WRT-INDIO, LLC 62-150 GENE WELMAS DRIVE MECCA, CALIFORNIA 92254

CABAZON RESOURCE RECOVERY PARK

SYNTHETIC MINOR PERMIT APPLICATION

prepared by

ESRA CONSULTING LLC

183 MACK HILL ROAD AMHERST, NEW HAMPSHIRE 03031 603-673-5732

JUNE 22, 2016

WRT-INDIO, LLC 62-150 GENE WELMAS DRIVE MECCA, CALIFORNIA 92254

CABAZON RESOURCE RECOVERY PARK

SYNTHETIC MINOR PERMIT APPLICATION

APPLICATION	FOR NEW CONSTRUCTION	1
D. ATTACHME	NTS	4
D1.	New Source Review Synthetic Minor Limit Request Form (Form SYNMIN)	5
B. Atta	chments	7
Item 1	The proposed limitation and a description of its effect on current actual, allowable and the potential to emit.	7
Item 2	The proposed testing, monitoring, record keeping, and reporting requirements to be used to demonstrate and assure compliance with the proposed limitation.	8
Item 3	A description of estimated efficiency of air pollution control equipment under present or anticipated operating conditions, including documentation of the manufacturer specifications and	10
Item 4	Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates.	11
Item 5	Estimates of the potential emissions of Greenhouse Gas (GHG) pollutants	12
D2.	Proposed Production Process.	13
D3.	Proposed Emission Units and Air Pollution-generating Activities.	16
D4.	Type and Quantity of Fuels.	18
D5.	Raw Materials and Final Product	19
D6.	Proposed Operating Schedule.	20
D7.	Emission Controls.	21
D8.	Emission Estimation for the Proposed Process.	22

ATTACHMENT D7

PROCESS EQUIPMENT SPECIFICATIONS

APPENDIX A

BIOMASS PROFILE: GENERATOR MATERIAL SHEET

APPLICATION FOR NEW CONSTRUCTION

FORM NEW

United States Environmental Protection Agency Program Address Phone Fax Web address

Reviewing Authority Program Address Phone Fax Web address

FEDERAL MINOR NEW SOURCE REVIEW PROGRAM IN INDIAN COUNTRY

Application for New Construction (Form NEW)

Please check all that apply to show how you are using this form:

Proposed Construction of a New Source Proposed Construction of New Equipment at an Existing Source Proposed Modification of an Existing Source Other - Please Explain

Please submit information to:

[Reviewing Authority Address Phone]

A. GENERAL SOURCE INFORMATION

 (a) Company Name WRT I (b) Operator Name Same 	ndio LLC	2. Source Name WRT Inc	lio LLC	
3. Type of Operation Recycling,	Waste Management	4. Portable Source?YesNo X5. Temporary Source?YesNo X		
6. NAICS Code 562219		7. SIC Code 4953		
8. Physical Address (home base f	or portable sources)			
62-150 Gene Welmas Drive Mecca, CA 92254				
9. Reservation*	10. County*Riverside	11a. Lat* 33.5958	11b. Long* -116.0843	
12a. Quarter Quarter Section* NW ¼ of NE 1/412b. Section* 6		12c. Township* T7S	12d. Range* R93	

*Provide all proposed locations of operation for portable sources

B. PREVIOUS PERMIT ACTIONS (Provide information in this format for each permit that has been issued to this source. Provide as an attachment if additional space is necessary)

Source Name on the Permit WRT Indio LLC

Permit Number (xx-xxx-xxxxx-xxxx.xx) N/A

Date of the Permit Action September 22, 2009

Source Name on the Permit

Permit Number (xx-xxx-xxxx.xx)

Date of the Permit Action

Source Name on the Permit

Permit Number (xx-xxx-xxxx.xx)

Date of the Permit Action

Source Name on the Permit

Permit Number (xx-xxx-xxxx.xx)

Date of the Permit Action

Source Name on the Permit

Permit Number (xx-xxx-xxxxx.xx)

Date of the Permit Action

C. CONTACT INFORMATION

Company Contact Matthew Mullen		Title General Manager		
Mailing Address 62-150 Gene Welmas Drive Mecca, CA 92254				
Email Address mattmullen@westenvironment.com				
Telephone Number 760-396-0222	Elephone Number 760-396-0222 Facsimile Number 760-396-4300			
Operator Contact (if different from company contact) Sa	me	Title		
Mailing Address				
Email Address				
Felephone Number Facsimile Number				
Source Contact Matthew Mullen		Title General Manager		
Mailing Address 62-150 Gene Welmas Drive Mecca, CA 92254				
Email Address mattmullen@westenvironment.com				
Telephone Number 760-396-0222	'elephone Number 760-396-0222Facsimile Number 760-396-4300			
Compliance Contact Matthew Mullen Title General Manager				
Mailing Address 62-150 Gene Welmas Drive Mecca, CA 92254				
Email Address mattmullen@westenvironment.com				
Felephone Number 760-396-0222 Facsimile Number 760-396-4300				

D. ATTACHMENTS

Include all of the following information (see the attached instructions)

FORM SYNMIN - New Source Review Synthetic Minor Limit Request Form, if synthetic minor limits are being requested.

Narrative description of the proposed production processes. This description should follow the flow of the process flow diagram to be submitted with this application.

Process flow chart identifying all proposed processing, combustion, handling, storage, and emission control equipment.

A list and descriptions of all proposed emission units and air pollution-generating activities.

Type and quantity of fuels, including sulfur content of fuels, proposed to be used on a daily, annual and maximum hourly basis.

Type and quantity of raw materials used or final product produced proposed to be used on a daily, annual and maximum hourly basis.

Proposed operating schedule, including number of hours per day, number of days per week and number of weeks per year.

A list and description of all proposed emission controls, control efficiencies, emission limits, and monitoring for each emission unit and air pollution generating activity.

Criteria Pollutant Emissions - Estimates of Current Actual Emissions, Current Allowable Emissions, PostChange Uncontrolled Emissions, and Post-Change Allowable Emissions for the following air pollutants: particulate matter, PM₁₀, PM_{2.5}, sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compound (VOC), lead (Pb) and lead compounds, fluorides (gaseous and particulate), sulfuric acid mist (H₂SO₄), hydrogen sulfide (H₂S), total reduced sulfur (TRS) and reduced sulfur compounds, including all calculations for the estimates.

These estimates are to be made for each emission unit, emission generating activity, and the project/source in total.

Modeling - Air Quality Impact Analysis (AQIA)

ESA (Endangered Species Act)

NHPA (National Historic Preservation Act)

E. TABLE OF ESTIMATED EMISSIONS

The following tables provide the total emissions in tons/year for all pollutants from the calculations required in Section D of this form, as appropriate for the use specified at the top of the form.

$\frac{1}{2(1)} = 1$ Toposed The W South			
Pollutant SEE TABLE 1	Potential Emissions (tpy)	Proposed Allowable Emissions (tpy)	
PM			PM - Particulate Matter PM - Particulate Matter less
PM10			than 10 microns in size
PM 2.5			PM _{2.5} - Particulate Matter less than 2.5 microns in size
SOx			SOx - Sulfur Oxides NOx - Nitrogen Oxides
NOx			CO - Carbon Monoxide
СО			Compound
VOC			Pb - Lead and lead compounds
Pb			particulates
			H_2SO_4 - Sulfuric Acid Mist H_2S - Hydrogen Sulfide
Fluorides			TRS - Total Reduced Sulfur
H2SO4			RSC - Reduced Sulfur Compounds
H2S			I I I I I I I I I I I I I I I I I I I
TRS			
RSC			

E(i) - Proposed New Source

Emissions calculations must include fugitive emissions if the source is one the following listed sources, pursuant to CAA Section 302(j):

- (a) Coal cleaning plants (with thermal dryers);
- (b) Kraft pulp mills;
- (c) Portland cement plants;
- (d) Primary zinc smelters;
- (e) Iron and steel mills;
- (f) Primary aluminum ore reduction plants;
- (g) Primary copper smelters;
- (h) Municipal incinerators capable of charging more than 250 tons of refuse per day;
- (i) Hydrofluoric, sulfuric, or nitric acid plants;
- (j) Petroleum refineries;
- (k) Lime plants;
- (l) Phosphate rock processing plants;
- (m) Coke oven batteries;
- (n) Sulfur recovery plants;
- (o) Carbon black plants (furnace process);
- (p) Primary lead smelters;
- (q) Fuel conversion plants;

- (r) Sintering plants;
- (s) Secondary metal production plants;
- (t) Chemical process plants
- (u) Fossil-fuel boilers (or combination thereof) totaling more than 250 million British thermal units per hour heat input;
- (v) Petroleum storage and transfer units with a total storage capacity exceeding 300,000 barrels;
- (w) Taconite ore processing plants;
- (x) Glass fiber processing plants;
- (y) Charcoal production plants;
- (z) Fossil fuel-fired steam electric plants of more that 250 million British thermal units per hour heat input, and

(aa) Any other stationary source category which, as of August 7, 1980, is being regulated under section 111 or 112 of the Act.

TABLE 1 - WESTERN ENVIRONMENTAL, I	LLC - DR HING	SISIEMEN	115510N5		
	ACTUAL E	MISSIONS	POTENTIAL	EMSSIONS	EMISSION FACTOR
WOOD COMBUSTION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		lb/mmBtu
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled
PARTICULATE MATTER (PM)	2.66	3.45	13.34	58.45	0.417
PARTICULATE MATTER<10 MICRONS (PM10)	2.62	3.41	12.06	52.84	0.377
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	2.62	3.41	10.46	45.83	0.327
SULFUR DIOXIDE (SO2)	0.8	1.04	0.8	3.5	0.025
NITROGEN OXIDES (NOx)	15.68	20.38	15.68	68.68	0.49
CARBON MONOXIDE (CO)	19.2	24.96	19.2	84.1	0.6
VOLATILE ORGANIC COMPOUNDS (VOC)	0.54	0.71	0.54	2.38	0.017
LEAD	0.0015	0.002	0.0015	0.0067	4.8E-05
KUBOTA DIESEL ENGINE EMISSIONS	ACTUAL E	MISSIONS	POTENTIAL	EMISSIONS	EMISSION FACTOR
	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lb/hp-hr
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled
PARTICULATE MATTER (PM)	0.19	0.3	0.19	0.84	0.0022
PARTICULATE MATTER<10 MICRONS (PM10)	0.19	0.3	0.19	0.84	0.0022
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	0.19	0.3	0.19	0.84	0.0022
SULFUR DIOXIDE (SO2)	0.04	0.06	0.04	0.15	0.000405
NITROGEN OXIDES (NOx)	2.71	4.25	2.71	11.85	0.031
CARBON MONOXIDE (CO)	0.58	0.92	0.58	2.55	0.00668
VOLATILE ORGANIC COMPOUNDS (VOC)	0.22	0.35	0.22	0.96	0.00251
	i		i		i
DRYER EMISSIONS			POTENTIAL	POTENTIAL EMISSIONS EMISSION FACTOR	
	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled
PARTICULATE MATTER (PM)	9	11.7	1500	1950	60
PARTICULATE MATTER<10 MICRONS (PM10)	9	11.7	1500	1950	60
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	9	11.7	1500	1950	60
SULFUR DIOXIDE (SO2)					
NITROGEN OXIDES (NOx)					
CARBON MONOXIDE (CO)					
VOLATILE ORGANIC COMPOUNDS (VOC)					
25 tons per hour at 20% solids, with 15% carry-through	from dryer to scru	ibber. 80% scrut	ber CE and 97% b	baghouse CE.	
	ACTUAL E	MISSIONS	POTENTIAL	EMISSIONS	EMISSION FACTOR
SYSTEM EMISSIONS	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled
PARTICIJI ATE MATTER (PM)	11.85	15.45	1513.53	2009.29	60.42
	11.81	15.41	1512.25	2003.68	60.38
PARTICULATE MATTER<10 MICRONS (PM10)	11.01		1	1006.67	60.33
PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5)	11.81	15.41	1510.65	1990.07	00.55
PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2)	11.81 0.84	15.41 1.10	1510.65 0.84	3.65	0.03
PARTICULATE MATTER (1 M/ PARTICULATE MATTER < 10 MICRONS (PM10) PARTICULATE MATTER < 2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX)	11.81 0.84 18.39	15.41 1.10 24.63	1510.65 0.84 18.39	3.65 80.53	0.03
PARTICULATE MATTER (1 M) PARTICULATE MATTER < 10 MICRONS (PM10) PARTICULATE MATTER < 2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO)	11.81 0.84 18.39 19.78	15.41 1.10 24.63 25.88	1510.65 0.84 18.39 19.78	3.65 80.53 86.65	0.03 0.52 0.61
PARTICULATE MATTER (1 M) PARTICULATE MATTER <10 MICRONS (PM10) PARTICULATE MATTER <2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC)	11.81 0.84 18.39 19.78 0.76	15.41 1.10 24.63 25.88 1.06	1510.65 0.84 18.39 19.78 0.76	3.65 80.53 86.65 3.34	0.03 0.52 0.61 0.02

D. ATTACHMENTS

D1. New Source Review Synthetic Minor Limit Request Form (Form SYNMIN)

United States Environmental Protection Agency Program Address Phone Fax Web address

Reviewing Authority Program Address Phone Fax Web address

FEDERAL MINOR NEW SOURCE REVIEW PROGRAM IN INDIAN COUNTRY

Application For Synthetic Minor Limit (Form SYNMIN)

Please submit information to:

[Reviewing Authority Address Phone]

A. GENERAL INFORMATION

Company Name WRT Indio LLC	Source Name WRT Indio LLC			
Company Contact or Owner Name Matthew Mullen	Title General Manager			
Mailing Address 62-150 Gene Welmas Drive, Mecca, California 92254				
Email Address mattmullen@westenvironment.com				
Telephone Number 760-396-0222	Facsimile Number 760-396-	4300		

B. ATTACHMENTS

For each criteria air pollutant, hazardous air pollutant and for all emission units and air pollutant generating activities to be covered by a limitation, include the following:

Item 1 - The proposed limitation and a description of its effect on current actual, allowable and the potential to emit. Item 2 - The proposed testing, monitoring, recordkeeping, and reporting requirements to be used to demonstrate and assure compliance with the proposed limitation.

Item 3 - A description of estimated efficiency of air pollution control equipment under present or anticipated operating conditions, including documentation of the manufacturer specifications and guarantees.

Item 4 - Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates.

Item 5 - Estimates of the potential emissions of Greenhouse Gas (GHG) pollutants:

B. Attachments

Item 1 The proposed limitation and a description of its effect on current actual, allowable and the potential to emit.

WRT proposes the following limitations on the biosolids drying process to provide enforceable restrictions to ensure that emissions are less than the major source thresholds for the area.

Maximum biosolids processing rate	25 tons/hr
Biosolids moisture content	+/-80%
Dryer operating temperature range	250°F to 350°F
Biomass/wood fuel combustion (palm fronds and/or clean construction wood)	2 tons/hr at 8000 btu/lb
Heat input	32 MMBTU/Hr
Wet scrubber control efficiency	80%
Wet scrubber flow rate	minimum 20 GPM @ 60 PSI
Fabric filter baghouse control efficiency -	97.0%
Processed sludge output temperature	250°F
Processed sludge output	10 tons/hr
Annual operating hours - thermal dryer	2600
Annual operating hours - Kubota engine	2700

Item 2 The proposed testing, monitoring, record keeping, and reporting requirements to be used to demonstrate and assure compliance with the proposed limitation.

WRT proposes the following testing, monitoring, record keeping, and reporting requirements to establish enforceable limits to ensure that facility-wide emissions are less than the major source thresholds for the area.

Maintain status as a synthetic minor source with facility-wide controlled criteria pollutant emissions of less than the major source thresholds per consecutive 12-month period.

Particulate Matter (PM) - 70 Particulate matter<10 microns (PM10) - 70 Particulate matter<2.5 microns (PM2.5) - 100 Sulfur Dioxide (SO2) - 100 Nitrogen Oxides (NOx) - 25 Carbon Monoxide (CO) - 100 Volatile Organic Compounds (VOC) - 25 Lead - 100

Maintain status as a minor source of Hazardous Air Pollutants (HAPS) with emissions of an single HAP of <10 tons/year and <25 tons/year of all HAPS.

Document changes in process or operations that result in increases or decreases in emissions of regulated pollutants.

Develop and maintain a procedure for determining whether process or equipment additions or modifications require a permit modification prior to the initiation of the change or any construction related to the change.

Document that the sulfur content of diesel fuel burned in the Kubota engine (EU-03) does not exceed 15 ppm using supplier certification or testing.

Record monthly and annual operating hours of Kubota engine and document limitation of total operating hour to <2700 hours per consecutive 12 month period.

Equip the Kubota engine with a non-resettable hour meter.

Maintain records of the type and amount of the liquid fuel used in the Kubota engine.

Maintain documentation from the engine manufacturer certifying that the Kubota engine complies with the Tier 2 emissions standards.

Document periodic maintenance of the biomass drying system in accordance with manufacturer's equipment recommendations.

Document that qualified facility personnel have conducted a visual external integrity inspection of the pollution control equipment at least quarterly.

Maintain records of annual air pollution control equipment inspection per specification of manufacturer.

Document the daily, monthly and annual processing, in tons, of biosolids dried in the biosolids drying system.

Record daily, monthly and annual operating hours of biosolids drying system and document limitation of total operating hour to <2600 hours per consecutive 12 month period.

Prepare and submit annual emissions report covering each permitted device by April 15 of the following year.

Develop and maintain a procedure for determining whether process or equipment additions or modifications require a permit modification prior to the initiation of the change or any construction related to the change.

Establish and maintain a plan for the identification and control of fugitive PM emissions.

Record daily, monthly and annual operating hours of the biomass combustion unit and document limitation of total operating hours to <2600 hours per consecutive 12 month period.

Maintain daily records of the type and amount, in tons, of the biomass fuels used in the biomass combustion unit to demonstrate compliance with the 2 ton per hour biomass fuel limit for the device.

Item 3 A description of estimated efficiency of air pollution control equipment under present or anticipated operating conditions, including documentation of the manufacturer specifications and guarantees.

In addition to limitations on the processing rate and hours of operation, WRT proposes to operate two air pollution control devices at all times while drying biosolids or operating the biomass combustion unit. The two air pollution control devices limit emissions of particulate matter (PM) generated by EU-01 and EU-02. The layout of the system and the control equipment is shown in Figure 2.

Both the combustion of biomass and the drying of biosolids have the potential to generate PM emissions due to the combustion system air flow through the system. The combustion system air flow provides the process drying heat at an inlet temperature of approximately 800°F at 4500 CFM. The low velocity is applied to minimize entrainment of particulate in the thermal dryer discharge. Biomass combustion emissions have been estimated using AP-42 emission factors as defined in D8. The biosolids drying emissions are based on mass balance assuming that up to 15% of the biosolids are entrained in the drying system air flow exiting the rotary dryer (EU-02).

The drying system air flow is ducted to a atomized spray wet scrubber (CD-1) to remove PM from the air stream and to quench/cool the dryer gasses to $<350^{\circ}$ F. The wet scrubber operates at 20 gpm at 60 PSI and is estimated to operate at 80% control efficiency. The drying system gasses are then ducted to a fabric filter baghouse (CD-2). For the purpose of this permit application, the baghouse PM control efficiency is assumed to be a minimum of 97% of PM prior to discharge through the process stack. The baghouse contain 1024 fabric filter bags with a rated flow of 39,649 CFM and a 4:1 air to cloth ratio.

The baghouse, fabric filter control efficiency test data from the manufacturer and the scrubber spray nozzle information is presented in Attachment D7.

Item 4 Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates.

Emission estimates for the proposed biosolids drying system are presented in Table 1, Section D8. A summary of the estimated emissions from the proposed system, after controls and limitations, is presented below.

	ACTUAL EMISSIONS		Major Source Limit
SYSTEM EMISSIONS	(AFTER CONTR		
AIR POLLUTANT EMITTED	lb/hr	tons/yr	tons/yr
PARTICULATE MATTER (PM)	11.85	15.45	70
PARTICULATE MATTER<10 MICRONS (PM10)	11.81	15.41	70
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	11.81	15.41	100
SULFUR DIOXIDE (SO2)	0.84	1.10	100
NITROGEN OXIDES (NOx)	18.39	24.63	25
CARBON MONOXIDE (CO)	19.78	25.88	100
VOLATILE ORGANIC COMPOUNDS (VOC)	0.76	1.06	25
LEAD	0.002	0.002	100

Item 5 Estimates of the potential emissions of Greenhouse Gas (GHG) pollutants.

The potential emission of greenhouse gasses (GHG) have been calculated in accordance with the greenhouse gas factors based on EPA Mandatory Reporting Rule Approach (40CFR Part 98) and are shown in Table 3 in Section D8.

D2. Proposed Production Process

WRT-Indio, LLC (WRT) is proposing to operate a thermal drying system to sterilize and reduce the moisture content of exceptional quality (EQ) biosolids from 80% water by weight to 20% water by weight. The sterilization ensure that bacterial contaminants are destroyed and the reduction in water content allows for efficient transport and handling of the materials.

The proposed system will be located at 62-150 Gene Welmas Drive Mecca, CA 92254 within the industrial park on tribal land of the Cabazon Band of Mission Indians. A site locus is shown in Figure 1.

The drying system consists of a biomass combustion unit as the heat source, a biosolids feed unit, a rotary dryer, a wet scrubber and a fabric filter baghouse for the control of particulate emissions. The biomass combustion unit will burn palm fronds and clean construction lumber as fuel. The system will combust 2 tons per hour (32 MMBTU/hr) of biomass and the rotary dryer will process up to 25 tons per hour of biosolids. The dryer will operate within a temperature range of 250°F to 350°F to reduce the water content of the materials. The system will produce approximately 10 tons per hour of treated material with a 20% moisture content.

A process flow diagram for the system is presented in Figure 2.

D3. Proposed Emission Units and Air Pollution-generating Activities

Emission Units

The proposed bio-solids drying operation consists of the following three emission units:

EU-01 - A two (2) ton per hour (32 MMBTU/hr) biomass combustion unit that will burn clean palm fronds and construction lumber for heat recovery. The combustion unit is a Model S-327 manufactured by Air Burners, Inc that is rated for a maximum mass processing rate of 10 tons per hour (160 MMBTU/hr).

EU-02 - A 25 ton per hour rotary dryer manufactured by Astec Industries, Model PPTU-840. The unit is 7 feet in diameter and 35 feet long. The heat source for the drying process is EU-01.

EU-03 - This emissions unit is a Kubota V3300-T-ES diesel engine. The engine drive a fan to supply combustion air to EU-01. The stationary engine is certified to EPA Tier 2 standards and will combust ultra-low sulfur diesel fuel.

Air Pollution-Generating Activities

The biomass combustion unit, EU-01, is proposed to combust 2 tons per hour of biomass for heat recovery and will generate emissions in the form of particulate matter (PM) and by-products of combustion. The combustion system generates approximately 32 MMBTU/hr of process heat based on a standard BTU value of 8000 BTU/lb of dry wood. EU-01 requires approximately 4500 CFM of combustion air to burn 2 tons per hour of biomass. This flow is produced by the fan on the Kubota engine and is vented to the thermal dryer. Estimated emissions are presented in Section D8 and summarized below.

Wood Combustion	Actual Emissions		
wood Combustion	(After Controls / Limits)		
Air Pollutant Emitted	Lb/hr	Tons/yr	
Particulate Matter (PM)	2.66	3.45	
Particulate Matter<10 Microns (PM10)	2.62	3.41	
Particulate Matter<2.5 Microns (PM2.5)	2.62	3.41	
Sulfur Dioxide (SO2)	0.8	1.04	
Nitrogen Oxides (NOx)	15.68	20.38	
Carbon Monoxide (CO)	19.2	24.96	
Volatile Organic Compounds (VOC)	0.54	0.71	
Lead	0.0015	0.002	

The thermal dryer (EU-02) is proposed to operate at a maximum processing rate of up to 25 tons per hour of biosolids. The material averages 80% moisture and 20% solids. The drying process produces

emissions of water and PM. The reduction of moisture from 80% to 20% produces 30,000 lbs/hr of water vapor. The rotary dryer is also estimated to entrain particulate matter in the air stream, estimated at 15% of the solids, or 3000 lbs/hr, by weight. The estimated emissions of EU-02 are presented in Section D8 and summarized below.

Thermal Driver Emissions	Actual Emissions (After Controls / Limits)		
Thermal Dryer Emissions			
Air Pollutant Emitted	Lb/hr	Tons/yr	
Particulate Matter (PM)	9	11.7	
Particulate Matter<10 Microns (PM10)	9	11.7	
Particulate Matter<2.5 Microns (PM2.5)	9	11.7	
Sulfur Dioxide (SO2)			
Nitrogen Oxides (NOx)			
Carbon Monoxide (CO)			
Volatile Organic Compounds (VOC)			
Lead			

EU-03 is a stationary engine used to produce combustion air flows. The engine is rated at 87.3 HP and burns 36.6 lbs per hour of fuel (5.08 gal). The stationary engine is certified to EPA Tier 2 standards. Estimated emissions are presented in Section D8 and summarized below.

Kubata Diagal Engina Emissions	Actual Emissions (After Controls / Limits)		
Rubota Dieser Eligine Elifissions			
Air Pollutant Emitted	Lb/hr	Tons/yr	
Particulate Matter (PM)	0.19	0.3	
Particulate Matter<10 Microns (PM10)	0.19	0.3	
Particulate Matter<2.5 Microns (PM2.5)	0.19	0.3	
Sulfur Dioxide (SO2)	0.04	0.06	
Nitrogen Oxides (NOx)	2.71	4.25	
Carbon Monoxide (CO)	0.58	0.92	
Volatile Organic Compounds (VOC)	0.22	0.35	

D4. Type and Quantity of Fuels

WRT proposes to use two fuels in the biosolids drying system. The biomass combustion unit (EU-01) will burn palm fronds and/or clean construction lumber. The palm fronds are available directly from landscaping operations and agricultural sources to be burned for energy recovery. The fuel has a estimated heat value of 8000 BTU/Lb. The operations is proposing to burn up to 2 tons per hour and yield a heat input of 32 MMBTU/Hr. Annual biomass fuel usage is projected at up to 5,200 tons. A profile form for the approval and shipment of biomass fuels to the WRT facility is found in Appendix A.

The Kubota engine will burn ultra low sulfur diesel fuel at a rate of 5.08 gallon per hour and 13,716 gallon per year. The sulfur content is a maximum of 15 ppm.

D5. Raw Materials and Final Product

The proposed biosolids drying operation will be limited to the processing of Exceptional Quality (EQ) biosolids from permitted waste water treatment facilities. The materials will enter the facility at approximately 80% by weight liquids and 20% solids. The maximum processing rate is up to 25 tons per hour or 600 tons in a 24 hour day. The maximum proposed annual processing rate is 65,000 tons.

The finished product consists of 10 tons per hour of sterilized biosolids at 20% moisture.

D6. Proposed Operating Schedule

The biosolids drying system is proposed to be operated up to 24 hours per day, five (5) days per week, with a maximum annual production rate up to 25 tons per hour for 2600 hours per year. The Kubota engine, EU-03, is proposed to operate up to 2700 hours per year to allow for short cool-down of the biomass combustion unit (EU-01).

D7. Emission Controls

In addition to limitations on the processing rate and hours of operation, WRT proposes to operate two air pollution control devices at all times while drying biosolids or operating the biomass combustion unit. The two air pollution control devices limit emissions of particulate matter (PM) generated by EU-01 and EU-02. The layout of the system and the control equipment is shown in Figure 2.

Both the combustion of biomass and the drying of biosolids have the potential to generate PM emissions due to the combustion air flow through the system. Biomass combustion emissions have been estimated using AP-42 emission factors as defined in D8. The biosolids drying emissions are based on mass balance assuming that up to 15% of the biosolids are entrained in the drying system air flow exiting the rotary dryer (EU-02).

The drying system air flow is ducted to a atomized spray wet scrubber (CD-1) to remove PM from the air stream and to quench/cool the dryer gasses to $<350^{\circ}$ F. The wet scrubber operates at 20 gpm at 60 PSI and is estimated to operate at 80% control efficiency. The drying system gasses are then ducted to a fabric filter baghouse (CD-2). For the purpose of this permit application, the baghouse PM control efficiency is assumed to be a minimum of 97% of PM prior to discharge through the process stack. The baghouse contain 1024 fabric filter bags with a rated flow of 39,649 CFM and a 4:1 air to cloth ratio.

The fabric filter control efficiency test data from the manufacturer and the scrubber spray nozzle information is presented in Attachment D7.

D8. Emission Estimation for the Proposed Process

The WRT facility does not currently operate under an air permit.

Facility-wide emissions from the proposed biosolids drying operation have been estimated using AP-42 emission factors for biomass combustion and mass balance estimates for the thermal dryer. The theoretical potential to emit, based on 8760 hours of operation, and the controlled/limited estimated actual emission, are presented in Tables 1, 2 and 3 below. The facility is requesting limitations to enable it to operate as a synthetic minor source and the proposed emission are summarized below in relation to the major source thresholds for the area.

	ACTUAL E	Major Source Limit	
SYSTEM EMISSIONS	(AFTER CONTR		
AIR POLLUTANT EMITTED	lb/hr	tons/yr	tons/yr
PARTICULATE MATTER (PM)	11.85	15.45	70
PARTICULATE MATTER<10 MICRONS (PM10)	11.81	15.41	70
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	11.81	15.41	100
SULFUR DIOXIDE (SO2)	0.84	1.10	100
NITROGEN OXIDES (NOx)	18.39	24.63	25
CARBON MONOXIDE (CO)	19.78	25.88	100
VOLATILE ORGANIC COMPOUNDS (VOC)	0.76	1.06	25
LEAD	0.002	0.002	100

	ACTUAL E	MISSIONS	POTENTIAL	EMSSIONS	EMISSION FACTOR	
WOOD COMBUSTION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CO	ONTROLS / (S)	lb/mmBtu	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
PARTICULATE MATTER (PM)	2.66	3.45	13.34	58.45	0.417	
PARTICULATE MATTER<10 MICRONS (PM10)	2.62	3.41	12.06	52.84	0.377	
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	2.62	3.41	10.46	45.83	0.327	
SULFUR DIOXIDE (SO2)	0.8	1.04	0.8	3.5	0.025	
NITROGEN OXIDES (NOx)	15.68	20.38	15.68	68.68	0.49	
CARBON MONOXIDE (CO)	19.2	24.96	19.2	84.1	0.6	
/OLATILE ORGANIC COMPOUNDS (VOC)	0.54	0.71	0.54	2.38	0.017	
EAD	0.0015	0.002	0.0015	0.0067	4.8E-05	
	ACTUAL E	MISSIONS	POTENTIAL I	EMISSIONS	EMISSION FACTOR	
RUBUTA DIESEL ENGINE EMISSIONS	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lb/hp-hr	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
PARTICULATE MATTER (PM)	0.19	0.3	0.19	0.84	0.0022	
PARTICULATE MATTER<10 MICRONS (PM10)	0.19	0.3	0.19	0.84	0.0022	
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	0.19	0.3	0.19	0.84	0.0022	
SULFUR DIOXIDE (SO2)	0.04	0.06	0.04	0.15	0.000405	
VITROGEN OXIDES (NOx)	2.71	4.25	2.71	11.85	0.031	
CARBON MONOXIDE (CO)	0.58	0.92	0.58	2.55	0.00668	
OLATILE ORGANIC COMPOUNDS (VOC)	0.22	0.35	0.22	0.96	0.00251	
				-		
	ACTUAL E	ACTUAL EMISSIONS POTENTIAL EMISSIONS		EMISSION FACTOR		
DRIER EMISSIONS	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton	
IR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
ARTICULATE MATTER (PM)	9	11.7	1500	1950	60	
ARTICULATE MATTER<10 MICRONS (PM10)	9	11.7	1500	1950	60	
ARTICULATE MATTER<2.5 MICRONS (PM2.5)	9	11.7	1500	1950	60	
SULFUR DIOXIDE (SO2)						
VITROGEN OXIDES (NOx)						
CARBON MONOXIDE (CO)						
VOLATILE ORGANIC COMPOUNDS (VOC)						
_EAD						
25 tons per hour at 20% solids, with 15% carry-through	from dryer to scru	ubber. 80% scrub	bber CE and 97% b	baghouse CE.		
	ACTUAL E	MISSIONS	POTENTIAL I	EMISSIONS	EMISSION FACTOR	
	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
	11.85 15.45		1513.53	2009.29	60.42	
PARTICULATE MATTER (PM)	11.05		-		00.00	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10)	11.81	15.41	1512.25	2003.68	60.38	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5)	11.81 11.81	15.41 15.41	1512.25 1510.65	2003.68 1996.67	60.38	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) BULFUR DIOXIDE (SO2)	11.81 11.81 0.84	15.41 15.41 1.10	1512.25 1510.65 0.84	2003.68 1996.67 3.65	60.38 60.33 0.03	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX)	11.81 11.81 0.84 18.39	15.41 15.41 1.10 24.63	1512.25 1510.65 0.84 18.39	2003.68 1996.67 3.65 80.53	60.38 60.33 0.03 0.52	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)	11.81 11.81 0.84 18.39 19.78	15.41 15.41 1.10 24.63 25.88	1512.25 1510.65 0.84 18.39 19.78	2003.68 1996.67 3.65 80.53 86.65	60.38 60.33 0.03 0.52 0.61	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC)	11.81 11.81 0.84 18.39 19.78 0.76	15.41 15.41 1.10 24.63 25.88 1.06	1512.25 1510.65 0.84 18.39 19.78 0.76	2003.68 1996.67 3.65 80.53 86.65 3.34	60.38 60.33 0.03 0.52 0.61 0.02	

TABLE 2 - WRT INDIO, LLC - DRYING SYSTEM HAZARDOUS/TOXIC AIR POLLUTANT EMISSIONS									
WOOD COMBUSTION									
	EXPECTED	ACTUAL EMISSIONS	AFTER CONTROLS /	LIMITATIONS	EMISSION FACTOR				
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/dav	lb/vr	uncontrolled				
Acetaldehyde (TH)	75070	0.0266	0.637	232.666	0.00083				
Acrolein (TH)	107028	0.128	3.07	1121.28	0.004				
Arsenic & Compounds (TH)	ASC	0.000704	0.0169	6.167	2.2E-05				
Benzene (TH)	71432	0.134	3.23	1177.344	0.0042				
Benzo(a)pyrene (T)	50328	8.32E-05	0.002	0.729	2.6E-06				
Beryllium metal (un-reacted) (Also include in BEC) (T/H)	7440417	3.52E-05	0.000845	0.308	1.1E-06				
Cadmum Metal (elemental un-reacted) – (Add W/CDC) (T/H)	7440439	0.000131	0.00315	12.614	4.1E-06 4.5E-05				
Chlorine (TH)	7782505	0.00144	0.0340	221 453	0.00079				
Chlorobenzene (TH)	108907	0.00106	0.0253	9.251	3.3E-05				
Chloroform (TH)	67663	0.000896	0.0215	7.849	2.8E-05				
Di(2-ethylhexyl)phthalate (DEHP) (TH)	117817	1.5E-06	3.61E-05	0.0132	4.7E-08				
Ethylene dichloride (1,2-dichloroethane) (TH)	107062	0.000928	0.0223	8.129	2.9E-05				
Soluble Chromate Cmpds, as Chrome (VI) (TH)	SOLCR6	0.000112	0.00269	0.981	3.5E-06				
Formaldehyde (TH)	50000	0.141	3.38	1233.408	0.0044				
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (T)	57653857	5.73E-10	1.37E-08	0	1.79E-11				
Hydrogen chloride (hydrochloric acid) (TH)	7647010 MNC	0.608	14.0	5326.08	0.019				
Manganese & compounds (TH) Mercury, vapor (Include in Mercury&Compds)(T/H)	7439976	0.00112	0.00269	0.981	3.5E-06				
Methyl chloroform (TH) (1.1.1 trichloroethane)	71556	0.000992	0.0238	8.69	3.1E-05				
Methyl ethyl ketone (T)	78933	0.000173	0.00415	1.514	5.4E-06				
Methylene chloride (TH) (dichloromethane)	75092	0.00928	0.223	81.293	0.00029				
Nickel metal (Component of Nickel & Compounds) (T/H)	7440020	0.00106	0.0253	9.251	3.3E-05				
Pentachlorophenol (TH)	87865	1.63E-06	3.92E-05	0.014	5.1E-08				
Perchloroethylene (tetrachloroethylene) (TH)	127184	0.00122	0.0292	10.652	3.8E-05				
Phenol (TH)	108952	0.00163	0.0392	14.296	5.1E-05				
Polychlorinated biphenyls (TH)	1336363	2.61E-07	6.26E-06	0.00228	8.15E-09				
Tetrachlorodibenzo-p-dioxin 2378- (TH)	1746016	2 75E-10	6.6E-09	2 41E-06	0.0019 8.6E-12				
	108883	0.0294	0.707	257.894	0.00092				
Trichloroethylene (TH)	79016	0.00096	0.023	8.41	3E-05				
Trichlorofluoromethane (CFC 111) (T)	75694	0.00131	0.0315	11.493	4.1E-05				
Vinyl chloride (TH)	75014	0.000576	0.0138	5.046	1.8E-05				
Xylene (TH)	1330207	0.0008	0.0192	7.008	2.5E-05				
Highest HAP (Hydrogen chloride (hydrochloric acid)	7647010	0.608	14.592	5326.08	0.019				
Total HAPs		1.24	29.76	10862.4					
KUBC	TA DIESEL ENG	INE EMISSIONS							
	EVERATES				EMISSION FACTOR				
	EXPECTED	ACTUAL EMISSIONS	AFTER CONTROLS /	LIMITATIONS	lb/hp-hr				
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	lb/yr	uncontrolled				
Acetaldehyde (H,T)	75070	0.000469	0.0112	1.27	5.37E-06				
Acrolein (H,T)	107028	5.65E-05	0.00136	0.153	6.48E-07				
Arsenic unlisted compounds (H, I)	ASC-Other	2.44E-06	5.87E-05	0.0066	2.8E-08				
	50328	0.00057 1.15E-07	0.0137 2.76E-06	0.00031	0.53E-00 1.32E-00				
Berzelium metal (unreacted) (H T)	7440417	1.83E-06	4 4E-05	0.00495	2 1E-08				
1.3-Butadiene (H.T)	106990	2.39E-05	0.000573	0.0645	2.74E-07				
Cadmium metal (elemental unreacted) (H,T)	7440439	1.83E-06	4.4E-05	0.00495	2.1E-08				
soluble chromate compounds, as chromium (VI) equivalent	SOLCR6	1.83E-06	4.4E-05	0.00495	2.1E-08				
Formaldehyde (H,T)	50000	0.000721	0.0173	1.95	8.26E-06				
Manganese unlisted compounds (H,T)	MNC-Other	3.67E-06	8.8E-05	0.0099	4.2E-08				
Mercury vapor (H,T)	7439976	1.83E-06	4.4E-05	0.00495	2.1E-08				
Nickel metal (H,T)	7440020	1.83E-06	4.4E-05	0.00495	2.1E-08				
	1330207	0.00025	0.000	0.075	2.00E-U0 2E.06				
کرینداند (ח, ۱) Highest HAP (Formaldehyde)	50000	0.000174	0.004170	1.02424	4 2F-00				
Total HAPs	00000	0.00235	0.0564	20.586	7.22-00				
	•			_0.000					
Sum All HAPS (Annual Lbs)		1.24	29.82	10882.99	5.44 Tons/Year				

TABLE 3 - WRT INDIO, LLC - GREENHOUSE GAS EMISSIONS

WOOD COMBUSTION

GREENHOUSE GAS EMISSIONS INFORMATION (FOR EMISSIONS INVENTORY PURPOSES) - CONSISTENT WITH EPA MANDATORY REPORTING RULE (MRR) METHOD

	ACTUAL E	EMISSIONS	POTENTIAL	EMISSIONS			
		EPA MRR CALCULATION METHOD: TIER 1					
		metric tons/yr,		metric tons/yr,			
GREENHOUSE GAS	metric tons/yr	CO2e	metric tons/yr	CO2e			
CARBON DIOXIDE (CO2) - (BIOGENIC EMISSIONS*)	7,501.75	zero *	25275.13	zero *			
METHANE (CH4)	2.56	53.7	8.63	180.93			
NITROUS OXIDE (N2O)	0.336	104	1.13	350.40			
	TOTAL	157.87		531.33			

KUBOTA DIESEL ENGINE EMISSIONS

GREENHOUSE GAS EMISSIONS INFORMATION (FOR EMISSIONS INVENTORY PURPOSES) - CONSISTENT WITH EPA MANDATORY REPORTING RULE (MRR) METHOD

DISTILLATE #2	ACTUAL	EMISSIONS	POTENTIAL EMISSIONS			
GREENHOUSE GAS EMITTED	EPA MRR CALCULATION METHOD: TIER 1					
	metric tons/yr	metric tons/yr, CO2e	metric tons/yr	metric tons/yr, CO2e		
CARBON DIOXIDE (CO2)	140.08	140.08	454.48	454.48		
METHANE (CH4)	0.00568	0.119	0.018	0.386		
NITROUS OXIDE (N2O)	0.00114	0.352	0.004	1.142		
	TOTAL	140.56		456.01		

* BIOGENIC CO2 has 0 CO2e

Greenhouse Gas Factors Based on EPA Mandatory Reporting Rule Approach (40CFR Part 98) - http://www.epa.gov/climatechange/emissions/ghgrulemaking.html

A. CO2 from Table C-1:

B. CH4 from Table C-2:

C. N2O from Table C-2:

93.8 kg CO2/mm Btu

0.03 kg CH4/MMBtu

0 kg N2O/MMBtu

	ACTUAL E	MISSIONS	POTENTIAL	EMSSIONS	EMISSION FACTOR	
WOOD COMBUSTION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CO	ONTROLS / (S)	lb/mmBtu	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
PARTICULATE MATTER (PM)	2.66	3.45	13.34	58.45	0.417	
PARTICULATE MATTER<10 MICRONS (PM10)	2.62	3.41	12.06	52.84	0.377	
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	2.62	3.41	10.46	45.83	0.327	
SULFUR DIOXIDE (SO2)	0.8	1.04	0.8	3.5	0.025	
NITROGEN OXIDES (NOx)	15.68	20.38	15.68	68.68	0.49	
CARBON MONOXIDE (CO)	19.2	24.96	19.2	84.1	0.6	
/OLATILE ORGANIC COMPOUNDS (VOC)	0.54	0.71	0.54	2.38	0.017	
EAD	0.0015	0.002	0.0015	0.0067	4.8E-05	
	ACTUAL E	MISSIONS	POTENTIAL I	EMISSIONS	EMISSION FACTOR	
RUBUTA DIESEL ENGINE EMISSIONS	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lb/hp-hr	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
PARTICULATE MATTER (PM)	0.19	0.3	0.19	0.84	0.0022	
PARTICULATE MATTER<10 MICRONS (PM10)	0.19	0.3	0.19	0.84	0.0022	
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	0.19	0.3	0.19	0.84	0.0022	
SULFUR DIOXIDE (SO2)	0.04	0.06	0.04	0.15	0.000405	
VITROGEN OXIDES (NOx)	2.71	4.25	2.71	11.85	0.031	
CARBON MONOXIDE (CO)	0.58	0.92	0.58	2.55	0.00668	
OLATILE ORGANIC COMPOUNDS (VOC)	0.22	0.35	0.22	0.96	0.00251	
				-		
	ACTUAL E	ACTUAL EMISSIONS POTENTIAL EMISSIONS		EMISSION FACTOR		
DRIER EMISSIONS	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton	
IR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
ARTICULATE MATTER (PM)	9	11.7	1500	1950	60	
ARTICULATE MATTER<10 MICRONS (PM10)	9	11.7	1500	1950	60	
ARTICULATE MATTER<2.5 MICRONS (PM2.5)	9	11.7	1500	1950	60	
SULFUR DIOXIDE (SO2)						
VITROGEN OXIDES (NOx)						
CARBON MONOXIDE (CO)						
VOLATILE ORGANIC COMPOUNDS (VOC)						
_EAD						
25 tons per hour at 20% solids, with 15% carry-through	from dryer to scru	ubber. 80% scrub	bber CE and 97% b	baghouse CE.		
	ACTUAL E	MISSIONS	POTENTIAL I	EMISSIONS	EMISSION FACTOR	
	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS/LIMITS)	lbs/hr/ton	
AIR POLLUTANT EMITTED	lb/hr	tons/yr	lb/hr	tons/yr	uncontrolled	
	11.85 15.45		1513.53	2009.29	60.42	
PARTICULATE MATTER (PM)	11.05		-		00.00	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10)	11.81	15.41	1512.25	2003.68	60.38	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5)	11.81 11.81	15.41 15.41	1512.25 1510.65	2003.68 1996.67	60.38 60.33	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) BULFUR DIOXIDE (SO2)	11.81 11.81 0.84	15.41 15.41 1.10	1512.25 1510.65 0.84	2003.68 1996.67 3.65	60.38 60.33 0.03	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX)	11.81 11.81 0.84 18.39	15.41 15.41 1.10 24.63	1512.25 1510.65 0.84 18.39	2003.68 1996.67 3.65 80.53	60.38 60.33 0.03 0.52	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)	11.81 11.81 0.84 18.39 19.78	15.41 15.41 1.10 24.63 25.88	1512.25 1510.65 0.84 18.39 19.78	2003.68 1996.67 3.65 80.53 86.65	60.38 60.33 0.03 0.52 0.61	
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC)	11.81 11.81 0.84 18.39 19.78 0.76	15.41 15.41 1.10 24.63 25.88 1.06	1512.25 1510.65 0.84 18.39 19.78 0.76	2003.68 1996.67 3.65 80.53 86.65 3.34	60.38 60.33 0.03 0.52 0.61 0.02	

TABLE 2 - WRT INDIO, LLC - DRYING SYSTEM HAZARDOUS/TOXIC AIR POLLUTANT EMISSIONS									
WOOD COMBUSTION									
	EXPECTED	ACTUAL EMISSIONS	AFTER CONTROLS /	LIMITATIONS	EMISSION FACTOR				
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/dav	lb/vr	uncontrolled				
Acetaldehyde (TH)	75070	0.0266	0.637	232.666	0.00083				
Acrolein (TH)	107028	0.128	3.07	1121.28	0.004				
Arsenic & Compounds (TH)	ASC	0.000704	0.0169	6.167	2.2E-05				
Benzene (TH)	71432	0.134	3.23	1177.344	0.0042				
Benzo(a)pyrene (T)	50328	8.32E-05	0.002	0.729	2.6E-06				
Beryllium metal (un-reacted) (Also include in BEC) (T/H)	7440417	3.52E-05	0.000845	0.308	1.1E-06				
Cadmum Metal (elemental un-reacted) – (Add W/CDC) (T/H)	7440439	0.000131	0.00315	12.614	4.1E-06 4.5E-05				
Chlorine (TH)	7782505	0.00144	0.0340	221 453	0.00079				
Chlorobenzene (TH)	108907	0.00106	0.0253	9.251	3.3E-05				
Chloroform (TH)	67663	0.000896	0.0215	7.849	2.8E-05				
Di(2-ethylhexyl)phthalate (DEHP) (TH)	117817	1.5E-06	3.61E-05	0.0132	4.7E-08				
Ethylene dichloride (1,2-dichloroethane) (TH)	107062	0.000928	0.0223	8.129	2.9E-05				
Soluble Chromate Cmpds, as Chrome (VI) (TH)	SOLCR6	0.000112	0.00269	0.981	3.5E-06				
Formaldehyde (TH)	50000	0.141	3.38	1233.408	0.0044				
Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8 (T)	57653857	5.73E-10	1.37E-08	0	1.79E-11				
Hydrogen chloride (hydrochloric acid) (TH)	7647010 MNC	0.608	14.0	5326.08	0.019				
Manganese & compounds (TH) Mercury, vapor (Include in Mercury&Compds)(T/H)	7439976	0.00112	0.00269	0.981	3.5E-06				
Methyl chloroform (TH) (1.1.1 trichloroethane)	71556	0.000992	0.0238	8.69	3.1E-05				
Methyl ethyl ketone (T)	78933	0.000173	0.00415	1.514	5.4E-06				
Methylene chloride (TH) (dichloromethane)	75092	0.00928	0.223	81.293	0.00029				
Nickel metal (Component of Nickel & Compounds) (T/H)	7440020	0.00106	0.0253	9.251	3.3E-05				
Pentachlorophenol (TH)	87865	1.63E-06	3.92E-05	0.014	5.1E-08				
Perchloroethylene (tetrachloroethylene) (TH)	127184	0.00122	0.0292	10.652	3.8E-05				
Phenol (TH)	108952	0.00163	0.0392	14.296	5.1E-05				
Polychlorinated biphenyls (TH)	1336363	2.61E-07	6.26E-06	0.00228	8.15E-09				
Tetrachlorodibenzo-p-dioxin 2378- (TH)	1746016	2 75E-10	6.6E-09	2 41E-06	0.0019 8.6E-12				
	108883	0.0294	0.707	257.894	0.00092				
Trichloroethylene (TH)	79016	0.00096	0.023	8.41	3E-05				
Trichlorofluoromethane (CFC 111) (T)	75694	0.00131	0.0315	11.493	4.1E-05				
Vinyl chloride (TH)	75014	0.000576	0.0138	5.046	1.8E-05				
Xylene (TH)	1330207	0.0008	0.0192	7.008	2.5E-05				
Highest HAP (Hydrogen chloride (hydrochloric acid)	7647010	0.608	14.592	5326.08	0.019				
Total HAPs		1.24	29.76	10862.4					
KUBC	TA DIESEL ENG	INE EMISSIONS							
	EVERATES				EMISSION FACTOR				
	EXPECTED	ACTUAL EMISSIONS	AFTER CONTROLS /	LIMITATIONS	lb/hp-hr				
TOXIC AIR POLLUTANT	CAS Num.	lb/hr	lb/day	lb/yr	uncontrolled				
Acetaldehyde (H,T)	75070	0.000469	0.0112	1.27	5.37E-06				
Acrolein (H,T)	107028	5.65E-05	0.00136	0.153	6.48E-07				
Arsenic unlisted compounds (H, I)	ASC-Other	2.44E-06	5.87E-05	0.0066	2.8E-08				
	50328	0.00057 1.15E-07	0.0137 2.76E-06	0.00031	0.53E-00 1.32E-00				
Berzelium metal (unreacted) (H T)	7440417	1.83E-06	4 4E-05	0.00495	2 1E-08				
1.3-Butadiene (H.T)	106990	2.39E-05	0.000573	0.0645	2.74E-07				
Cadmium metal (elemental unreacted) (H,T)	7440439	1.83E-06	4.4E-05	0.00495	2.1E-08				
soluble chromate compounds, as chromium (VI) equivalent	SOLCR6	1.83E-06	4.4E-05	0.00495	2.1E-08				
Formaldehyde (H,T)	50000	0.000721	0.0173	1.95	8.26E-06				
Manganese unlisted compounds (H,T)	MNC-Other	3.67E-06	8.8E-05	0.0099	4.2E-08				
Mercury vapor (H,T)	7439976	1.83E-06	4.4E-05	0.00495	2.1E-08				
Nickel metal (H,T)	7440020	1.83E-06	4.4E-05	0.00495	2.1E-08				
	1330207	0.00025	0.000	0.075	2.00E-U0 2E.06				
کرینداند (ח, ۱) Highest HAP (Formaldehyde)	50000	0.000174	0.004170	1.02424	4 2F-00				
Total HAPs	00000	0.00235	0.0564	20.586	7.22-00				
	•			_0.000					
Sum All HAPS (Annual Lbs)		1.24	29.82	10882.99	5.44 Tons/Year				

ATTACHMENT D7

PROCESS EQUIPMENT SPECIFICATIONS

EU-01

EU-02

EU-03

CD-1

CD-2

EU-01

	רעט זוני	// <i>8/3</i> SF	FIRE BOX	ONS S-327						
			General: A self-cont Curtain Burner (air or burn-container for po Designed for the high debris, green waste, compliance with the r Shipped from the fac use and does not req used for disaster reor for certain MSW disp available for permane	aineid, completely assembled above ground Air intain incinerator or FireBox) with a refractory lined rtable and permanent (stationary) applications. temperature burning of forest slash, land clearing storm debris, and other waste streams in equirements of US EPA 40CFR60. tory completely assembled ready for immediate uire disassembly for relocation. The firebox is also overy and Homeland Security contingencies and osal applications. Electrically powered version ant (stationary) installations.						
1	Power	Four cylinder Turk 87 HP, 65 KW, wi	oo Diesel Engine K th engine mounted	ubota Model V3300-T-ES power take-off						
2	Burn Container (Firebox)	4" (102 mm) thick re full height rear doors	fractory panels filled ; Two Ignition holes	with proprietary thermal ceramic material; Two						
3	Safety Systems	Engine over tempera pressure shutdown	ature shut down; Los	s of cooling fluid shutdown; Loss of oil						
4	Instrument Panel	Key switch, tachome indicators with safety	ey switch, tachometer, hour meter, fuel gauge, oil pressure and water temperature ndicators with safety shutdown feature and throttle: Lockable instrument panel							
5	Air Supply	Custom heavy duty f	an							
6	Fuel Tank	65 Gallon (246 L) mi	nimum fuel tank cap	acity						
7	Transportation & Set-up	Shipped completely crane lifting	assembled; Ready f	or immediate use; Lifting pads provided for						
8	Options	Ash clean-out rake; I recovery; Rough-ten Series)	Front deck security e rain removable dolly,	nclosure; Ember screen; Electric motor; Heat Electric power generation (PG FireBox						
9	Average Through-put	6-10 Tons per Hour	(Average - See Note	a)						
10	Fuel Consumption	Approx. 3.5 Gal/Hr (13.3 L/Hr)							
11	Weight	54,600 lbs (24,800 k	g)							
10		Overa L × V	III Size V × H	Fire Box L × W × H						
13	Umensions	37' 4" × 11 (11.40m × 3	' 10" × 9' 7" I.6m × 2.9m)	27' 2"× 8' 5" ×8' 1" (8.3m × 2.6m × 2.46m)						
Noto	Achlevable through-put dependents and dimensions are approxim	s on several variables, especial ate and metric conversions are	ly the nature of the waste ma rounded. Subject to change to	erfal, the burn chamber temperature and the loading rate. All whout notice.						
-		AIR 4390 Carg Phone 772-2: Email: Iofic Carbo	BURNERS, IN to Way, Palm City, F 20-7303 - FAX 772	C. L 34990 220-7302 aichurgers com						

Rev. 02.2012

SEREAL # S27FBN05231

C

O.

EU-02

EU-03

Introduction

Model V3300 Model V3300-T Kubota Diesel Engine Listing

Specifications

No. of Cylinders		4
Bore x Stroke	mm (in)	98.0 x 110.0 (3.86 x 4.33)
Displacement	L (cu.in.)	3.318 (202.53)
Combustion System		E-TVCS
Intake System		Turbo charged
Cooling System		Radiator cooling
Starter Capacity	V-A	12-2.5
Alternator Capacity	V-A	12-60
Dry Weight with SAE Flywheel & Housing	kg (lbs)	280 (617.0)
No Load High Idling Speed	rpm	2800
No Load Low Idling Speed	rpm	700-750
Direction of Rotation		Counterclockwise (viewed from flywheel side)
Governing		Centrifugal flyweight high speed governor
Fuel		Diesel fuel No. 2-D (ASTM D975)

Output

Gross Intermitent	kW (HP)/rpm	65.2 (87.4)/2600
Net Intermitent	kW (HP)/rpm	61.9 (83.0)/2600

Net Continuous	kW (HP)/rpm	53.8 (72.1)/2600
----------------	----------------	------------------

*Specifications are subject to change without notice. *Dry weight is according to Kubota's standard specification. When specification varies, the weight will vary accordingly.

Performace Curve

Dimensions mm (inch)

SAE Flywheel and Housing: mm (inch)

Clutch No.10 Flywheel

Introduction Model V3300 Model V3300-T Kubota Diesel Engine Listing

DieselEngineMotor.Com Home Generators Parts Privacy Policy

© Copyright 2016 DieselEngineMotor.Com, Inc. All rights reserved.

CD-1

SpiralJet[®] Spray Nozzles, Standard and Extra Large Free Passage Spray

FEATURES AND BENEFITS

- Solid cone-shaped spray pattern with round impact area.
- Maximum liquid throughput for a given pipe size.
- Maximum free passage design minimizes clogging on HHSJX.
- Compact size enables easy installation or retrofit on most pipe systems.

HHSJ

HHSJ

Threaded/hex Brass or 316 Stainless Steel 1/4" to 2" NPT or BSPT (M)

Threaded/flats Cast 316 Stainless Steel 1/4" to 4" NPT or BSPT (M)

HHSJX

Threaded/flats Cast 316 Stainless Steel 3/8" to 2" NPT or BSPT (M)

SEE ALSO

- Accessories
- Adjustable ball fittings
- Check valves
- Pressure gauges
- Pressure regulators

Threaded/round PVC or PTFE 1/4"to 4" NPT or BSPT (M)

HHSJX

Threaded/round PVC or Polypropylene 3/8" to 2" NPT or BSPT (M)

http://

- Pressure relief valves
- Solenoid valves
- Split-eyelet connectors
- Strainers

HHSJX

Threaded/hex Brass 3/8" to 2" NPT or BSPT (M)

(

OPTIMIZATION TIPS

• See page B2 for optimization tips.

APPLICATIONS

- Aerating
- Chemical processing
- Fire suppression/prevention
- Gas scrubbing, cooling
- Washing/rinsing

PHONE 1-800-95-SPRAY, FAX 1-888-95-SPRAY

VISIT OUR WEB SITE: WWW.SPRAY.COM, EMAIL: INFO@SPRAY.COM

B32

ິ

HHSJ

SpiralJet Spray Nozzles, Standard and Extra Large Free Passage Spray

PERFORMANCE DATA

HHSJ											*At the sta	ated press	sure in psi.
Inlet Conn. (in.)		Spray Angle at 10 psi (°)					Orifice Capacity Dia. Size Nom.	e Max. Free Passage	Capacity (gallons per minute)*				
	60	90	120	150	170		(111.)	(in.)	10	20	40	100	400
						07	.094	.094	.70	.99	1.4	2.2	4.4
1/4						13	.125	.125	1.3	1.8	2.6	4.1	8.2
						20	.156	.125	2.0	2.8	4.0	6.3	12.6
						07	.094	.094	.70	.99	1.4	2.2	4.4
						13	.125	.125	1.3	1.8	2.6	4.1	8.2
						20	.156	.125	2.0	2.8	4.0	6.3	12.6
3/8						30	.188	.125	3.0	4.2	6.0	9.5	19.0
						40	.219	.125	4.0	5.7	8.0	12.6	25
						53	.250	.125	5.3	7.5	10.6	16.8	34
						82	.313	.125	8.2	11.6	16.4	26	52
						120	.375	.188	12.0	17.0	24	38	76
1/2						164	.438	.188	16.4	23	33	52	104
						210	.500	.188	21	30	42	66	133
3/4						210	.500	.188	21	30	42	66	133
1						340	.625	.250	34	48	68	108	215
1						470	.750	.250	47	66	94	149	297
						640	.875	.313	64	91	128	202	405
1-1/2						820	1.000	.313	82	116	164	259	519
						960	1.125	.313	96	136	192	304	607
2						1400	1.375	.438	140	198	280	443	885
2						1780	1.500	.438	178	252	356	563	1126
2						2560	1.750	.563	256	362	512	810	1619
3						3360	2.000	.563	336	475	672	1063	2125
4						5250	2.500	.625	525	742	1050	1660	3320

HHSJX

*At the stated pressure in psi.

Inlet Conn.	Spray Angle at 10 psi (°)		Spray Angle Orifice Max. at 10 psi Capacity Dia. Passage (°) Size Nom. Dia		Capacity (gallons per minute)*					
(111.)	90	120		(in.)	(in.)	10	20	40	100	400
			30	.188	.188	3.0	4.2	6.0	9.5	19.0
2/0			40	.219	.219	4.0	5.7	8.0	12.6	25
3/8			53	.250	.250	5.3	7.5	10.6	16.8	34
			82	.313	.313	8.2	11.6	16.4	26	52
1/2			120	.375	.375	12.0	17.0	24	38	76
1/2			164	.438	.438	16.4	23	33	52	104
3/4			210	.500	.500	21	30	42	66	133
1			340	.625	.625	34	48	68	108	215
1			470	.750	.750	47	66	94	149	297
			640	.875	.875	64	91	128	202	405
1-1/2			820	1.000	1.000	82	116	164	259	519
			960	1.125	1.125	96	136	192	304	607
2			1400	1.375	1.375	140	198	280	443	885
2			1780	1.500	1.500	178	252	356	563	1126

Maximum Free Passage Diameter is the maximum diameter as listed of foreign matter that can pass through the nozzle without clogging.

FULL CONE NOZZLES

SpiralJet Spray Nozzles, Standard and Extra Large Free Passage Spray

DIMENSIONS AND WEIGHTS

Based on largest/heaviest version of each type.

Standard	Nozzle Type	Inlet Conn. (in.)	Length (in.)	Hex. (in.)	Net Weight (oz.)
	HHSJ (M)	1/4	2-1/8	9/16	1
		3/8	2-3/8	11/16	1-3/4
5		1/2	3-1/8	7/8	3-1/2
B		3/4	3-7/16	1-1/16	5-3/8
		1	4-9/16	1-3/8	10
		1-1/2	6-3/4	2	27
		2	6-7/8	2-1/2	35
		3	11-7/8	3-3/4	92
		4	9	4-1/2	10-1/4 lbs.
		3/8	2-3/4	7/8	3
B	HHSJX (M)	1/2	3-3/8	1-1/16	4-1/2
Q		3/4	4-5/8	1-3/8	8
L ^A		1	5-1/8	1-3/4	18
		1-1/2	6-3/4	2	30
		2	11	3	88

MATERIALS

Matarial	Material Code	Nozzle Type		
Wateria		HHSJ	HHSJX	
Bar Stock:				
Brass	(none)			
Polypropylene	PP			
Polyvinyl Chloride	PVC			
PTFE	TEF			
Cast:				
316 Stainless Steel	SS			

Other materials available upon request.

ORDERING INFO

STANDARD SPRAY NOZZLE					
1/4	HHSJ	-	SS	120	07
Inlet Conn.	Nozzle Type		Material Code	Spray Angle	Capacity Size
3/8 	HHSJX	-	SS 	120 	30
Inlet Conn.	Nozzle Type		Material Code	Spray Angle	Capacity Size

BSPT connections require the addition of a "B" prior to the inlet connection.

Spraying Systems Co.®_____i

PHONE 1-800-95-SPRAY, FAX 1-888-95-SPRAY

CD-2

VIII. PORTABLE PULSE JET BAGHOUSE, MODEL PBH-40:SR, FOR 40,000 CFM DRAFT SYSTEM WITH A 4:1 AIR-TO-CLOTH RATIO.

GENERAL:

Final gas treatment will be accomplished by a highly portable baghouse system which filters the exhaust air stream for particulates. Baghouse is transported while fully assembled and requires no erection other than duct connections, plug-in cable connections and tilt-up of handrails.

Highly portable baghouse has 1024 bags for 4:1 air-to-cloth ratio at 39,649 acfm.

PROPOSAL NO. 694-93

PAGE 11 OF 22

SPECIFICATIONS

VIII. PORTABLE PULSE JET BAGHOUSE, MODEL PBH-40:SR, FOR 40,000 CFM DRAFT SYSTEM WITH A 4:1 AIR-TO-CLOTH RATIO CONT.

4-5/8" diameter x 8' long P-84 bags insure top quality bag material to give excellent dust release and long life.

P-84 bags are designed with snap-band fit. Zinc-coated cages are of drop-in design with built-in venturis that save time when changeout or inspection of bags is necessary.

Interior of the baghouse has a synthetic chemical coating, designed with excellent heat and acid resistance, to reduce potential for metal corrosion from condensation.

Baghouse walls are made of 1/4" thick steel plate with formed stiffeners to give longer life, improve operating conditions at higher operating pressures and reduce long range leaks.

Knock-out of larger particles, and uniform air distribution, is accomplished with an oversized entrance chamber built into baghouse.

Tube sheet is made of heavy reinforced steel plate for rigid bag support. Tube sheet is seal welded to eliminate leaks.

High and low temperature controls protect the bags during start up and plant operation. If temperature reaches high set point, the burners shut down. If temperature goes down to low set point, an alarm alerts the operator.

One (1) 50 HP screw compressor is provided for operation of baghouse and heat exchanger. Unit is air cooled and has an aftercooler with 200 gallon reservoir. Compressor capacity is 226 cfm @ 125 psig; includes a suction air filter, relief valve pressure gauge, a push button stop/start control, and belt guard.

A high pressure backward curve blade fan for high exhaust efficiency includes two (2) 125 HP motors, drive, one auto-transformer starter and one across-the-line starter. Motors are standard straight wound.

Three (3) 12" gathering screws move collected dust to a 12" cross screw with a 12" rotary air lock. 5 HP shaft mounted drives include positive displacement indicators.

Baghouse has a ladder for access to the top and guardrails for safety and convenient access.

SPECIFICATIONS

VIII. PORTABLE PULSE JET BAGHOUSE, MODEL PBH-40:SR, FOR 40,000 CFM DRAFT SYSTEM WITH A 4:1 AIR-TO-CLOTH RATIO CONT.

Exhaust stack is 30' from grade and has sampling ports built-in for stack testing.

Baghouse fan, air compressor and rotary airlock are all factory installed on the baghouse.

Exhaust fan inlet is equipped with an automatic quick action radial inlet damper with electric actuator for precise control of system air-flow. Draft is controlled via a suction tube signal from the burner end of the drum measuring the negative pressure. This signal opens and closes the damper, precisely controlling the system draft.

High temperature shut-off is built-in to protect the bags during a high temperature condition.

Bags and cages are factory installed from the top.

All power and control wiring for the baghouse is complete and in conduit located on the unit.

Plant power panel is mounted to the frame of the baghouse. This central location means shorter and fewer cables to pull in the field.

Connecting ductwork to heat exchanger system is round and has telescoping flanges for easy fit-up in the field.

Dual 11:00 x 22.5 tires with Dayton wheels are mounted on triple axles.

Air bag suspension system gives the smoothest possible ride to protect equipment on the road and aids in erection by allowing leveling of the baghouse before putting weight on the legs.

Air brakes, stop and turn signals, king pin and glad hands provide safe portability.

Landing jacks are provided for easier tractor hook-up and disconnect as well as allowing temporary parking of the baghouse between moves without blocking the gooseneck.

A 12" diameter screw auger system continually moves fines from the baghouse to the processed material discharge system.

Telescoping support legs are equipped with steel plate foundation pads.

i.

- 0 11 12 13 14 15 16 B

Southern Felt

FELT SPECIFICATION SHEET

PRODUCT SPECIFICATION SHEET: 2477

DATE: 3/10/2016

STYLE : AXFL-13.5-US DESCRIPTION :

13.5 OZ/YD2 FIBERLOX ARAMID NEEDLEFELT WITH A SINGE ONE SIDE FINISH.

CONSTRUCTION: UNSUPPORTED NEEDLEFELT.

FINISH: HEATSET, SINGED ONE SIDE.

WEIGHT (OPSY)	THICKNESS (INCHES)	AIR FLOW RANGE (CFM)
13.00 - 14.50	0.070 - 0.090	25 - 45
STRENGTH : MULLEN : 450 PSI. MIN. WARP TENSILE : 150 LBS. MIN. FILL TENSILE : 150 LBS. MIN. ELONGATION : BOTH DIRECTIONS : 3 % MAX. (LBS 2")		
SHRINKAGE : BOTH DIRECTIONS : 3 % MAX. @ 450 DEGREES F FOR 2 HOURS RESISTIVITY: < 0 @ 0 VOLTS		

TESTING OF BAGHOUSE FILTRATION PRODUCTS

SOUTHERN FELT SUMMARY OF RESULTS AT 6.6/1 DATE: 11/01/04

	134-R2
SIGNATION	NX-13.5/5-US-1
TURER	Southern Felt
D	Pural NF

VERIFICATION TEST RESULTS

Mean Outlet Particle Conc.	0.0000582	
PM 2.5 (gf/dsct) Mean Outlet Particle Conc	0 0000582	
Total mass (gr/dscf)	0.0000002	
Initial Residual Pressure	1.07	
Drop (in. w.g.)		
Change in Residual Pressure	0.24	
Drop (in. w.g.)	4.00	
Average Residual Pressure	1.22	
Diop (in. w.g.) Mass Gain of Filter	1 81	
Sample (g)	1.01	
Average Filtration Cycle	112	
Time (s)		
Number of Pulses	193	
RESIDUAL PRESSURE DROP		
At Start of: Conditioning Pariod (in w.g.)	0.06	
Conditioning Period (in. w.g.)	0.00	
Recovery Period (in. w.g.)	0.96	
, , , , , , , , , , , , , , , , , , , ,		
Performance Test Period (in. w.g.)	1.07	
REMOVAL EFFICIENCY (%)	7.05	
Dust Conc (gr/dscf)	7.95	-
PIM 2.5	99.99905	
I otal Mass	99.99927	**
	*	(Dust Concentration * 0 7735) -

**

(Dust Concentration * 0.7735) - PM Dust Concentration - Tota Dust Concentration - Tota

Phone: 760.929.8559 • 1.800.634.8537 • Fax: 760.929.1901 • www.standardfilter.com 5928 Balfour Court • Carlsbad, California 92008

High Temperature Materials

CONEX[®]/NOMEX[®] FELT(Aramid)

Recommended continuous operation temperature:400°FMaximum (short time) operation temperature:425°F

Supports combustion: Biological resistance (bacteria, mildew): Resistance to alkalies: Resistance to mineral acids: Resistance to organic acids: Resistance to oxidizing agents: Resistance to organic solvents: Available weights: 425°F No No Effect Good Fair Fair+ Poor Good+ 10 oz. - 22 oz.

P84° FELT/POLYIMIDE

Recommended continuous operation temperature:	475°F
Maximum (short time) operation temperature:	500°F
Supports combustion:	No
Biological resistance (bacteria, mildew):	No Effect
Resistance to alkalies:	Fair
Resistance to mineral acids:	Good+
Resistance to organic acids:	Good+
Resistance to oxidizing agents:	Good+
Resistance to organic solvents:	Excellent
Available weights: 14 o	oz 18 oz.

RYTON [®] FELT/PPS

Recommended continuous operation temperature:	ure: 375°F 400°F
Supports combustion:	No
Biological resistance (bacteria, mildew):	No Effect
Resistance to aikalies:	Excellent
Resistance to mineral acids:	Excellent
Resistance to organic acids:	Excellent
Resistance to oxidizing agents:	Fair
Resistance to organic solvents:	Excellent
Available weights:	16 oz 18 oz.

5928 Balfour Court · Carlsbad, California 92008

High Temperature Material Specifications

14 oz. CONEX[®]

STYLE	CX14SS
PRIMAR Y APPLICA TION	S DRY FILTRATION
PROPER TY	U.S. SYSTEM
FIBER CONTENT	100% ARAMID
CONSTRUCTION	NEEDLE PUNCHED, SCRIM-SUPPOR TED
WEIGHT	14 OZ./SQ YD. NOM.
THICKNESS	0.065"- 0.085"
FINISH	SINGED
MULLEN	400 PSI MIN.
PERMEABILITY	25 - 40 CFM @ 0.5"W.G.
TEMPERA TURE	400°F CONTINUOUS TO 425°F SURGE

16 oz. CONEX®

16 oz. NOMEX[®]

PRIMAR Y APPLICA TIONS

STYLE

PROPERTY FIBER CONTENT

WEIGHT

MULLEN

PERMEABILITY

TEMPERA TURE

THICKNESS FINISH

CONSTRUCTION

STYLE	CX16SS
PRIMAR Y APPLICA TION	S DRY FILTRATION
PROPER TY	U.S. SYSTEM
FIBER CONTENT	100% ARAMID
CONSTRUCTION	NEEDLE PUNCHED, SCRIM-SUPPOR TED
WEIGHT	16 OZ./SQ YD. NOM.
THICKNESS	0.070″ - 0.090"
FINISH	SINGED
MULLEN	500 PSI MIN.
PERMEABILITY	20 - 30 CFM @ 0.5" W.G.
TEMPERA TURE	400°F CONTINUOUS TO 425°F SURGE

NX16SS

U.S. SYSTEM

16 OZ./SQ YD. NOM. 0.060"- 0.080"

20 - 35 CFM @ 0.5" W.G.

SINGED

400 PSI MIN.

100% DUPONT ARAMID

NEEDLE PUNCHED, SCRIM-SUPPOR TED

400°F CONTINUOUS TO 425°F SURGE

DRY FILTRATION

14 oz. NOMEX[®]

STYLE	NX1455
PRIMAR Y APPLICA TIO	NS DRY FILTRATION
PROPERTY	U.S. SYSTEM
FIBER CONTENT	100% DUPONT ARAMID
CONSTRUCTION	NEEDLE PUNCHED, SCRIM-SUPPOR TED
WEIGHT	14 OZ./SQ YD. NOM.
THICKNESS	0.055"- 0.075"
FINISH	SINGED
MULLEN	350 PSI MIN.
PERMEABILITY	25 - 35 CFM @ 0.5" W.G.
TEMPERA TURE	400°F CONTINUOUS TO 425°F SURGE

100% DUPONT ARAMID	
UNCHED, SCRIM-SUPPOR TED	
14 OZ./SQ YD. NOM.	
0.055"- 0.075"	
SINGED	
350 PSI MIN.	
25 - 35 CFM @ 0.5" W.G.	
ONTINUOUS TO 425°F SURGE	

14 oz. RYTON[®]

STYLE	R Y16SS
PRIMAR Y APPLICA TION	S DRY FILTRATION
PROPER TY	U.S. SYSTEM
FIBER CONTENT	100% RYTON
CONSTRUCTION	NEEDLE PUNCHED, SCRIM-SUPPOR TED
WEIGHT	16 OZ./SQ YD. NOM.
THICKNESS	0.055″- 0.080"
FINISH	SINGED
MULLEN	380 PSI MIN.
PERMEABILITY	25 - 45 CFM @ 0.5"W.G.
TEMPERA TURE	375°F CONTINUOUS TO 400°F SURGE
	STYLE PRIMAR Y APPLICA TION: <u>PROPER TY</u> FIBER CONTENT CONSTRUCTION WEIGHT THICKNESS FINISH MULLEN PERMEABILITY TEMPERA TURE

14 oz. P84 [®]

PROPER TY

FIBER CONTENT

CONSTRUCTION

PRIMAR Y APPLICA TIONS

STYLE

WEIGHT

FINISH

MULLEN

PERMEABILITY

TEMPERA TURE

THICKNESS

All specifications subject to change in order to improve product performance.

APPENDIX A

BIOMASS PROFILE: GENERATOR MATERIAL SHEET

GENERATOR MATERIAL SHEET

(Please carefully read instructions before completing this form. Please Print in Ink or Type)

1. Billing Information

. Billing Party Name:	
. Mailing Address:	
. Contact:	
. Phone:	
. Fax:	

2. Generator Information

1. Generator Name:				
2. Generator Site Address:				
3. City:	Country:	State:	Zip:	
4. Generator US EPA Identification Number:			SIC Code No.	
5. Generator Mailing Address (if Different):				
6. City:	Country:	State:	Zip:	
7. Generator Contact Name:				
8. Phone Number:		9. Fax Number:		

3. Material Properties and Composition

10. (A) Material Generation:
10. (B) Is the material considered US EPA HAZARDOUS WASTE (40 CFR Part 261)?
11. (a) Material Name:
11. (b) US DOT Proper Shipping Name:

12. Physical State	Chipped D Not Chipped		
13. Method of Shipment		Roll Off I End Dump I Other Explain	
14: Estimated Volume:		Cubic Yards Tons	
15: Is this material suit for Energy Recovery:	able and intended	□ Yes □ No If Yes BTU/Lb Wt% Moisture	

4. Characteristic Components

Does this material contain regulated concentrations of listed hazardous wastes	Vac an Na
defined by § 40 CFR 261.31.261.32.261.33	Ies or no
including RCRA F Listed Solvents	
Does this material contain any PCB's	Vas or No
halogens or dioxins?	163 01 110
Is this a regulated Toxic Material as	Vac or No
defined by State or Federal Regulations	ies of No
Does this material exhibit <u>any</u>	
characteristics of Radioactivity as defined	Yes or No
by State or Federal Regulations?	
Does this material contain any Infectious	
or Medical Waste as defined by State or	Yes or No
Federal Regulations?	
If this material is intended for Energy	
Recovery, does it contain any treated or	Yes or No
painted wood or other debris?	

Payment on this project is due net 30 days, unless agreed otherwise in writing. Certificates will be issued once payment for the above job is paid in full. Client/generator will be responsible for all the collection fees and late payment charges. WRT reserves the right to test all inbound loads for possible odor before acceptance. By signing this profile, the Client is confirming that the material can and will be used for energy recovery and is not considered a waste.

Generator Certification

I hereby certify that all information submitted in this and all attached documents contain true and accurate descriptions of the material. All relevant information regarding known or suspected hazards in possession of the generator has been disclosed. I authorize Waste Reduction Technologies LLC. to obtain a sample from any material shipment for purposes of identifying the material. If this certification is made by a broker, the undersigned signs as authorized agent of the generator and has confirmed the information contained in the Material Sheet from information provided by the generator and additional information as it has determined to be reasonably necessary.

Signature

Printed (or typed) name and title

Date