Pentachlorophenol melts at 190°C and is slightly soluble in water (14 mg/l). Pentachlorophenol is not detected by the 4-amino antipyrene method.

Pentachlorophenol is a bactericide and fungicide and is used for preservation of wood and wood products. It is competitive with creosote in that application. It is also used as a preservative in glues, starches, and photographic papers. It is an effective algicide and herbicide.

Although data are available on the human toxicity effects of pentachlorophenol, interpretation of data is frequently uncertain. Occupational exposure observations must be examined carefully because exposure to pentachlorophenol is frequently accompanied by exposure to other wood preservatives. Additionally, experimental results and occupational exposure observations must be examined carefully to make sure that observed effects are produced by the pentachlorophenol itself and not by the by-products which usually contaminate pentachlorophenol.

Acute and chronic toxic effects of pentachlorophenol in humans are similar; muscle weakness, headache, loss of appetite, abdominal pain, weight loss, and irritation of skin, eyes, and respiratory tract. Available literature indicates that pentachlorophenol does not accumulate in body tissues to any significant extent. Studies on laboratory animals of distribution of the compound in body tissues showed the highest levels of pentachlorophenol in liver, kidney, and intestine, while the lowest levels were in brain, fat, muscle, and bone.

Toxic effects of pentachlorophenol in aquatic organisms are much greater at pH 6 where this weak acid is predominantly in the undissociated form than at pH 9 where the ionic form predominates. Similar results were observed in mammals where oral lethal doses of pentachlorophenol were lower when the compound was administered in hydrocarbon solvents (un-ionized form) than when it was administered as the sodium salt (ionized form) in water.

There appear to be no significant teratogenic, mutagenic, or carcinogenic effects of pentachlorophenol.

For the protection of human health from the toxic properties of pentachlorophenol ingested through water and through contaminated aquatic organisms, the derived level is determined to be 1.01 mg/1.

Some data are available on the behavior of pentachlorophenol in a POTW. Pentachlorophenol has been found in the influent to a POTW. In a study of one POTW the mean removal was 59 percent over a seven day period. Trickling filters removed 44 percent at the influent pentachlorophenol, suggesting that biological degradation occurs. The same report compared removal of pentachlorophenol at the same plant and two additional POTW facilities on a later date and obtained values of 4.4, 19.5 and 28.6 percent removal, the last value being for the plant which was 59 percent removal in the original study. Influent concentrations of pentachlorophenol ranged from 0.0014 to 0.0046 mg/l. Other studies, including the general review of data relating molecular structure to biological oxidation, indicate that pentachlorophenol is not

removed by biological treatment processes in a POTW. Anaerobic digestion processes are inhibited by 0.4 mg/l pentachlorophenol. The most recent EPA study of the behavior of toxic organics in a POTW indicates that pentachlorophenol is 52 percent removed.

The low water solubility and low volatility of pentachlorophenol lead to the expectation that most of the compound will remain in the sludge in a POTW. The effect on plants grown on land treated with pentachlorophenol-containing sludge is unpredictable. Laboratory studies show that this compound affects crop germination at 5.4 mg/l. However, photodecomposition of pentachlorophenol occurs in sunlight. The effects of the various breakdown products which may remain in the soil was not found in the literature.

Phenol (65). Phenol, also called hydroxybenzene and carbolic acid, is a clear, colorless, hygroscopic, deliquescent, crystalline solid at room temperature. Its melting point is 43°C and its vapor pressure at room temperature is 0.35 mm Hg. It is very soluble in water (67 g/l at 16°C) and can be dissolved in benzene, oils, and petroleum solids. Its formula is C_6H_5OH .

Although a small percent of the annual production of phenol is derived from coal tar as a naturally occuring product, most of the phenol is synthesized. Two of the methods are fusion of benzene sulfonate with sodium hydroxide, and oxidation of cumene followed by cleavage with a catalyst. Annual production in the U.S. is in excess of one million tons. Phenol is generated during distillation of wood and the microbiological decomposition of organic matter in the mammalian intestinal tract.

Phenol is used as a disinfectant, in the manufacture of resins, dyestuffs, and in pharmaceuticals, and in the photo processing industry. In this discussion, phenol is the specific compound which is separated by methylene chloride extraction of an acidified sample and identified and quantified by GC/MS. Phenol also contributes to the "Total Phenols," discussed elsewhere which are determined by the 4-AAP colorimetric method.

Phenol exhibits acute and sub-acute toxicity in humans and laboratory animals. Acute oral doses of phenol in humans cause sudden collapse and unconsciousness by its action on the central nervous system. Death occurs by respiratory arrest. Sub-acute oral doses in mammals are rapidly absorbed and quickly distributed to various organs, then cleared from the body by urinary excretion and metabolism. Long term exposure by drinking phenol contaminated water has resulted in statistically significant increase in reported cases of diarrhea, mouth sores, and burning of the mouth. In laboratory animals, long term oral administration at low levels produced slight liver and kidney damage. No

reports were found regarding carcinogenicity of phenol administered orally - all carcinogenicity studies were skin test.

For the protection of human health from phenol ingested through water and through contaminated aquatic organisms, the concentration in water should not exceed 3.5 mg/l.

Fish and other aquatic organisms demonstrated a wide range of sensitivities to phenol concentration. However, acute toxicity values were at moderate levels when compared to other toxic organic pollutants.

Data have been developed on the behavior of phenol in a POTW. Phenol is biodegradable by biota present in a POTW. The ability of a POTW to treat phenol-bearing influents depends upon acclimation of the biota and the constancy of the phenol concentration. It appears that an induction period is required to build up the population of organisms which can degrade phenol. Too large a concentration will result in upset or pass though in the POTW, but the specific level causing upset depends on the immediate past history of phenol concentrations in the influent. Phenol levels as high as 200 mg/l have been treated with 95 percent removal in a POTW, but more or less continuous presence of phenol is necessary to maintain the population of microorganisms that degrade phenol.

Phenol which is not degraded is expected to pass through the POTW because of its very high water solubility. However, in a POTW where chlorination is practiced for disinfection of the POTW effluent, chlorination of phenol may occur. The products of that reaction may be toxic pollutants.

The EPA has developed data on influent and effluent concentrations of total phenols in a study of 103 POTW facilities. However, the analytical procedure was the 4-AAP method mentioned earlier and not the GC/MS method specifically for phenol. Discussion of the study, which of course includes phenol, is presented under the pollutant heading "Total Phenols." The most recent study by EPA on the behavior of toxic organics in a POTW indicates that phenol is 96 percent removed.

Phthalate Esters (66-71). Phthalic acid, or 1,2-benzene-dicarboxylic acid, is one of three isomeric benzenedicarboxylic acids produced by the chemical industry. The other two isomeric forms are called isophthalic and terephthalic acids. The formula for all three acids is $C_6H_4(COOH)_2$. Some esters of phthalic acid are designated as toxic pollutants. They will be discussed as a group here, and specific properties of individual phthalate esters will be discussed afterwards.

Phthalic acid esters are manufactured in the U.S. at an annual rate in excess of one billion pounds. They are used as plasticizers - primarily in the production of polyvinyl chloride (PVC) resins. The most widely used phthalate plasticizer is bis (2-ethylhexyl) phthalate (66) which accounts for nearly one-third of the phthalate esters produced. This particular ester is commonly referred to as dioctyl phthalate (DOP) and should not be confused with one of the less used esters, di-n-octyl phthalate (69), which is also used as a plasticizer. In addition to these two isomeric dioctyl phthalates, four other esters, also used primarily as plasticizers, are designated as toxic pollutants. They are: butyl benzyl phthalate (67), di-n-butyl phthalate (68), diethyl phthalate (70), and dimethyl phthalate (71).

Industrially, phthalate esters are prepared from phthalic anhydride and the specific alcohol to form the ester. Some evidence is available suggesting that phthalic acid esters also may be synthesized by certain plant and animal tissues. The extent to which this occurs in nature is not known.

Phthalate esters used as plasticizers can be present in concentrations up to 60 percent of the total weight of the PVC plastic. The plasticizer is not linked by primary chemical bonds to the PVC resin. Rather, it is locked into the structure of intermeshing polymer molecules and held by van der Waals forces. The result is that the plasticizer is easily extracted. Plasticizers are responsible for the odor associated with new plastic toys or flexible sheet that has been contained in a sealed package.

Although the phthalate esters are not soluble or are only very slightly soluble in water, they do migrate into aqueous solutions placed in contact with the plastic. Thus, industrial facilities with tank linings, wire and cable coverings, tubing, and sheet flooring of PVC are expected to discharge some phthalate esters in their raw waste. In addition to their use as plasticizers, phthalate esters are used in lubricating oils and pesticide carriers. These also can contribute to industrial discharge of phthalate esters.

From the accumulated data on acute toxicity in animals, phthalate esters may be considered as having a rather low order of toxicity. Human toxicity data are limited. It is thought that the toxic effect of the esters is most likely due to one of the metabolic products, in particular the monoester. Oral acute toxicity in animals is greater for the lower molecular weight esters than for the higher molecular weight esters.

Orally administered phthalate esters generally produced enlarging of liver and kidney, and atrophy of testes in laboratory animals.

Specific esters produced enlargement of heart and brain, spleenitis, and degeneration of central nervous system tissue.

Subacute doses administered orally to laboratory animals produced some decrease in growth and degeneration of the testes. Chronic studies in animals showed similar effects to those found in acute and subacute studies, but to a much lower degree. The same organs were enlarged, but pathological changes were not usually detected.

A recent study of several phthalic esters produced suggestive but not conclusive evidence that dimethyl and diethyl phthalates have a cancer liability. Only four of the six toxic pollutant esters were included in the study. Phthalate esters do bioconcentrate in fish. The factors, weighted for relative consumption of various aquatic and marine food groups, are used to calculate ambient water quality criteria for four phthalate esters. The values are included in the discussion of the specific esters.

Studies of toxicity of phthalate esters in freshwater and salt water organisms are scarce. A chronic toxicity test with bis(2-ethylhexyl) phthalate showed that significant reproductive impairment occurred at 0.003 mg/l in the freshwater crustacean, Daphnia magna. In acute toxicity studies, saltwater fish and organisms showed sensitivity differences of up to eight-fold to butyl benzyl, diethyl, and dimethyl phthalates. This suggests that each ester must be evaluated individually for toxic effects.

The biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal Three of the phthalate esters were studied. Bis(2wastewaters. ethylhexyl) phthalate was found to be degraded slightly or not at all and its removal by biological treatment in a POTW is expected to be slight or zero. Di-n-butyl phthalate and diethyl phthalate were degraded to a moderate degree and their removal by biological treatment in a POTW is expected to occur to a moderate degree. Using these data and other observations relating molecustructure to ease of biochemical degradation of other toxic organic pollutants, the conclusion was reached that butyl benzyl phthalate and dimethyl phthalate would be removed in a POTW to a moderate degree by biological treatment. On the same basis, it was concluded that di-n-octyl phthalate would be removed to a slight degree or not at all. An EPA study of seven POTW facilities revealed that for all but di-n-octyl phthalate, which was not studied, removals ranged from 62 to 87 percent. The most recent EPA study of the behavior of toxic organics in POTW indicates removals ranging from 48 percent to 81 percent for the six phthalate esters designated as toxic pollutants.

No information was found on possible interference with POTW operation or the possible effects on sludge by the phthalate esters. The water insoluble phthalate esters - butyl benzyl and di-n-octyl phthalate - would tend to remain in sludge, whereas the other four toxic pollutant phthalate esters with water solubilities ranging from 50~mg/l to 4.5~mg/l would probably pass through into the POTW effluent.

Bis(2-ethylhexyl) phthalate (66). In addition to the general remarks and discussion on phthalate esters, specific information on bis(2-ethylhexyl) phthalate is provided. Little information is available about the physical properties of bis(2-ethylhexyl) phthalate. It is a liquid boiling at 387°C at 5mm Hg and is insoluble in water. Its formula is $C_6H_4(COOC_8H_{17})_2$. This toxic pollutant constitutes about one-third of the phthalate ester production in the U.S. It is commonly referred to as dioctyl phthalate, or DOP, in the plastics industry where it is the most extensively used compound for the plasticization of polyvinyl chloride (PVC). Bis(2-ethylhexyl) phthalate has been approved by the FDA for use in plastics in contact with food. Therefore, it may be found in wastewaters coming in contact with discarded plastic food wrappers as well as the PVC films and shapes normally found in industrial plants. This toxic pollutant is also a commonly used organic diffusion pump oil, where its low vapor pressure is an advantage.

For the protection of human health from the toxic properties of bis(2-ethylhexyl) phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 15 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criteria is determined to be 50 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewater. In fresh water with a non-acclimated seed culture no biochemical oxidation was observed after 5, 10, and 20 days. However, with an acclimated seed culture, biological oxidation occured to the extents of 13, 0, 6, and 23 percent of theoretical after 5, 10, 15 and 20 days, respectively. Bis(2-ethylhexyl) phthalate concentrations were 3 to 10 mg/l. Little or no removal of bis(2-ethylhexyl) phthalate by biological treatment in a POTW is expected. The most recent EPA study of the behavior of toxic organics in a POTW indicates that bis(2-ethylhexyl) phthalate is 62 percent removed.

<u>Butyl</u> <u>Benzyl</u> <u>Phthalate (67)</u>. In addition to the general remarks and discussion on phthalate esters, specific information on butyl benzyl phthalate is provided. No information was found on the physical properties of this compound.

Butyl benzyl phthalate is used as a plasticizer for PVC. Two special applications differentiate it from other phthalate esters. It is approved by the U.S. FDA for food contact in wrappers and containers; and it is the industry standard for plasticization of vinyl flooring because it provides stain resistance.

No ambient water quality criterion is proposed for butyl benzyl phthalate.

Butyl benzyl phthalate removal in a POTW by biological treatment is expected to occur to a moderate degree. The most recent EPA study of the behavior of toxic organics in POTW indicates that butyl benzyl phthalate is 59 percent removed.

<u>Di-n-butyl phthalate (68)</u>. In addition to the general remarks and discussion on phthalate esters, specific information on di-n-butyl phthalate (DBP) is provided. DBP is a colorless, oil liquid, boiling at 340° C. Its water solubility at room temperature is reported to be 0.4 g/l and 4.5 g/l in two different chemistry handbooks. The formula for DBP, $C_6H_4(COOC_4H_9)_2$ is the same as for its isomer, di-isobutyl phthalate. DBP production is 1 to 2 percent of total U.S. phthalate ester production.

Dibutyl phthalate is used to a limited extent as a plasticizer for polyvinyl chloride (PVC). It is not approved for contact with food. It is used in liquid lipsticks and as a diluent for polysulfide dental impression materials. DBP is used as a plasticizer for nitrocellulose in making gun powder, and as a fuel in solid propellants for rockets. Further uses are insecticides, safety glass manufacture, textile lubricating agents, printing inks, adhesives, paper coatings, and resin solvents.

For protection of human health from the toxic properties of dibutyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 34 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 154 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 35, 43, and 45 percent of theoretical oxidation were obtained after 5, 10, and 20 days, respectively, using sewage microorganisms as an unacclimated seed culture.

Biological treatment in a POTW is expected to remove di-n-butyl phthalate to a moderate degree. The most recent EPA study of the

behavior of toxic organics in a POTW indicates that di-n-butyl phthalate is 48 percent removed.

<u>Di-n-octyl</u> <u>phthalate</u> (69). In addition to the general remarks and discussion on phthalate esters, specific information on di-n-octyl phthalate is provided. Di-n-octyl phthalate is not to be confused with the isomeric bis(2-ethylhexyl) phthalate which is commonly referred to in the plastics industry as DOP. Di-n-octyl phthalate is a liquid which boils at 220°C at 5 mm Hg. It is insoluble in water. Its molecular formula is $C_6H_4(COOC_8H_{17})_2$. Its production constitutes about 1 percent of all phthalate ester production in the U.S.

Industrially, di-n-octyl phthalate is used to plasticize polyvinyl chloride (PVC) resins.

No ambient water quality criterion is proposed for di-n-octyl phthalate.

Biological treatment in a POTW is expected to lead to little or no removal of di-n-octyl phthalate. The most recent EPA study of the behavior of toxic organics in POTW indicates that di-n-octyl phthalate is 81 percent removed.

<u>Diethyl</u> <u>phthalate</u> (70). In addition to the general remarks and discussion on phthalate esters, specific information on diethyl phthalate is provided. Diethyl phthalate, or DEP, is a colorless liquid boiling at 296° C, and is insoluble in water. Its molecular formula is $C_6H_4(COOC_2H_5)_2$. Production of diethyl phthalate constitutes about 1.5 percent of phthalate ester production in the U.S.

Diethyl phthalate is approved for use in plastic food containers by the U.S. FDA. In addition to its use as a polyvinyl chloride (PVC) plasticizer, DEP is used to plasticize cellulose nitrate for gun powder, to dilute polysulfide dental impression materials, and as an accelerator for dyeing triacetate fibers. An additional use which would contribute to its wide distribution in the environment is as an approved special denaturant for ethyl The alcohol-containing products for which DEP is an approved denaturant include a wide range of personal care such as bath preparations, bay rum, colognes, hair preparations, face and hand creams, perfumes and toilet soaps. Additionally, this denaturant is approved for use in biocides, cleaning solutions, disinfectants, insecticides, fungicides, and room deoderants which have ethyl alcohol as part of the formulation. It is expected, therefore, that people and buildings would have some surface loading of this toxic pollutant which would find its way into raw wastewaters.

For the protection of human health from the toxic properties of diethyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 350 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 1,800 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 79, 84, and 89 percent of theoretical was observed after 5, 15, and 20 days respectively. Biological treatment in a POTW is expected to lead to a moderate degree of removal of diethyl phthalate. The most recent EPA study of the behavior of toxic organics in POTW indicates that diethyl phthalate is 74 percent removed.

Dimethyl Phthalate (71). In addition to the general remarks and discussion on phthalate esters, specific information on dimethyl phthalate (DMP) is provided. DMP has the lowest molecular weight of the phthalate esters – M.W. = 194 compared to M.W. of 391 for bis(2-ethylhexyl) phthalate. DMP has a boiling point of 282°C. It is a colorless liquid, soluble in water to the extent of 5 mg/l. Its molecular formula is $C_6H_4((C)CH_3)_2$.

Dimethyl phthalate production in the U.S. is just under one percent of total phthalate ester production. DMP is used to some extent as a plasticizer in cellulosics; however, its principal specific use is for dispersion of polyvinylidene fluoride (PVDF). PVDF is resistant to most chemicals and finds use as electrical insulation, chemical process equipment (particularly pipe), and as a case for long-life finishes for exterior metal siding. Coil coating techniques are used to apply PVDF dispersions to aluminum or galvanized steel siding.

For the protection of human health from the toxic properties of dimethyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 313 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 2,900 mg/l.

Based on limited data and observations relating molecular structure to ease of biochemical degradation of other toxic organic pollutants, it is expected that dimethyl phthalate will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in a POTW. The most recent EPA study of the behavior of toxic organics in a POTW indicates that dimethyl phthalate is 50 percent removed.

Polynuclear Aromatic Hydrocarbons (72-84). The polynuclear aromatic hydrocarbons (PAH) selected as toxic pollutants are a group of 13 compounds consisting of substituted and unsubstituted polycyclic aromatic rings. The general class of PAH includes heterocyclics, but none of those were selected as toxic pollutants. PAH are formed as the result of incomplete combustion when organic compounds are burned with insufficient oxygen. PAH are found in coke oven emissions, vehicular emissions, and volatile products of oil and gas burning. The compounds chosen as toxic pollutants are listed with their structural formula and melting point (m.p.). All are insoluble in water.

72 Benzo(a)anthracene (1,2-benzanthracene) m.p. 162°C

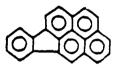
- 73 Benzo(a)pyrene (3,4-benzopyrene) m.p. 176°C
- 74 3,4-Benzofluoranthene m.p. 168°C
- 75 Benzo(k)fluoranthene (11,12-benzofluoranthene) m.p. 217 C
- 76 Chrysene (1,2-benzphenanthrene) m.p. 255°C
- 77 Acenaphthylene HC = CH m.p. 92°C
- 78 Anthracene m.p. 216°C
- 79 Benzo(ghi)perylene (1,12-benzoperylene) m.p. not reported

Fluorene (alpha-diphenylenemethane) 80

m.p. 116°C

81 Phenanthrene

m.p. 101°C


82 Dibenzo(a,h)anthracene (1,2,5,6dibenzoanthracene)

m.p. 269°C

83 Indeno m.p. not available (1,2,3-cd)pyrene

(2,3-o-phenylenepyrene)

m.p. 156°C

Some of these toxic pollutants have commercial or uses. Benzo(a)anthracene, benzo(a)pyrene, chrysene, anthracene, dibenzo(a,h)anthracene, and pyrene are all used as antioxidants. Chrysene, acenaphthylene, anthracene, fluorene, phenanthrene, and pyrene are all used for synthesis of dyestuffs or other organic chemicals. 3,4-Benzofluoranthrene, benzo(k)fluoranthene, benzo-(ghi)perylene, and indeno (1,2,3-cd)pyrene have no known industrial uses, according to the results of a recent literature search.

Several of the PAH toxic pollutants are found in smoked meats, in smoke flavoring mixtures, in vegetable oils, and in coffee. Consequently, they are also found in many drinking water supplies. The wide distribution of these pollutants in complex mixtures with the many other PAHs which have not been designated as toxic pollutants results in exposures by humans that cannot be associated with specific individual compounds.

The screening and verification analysis procedures used for the toxic organic pollutants are based on gas chromatography (GC). Three pairs of the PAH have identical elution times on the column specified in the protocol, which means that the parameters of the pair are not differentiated. For these three pairs anthracene

(78) - phenanthrene (81); 3,4-benzofluoranthene (74) - benzo(k)-fluoranthene (75); and benzo(a)anthracene (72) - chrysene (76) results are obtained and reported as "either-or." Either both are present in the combined concentration reported, or one is present in the concentration reported.

There are no studies to document the possible carcinogenic risks to humans by direct ingestion. Air pollution studies indicate an excess of lung cancer mortality among workers exposed to large amounts of PAH containing materials such as coal gas, tars, and coke-oven emissions. However, no definite proof exists that the PAH present in these materials are responsible for the cancers observed.

Animal studies have demonstrated the toxicity of PAH by oral and dermal administration. The carcinogenicity of PAH has been traced to formation of PAH metabolites which, in turn, lead to tumor formation. Because the levels of PAH which induce cancer are very low, little work has been done on other health hazards resulting from exposure. It has been established in animal studies that tissue damage and systemic toxicity can result from exposure to non-carcinogenic PAH compounds.

Because there were no studies available regarding chronic oral exposures to PAH mixtures, proposed water quality criteria were derived using data on exposure to a single compound. Two studies were selected, one involving benzo(a)pyrene ingestion and one involving dibenzo(a,h)anthracene ingestion. Both are known animal carcinogens.

For the maximum protection of human health from the potential carcinogenic effects of exposure to polynuclear aromatic hydrocarbons (PAH) through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of PAH estimated to result in additional risk of 1 in 100,000 were derived by the EPA and the Agency is considering setting criteria at an interim target risk level in the range of 10^{-7} , 10^{-6} , or 10^{-5} with corresponding criteria of 2.8 x 10^{-7} mg/l, 2.8 x 10^{-6} mg/l, and 2.8 x 10^{-5} mg/l, respectively.

No standard toxicity tests have been reported for freshwater or saltwater organisms and any of the 13 PAH discussed here.

The behavior of PAH in a POTW has received only a limited amount of study. It is reported that up to 90 percent of PAH entering a POTW will be retained in the sludge generated by conventional sewage treatment processes. Some of the PAH can inhibit bacterial growth when they are present at concentrations as low as 0.018 mg/l. Biological treatment in activated sludge units has been shown to reduce the concentration of phenanthrene and

anthracene to some extent; however, a study of biochemical oxidation of fluorene on a laboratory scale showed no degradation after 5, 10, and 20 days. On the basis of that study and studies of other toxic organic pollutants, some general observations were made relating molecular structure to ease of degradation. Those observations lead to the conclusion that the 13 PAH selected to represent that group as toxic pollutants will be removed only slightly or not at all by biological treatment methods in a POTW. Based on their water insolubility and tendency to attach to sediment particles very little pass through of PAH to POTW effluent is expected. The most recent EPA study of the behavior of toxic organics in POTW indicates that removals for five of the 13 PAH range from 40 percent to 83 percent.

No data are available at this time to support any conclusions about contamination of land by PAH on which sewage sludge containing PAH is spread.

Tetrachloroethylene (85). Tetrachloroethylene (CCL₂CCl₂), also called perchloroethylene and PCE is a colorless, nonflammable liquid produced mainly by two methods - chlorination and pyrolysis of ethane and propane, and oxychlorination of dichloroethane. U.S. annual production exceeds 300,000 tons. PCE boils at 121°C and has a vapor pressure of 19 mm Hg at 20°C. It is insoluble in water but soluble in organic solvents.

Approximately two-thirds of the U.S. production of PCE is used for dry cleaning. Textile processing and metal degreasing, in equal amounts consume about one-quarter of the U.S. production.

The principal toxic effect of PCE on humans is central nervous system depression when the compound is inhaled. Headache, fatigue, sleepiness, dizziness, and sensations of intoxication are reported. Severity of effects increases with vapor concentration. High integrated exposure (concentration times duration) produces kidney and liver damage. Very limited data on PCE ingested by laboratory animals indicate liver damage occurs when PCE is administered by that route. PCE tends to distribute to fat in mammalian bodies.

One report found in the literature suggests, but does not conclude, that PCE is teratogenic. PCE has been demonstrated to be a liver carcinogen in B6C3-F1 mice.

For the maximum protection of human health from the potential carcinogenic effects of exposure to tetrachlorethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of tetrachloroethylene estimated to result in additional lifetime cancer risk

levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00008 mg/l, and 0.0008 mg/l, and 0.008 mg/l, respectively.

the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic The conclusions reached by the study of the pollutants. is that biological treatment produces a moderate removal of PCE in a POTW by degradation. No information was found to cate that PCE accumulates in the sludge, but some PCE is expected be adsorbed onto settling particles. Some PCE is expected to be volatilized in aerobic treatment processes and little, if any, is expected to pass through into the effluent from the POTW. The most recent EPA study of the behavior of toxic organics in POTW indicates that PCE is 81 percent removed.

Toluene (86). Toluene is a clear, colorless liquid with a benzene-like odor. It is a naturally occuring compound derived primarily from petroleum or petrochemical processes. toluene is obtained from the manufacture of metallurgical Toluene is also referred to as totuol, methylbenzene, methacide, and phenylmethane. It is an aromatic hydrocarbon with the It boils at 111°C and has a vapor pressure of formula C₆H₅CH₃. 30 mm Hg at room temperature. The water solubility of toluene is 535 mg/ \hat{l} , and it is miscible with a variety of organic solvents. Annual production of toluene in the U.S. is greater than two million metric tons. Approximately two-thirds of the toluene converted to benzene and the remaining 30 percent is divided approximately equally into chemical manufacture, and use as paint solvent and aviation gasoline additive. An estimated 5,000 metric tons is discharged to the environment anually as a constituent in wastewater.

Most data on the effects of toluene in human and other mammals have been based on inhalation exposure or dermal contact studies. There appear to be no reports of oral administration of toluene to human subjects. A long term toxicity study on female rats revealed no adverse effects on growth, mortality, appearance and behavior, organ to body weight ratios, blood-urea nitrogen levels, bone marrow counts, peripheral blood counts, or morphology of major organs. The effects of inhaled toluene on the central nervous system, both at high and low concentrations, have been studied in humans and animals. However, ingested toluene is expected to be handled differently by the body because it is absorbed more slowly and must first pass through the liver before reaching the nervous system. Toluene is extensively and rapidly metabolized in the liver. One of the principal metabolic prod-

ucts of toluene is benzoic acid, which itself seems to have little potential to produce tissue injury.

Toluene does not appear to be teratogenic in laboratory animals or man. Nor is there any conclusive evidence that toluene is mutagenic. Toluene has not been demonstrated to be positive in any in vitro mutagenicity or carcinogenicity bioassay system, nor to be carcinogenic in animals or man.

Toluene has been found in fish caught in harbor waters in the vicinity of petroleum and petrochemical plants. Bioconcentration studies have not been conducted, but bioconcentration factors have been calculated on the basis of the octanol-water partition coefficient.

For the protection of human health from the toxic properties of toluene ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 14.3 mg/l. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the ambient water criterion is 424 mg/l. Available data show that the adverse effects on aquatic life occur at concentrations as low as 5 mg/l.

Acute toxicity tests have been conducted with toluene and a variety of freshwater fish and <u>Daphnia magna</u>. The latter appears to be significantly more resistant than fish. No test results have been reported for the chronic effects of toluene on freshwater fish or invertebrate species.

The biochemical oxidation of many of the toxic pollutants has been investigated in laboratory scale studies at concentrations greater than those expected to be contained by most municipal wastewaters. At toluene concentrations ranging from 3 to 250 mg/l biochemical oxidation proceeded to 50 percent of theoretical or greater. The time period varied from a few hours to 20 days depending on whether or not the seed culture was acclimated. Phenol adapted acclimated seed cultures gave the most rapid and extensive biochemical oxidation.

Based on study of the limited data, it is expected that toluene will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in a POTW. The volatility and relatively low water solubility of toluene lead to the expectation that aeration processes will remove significant quantities of toluene from the POTW. The EPA studied toluene removal in seven POTW facilities. The removals ranged from 40 to 100 percent. Sludge concentrations of toluene ranged from 54×10^3 to 1.85 mg/l. The most recent EPA study of the behavior of toxic organics in a POTW indicates that toluene is 90 percent removed.

Trichloroethylene (87). Trichloroethylene (1,1,2-trichloroethylene or TCE) is a clear, colorless liquid boiling at 87°C. It has a vapor pressure of 77 mm Hg at room temperature and is slightly soluble in water (1 g/l). U.S. production is greater than 0.25 million metric tons annually. It is produced from tetrachloroethane by treatment with lime in the presence of water.

TCE is used for vapor phase degreasing of metal parts, cleaning and drying electronic components, as a solvent for paints, as a refrigerant, for extraction of oils, fats, and waxes, and for dry cleaning. Its widespread use and relatively high volatility result in detectable levels in many parts of the environment.

Data on the effects produced by ingested TCE are limited. Most studies have been directed at inhalation exposure. Nervous system disorders and liver damage are frequent results of inhalation exposure. In the short term exposures, TCE acts as a central nervous system depressant — it was used as an anesthetic before its other long term effects were defined.

TCE has been shown to induce transformation in a highly sensitive in vitro Fischer rat embryo cell system (F1706) that is used for identifying carcinogens. Severe and persistent toxicity to the liver was recently demonstrated when TCE was shown to produce carcinoma of the liver in mouse strain B6C3F1. One systematic study of TCE exposure and the incidence of human cancer was based on 518 men exposed to TCE. The authors of that study concluded that although the cancer risk to man cannot be ruled out, exposure to low levels of TCE probably does not present a very serious and general cancer hazard.

TCE is bioconcentrated in aquatic species, making the consumption of such species by humans a significant source of TCE. For the protection of human health from the potential carcinogenic effects of exposure to trichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero based on the non-threshold assumption of this chemical. However, zero levels may not be attainable at the present time. Therefore, the levels which may result in incremental increase of cancer risk over the lifetime are estimated at 10^{-7} , 10^{-6} , and 10^{-5} . The corresponding recommended criteria are 0.00027 mg/l, 0.0027 mg/l, and 0.027 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the water concentration should be less than 0.807 mg/l to keep the additional lifetime cancer risk below 10^{-5} .

Only a very limited amount of data on the effects of TCE on freshwater aquatic life are available. One species of fish (fat-

head minnows) showed a loss of equilibrium at concentrations below those resulting in lethal effects.

In laboratory scale studies of toxic organic pollutants, TCE was subjected to biochemical oxidation conditions. After 5, 10, and 20 days no biochemical oxidation occurred. On the basis of this study and general observations relating molecular structure to ease of degradation, the conclusion is reached that TCE would undergo no removal by biological treatment in a POTW. The volatility and relatively low water solubility of TCE is expected to result in volatilization of some of the TCE in aeration steps in a POTW. The most recent EPA study of the behavior of toxic organics in a POTW indicates that TCE is 85 percent removed.

<u>Vinyl Chloride (88)</u>. No freshwater organisms have been tested with vinyl chloride and no statement can be made concerning acute or chronic toxicity.

For the maximum protection of human health from the potential carcinogenic effects due to exposure of vinyl chloride through ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentrations should be zero based on the non-threshold assumption for this chemical. However, zero level may not be attainable at the present time. Therefore, the levels which may result in incremental increase of cancer risk over the lifetime are estimated at 10^{-5} , 10^{-6} , and 10^{-7} . The corresponding recommended criteria are 0.02 mg/l, 0.002 mg/l, and 0.0002 mg/l, respectively. For consumption of aquatic organisms only, excluding consumption of water, the levels are 5.25 mg/l, 0.525 mg/l, and 0.0525 mg/l, respectively.

Vinyl chloride has been used for over 40 years in producing polyvinyl chloride (PVC) which in turn is the most widely used material in the manufacture of plastics throughout the world. Of the estimated 18 billion pounds of vinyl chloride produced worldwide in 1972, about 25 percent was manufactured in the United States. Production of vinyl chloride in the United States reached slightly over 5 billion pounds in 1978.

Vinyl chloride and polyvinyl chloride are used in the manufacture of numerous products in building and construction, the automotive industry, for electrical wire insulation and cables, piping, industrial and household equipment, packaging for food products, medical supplies, and is depended upon heavily by the rubber, paper, and glass industries. Polyvinyl chloride and vinyl chloride copolymers are distributed and processed in a variety of forms including dry resins, plastisol (dispersions in plasticizers), organosol, (dispersions in plasticizers plus volatile solvent), and latex (colloidal dispersion in water). Latexes are used to coat or impregnant paper, fabric, or leather.

Vinyl chloride (CH₂CHCl; molecular weight 62.5) is a highly flammable chloroolefinic hydrocarbon which emits a sweet or pleasant odor and has a vapor density slightly more than twice that of air. It has a boiling point of -13.9°C and a melting point of -153.8°C. Its solubility in water at 28°C is 0.11 g/100g water and it is soluble in alcohol and very soluble in ether and carbon tetrachloride. Vinyl chloride is volatile and readily passes from solution into the gas phase under most laboratory and ecological conditions. Many salts such as soluble silver and copper salts, ferrous chloride, platinous chloride, iridium dichloride, and mercurous chloride to name a few, have the ability to form complexes with vinyl chloride which results in its increased solubility in water. Conversely, alkali metal salts such as sodium or potassium chloride may decrease the solubility of vinyl chloride in ionic strengths of the aqueous solution. Therefore, the amounts of vinyl chloride in water could be influenced significantly by the presence of salts.

Vinyl chloride introduced into aquatic systems will most probably be quickly transferred to the atmosphere through volatilization. In fact, results from model simulations indicate that vinyl chloride should not remain in an aquatic ecosystem under most natural conditions.

Based on the information found, it does not appear that oxidation hydrolysis, biodegradation or sorption, are important fate processes for vinyl chloride in the aquatic environment.

Based on the 1982 POTW study (cite), the removal efficiency for vinvl chloride at a POTW with secondary treatment is 94 percent.

Endosulfan (97). For endosulfan the criterion to protect freshwater aquatic life is determined to be 0.000056 mg/l as a 24-hour average and the concentration should not exceed 0.00022 mg/l at any time.

For endosulfan the criterion to protect saltwater aquatic life is determined to be 8.7 x 10^{-6} mg/l as a 24-hour average and the concentration should not exceed 0.000034 mg/l at any time.

For the protection of human health from the toxic properties of endosulfan ingested through water and contaminated aquatic organisms, the ambient water criterion is determined to be $0.074\,$ mg/l.

For the protection of human health from the toxic properties of endosulfan ingested through contaminated aquatic organisms alone, the ambient water criterion is determined to be 0.159 mg/l.

Endosulfan is a broad-spectrum insecticide of the group of polycyclic chlorinated hydrocarbons called cyclodiene insecticides.

Annual production of endosulfan in the United States was estimated in 1974 at three million pounds. It is presently on the U.S. EPA's restricted list which limits its usage. However, significant commercial use of endosulfan for insect control on vegetables, fruits, and tobacco continues.

Endosulfan is a light to dark brown crystalline solid with a terpene-like odor, having the molecular formula in water of 0.06 to 0.15 mg/l and is readily soluble in organic solvents. The chemical name for endosulfan is 6,7,8,9,10,10hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide.

Technical grade endosulfan has a purity of 95 percent and is composed of a mixture of two steroisomers referred to as alpha and beta or I and II. It has a melting point range of 70 to 100°C and a density of 1.745 at 20°C. The endosulfan isomers are present in the ratio 70 percent isomer I to 30 percent isomer II. Impurities present in technical grade endosulfan consist mainly of the degradation products and may not exceed 2 percent endosulfandiol and 1 percent endosulfan ether. Endosulfan is commercially available in the form of wettable powders, emulsified concentrates, granules, and dusts of various concentrations. It is a powerful contact and stomach insectide used to control a wide spectrum of insects.

Endosulfan is stable to sunlight, but is susceptible to oxidation and the formation of endosulfan sulfate in the presence of growing vegetation. Technical grade endosulfan is sensitive to moisture, bases, and acids and decomposes slowly by hydrolysis to SO_2 and endosulfan alcohol.

In the environment, endosulfan is metabolically converted by microorganisms, plants, and animals to endosulfan sulfate, endosulfandiol, endosulfan ether, endosulfan hydroxyether, and endosulfan lactone.

Endrin (98). Endrin is the common name of one member of the cyclodiene group of pesticides. It is a cyclic hydrocarbon having a chlorine-substituted methanobridge structure. Chemically pure endrin is a white crystalline solid, while the technical compound is a light tan powder. The specific gravity of this compound is 1.7 at 20°C; the vapor pressure is 2.7 x 10-7 at 25°C; and the substance begins to decompose at 200°C. Endrin was introduced into the United States in 1951. The endrin sold in the United States is a technical grade product, containing not less than 95 percent active ingredient, available in a variety of

diluted formulations. Endrin is very insoluble in water, about 0.2 mg/l.

Known uses of endrin in the United States are as an avicide, rodenticide, and insecticide, the latter being the most prevalent. Endrin enters the environment primarily as a result of direct applications to soil and crops. Waste material discharge from endrin manufacturing and formulating plants and disposal of empty containers also contribute significantly to observed residue levels. In the past several years, endrin utilization has been increasingly restricted and production has continued to decline. In 1978, endrin production was approximately 400,000 lbs.

Most of the invertebrate species tested for acute toxicity were substantially more tolerant than fishes in sensitivity. The generally higher tolerance of the insects and related groups was unexpected since endrin is an effective insecticide.

Despite its high acute toxicity, endrin is a relatively nonpersistent pesticide in humans. Endrin residues have only been detected in the body tissues of humans immediately after an acute exposure. However, little is known concerning the persistence and toxicity of endrin metabolites.

No malignancies attributable to endrin exposure have been reported in the literature. Teratogenesis, growth retardation, and increases in fetal mortality have been observed in mice and hamsters following endrin administration. Endrin toxicity seems to result primarily from the effects of endrin and its metabolites on the central nervous system.

The ambient water quality criterion for endrin is recommended to be identical to the existing drinking water standard which is 0.001 mg/l.

POTW removal efficiency is not known at this time.

Polychlorinated Biphenyls (106 - 112). Polychlorinated 10), designated PCB's, are chlorinated derivatives of biphenyls. The commercial products are complex mixtures of chlorobiphenyls, but are no longer produced in the U.S. The mixtures produced formerly were characterized by the percentage chlorination. Direct chlorination of biphenyl was used to produce mixtures containing from 21 to 70 percent chlorine. Seven of these mixtures have been selected as toxic pollutants:

Toxic Pollu- tant No.	Name	Percent Chlorine	Range (°C) Distilla- tion	Pour Point (° C)	Water Solubility
	Arochlor				
106	1242	42	325-366	-19	240
107	1254	54	365-390	10	12
108	1221	20.5-21.5	275-320	1	200
109	1232	31.4-32.5	290-325	-35.5	
110	1248	48	340-375	- 7	54
111	1260	60	385-420	31	2.7
112	1016	41	323-356		225-250

The arochlors 1221, 1232, 1016, 1242, and 1248 are colorless, oily liquids; 1254 is a viscous liquid; 1260 is a sticky resin at room temperature. Total annual U.S. production of PCB's averaged about 20,000 tons in 1972 to 1974.

Prior to 1971, PCB's were used in several applications including plasticizers, heat transfer liquids, hydraulic fluids, lubricants, vacuum pump and compressor fluids, and capacitor and transformer oils. After 1970, when PCB use was restricted to closed systems, the latter two uses were the only commercial applications.

The toxic effects of PCB's ingested by humans have been reported to range from acne-like skin eruptions and pigmentation of the skin to numbness of limbs, hearing and vision problems, and spasms. Interpretation of results is complicated by the fact that the very highly toxic polychlorinated dibenzofurans (PCDF's) are found in many commercial PCB mixtures. Photochemical and thermal decomposition appear to accelerate the transformation of PCB's to PCDF's. Thus the specific effects of PCB's may be masked by the effects of PCDF's. However, if PCDF's are frequently present to some extent in any PCB mixture, then their effects may be properly included in the effects of PCB mixtures.

Studies of effects of PCB's in laboratory animals indicate that liver and kidney damage, large weight losses, eye discharges, and interference with some metabolic processes occur frequently. Teratogenic effects of PCB's in laboratory animals have been observed, but are rare. Growth retardations during gestation, and reproductive failure are more common effects observed in studies of PCB teratogenicity. Carcinogenic effects of PCB's have been studied in laboratory animals with results interpreted as positive. Specific reference has been made to liver cancer in rats in the discussion of water quality criterion formulation.

For the maximum protection of human health from the potential carcinogenic effects of exposure to PCB's through ingestion of

water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of PCB's estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.0000079 mg/l, 0.000079 mg/l, respectively.

The behavior of PCB's in a POTW has received limited study. PCB's will be removed with sludge. One study showed removals of to 89 percent, depending on suspended solid removal. The PCB's adsorb onto suspended sediments and other particulates. In laboratory scale experiments with PCB 1221, 81 percent was removed by degradation in an activated sludge system in 47 hours. Biodegradation can form polychlorinated dibenzofurans which are more toxic than PCB's (as noted earlier). PCB's at concentrations of 0.1 to 1,000 mg/l inhibit or enhance bacterial growth rates, depending on the bacterial culture and the percentage chlorine in the PCB. Thus, activated sludge may be inhibited by PCB's. Based on studies of bioaccumulation of PCB's in food crops grown on soils amended with PCB-containing sludge, the U.S. FDA has recommended a limit of 10 mg PCB/kg dry weight of sludge used for application to soils bearing food crops.

Antimony (114). Antimony (chemical name - stibium, symbol Sb), classified as a non-metal or metalloid, is a silvery white, brittle crystalline solid. Antimony is found in small ore bodies throughout the world. Principal ores are oxides of mixed antimony valences, and an oxysulfide ore. Complex ores with metals are important because the antimony is recovered as a by-product. Antimony melts at 631°C, and is a poor conductor of electricity and heat.

Annual U.S. consumption of primary antimony ranges from 10,000 to 20,000 tons. About half is consumed in metal products — mostly antimonial lead for lead acid storage batteries, and about half in non-metal products. A principal compound is antimony trioxide which is used as a flame retardant in fabrics, and as an opacifier in glass, ceramics, and enamels. Several antimony compounds are used as catalysts in organic chemicals synthesis, as fluorinating agents (the antimony fluoride), as pigments, and in fireworks. Semiconductor applications are economically significant.

Essentially no information on antimony-induced human health effects has been derived from community epidemiology studies. The available data are in literature relating effects observed with therapeutic or medicinal uses of antimony compounds and industrial exposure studies. Large therapeutic doses of antimonial compounds, usually used to treat schistisomiasis, have caused severe nausea, vomiting, convulsions, irregular heart action, liver damage, and skin rashes. Studies of acute industrial antimony poisoning have revealed loss of appetite,

diarrhea, headache, and dizziness in addition to the symptoms found in studies of therapeutic doses of antimony.

For the protection of human health from the toxic properties of antimony ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be 0.146 mg/l. If contaminated aquatic organisms are consumed, excluding the consumption of water, the ambient water criterion is determined to be 45 mg/l. Available data show that adverse effects on aquatic life occur at concentrations higher than those cited for human health risks.

The limited solubility of most antimony compounds expected in a POTW, i.e., the oxides and sulfides, suggests that at least part of the antimony entering a POTW will be precipitated and incorporated into the sludge. However, some antimony is expected to remain dissolved and pass through the POTW into the effluent. Antimony compounds remaining in the sludge under anaerobic and very toxic compound. There are no data to show antimony inhibits any POTW processes. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that antimony is 60 percent removed. Antimony is not known to be essential to the growth of plants, and has been reported to be moderately toxic. Therefore, sludge containing large amounts of antimony could be detrimental to plants if it is applied in large amounts to cropland.

Arsenic (115). Arsenic (chemical symbol As), is classified as a non-metal or metalloid. Elemental arsenic normally exists in the alpha-crystalline metallic form which is steel gray and brittle, and in the beta form which is dark gray and amorphous. Arsenic sublimes at 615°C. Arsenic is widely distributed throughout the world in a large number of minerals. The most important commercial source of arsenic is as a by-product from treatment of copper, lead, cobalt, and gold ores. Arsenic is usually marketed as the trioxide (S_2O_3). Annual U.S. production of the trioxide approaches 40,000 tons.

The principal use of arsenic is in agricultural chemicals (herbicides) for controlling weeds in cotton fields. Arsenicals have various applications in medicinal and vetrinary use, as wood preservatives, and in semiconductors.

The effects of arsenic in humans were known by the ancient Greeks and Romans. The principal toxic effects are gastrointestinal disturbances. Breakdown of red blood cells occurs. Symptoms of acute poisoning include vomiting, diarrhea, abdominal pain, lassitude, dizziness, and headache. Longer exposure produced dry, falling hair, brittle, loose nails, eczema, and exfoliation. Arsenicals also exhibit teratogenic and mutagenic effects in humans. Oral administration of arsenic compounds has been

associated clinically with skin cancer for nearly one hundred years. Since 1888 numerous studies have linked occupational exposure and therapeutic administration of arsenic compounds to increased incidence of respiratory and skin cancer.

For the maximum protection of human health from the potential carcinogenic effects of exposure to arsenic through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of arsenic estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , 10^{-5} are 2.2×10^{-7} mg/l, 2.2×10^{-6} , and 2.2×10^{-5} mg/l, respectively. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the water concentration should be less than 1.75×10^{-4} to keep the increased lifetime cancer risk below 10^{-5} . Available data show that adverse effects on aquatic life occur at concentrations higher than those cited for human health risks.

A few studies have been made regarding the behavior of arsenic in a POTW. One EPA survey of nine POTW facilities reported influent concentrations ranging from 0.0005 to 0.693 mg/l; effluents from three a POTW having biological treatment contained 0.0004 to 0.01 mg/l; two POTW facilities showed arsenic removal efficiencies of 50 and 71 percent in biological treatment. Inhibition of treatment processes by sodium arsenate is reported to occur at 0.1 mg/l in activated sludge, and 1.6 mg/l in anaerobic digestion processes. In another study based on data from 60 POTW facilities, arsenic in sludge ranged from 1.6 to 65.6 mg/kg and the median value was 7.8 mg/kg. The most recent EPA study of the

behavior of toxic pollutants in POTW indicates that total trivalent arsenic is 65 percent removed. Arsenic in sludge spread on cropland may be taken up by plants grown on that land. Edible plants can take up arsenic, but normally their growth is inhibited before the plants are ready for harvest.

Beryllium (117). Beryllium is a dark gray metal of the alkaline earth family. It is relatively rare, but because of its unique properties finds widespread use as an alloying element, especially for hardening copper which is used in springs, electrical contacts, and non-sparking tools. World production is reported to be in the range of 250 tons annually. However, much more reaches the environment as emissions from coal burning operations. Analysis of coal indicates an average beryllium content of 3 ppm and 0.1 to 1.0 percent in coal ash or fly ash.

The principal ores are beryl $(3BeO - Al_2O_3.6SiO_2)$ and bertrandite $[Be_4Si_2O_7(OH)_2]$. Only two industrial facilities produce beryllium in the U.S. because of limited demand and the highly toxic character. About two-thirds of the annual production goes

into alloys, 20 percent into heat sinks, and 10 percent into beryllium oxide (BeO) ceramic products.

Beryllium has a specific gravity of 1.846, making it the lightest metal with a high melting point (1,350°C). Beryllium alloys are corrosion resistant, but the metal corrodes in aqueous environments. Most common beryllium compounds are soluble in water, at least to the extent necessary to produce a toxic concentration of beryllium ions.

Most data on toxicity of beryllium is for inhalation of beryllium oxide dust. Some studies on orally administered beryllium in laboratory animals have been reported. Despite the large number of studies implicating beryllium as a carcinogen, there is no recorded instance of cancer being produced by ingestion. However, a recently convened panel of uninvolved experts concluded that epidemiologic evidence is suggestive that beryllium is a carcinogen in man.

In the aquatic environment beryllium is chronically toxic to aquatic organisms at 0.0053~mg/l. Water softness has a large effect on beryllium toxicity to fish. In soft water, beryllium is reportedly 100 times as toxic as in hard water.

For the maximum protection of human health from the potential carcinogenic effects of exposure to beryllium through ingestion of water and contaminated aquatic organisms the ambient water concentration is zero. Concentrations of beryllium estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 6.8×10^{-7} mg/l, 6.8×10^{-6} mg/l and 6.8×10^{-5} mg/l. respectively. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the concentration should be less than 0.00117 mg/l to keep the increased lifetime cancer risk below 10^{-5} .

Information on the behavior of beryllium in a POTW is scarce. Because beryllium hydroxide is insoluble in water, most beryllium entering a POTW will probably be in the form of suspended solids. As a result most of the beryllium will settle and be removed with sludge. However, beryllium has been shown to inhibit several enzyme systems, to interfere with DNA metabolism in liver, and to induce chromosomal and mitotic abnormalities. This interference in cellular processes may extend to interfere with biological treatment processes. The concentration and effects of beryllium in sludge which could be applied to cropland has not been studied.

<u>Cadmium</u> (118). Cadmium is a relatively rare metallic element that is seldom found in sufficient quantities in a pure state to warrant mining or extraction from the earth's surface. It is

found in trace amounts of about 1 ppm throughout the earth's crust. Cadmium is, however, a valuable by-product of zinc production.

Cadmium is used primarily as an electroplated metal, and is found as an impurity in the secondary refining of zinc, lead, and copper.

Cadmium is an extremely dangerous cumulative toxicant, causing progressive chronic poisoning in mammals, fish, and probably other organisms. The metal is not excreted.

Toxic effects of cadmium on man have been reported from throughout the world. Cadmium may be a factor in the development of such human pathological conditions as kidney disease, testicular tumors, hypertension, arteriosclerosis, growth inhibition, chronic disease of old age, and cancer. Cadmium is normally ingested by humans through food and water as well as by breathing air contaminated by cadmium dust. Cadmium is cumulative in the liver, kidney, pancreas, and thyroid of humans and other animals. A severe bone and kidney syndrome known as itai-itai disease has been documented in Japan as caused by cadmium ingestion via drinking water and contaminated irrigation water. Ingestion of as little as 0.6 mg/day has produced the disease. Cadmium acts synergistically with other metals. Copper and zinc substantially increase its toxicity.

Cadmium is concentrated by marine organisms, particularly molluscs, which accumulate cadmium in calcareous tissues and in the viscera. A concentration factor of 1,000 for cadmium in fish muscle has been reported, as have concentration factors of 3,000 in marine plants and up to 29,600 in certain marine animals. The eggs and larvae of fish are apparently more sensitive than adult fish to poisoning by cadmium, and crustaceans appear to be more sensitive than fish eggs and larvae.

For the protection of human health from the toxic properties of cadmium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010 mg/l. Available data show that adverse effects on aquatic life occur at concentrations in the same range as those cited for human health, and they are highly dependent on water hardness.

Cadmium is not destroyed when it is introduced into a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. In addition, it can interfere with the POTW treatment process.

In a study of 189 POTW facilities, 75 percent of the primary plants, 57 percent of the trickling filter plants, 66 percent of

the activated sludge plants, and 62 percent of the biological plants allowed over 90 percent of the influent cadmium to pass through to the POTW effluent. Only two of the 189 POTW facilities allowed less than 20 percent pass-through, and none less than 10 percent pass-through. POTW effluent concentrations ranged from 0.001 to 1.97 mg/l (mean 0.028 mg/l, standard deviation 0.167 mg/l). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that cadmium is 38 percent removed.

Cadmium not passed through the POTW will be retained in the sludge where it is likely to build up in concentration. contamination of sewage sludge limits its use on land since it increases the level of cadmium in the soil. Data show cadmium can be incorporated into crops, including vegetables and grains, from contaminated soils. Since the crops themselves show no adverse effects from soils with levels up to 100 mg/kg cadmium, these contaminated crops could have a significant impact on Two Federal agencies have already recognized the health. human potential adverse human health effects posed by the use of sludge on cropland. The FDA recommends that sludge containing over 30 mg/kg of cadmium should not be used on agricultural land. sludge contains 3 to 300 mg/kg (dry basis) of cadmium mean = 10mg/kg; median = 16 mg/kg. The USDA also recommends placing limits on the total cadmium from sludge that may be applied to land.

Chromium (119). Chromium is an elemental metal usually found as a chromite (FeO•Cr₂O₃). The metal is normally produced by reducing the oxide with aluminum. reducing the oxide with aluminum. A significant proportion of the chromium used is in the form of compounds such as sodium dichromate (Na₂CrO₄), and chromic acid (CrO₃) - both are hexavalent chromium compounds.

Chromium is found as an alloying component of many steels and its compounds are used in electroplating baths, and as corrosion inhibitors for closed water circulation systems.

The two chromium forms most frequently found in industry wastewaters are hexavalent and trivalent chromium. Hexavalent chromium is the form used for metal treatments. Some of it is reduced to trivalent chromium as part of the process reaction. The raw wastewater containing both valence states is usually treated first to reduce remaining hexavalent to trivalent chromium, and second to precipitate the trivalent form as the hydroxide. The hexavalent form is not removed by lime treatment.

Chromium, in its various valence states, is hazardous to man. It can produce lung tumors when inhaled, and induces skin sensitizations. Large doses of chromates have corrosive effects on the

intestinal tract and can cause inflammation of the kidneys. Hexavalent chromium is a known human carcinogen. Levels of chromate ions that show no effect in man appear to be so low as to prohibit determination, to date.

The toxicity of chromium salts to fish and other aquatic life varies widely with the species, temperature, pH, valence of the chromium, and synergistic or antagonistic effects, especially the effect of water hardness. Studies have shown that trivalent chromium is more toxic to fish of some types than is hexavalent chromium. Hexavalent chromium retards growth of one fish species at 0.0002 mg/l. Fish food organisms and other lower forms of aquatic life are extremely sensitive to chromium. Therefore, both hexavalent and trivalent chromium must be considered harmful to particular fish or organisms.

For the protection of human health from the toxic properties of chromium (except hexavalent chromium) ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 170 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion for trivalent chromium is 3,433 mg/l. The ambient water quality criterion for hexavalent chromium is recommended to be identical to the existing drinking water standard for total chromium which is 0.050 mg/l.

Chromium is not destroyed when treated by a POTW (although the oxidation state may change), and will either pass through to the POTW effluent or be incorporated into the POTW sludge. Both oxidation states can cause POTW treatment inhibition and can also limit the usefulness of municipal sludge.

Influent concentrations of chromium to POTW facilities have been observed by EPA to range from 0.005 to 14.0 mg/l, with a median concentration of 0.1 mg/l. The efficiencies for removal of chromium by the activated sludge process can vary greatly, depending on chromium concentration in the influent, and other operating conditions at the POTW. Chelation of chromium by organic matter and dissolution due to the presence of carbonates can cause deviations from the predicted behavior in treatment systems.

The systematic presence of chromium compounds will halt nitrification in a POTW for short periods, and most of the chromium will be retained in the sludge solids. Hexavalent chromium has been reported to severely affect the nitrification process, but trivalent chromium has little or no toxicity to activated sludge, except at high concentrations. The presence of iron, copper, and low pH will increase the toxicity of chromium in a POTW by releasing the chromium into solution to be ingested by microorganisms in the POTW.

The amount of chromium which passes through to the POTW effluent depends on the type of treatment processes used by the POTW. In a study of 240 POTW facilities, 56 percent of the primary plants allowed more than 80 percent pass-through to POTW effluent. More advanced treatment results in less pass-through. POTW effluent concentrations ranged from 0.003 to 3.2 mg/l total chromium (mean = 0.197, standard deviation = 0.48), and from 0.002 to 0.1 mg/l hexavalent chromium (mean = 0.017, standard deviation = 0.020). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that hexavalent chromium is 18 percent removed.

Chromium not passed through the POTW will be retained in the sludge, where it is likely to build up in concentration. Sludge concentrations of total chromium of over 20,000 mg/kg (dry basis) have been observed. Disposal of sludges containing very high concentrations of trivalent chromium can potentially cause problems in uncontrolled landfills. Incineration, or similar destructive oxidation processes, can produce hexavalent chromium from lower valence states. Hexavalent chromium is potentially more toxic than trivalent chromium. In cases where high rates of chrome sludge application on land are used, distinct growth inhibition and plant tissue uptake have been noted.

Pretreatment of discharges substantially reduces the concentration of chromium in sludge. In Buffalo, New York, pretreatment of electroplating waste resulted in a decrease in chromium concentrations in POTW sludge from 2,510 to 1,040 mg/kg. A similar reduction occurred in Grand Rapids, Michigan, POTW facilities where the chromium concentration in sludge decreased from 11,000 to 2,700 mg/kg when pretreatment was made a requirement.

Copper (120). Copper is a metallic element that sometimes is found free, as the native metal, and is also found in minerals such as cuprite (Cu_2O) , malechite $[\text{CuCO}_3.\text{Cu}(\text{OH})_2]$, azurite $[2\text{CuCO}_3.\text{Cu}(\text{OH})_2]$, chalcopyrite (CuFeS_2) and bornite $(\text{Cu}_5\text{FeS}_4)$. Copper is obtained from these ores by smelting, leaching, and electrolysis. It is used in the plating, electrical, plumbing, and heating equipment industries, as well as in insecticides and fungicides.

Traces of copper are found in all forms of plant and animal life, and the metal is an essential trace element for nutrition. Copper is not considered to be a cumulative systemic poison for humans as it is readily excreted by the body, but it can cause symptoms of gastroenteritis, with nausea and intestinal irritations, as relatively low dosages. The limiting factor in domestic water supplies is taste. To prevent this adverse organoleptic effect of copper in water, a criterion of 1 mg/l has been established.

The toxicity of copper to aquatic organisms varies significantly, not only with the species, but also with the physical and chemical characteristics of the water, including temperature, hardness, turbidity, and carbon dioxide content. In hard water, the toxicity of copper salts may be reduced by the precipitation of copper carbonate or other insoluble compounds. The sulfates of copper and zinc, and of copper and calcium are synergistic in their toxic effect on fish.

Relatively high concentrations of copper may be tolerated by adult fish for short periods of time; the critical effect of copper appears to be its higher toxicity to young or juvenile fish. Concentrations of 0.02 to 0.03 mg/l have proved fatal to some common fish species. In general the salmonoids are very sensitive and the sunfishes are less sensitive to copper.

The recommended criterion to protect freshwater aquatic life is 0.0056~mg/l as a 24-hour average, and 0.012~mg/l maximum concentration at a hardness of 50 mg/l CaCO₃. For total recoverable copper the criterion to protect freshwater aquatic life is 0.0056~mg/l as a 24-hour average.

Copper salts cause undesirable color reactions in the food industry and cause pitting when deposited on some other metals such as aluminum and galvanized steel. To control undesirable taste and odor quality of ambient water due to the organoleptic properties of copper, the estimated level is 1.0 mg/l for total recoverable copper.

Irrigation water containing more than minute quantities of copper can be detrimental to certain crops. Copper appears in all soils, and its concentration ranges from 10 to 80 ppm. In soils, copper occurs in association with hydrous oxides of manganese and iron, and also as soluble and insoluble complexes with organic matter. Copper is essential to the life of plants, and the normal range of concentration in plant tissue is from 5 to Copper concentrations in plants normally do not build up to high levels when toxicity occurs. For example, the concentrations of copper in snapbean leaves and pods was less than 50 and 20 mg/kg, respectively, under conditions of severe copper toxicity. Even under conditions of copper toxicity, most of the excess copper accumulates in the roots; very little is moved to the aerial part of the plant.

Copper is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with the POTW treatment processes and can limit the usefulness of municipal sludge.

The influent concentration of copper to a POTW has been observed by the EPA to range from 0.01 to 1.97 mg/l, with a median concentration of 0.12 mg/l. The copper that is removed from the influent stream of a POTW is absorbed on the sludge or appears in the sludge as the hydroxide of the metal. Bench scale pilot studies have shown that from about 25 percent to 75 percent of the copper passing through the activated sludge process remains in solution in the final effluent. Four-hour slug dosages of copper sulfate in concentrations exceeding 50 mg/l were reported to have severe effects on the removal efficiency of an unacclimated system, with the system returning to normal in about 100 hours. Slug dosages of copper in the form of copper cyanide were observed to have much more severe effects on the activated sludge system, but the total system returned to normal in 24 hours.

In a recent study of 268 POTW facilities, the median pass-through was over 80 percent for primary plants and 40 to 50 percent for trickling filter, activated sludge, and biological treatment plants. POTW effluent concentrations of copper ranged from 0.003 to $1.8 \, \text{mg/l}$ (mean 0.126, standard deviation 0.242). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that copper is $58 \, \text{percent}$ removed.

Copper which does not pass through the POTW will be retained in the sludge where it will build up in concentration. The presence of excessive levels of copper in sludge may limit its use on cropland. Sewage sludge contains up to 16,000 mg/kg of copper, with 730 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which usually range from 18 to 80 mg/kg. Experimental data indicate that when dried sludge is spread over tillable land, the copper tends to remain in place down to the depth of the tillage, except for copper which is taken up by plants grown in the soil. Recent investigation has shown that the extractable copper content of sludge-treated soil decreased with time, which suggests a reversion of copper to less soluble forms was occurring.

Cyanide (121). Cyanides are among the most toxic of pollutants commonly observed in industrial wastewaters. Introduction of cyanide into industrial processes is usually by dissolution of potassium cyanide (KCN) or sodium cyanide (NaCN) in process waters. However, hydrogen cyanide (HCN) formed when the above salts are dissolved in water, is probably the most acutely lethal compound.

The relationship of pH to hydrogen cyanide formation is very important. As pH is lowered to below 7, more than 99 percent of the cyanide is present as HCN and less than 1 percent as cyanide ions. Thus, at neutral pH, that of most living organisms, the more toxic form of cyanide prevails.

Cyanide ions combine with numerous heavy metal ions to form complexes. The complexes are in equilibrium with HCN. Thus, the stability of the metal-cyanide complex and the pH determine the concentration of HCN. Stability of the metal-cyanide anion complexes is extremely variable. Those formed with zinc, copper, and cadmium are not stable - they rapidly dissociate, with production of HCN, in near neutral or acid waters. Some of the complexes are extremely stable. Cobaltocyanide is very resistant to acid distillation in the laboratory. Iron cyanide complexes are also stable, but undergo photodecomposition to give HCN upon exposure to sunlight. Synergistic effects have been demonstrated for the metal cyanide complexes making zinc, copper, and cadmium cyanides more toxic than an equal concentration of sodium cyanide.

The toxic mechanism of cyanide is essentially an inhibition of oxygen metabolism, i.e., rendering the tissues incapable of exchanging oxygen. The cyanogen compounds are true noncumulative protoplasmic poisons. They arrest the activity of all forms of animal life. Cyanide shows a very specific type of toxic action. It inhibits the cytochrome oxidase system. This system is the one which facilitates electron transfer from reduced metabolites to molecular oxygen. The human body can convert cyanide to a non-toxic thiocyanate and eliminate it. However, if the quantity of cyanide ingested is too great at one time, the inhibition of oxygen utilization proves fatal before the detoxifying reaction reduces the cyanide concentration to a safe level.

Cyanides are more toxic to fish than to lower forms of aquatic organisms such as midge larvae, crustaceans, and mussels. Toxicity to fish is a function of chemical form and concentration, and is influenced by the rate of metabolism (temperature), the level of dissolved oxygen, and pH. In laboratory studies free cyanide concentrations ranging from 0.05 to 0.14 mg/l have been proven to be fatal to sensitive fish species including trout, bluegill, and fathead minnows. Levels above 0.2 mg/l are rapidly fatal to most fish species. Long term sublethal concentrations of cyanide as low as 0.01 mg/l have been shown to affect the ability of fish to function normally, e.g., reproduce, grow, and swim.

For the protection of human health from the toxic properties of cyanide ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 0.200~mg/l.

Persistence of cyanide in water is highly variable and depends upon the chemical form of cyanide in the water, the concentration of cyanide, and the nature of other constituents. Cyanide may be destroyed by strong oxidizing agents such as permanganate and chlorine. Chlorine is commonly used to oxidize strong cyanide solutions. Carbon dioxide and nitrogen are the products of complete oxidation. But if the reaction is not complete, the very toxic compound, cyanogen chloride, may remain in the treatment system and subsequently be released to the environment. Partial chlorination may occur as part of a POTW treatment, or during the disinfection treatment of surface water for drinking water preparation.

Cyanides can interfere with treatment processes in a POTW, or pass through to ambient waters. At low concentrations and with acclimated microflora, cyanide may be decomposed by microorganisms in anaerobic and aerobic environments or waste treatment systems. However, data indicate that much of the cyanide introduced passes through to the POTW effluent. The mean pass-through of 14 biological plants was 71 percent. In a recent study of 41 POTW facilities the effluent concentrations ranged from 0.002 to 100 mg/l (mean = 2.518, standard deviation = 15.6). Cyanide also enhances the toxicity of metals commonly found in POTW effluents, including the toxic pollutants cadmium, zinc, and copper. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that free cyanide is 52 percent removed.

Data for Grand Rapids, Michigan, showed a significant decline in cyanide concentrations downstream from the POTW after pretreatment regulations were put in force. Concentrations fell from 0.66 mg/l before, to 0.01 mg/l after pretreatment was required.

Lead (122). Lead is a soft, malleable, ductile, blueish-gray, metallic element, usually obtained from the mineral galena (lead sulfide, PbS), arglesite (lead sulfate, PbSO $_4$), or cerussile (lead carbonate, PbCO $_3$). Because it is usually associated with minerals of zinc, silver, copper, gold, cadmium, antimony, and arsenic, special purification methods are frequently used before and after extraction of the metal from the ore concentrate by smelting.

Lead is widely used for its corrosion resistance, sound and vibration absorption, low melting point (solders), and has relatively high imperviousness to various forms of radiation. Small amounts of copper, antimony and other metals can be alloyed with lead to achieve greater hardness, stiffness, or corrosion resistance than is afforded by the pure metal. Lead compounds are used in glazes and paints. About one third of U.S. lead consumption goes into storage batteries. About half of U.S. lead consumption is from secondary lead recovery. U.S. consumption of lead is in the range of one million tons annually.

Lead ingested by humans produces a variety of toxic effects including impaired reproductive ability, disturbances in blood chemistry, neurological disorders, kidney damage, and adverse

cardiovascular effects. Exposure to lead in the diet results in permanent increase in lead levels in the body. Most of the lead entering the body eventually becomes localized in the bones where it accumulates. Lead is a carcinogen or cocarcinogen in some species of experimental animals. Lead is teratogenic in experimental animals. Mutagenicity data are not available for lead.

The ambient water quality criterion for lead is recommended to be identical to the existing drinking water standard which is 0.050 mg/l. Available data show that adverse effects on aquatic life occur at concnetrations as low as 7.5 x 10^{-4} mg/l of total recoverable lead as a 24-hour average with a water hardness of 50 mg/l as $CaCO_3$.

Lead is not destroyed in a POTW, but is passed through to the effluent or retained in the POTW sludge; it can interfere with POTW treatment processes and can limit the usefulness of POTW sludge for application to agricultural croplands. Threshold concentration for inhibition of the activated sludge process is 0.1 mg/l, and for the nitrification process is 0.5 mg/l. In a study of 214 POTW facilities, median pass through values were over 80 percent for primary plants and over 60 percent for trickling filter, activated sludge, and biological process plants. Lead concentration in POTW effluents ranged from 0.003 to 1.8 mg/l (mean = 0.106 mg/l, standard deviation = 0.222). The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that lead is 48 percent removed.

Application of lead-containing sludge to cropland should not lead to uptake by crops under most conditions because normally lead is strongly bound by soil. However, under the unusual condition of low pH (less than 5.5) and low concentrations of labile phosphorus, lead solubility is increased and plants can accumulate lead.

Mercury (123). Mercury is an elemental metal rarely found in nature as the free metal. Mercury is unique among metals as it remains a liquid down to about 39 degrees below zero. It is relatively inert chemically and is insoluble in water. The principal ore is cinnabar (HgS).

Mercury is used industrially as the metal and as mercurous and mercuric salts and compounds. Mercury is used in several types of batteries. Mercury released to the aqueous environment is subject to biomethylation - conversion to the extremely toxic methyl mercury.

Mercury can be introduced into the body through the skin and the respiratory system as the elemental vapor. Mercuric salts are highly toxic to humans and can be absorbed through the gastro-

intestinal tract. Fatal doses can vary from 1 to 30 grams. Chronic toxicity of methyl mercury is evidenced primarily by neurological symptoms. Some mercuric salts cause death by kidney failure.

Mercuric salts are extremely toxic to fish and other aquatic life. Mercuric chloride is more lethal than copper, hexavalent chromium, zinc, nickel, and lead towards fish and aquatic life. In the food cycle, algae containing mercury up to 100 times the concentration in the surrounding sea water are eaten by fish which further concentrate the mercury. Predators that eat the fish in turn concentrate the mercury even further.

For the protection of human health from the toxic properties of mercury ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be 0.000144~mg/l.

Mercury is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. At low concentrations it may reduce POTW removal efficiencies, and at high concentrations it may upset the POTW operation.

The influent concentrations of mercury to a POTW have been observed by the EPA to range from 0.002 to 0.24 mg/l, with a median concentration of 0.001 mg/l. Mercury has been reported in the literature to have inhibiting effects upon an activated sludge POTW at levels as low as 0.1 mg/l. At 5 mg/l of mercury, losses of COD removal efficiency of 14 to 40 percent have been reported, while at 10 mg/l loss of removal of 59 percent has been reported. Upset of an activated sludge POTW is reported in the literature to occur near 200 mg/l. The anaerobic digestion process is much less affected by the presence of mercury, with inhibitory effects being reported at 1,365 mg/l.

In a study of 22 POTW facilities having secondary treatment, the range of removal of mercury from the influent to the POTW ranged from 4 to 99 percent with median removal of 41 percent. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that mercury is 69 percent removed. Thus significant pass through of mercury may occur.

In sludges, mercury content may be high if industrial sources of mercury contamination are present. Little is known about the form in which mercury occurs in sludge. Mercury may undergo biological methylation in sediments, but no methylation has been observed in soils, mud, or sewage sludge.

The mercury content of soils not receiving additions of POTW sewage sludge lie in the range from 0.01 to 0.5 mg/kg. In soils receiving POTW sludges for protracted periods, the concentration of mercury has been observed to approach 1.0 mg/kg. In the soil, mercury enters into reactions with the exchange complex of clay and organic fractions, forming both ionic and covalent bonds. Chemical and microbiological degradation of mercurials can take place side by side in the soil, and the products - ionic or molecular - are retained by organic matter and clay or may be volatilized if gaseous. Because of the high affinity between mercury and the solid soil surfaces, mercury persists in the upper layer of the soil.

Mercury can enter plants through the roots, it can readily move to other parts of the plant, and it has been reported to cause injury to plants. In many plants mercury concentrations range from 0.01 to 0.20 mg/kg, but when plants are supplied with high levels of mercury, these concentrations can exceed 0.5 mg/kg. Bioconcentration occurs in animals ingesting mercury in food.

Nickel (124). Nickel is seldom found in nature as the pure elemental metal. It is a relatively plentiful element and is widely distributed throughout the earth's crust. It occurs in marine organisms and is found in the oceans. The chief commercial ores for nickel are pentlandite $[(Fe,Ni)_9S_8]$, and a lateritic ore consisting of hydrated nickel-iron-magnesium silicate.

Nickel has many and varied uses. It is used in alloys and as the pure metal. Nickel salts are used for electroplating baths.

The toxicity of nickel to man is thought to be very low, and systemic poisoning of human beings by nickel or nickel salts is almost unknown. In non-human mammals nickel acts to inhibit insulin release, depress growth, and reduce cholesterol. A high incidence of cancer of the lung and nose has been reported in humans engaged in the refining of nickel.

Nickel salts can kill fish at very low concentrations. However, nickel has been found to be less toxic to some fish than copper, zinc, and iron. Nickel is present in coastal and open ocean water at concentrations in the range of 0.0001 to 0.006 mg/l although the most common values are 0.002 to 0.003 mg/l. Marine animals contain up to 0.4 mg/l and marine plants contain up to 3 mg/l. Higher nickel concentrations have been reported to cause reduction in photosynthetic activity of the giant kelp. A low concentration was found to kill oyster eggs.

For the protection of human health based on the toxic properties of nickel ingested through water and through contaminated aquatic

organisms, the ambient water criterion is determined to be $0.0134 \, \text{mg/l}$. If contaminated aquatic organisms are consumed, excluding consumption of water, the ambient water criterion is determined to be $0.100 \, \text{mg/l}$. Available data show that adverse effects on aquatic life occur for total recoverable nickel concentrations as low as $0.0071 \, \text{mg/l}$ as a 24 - hour average.

Nickel is not destroyed when treated in a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with POTW treatment processes and can also limit the usefulness of municipal sludge.

Nickel salts have caused inhibition of the biochemical oxidation of sewage in a POTW. In a pilot plant, slug doses of nickel significantly reduced normal treatment efficiencies for a few hours, but the plant acclimated itself somewhat to the slug dosage and appeared to achieve normal treatment efficiencies within 40 hours. It has been reported that the anaerobic digestion process is inhibited only by high concentrations of nickel, while a low concentration of nickel inhibits the nitrification process.

The influent concentration of nickel to a POTW has been observed by the EPA to range from 0.01 to 3.19 mg/l, with a median of 0.33 mg/l. In a study of 190 POTW facilities, nickel pass-through was greater than 90 percent for 82 percent of the primary plants. Median pass-through for trickling filter, activated sludge, and biological process plants was greater than 80 percent. POTW effluent concentrations ranged from 0.002 to 40 mg/l (mean = 0.410, standard deviation = 3.279). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that nickel is 19 percent removed.

Nickel not passed through the POTW will be incorporated into the sludge. In a recent two-year study of eight cities, four of the cities had median nickel concentrations of over 350 mg/kg in their sludge, and two were over 1,000 mg/kg. The maximum nickel concentration observed was 4,010 mg/kg.

Nickel is found in nearly all soils, plants, and waters. Nickel has no known essential function in plants. In soils, nickel typically is found in the range from 10 to 100 mg/kg. Various environmental exposures to nickel appear to correlate with increased incidence of tumors in man. For example, cancer in the maxillary antrum of snuff users may result from using plant materials grown on soil high in nickel.

Nickel toxicity may develop in plants from application of sewage sludge on acid soils. Nickel has caused reduction of yields for a variety of crops including oats, mustard, turnips, and cabbage. In one study nickel decreased the yields of oats significantly at 100 mg/kg.

Whether nickel exerts a toxic effect on plants depends on several soil factors, the amount of nickel applied, and the contents of other metals in the sludge. Unlike copper and zinc, which are more available from inorganic sources than from sludge, nickel uptake by plants seems to be promoted by the presence of the organic matter in sludge. Soil treatments, such as liming, reduce the solubility of nickel. Toxicity of nickel to plants is enhanced in acidic soils.

Selenium (125). Selenium (chemical symbol Se) is a non-metallic element existing in several allotropic forms. Gray selenium, which has a metallic appearance, is the stable form at ordinary temperatures and melts at 220°C. Selenium is a major component of 38 minerals and a minor component of 37 others found in various parts of the world. Most selenium is obtained as a byproduct of precious metals recovery from electrolytic copper refinery slimes. U.S. annual production at one time reached one million pounds.

Principal uses of selenium are in semi-conductors, pigments, decoloring of glass, zerography, and metallurgy. It also is used to produce ruby glass used in signal lights. Several selenium compounds are important oxidizing agents in the synthesis of organic chemicals and drug products.

While results of some studies suggest that selenium may be an essential element in human nutrition, the toxic effects of selenium in humans are well established. Lassitude, loss of hair, discoloration and loss of fingernails are symptoms of selenium poisoning. In a fatal case of ingestion of a larger dose of selenium acid, peripheral vascular collapse, pulmonary edema, and coma occurred. Selenium produces mutagenic and teratogenic effects, but it has not been established as exhibiting carcinogenic activity.

For the protection of human health from the toxic properties of selenium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010 mg/l, i.e., the same as the drinking water standard. Available data show that adverse effects on aquatic life occur at concentrations higher than that cited for human toxicity.

Very few data are available regarding the behavior of selenium in a POTW. One EPA survey of 103 POTW facilities revealed one POTW using biological treatment and having selenium in the influent. Influent concentration was $0.0025 \, \text{mg/l}$, effluent concentration was $0.0016 \, \text{mg/l}$, giving a removal of 37 percent. The most recent

EPA study of the behavior of toxic pollutants in POTW indicates that selenium is 46 percent removed. It is not known to be inhibitory to POTW processes. In another study, sludge from POTW facilities in 16 cities was found to contain from 1.8 to 8.7 mg/kg selenium, compared to 0.01 to 2 mg/kg in untreated soil. These concentrations of selenium in sludge present a potential hazard for humans or other mammals eating crops grown on soil treated with selenium-containing sludge.

<u>Silver</u> (126). Silver is a soft, lustrous, white metal that is insoluble in water and alkali. In nature, silver is found in the elemental state (native silver) and combined in ores such as argentite (Ag₂S), horn silver (AgCl), proustite (Ag₃AsS₃), and pyargyrite (Ag₃SbS₃). Silver is used extensively in several industries, among them electroplating.

Metallic silver is not considered to be toxic, but most of its salts are toxic to a large number of organisms. Upon ingestion by humans, many silver salts are absorbed in the circulatory system and deposited in various body tissues, resulting in generalized or sometimes localized gray pigmentation of the skin and mucous membranes known as argyria. There is no known method for removing silver from the tissues once it is deposited, and the effect is cumulative.

Silver is recognized as a bactericide and doses from 0.000001 to 0.0005~mg/l have been reported as sufficient to sterilize water. The criterion for ambient water to protect human health from the toxic properties of silver ingested through water and through contaminated aquatic organisms is 0.050~mg/l.

The chronic toxic effects of silver on the aquatic environment have not been given as much attention as many other heavy metals. Data from existing literature support the fact that silver is very toxic to aquatic organisms. Despite the fact that silver is nearly the most toxic of the heavy metals, there are insufficient data to adequately evaluate even the effects of hardness on silver toxicity. There are no data available on the toxicity of different forms of silver.

Bioaccumulation and concentration of silver from sewage sludge has not been studied to any great degree. There is some indication that silver could be bioaccumulated in mushrooms to the extent that there could be adverse physiological effects on humans if they consumed large quantities of mushrooms grown in silver enriched soil. The effect, however, would tend to be unpleasant rather than fatal.

The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that silver is 66 percent removed. There is

7

little summary data available on the quantity of silver discharged to a POTW. Presumably there would be a tendency to limit its discharge from a manufacturing facility because of its high intrinsic value.

Zinc (128). Zinc occurs abundantly in the earth's crust, concentrated in ores. It is readily refined into the pure, stable, silver-white metal. In addition to its use in alloys, zinc is used as a protective coating on steel. It is applied by hot diping (i.e., dipping the steel in molten zinc) or by electroplating.

Zinc can have an adverse effect on man and animals at high concentrations. Zinc at concentrations in excess of 5 mg/l causes an undesirable taste which persists through conventional treatment. For the prevention of adverse effects due to these organoleptic properties of zinc, 5 mg/l was adopted for the ambient water criterion. Available data show that adverse effects on aquatic life occur at concentrations as low as 0.047 mg/l as a 24-hour average.

Toxic concentrations of zinc compounds cause adverse changes in the morphology and physiology of fish. Lethal concentrations in the range of 0.1 mg/l have been reported. Acutely toxic concentrations induce cellular breakdown of the gills, and possibly the clogging of the gills with mucous. Chronically toxic concentrations of zinc compounds cause general enfeeblement and widespread histological changes to many organs, but not to gills. Abnormal swimming behavior has been reported at 0.04 mg/l. Growth and maturation are retarded by zinc. It has been observed that the effects of zinc poisoning may not become apparent immediately, so that fish removed from zinc-contaminated water may die as long as 48 hours after removal.

In general, salmonoids are most sensitive to elemental zinc in soft water; the rainbow trout is the most sensitive in hard waters. A complex relationship exists between zinc concentration, dissolved zinc concentration, pH, temperature, and calcium and magnesium concentration. Prediction of harmful effects has been less than reliable and controlled studies have not been extensively documented.

The major concern with zinc compounds in marine waters is not with acute lethal effects, but rather with the long-term sublethal effects of the metallic compounds and complexes. Zinc accumulates in some marine species, and marine animals contain zinc in the range of 6 to 1,500 mg/kg. From the point of view of acute lethal effects, invertebrate marine animals seem to be the most sensitive organism tested.

Toxicities of zinc in nutrient solutions have been demonstrated for a number of plants. A variety of fresh water plants tested manifested harmful symptoms at concentrations of 0.030 to 21.6 mg/l. Zinc sulfate has also been found to be lethal to many plants and it could impair agricultural uses of the water.

Zinc is not destroyed when treated by a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with treatment processes in the POTW and can also limit the usefulness of municipal sludge.

In slug doses, and particularly in the presence of copper, dissolved zinc can interfere with or seriously disrupt the operation of POTW biological processes by reducing overall removal efficiencies, largely as a result of the toxicity of the metal to biological organisms. However, zinc solids in the form of hydroxides or sulfides do not appear to interfere with biological treatment processes, on the basis of available data. Such solids accumulate in the sludge.

The influent concentrations of zinc to a POTW have been observed by the EPA to range from 0.017 to 3.91 mg/l, with a median concentration of 0.33 mg/l. Primary treatment is not efficient in removing zinc; however, the microbial floc of secondary treatment readily adsorbs zinc.

In a study of 258 POTW facilities, the median pass-through values were 70 to 88 percent for primary plants, 50 to 60 percent for trickling filter and biological process plants, and 30 to 40 percent for activated process plants. POTW effluent concentrations of zinc ranged from 0.003 to 3.6 mg/l (mean = 0.330, standard deviation = 0.464). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that zinc is 65 percent removed.

The zinc which does not pass through the POTW is retained in the sludge. The presence of zinc in sludge may limit its use on cropland. Sewage sludge contains 72 to over 30,000 mg/kg of zinc, with 3,366 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which range from 0 to 195 mg/kg, with 94 mg/kg being a common level. Therefore, application of sewage sludge to soil will generally increase the concentration of zinc in the soil. Zinc can be toxic to plants, depending upon soil pH. Lettuce, tomatoes, turnips, mustard, kale, and beets are especially sensitive to zinc contamination.

Aluminum. Aluminum, a nonconventional pollutant, is an abundant silvery white metal comprising approximately 8.1 percent of the earth's crust. Aluminum never exists in an ionic state in

nature, but rather is found as a component of several ores. The principal ore for aluminum is bauxite from which alumina (Al_2O_3) is extracted. Aluminum metal is produced by electrolysis of the alumina in the cryolite bath.

Aluminum metal is relatively corrosion resistant because it forms a protective oxide film on the surface which prevents corrosion under many conditions. Electrolytic action of other metals in contact with aluminum and strong acids and alkalis can break down the oxide layer causing rapid corrosion to occur.

Aluminum is light, malleable, ductile, possesses high thermal and electrical conductivity, and is non-magnetic. It can be formed, machined or cast. Aluminum is used in the construction, transportation, and container industries and competes with iron and steel in these markets.

There is increasing evidence that dissolved aluminum may have substantial adverse effects on human health. Aluminum has been implicated by several studies in the development of Alzheimer's disease (progressive senile dementia). This disease is associated with the formation of tangled bunches of nerve fibers or "neurofibrillary tangles" (NFT). Autopsy studies have shown that aluminum is present in 90 percent of the nuclei of NFT neurons. It is present in less than 6 percent of the nuclei of normal neurons. This trend is also apparent in the cytoplasm of NFT neurons, although less prominent than in the nuclei: aluminum was found in 29.4 percent of the cytoplasms of NFT neurons and 11.1 percent of the cytoplasms of normal neurons.

Brains of individuals suffering from several other neurological diseases have also displayed elevated concentrations of aluminum. These diseases include Huntington's disease, Parkinsons' disease, progressive supranuclear palsy, acoustic neuroma, and Guamanian amyotrophic lateral sclerosis (ALS).

These increased concentrations of aluminum may be a result of the development of the disease, rather than a contributing cause; however, this possibility seems less likely in light of several recent studies correlating high concentrations of aluminum in the environment to a high incidence of several of these neurological disorders. These and other studies are discussed in greater detail in the report "Aluminum: An Environmental and Health Effects Assessment," cited as a reference in this document. Although much work remains to be done on this subject, the Agency believes that the evidence points to a much broader neurotoxic role for aluminum than had previously been assumed.

In addition, mildly alkaline conditions can cause precipitation of aluminum as the hydroxide. When aluminum hydroxide precipi-

tates in waterways or bodies of water, it can blanket the bottom, having an adverse effect on the benthos and on aquatic plant life rooted on the bottom. Aluminum hydroxide, like many precipitates, can also impair the gill action of fish when present in large amounts.

Alum, an aluminum salt with the chemical formula ${\rm Al_2(SO_4)_3.14H_20}$, is used as a coagulant in municipal and industrial wastewater treatment. This form is different from dissolved aluminum and aluminum hydroxide, which are both harmful pollutants. The amount of dissolved aluminum in finished water does not generally depend upon the amount of alum used as a coagulant, unless a large excess is used. The alum is contained in the treatment sludge; very little passes through into the effluent.

Similarly, the amount of aluminum hydroxide in finished water does not depend on the amount of alum used in coagulation, but rather on the pH and the concentration of dissolved aluminum. Therefore, the use of alum as a coagulant does not result in large amounts of either aluminum or aluminum hydroxide in finished water. There are no data available on the POTW removal efficiency for the pollutant aluminum.

- <u>Oil</u> <u>and</u> <u>Grease</u>. Oil and grease are taken together as one pollutant parameter. This is a conventional pollutant and some of its components are:
- 1. Light Hydrocarbons These include light fuels such as gasoline, kerosene, and jet fuel, and miscellaneous solvents used for industrial processing, degreasing, or cleaning purposes. The presence of these light hydrocarbons may make the removal of other heavier oil wastes more difficult.
- 2. Heavy Hydrocarbons, Fuels, and Tars These include the crude oils, diesel oils, #6 fuel oil, residual oils, slop oils, and in some cases, asphalt and road tar.
- 3. Lubricants and Cutting Fluids These generally fall into two classes: non-emulsifiable oils such as lubricating oils and greases and emulsifiable oils such as water soluble oils, rolling oils, cutting oils, and drawing compounds. Emulsifiable oils may contain fat, soap, or various other additives.
- 4. Vegetable and Animal Fats and Oils These originate primarily from processing of foods and natural products.

These compounds can settle or float and may exist as solids or liquids depending upon factors such as method of use, production process, and temperature of water.

Oil and grease even in small quantities cause troublesome taste and odor problems. Scum lines from these agents are produced on water treatment basin walls and other containers. Fish and water fowl are adversely affected by oils in their habitat. Oil emulsions may adhere to the gills of fish causing suffocation, and the flesh of fish is tainted when microorganisms that were exposed to waste oil are eaten. Deposition of oil in the bottom sediments of water can serve to inhibit normal benthic growth. Oil and grease exhibit an oxygen demand.

Many of the toxic organic pollutants will be found distributed between the oil phase and the aqueous phase in industrial wastewaters. The presence of phenols, PCB's, PAH's, and almost any other organic pollutant in the oil and grease make characterization of this parameter almost impossible. However, all of these other organics add to the objectionable nature of the oil and grease.

Levels of oil and grease which are toxic to aquatic organisms vary greatly, depending on the type and the species susceptibility. However, it has been reported that crude oil in concentrations as low as 0.3 mg/l is extremely toxic to freshwater fish. It has been recommended that public water supply sources be essentially free from oil and grease.

Oil and grease in quantities of 100 l/sq km show up as a sheen on the surface of a body of water. The presence of oil slicks decreases the aesthetic value of a waterway.

Oil and grease is compatible with a POTW activated sludge process in limited quantity. However, slug loadings or high concentrations of oil and grease interfere with biological treatment processes. The oils coat surfaces and solid particles, preventing access of oxygen, and sealing in some microorganisms. Land spreading of POTW sludge containing oil and grease uncontaminated by toxic pollutants is not expected to affect crops grown on the treated land, or animals eating those crops.

<u>pH</u>. Although not a specific pollutant, pH is related to the acidity or alkalinity of a wastewater stream. It is not, however, a measure of either. The term pH is used to describe the hydrogen ion concentration (or activity) present in a given solution. Values for pH range from 0 to 14, and these numbers are the negative logarithms of the hydrogen ion concentrations. A pH of 7 indicates neutrality. Solutions with a pH above 7 are alkaline, while those solutions with a pH below 7 are acidic. The relationship of pH and acidity and alkalinity is not necessarily linear or direct. Knowledge of the water pH is useful in determining necessary measures for corrosion control, sanitation, and disinfection. Its value is also necessary in the treatment of

industrial wastewaters to determine amounts of chemicals required to remove pollutants and to measure their effectiveness. Removal of pollutants, especially dissolved solids is affected by the pH of the wastewater.

Waters with a pH below 6.0 are corrosive to water works structures, distribution lines, and household plumbing fixtures and can thus add constituents to drinking water such as iron, copper, zinc, cadmium, and lead. The hydrogen ion concentration can affect the taste of the water, and at a low pH water tastes sour. The bactericidal effect of chlorine is weakened as the pH increases, and it is advantageous to keep the pH close to 7.0. This is significant for providing safe drinking water.

Extremes of pH or rapid pH changes can exert stress conditions or kill aquatic life outright. Even moderate changes from acceptable criteria limits of pH are deleterious to some species.

The relative toxicity to aquatic life of many materials is increased by changes in the water pH. For example, metallocyanide complexes can increase a thousand-fold in toxicity with a drop of 1.5 pH units.

Because of the universal nature of pH and its effect on water quality and treatment, it is selected as a pollutant parameter for many industry categories. A neutral pH range (approximately 6 to 9) is generally desired because either extreme beyond this range has a deleterious effect on receiving waters or the pollutant nature of other wastewater constituents.

Pretreatment for regulation of pH is covered by the "General Pretreatment Regulations for Existing and New Sources of Pollution," 40 CFR 403.5. This section prohibits the discharge to a POTW of "pollutants which will cause corrosive structural damage to the POTW but in no case discharges with pH lower than 5.0 unless the works is specially designed to accommodate such discharges."

Total Suspended Solids (TSS). Suspended solids include both organic and inorganic materials. The inorganic compounds include sand, silt, and clay. The organic fraction includes such materials as grease, oil, tar, and animal and vegetable waste products. These solids may settle out rapidly, and bottom deposits are often a mixture of both organic and inorganic solids. Solids may be suspended in water for a time and then settle to the bed of the stream or lake. These solids discharged with man's wastes may be inert, slowly biodegradable materials, or rapidly decomposable substances. While in suspension, suspended solids increase the turbidity of the water, reduce light penetration, and impair the photosynthetic activity of aquatic plants.

Suspended solids in water interfere with many industrial processes and cause foaming in boilers and incrustations on equipment exposed to such water, especially as the temperature rises. They are undesirable in process water used in the manufacture of steel, in the textile industry, in laundries, in dyeing, and in cooling systems.

Solids in suspension are aesthetically displeasing. When they settle to form sludge deposits on the stream or lake bed, they are often damaging to the life in the water. Solids, when transformed to sludge deposit, may do a variety of damaging things, including blanketing the stream or lake bed and thereby destroying the living spaces for those benthic organisms that would otherwise occupy the habitat. When of an organic nature, solids use a portion or all of the dissolved oxygen available in the area. Organic materials also serve as a food source for sludgeworms and associated organisms.

Disregarding any toxic effect attributable to substances leached out by water, suspended solids may kill fish and shellfish by causing abrasive injuries and by clogging the gills and respiratory passages of various aquatic fauna. Indirectly, suspended solids are inimical to aquatic life because they screen out light, and they promote and maintain the development of noxious conditions through oxygen depletion. This results in the killing of fish and fish food organisms. Suspended solids also reduce the recreational value of the water.

Total suspended solids is a traditional pollutant which is compatible with a well-run POTW. This pollutant with the exception of those components which are described elsewhere in this section, e.g., heavy metal components, does not interfere with the operation of a POTW. However, since a considerable portion of the innocuous TSS may be inseparably bound to the constituents which do interfere with POTW operation, or produce unusable sludge, or subsequently dissolve to produce unacceptable POTW effluent, TSS may be considered a toxic waste.

POLLUTANT SELECTION FOR CORE WASTE STREAMS

The pollutant selection procedure was performed for the following core groups of waste streams to select those toxic pollutants that would be considered for establishing regulations for these core wastewater stream groups:

Rolling with Neat Oils Core Waste Streams Rolling with Emulsions Core Waste Streams Extrusion Core Waste Streams Forging Core Waste Streams Drawing with Neat Oils Core Waste Streams Drawing with Emulsions or Soaps Core Waste Streams

Table VI-2 summarizes the disposition of priority pollutants with respect to each set of core operations.

Rolling with Neat Oils Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Rolling with Neat Oils Subcategory:

Roll Grinding Spent Emulsion Annealing Furnace Atmosphere Scrubber Liquor Sawing Spent Lubricant Miscellaneous Nondescript Wastewater Sources

Organic pollutant characteristics of the roll grinding spent emulsions and sawing spent lubricant waste streams were determined from the rolling spent emulsions waste stream. All of these processes require a lubricant to prevent excess wear on the metal against metal surfaces. Since the properties of the lubricants required are similar between these three processes, the formulations for each ought to be similar; therefore, the characteristics of one are transferable to another.

Toxic metal pollutants and cyanide characteristics from applicable miscellaneous wastewater sources (points AA-2, AA-3, AA-8, and AA-9) were considered for the miscellaneous nondescript wastewater sources. Toxic metals and cyanide characteristics of sawing spent lubricant and roll grinding spent emulsion were determined from samples taken of these streams. The organic data for these wastewater streams were received too late to be included in the data base.

The annealing furnace atmosphere scrubber liquor waste stream had no toxic pollutants detected above the level considered achievable by specific available treatment methods.

<u>Pollutants</u> <u>Never</u> <u>Detected</u>. The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 9 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/1).

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials or processes associated with rolling with neat oils; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Antimony was detected above its analytical quantification level in 1 of 11 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Cadmium was detected above its analytical quantification level in 2 of 12 samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Mercury was detected above its analytical quantification level in 1 of 12 samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Nickel was detected above its analytical quantification level in 5 of 13 samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

Pollutants Detected in a Small Number of Sources. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Chrysene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 9 samples and in 1 of 6 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Arsenic was detected above its analytical quantification level in 5 of 12 samples and in 3 of 5 plants; however, it was found above the level considered achievable by specific treatment methods (0.34 mg/l) at only 1 of 5 plants.

Pollutants Selected for Consideration in Establishing Regulations for the Rolling with Neat Oils Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 9 samples and in 2 of 6 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 3 of 9 samples and in 2 of 6 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 9 samples and in 2 of 6 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 9 samples and in 2 of 6 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 10 samples and in 3 of 6 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 4 of 9 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 9 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 9 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 9 samples and in 4 of 6 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 9 samples and in 3 of 6 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 7 samples and in 3 of 5 sources.

Chromium was detected above its analytical quantification level in 6 of 12 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 2 of 12 samples and in 2 of 11 sources.

Copper was detected above its analytical quantification level in 5 of 12 samples and above the level considered achievable by

specific treatment methods (0.39 mg/l) in 1 of 12 samples and in 1 of 11 sources.

Lead was detected above its analytical quantification level in 5 of 12 samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in 3 of 12 samples and in 2 of 11 sources.

Zinc was detected above its analytical quantification level in 11 of 12 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 6 of 12 samples and in 6 of 11 sources.

Rolling with Emulsions Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Rolling with Emulsions Subcategory:

Rolling with Emulsions Spent Emulsions Roll Grinding Spent Emulsions Sawing Spent Lubricants Miscellaneous Nondescript Wastewater Sources

Pollutant data from applicable miscellaneous wastewater sources (points AA-2, AA-3, AA-8, and AA-9) were considered for the miscellaneous nondescript wastewater sources. Characteristics of rolling spent emulsions, sawing spent lubricant, and roll grinding spent emulsions were determined from samples taken from these waste streams.

<u>Pollutants Never Detected.</u> The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

<u>Pollutants</u> <u>Detected Below Levels Achievable by Treatment</u>. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these

wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 9 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/1).

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials or processes associated with rolling with emulsions; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Antimony was detected above its analytical quantification level in 1 of 21 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Mercury was detected above its analytical quantification level in 3 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

<u>Pollutants</u> <u>Detected in a Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Chrysene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 9 samples and in 1 of 6 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Arsenic was detected above its analytical quantification level in 10 of 21 samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in 2

of 21 samples and in 2 of 16 sources. Both of these sources were located at the same plant, out of a total of 8 plants.

Cadmium was detected above its analytical quantification level in 8 of 21 samples; however, it was only found above the level considered achievable by specific treatment methods (0.049~mg/l) in 3 of 21 samples and in 3 of 16 sources. These three sources are located at two different plants.

Nickel was detected above its analytical quantification level in 12 of 22 samples; however, it was only found above the level considered achievable by specific treatment methods (0.22 mg/l) in 2 of 22 samples and in 2 of 17 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Rolling with Emulsions Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 9 samples and in 2 of 6 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050 mg/l) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 3 of 9 samples and in 2 of 6 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 9 samples and in 2 of 6 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 9 samples and in 2 of 6 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 10 samples and in 3 of 6 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 4 of 9 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 9 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 9 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 9 samples and in 4 of 6 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 9 samples and in 3 of 6 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 7 samples and in 3 of 5 sources.

Chromium was detected above its analytical quantification level in 14 of 22 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 7 of 22 samples and in 7 of 17 sources.

Copper was detected above its analytical quantification level in 13 of 22 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 7 of 22 samples and in 6 of 17 sources.

Cyanide was detected above its analytical quantification level in 8 of 22 samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in 6 of 22 samples and in 3 of 17 sources.

Lead was detected above its analytical quantification level in 13 of 22 samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in 9 of 22 samples and in 6 of 17 sources.

Zinc was detected above its analytical quantification level in 19 of 21 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 13 of 21 samples and in 11 of 16 sources.

Extrusion Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Extrusion Subcategory:

Extrusion Die Cleaning Bath Extrusion Die Cleaning Rinse Extrusion Die Cleaning or Press Scrubber Liquor Sawing Spent Lubricant Miscellaneous Nondescript Wastewater Sources

Pollutant data from applicable miscellaneous wastewater AA-2, AA-3, AA-8, and AA-9) were considered for the miscellaneous nondescript wastewater sources. For the extrusion die cleaning or press scrubber liquor, no toxic metals were detected above their analytical quantification level and above the level considered achievable by specific available treatment methods. Due to a lack of data, the toxic organics in the extrusion die cleaning or press scrubber liquor and the cleaning or scrubber liquor are considered to be similar. The same pollutant selection is considered equally applicable to both of these waste discussed in the section on pollutant As will be selection for ancillary waste streams, no toxic organics were selected for consideration in establishing regulations for the cleaning or etching scrubber liquor wastewater stream.

Organic pollutant characteristics of the sawing spent lubricant waste stream were determined from the rolling spent emulsions waste stream. Both of these processes require a lubricant to prevent excess wear on the metal against metal surfaces and to aid by cooling the surfaces. Since the properties of the lubricants required are similar between these two processes, the formulations for each are assumed to be similar; therefore, the characteristics of one are transferable to another.

Toxic metal pollutants and cyanide characteristics of extrusion die cleaning baths and rinses, and sawing spent lubricants were determined from samples taken of these streams.

<u>Pollutants</u> <u>Never</u> <u>Detected</u>. The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in 2 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 11 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Chloroform was detected above its analytical quantification level in 2 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 7 of 10 samples, with values ranging from 0.021 to 1.300

mg/l. This pollutant is not attributable to specific materials or processes associated with extrusion; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Antimony was detected above its analytical quantification level in 12 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Cadmium was detected above its analytical quantification level in 7 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Cyanide was detected above its quantitative analytical level in 11 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.047 mg/l).

Mercury was detected above its quantitative analytical level in 2 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Nickel was detected above its analytical quantification level in 6 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

Selenium was detected above its quantitative analytical level in 6 of 21 samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Pollutants Detected in a Small Number of Sources. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 10 samples and in 1 of 6 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 11 samples and in 1 of 8 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 11 samples and in 1 of 8 sources.

Chrysene was detected above its analytical quantification level in 1 of 11 samples and in 1 of 8 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 11 samples and in 1 of 8 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 11 samples and in 1 of 8 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 10 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 10 samples and in 1 of 6 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 10 samples and in 1 of 6 sources.

Chlordane was detected above its analytical quantification level in 1 of 9 samples and in 1 of 7 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 9 samples and in 1 of 7 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 9 samples and in 1 of 7 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 9 samples and in 1 of 7 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 10 samples and in 1 of 8 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 10 samples and in 1 of 8 sources.

Arsenic was detected above its analytical quantification level in 10 of 22 samples. It was found above the level considered achievable by specific treatment methods (0.35 mg/l) in 5 of 22 samples and in 5 of 15 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Extrusion Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific

treatment methods (0.010 mg/l) in 2 of 10 samples and in 2 of 8 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 11 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 11 samples and in 2 of 7 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 3 of 12 samples and in 2 of 9 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 12 samples and in 2 of 9 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 12 samples and in 2 of 9 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 12 samples and in 3 of 8 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 5 of 12 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 12 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 11 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 11 samples and in 4 of 8 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 11 samples and in 3 of 8 sources.

Toluene was detected above its analytical quantification level in 5 of 10 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 10 samples and in 2 of 6 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 9 samples and in 2 of 7 sources.

Endrin was detected above its analytical quantification level in 2 of 9 samples and in 2 of 7 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 9 samples and in 2 of 7 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 9 samples and in 3 of 7 sources.

Chromium was detected above its analytical quantification level in 15 of 22 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 6 of 22 samples and in 6 of 15 sources.

Copper was detected above its analytical quantification level in 17 of 22 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 7 of 22 samples and in 5 of 15 sources.

Lead was detected above its analytical quantification level in 16 of 22 samples and above the level considered achievable by specific treatment methods $(0.08\ mg/l)$ in 10 of 22 samples and in 7 of 15 sources.

Zinc was detected above its analytical quantification level in 22 of 22 samples and above the level considered achievable by specific treatment methods (0.23~mg/l) in 11 of 22 samples and in 9 of 15 sources.

Forging Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Forging Subcategory:

Sawing Spent Lubricant Miscellaneous Nondescript Wastewater Sources

Pollutant data from applicable miscellaneous wastewater sources (points AA-2, AA-3, AA-8, and AA-9) were considered for the miscellaneous nondescript wastewater sources. Organic pollutant characteristics of the sawing spent lubricant waste stream were determined from the rolling spent emulsions waste stream. Both of these processes require a lubricant to prevent excess wear on

the metal against metal surfaces and to aid by cooling the surfaces. Since the properties of the lubricants required are similar between these two processes, the formulations for each ought to be similar; therefore, the characteristics of one are transferable to another.

Toxic metals and cyanide characteristics of the sawing spent lubricant wastewater stream were determined from samples taken of this stream.

Pollutants Never Detected. The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 9 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials or processes associated with forging; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Antimony was detected above its analytical quantification level in 3 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Cadmium was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Nickel was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.22 \, \text{mg/l})$.

<u>Pollutants</u> <u>Detected in a Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Chrysene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are

reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 9 samples and in 1 of 6 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Arsenic was detected above its analytical quantification level in 2 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in 1 of 8 samples and in 1 of 7 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Forging Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 9 samples and in 2 of 6 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable

by specific treatment methods (0.050 mg/1) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 3 of 9 samples and in 2 of 6 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 9 samples and in 2 of 6 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 9 samples and in 2 of 6 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 10 samples and in 3 of 6 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 4 of 9 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 9 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 9 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 9 samples and in 4 of 6 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 9 samples and in 3 of 6 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 7 samples and in 3 of 5 sources.

Chromium was detected above its analytical quantification level in 1 of 8 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 1 of 8 samples and in 1 of 7 sources.

Copper was detected above its analytical quantification level in 3 of 8 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 1 of 8 samples and in 1 of 7 sources.

Lead was detected above its analytical quantification level in 3 of 8 samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in 3 of 8 samples and in 2 of 6 sources.

Zinc was detected above its analytical quantification level in 8 of 8 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 5 of 8 samples and in 5 of 7 sources.

Drawing with Neat Oils Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Drawing with Neat Oils Subcategory:

Sawing Spent Lubricants Miscellaneous Nondescript Wastewater Sources

Pollutant data from applicable miscellaneous wastewater sources (points AA-2, AA-3, AA-8, and AA-9) were considered for the miscellaneous nondescript wastewater sources. Organic pollutant characteristics of the sawing spent lubricants waste stream were determined from the rolling spent emulsions waste stream. Both of these processes require a lubricant to prevent excess wear on the metal against metal surfaces and to aid by cooling the surfaces. Since the properties of the lubricants required are similar between these two processes, the formulations for each ought to be similar; therefore, the characteristics of one are transferable to another.

Toxic metals and cyanide characteristics of sawing spent lubricants were determined from samples taken of this waste stream.

<u>Pollutants</u> <u>Never Detected</u>. The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$.

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 9 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials

or processes associated with drawing with neat oils; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods $(0.100 \ \text{mg/l})$.

Antimony was detected above its analytical quantification level in 3 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Cadmium was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Nickel was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

Pollutants Detected in a Small Number of Sources. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Chrysene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 9 samples and in 1 of 6 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above

the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Arsenic was detected above its analytical quantification level in 3 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in 2 of 8 samples and in 2 of 7 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Drawing with Neat Oils Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 9 samples and in 2 of 6 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050 mg/l) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific

treatment methods (0.010 mg/l) in 3 of 9 samples and in 2 of 6 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 9 samples and in 2 of 6 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 9 samples and in 2 of 6 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050 mg/l) in 3 of 10 samples and in 3 of 6 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 4 of 9 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 9 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 9 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 9 samples and in 4 of 6 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 9 samples and in 3 of 6 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups.

١

Each of the two PCB groups was reported present above its analytical quantification level in 3 of 7 samples and in 3 of 5 sources.

Chromium was detected above its analytical quantification level in 1 of 8 samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in 1 of 8 samples and in 1 of 7 sources.

Copper was detected above its analytical quantification level in 3 of 8 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 1 of 8 samples and in 1 of 7 sources.

Lead was detected above its analytical quantification level in 3 of 8 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 3 of 8 samples and in 2 of 7 sources.

Zinc was detected above its analytical quantification level in 8 of 8 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 5 of 8 samples and in 5 of 7 sources.

Drawing With Emulsions or Soaps Core Waste Streams

The following waste streams will receive a pollutant discharge allocation in the core of the Drawing With Emulsions or Soaps Subcateogry:

Drawing With Emulsions or Soaps Spent Lubricants Sawing Spent Lubricants Miscellaneous Non-Descript Wastewater Sources

Pollutant data from applicable miscellaneous wastewater sources (points AA-2, AA-3, AA-8, and AA-9) were considered for the Drawing with miscellaneous non-descript wastewater sources. emulsions or soaps spent lubricants were only sampled at one facility; however, the volatile organics and toxic metals were not analyzed in that sample. Toxic metals and cyanide characteristics of the sawing spent lubricants waste stream were determined from samples of this stream. Where necessary due to a lack data, toxic pollutant characteristics of the sawing spent emulsions and drawing spent emulsions or soaps waste streams were determined from the rolling spent emulsions waste stream. three of these processes require a lubricant to prevent excess wear on the metal against metal surfaces and to aid by cooling Since the properties of the lubricants required the surfaces. are similar between these three processes, the formulations for each ought to be similar; therefore, the characteristics of one are transferable to another.

<u>Pollutants Never Detected.</u> The toxic pollutants identified by "ND" in Table VI-2 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-2 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-2 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Benzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/1).

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials

or processes associated with continuous casting; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods $(0.100 \, \text{mg/l})$.

Antimony was detected above its analytical quantification level in 4 of 18 samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Mercury was detected above its analytical quantification level in 4 of 18 samples; however, it was only found above the level considered achievable by specific treatment methods (0.036 mg/l).

<u>Pollutants</u> <u>Detected in a Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

p-Chloro-m-cresol was detected above its analytical quantification level in 1 of 11 samples and in 1 of 7 sources.

2-Chlorophenol was detected above its analytical quantification level in 1 of 11 samples and in 1 of 7 sources.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

2,4-Dinitrotoluene was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

1,2-Diphenylhydrazine was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

Isosphorone was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

Di-n-octyl phthalate was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

tion level in 1 of 10 samples and in 1 of 7 sources.

į

Chrysene was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 10 samples and in 1 of 7 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 10 samples and in 1 of 7 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 8 samples and in 1 of 6 sources.

Arsenic was detected above its analytical quantification level in 8 of 18 samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in 2 of 18 samples and in 2 of 13 sources.

Cadmium was detected above its analytical quantification level in 8 of 18 samples; however, it was only found above the level considered achievable by specific treatment methods (0.049 mg/l) in 3 of 18 samples and in 3 of 13 sources.

Nickel was detected above its analytical quantification level in 9 of 18 samples; however, it was only found above the level con-

•

sidered achievable by specific treatment methods (0.22 mg/l) in 3 of 18 samples and in 2 of 13 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Drawing With Emulsions or Soaps Core Waste Streams. The toxic pollutants identified by "RG" in Table VI-2 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 10 samples and in 2 of 7 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/1) in 3 of 10 samples and in 2 of 7 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 10 samples and in 2 of 7 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 10 samples and in 2 of 7 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 11 samples and in 3 of 7 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 5 of 10 samples. The maximum concentration observed was $2.900 \, \text{mg/l}$.

Di-n-butyl phthalate was found above its analytical quantification level in 5 of 10 samples, ranging from 0.034 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 10 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/1) in 5 of 10 samples and in 4 of 7 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 4 of 10 samples and in 3 of 7 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 8 samples and in 2 of 6 sources.

Endrin was detected above its analytical quantification level in 2 of 8 samples and in 2 of 6 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 8 samples and in 2 of 6 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 8 samples and in 3 of 6 sources.

Chromium was detected above its analytical quantification level in 10 of 18 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 5 of 18 samples and in 5 of 13 sources.

Copper was detected above its analytical quantification level in 12 of 18 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 7 of 18 samples and in 6 of 13 sources.

Cyanide was detected above its analytical quantification level in 8 of 18 samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in 6 of 18 samples and in 3 of 13 sources.

Lead was detected above its analytical quantification level in 11 of 18 samples and above the level considered achievable by specific treatment methods $(0.08\ mg/l)$ in 9 of 18 samples and in 6 of 13 sources.

Zinc was detected above its analytical quantification level in 17 of 18 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 12 of 18 samples and in 10 of 13 sources.

POLLUTANT SELECTION FOR ANCILLARY WASTE STREAMS

The pollutant selection procedure was performed for the following ancillary operations to select those toxic pollutants that would be considered for establishing regulations for these wastewater streams:

Direct Chill Casting Contact Cooling Water
Continuous Rod Casting Contact Cooling Water
Continuous Sheet Casting Spent Lubricants
Continuous Rod Casting Spent Lubricants
Forging Scrubber Liquor
Solution and Press Heat Treatment Contact Cooling Water
Cleaning or Etching Bath
Cleaning or Etching Rinse
Cleaning or Etching Scrubber Liquor
Degassing Scrubber Liquor
Extrusion Press Hydraulic Fluid Leakage

Direct Chill Casting Contact Cooling Water

Continuous Rod Casting Contact Cooling Water

The Agency did not sample the continuous rod casting contact cooling water waste stream. The characteristics of this waste stream are determined to be the same as the direct chill casting contact cooling water. Both casting processes use water to cool the aluminum as it is cast, and since the aluminum that water contacts is essentially the same in both processes, the characteristics of one are transferable to the other.

<u>Pollutants</u> <u>Never</u> <u>Detected</u>. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level once in 23 samples. In addition, the single quantified value of 0.013~mg/l is below the level considered achievable by specific available treatment of 0.05~mg/l.

2-Chlorophenol was present above its analytical quantification level in only 1 of 20 samples. In addition, the single reported value of 0.012 mg/l is well below the level of 0.05 mg/l considered achievable by specific available treatment.

Methylene chloride was found above its analytical quantification level in 13 of 23 samples, with values ranging from 0.04 to 0.47 mg/l. This pollutant is not attributable to specific materials or processes associated with direct chill casting or continuous rod casting contact cooling water; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Cadmium was reported present above its analytical quantification level in 6 of 20 samples. The maximum observed value was $0.020 \, \text{mg/l}$. The level of cadmium considered achievable by specific available treatment methods is $0.049 \, \text{mg/l}$.

Copper was reported present in 17 of 20 samples at concentrations greater than its analytical quantification level. The maximum concentration of copper observed was 0.030~mg/l, while the concentration considered achievable by specific available treatment methods 0.39~mg/l.

Mercury was detected above its analytical quantification level in 14 of 20 samples, ranging from 0.0004 to 0.020 mg/l. All values are below the level considered achievable by specific available treatment of 0.036 mg/l.

Nickel was reported present above its analytical quantification level in just 2 of 20 samples. The maximum measured value, $0.020 \, \text{mg/l}$, is less than the level considered achievable by specific available treatment methods $(0.22 \, \text{mg/l})$.

Pollutants Detected in a Small Number of Sources. The toxic pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was reported present above its analytical quantification level in 2 of 20 samples and in 2 of 12 sources. Both sources containing measurable amounts of acenaphthene were at the same plant.

Chloroform was found above its analytical quantification level in 11 of 23 samples, with values ranging from 0.012 to 0.15 mg/1. Only one of the reported values is above the level considered achievable by specific available treatment of 0.1 mg/1.

Isophorone was reported above its analytical quantification level in 2 of 20 samples and in 1 of 12 sources.

2,4-Dinitrophenol was reported at a concentration above its analytical quantification level in only 1 of 20 samples and in 1 of 12 sources. The observed concentration was $0.042 \, \text{mg/l}$. The level considered achievable by specific available treatment methods is $0.025 \, \text{mg/l}$.

4,6-Dinitro-o-cresol was reported at a concentration above its analytical quantification level in only 1 of 20 samples and 1 of 12 sources. The observed concentration was 0.042~mg/l. The level considered achievable by specific available treatment methods is 0.025~mg/l.

N-nitrosodiphenylamine was reported at concentrations above its analytical quantification level in only 2 of 20 samples and in 1 of 12 sources. The values observed were 0.044 and 0.057 mg/l.

Phenol was reported at a concentration above its analytical quantification level in 3 of 20 samples. However, it was found above the concentration achievable through treatment in only one sample at 1 out of 12 sources.

Butyl benzyl phthalate was reported at a concentration above its analytical quantification level in 5 of 20 samples and in 3 of 12 sources. However, it was found in only 2 of 9 plants.

Di-n-octyl phthalate was reported at a concentration above its analytical quantification level in 2 of 20 samples at 2 of 12 sources and 1 of 9 plants.

Diethyl phthalate was reported at a concentration above its analytical quantification level in 3 of 20 samples. However, it was only found in 2 of 9 plants.

Dimethyl phthalate was reported at a concentration greater than its analytical quantification level in only 1 of 20 samples and in 1 of 12 sources. The observed concentration was 0.053 mg/l.

Acenaphthylene was reported at a concentration greater than its analytical quantification level in 1 of 20 samples and in 1 of 12 sources. The observed concentration was 0.012 mg/l.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in just 2 of 20 samples and in 1 of 12 sources.

Fluorene was reported present above its analytical quantification level in 2 of 20 samples and in 1 of 12 sources.

Chlordane was reported present above its analtyical quantification level in 2 of 16 samples and in 2 of 12 sources. Both reported concentrations of chlordane came from sources at one plant, and were above the level considered achievable by specific available treatment methods.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 2 of 16 samples and in 2 of 12 sources. The reported values all were for sources at one plant.

Chromium was reported present above its analytical concentration level in 6 of 20 samples an in 4 of 12 sources. Only one sample contained chromium at a level greater than that considered achievable by specific available treatment methods (0.07 mg/l).

Lead was found above its analytical quantification level in 15 of 20 samples. Values ranged from 0.002 to 0.100 mg/l. Four of the values at 2 of 12 sources were above the level considered achievable by specific treatment (0.08 mg/l); however, both sources were at the same plant.

Pollutants Selected for Consideration in Establishing Regulations for the Direct Chill Casting and Continuous Rod Casting Contact Cooling Water Waste Streams. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected

for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 9 of 20 samples. All 9 values were greater than the concentrations considered achievable by specific available treatment methods. The maximum concentration reported is 0.280 mg/l.

Di-n-butyl phthalate was reported at a concentration above its analytical quantification level in 8 of 20 samples.

Zinc was found above its analytical quantification level in 14 of 20 samples. Values ranged from 0.1 to 1.0 mg/l. Five of the sample values were above the level considered achievable by specific treatment of 0.23 mg/l.

Continuous Sheet Casting Spent Lubricants

Continuous Rod Casting Spent Lubricants

The Agency did not sample the continuous rod casting or continuous sheet casting spent lubricant. The characteristics of these wastes are determined to be the same as the rolling spent emulsion. Rolling and continuous casting of rod or sheet, require a lubricant to prevent excess wear on the metal against metal surfaces and to aid by cooling the surfaces. Since the properties of the lubricants required are similar between these processes, the formulations for each ought to be similar, therefore the characteristics of one are transferable to another.

Pollutants Never Detected. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not

selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acrolein was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/1).

Benzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chlorobenzene was detected above its analytical quantification level in 1 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

2,4,6-Trichlorophenol was detected above its analytical quantification level in 1 of 9 samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Chloroform was detected above its analytical quantification level in 2 of 8 samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Methylene chloride was found above its analytical quantification level in 5 of 8 samples, with values ranging from 0.360 to 1.300 mg/l. This pollutant is not attributable to specific materials or processes associated with continuous casting; however, it is a common solvent used in analytical laboratories, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Arsenic was detected above its analytical quantification level in 5 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Mercury was detected above its analytical quantification level in 3 of 10 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \mathrm{mg/l})$.

 $\frac{\text{Pollutants}}{\text{pollutants}} \ \frac{\text{Detected}}{\text{identified}} \ \frac{\text{in}}{\text{by}} \ \frac{\text{a}}{\text{SU"}} \ \frac{\text{Small}}{\text{in}} \ \frac{\text{Number}}{\text{Table}} \ \frac{\text{of}}{\text{Sources}}. \ \text{The toxic}$

their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

1,2-trans-Dichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Dimethyl phthalate was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Chrysene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Acenaphthylene was detected above its analytical quantification level in 1 of 9 samples and in 1 of 6 sources.

Anthracene and phenanthrene are not cleanly separated by the analytical protocol employed in this study; thus, they are reported together. The sum of these pollutants was reported at values greater than their analytical quantification level in 2 of 9 samples and in 1 of 6 sources.

Tetrachloroethylene was detected above its analytical quantification level in 4 of 8 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 3 of 8 samples and in 1 of 4 sources.

Trichloroethylene was detected above its analytical quantification level in 1 of 8 samples and in 1 of 4 sources.

Chlordane was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

4,4'-DDE was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Alpha-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Beta-BHC was detected above its analytical quantification level in 1 of 7 samples and in 1 of 5 sources.

Cadmium was detected above its analytical quantification level in 6 of 10 samples; however, it was only found above the level considered achievable by specific treatment methods (0.049 mg/l) in 3 of 10 samples and in 3 of 6 sources. These sources were located at two different plants.

Nickel was detected above its analytical quantification level in 7 of 10 samples; however, it was only found above the level considered achievable by specific treatment methods (0.22 mg/l) in 2 of 10 samples and in 2 of 6 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Continuous Sheet Casting and Continuous Rod Casting Spent Lubricants Waste Streams. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for these wastewater streams. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 2 of 9 samples and in 2 of 6 sources.

Ethylbenzene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 8 samples and in 2 of 4 sources.

Fluoranthene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010~mg/l) in 3 of 9 samples and in 2 of 6 sources.

Naphthalene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 2 of 9 samples and in 2 of 6 sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in 3 of 9 samples and in 2 of 6 sources.

Phenol was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 10 samples and in 3 of 6 sources.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 4 of 9 samples. The maximum concentration observed was 2.900 mg/l.

Di-n-butyl phthalate was found above its analytical quantification level in 4 of 9 samples, ranging from 0.330 to 19.000 mg/l.

Diethyl phthalate was found above its analytical quantification level in 4 of 9 samples. Values ranged from 0.220 to 3.100 mg/l.

Fluorene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods (0.010 mg/l) in 5 of 9 samples and in 4 of 6 sources.

Pyrene was detected above its analytical quantification level and above the level considered achievable by specific treatment methods $(0.010 \ \text{mg/l})$ in 4 of 9 samples and in 3 of 6 sources.

Toluene was detected above its analytical quantification level in 5 of 8 samples and above the level considered achievable by specific treatment methods (0.050~mg/l) in 3 of 8 samples and in 2 of 4 sources.

Endosulfan sulfate was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

Endrin aldehyde was detected above its analytical quantification level in 2 of 7 samples and in 2 of 5 sources.

The seven organic toxic pollutant PCB's (polychlorinated biphenyls) are not cleanly separated by the analytical protocol employed in this study; thus, they are reported in two groups. Each of the two PCB groups was reported present above its analytical quantification level in 3 of 7 samples and in 3 of 5 sources.

Chromium was detected above its analytical quantification level in 9 of 10 samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in 4 of 10 samples and in 4 of 6 sources.

Copper was detected above its analytical quantification level in 9 of 10 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 6 of 10 samples and in 5 of 6 sources.

Cyanide was detected above its analytical quantification level in 8 of 10 samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in 6 of 10 samples and in 3 of 6 sources.

Lead was detected above its analytical quantification level in 8 of 10 samples and above the level considered achievable by specific treatment methods $(0.08\ mg/l)$ in 6 of 10 samples and in 4 of 6 sources.

Zinc was detected above its analytical quantification level in 9 of 10 samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in 7 of 10 samples and in 5 of 6 sources.

Forging Scrubber Liquor

<u>Pollutants Never Detected</u>. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

The presence of methylene chloride in this wastewater sample at the high level observed (0.95 mg/l) is assumed to be due to sample contamination, since methylene chloride is used by the analytical laboratory to extract the non-volatile organics from the sample, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Copper was measured at a concentration of 0.010 mg/l in the one sample collected. This value is only slightly greater than the values for its analytical quantification level (0.009 mg/l), and

less than the level considered achievable by available treatment methods (0.39 mg/l).

Mercury was reported at 0.0005 mg/l in the only sample collected; the level considered achievable by specific available treatment is 0.036 mg/l.

Pollutants Selected for Consideration in Establishing Regulations for the Forging Scrubber Liquor Stream. Waste The toxic identified by "RG" in VI-3 are those not pollutants Table eliminated from consideration for any of the reasons listed therefore, each was selected for consideration in establishing regulations for this wastewater The pollutants are individually discussed below.

Fluoranthene was found at a concentration of 0.018 mg/l in the waste stream sample. For fluoranthene, this exceeds both its analytical quantification level of 0.010 mg/l, and the level considered achievable by specific available treatment methods, which is also 0.010 mg/l.

N-nitrosodiphenylamine was found above the levels for both its proposed water quality criterion and its analytical quantification level as well as the level considered attainable by specific available treatment methods. The observed pollutant concentration was $0.017 \, \text{mg/l}$.

Bis(2-ethylhexyl) phthalate was present at a concentration of 0.075 mg/l in the one sample collected. This is greater than the level attainable by specific treatment methods (0.01 mg/l).

Benzo(a)anthracene was found present in the sample at 0.019 mg/l. This exceeds both its analytical quantification level, and the level considered achievable by specific available treatment methods.

Chrysene was detected at a level of 0.019 mg/l in the only sample collected from this waste stream. The analytical quantification level for chrysene is 0.010 mg/l, and the level considered achievable by specific available treatment is 0.010 mg/l. The concentration of chrysene exceeds this level.

The combined concentration of anthracene and phenanthrene in this waste stream was found to be 0.028 mg/l. This exceeds the analytical quantification level and treatability level, both of which are 0.010 mg/l.

Pyrene was found at a concentration of 0.021 mg/l in the waste stream sample, which is above the analytical quantification level

of 0.010 mg/l for pyrene. This concentration is also above the treatability level (0.010 mg/l).

Lead was present in the sample at a concentration of 2.00 mg/l. This exceeds the analytical quantification level and the level considered achievable by available treatment methods (0.020 mg/l) and 0.08 mg/l, respectively) for lead.

Zinc was found in the sample at a concentration of 0.300 mg/l which exceeds the concentration considered achievable by available treatment technologies (0.23 mg/l).

Solution and Press Heat Treatment Contact Cooling Water

Solution and press heat treatment contact cooling water samples for all operations are combined for the purpose of selecting pollutants for consideration for regulation.

<u>Pollutants</u> <u>Never</u> <u>Detected</u>. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from these wastewater streams; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for these wastewater streams.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Methylene chloride was found in concentrations above both its analytical quantification level and its treatability level in 16 of 34 samples taken. However, since methylene chloride is normally used in the laboratory to extract nonvolatile organics from the sample, and there is no process or material in the waste stream to which the pollutant may be attributed, the sample was assumed to have been contaminated. Methylene chloride is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods.

Bis(2-ethylhexyl) phthalate was found above its analytical quantification level in 9 of 30 samples. This pollutant is not attributable to specific materials or processes associated with heat treatment press or solution contact cooling operations, and is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods $(0.010 \, \text{mg/l})$.

Arsenic was detected above its analytical quantification level in 16 of 43 samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Cadmium was detected above its analytical quantification level in 14 of 42 samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Copper was detected above its analytical quantification level in 38 of 42 samples; however, it was not found above the level considered achievable by specific treatment methods (0.39 mg/l).

Mercury was detected above its analytical quantification level in 16 of 42 samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Nickel was detected above its analytical quantification level in 18 of 42 samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

<u>Pollutants</u> <u>Detected in a Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level in 2 of 28 samples and in 2 of 18 sources.

Benzene was detected above its analytical quantification level in 3 of 34 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 to 0.100 mg/l) in 1 of 34 samples and in 1 of 17 sources.

1,1,1-Trichloroethane was detected above its analytical quantification level in 1 of 34 samples; however, it was only found above the level considered achievable by specific treatment methods (0.022 mg/l) in 1 of 34 samples and in 1 of 17 sources.

Chloroform was detected above its analytical quantification level in 10 of 34 samples; however, it was only found above the level considered achievable by specific treatment methods (0.1 mg/l) in 1 of 34 samples and in 1 of 14 sources.

2-Chlorophenol was detected above its analytical quantification level in 1 of 28 samples and in 1 of 18 sources.

1,2-<u>trans</u>-Dichloroethylene was detected above its analytical quantification level in 1 of 34 samples and in 1 of 17 sources.

Bromoform was detected above its analytical quantification level in 1 of 34 samples and in 1 of 17 sources.

4-Nitrophenol was detected above its analytical quantification level in 1 of 28 samples and in 1 of 18 sources.

Phenol was detected above its analytical quantification level in 3 of 28 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in 1 of 28 samples and in 1 of 18 sources.

Butyl benzyl phthalate was detected above its analytical quantification level in 3 of 28 samples and in 1 of 18 sources.

Di-n-butyl phthalate was detected above its analytical quantification level in 6 of 28 samples; however, and was only found above the level considered achievable by specific treatment methods $(0.025 \, \text{mg/l})$ in 1 of 28 samples and in 1 of 18 sources.

Di-n-octyl phthalate was detected above its analytical quantification level in 1 of 28 samples and in 1 of 18 sources.

Diethyl phthalate was detected above its analytical quantification level in 2 of 28 samples and in 2 of 18 sources.

Dimethyl phthalate was detected above its analytical quantification level in 2 of 28 samples and in 2 of 18 sources.

Tetrachloroethylene was detected above its analytical quantification level in 2 of 34 samples and in 2 of 17 sources.

Toluene was detected above its analytical quantification level in 4 of 34 samples; however, it was only found above the level considered achievable by specific treatment methods (0.05~mg/l) in 1 of 34 samples and in 1 of 17 sources.

Alpha-endosulfan was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Beta-endosulfan was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Endosulfan sulfate was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Endrin was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Endrin aldehyde was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Heptachlor was detected above its analytical quantification level in 1 of 24 samples and in 1 of 18 sources.

Heptachlor epoxide was detected above its analytical quantification level in 2 of 24 samples and in 2 of 18 sources.

Selenium was detected above its analytical quantification level in 7 of 36 samples and was found above the level considered achievable by specific treatment methods (0.20~mg/l) in 1 of 36 samples.

Silver was detected above its analytical quantification level in 6 of 36 samples; however, it was only found above the level considered achievable by specific treatment methods (0.07 mg/l) in 1 of 36 samples and in 1 of 20 sources.

Zinc was detected above its analytical quantification level in 31 of 42 samples; however, it was only found above the level considered achievable by specific treatment methods (0.23 mg/l) in 3 of 42 samples and in 2 of 24 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Solution and Press Heat Treatment Contact Cooling Water Waste Stream. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in 35 of 42 samples and was found above the level considered achievable by specific treatment methods (0.07 mg/l) in 5 of 42 samples and 4 of 24 sources.

Cyanide was detected above its analytical quantification level in 32 of 43 samples and was found above the level considered achievable by specific treatment methods (0.047~mg/l) in 9 of 43 samples.

Lead was detected above its analytical quantification level in 29 of 42 samples and was found above the level considered achievable by specific treatment methods (0.08 mg/l) in 5 of 42 samples.

Cleaning or Etching Bath

<u>Pollutants Never Detected</u>. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

P-Chloro-m-cresol was reported present above it analytical quantification level in one of six samples. The observed value, 0.021 mg/l, is less than that of 0.05 mg/l, which is considered achievable by specific available treatment methods.

Chloroform was reported present above its analytical quantification level in one of four samples. The observed value of 0.020 mg/l is less than the concentration of 0.1 mg/l, which is considered achievable by specific available treatment methods.

2,4-Dimethylphenol was reported present above its analytical quantification level in one of six samples. The observed value was 0.034~mg/l; the level considered achievable by specific treatment methods is 0.05~mg/l.

Methylene chloride was reported present above its analytical quantification level in three of four samples. The reported concentrations were 0.015, 0.062, and 0.039 mg/l; the level considered achievable by treatment is 0.1 mg/l.

Phenol was reported present above its analytical quantification level in three of six samples. The maximum value reported was

0.035 mg/l; the level considered achievable by specific available treatment is 0.05 mg/l.

Dimethyl phthalate was reported present above its analytical quantification level in only one of six samples. The reported concentration was 0.013 mg/l, whereas the concentration considered attainable by specific available treatment methods is 0.025 mg/l.

Beryllium was reported present above its analytical quantification level in 1 of 19 samples. The maximum value reported was 0.105 mg/l; the level considered achievable by specific available treatment is 0.34 mg/l.

Mercury was reported present above its analytical quantification level in 6 of 19 samples. The maximum value reported was $0.020 \, \text{mg/l}$, whereas a concentration of $0.036 \, \text{mg/l}$ is considered achievable by specific treatment methods.

Selenium was detected above its analytical quantification level in 4 of 22 samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Silver was detected above its analytical quantification level in 5 of 16 samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

<u>Pollutants</u> <u>Detected in a Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Fluoranthene was reported above its analytical quantification level in one of six samples and in one of six sources.

2,4-Dinitrophenol was reported present in two of six samples and in two of six sources.

Pentachlorophenol was reported present above its analytical quantification level in one of six samples and in one of six sources. The observed value was 0.012 mg/l; the value considered achievable by treatment is 0.010 mg/l.

Di-n-butyl phthalate was reported present above its analytical quantification level in two of six samples in two of six sources; however, both of these sources were taken from the same plant.

Di-n-octyl phthalate was reported present above its analytical quantification level in one of six samples and in one of six sources.

Diethyl phthalate was reported present above its analytical quantification level in one of six samples and in one of six sources.

Endrin aldehyde was reported present above its analytical quantification level in one of six samples and in one of six sources.

Antimony was detected above its analytical quantification level in 8 of 20 samples; however, it was only found above the level considered achievable by specific treatment methods (0.47 mg/l) in 1 of 20 samples and in 1 of 15 sources.

Arsenic was detected above its analytical quantification level in 15 of 20 samples. It was found above the level considered achievable by specific treatment methods (0.34~mg/l) in 7 of 20 samples and in 4 of 15 sources. The detections above the treatable level occurred at only 2 of 6 plants sampled.

Pollutants Selected for Consideration in Establishing Regulations for the Cleaning or Etching Bath Waste Stream. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Bis(2-ethylhexyl) phthalate was reported above its analytical quantification level in 3 of 6 samples. These three values were also above the level attainable by specific treatment methods (0.01 mg/l).

Cadmium was detected above its analytical quantification level in 3 of 19 samples and was found above the level considered achievable by specific treatment methods (0.049~mg/l) in 2 of 19 samples.

Chromium was reported above its analytical quantification level in 14 of 19 samples. Twelve of the 19 samples were above the level of 0.07 mg/l, which is considered achievable by specific available treatment methods.

Copper was reported present above its analytical quantification level in 14 of 19 samples. The maximum concentration observed was approximately 20 mg/l. The level of copper considered achievable by specific available treatment methods is 0.39 mg/l. Copper concentrations were above the treatable level in 8 of 19 samples.

Cyanide was reported present above its analytical quantification level in 7 of 22 samples. Five of the values were above the level of cyanide considered achievable by specific available treatment methods $(0.047 \, \text{mg/l})$.

Lead was reported present above its analytical quantification level in 7 of 19 samples collected. The maximum reported lead concentration was 90.0 mg/l. A lead concentration of 0.08 mg/l is considered achievable by specific available treatment methods. Lead concentrations exceeded 0.08 mg/l in 7 of 19 samples.

Nickel was reported present above its analytical quantification level in 13 of 19 samples collected. A nickel concentration of 0.22 mg/l is considered achievable by specific available treatment methods. Nickel concentrations exceeded 0.22 mg/l in 7 of 19 samples.

Zinc was reported present above its analytical quantification level in 17 of 19 samples collected. The concentration of zinc considered achievable by specific available treatment methods is 0.23 mg/l. Zinc concentrations exceeded 0.23 mg/l in 11 of 19 samples.

Cleaning or Etching Rinse

1

Pollutants Never Detected. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Detected Below Levels Achievable By Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Benzene was found above its analytical quantification level in 6 of 42 samples. The maximum concentration observed was 0.043 mg/l. The level considered achievable by specific available

treatment methods is 0.05 mg/l; none of the samples was above this level.

Chloroform was found above its analytical quantification level in 24 of 42 samples. The maximum concentration observed was 0.11 mg/l. The level considered achievable by specific available treatment methods is 0.1 mg/l; only one of the samples was above this level.

2,4-Dimethylphenol was found above its analytical quantification level in only 1 of 36 samples. The concentration observed was 0.019 mg/l. The level considered achievable by specific available treatment methods is 0.05 mg/l; the detected value was not above this level.

Methylene chloride was measured above its analytical level in 42 samples. The maximum concentration observed was 6.1 mg/l. analytical Methylene chloride was also measured above its quantification level in most of the volatiles blank samples, the highest concentration observed beina 20.6 ma/1. observations indicated the probability that either the samples were contaminated, or that the source water was the major of methylene chloride, or both. Methylene chloride is not expected to be present in raw wastewaters at concentrations above the level considered achievable by specific available treatment methods (0.100 mg/l).

Chlorodibromomethane was found above its analytical quantification level in 2 of 42 samples. The maximum concentration observed was $0.02 \, \text{mg/l}$. This is below the concentration considered achievable with available treatment methods $(0.1 \, \text{mg/l})$.

Diethyl phthalate was found above its analytical quantification level in 3 of 36 samples. The maximum concentration observed was 0.022 mg/l. The level considered achievable by specific available treatment methods is 0.025 mg/l; none of the samples were above this level. In addition, this pollutant is a plasticizer found in many plastic products used in manufacturing plants and is not considered to be attributable to specific materials or processing in the cleaning or etching rinse operation.

Cyanide was measured above its analytical quantification level in 20 of 62 samples. The maximum concentration observed was 0.042 mg/l. None of the samples exceeded the concentration considered achievable with available treatment technologies (0.047 mg/l).

Mercury was found above its analytical quantification level in 17 of 58 samples. The maximum concentration observed was 0.021 mg/l. The level considered achievable by specific available treatment methods is 0.036 mg/l.

Selenium was detected above its analytical quantification level in 1 of 39 samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Silver was detected above its analytical quantification level in 4 of 39 samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

<u>Pollutants</u> <u>Detected In A Small Number of Sources</u>. The toxic pollutants identified by "SU" in Table VI-2 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Acenaphthene was found above its analytical quantification level in 1 of 36 samples and in 1 of 20 sources. The concentration observed was 0.017 mg/l. The level considered achievable by specific available treatment methods is 0.01 mg/l.

1,2-trans-Dichloroethylene was found above its analytical quantification level in only 1 of 42 samples and 1 of 20 sources. The only measurable concentration observed was 0.11 mg/l. The level considered achievable by specific available treatment methods is 0.1 mg/l.

Isophorone was found above its analytical quantification level in 1 of 36 samples in only 1 of 20 sources.

Naphthalene was measured above its analytical quantification level in only 1 of 36 samples and in 1 of 20 sources. The concentration observed was equal to the treatability level (0.05 mg/l).

Phenol was found above its analytical quantification level in 2 of 36 samples. The maximum concentration observed was $0.063 \, \text{mg/l}$. The level considered achievable by specific available treatment methods is $0.05 \, \text{mg/l}$; only one of the observed values was above this level.

Butyl benzyl phthalate was found above its analytical quantification level in 1 of 36 samples and in 1 of 20 sources. The only measurable concentration observed was 0.066 mg/l. The level considered achievable by specific available treatment methods is 0.01 mg/l; only one sample is above that level.

Di-n-butyl phthalate was found above its analytical quantification level in 2 of 36 samples and in only 2 of 20 sources and in 2 of 11 plants.

Di-n-octyl phthalate was measured above its analytical quantification level in 2 of 36 samples and in only 2 of 20 sources and in 2 of 11 plants.

PCB-1242, PCB-1254, and PCB-1221 were measured above their analytical quantification level in only 1 of 27 samples and in 1 of 19 sources. The concentration of the sample was 0.016 mg/l.

PCB-1232, PCB-1248, PCB-1260, and PCB-1016 were measured above their analytical quantification level in only 1 of 27 samples and in 1 of 19 sources. The concentration measured was 0.02 mg/l.

Arsenic was found above its analytical quantification level in 32 of 60 samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in 5 of 60 samples and in 3 of 30 sources. These three sources are from only 1 of 15 plants which were sampled for this waste stream.

Beryllium was found above its analytical quantification level in 7 of 58 samples and in 4 of 26 sources. The maximum concentration observed was 0.200 mg/l. The level considered achievable by specific available treatment methods is 0.20 mg/l.

Cadmium was measured above its analytical quantification level in 16 of 58 samples and in 10 of 29 sources. The highest concentration observed was 0.2 mg/l. Of the 58 samples, only one sample exceeded a cadmium concentration of 0.049 mg/l, which is considered achievable by specific available treatment methods.

Pollutants Selected For Consideration In Establishing Regulations For The Cleaning Or Etching Rinse Waste Stream. The toxic pollutants identified by "RG" in Table Vi-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Bis(2-ethylhexyl) phthalate was reported above its analytical quantification level in 8 of 36 samples and 6 of 20 sources. It was also above the level attainable by specific treatment methods (0.01 mg/l).

Chromium was measured above its analytical quantification level in 42 of 58 samples and 22 of 29 sources. The highest concentration observed was 280 mg/l. Of the 58 samples, 30 samples contained chromium in excess of 0.07 mg/l, which is considered achievable by specific available treatment methods.

Copper was measured above its analytical quantification level in 46 of 58 samples collected. The highest concentration observed

was 480 mg/l. The concentration of copper in 16 samples exceeded 0.39 mg/l, which is considered achievable by specific available treatment methods.

Lead was measured above its analytical quantification level in 29 of 58 samples. The highest concentration observed was 11 mg/l. The concentration of lead in 18 samples exceeded 0.08 mg/l, which is considered achievable by specific available treatment methods.

Nickel was measured above its analytical quantification level in 17 of 58 samples collected. The highest concentration observed was 160 mg/l. The concentration of nickel in 6 samples exceeded 0.22 mg/l, which is considered achievable by specific available treatment methods.

Zinc was measured above its analytical quantification level in 43 of 58 samples. The highest concentration observed was 410 mg/l. The concentration of zinc in 19 samples exceeded 0.23 mg/l, which is considered achievable by specific available treatment methods.

Cleaning or Etching Scrubber Liquor

<u>Pollutants</u> <u>Never</u> <u>Detected</u>. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

<u>Pollutants</u> <u>Detected</u> <u>Below</u> <u>Levels</u> <u>Achievable</u> <u>By</u> <u>Treatment</u>. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Methylene chloride was reported present at 0.014 mg/l in the single sample collected.

Copper was measured at a concentration of 0.010 mg/l in the single sample collected. The observed copper concentration is less

than the copper concentration considered achievable by specific available treatment methods (0.39 mg/l).

Mercury was reported at a concentration of 0.0003~mg/l in the one sample collected. The observed wastewater mercury concentration is less than the concentration considered achievable by specific available treatment methods (0.036~mg/l).

<u>For the Cleaning or Etching Scrubber Liquor Waste Stream.</u> No pollutants were selected for consideration in establishing regulations for this wastewater stream.

Degassing Scrubber Liquor

Pollutants Never Detected. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations.

<u>Pollutants</u> <u>Detected</u> <u>Below Levels Achievable</u> <u>By Treatment</u>. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Chloroform was found above its analytical quantification level in one of three samples; the measured concentration was 0.020~mg/l. The observed value is below the level of 0.1~mg/l that is considered achievable by specific available treatment methods.

Cadmium was found above its analytical quantification level in all three samples. The maximum measured value was 0.011 mg/l, which is below the level of 0.049 mg/l that is considered achievable by specific available treatment methods.

Chromium was measured above its analytical quantification level in all three samples. The maximum concentration was 0.09 mg/l. The level considered achievable by specific available treatment

methods is 0.07 mg/l; only one of the samples was above that level.

Copper was found above its analytical quantification level in all three samples. The maximum measured value was 0.250 mg/l, which is below the level of 0.39 mg/l that is considered achievable by specific available treatment methods.

Nickel was found above its analytical quantification level in two of three samples. The maximum measured value was 0.023 mg/l, which is below the level of 0.22 mg/l that is considered achievable by specific available treatment methods.

Pollutants Selected For Consideration In Establishing Regulations For The Degassing Scrubber Liquor Waste Stream. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Lead was measured above its analytical quantification level in all three samples; the observed concentrations were 0.019, 0.09 and 0.45 mg/l. The level considered achievable by specific available treatment methods for lead is 0.08 mg/l.

Zinc was measured at concentrations above its analytical quantification level in all three samples collected from this wastewater stream. The concentrations of zinc observed were 0.13, 0.22, and 1.3 mg/l. A level of zinc of 0.23 mg/l is considered achievable by specific available treatment methods.

Extrusion Press Hydraulic Fluid Leakage

Pollutants Never Detected. The toxic pollutants identified by "ND" in Table VI-3 were not detected in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Never Found Above Their Analytical Quantification Level. The toxic pollutants identified by "NQ" in Table VI-3 were never found above their analytical quantification level in any samples from this wastewater stream; therefore, they were not selected for consideration in establishing regulations for this wastewater stream.

Pollutants Detected Below Levels Achievable by Treatment. The toxic pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a

concentration below the concentration considered achievable by specific treatment methods; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Methylene chloride was detected above its analytical quantification level in 5 of 6 samples; however, it was not found above the level considered achievable by specific treatment methods $(0.1 \, \text{mg/l})$.

Zinc was detected above its analytical quantification level in 5 of 6 samples; however, it was not found above the level considered achievable by specific treatment methods (0.23 mg/l).

Pollutants Detected in a Small Number of Sources. The toxic pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

1,1,1-Trichloroethane was detected above its analytical quantification level in 1 of 6 samples and in 1 of 2 sources.

P-Chloro-m-cresol was detected above its analytical quantification level in 1 of 6 samples and in 1 of 2 sources.

Di-n-butyl phthalate was detected above its analytical quantification level in 1 of 6 samples, and it was found above the level considered achievable by specific treatment methods (0.025 mg/l) in 1 of 6 samples and in 1 of 2 sources.

Chrysene was detected above its analytical quantification level in 1 of 6 samples and in 1 of 2 sources.

Phenanthrene was detected above its analytical quantification level in 1 of 6 samples and in 1 of 2 sources.

Pollutants Selected for Consideration in Establishing Regulations for the Extrusion Press Hydraulic Fluid Leakage Waste Stream. The toxic pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this wastewater stream. The pollutants are individually discussed below.

Phenol was detected above its analytical quantification level in 5 of 6 samples and above the level considered achievable by

specific treatment methods (0.05 mg/l) in 5 of 6 samples and in 2 of 2 sources.

The three organic toxic pollutant PCB's (polychlorinated biphenyls) designated as PCB-1248 were detected above their analytical quantification level in 3 of 6 samples and in 1 of 2 sources.

Copper was detected above its analytical quantification level in 6 of 6 samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in 3 of 6 samples and in 1 of 2 sources.

POLLUTANT SELECTION BY SUBCATEGORY

The Agency has determined that each aluminum forming subcategory will be regulated separately. To assist in the regulatory procedure, sampling data for core and ancillary streams were combined to determine the priority pollutant disposition for each subcategory. This information is presented in Table VI-4 and is identical to that which is presented in the preamble to the final regulation.

Table VI-1

LIST OF 129 TOXIC POLLUTANTS

Compound Name

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride (tetrachloromethane)

<u>Chlorinated benzenes</u> (other than dichlorobenzenes)

- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene

Chlorinated ethanes (including 1,2-dichloroethane, 1,1,1-trichloroethane and hexachloroethane)

- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. l,l,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane

Chloroalkyl ethers (chloromethyl, chloroethyl and mixed ethers)

- 17. bis (chloromethyl) ether
- 18. bis (2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether (mixed)

Chlorinated naphthalene

20. 2-chloronaphthalene

LIST OF 129 TOXIC POLLUTANTS

<u>Chlorinated phenols</u> (other than those listed elsewhere; includes trichlorophenols and chlorinated cresols)

- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform (trichloromethane)
- 24. 2-chlorophenol

Dichlorobenzenes

- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene

Dichlorobenzidine

28. 3,3'-dichlorobenzidine

Dichloroethylenes (1,1-dichloroethylene and 1,2-dichloroethylene)

- 29. 1.1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol

Dichloropropane and dichloropropene

- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene (1,3-dichloropropene)
- 34. 2,4-dimethylphenol

Dinitrotoluene

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene

LIST OF 129 TOXIC POLLUTANTS

Haloethers (other than those listed elsewhere)

- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-choroethoxy) methane

Halomethanes (other than those listed elsewhere)

- 44. methylene chloride (dichloromethane)
- 45. methyl chloride (chloromethane)
- 46. methyl bromide (bromomethane)
- 47. bromoform (tribromomethane)
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene

Nitrophenols (including 2,4-dinitrophenol and dinitrocresol)

- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol

Nitrosamines

- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol

LIST OF 129 TOXIC POLLUTANTS

Phthalate esters

- 66. bis(2-ethylhexyl) phthalate
- butyl benzyl phthalate 67.
- di-n-butyl phthalate 68.
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- dimethyl phthalate 71.

Polynuclear aromatic hydrocarbons

- 72. benzo (a)anthracene (1,2-benzanthracene)
- 73. benzo (a)pyrene (3,4-benzopyrene)
- 74. 3,4-benzofluoranthene
- 75. benzo(k)fluoranthane (11,12-benzofluoranthene)
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene (1,11-benzoperylene)
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo (a,h)anthracene (1,2,5,6-dibenzanthracene)
- 83. indeno (1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)
- 84.
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride (chloroethylene)

Pesticides and metabolites

- 89. aldrin
- 90. dieldrin
- 91. chlordane (technical mixture and metabolites)

DDT and metabolites

- 92. 4,4'-DDT
- 93.
- 4,4'-DDE(p,p'DDX) 4,4'-DDD(p,p'TDE) 94.

LIST OF 129 TOXIC POLLUTANTS

Endosulfan and metabolites

- 95. a-endosulfan-Alpha
- 96. b-endosulfan-Beta
- 97. endosulfan sulfate

Endrin and metabolites

- 98. endrin
- 99. endrin aldehyde

Heptachlor and metabolies

- 100. heptachlor
- 101. heptachlor epoxide

Hexachlorocyclohexane (all isomers)

- 102. a-BHC-Alpha
- 103. b-BHC-Beta
- 104. r-BHC (lindane)-Gamma
- 105. g-BHC-Delta

Polychlorinated biphenyls (PCB's)

- 106. PCB-1242 (Arochlor 1242)
- 107. PCB-1254 (Arochlor 1254)
- 108. PCB-1221 (Arochlor 1221)
- 109. PCB-1232 (Arochlor 1232)
- 110. PCB-1248 (Arochlor 1248)
- 111. PCB-1260 (Arochlor 1260)
- 112. PCB-1016 (Arochlor 1016)

Metals and Cyanide, and Asbestos

- 114. antimony
- 115. arsenic
- 116. asbestos (Fibrous)
- 117. beryllium
- 118. cadmium
- 119. chromium (Total)

LIST OF 129 TOXIC POLLUTANTS

Metals and Cyanide, and Asbestos (Cont.)

- 120. copper
- 121. cyanide (Total)
- 122. lead
- 123. mercury
- 124. nickel
- 125. selenium
- 126. silver
- 127. thallium
- 128. zinc

Other

- 113. toxaphene
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Table VI-2
PRIORITY POLLUTANT DISPOSITION
CORE OPERATIONS

	Pollutant	Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Drawing With Neat Oils	Drawing With Emulsion
		RG	RG	RG	RG	RG	RG
1. 2.	acenaphthene acrolein	NT *	NT *	NT *	NT *	NT *	NT *
3.	acrylonitrile	ND	ND	ND	ND ND	ND	ND CIN
4.	benzene	NT *	NT *	NT	NT *	NT *	NT *
5.	benzidene	ND "	ND	ND	ND "	ND "	ND
6.	carbon tetrachloride (tetrachloromethane)	ND	ND	ND	ND	ND	ND
7.	chlorobenzene	NT ★	NT *	NT *	NT *	NT *	NT *
8.	1,2,4-trichlorobenzene	ND	ND	ND	ND	ND	ND
9.	hexachlorobenzene	ND	ND	ND	ND	ND	ND
10.	1,2-dichloroethane	ND	ND	ND	ND	ND	ND
11.	1,1,1-trichlorethane	NQ	NQ	NQ	NQ	NQ	NQ
12.	hexachlorethane	NĎ	ND	ND	ИĎ	ИĎ	NĎ
13.	1.1-dichloroethane	ND	ND	ND	ND	ND	ND
14.	1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND
15.	1,1,2,2-tetrachloroethane	NQ	NQ	NQ	NQ	NQ	NQ
16.	chloroethane	ND	NĎ	NĎ	ND	ND	ND
17.	bis (chloromethyl) ether - deleted	ND	ND	ND	ND	ND	ND
თ 18.	bis (2-chloroethyl) ether	ND	ND	ND	ND	ND	ND
₾ 19.	2-chloroethyl vinyl ether (mixed)	ND	ND	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	ND	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	NT *	NT *	NT *	NT *	NT *	₽ 1/0
22.	parachlorometa cresol	ND	ND	ND	ND	ND	SU
23.	chloroform (trichloromethane)	NT *	NT *	NT *	NT *	NT *	NT =
24.	2-chlorophenol	ND	ND	ND	ND	ND	SU
25.	1,2-dichlorobenzene	ND	ND	ND	ND	ND	ND
26.	1,3-dichlorobenzene	ND	ND	ND	ND	ND	ND
27.	1,4-dichlorobenzene	ND	ND	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	ND	ND	ND	ND	ND
29.	1,1-dichloroethylene	ND	ND	ND	ND	ND	ND
30.	1,2-trans-dichloroethylene	SU	SU	SU	SU	SU	SU
31.	2,4-dichlorophenol	ND	ND	ND	ND	ND	ND
32.	1,2-dichloropropane	ND	ND	ND	ND	ND	ND
33.	1,2-dichloropropylene (1,3-dichloropropen		ND	ND	ND	ND	ND
34.	2,4-dimethylphenol	ND	ND	ND	ND	ND	ND
35.	2,4-dinitrotoluene	ND	ND	ND	ND	ND	ND
36.	2,6-dinitrotoluene	ND	ND	ND	ND	ND	ND
37.	1,2-diphenylhydrazine	ND	ND	ND	ND	ND	ND
38.	ethylbenzene	RG BG	RG	RG	RG	RG	RG
39.	fluoranthene	RG	RG	RG ND	RG ND	RG ND	RG ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND ND	ND ND	ND ND	ND ND
41.	4-bromophenyl phenyl ether	ND	ND ND	ND	ND	ND (IN	ND ND
42.	bis(2-chloroisopropyl) ether	ND	ИD	ND	เสบ	1417	MD

^{*} These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

PRIORITY POLLUTANT DISPOSITION CORE OPERATIONS

<u>!</u>		lling With eat Oils	Rolling With Emulsions	Extrusion	forging	Drawing With Neat Oils	Drawing With Emulsion
43.	bis(2-choroethoxy) methane	ND	ND	ND	ND	ND	ND
44.	methylene chloride (dichloromethane)	NT	NT	NΤ	NT	NT	N.L
45.	methyl chloride (chloromethane)	ND	ND	ND	ND	ND	ND
46.	methyl bromide (bromomethane)	ND	ND	ND	ND	ND	ND
47.	bromoform (tribromomethane)	ND	ND	ND	ND	ND	ND
48.	dichlorobromomethane	ND	ND	ND	ND	ND	ND
49.	trichlorofluoromethane - deleted	ND	ND	ND	ND	ND	ND
50.	dichlorodifluoromethane - deleted	ND	ND	ND	ND	ND	ND
51.	chlorodibromomethane	ND	ND	ND	ND	ND	ND
52.	hexachlorobutadiene	ND	ND	ND	ND	ND	ND
53.		ND	ND	ND	ND	ND	ND
	hexachlorocyclopentadiene	ND	ND	ND	ND	ND	SU
54.	isophorone	RG	RG	RG	RG	RG	RG
55. 56.	naphthalene	ND	ND	ND	ND	ND	ND
	nitrobenzene	ND ND	ND	ND	ND	ND	ND
57.	2-nitrophenol	ND ND	ND ND	ND	ND	ND	ND
58.	4-nitrophenol		ND ND	ND	ND	ND	ND
59.	2,4-dinitrophenol	ND			ND	ND	ND ND
60.	4,6-dinitro-o-cresol	ND	ND	ND		ND	ND ND
61.	N-nitrosodimethylamine	ND	ND	ND	ND RG	RG	RG
62.	N-nitrosodiphenylamine	RG	RG	RG		ND	ND
63.	N-nitrosodi-n-propylamine	ND	ND	ND	ND		
64.	pentachlorophenol	NQ	NQ	NQ	NQ	NQ	NQ
65.	phenol	RG	RG	RG	RG	RG	RG
66.	bis(2-ethylhexyl) phthalate	RG	RG	RG	RG	RG	RG
67.	butyl benzyl phthalate	SU	SU	SU	SU	SU	SU
68.	di-n-butyl phthalate	RG	RG	RG	RG	RG	RG
69.	di-n-octyl phthalate	ND	ND	ND	ND	ND	ND
70.	diethyl phthalate	RG	RG	RG	RG	RG	RG
71.	dimethyl phthalate	SU	SU	SU	SU	SU	SU
72.	benzo(a)anthracene (1,2-benzanthracene)	NQ	NQ	NQ	ИQ	NQ	ИQ
73.	benzo(a)pyrene (3,4-benzopyrene)	ND	ND	ND	ND	ND	ND
74.	benzo(b)fluoranthene (3,4-benzofluoranthene)	ND	ND	ND	ND	ND	ND
75.	benzo(k)fluoranthene (11,12-benzofluoranthen		ND	ND	ND	ND	ND
76.	chrysene	SU	SU	SU	SU	SU	SU
77.	acenaphthylene	SU	SU	SU	SU	SU	SU
78.	anthracene	SU (a)	SU (a)	SU (a)	SU (a)	SU (a)	SU (a)
79.	benzo(ghi)perylene (1,11-benzoperylene)	ND	ND	ND	ND	ND	ND
80.	fluorene	RG	RG	RG	RG	RG	RG
81.	phenanthrene	SU (a)	SU (a)	SU (a)	SU (a)	SU (a)	SU (a)
82.	dibenzo (a,h)anthracene (1,2,5,6-di benzanthracene)	ND	ND	ND	ND	ND	ND
83.	indeno (1,2,3-cd)pyrene				.=	· 	
	(w.eo-phenylenepyrene)	ND	ND	ND	ND	ND	ND
84.	pyrene	RG	RG	RG	RG	RG	RG
85.	tetrachloroethylene	SU	SU	SU	SÜ	SU	SU
0).	CCCL GCHIOL OCCHY LCHC	., 0	30	0.5	30	55	50

(a) Reported Together

Table VI-2 (Continued)

PRIORITY POLLUTANT DISPOSITION CORE OPERATIONS

	Pollutant	Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Orawing With Neat Oils	Drawing With Emulsion
86.	toluene	RG	RG	RG	RG	RG	RG
87.	trichloroethylene	su	SU	SU	SU	នប	SU
88.	vinyl chloride (chloroethylene)	ND	ND	ND	ND	ND	ND
89.	aldrin	ND	ND	ND	ND	ND	ND
90.	dieldrin	ND	ND	ND	ND	ND	ND
91.	chlordane (technical mixture and metabolit	es) SU	SU	SU	SU	SU	SU
92.	4, 4'-DDT	NQ	NQ	NQ	NQ	NQ	NQ
93.	4, 4'-DDE(p,p'DDX)	sù	รบั	รบั	รบั	sử	sù
94.	4, 4'-DDD(p,p'TDE)	ND	ND	ND	ND	ND	ND
95.	a-endosulfan-Alpha	SU	SU	SU	SU	SU	SU
96.	b-endosulfan-Beta	SU	SU	SU	SU	SU	SU
97.	endosulfan sulfate	RG	RG	RG	RG	RG	RG
98.	endrin	RG	КG	RG	RG	RG	RG
99.	endrin aldehyde	RG	RG	RG	RG	RG	RG
100.	heptachlor	ИD	ND	ND	ND	ND	ND
101.	heptachlor epoxide (BHC-hexachlorohexane)	ND	ND	ND	ND	ND	ND
102.	a-BHC-Alpha	su	รบ	รบ	SU	SU	SU
103.	b-BHC-Beta	su	SU	SU	SÜ	SU	SU
104.	r-BHC (lindane)-Gamma	ND	ND	ND	ND	ND	ND
105.	g-BHC-Delta	ND	NĐ	ND	ND	ND	ND
106.	PCB-1242 (Arochlor 1242)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)
107.	PCB-1254 (Arochlor 1254)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	КG (b)
108.	PCB-1221 (Arochlor 1221)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)
109.	PCB-1232 (Arochlor 1232)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
110.	PCB-1248 (Arochlor 1248)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
111.	PCB-1260 (Arochlor 1260)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
112.	PCB-1016 (Arochlor 1016)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
113.	toxaphene	ИD	ND	ND	ND	ИD	ND
114.	antimony	NT	NT	NT	NT	NT	NΤ
115.	arsenic	SU	SU	SU	SU	SU	SU
116.	asbestos (Fibrous)	ND	ND	ND	ND	ND	ND
117.	beryllium	NQ	NQ	ΝQ	ИQ	ИQ	ИÓ
118.	cadmium	NT	SU	NT	NΤ	NT	SU
119.	chromium (Total)	RG	RG	RG	RG	RG	RG
120.	copper	RG	RG	RG	ĸĠ	RG	RG
121.	cyanide (Total)	NQ	RG	NT	ИQ	NQ	RG
122.	lead	RG	RG	RG	RG	RG	RG
123.	mercury	NT	NΤ	NΤ	ИQ	NQ	1'10

PRIORITY POLLUTANT DISPOSITION CORE OPERATIONS

	Pollutant	Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Drawing With Neat Oils	Drawing With Emulsion
124.	nickel	NT	su	NT	NT	NT	su
125.	selenium	NQ	NQ	NT	NQ	NQ	NQ
126.	silver	NQ	NQ	NQ	NQ	NQ	NQ
127.	thallium	NQ	NQ	NQ	NQ	NQ	NQ
128.	zinc	RĞ	RG	RĞ	RĞ	RĞ	RG
129.	2,3,7,8-tetra chlorodibenzo-p-dioxin	(TCDD) ND	ND	ND	ND	ND	ND

(b), (c) Reported Together

Key: ND - Never Detected
 NQ - Never Found Above Their Analytical Quantification
 NT - Detected Below Levels Achievable By Treatment
 SU - Detected in a Small Number of Sources
 RG - Considered For Regulation

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

	Pollutant	Extru- sion Press Hydrau- lic Fluid Leakage	Direct Chill Casting Con- tact Cooling	Continuous Rod Casting Contact Cooling	Continuous Sheet Cast- ing Spent Lubricants	Continuous Rod Cast- ing Spent Lubricants	Forging Scrubber Liquor
1.	acenaphthene	ND	SU	SU	RG	RG	NQ
2.	acrolein	ND	ND	ND	NT *	* T'N	ด้อ
3.	acrylonitrile	ND	ND	ND	ND	ND	ND
4.	benzene	ND	NT *	NT *	NT *	NT *	ND
5.	benzidene	ND	ND	ND	ИD	ND	ND
6.	carbon tetrachloride (tetrachloromethane)	ND	NQ	NQ	ND	ND	NQ
7.	chlorobenzene	ND	NO	NÔ	NT *	NT *	ที่มี
8.	1,2,4-trichlorobenzene	ND	ND	ND	ND	ND	ND
9.	hexachlorobenzene	ND	ND	ND	ND	ND	ND
1Ó.	1,2-dichloroethane	ND	ND	ND	ND	ND	ND
11.	1,1,1-trichlorethane	SU	NQ	NQ	NQ	NQ	NQ
12.	hexachlorethane	SU	ND	иĎ	NĎ	NĎ	ИĎ
13.	1.1-dichloroethane	รับ	ND	ND	ND	ND	NÐ
14.	1,1,2-trichloroethane	SU	NQ	NQ	ND	ND	ИÐ
15.	1,1,2,2-tetrachloroethane	รับ	NÒ	ИÒ	NQ	NQ	ND
16.	chloroethane	su	NĎ	NĎ	NĎ	NĎ	ND
17.	bis (chloromethyl) ether - deleted	ND	ND	ИD	ND	ND	ND
18.	bis (2-chloroethyl) ether	ND	ND	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether (mixed)	ND	ND	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	ND	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	ND	NQ	ИQ	NT *	NT *	ND
22.	parachlorometa cresol	SU	NQ	ЙĞ	ND	ND	ND
23.	chloroform (trichloromethane)	SU	SU	នប	NT *	NT ★	ИQ
24.	2-chlorophenol	SU	NT *	NT *	ND	ND	ND
25.	1,2-dichlorobenzene	SU	ND	ND	ND	ND	ИD
26.	1,3-dichlorobenzene	SU	ND	ND	ИD	ND	ND
27.	1,4-dichlorobenzene	SU	ND	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	SU	ND	ND	ИD	ND	ND
29.	1,1-dichloroethylene	ND	ND	ND	ND	ND	ND
30.	1,2-trans-dichloroethylene	ND	ND	ND	SU	SU	ND
31.	2,4-dichlorophenol	ND	NQ	иQ	ND	ND	ND
32.	1,2-dichloropropane	ND	ND	ND	ND	ND	ИD
33.	1,2-dichloropropylene (1,3-dichloropropene)	ND	ND	ЙD	ND	ND	ND
34.	2,4-dimethylphenol	ND	NQ	NQ	ND	ND	NQ
35.	2,4-dinitrotoluene	ND	ND	ND	ND	ND	ND
36.	2,6-dinitrotoluene	ND	ND	ND	ND	ND	ND
37.	1,2-diphenylhydrazine	NQ	ND	ND	ND	ND	ND
38.	ethylbenzene	NQ	ND	ND	RG	KG NG	ND
39.	fluoranthene	NQ	NQ	NQ	RG	RG	RG
40.	4-chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	ND	ND	ND	ND ND	ND
43.	bis(2-choroethoxy) methane	ND	ND	ND	ND	ND	ND
44.	methylene chloride (dichloromethane)	NT	NΤ	NT	J.L	NT	NT

These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

õ

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

		Pollutant	Extru- sion Press Hydrau- lic Fluid Leakage	Direct Chill Casting Con- tact Cooling	Continuous Rod Casting Contact Cooling	Continuous Sheet Cast- ing Spent Lubricants	Continuous Rod Cast- ing Spent Lubricants	Forging Scrubber Liquor
	45.	methyl chloride (chloromethane)	NT	ND	ND	ND	ND	ND
	46.	methyl bromide (bromomethane)	NT	ND	ND	ND	ND	ND
	47.	bromoform (tribromomethane)	NT	ND	ND	ND	ND	ND
	48.	dichlorobromomethane	N'T	NO	NQ	ND	ND	ND
	49.	trichlorofluoromethane - deleted	NT	ND	NĎ	ND	ND	ND
	50.	dichlorodifluoromethane - deleted	NT	ND	ND	ND	ND	ND
	51.	chlorodibromomethane	NT	NO	NO	ND	ND	ND
	52.	hexachlorobutadiene	NT	ND	NĎ	ND	ND	ND
	53.	hexachlorocyclopentadiene	NT	ND	ND	ND	ND	ND
	54.	isophorone	ND	SU	รบ	ND	ND	ND
	55.	naphthalene	ND	NO	NO	RG	RG	NQ
	56.	nitrobenzene	ND	ND	ND	ND	ND	иĎ
	57.	2-nitrophenol	ND	NQ	NQ	ND	ND	ND
	58.	4-nitrophenol	ND	ND	ND	ND	ND	ND
	59.	2,4-dinitrophenol	ND	รบ	รบ	ND	ND	ND
Ú	60.	4,6-dinitro-o-cresol	ND	SU	SU	ND	ND	ND
υ Ω	61.	N-nitrosodimethylamine	ND	ND	ND	ND	ND	ND
	62.	N-nitrosodiphenylamine	ND	su	SU	RG	КG	RG
	63.	N-nitrosodi-n-propylamine	ND	ND	ND	ND	ND	ND
	64.	pentachlorophenol	ND	NQ	NQ	ИQ	NQ	NQ
	65.	phenol	RG	នប់	su	RG	RG	NQ
	66.	bis(2-ethylhexyl) phthalate	ND	RG	RG	RG	RG	кG
	67.	butyl benzyl phthalate	ND	SU	su	รบ	รบ	ND
	68.	di-n-butyl phthalate	SU	RG	RG	RG	кG	ND
	69.	di-n-octyl phthalate	ND	SU	SU	ND	ND	ND
	70.	diethyl phthalate	ND	SU	SU	RG	кG	NQ
	71.	dimethyl phthalate	ND	SU	รบ	SU	รบ	ИD
	72.	benzo(a)anthracene (1,2-benzanthracene)	NQ	NQ	NQ	NQ	NQ	RG
	73.	benzo(a)pyrene (3,4-benzopyrene)	ND	ND	ND	ND	ND	ND
	74.	benzo(b)fluoranthene (3,4-benzofluoran- thene)	ИÐ	ND	ND	ND	ND	ND
	75.	benzo(k)fluoranthene (11,12-benzofluor- anthene)	ND	ND	ND	ND	ND	ND
	76.	chrysene	SU	NQ	NQ	SU	SU	RG
	77.	acenaphthylene	ND	sù	รบ้	su	SU	ND
	78.	anthracene	ND	SU	รบ	SU	SU	КG (а)
	79.	benzo(ghi)perylene (1,11-benzoperylene)	ND	ND	ИD	ND	ND	ND
	80.	fluorene	ND	SU	SU	RG	КG	ND
	81.	phenanthrene	SU	SU	SU	su	SU	RG (a)
	82.	dibenzo (a,h)anthracene (1,2,5,6-dibenzan-	ND	ND	ND	ND	ND	ND
		thracene)			MD	ŃD	ND	ND
	83.	indeno (1,2,3-cd)pyrene (w,e,-o-phenylene- pyrene)	ND	ND	ND	MD	ND	NO

⁽a) Reported together

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

	Pollutant	Extru- sion Press Hydrau- lic Fluid Leakage	Direct Chill Casting Con- tact Cooling	Continuous Rod Casting Contact Cooling	Continuous Sheet Cast- ing Spent Lubricants	Continuous Rod Cast- ing Spent Lubricants	Forging Scrubber Liquor
84.	pyrene	ND	NQ	NQ	RG	RG	RG
85.	tetrachloroethylene	ND	NQ	NO	SU	SU	ND
86.	toluene	ND	NO	ЙО	RG	RG	ND
87.	trichloroethylene	ND	NQ	йÕ	SU	SU	ND
88.	vinyl chloride (chloroethylene)	ND	NĎ	ИĎ	ND	ND	ND
89.	aldrin	ND	NQ	NQ	ND	ND	NQ
90.	dieldrin	ND	NÒ	NQ	ND	ND	NQ
91.	chlordane (technical mixture and metabo-	ND	sú	รบั	SU	SU	NQ
	lites)						
92.	4,4'-DDT	ND	NQ	NQ	NQ	NQ	NQ
93.	4, 4'-DDE(p,p'DDX)	ND	NQ	NQ	SU	SU	NQ
94.	4,4'-DDD(p,p'TDE)	NĐ	NQ	NQ	ND	ND	иQ
95.	a-endosulfan-Alpha	ND	NQ	NQ	SU	SU	ND
96.	b-endosulfan-Beta	ND	NQ	NQ	SU	SU	ND
97.	endosulfan sulfate	ND	NQ	NQ	RG	RG	NQ
98.	endrin	ND	ND	ND	RG	RG	ND
99.	endrin aldehyde	ND	NQ	NQ	RG	RG	ND
100.	heptachlor	ND ND	NQ NQ	NQ NQ	ND ND	DN DN	ND ND
101. 102.	heptachlor epoxide (BHC-hexachlorohexane) a-BHC-Alpha	ND	NQ NQ	NQ NQ	SU	SU	ND ND
102.	b-BHC-Beta	ND	NQ	NQ NQ	SU	SU	NQ
104.	r-BHC (lindane)-Gamma	ND ND	NQ	NQ	ND	ND	ND ND
105.	g-BHC-Delta	ND	йŎ	NQ	ND	ND	NQ
106.	PCB-1242 (Arochlor 1242)	ND	SU (b)	SU (b)	RG (b)	RG (b)	NQ (b)
107.	PCB-1254 (Arochlor 1254)	ND	SU (b)	SU (b)	RG (b)	RG (b)	NQ (b)
108.	PCB-1221 (Arochlor 1221)	ND	SU (b)	SU (b)	RG (b)	RG (b)	NQ (b)
109.	PCB-1232 (Arochlor 1232)	ND	SU (c)	SU (c)	RG (c)	RG (c)	NQ (c)
110.	PCB-1248 (Arochlor 1248)	RG (c)	_ ' } (SU (c)	RG (c)	RG (c)	NQ (c)
111.	PCB-1260 (Arochlor 1260)	RG (c)	SU (c)	SU (c)	RG (c)	RG (c)	NŲ (c)
112.	PCB-1016 (Arochlor 1016)	RG (c)	SU (c)	SU (c)	RG (c)	RG (c)	NQ (c)
113.	toxaphene	ND	ND	ND	ND	ND	ND
114.	antimony	NQ	NQ	NQ	NT	J.N	NQ
115.	arsenic	NQ	NQ	NQ	NT	NΤ	NQ
116.	asbestos (Fibrous)	NQ	ND	ND	ИD	ND	ND
117.	beryllium	NQ	NQ	NQ	NQ	NQ	NQ
118.	cadmium	NQ	N'I	NT	RG	RG	NQ
119.	chromium (Total)	NQ	SU	SU	RG	RG	NQ
120.	copper	RG	NT	N'T	RG	RG	N.L
121.	cyanide (Total)	NQ	ИQ	NQ	RG	RG	NQ

(b),(c) Reported together

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

	<u>Pollutant</u>	Extru- sion Press Hydrau- lic Fluid Leakage	Direct Chill Casting Con- tact Cooling	Continuous Rod Casting Contact Cooling	Continuous Sheet Cast- ing Spent Lubricants	Continuous Rod Cast- ing Spent Lubricants	Forging Scrubber Liquor
122.	lead	NQ	su	SÜ	RG	RG	RG
123.	mercury	NQ	NT	NT	NT	NT	NΤ
124.	nickel	NQ	NT	NT	SU	SU	NQ
125.	selenium	NQ	NQ	ИQ	NQ	NQ	NQ
126.	silver	NQ	NQ	NQ	NQ	NQ	NQ
127.	thallium	NQ	NQ	ИQ	NQ	NQ	NQ
128.	zinc	NT	RG	RG	RG	RG	RG
129.	2,3,7,8-tetra chlorodibenzo-p-dioxin (TCI	OD) ND	ND	ND	ND	ND	ND

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

		Solution and Press Heat Treatment	Cleaning or Etch-	Cleaning or Etch-	Cleaning or Etching Scrubber	Degassing Scrubber
	Pollutant	Contact Cooling	ing Bath	ing Rinse	Liquor	Liquor
1.	acenaphthene	su	NQ	SU	ND	ND
2.	acrolein	ND	ND	NĐ	ND	ND
3.	acrylonitrile	ND	ND	ND	ND	ND
4.	benzene	SU	NQ	NT	ND	ND
5.	benzidene	ND	ND	ND	ND	ND
6.	carbon tetrachloride (tetrachloromethane)	NQ	NQ	ИQ	ND	ND
7.	chlorobenzene	ND	ND	NQ	ND	ND
8.	1,2,4-trichlorobenzene	ND	ND	ND	ND	ND
9.	hexachlorobenzene	ND	ND	ND	ND	ND
10.	1,2-dichloroethane	ND	ND	NQ	ND	ND
11.	1,1,1-trichlorethane	SU	ND	NQ	ND	NQ
12.	hexachlorethane	ND	ND	ND	ND	ND
13.	1,1-dichloroethane	ND	ND	ND	ND	ND
14.	1,1,2-trichloroethane	NQ ND	ND	NQ	ND	NQ
15. 16.	1,1,2,2-tetrachloroethane chloroethane	ND ND	ND ND	ND ND	ND ND	ND ND
17.	bis (chloromethyl) ether - deleted	ND ND	ND	ND	ND	ND
18.	bis (2-chloroethyl) ether	ND	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether (mixed)	ND	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	ND	NO	ND	ND	ND
22.	parachlorometa cresol	ND	NT *	NQ	ND	ND
23.	chloroform (trichloromethane)	SU	NT *	NT	NQ	NT
24.	2-chlorophenol	SU	NQ	NQ	ND	ND
25.	1,2-dichlorobenzene	ND	ND	ND	ND	ND
26.	1,3-dichlorobenzene	ND	ND	ND	ND	ИD
27.	1,4-dichlorobenzene	ND	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	ND	ND	ND	ND
29.	1,1-dichloroethylene	NQ	ND	ND	ND	NÐ
30.	1,2-trans-dichloroethylene	SÚ	ND	SU	ND	ND
31.	2,4-dichlorophenol	ND	NQ	NQ	ND	ИÐ
32.	1,2-dichloropropane	ND	ND	ND	ND	ND
33.	1,2-dichloropropylene (1,3-dichloropropene)	ND	ND	ND	ND	ND
34.	2,4-dimethylphenol	NQ	NT *	NT ≉	ND	ND
35.	2,4-dinitrotoluene	ND	ND	ND	ND	ND
36.	2,6-dinitrotoluene	ND	ND	ND	ND	ND
37.	1,2-diphenylhydrazine	ND	NQ	ND	ND	ИD
38.	ethylbenzene	NQ	NQ	NQ	ИD	ND
39.	fluoranthene	ND	SU	NQ	ND	ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	ND	ND	ND	ND
43.	bis(2-choroethoxy) methane	ND	ND	ИD	ND	ND

^{*} These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

	Pollutant	Solution and Press Heat Treatment Contact Cooling	Cleaning or Etch- ing Bath	Cleaning or Etch- ing Rinse	Cleaning or Etching Scrubber Liquor	Degassing Scrubber Liquor
44.	methylene chloride (dichloromethane)	NT	NT	NΤ	NT	NQ
45.	methyl chloride (chloromethane)	ND	ND	ND	ND	ND
46.	methyl bromide (bromomethane)	ND	ND	ND	ND	ND
47.	bromoform (tribromomethane)	SU	ND	ND	ND	ND
48.	dichlorobromomethane	NQ	ND	NQ	ND	NQ
49.	trichlorofluoromethane - deleted	ND	ND	ND	ND	ND
50.	dichlorodifluoromethane - deleted	ND	ND	ND	ND	ND
51.	chlorodibromomethane	NO	ND	NT *	ND	NO
52.	hexachlorobutadiene	ND	ND	ND	ND	NĎ
53.	hexachlorocyclopentadiene	ND	ND	ND	ND	ND
54.	isophorone	ND	NQ	SU	ND	ND
55.	naphthalene	ND	ND	SU	ND	ND
56.	nitrobenzene	ND	ND	ND	ND	ND
57.	2-nitrophenol	ND	NQ	ND	ND	ND
58.	4-nitrophenol	SU	ND	ND	ND	ND
59.	2.4-dinitrophenol	ND	SU	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	ND	ND	ND	ND
61.	N-nitrosodimethylamine	ND	ND	ND	ND	ND
62.	N-nitrosodiphenylamine	NQ	NQ	ND	ND	ND
63.	N-nitrosodi-n-propylamine	ND	NĎ	ND	ND	ND
64.	pentachlorophenol	ND	รบ	NO	ND	ND
65.	phenol	SU	NT	sù	ND	NO
66.	bis(2-ethylhexyl) phthalate	NT	RG	RG	ND	иÒ
67.	butyl benzyl phthalate	SU	NO	SU	ND	NĎ
68.	di-n-butyl phthalate	SU	sù	SU	ND	NU
69.	di-n-octyl phthalate	รบ	รบ	SU	ND	иĎ
70.	diethyl phthalate	SU	SU	NT *	ND	ND
71.	dimethyl phthalate	SU	NT *	NQ	ND	ND
72.	benzo(a)anthracene (1,2-benzanthracene)	ND	NQ	ND	ND	ND
73.	benzo(a)pyrene (3,4-benzopyrene)	ND	NQ	ND	ND	ND
74.	benzo(b)fluoranthene (3.4-benzofluoranthene)	ND	ND	ND	ND	ND
75.	benzo(k)fluoranthene (11,12-benzofluoranthene)	NĐ	ND	ND	ND	ND
76.	chrysene	NQ	NQ	ИQ	ND	ND
77.	acenaphthylene	NQ	NQ	NQ	ND	ND
78.	anthracené	NQ (a)	NQ (a)		ND (a)	ND (a)
79.	benzo(ghi)perylene (1,11-benzoperylene)	ND	ND	ND	ND	ND
80.	fluorene	NQ	NQ	NQ	ND	ND
81.	phenanthrene	NQ (a)	NQ (a)		ND (a)	ND (a)
82.	dibenzo (a,h)anthracene (1,2,5,6-dibenzanthracene)	ND	ND	ND	ND	ND
83.	indeno (1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)	ND	ND	ND	ND	ND
84.	pyrene	ИQ	иQ	NQ	ND	ND
85.	tetrachloroethylene	SU	NQ	NQ	ND	ND
86.	toluene	SU	ND	NQ	ND	ND

(a) Reported together

* These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

PRIORITY POLLUTANT DISPOSITION ANCILLARY OPERATIONS

		Pollutant	Solution and Press Heat Treatment Contact Cooling	Cleaning or Etch- ing Bath	Cleaning or Etch- ing Rinse	Cleaning or Etching Scrubber Liquor	Degassing Scrubber Liquor
	0.7						
	87.	trichloroethylene	NQ	ND	NQ	ND	NQ
	88. 89.	vinyl chloride (chloroethylene) aldrin	ND	ND ND	ND	ND	ND
	90.	dieldrin	NQ NQ	NQ	NQ NQ	ND NQ	N D
	91.	chlordane (technical mixture and metabolites)	NQ NQ	NQ NQ	NQ NQ	NQ ND	ND ND
	92.	4,4'-DDT	NQ NQ	NQ	NQ NQ	NQ	ND
	93.	4, 4'-DDE(p,p'DDX)	Й	NQ	NQ	NQ	ND
	94.	4, 4'-DDD(p,p'TDE)	ИQ	ÑQ	NQ	ЙQ	ND
	95.	a-endosulfan-Alpha	SÜ	ЙQ	NQ	ND	ND
	96.	b-endosulfan-Beta	รับ	NQ	NQ	NQ	ND
	97.	endosulfan sulfate	SU	NQ	иÒ	NĎ	ND
	98.	endrin	su	NQ	NQ	ND	ND
	99.	endrin aldehyde	SU	รบ่	NQ	NQ	ND
	100.	heptachlor	SU	NQ	NQ	ИQ	ND
	101.	heptachlor epoxide (BHC-hexachlorohexane)	SU	NQ	NQ	ИQ	ND
	102.	a-BHC-Alpha	NQ	NQ	NQ	NQ	ND
59	103.	b-BHC-Beta	NQ	NQ	NQ	ND	ND
91	104.	r-BHC (lindane)-Gamma	NQ	NQ	NQ	NQ	ND
	105.	g-BHC-Delta (PCB-polychlorinated biphenyls)	NQ	NQ	NQ	ND	ND
	106. 107.	PCB-1242 (Arochlor 1242) PCB-1254 (Arochlor 1254)	NQ (b)	NQ (b)		NQ (b)	ND (b)
	107.	PCB-1221 (Arochlor 1221)	NQ (b) NQ (b)	NQ (b) NQ (b)		NQ (b) NQ (b)	ND (b)
	109.	PCB-1232 (Arochlor 1232)	NQ (b)	NQ (b)		NQ (b)	ND (b)
	110.	PCB-1248 (Arochlor 1248)	NQ (c)	NQ (c)		NQ (b)	ND (c)
	111.	PCB-1260 (Arochlor 1260)	NQ (c)	NQ (c)		NQ (c)	ND (c)
	112.	PCB-1016 (Arochlor 1016)	NQ (c)	NQ (c)		NQ (c)	ND (c)
	113.	toxaphene	ND	ND	ND (C)	ND ;	ND (C)
	114.	antimony	NQ	SU	NQ	NQ	NQ
	115.	arsenic	NT	su	sử	NQ	NQ
	116.	asbestos (Fibrous)	ND	ND	ND	NĎ	NĎ
	117.	beryllium	NQ	ŊΤ	SU	NQ	NQ
	118.	cadmium	NT	RG	SU	NQ	NT
	119.	chromium (Total)	RG	RG	RG	NQ	NΤ
	120.	copper	NT	RG	RG	NT	NT
	121.	cyanide (Total)	RG	RG	NT	NQ	ИQ
	122.	lead	RG	RG	RG	NQ	RG
	123.	mercury	NT	NT	NT	NT	NQ
	124.	nickel	NT	RG	R.G	NQ	NT
	125.	selenium	RG	NT	N.L	NQ,	NQ
	126.	silver	SU	NT	NT	NQ	NQ
	127. 128.	thallium	NQ	NQ	NQ RG	NQ	NQ
	128.	zinc 2.3.7 Setatra chlorodibanca a diagin (TCDD)	SU ND	RG ND	ND	NQ ND	RG ND
	127.	2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)	เสม	ND	עא	เทบ	RID

⁽b),(c) Reported together

PRIORITY POLLUTANT DISPOSITION BY SUBCATEGORY

	Pollutant	Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Drawing With Neat Oils	Drawing With Emulsion
1.	acenaphthene	RG	RG	RG	RG	RG	RG
2.	acrolein	N.L &	N'T *	NT *	NT #	NT *	NT *
3.	acrylonitrile	ND	ND	ND	ND	ND	ND
4.	benzene	SU	SU	SU	SU	SU	SU
5.	benz i dene	ND	ND	ND	ND	ND	ND
6.	carbon tetrachloride (tetrachloromethane)	NQ	NQ	NQ	NQ	NQ	NQ
ž.	chlorobenzene	NT *	NT ≠	NT *	NT *	NT *	NT *
8.	1,2,4-trichlorobenzene	ND	ND ND	ND ND	ND	ND "	ND MT +
9.	hexachlorobenzene	ND	ND	ND	ND	ND	ND
10.	1.2-dichloroethane	NQ	NQ	NQ	NQ	NQ	NQ
11.	1,1,1-trichlorethane	รับ	SU	SU	SU	SU	SU
12.	hexachlorethane	ND	ND	SU	ND	ND	ND
13.	1,1-dichloroethane	ND	ND	SU	ND	ND	ND
14.	1,1,2-trichloroethane	NO	NQ	SU	NO	NO	NQ
15.	1,1,2,2-tetrachloroethane	NQ	ΝŎ	SU	ЙÓ	NQ	йŎ
16.	chloroethane	ND	NĎ	SU	ND	ND	ND
17.	bis (chloromethyl) ether - deleted	ND	ND	ND	ND	ND	ND
18.	bis (2-chloroethyl) ether	ND	ND	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether (mixed)	ND	ND	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	ND	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	NT *	NT *	NT *	NT *	NT *	NT ★
22.	parachlorometa cresol	NT *	NT +	SU	NT *	NT +	SU
23.	chloroform (trichloromethane)	SU	SU	SU	SU	รับ	SU
24.	2-chlorophenol	SU	SU	SU	SU	SU	SU
25.	1.2-dichlorobenzene	ND	ND	SU	ND	ND	ND
26.	1.3-dichlorobenzene	ND	ND	SU	ND	ND	ND
27.	1,4-dichlorobenzene	ND	ND	SU	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	ND	SÜ	ND	ND	ND
29.	1,1-dichloroethylene	NQ	NQ	NQ	NQ	NQ	NQ
30.	1,2-trans-dichloroethylene	รับ	SÜ	รับ	รับ	รับ	รับ
31.	2.4-dichlorophenol	NQ	NQ	NQ	NQ	NQ	NQ
32.	1.2-dichloropropane	ND	NĎ	ND	ир	ND ND	ND
33.	1,2-dichloropropylene (1,3-dichloropropene		ND	ND	ND	ND	ND
34.	2.4-dimethylphenol	NT *	NT *	NT *	NT *	NT *	NT *
35.	2.4-dinitrotoluene	NI)	ND	ND	ND	ND	SU
36.	2.6-dinitrotoluene	ND	ND	ND	ND	ND	ND
37.	1,2-diphenylhydrazine	NQ	NQ	NQ	NQ	NO	SU
38.	ethylbenzene	RG	RG	RG	RĞ	RG	RG
39.	fluoranthene	RG RG	RG RG	RG RG	RG	RG	RG
40.	4-chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND
40.	4-bromophenyl phenyl ether	ND ND	ND	ND	ND	ND	ND
41.	bis(2-chloroisopropyl) ether	ND ND	ND ND	ND CIN	ND	ND	ND
42.	ora(z-curororaopropyr) ecuer	ND	ND	1117	1417	110	HD.

^{*} These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

7

PRIORITY POLLUTANT DISPOSITION BY SUBCATEC RY

		lling With		12	D t	Drawing With	Drawing With
	Pollutant N	eat Oils	Emulsions	Extrusion	Forging	Neat Oils	Emulsion
43.	bis(2-choroethoxy) methane	ND	ND	ND	ND	ND	ND
44.	methylene chloride (dichloremethane)	NT	NT	N'Γ	N.L	NT	N'E
45.	methyl chloride (chloromethane)	ND	ND	NT	ND	ND	ND
46.	methyl bromide (bromomethane)	ND	ND	NT	ND	ND	ND
47.	bromoform (tribromomethane)	SU	SU	SU	SU	รับ	SU
48	dichlorobromomethane	NO	NQ	NT	NQ	NQ	ЙQ
49.	trichlorofluoromethane - deleted	ND	ND	NT	ND	ND	иĎ
50.	dichlorodifluoromethane - deleted	ND	ND	NT	ND	ND	ND
51.	chlorodibromomethane	NT	NT	ТИ	NT	NT	ľΫ́
52.	hexachlorobutadiene	ND	ND	NΤ	ND	ND	ND
53.	hexachlorocyclopentadiene	ND	ND	NT	ND	ND	ND
54.	isophorone	SU	SU	SU	SU	SU	SU
55.	naphthalene	RG	RG	RG	ĸĠ	RG	RG
56.	nitrobenzene	ND	ND	ND	ND	ND	ND
57.	2-nitrophenol	NQ	NQ	NQ	NQ	NQ	NQ
58.	4-nitrophenol	รับ	s v	ร์บั	ร์บั	SŨ	sũ
59.	2.4-dinitrophenol	รับ	SÜ	SU	SÜ	SU	SU
60.	4.6-dinitro-o-cresol	ND	SU	SU	ND	SU	SU
61.	N-nitrosodimethylamine	ND	ND	ND	ND	ND	ND
62.	N-nitrosodiphenylamine	RG	RG	RG	RG	RG	RG
63.	N-nitrosodi-n-propylamine	ND	ND	ND	ND	ND	ND
64.	pentachlorophenol	SU	รบ	SU	SU	SU	SU
65.	phenol	RG	RG	RG	ŔĠ	ŔĠ	RG
66.	bis(2-ethylhexyl) phthalate	RG	RG	RG	RG	RG	КG
67.	butyl benzyl phthalate	SU	SU	SU	SU	SU	รับ
68.	di-n-butyl phthalate	RG	RG	RĞ	ŔĞ	RG	кG
69.	di-n-octyl phthalate	SU	SU	SU	SU	SU	SU
70.	diethyl phthalate	RG	RG	RG	RG	RG	RG
71.	dimethyl phthalate	รับ	SU	SU	Ŝΰ	SU	SU
72.	benzo(a)anthracene (1,2-benzanthracene)	NQ	NQ	NQ	RG	NQ +	ИŲ
73.	benzo(a)pyrene (3,4-benzopyrene)	NQ	NQ NQ	NQ	NQ	NQ	ที่Q
74.	benzo(b)fluoranthene (3,4-benzofluoranthene)	ND	ND	ND	ND	ND	ND
75.	benzo(k)fluoranthene (11,12-benzofluoranthen		ND	ND	ND	ND	ND
76.	chrysene	SU	รบ	SU	RG	SU	SU
77.	acenaphthylene	รับ	SU	รับ	SU	SU	รับ
78.	anthracene	SU (a)	SU (a)	SU (a)	RG (a)		SU (a)
79.	benzo(ghi)perylene (1,11-benzoperylene)	ND	ND (U)	ND (L)	ND ND	ND	ND (U)
80.	fluorene	RG	RG	RG	RG	RG	КĞ
81.	phenanthrene	SU (a)	SU (a)	SU (a)	RG (a)		SU (a)
82.	dibenzo (a,h)anthracene (1,2,5,6-di	(a)	50 (a)	50 (a)	KO (a)	00 (a)	00 (u)
	benzanthracene)	ND	ND	ND	ND	ND	ND
83.	indeno (1,2,3-cd)pyrene	ATTO	ATTS	ND	ND .	ND	ND
0.4	(w,e,-o-phenylenepyrene)	ND	ND RG	RG	RG RG	RG	RG
84.	pyrene	RG	SU	KG SU	SU	SU	SU
85.	tetrachloroethylene	SU	50	อบ	30	υυ	30

(a) Reported Together

PRIORITY POLLUTANT DISPOSITION BY SUBCATEGORY

			Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Drawing With Neat Oils	Drawing With Emulsion
	86.	toluene	RG	RG	RG	RG	RG	кG
	87.	trichloroethylene	SU	SU	SU	SU	SU	SU
	88.	vinyl chloride (chloroethylene)	ND	ND	ND	ND	ND	ND
	89.	aldrin	NQ	NQ	NQ	NQ	NQ	NQ
	90.	dieldrin	NQ	NQ	NQ	NQ	NQ	NQ
	91.	chlordane (technical mixture and metabolite	es) SÚ	SÚ	รบ่	sú	รบ๋	ទប់
	92.	4,4'-DDT	NQ	NQ	NQ	NQ	NQ	NQ
	93.	4,4'-DDE(p,p'DDX)	SU	SU	SU	SÚ	รบ่	SÚ
	94.	4,4'-DDD(p,p'TDE)	NQ	ИQ	NQ	NQ	NQ	NQ
	95.	a-endosulfan-Alpha	รบ	SU	SU	SU	SÚ	SU
	96.	b-endosulfan-Beta	SU	SU	SU	SU	SU	SU
	97.	endosulfan sulfate	RG	RG	RG	RG	RG	RG
	98.	endrin	RG	RG	RG	RG	RG	RG
	99.	endrin aldehyde	RG	RG	RG	RG	КG	RG
	100.	heptachlor	SU	SU	SU	SU	SU	SU
	101.	heptachlor epoxide (BHC-hexachlorohexane)	SU	SU	SU	SU	SU	SU
93	102.	a-BHC-Alpha	SU	SU	SU	SU	SU	SU
94	103.	b-BHC-Beta	SU	SU	SU	SU	SU	SU
	104.	r-BHC (lindane)-Gamma	NQ	NQ	NQ	NQ	NQ	ИQ
	105.	g-BHC-Delta	NQ	NQ	NQ	NQ	NQ	ИQ
	106.	PCB-1242 (Arochlor 1242)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)
	107.	PCB-1254 (Arochlor 1254)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)
	108.	PCB-1221 (Arochlor 1221)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)	RG (b)
	109.	PCB-1232 (Arochlor 1232)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
	110.	PCB-1248 (Arochlor 1248)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
	111.	PCB-1260 (Arochlor 1260)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
	112.	PCB-1016 (Arochlor 1016)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)	RG (c)
	113.	toxaphene	ND	ND	ND	ND	ИD	ND
	114.	antimony	SU	su	SU	SU	SU	SU
	115.	arsenic	SU	SU	SU	SU	SU	SU
	116.	asbestos (Fibrous)	ND	ND	NQ	ND	ND	ND
	117.	beryllium	SU	SU	SU	SU	SU	SU
	118.	cadmium	RG	RG	RG	RG	RG	RG
	119.	chromium (Total)	RG	RG	RG	RG	RG	RG
	120.	copper	RG	RG	RG	RG	RG	RG
	121.	cyanide (Total)	RG	RG	RG	RG	RG	RG
	122.	lead	RG	RG	RG	RG	RG	кG
	123.	mercury	N.L	NΤ	NΤ	NΤ	N.L	NΤ

994

PRIORITY POLLUTANT DISPOSITION BY SUBCATEGORY

	Pollutant	Rolling With Neat Oils	Rolling With Emulsions	Extrusion	Forging	Drawing With Neat Oils	Drawing With Emulsion
124.	nickel	RG	RG	RG	RG	RG	RG
125.	selenium	RG	RG	RG	RG	RG	RG
126.	silver	SU	SU	SU	SU	SU	SU
127.	thallium	NQ	NQ	NQ	NQ	NQ	NQ
128.	zinc	RG	RG	RG	RG	RG	RG
129.	2,3,7,8-tetra chlorodibenzo-p-dioxin (TCE	DD) ND	ND	ND	ND	ND	ND

(b), (c) Reported Together

Key: ND - Never Detected

NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable By Treatment
SU - Detected in a Small Number of Sources
RG - Considered For Regulation