RECEIVED

August 15, 2014
VDEQ-ORP
Ms. Michelle Hollis
UECA Coordinator
Virginia Department of Environmental Quality
629 East Main Street
P.O. Box 1105

Richmond, Virginia 23218

File Stamped Copy - Uniform Environment Covenant (UECA) DuPont Martinsville Site RCRA Corrective Action Permit VAD003114865
 Martinsville, Virginia

Dear Ms. Hollis:
As requested in your letter dated July 2, 2014 regarding the executed UECA for the DuPont Martinsville Site, please find attached a file-stamped copy.

A file-stamped copy of the UECA has also been sent to Mr. Tim Hall, Chief Administrative Officer, Henry County.

If you have any questions, please call me at 302.999.6209.
Sincerely,

Thomas E. Stilley, PE
Project Director
DuPont Corporate Remediation Group
Attachment
cc: Tim Hall, Henry County
Christopher Heck, DuPont
Herman Cook, DuPont
File

OFFICIAL RECEIPT HENRY COUNTY CIRCUIT COURT 3160 KINGS MOUNTAIN ROAD STE B MARTINSVILLE, VA 24112 276-634-4880

DEED RECEIPT
DATE: 07/22/14 TIME: 11:05:25 ACCOUNT: 089CLR140002371 RECEIPT: 14000009391 CASHIER: JFG REG: HT53 TYPE: OTHER PAYMENT: FULL PAYMENT INSTRUMENT : 140002371 BOOK: PAGE: RECORDED: 07/22/14 AT 11:05 GRANTOR: E I DU PONT DE NEMOURS AND COMPANY • EX: N LOC: CO GRANTEE: E I DU PONT DE NEMOURS AND COMPANY EX: N PCT: 100\% AND ADDRESS : , . RECEIVED OF : SHANKS ASSOCIATES
CHECK: $\$ 55.00$
DESCRIPTION 1: UECA ENVIRONMENTAL COVENANT PAGES: 99 OP: 0
2: NAMES: 0
CONSIDERATION: $.00 \mathrm{~A} / \mathrm{VAL}: \quad .00$ MAP:
301 DEEDS $48.50 \quad 145$ VSLF 1.50

106 TECHNOLOGY TRST FND

TENDERED :	55.00
AMOUNT PAID:	55.00
CHANGE AMT :	.00

CLERK OF COURT: VICKIE S. HELMSTUTLER

PAYOR'S COPY
RECEIPT COPY 1 OF 2

UECA ENVIRONMENTAL COVENANT
This environmental covenant is made and entered into as of the 6th day of June, 2014, by and between E. I. Du Pont de Nemours and Company (hereinafter referred to as "DuPont" or "Facillty"), whose address is 1007 Market Street, Wilmington, Delaware 19898 to be indexed as Grantor and Grantee.
The Virginia Department of Environmental Quality, whose address is 629 East Main Street, Richmond, Virginia 23219 (hereinafter referred to as the "Agency") will be the approving agency.
*This environmental covenant is executed pursuant to the Virginia Uniform Environmental Covenants Act, § 10.1-1238 et seq. of the Code of Virginia (UECA). This environmental covenant subjects the Property identified in Paragraph 1 to the activity and use limitatıons in this document.

1. *Property affected. The property affected (Property) by this environmental covenant is located at 1000 DuPont Road, Martinsville, Virginia, and is further described as follows:
See Attachment 1, DuPont Martinsville Legal Description

2. Description of Contamination \& Remedy.

The Administrative Record for EPA ID: VAD003114865 is maintained by the Virginia Department of Environmental Quality (VDEQ), Office of Remediation Programs, 629 East Main Street, Richmond, Virginia 23219. . A full description of the contamination at the Property and EPA's final remedy for the Property are set forth in that record including the September 26, 2012 Statement of Basis (SB) (Attachment 2). The final remedy was incorporated in the facility's Hazardous Waste Management Permit dated December 21, 2012.

Background

The DuPont Martinsville site occupies approximately 465 acres on a large bend of the Smith River immediately adjacent to the City of Martinsville, Virginia. The Martinsville Plant began operating in 1941, producing primarily nylon fiber, along with spinnerettes for the manufacturing of nylon and other fibers. Nylon manufacturing ceased in June 1998. Spinnerettes continued to be produced by DuPont (DuPont Precision Concepts DPC) until the facilities were sold to INVISTA S. a r. I. on April 30, 2004. Invista Precision Concepts (IPC) continues spinnerette manufacture in the IPC building, which is owned and operated by Invista S. a r. I., a subsidiary of Koch Industries, Inc.

RCRA Investigation

In February 1986, Virginia's Department of Waste Management, which later changed its name to Virginia Department of Environmental Quality (VDEQ), issued RCRA Permit No. VAD 003114865 (VDEQ Permit) to DuPont for the operation of a hazardous waste storage pad at the facility. The VDEQ Permit addresses the provisions of the Virginia

Waste Management Act The complete Resource Conservation and Recovery Act (RCRA) permit for the facility consists of the VDEQ Permit and a Corrective Action Permit (CA Permit) issued by United States Environmental Protection Agency (EPA) in July 1991. The CA Permit required DuPont to conduct a comprehensive RCRA Facility Investigation (RFI), prepare an RFI Report, and prepare a Corrective Measures Study (CMS).

DuPont conducted a comprehensive RFI and two additional supplemental sampling events to evaluate the Smith River Total Maximum Daily Load study and the potential influence of Unit D respectively (see location of Unit D in Figure 2 of Attachment 2).

EPA approved the TMDL-specific supplemental report in January 2010, the supplemental report related to Unit D in June 2011, and the 2007 Comprehensive RFI Report in August 2011. The reports are available as part of the Administrative Record maintained by EPA and DEQ.

Constituents of Potential Concern (COPCs)

The RFI Report identified certain SWMUs and AOCs as containing COPCs that exceeded their respective media-specific, risk-based screening concentrations. These COPCs are listed by media as follows.

Exceedences of the applicable industrial soil criteria: arsenic, iron, benzene, tetrachloroethene, trichloroethene, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene.

Exceedences of groundwater criteria in site monitoring wells: arsenic, bromodichloromethane, carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, CFC-11 and 1,1,2-trichloroethane.

Exceedences of surface water criteria:carbon tetrachloride and tetrachloroethene

Interim Measures

As recommended in the RFI report, an interim measure, zero-valance iron (ZVI) treatment, was conducted in October and November 2002 to remediate carbon tetrachloride in the soil source at SWMU I, the Former Lab Disposal Pits (see location of SWMU I in Figure 2 of Attachment 2). Soil sample results following treatment show that carbon tetrachloride concentrations in the source area were reduced by approximately five orders of magnitude, to below carbon tetrachloride's direct contact residential riskbased screening concentration. Following treatment, SWMU I was capped with asphalt. Since completion of the ZVI treatment, groundwater and surface water monitoring data have shown a steady decrease in carbon tetrachloride concentrations.

Corrective Measures Study

DuPont submitted a CMS in July 2008. The CMS was completed for Unit H1, AOC DuPont Precision Concepts Building (DPC), and AOC Fire Training Area (FTA) (Attachment 2 Figure 2), as was recommended in the RFI Report.

EPA approved the CMS in January 2010, with the understanding that the additional Unit D investigation might require an addendum to the CMS. The subsequent investigation of Unit D did not require any changes to the CMS. The approved CMS is available as part of the Administrative Record maintained by EPA and DEQ.

Final Remedy Selection

Based on the findings set forth in the RFI and CMS reports, EPA has determined that past operations at the facility have resuited in releases of COPCs to soil and groundwater. The final remedy for the Site was developed based on the CMS results and the Administrative Record.

The Corrective Action Objective for Facility soils is the control of human and environmental exposure to the hazardous wastes and hazardous constituents that remain in place at the Facility. EPA has determined that EPA Region III's Screening Levels for Industrial Solls for direct contact with soils are protective of human health and the environment for individual contaminants at this Facility, provided that the Facility is not used for residential purposes. The Corrective Action Objective for contaminated groundwater at the Facility is to restore groundwater to drinking water standards. The final remedy for the Facility consists of active remediation in the form of soil treatment in SWMU H1 and AOC DPC, enhanced bioremediation of the AOC DPC groundwater plume, long-term groundwater monitoring in selected SWMUs and AOCs, and implementing Institutional Controls (ICs) and Engineering Controls (ECs). ICs are generally non-engineered mechanisms such as administrative and/or legal controls that minimize the potential for human exposure to contamination and/or protect the integrity of a remedy. ECs are generally engineered mechanisms such as a landfill cap.

3. Activity \& Use Limitations.

*a. The Property is subject to the following activity and use limitations, which shall run with the land and become binding on Grantor(s) and any successors, assigns, tenants, agents, employees and other persons under its (their) control, until such time as this covenant may terminate as provided by law:

	Applestorolygon mixamex
Conduct inspections and perform necessary maintenance on the cap.	SWMU B SWMU C SWMU D SWMU F SWMU G SWMU H1, H2, and H3 AOC-Construction Landfill AOC-Former Incinerator Area Former Closed Conoco Pond-Flyash
Inspection and maintenance following cap installation	AOC-Fire Training Area
Uses of all or any portion of the property shall, at a minmmum, be restricted to uses that do not impair the efficacy of the remedial action.	Entre Facility

Groundwater at the Facilty shall not be used for any purpose other than 1) industrial use as non-contact cooling water and 2) the operation, maintenance, and monitoring activities required by DEQ, unless it is demonstrated to DEQ that such use will not pose a threat to human health or the environment or adversely affect or interfere with the final remedy; and DEQ provides prior written approval for such use
The Facility property shall not be used for residential purposes unless it is demonstrated to DEQ that such use will not pose a threat to human health or the environment or adversely affect or interfere with the Final Remedy, and DEQ provides prior written approval for such use. The actions needed in order to meet those residential standards are the responsibility of the owner or developer that is proposing such use.
No new groundwater extraction wells shall be installed at the Facility unless it is demonstrated to DEQ that such wells are necessary to implement the Final Remedy, and DEQ provides prior written approval to install such wells, or DEQ determines that the groundwater cleanup levels specified in the final remedy have been achieved.

All earth moving activities, including excavation, drilling, and construction activities, in the SWMUs and AOCs listed in Section VIII.A of the Statement of Basis (excluding those SWMUs and AOCs for which No Action is proposed) at the Facility shall be conducted in accordance with a Materials Management Plan approved by DEQ and in such a manner that such activity will not pose a threat to human health and the environment or adversely affect or interfere with the Final Remedy

	AOC-Former Incinerator Area Former Closed Conoco Pond-Flyash
DEQ and theır authorızed agents and representatives will be provided access to the Facility to inspect and evaluate the contınued effectiveness of the final remedy.	Entire Facilty
DEQ shall be notified at least thıty (30$)$ calendar days prior to the sale of any interest in the Facility property or any portion thereof	Entire Facility

Rolygon1D	Yertex	20	Watatitude (DD) ${ }^{\text {a }}$	Longitude (DD)	ORIG FID
SWMU H3	1	Point of beginning	-79 90433688830	36.67258048220	5
SWMU H3	2		-79 90331237470	36.67238940610	5
SWMU H3	3		-79.90340353860	3667211188030	5
SWMU H3	4		-79 90441654230	36.67231172470	5
SWMU H3	5	Point of beginning	-79.90433688830	36.67258048220	5
			46		

SWMU G-Closed Flyash Landfill	1	Point of beginning	-79.90455512970	3666871198260	7
SWMU G - Closed Flyash Landfill	2		-79.90516406430	3666909708230	7
SWMU G - Closed Flyash Landill	3		-79 90573828270	36.66951354350	7
SWMU G - Closed Flyash Landfill	4		-79.90514852480	36.66994054580	7
SWMU G-Closed Flyash Landill	5		-79.90446292320	3667042083080	7
SWMU G - Closed Flyash Landfill	6		-79.90403137510	3667073806940	7
SWMU G - Closed Flyash Landill	7		-79.90368944220	3667097949720	7
SWMU G - Closed Flyash Landfill	8		-79.90344725750	3667113195830	7
SWMU G - Closed Flyash Landfill	9		-79 90323085360	3667123819070	7
SWMU G - Closed Flyash Landfill	10		-79 90300043970	3667131198870	7
SWMU G - Closed Flyash Landfill	11		-79.90277173780	3667132692900	7
SWMU G - Closed Flyash Landfill	12		-7990252830190	36.67126587230	7
SWMU G - Closed Flyash Landfill	13		-79 90234883810	3667116446550	7
SWMU G - Closed Flyash Landfill	14		-79.90221274880	36.67107972130	7
SWMU G - Closed Flyash Landfill	15		-79.90212179290	3667100000490	7
SWMU G - Closed Flyash Landfill	16		-79.90205370510	3667093158270	7
SWMU G - Closed Flyash Landfill	17		-79.90202113480	3667087104260	7
SWMU G - Closed Fiyash Landfill	18		-79 90200890330	36.67076836670	7
SWMU G - Closed Flyash Landfill	19		-79 90204807080	36.67065085670	7
SWMU G - Closed Flyash Landfill	20		-79.90211592040	36.67053283940	7
SWMU G - Closed Flyash Landfill	21		-79 90237867770	3667020745290	7
SWMU G - Closed Flyash Landfill	22		-79 90285682720	36.66980681370	7
SWMU G-Closed Flyash Landfill	23	Point of begınning	-79 90455512970	3666871198260	7
SWMU F - Former Trash/Ash Landfill	1	Point of beginning	-79.90240711080	36.66915475710	8
SWMU F - Former Trash/Ash Landfill	2		-79.90026879690	36.66977190320	8
SWMU F - Former Trash/Ash Landfill	3		-79.90038327310	36.66876313370	8

SWMU F - Former Trash/Ash Landfill	4		-79 90183375380	3666844587970	8
SWMU F - Former Trash/Ash Landfill	5		-79 90238091280	3666912236760	8
SWMU F - Former Trash/Ash Landfill	6	Point of beginning	-79 90240711080	3666915475710	8
SWMU D - Inactive Flyash Pond	1	Point of beginning	-79 89905213190	3666361657740	9
SWMU D - Inactive Flyash Pond	2		-79.89904662910	36.66361307970	9
SWMU D - Inactive Flyash Pond	3		-79.89904492560	3666361199760	9
SWMU D - Inactive Flyash Pond	4		-79 89897498310	3666356816510	9
SWMU D - Inactive Flyash Pond	5		-79.89890323680	36.66352388080	9
SWMU D - Inactive Flyash Pond	6		-7989882945200	36.66347906570	9
SWMU D - Inactive Flyash Pond	7		-7989875339430	3666343364160	9
SWMU D - Inactive Flyash Pond	8		-7989867482810	36.66338753050	9
SWMU D - Inactive Flyash Pond	9		-79 89859367780	36.66334072060	9
SWMU D - Inactive Flyash Pond	10		-7989851049750	36.66329346740	9
SWMU D - Inactive Flyash Pond	11		-79.89842599960	3666324609300	9
SWMU D - Inactive Flyash Pond	12		-79.89834089720	36.66319891910	9
SWMU D - Inactive Flyash Pond	13		-79.89825590340	3666315226800	9
SWMU D - Inactive Flyash Pond	14		-79889817173060	36.66310646190	9
SWMU D - Inactive Flyash Pond	15		-7989808909180	3666306182310	9
SWMU D - Inactive Flyash Pond	16		-7989800869940	3666301867240	9
SWMU D - Inactive Flyash Pond	17		-7989793123140	36.66297730650	9
SWMU D - Inactive Flyash Pond	18		-79.89785722570	3666293791360	-
SWMU D - Inactive Flyash Pond	19		-79.89778718370	3666290065690	9
SWMU D - inactive Flyash Pond	20		-79.89772160830	36.66286569800	9
SWMU D - Inactive Flyash Pond	21		-7989766100150	3666283319990	9
SWMU D - Inactive Flyash Pond	22		-7989760586710	36.66280332460	9
SWMU D - Inactive Flyash Pond	23		-79.89755670560	3666277623490	9

SWMU D - Inactive Flyash Pond	24		-79 89751402050	36.66275209330	9
SWMU D - Inactive Flyash Pond	25		-7989747810940	36.66273097270	9
SWMU D - Inactive Fiyash Pond	26		-79.89744844790	3666271259040	9
SWMU D - Inactive Flyash Pond	27		-7989742430770	3666269657470	9
SWMU D - Inactive Flyash Pond	28		-79.89740496050	36.66268255410	9
SWMU D - Inactive Flyash Pond	29		-79.89738967740	3666267015550.	9
SWMU D - Inactive Flyash Pond	30		-7989737773130	3666265900820	9
SWMU D - Inactive Flyash Pond	31		-79.89736839120	3666264873900	9
SWMU D - Inactive Flyash Pond	32		-79.89736093030	36.66263897760	9
SWMU D - Inactive Flyash Pond	33		-79.89735473800	3666262940930	9
SWMU D - Inactive Flyash Pond	34		-79.89734967490	36.66261995710	9
SWMUD - Inactive Flyash Pond	35		-79.89734572060	36.66261060220	9
SWMU D - Inactive Flyash Pond	36		-79.89734285390	36.66260132480	9
SWMU D - Inactive Flyash Pond	37		-79.89734105460	36.66259210630	-
SWMU D - Inactive Flyash Pond	38		-7989734030160	3666258292750	9
SWMU D - Inactive Flyash Pond	39		-7989734057390	36.66257376930	9
SWMU D - Inactive Flyash Pond	40		-79 89734185120	36.66256461290	9
SWMU D - Inactive Flyash Pond	41		-7989734415690	3666255537890	9
SWMU D - Inactive Flyash Pond	42		-79.89734769020	36.66254574510	9
SWMU D - Inactive Flyash Pond	43		-79.89735269500	36.66253533020	9
SWMU D - Inactive Flyash Pond	44.		-79 89735941540	3666252375140	9
SWMU D - Inactive Flyash Pond	45		-79 89736809500	3666251062710	9
SWMU D - Inactive Flyash Pond	46		-79.89737897720	3666249557490	9
SWMU D - Inactive Flyash Pond	47		-79 89739230690	3666247821370	9
SWMU D - Inactive Flyash Pond	48		-79.89740832740	3666245815990	9
SWMUD - Inactive Flyash Pond	49		.7989742725060	3666243507780	9
SWMU D - Inactive Flyash Pond	50.		-79.89744916050	36.66240881040	g

SWMU D - Inactive Flyash Pond	51		-79.89747411060	3666237924560	9
SWMU D - Inactive Flyash Pond	52		-7989750215260	3666234627290	9
SWMU D - Inactive Flyash Pond	53		-7989753334030	3666230978020	9
SWMU D - Inactive Flyash Pond	54		-79.89756772470	3666226965650	9
SWMU D - Inactive Flyash Pond	55		-7989760535940	3666222578990	9
SWMU D - Inactive Flyash Pond	56		-79 89764629650	36.6621 .7806920	9
SWMU D - Inactive Flyash Pond	57		-7989769039090	3666212663210	9
SWMU D - inactive Flyash Pond	58		-7989773670220	36.66207261770	9
SWMU D - Inactive Flyash Pond	59		-7989778409370	3666201741350	9
SWMU D - Inactive Flyash Pond	60		-79 89783142800	3666196240850	9
SWMU D - Inactive Flyash Pond	61		-7989787756750	36.66190899000	9
SWMU D - Inactive Flyash Pond	62		-79.89792137350	3666185854620	9
SWMU D - Inactive Flyash Pond	63		-79.89796170960	3666181246570	9
SWMU D - Inactive Flyash Pond	64		-7989799743880	3666177213620	9
SWMU D - Inactive Flyash Pond	65		-79.89802773960	3666173858060	9
SWMU D - Inactive Flyash Pond	66		-79.89805306370	3666171135490	9
SWMU D - Inactive Flyash Pond	67		-7989807417950	36.66168965020	9
SWMU D - Inactive Flyash Pond	68		-79.89809185580	3666167265840	9
SWMU D - Inactive Flyash Pond	69		-7989810685990	36.66165956950	9
SWMU D - Inactive Flyash Pond	70		-79.89811996170	36.66164957490	9
SWMU D - Inactive Flyash Pond	71		-7989813192800	36.66164186530	9
SWMU D - Inactive Flyash Pond	72		-79.89814352930	36.66163563200	9
SWMUD - Inactive Flyash Pond	73		-79.89815540580	3666163020640	9
SWMU D - Inactive Flyash Pond	74		-79.89816769880	3666162547800	9
SWMU D - Inactive Flyash Pond	75		-79.89818042000	3666162147820	9
SWMU D - Inactive Flyash Pond	76		-7989819358310	3666161823740	9
SWMU D - Inactive Flyash Pond	77.		-79.89820720220	3666161578670	9

SWMU D - Inactive Flyash Pond	105		-79.89953822350	3666198049930	9
SWMU D - Inactive Flyash Pond	106		-79.89960958720	3666200265320	9
SWMU D - Inactive Flyash Pond	107		-79 89967832590	36.66202417990	9
SWMU D - Inactive Flyash Pond	108		-79.89974452080	3666204514070	9
SWMU D - Inactive Flyash Pond	109		-79.89980825420	36.66206559690	9
SWMU D-Inactive Flyash Pond	110		-7989986960870	36.66208561190	9
SWMU D - Inactive Flyash Pond	111		-79.89992866550	3666210524600	9
SWMU D - Inactive Flyash Pond	112		-79.89998550870	36.66212456160	9
SWMU D - Inactive Flyash Pond	113		-79.90004022290	3666214362230	9
SWMU D - Inactive Flyash Pond	114		-79.90009291260	3666216250460	9
SWMU D - Inactive Flyash Pond	115		-7990014368500	36.66218128550	9
SWMU D - Inactive Flyash Pond	116		-79 90019264860	36.66220004360	9
SWMU D - Inactive Flyash Pond	117		-79 90023990990	36.66221885650	9
SWMU D - Inactive Flyash Pond	118		-79.90028557740	3666223780280	9
SWMU D - Inactive Flyash Pond	119		-7990032975790	3666225695970	9
SWMU D - Inactive Flyash Pond	120		-79.90037255960	3666227640500	9
SWMU D - Inactive Flyash Pond	121		-79 90041407840	3666229620740	9
SWMU D - Inactive Flyash Pond	122		-79 90045436090	3666231639030	9
SWMU D - Inactıve Flyash Pond	123		-79.90049344390	36.66233696720	9
SWMU D - Inactive Flyash Pond	124		-79.90053136350	3666235795240	9
SWMU D - Inactıve Flyash Pond	125		-79.90056815420	3666237935880	9
SWMU D - Inactive Flyash_Pond	126		-7990060385160	3666240120120	9
SWMU D - Inactive Flyash Pond	127		-79 90063849290	3666242349320	9
SWMU D - Inactive Flyash Pond	128		-79 90067211310	36.66244624770	9
SWMU D - Inactive Flyash Pond	129		-79.90070478640	3666246954250	9
SWMU D - Inactive Flyash Pond	130		-79.90073674900	36.66249370900	9
SWMU D - Inactive Flyash Pond	131		-79 90076827240	3666251914210	9

SWMU D - Inactive Flyash Pond	132		-79.90079963220	3666254623620	9
SWMU D - Inactive Flyash Pond	133		-79 90083110090	3666257538710	9
SWMU D - Inactive Flyash Pond	134		-79 90086295290	36.66260698900	9
SWMU D - Inactive Flyash Pond	135		-79 90089546150	3666264143710	9
SWMU D - Inactive Flyash Pond	136		-79.90092890080	36.66267912650	9
SWMU D - Inactive Flyash Pond	137		-79.90096344360	3666272031210	9
SWMU D - Inactive Flyash Pond	138		-79.90099886310	36.66276469180	9
SWMU D - Inactive Flyash Pond	139		-7990103483030	3666281182280	9
SWMU D - Inactive Flyash Pond	140		-79.90107101740	3666286126290	9
SWMU D - Inactive Flyash Pond	141		-79.90110709700	3666291257050	9
SWMU D - Inactive Flyash Pond	142		-79.90114274010	3666296530290	9
SWMU D - Inactive Flyash Pond	143		-79 90117761900	3666301901810	9
SWMU D - Inactive Flyash Pond	. 144		-79.90121140550	3666307327420	9
SWMU D - Inactive Flyash Pond	145		-79.90124389660	36.66312777210	9
SWMU D - Inactive Flyash Pond	146		-79 90127538530	36.66318278920	9
SWMU D - Inactive Flyash Pond	147		-79 90130629210	36.66323874710	9
SWMU D - Inactive Flyash Pond	148		-79 90133703440	36.66329606670	9
SWMU D - Inactive Flyash Pond	149		-79.90136803250	3666335516870	9
SWMU D - Inactive Flyash Pond	150		-79 90139970340	36.66341647500	9
SWMU D - Inactive Flyash Pond	151		-79.90143246750	36.66348040570	9
SWMU D - Inactive Flyash Pond	152		-79 90146674310	3666354738230	9
SWMU D - Inactive Flyash Pond	153		-79 90150277970	36.66361755410	9
SWMU D - Inactive Flyash Pond	154		-7990154014600	3666368998530	9
SWMU D - Inactive Flyash Pond	155		-79.90157824320	36.66376346740	9
SWMU D - Inactive Flyash Pond	156		-79.90161647170	3666383679320	9
SWMU D - Inactive Flyash Pond	157		-79 90165423080	3666390875450	9
SWMU D - Inactive Flyash Pond	158		-79.90169092070	3666397814290	9

$\left.\begin{array}{|l|r|l|l|l|l|}\hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 186 & & & & \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 187 & & -7990205924860 & 36.66475315760 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 188 & & -7990205686180 & 36.66476477630 & \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 189 & & -7990205395760 & 3666477620920 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 190 & & -79.90205050400 & 3666478748420 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 191 & & -7990204646650 & 3666479863000 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 192 & & -7990204181290 & 36.66480967400 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 193 & & -7990203650910 & 3666482064480 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 194 & & -7990203050130 & 36.66483159880 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 195 & & -79.90202364400 & 3666484270370 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 196 & & -7990169476550 & 36.66518327240 & 9 \\ \hline \begin{array}{l}\text { SWMU D - Inactive } \\ \text { Flyash Pond }\end{array} & 197 & 212 & & -79.90201577210 & 36.66485415570\end{array}\right]$

SWMU D - Inactive Flyash Pond	213		-79 90167368420	3666520573610	9
SWMU D - Inactive Flyash Pond	214		-7990165327900	3666522781870	9
SWMU D - Inactive Flyash Pond	215		-79 90163362360	3666524943520	9
SWMU D - Inactive Flyash Pond	216		-79 90161479000	36.66527049900	9
SWMU D - Inactive Flyash Pond	217		-79 90159682220	36.66529092080	9
SWMU D - Inactive Flyash Pond	218		-79.90157964380	36.66531058600	9
SWMU D - Inactive Flyash Pond	219		-7990156314970	36.66532937480	9
SWMU D - Inactive Flyash Pond	220		-7990154723450	36.66534716850	9
SWMU D - Inactive Flyash Pond	221		-79.90153179240	36.66536384670	9
SWMU D - Inactive Flyash Pond	222		-7990151671770	3666537929060	9
SWMU D - Inactive Flyash Pond	223		-79.90150190580	36.66539338020	9
SWMU D - Inactive Flyash Pond	224		-79 90148725080	36.66540599680	9
SWMU D - Inactive Flyash Pond	225		-79.90147267020	3666541705880	9
SWMU D - Inactive Flyash Pond	226		-7990145817280	36.66542664050	9
SWMU D - Inactive Flyash Pond	227		-79 90144379190	36.66543485480	9
SWMU D - inactive Flyash Pond	228		-79 90142955920	3666544181540	9
SWMU D - Inactive Flyash Pond	229		-79 90141550800	3666544763390	9
SWMU D - Inactive Flyash Pond	230		-79 90140166980	3666545242450	9
SWMU D - Inactive Flyash Pond	231		-79.90138807780	3666545629940	9
SWMU D - Inactive Flyash Pond	232		-79 90137476350	3666545937130	9
SWMU D - Inactive Flyash Pond	233		-79.90136174970	3666546172780	9
SWMU D - Inactive Flyash Pond	234		-79.90134901860	3666546334810	9
SWMU D - Inactive Flyash Pond	235		-79 90133654150	36.66546418570	9
SWMU D - Inactive Flyash Pond	236		-79.90132428930	3666546419480	9
SWMU D - Inactive Flyash Pond	237		.79 90131223420	3666546332930	9
SWMU D - Inactive Flyash Pond	238		-79 90130034710	3666546154260	9
SWMU D - Inactive Flyash Pond	239		-79.90128860040	3666545878780	9

Wh2 $2014 \mathrm{PGO035}$

SWMU D - Inactive Flyash Pond	240		-79.90127696450	3666545501970	9
SWMU D - Inactive Flyash Pond	241		-79.90126541590	36.66545020250	9
SWMU D - Inactive Flyash Pond	242		-7990125393860	3666544434700	9
SWMU - Inactive Flyash Pond	243		-7990124252530	3666543747670	9
SWMU D - Inactive Flyash Pond	244		-79.90123116380	3666542961360	9
SWMU - Inactive Flyash Pond	245		-7990121984430	3666542077980	9
SWMU D - Inactive Flyash Pond	246		-79.90120855680	3666541099780	9
SWMU D - Inactive Flyash Pond	247		-7990119729150	3666540029060	9
SWMU - Inactive Flyash Pond	248		-7990118603760	36.66538867990	9
SWMU D - Inactive Flyash Pond	249		-7990117477530	36.66537620010	9
SWMU - Inactive Flyash Pond	250		-79.90116344330	3666536293460	9
SWMU - Inactive Flyash Pond	251		-79.90115197220	3666534897690	9
SWMU D Inactive Flyash Pond	252		-7990114029040	3666533442170	9
SWMU - Inactive Flyash Pond	253		-79.90112832790	3666531936290	9
SWMU - Inactive Flyash Pond	254		-7990111601420	3666530389500	9
SWMU D - Inactive Flyash Pond	255		-7990110327860	3666528811300	9
SWMU - Inactive Flyash Pond	256	266		-7990109005030	3666527211050

SWMU D - Inactive Flyash Pond	267	-79 90089772800	3666507056270	9
SWMU D - Inactive Flyash Pond	268	-7990087501820	3666504839300	9
SWMU D - Inactive Flyash Pond	269	-7990085135710	3666502552000	9
SWMU D - Inactive Flyash Pond	270	-7990082673750	3666500195590	9
SWMU D - Inactive Flyash Pond	271	-79.90080115060	3666497771370	9
SWMU D - Inactive Flyash Pond	272	-7990077458990	3666495280590	9
SWMU D - Inactive Flyash Pond	273	-7990074702960	3666492722480	9
SWMU D - Inactive Flyash Pond	274	-79.90071836730	3666490087370	9
SWMU D - Inactive Flyash Pond	275	-79.90068848230	36.66487363660	9
SWMU D - Inactive Flyash Pond	276	-7990065725530	3666484539590	9
SWMU D - Inactive Flyash Pond	277	-79.90062456460	3666481603490	9
SWMU D - Inactive Flyash Pond	278	-79.90059029160	3666478543630	9
SWMU D - Inactive Flyash Pond	279	-7990055431420	3666475348300	9
SWMU D - Inactive Flyash Pond	280	-79 90051651340	3666472005840	9
SWMU D - Inactive Flyash Pond	281	-79.90047681520	36.66468509550	9
SWMU D - Inactive Flyash Pond	282	-79.90043533520	3666464872950	9
SWMU D - Inactive Flyash Pond	283	-7990039223550	36.66461114610	9
SWMU D - Inactive Flyash Pond	284	79.90034767950	36.66457253030	9
SWMU'D - Inactive Flyash Pond	285	79.90030183020	3666453306840	9
SWMU D - Inactive Flyash Pond	286	7990025484950	3666449294590	9
SWMU D - Inactive Flyash Pond	287	79.90020690070	36.66445234720	9
SWMU D - Inactive Flyash Pond	288	79.90015814520	36.66441145930	9
SWMU D - Inactive Flyash Pond	289	-79.90010870700	3666437043550	
SWMU D - Inactive Flyash Pond	290	79.90005854370	3666432930660	9
SWMU D - Inactive Flyash Pond	291	7990000757540	3666428807030	9
SWMU D - Inactive Flyash Pond	292	7989995572070	3666424672650	9
SWMU D - Inactive Flyash Pond	293	79.89990289850	3666420527340	9

SWMU D - Inactive Flyash Pond	294		-79 89984902740	36.66416370970	9
SWMU D - Inactive Flyash Pond	295		-7989979402640	36.66412203420	9
SWMU D - Inactive Flyash Pond	296		-7989973781500	3666408024610	9.
SWMU D - Inactive Flyash Pond	297		-79.89968033390	36.66403834320	9
SWMU D - Inactive Flyash Pond	298		-79.89962161450	3666399632350	9
SWMU D - Inactive Flyash Pond	299		-79 89956170950	36.66395418260	9
SWMU D - Inactive Flyash Pond	300		-79.89950067330	36.66391191860	9
SWMU D - Inactive Flyash Pond	301		-79.89943855870	36.66386952750	9
SWMU D - Inactive Flyash Pond	302		-79.89937541950	3666382700570	9
SWMU D - Inactive Flyash Pond	303		-79.89931130880	3666378435100	9
SWMU D - Inactive Flyash Pond	304		-79.89924628060	3666374156000	9
SWMU D - Inactive Flyash Pond	305		-7989918034010	36.66369861610	9
SWMU D - Inactive Flyash Pond	306		-79.89911329970	36.66365545450	9
SWMU D - Inactive Flyash Pond	307	Point of beginning	-79.89905213190	36.66361657740	9
		chrem	Whavek		
AOC Fire Traning Area	1	Point of beginning	-7989000761230	36.66313302980	12
AOC FIre Training Area	2		-79.88984884820	36.66309360580	12
AOC Fire Training Area	3		-79.89007218560	36.66257060450	12
AOC FIre Training Area	4		-7989021846710	3666261010770	12
AOC Fire Training Area	5	Point of begınning	-7989000761230	3666313302980	12
			Whandx	5wh	dratas
SWMU C - Former Burning Ground	1	Point of beginning	-79 90249530970	36.66623026550	23
SWMU C - Former Burning Ground	2		-79.90250291020	36.66623378460	23
SWMU C - Former Burning Ground	3		-79.90251663740	3666624123190	23.
SWMU C - Former Burning Ground	4		-79 90253066820	36.66624986840	23
SWMU C - Former Burning Ground	5		-79.90254514170	3666625973500	23
SWMU C - Former Burning Ground	6		-79 90256020830	36.66627088010	23
SWMU C - Former Burning Ground	7		-79.90257601760	3666628335420	23

SWMU C - Former Burning Ground	8		-79.90259272040	36.66629720640	23
SWMU C - Former Burning Ground	9		-7990261046480	3666631248590	23
SWMU C - Former Burning Ground	10		-7990262940200	3666632924230	23
SWMU C - Former Burning Ground	11		-7990264968080	3666634752530	23
SWMU C - Former Burning Ground	12		-79.90267137260	3666636733290	23
SWMU C - Former Burning Ground	13		-7990269423060	3666638846150	23
SWMU C - Former Burning Ground	14		-7990271792720	3666641065690	23
SWMU C - Former Burning Ground	15		-79.90274213660	3666643366350	23
SWMU C - Former Burning Ground	16		-7990276653290	36.66645722680	23
SWMU C - Former Burning Ground	17		-79.90279078900	3666648109280	23
SWMU C - Former Burning Ground	18		-7990281457870	36.66650500540	23
SWMU C - Former Burning Ground	19		-7990283757500	36.66652871 .120	23
SWMU C - Former Burning Ground	20		-7990285954020	36.66655208920	23
SWMU C - Former Burning Ground	21		-7990288058440	36.66657555510	23
SWMU C - Former Burning Ground	22		-7990290090650	36.66659965990	23
SWMU C - Former Burning Ground	23		-7990292070580	3666662495370	23
SWMU C - Former Burning Ground	24		-7990314837830	36.66707830220	23
SWMU C - Former Burning Ground	25		-7990294017990	3666665198740	23
SWMU C - Former Burning Ground	26		-79.90295952720	36.66668131030	23
SWMU C - Former Burning Ground	27		-7990297894710	36.66671347370	23
SWMU C - Former Burning Ground	28	-7990299863770	36.66674902800	23	
SWMU C - Former Burning Ground	29	-7990301876200	3666678834580	23	
SWMU C - Former Burning Ground	30		-7990303933830	36.66683109180	23
SWMU C - Former Burning Ground,	31		-79.90306034880	36.66687675370	23
SWMU C - Former Burning Ground	32		-7990308177540	3666692481850	23
SWMU C - Former Burning Ground	33		-7990310360110	36.66697477290	23
SWMU C - Former Burning Ground	34		-7990312580820	36.66702610540	23

[^0]| SWMU C - Former Burning Ground | 89 | | -79 90228668540 | 3666627549440 | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SWMU C - Former Burning Ground | 90 | | -79.90229311790 | 3666626667240 | 23 |
| SWMU C - Former Burning Ground | 91 | | -79 90230124800 | 3666625827120 | 23 |
| SWMU C - Former Burning Ground | 92 | | -79.90231112250 | 3666625032050 | 23 |
| SWMU C - Former Burning Ground | 93 | | -79.90232252710 | 3666624290410 | 23 |
| SWMU C - Former Burning Ground | 94 | | -79.90233517780 | 36.66623612050 | 23 |
| SWMU C - Former Burning Ground | 95 | | -79 90234879370 | 36.66623006660 | 23 |
| SWMU C - Former Burning Ground | 96 | | -79 90236309180 | 3666622484120 | 23 |
| SWMU C - Former Burning Ground | 97 | | -79 90237778960 | 3666622054160 | 23 |
| SWMU C - Former Burning Ground | 98 | | -79.90239260460 | 3666621726580 | 23 |
| SWMU C - Former Burning Ground | 99 | | -79.90240725540 | 36.66621511160 | 23 |
| SWMU C - Former Burning Ground | 100 | | -79 90242152120 | 3666621416010 | 23 |
| SWMU C - Former Burning Ground | 101 | | -79 90243543240 | 36.66621442280 | 23 |
| SWMU C - Former Burning Ground | 102 | | -79 90244908210 | 36.66621589540 | 23 |
| SWMU C - Former Burning Ground | 103 | | -79 90246256190 | 3666621857270 | 23 |
| SWMU C - Former Burning Ground | 104 | | -79.90247596480 | 3666622244960 | 23 |
| SWMU C - Former Burning Ground | 105 | | -7990248938340 | 3666622752200 | 23 |
| SWMU C - Former Burning Ground | 106 | Point of begınning | -79.90249530970 | 3666623026550 | 23 |
| | 20 | | | | |
| SWMU B - Inactive Coal Ash Pond | 1 | Point of beginning | -79.90129287050 | 36.66580484050 | 24 |
| SWMU B - Inactive Coal Ash Pond | 2 | | -7990129279920 | 3666580489010 | 24 |
| SWMU B - Inactive Coal Ash Pond | 3 | | -7990045450800 | 3666640604190 | 24 |
| SWMU B - Inactive Coal Ash Pond | 4 | | -79.90043411570 | 36.66641703590 | 24 |
| SWMU B - Inactive Coal Ash Pond | 5 | | -79.90041181690 | 36.66642642100 | 24 |
| SWMU B - Inactive Coal Ash Pond | 6 | | -79.90038839710 | 36.66643377250 | 24 |
| SWMU B - Inactive Coal Ash Pond | 7 | | -79.90036414160 | 3666643899980 | 24 |
| SWMU B - Inactive Coal Ash Pond | 8 | | -79 90033934400 | 3666644203970 | 24 |

SWMU B - Inactive Coal Ash Pond	9		-79.90031430470	3666644285530	24
SWMU B - Inactive Coal Ash Pond	10		-79 90028932870	36,66644143700	24
SWMU B - Inactive Coal Ash Pond	11	;	-79 90026471930	36.66643780250	24
SWMU B - Inactive Coal Ash Pond	12		-79 90024077470	36.66643199490	24
SWMU B - Inactive Coal Ash Pond	13		-79 90021778580	36.66642408490	24
SWMU B - Inactive Coal Ash Pond	14		-79 90019603110	36.66641416870	24
SWMU'B - Inactive Coal Ash Pond	15		-79.90017577550	3666640236720	24
SWMU B - Inactive Coal Ash Pond	16		-7990015726400	3666638882250	24
SWMU B - Inactive Coal Ash Pond	17		-79.90014072190	3666637370010	24
SWMU B - Inactive Coal Ash Pond	18		-79 90012635050	36.666357 .18340	24
SWMU B - Inactive Coal Ash Pond	19		-79.90011432280	36.66633947220	24
SWMU B - Inactive Coal Ash Pond	20		-79.90010478600	3666632078200	24
SWMU B - Inactive Coal Ash Pond	21		-79.90009785600	3666630133920	24
SWMU B - Inactive Coal Ash Pond	22		-79 90009361600	3666628138070	24
SWMU B - Inactive Coal Ash Pond	23		-79 90009211760	36.66626114790	24
SWMU B - Inactive Coal Ash Pond	24		-79.90009337970	3666624088710	24
SWMU B - Inactive Coal Ash Pond	25		-79.90009738610	3666622084380	24
SWMU B - Inactive Coal Ash Pond	26		-79.90010408850	36.66620126130	24
SWMU B - Inactive Coal Ash Pond	27		-79 90011340610	3666618237760	24
SWMU B - Inactive Coal Ash Pond	28		-79.90012522520	3666616442160	24
SWMU B - Inactive Coal Ash Pond	29		-79 90013940290	3666614761140	24
SWMU B - Inactive Coal Ash Pond	30		-79.90015576590	3666613215080	24
SWMU B - Inactive Coal Ash Pond	31		-79.90016050060	3666612825960	24
SWMU B - Inactive Coal Ash Pond	32		-79.90100397580	36.66553189190	24
SWMU B - Inactive Coal Ash Pond	33	Point of beginning	-79.90129287050	36.66580484050	24
AOC Former Incinerator Area	1	Point of beginning	-79.90296080810	36.66778948680	25

AOC Former Incinerator Area	2		-79 90302569970	3666785861770	25
AOC Former Incinerator Area	3		-79 90308024960	3666790909040	25
AOC Former Incinerator Area	4		-79 90317044830	3666796368040	25
AOC Former Incinerator Area	5		-79.90320972720	3666798100870	25
AOC Former Incinerator Area	6		-79 90329352160	3666801201390	25
AOC Former Incinerator Area	7		-79.90333857110	36.66802501220	25
AOC Former Incinerator Area	8		-79 90341836820	3666804768490	25
AOC Former Incinerator Area	9		-79 90352670780	3666809153730	25
AOC Former Incinerator Area	10		-7990299863150	3666836114250	25
AOC Former Incinerator Area	11		-79.90289610570	36.66827925890	25
AOC Former Incinerator Area	12		-79 90280903330	3666818079520	25
AOC Former Incinerator Area	13		-79.90275699610	36.66809126570	25
AOC Former Incinerator Area	14		-79 90273050760	3666799180420	25
AOC Former Incinerator Area	15		-79 90273455110	3666793868330	25
AOC Former Incinerator Area	16		-79.90275598420	3666788194580	25
AOC Former Incinerator Area	17	Point of beginning	-79 90296080810	3666778948680	25
SWMU H1-Former Finish Oll Disposal Ponds	1	Point of beginning	-79 90105675490	3667117238570	27
SWMU H1-Former Finish Oll Disposal Ponds	2		-79 90069680450	3667104956800	27
SWMU H1-Former Finish Oil Disposal Ponds	3		-79 90087691040	3667070899760	27
SWMU H1-Former Finish Oil Disposal Ponds	4		-79 90123685880	3667083181480	27
SWMU H1-Former Finish Oll Disposal Ponds	5	Point of beginning	-79.90105675490	3667117238570	27
	,	46, wrem			
AOC Construction Landfill	1	Point of beginning	-79.90096733590	36.67162446580	30
AOC Construction Landfill	2		.79 90114882910	3667116815110	30

AOC Construction Landfill	3		-79 90292582120	3667145418530	30
AOC Construction Landfill	4		-79 90362159550	3667153635340	30
AOC Construction Landfill	5		-79 90348968210	3667198431990	30
AOC Construction Landfill	6		-79.90278863670	36.67189153450	30
AOC Construction Landfill	7		-7990096733590	3667162446580	30
Former Closed Conoco Pond Flyash	1	Point of beginning	-79.89695902830	3666356259830	32
Former Closed Conoco Pond Flyash	2		-79 89706291410	3666353509590	32
Former Closed Conoco Pond Flyash	3		-79 89718788550	3666351167510	32
Former Closed Conoco Pond Flyash	4		-7989729295700	3666349264570	32
Former Closed Conoco Pond Flyash	5		-79.89735156620	3666348009560	32
Former Closed Conoco Pond Flyash	6		-79.89740541780	3666347550330	32
Former Closed Conoco Pond Flyash	7		-79 89742502690	36.66347526940	32
Former Closed Conoco Pond Flyash	8		-79 89745352740	36.66347571620	32
Former Closed Conoco Pond Flyash	9		-79 89750518930	3666348659700	32
Former Closed Conoco Pond Flyash	10		-79 89752209910	36.66351632510	32
Former Closed Conoco Pond Flyash	11		-79.89753051370	36.66361227080	32
Former Closed Conoco Pond Flyash	12		-79 89753654120	3666367342860	32
Former Closed Conoco Pond Flyash	13		-79 89754644140	3666378322560	32
Former Closed Conoco Pond Flyash	14		-79 89753838980	3666383119920	32
Former Closed Conoco Pond Flyash	15		-79.89751417030	36.66389527280	32
Former Closed Conoco Pond Flyash	16		-79 89744800590	36.66398980730	32
Former Closed Conoco Pond Flyash	17		-7989740058870	36.66403066820	32
Former Closed Conoco Pond Flyash	18		-79.89734031850	36.66406882080	32
Former Closed Conoco Pond Flyash	19		-79 89728441390	36.66409516440	32
Former Closed Conoco Pond Flyash	20		-79.89723095920	36.66412687200	32
Former Closed Conoco Pond Flyash	21		-7989722889850	3666408453120	32

Former Closed Conoco Pond Flyash	22		-79.89716755820	3666395713260	32
Former Closed Conoco Pond Flyash	23		-79 89711802420	36.66384405970	32
Former Closed Conoco Pond Flyash	24		-7989707656430	36.66375155690	32
Former Closed Conoco Pond F̄lyash	25		-79 89705251430	3666369914480	32
Former Closed Conoco Pond Flyash	26		-7989703106760	3666364876850	32
Former Closed Conoco Pond Flyash	27		-79.89699949460	36.66360574660	32
Former Closed Conoco Pond Flyash	28	Point of beginning	-79.89695902830	3666356259830	32
2hwy					
SWMU H2-Former Finish Oil Disposal Ponds	1	Point of beginning	-7990000004390	3667216268920	37
SWMU H2-Former Finish Oil Disposal Ponds	2		-7989965824200	3667243201740	37
SWMU H2-Former Finish Oll Disposal Ponds	3.		-79.89910510920	3667209209170	37
SWMU H2-Former Finish Oil Disposal Ponds	4		-7989942715040	36.67181681060	37
SWMU H2-Former Finish Oll Disposal Ponds	5	Point of beginning	-79.90000004390	3667216268920	37
SWMU H2-Former Finısh Oil Disposal Ponds	1	Point of beginning	-79 90036252380	36.67185504170	37
SWMU H2-Former Finısh Oil Disposal Ponds	2		-79 90002655510	36.67203392100	37
SWMU H2-Former Finish Oll Disposal Ponds	3		-79 89987851220	36.67183380830	37
SWMU H2-Former Finish Oil Disposal Ponds	4		-79.90021575100	36.67166626570	37
SWMU H2-Former Finısh Oil Disposal Ponds	5	Point of beginning	-79.90036252380	36.67185504170	37
W\% Whatw					
SWMU H2-Former Finish Oil Disposal Ponds	1	Point of beginning	-79.89912231490	3667167784700	37
SWMU H2-Former Finish Oil Disposal Ponds	2		-79 89913716430	3667169228270	37

SWMU H2-Former Finish Oil Disposal Ponds	3		-79 89914978630	36.67170805250	37
SWMU H2-Former Finish Oil Disposal Ponds	4		-79 89916000300	3667172493500	37
SWMU H2-Former Finish Oil Disposal Ponds	5		-79 89916767220	3667174269280	37
SWMU H2-Former Finish Oil Disposal Ponds	6		-79 89917268540	3667176107740	37
SWMU H2-Former Finish Oil Disposal Ponds	7		-79 89917497210	36.67177982960	37
SWMU H2-Former Finish Oll Disposal Ponds	8		-79.89917450010	36.67179868670	37
SWMU H2-Former Finish Oil Disposal Ponds	9		-79 89917127660	3667181738430	37
SWMU H2-Former Finish Oil Disposal Ponds	10		-79 89916534740	3667183566010	37
SWMU H2-Former Finish Oll Disposal Ponds	11		-79.89915679360	3667185325660	37
SWMU H2-Former Finısh Oll Disposal Ponds	12		-79 89914573750	36.67186992730	37
SWMU H2-Former Finısh Oll Disposal Ponds	13		-79 89913233320	3667188543810	37
SWMU H2-Former Finish Oil Disposal Ponds	14		-79 89911676870	3667189957170	37
SWMU H2-Former Finish Oll Disposal Ponds	15		-7989909926380	36.67191212900	37
SWMU H2-Former Finish Oil Disposal Ponds	16		-79 89908006250	36.67192293450	37.
SWMU H2-Former Finish Oil Disposal Ponds	17		-79.89905943560	36.67193183580	37
SWMU H2-Former Finish Oll Disposal Ponds	18		-79 89903767110	36.67193870790	37
SWMU H2-Former Finish Oil Disposal Ponds	19		-7989901507650	36.67194345510	37
SWMU H2-Former Finish Oll Disposal Ponds	20		-79.89899196820	3667194600980	37

SWMU H2-Former Finish Oil Disposal Ponds	39	-7989881763450	36.67169677040	37
SWMU H2-Former Finish Oil Disposal Ponds	40	-7989883214430	3667168192210	37
SWMU H2-Former Finish Oil Disposal Ponds	41	-7989884870810	3667166855350	37
SWMU H2-Former Finish Oll Disposal Ponds	42	-79.89886709370	36.67165685150	37
SWMU H2-Former Fınish Oil Disposal Ponds	43	-79 89888704320	36.67164698100	37
SWMU H2-Former Finish Oll Disposal Ponds	44	-79.89890827580	36.67163908020	37
SWMU H2-Former Finısh Oll Disposal Ponds	45	-79.89893049390	3667163326010	37
SWMU H2-Former Finish Oil Disposal Ponds	46	-7989895338530	36.67162960260	37
SWMU H2-Former Finish Oil Disposal Ponds	47	-7989897662920	36.67162815930	37
SWMU H2-Former Finish Oll Disposal Ponds	48	-7989899989900	3667162894960	37
SWMU H2-Former Finish Oil Disposal Ponds.	49	. 7989902286820	3667163196280	37
SWMU H2-Former Finısh Oll Disposal Ponds	50	-79.89904521390	36.67163715680	37
SWMU H2-Former Finish Oil Disposal Ponds	51	. 7989906662320	36.67164445910	37
SWMU H2-Former Finish Oil Disposal Ponds	52	-79.89908679460	3667165376600	37
SWMU H2-Former Finish Oil Disposal Ponds	53	7989910544570	3667166494740	37
SWMU H2-Former Finish Oil Disposal Ponds	54	79.89912231490	36.67167784700	37
SWMU H2-Former Finish Oll Disposal Ponds	55	79.89982628090	3667072247090	37
SWMU H2-Former Finish Oil Disposal Ponds	56	7990011476000	3667124777230	37

SWMU H2-Former Finish Oil Disposal Ponds	57		-79 89951878940	3667092531490	37
SWMU H2-Former Finish Oil Disposal Ponds	58	Point of beginning	-79 89982628090	3667072247090	37
Property Boundary	1	Point of beginning	-79.89546799180	3667530505100	38
Property Boundary	2		-7989382409890	3667202863780	38
Property Boundary	3		-79.89332042310	36.67161203810	38
Property Boundary	4		-7989341922270	3667155803100	38
Property Boundary	5		-7989385771540	36.67196083110	38
Property Boundary	6		-7989400103990	36.67212462010	38
Property Boundary	7		-7989419109170	3667236357840	38
Property Boundary	8		-79 89433278750	36.67236043080	38
Property Boundary	9		-79 89439463520	3667212785090	38
Property Boundary	10		-79.89436551150	3667177168540	38
Property Boundary	11		-79 89439242420	36,67156542530	38
Property Boundary	12		-79 89516283050	3667155853810	38
Property Boundary	13		-7989520557400	3667179807030	38
Property Boundary	14		-7989544384390	3667189479420	38
Property Boundary	15		-79 89580945020	3667173075760	38
Property Boundary	16		-79.89608682960	3667175724410	38
Property Boundary	17		-79.89659610710	3667117222230	38.
Property Boundary	18		-79 89662356440	36.67038375710	38
Property Boundary	19		-79 89610426750	3667004261490	38
Property Boundary	20		-79 89568327940	3666983733500	38
Property Boundary	21		-7989546966000	3666981252220	38
Property Boundary	22		-79.89527229890	36.66984289520	38
Property Boundary	23		-7989495987180	3667003620270	38
Property Boundary	24		-7989475734000	36.67016345710	38
Property Boundary	25		-7989467802240	3667034562630	38
Property Boundary.	26		-79 89474653660	3667060127070	38
Property Boundary	27		-79.89505257360	3667088129840	38
Property Boundary	28		-79.89489048220	3667110972650	38
Property Boundary	29		-7989460517870	3667108245290	38
Property Boundary	30		-79 89438464870	36.67117189530	38
Property Boundary	31		-79 89429034540	3667133228550	38
Property Boundary	32		-79.89422437890	3667154128910	38
Property Boundary	33		-79.89419749500	36.67174600260	38
Property Boundary	34		-7989422334680	36.67211729520	38
Property Boundary	35		-79 89414730320	3667205157100	38
Property Boundary	36		-79 89399258020	3667187494530	38
Property Boundary	37		-7989288138900	36.67085251590	38
Property Boundary	38		-79.89223627290	3667026725150	38
Property Boundary	39		-79 89205082410	3667008909540	38
Property Boundary	40		-79 89197092120	36.66997586130	38
Property Boundary	41		-7989193798980	3666986444500	38

Property Boundary	42		-79 89194351120	36.66973835670	38
Property Boundary	43		-79.89136773820	3667037663120	38
Property Boundary	44		-79.89131433720	3667042939300	38
Property Boundary	45		-79.89069274250	3667012498770	38
Property Boundary	46		-79.89077080170	3667007119210	38
Property Boundary	47		-79.89100775310	3666986875000	38
Property Boundary	48		-79.89121971730	36.66963830000	38
Property Boundary	49		-79 89135271990	36.66947352900	38
Property Boundary	50		-79.89144221320	36.66932949410	38
Property Boundary	51		-7989155933210	36.66913845790	38
Property Boundary	52		-79.89164815020	36.66897091270	38
Property Boundary	53		-79.89175110880	3666864868650	38
Property Boundary	54		-79.89181263550	3666844474940	38
Property Boundary	55		-7989183298710	36.66818353780	38
Property Boundary	56		-79 89182147450	36.66797841900	38
Property Boundary	57		-79 89176878680	3666775315840	38
Property Boundary	58		-7989164941600	36.66731697000	38
Property Boundary	59		-79.89157187530	3666712673300	38
Property Boundary	60		-7989140108540	3666687481410	38
Property Boundary	61		-79.89109745190	3666645832020	38
Property Boundary	62		-79.89025821560	3666653095690	38.
Property Boundary	63		-79.89011972860	3666622851730	38
Property Boundary	64		-79.88992348820	3666581762760	38
Property Boundary	65		-79.88958033330	3666527881350	38
Property Boundary	66		-79.88942840870	3666484256880	38
Property Boundary	67		-79.88935596220	3666455215840	38
Property Boundary	68		-79.88929536050	36.66402220570	38
Property Boundary	69		-7988932106710	3666330946140	38
Property Boundary	70		-79.88942548430	36.66282624680	38
Property Boundary	71		-7988977566980	3666190300960	38
Property Boundary	72		-79 88997857780	3666136273620	38
Property Boundary	73		-79.89031357510	36.66040446080	38
Property Boundary	74		-79.89040188150	36.66030079300	38
Property Boundary	75		-79.89044668000	36.65987833090	38
Property Boundary	76		-79.89057218090	36.65922700080	38
Property Boundary	77		-79.89067045550	36.65888610990	38
Property Boundary	78		-79.89079196790	3665857905130	38
Property Boundary	79		-79.89091701310	3665847070170	38.
Property Boundary	80		-79.89117279350	36.65839280770	38
Property Boundary	81		-7989157399090	3665834950910	38
Property Boundary	82		-79.89200958230	3665836410690	38
Property Boundary	83		-79 89264132770	3665847470270	38
Property Boundary	84		-79 89330041260	3665865713510	38
Property Boundary	85		-79.89363802600	36.65876723710	38
Property Boundary	86		-7989408781600	3665899513610	38
Property Boundary	87		-7989468324720	36.65939570450	38
Property Boundary	88		-79.89523795540	3665989636190	38
Property Boundary	89		-79.89565740700	36.66026991950	38

Property Boundary	90		-7989612320440	3666053365190	38
Property Boundary	91		-7989672098250	36.66088052820	38
Property Boundary	92		-79.89734628510	3666117378680	38
Property Boundary	93		-79 89796852860	36.66134788440	38
Property Boundary	94		-79.89850663380	36.66149871790	38
Property Boundary	95		-79 89924432720	3666170892960	38
Property Boundary	96		-79.89988637230	36.66186270130	38
Property Boundary	97		-79 90034464700	3666204436220	38
Property Boundary	98		-79 90047474120	3666209346350	38
Property Boundary	99		-79 90060086840	3666217204740	38
Property Boundary	100		-79 90106970270	36.66252502750	38
Property Boundary	101		-79 90145381850	36.66302415780	38
Property Boundary	102		-79 90166625280	36.66349213550	38
Property Boundary	103		-79.90190282730	36.66400415340	38
Property Boundary	104		-79 90221547320	36.66457954620	38
Property Boundary	105		-79 90237024070	3666486560620	38
Property Boundary	106		-79 90238022840	3666491044750	38
Property Boundary	107		-79 90259470980	36.66525671150	38
Property Boundary	108		-79 90279676320	3666572104840	38
Property Boundary	109		-79 90283140170	3666588652960	38
Property Boundary	110		-79 90303078390	36.6664274.1170	38
Property Boundary	111		-79.90315088820	3666689064000	38
Property Boundary	112		-79 90347663330	36.66725695670	38
Property Boundary	113		-79 90393616350	3666766870480	38
Property Boundary	114		-79 90428184170	3666790539510	38
Property Boundary	115		-79 90452412990	3666806140670	38
Property Boundary	116		-79 90467992500	3666817597850	38
Property Boundary	117		-79.90492766340	3666830980510	38
Property Boundary	118		-79.90511979170	3666841663500	38
Property Boundary	119		-79 90552557150	3666856679850	38
Property Boundary	120		-79 90578822510	3666865226500	38
Property Boundary	121		-79 90616088840	36.66876360000	38
Property Boundary.	122		-79.90645536180	36.66884480170	38
Property Boundary	123		-79.90683646660	36.66897634830	38
Property Boundary	124		-79.90708803830	36.66906862850	38
Property Boundary	125		-799 90730856830	3666914780010	38
Property Boundary	126		-79 90772239170	3666932496000	38
Property Boundary	127		-79.90811382810	3666952110440	38
Property Boundary	128		-79 90827193150	3666964786010	38
Property Boundary	129		-79 90847550670	3666985774160	38
Property Boundary	130		-79 90868082720	. 3667015590400	38
Property Boundary	131		-79 90877926660	36.67034740680	38
Property Boundary	132		-79.90886844840	3667066087160	38
Property Boundary	133		-79 90891585430	36.67094884820	38
Property Boundary	134		-79 90892715590	3667135275660	38
Property Boundary	135		-79 90886793840	3667168188170	38
Property Boundary	136		-79 90884507150	36.67188480170	38
Property Boundary	137		-79 90891796810	3667221733170	38

Property Boundary	138		-79.90899176170	3667244009170	38
Property Boundary	139		-79.90907175330	3667267048520	38
Property Boundary	140		-79 90916882000	36.67290379350	38
Property Boundary	141		-79.90929829330	36.67311625170	38
Property Boundary	142		-79.90952522500	3667347491190	38
Property Boundary	143		-79.90970940180	36.67372794660	38
Property Boundary	144		-79.90983338150	36.67395592170	38
Property Boundary	145		-79.90999193160	36.67419521010	38
Property Boundary	146		-79 91002372650	36.67435669340	38
Property Boundary	147		-79 91007545840	36.67454973520	38
Property Boundary	148		-79 90998409320	36.67468810840	38
Property Boundary	149		-79.90989580180	36.67485690840	38
Property Boundary	150		-79.90970564170	36.67494337000	38
Property Boundary	151		-79 90944218170	36.67501910830	38
Property Boundary	152		-79.90927218330	36.67507788170	38
Property Boundary	153		-79 90907890320	36.67507968010	38
Property Boundary	154		-79 90879322650	36.67504544830	38
Property Boundary	155		-79 90851061980	3667504011680	38
Property Boundary	156		-79.90826139650	36.67502831 .000	38
Property Boundary	157		-79 90804305990	36.67499516160	38
Property Boundary	158		-79.90783694840	3667497167160	38
Property Boundary	159		-79 90742120130	3667487360470	38
Property Boundary	160		-79.90727300010	3667484556180	38
Property Boundary	161		-79 90639947330	3667461710300	38
Property Boundary	162		-79.90617519160	36.67454747950	38
Property Boundary	163		-79 90593204500	3667443869400	38
Property Boundary	164.		-79 90569913880	36.67431425310	38
Property Boundary	165		-79.90558963690	3667423011480	38
Property Boundary	166		-79 90538178400	36.67414874460	38
Property Boundary	167		-79.90525493040	36.67410960610	38
Property Boundary	168		-79 90430431260	3667402010930	38
Property Boundary	169		-79.90324710480	36.67396280980	38
Property Boundary	170		-79 90215973970	36.67382672890	38
Property Boundary	171		-79 90147969880	3667368869090	38
Property Boundary	172		-79.90103908520	36.67359673410	38
Property Boundary	173		-79.89992537190	36.67323722250	38
Property Boundary	174		-79.89960536520	36.67314671690	38
Property Boundary	175		-79.89945008860	3667315883440	38
Property Boundary	176		-79.89927599590	36.67319029670	38
Property Boundary	177		-79 89913429230	3667324560250	38
Property Boundary	178		-79.89891243090	36.67342948530	38
Property Boundary	179		-79.89849577600	3667388766540	38
Property Boundary	180		-79.89805357040	36.67444559790	38
Property Boundary	181		-79.89784171460	36.67487969250	38
Property Boundary	182		-79 89725508170	36.67615272690	38
Property Boundary	183	Point of begınning	-79.89546799180	3667530505100	38

Polygon Legal Descriptions

SWMU H3

BEGINNING at a rod set at the northwest corner of SWMU H3; THENCE South 76 degrees 06 minutes 43 seconds East for a distance of 308.42 feet to a rod set, THENCE South 15 degrees 40 minutes 23 seconds West for a distance of 104.52 feet to a rod set; THENCE North 75 degrees 23 minutes 13 seconds West for a distance of 305.88 feet to a rod set; THENCE North 14 degrees 16 minutes 47 seconds East for a distance of 100.60 feet to the point and place of BEGINNING,

Said SWMU H3 contans 0.723 acre more or less.

SWMU G - Closed Flyash Landfill

BEGINNING at a rod set at the southeast comer of SWMU G - CLOSED FLYASH LANDFILL; THENCE North 51 degrees 00 minutes 51 seconds West for a distance of 227.06 feet to a rod set; THENCE North 47 degrees 08 minutes 59 seconds West for a distance of 226.62 feet to a rod set; THENCE North 48 degrees 54 minutes 16 seconds East for a distance of 232.57 feet to a rod set; THENCE North 49 degrees 50 minutes 31 seconds East for a distance of 266.48 feet to a rod set; THENCE North 48 degrees 28 minutes 12 seconds East for a distance of 171.35 feet to a rod set, THENCE North 49 degrees 37 minutes 05 seconds East for a distance of 133.36 feet to a rod set; THENCE North 52 degrees 50 minutes 40 seconds East for a distance of 90.15 feet to a rod set; THENCE North 59 degrees 29 minutes 39 seconds East for a distance of 74.32 feet to a rod set, THENCE North 69 degrees 10 minutes 10 seconds East for a distance of 72.72 feet to a rod set; THENCE North 86 degrees 12 minutes 52 seconds East for a distance of 67.30 feet to a rod set; THENCE South 71 degrees 51 minutes 17 seconds East for a distance of 74.78 feet to a rod set; THENCE South 54 degrees 06 minutes 04 seconds East for a distance of 64.29 feet to a rod set; THENCE South 51 degrees 26 minutes 38 seconds East for a distance of 50.45 feet to a rod set; THENCE South 41 degrees 44 minutes 14 seconds East for a distance of 39.42 feet to a rod set; THENCE South 37 degrees 51 minutes 51 seconds East for a distance of 31.93 feet to a rod set; THENCE South 22 degrees 34 minutes 48 seconds East for a distance of 24.02 feet to a rod set; THENCE South 04 degrees 37 minutes 51 seconds East for a distance of 37.55 feet to a rod set; THENCE South 15 degrees 52 minutes 52 seconds West for a distance of 44.30 feet to a rod set, THENCE South 25 degrees 42 minutes 01 seconds West for a distance of 47.35 feet to a rod set; THENCE South 33 degrees 53 minutes 43 seconds West for a distance of 141.33 feet to a rod set, THENCE South 44 degrees 43 minutes 27 seconds West for a distance of 202.35 feet to a rod set; THENCE South 52 degrees 10 minutes 58 seconds West for a distance of 637.97 feet to the point and place of BEGINNING.

Said SWMU G - CLOSED FLYASH LANDFILL contains 11.413 acres more or less.

SWMU F - Former Trash/Ash Landfill

BEGINNING at a rod set at the northwest corner of SWMU F - FORMER TRASH/ASH LANDFILL; THENCE North 71 degrees 08 minutes 22 seconds East for a distance of 666.20 feet to a rod set; THENCE South 06 degrees 04 minutes 24 seconds West for a distance of 368.81 feet to a rod set; THENCE South 75 degrees 39 minutes 37 seconds West for a distance of 440.83 feet to a rod set; THENCE North 32 degrees 14 minutes

09 seconds West for a distance of 293.97 feet to a rod set; THENCE North 32 degrees 14 minutes 17 seconds West for a distance of 14.07 feet to the point and place of BEGINNING;

Said SWMU F - FORMER TRASH/ASH LANDFILL contans 4.041 acres more or less.

SWMU D - Inactive Flyash Pond

BEGINNING at a rod set along the northern margin of SWMU D - INACTIVE FLYASH POND; THENCE South 50 degrees 52 minutes 42 seconds East for a distance of 2.69 feet to a rod set; THENCE South 51 degrees 16 minutes 21 seconds East for a distance of 25.99 feet to a rod set; THENCE South 51 degrees 41 minutes 37 seconds East for a distance of 26.51 feet to a rod set; THENCE South 52 degrees 08 minutes 16 seconds East for a distance of 27.11 feet to a rod set; THENCE South 52 degrees 35 minutes 59 seconds East for a distance of 27.77 feet to a rod set; THENCE South 53 degrees 04 minutes 40 seconds East for a distance of 28.51 feet to a rod set; THENCE South 53 degrees 32 minutes 59 seconds East for a distance of 29.28 feet to a rod set; THENCE South 53 degrees 57 minutes 43 seconds East for a distance of 29.85 feet to a rod set; THENCE South 54 degrees 18 minutes 58 seconds East for a distance of 30.20 feet to a rod set; THENCE South 54 degrees 37 minutes 17 seconds East for a distance of 30.30 feet to a rod set; THENCE South 54 degrees 53 minutes 07 seconds East for a distance of 30.17 feet to a rod set; THENCE South 55 degrees 06 minutes 49 seconds East for a distance of 29.80 feet to a rod set; THENCE South 55 degrees 18 minutes 37 seconds East for a distance of 29.18 feet to a rod set; THENCE South 55 degrees 28 minutes 39 seconds East for a distance of 28.33 feet to a rod set; THENCE South 55 degrees 36 minutes 54 seconds East for a distance of 27.26 feet to a rod set; THENCE South 55 degrees 41 minutes 57 seconds East for a distance of 26.02 feet to a rod set; THENCE South 55 degrees 43 minutes 05 seconds East for a distance of 24.62 feet to a rod set; THENCE South 55 degrees 39 minutes 24 seconds East for a distance of 23.06 feet to a rod set; THENCE South 55 degrees 30 minutes 17 seconds East for a distance of 21.35 feet to a rod set; THENCE South 55 degrees 13 minutes 40 seconds East for a distance of 19.49 feet to a rod set; THENCE South 54 degrees 46 minutes 57 seconds East for a distance of 17.47 feet to a rod set; THENCE South 54 degrees 04 minutes 56 seconds East for a distance of 15.30 feet to a rod set; THENCE South 53 degrees 01 minutes 19 seconds East for a distance of 13.04 feet to a rod set; THENCE South 51 degrees 34 minutes 50 seconds East for a distance of 10.98 feet to a rod set; THENCE South 49 degrees 40 minutes 57 seconds East for a distance of 9.17 feet to a rod set; THENCE South 47 degrees 10 minutes 55 seconds East for à distance of 7.63 feet to a rod set; THENCE South 43 degrees 56 minutes 57 seconds East for a distance of 6.36 feet to a rod set; THENCE South 39 degrees 57 minutes 42 seconds East for a distance of 5.36 feet to a rod set; THENCE South 35 degrees 23 minutes 02 seconds East for a distance of 4.64 feet to a rod set, THENCE South 30 degrees 46 minutes 06 seconds East for a distance of 4.17 feet to a rod set; THENCE South 26 degrees 41 minutes 20 seconds East for a distance of 3.93 feet to a rod set; THENCE South 22 degrees 29 minutes 39 seconds East for a distance of 3.75 feet to a rod set; THENCE South 17 degrees 57 minutes 23 seconds East for a distance of 3.60 feet to a rod set; THENCE South 13 degrees 08 minutes 02 seconds East for a distance of 3.48 feet to a rod set; THENCE South 08 degrees 05 minutes 14 seconds East for a distance of 3.40 feet to a rod set; THENCE South 00 degrees 50 minutes 24 seconds West for a distance of 3.34 feet to a rod set; THENCE South 01 degrees 33 minutes 47 seconds East for a distance of 3.34 feet to a rod set; THENCE South 07 degrees 14 minutes 29 seconds West for a distance
of 3.36 feet to a rod set; THENCE South 12 degrees 13 minutes 28 seconds West for a distance of 3.43 feet to a rod set; THENCE South 17 degrees 19 minutes 13 seconds West for a distance of 3.66 feet to a rod set; THENCE South 22 degrees 00 minutes 39 seconds West for a distance of 4.07 feet to a rod set; THENCE South 25 degrees 54 minutes 15 seconds West for a distance of 4.65 feet to a rod set; THENCE South 28 degrees 54 minutes 13 seconds West for a distance of 5.41 feet to a rod set; THENCE South 31 degrees 03 minutes 47 seconds West for a distance of 6.34 feet to a rod set; THENCE South 32 degrees 35 minutes 05 seconds West for a distance of 7.43 feet to a rod set; THENCE South 33 degrees 36 minutes 54 seconds West for a distance of 8.68 feet to a rod set; THENCE South 34 degrees 17 minutes 34 seconds West for a distance of 10.07 feet to a rod set; THENCE South 34 degrees 44 minutes 57 seconds West for a distance of 11.52 feet to a rod set; THENCE South 35 degrees 03 minutes 41 seconds West for a distance of 13.02 feet to a rod set; THENCE South 35 degrees 15 minutes 54 seconds West for a distance of 14.55 feet to a rod set; THENCE South 35 degrees 23 minutes 47 seconds West for a distance of 16.13 feet to a rod set, THENCE South 35 degrees 28 minutes 15 seconds West for a distance of 17.76 feet to a rod set; THENCE South 35 degrees 29 minutes 57 seconds West for a distance of 19.41 feet to a rod set; THENCE South 35 degrees 29 minutes 51 seconds West for a distance of 21.12 feet to a rod set; THENCE South 35 degrees 28 minutes 45 seconds West for a distance of 22.76 feet to a rod set; THENCE South 35 degrees 28 minutes 58 seconds West for a distance of 23.90 feet to a rod set; THENCE South 35 degrees 31 minutes 01 seconds West for a distance of 24.44 feet to a rod set; THENCE South 35 degrees 35 minutes 03 seconds West for a distance of 24.37 feet to a rod set; THENCE South 35 degrees 40 minutes 47 seconds West for a distance of 23.69 feet to a rod set; THENCE South 35 degrees 49 minutes 33 seconds West for a distance of 22.42 feet to a rod set; THENCE South 36 degrees 02 minutes 30 seconds West for a distance of 20.53 feet to a rod set; THENCE South 36 degrees 21 minutes 58 seconds West for a distance of 18.04 feet to a rod set; THENCE South 36 degrees 52 minutes 55 seconds West for a distance of 15.11 feet to a rod set; THENCE South 37 degrees 41 minutes 59 seconds West for a distance of 12.39 feet to a rod set; THENCE South 38 degrees 56 minutes 10 seconds West for a distance of 10.04 feet to a rod set; THENCE South 40 degrees 48 minutes 55 seconds West for a distance of 8.07 feet to a rod set; THENCE South 43 degrees 34 minutes 33 seconds West for a distance of 6.49 feet to a rod set; THENCE South 47 degrees 24 minutes 42 seconds West for a distance of 5.29 feet to a rod set; THENCE South 52 degrees 11 minutes 40 seconds West for a distance of 4.49 feet to a rod set; THENCE South 57 degrees 08 minutes 43 seconds West for a distance of 4.09 feet to a rod set; THENCE South 61 degrees 18 minutes 14 seconds West for a distance of 4.00 feet to a rod set; THENCE South 65 degrees 19 minutes 37 seconds West for a distance of 4.00 feet to a rod set; THENCE South 69 degrees 31 minutes 28 seconds West for a distance of 4.01 feet to a rod set, THENCE South 73 degrees 51 minutes 14 seconds West for a distance of 4.04 feet to a rod set; THENCE South 78 degrees 15 minutes 23 seconds West for a distance of 4.09 feet to a rod set; THENCE South 82 degrees 41 minutes 34 seconds West for a distance of 4.17 feet to a rod set; THENCE South 87 degrees 02 minutes 31 seconds West for a distance of 428 feet to a rod set; THENCE North 88 degrees 39 minutes 52 seconds West for a distance of 4.42 feet to a rod set; THENCE North 84 degrees 31 minutes 02 seconds West for a distance of 4.61 feet to a rod set; THENCE North 80 degrees 43 minutes 43 seconds West for a distance of 4.93 feet to a rod set; THENCE North 77 degrees 31 minutes 38 seconds West for a distance of 5.42 feet to a rod set; THENCE North 75 degrees 00 minutes 54 seconds West for a distance of 6.06 feet to a rod set; THENCE North 73 degrees 09 minutes 30 seconds West for a distance of 6.86 feet to a rod set; THENCE North 71 degrees 52 minutes 18
seconds West for a distance of 7.80 feet to a rod set; THENCE North 71 degrees 01 minutes 42 seconds West for a distance of 8.88 feet to a rod set; THENCE North 70 degrees 31 minutes 35 seconds West for a distance of 10.10 feet to a rod set; THENCE North 70 degrees 14 minutes 44 seconds West for a distance of 11.44 feet to a rod set; THENCE North 70 degrees 01 minutes 34 seconds West for a distance of 12.80 feet to a rod set; THENCE North 69 degrees 49 minutes 53 seconds West for a distance of 14.16 feet to a rod set; THENCE North 69 degrees 39 minutes 15 seconds West for a distance of 15.53 feet to a rod set; THENCE North 69 degrees 29 minutes 24 seconds West for a distance of 16.89 feet to a rod set; THENCE North 69 degrees 20 minutes 21 seconds West for a distance of 18.25 feet to a rod set; THENCE North 69 degrees 11 minutes 31 seconds West for a distance of 19.62 feet to a rod set; THENCE North 69 degrees 03 minutes 10 seconds West for a distance of 20.99 feet to a rod set; THENCE North 68 degrees 55 minutes 28 seconds West for a distance of 22.31 feet to a rod set; THENCE North 68 degrees 48 minutes 42 seconds West for a distance of 23.40 feet to a rod set; THENCE North 68 degrees 42 minutes 46 seconds West for a distance of 24.20 feet to a rod set; HENCE North 68 degrees 37 minutes 31 seconds West for a distance of 24.74 feet to a rod set; THENCE North 68 degrees 32 minutes 30 seconds West for a distance of 24.99 feet to a rod set; THENCE North 68 degrees 27 minutes 31 seconds West for a distance of 24.96 feet to a rod set; THENCE North 68 degrees 22 minutes 52 seconds West for a distance of 24.66 feet to a rod set; THENCE North 68 degrees 17 minutes 58 seconds West for a distance of 24.08 feet to a rod set; THENCE North 68 degrees 12 minutes 18 seconds West for a distance of 23.27 feet to a rod set; THENCE North 68 degrees 04 minutes 34 seconds West for a distance of 22.43 feet to a rod set; THENCE North 67 degrees 54 minutes 27 seconds West for a distance of 21.63 feet to a rod set; THENCE North 67 degrees 41 minutes 45 seconds West for a distance of 20.86 feet to a rod set; THENCE North 67 degrees 25 minutes 44 seconds West for a distance of 20.12 feet to a rod set; THENCE North 67 degrees 06 minutes 17 seconds West for a distance of 19.42 feet to a rod set; THENCE North 66 degrees 43 minutes 41 seconds West for a distance of 18.74 feet to a rod set; THENCE North 66 degrees 16 minutes 51 seconds West for a distance of 18.10 feet to a rod set; THENCE North 65 degrees 46 minutes 01 seconds West for a distance of 17.49 feet to a rod set; THENCE North 65 degrees 10 minutes 11 seconds West for a distance of 16.91 feet to a rod set; THENCE North 64 degrees 29 minutes 20 seconds West for a distance of 16.39 feet to a rod set; THENCE North 63 degrees 43 minutes 01 seconds West for a distance of 15.90 feet to a rod set; THENCE North 62 degrees 51 minutes 30 seconds West for a distance of 15.46 feet to a rod set; THENCE North 61 degrees 54 minutes 03 seconds West for a distance of 15.07 feet to a rod set; THENCE North 60 degrees 51 minutes 38 seconds West for a distance of 14.72 feet to a rod set; THENCE North 59 degrees 43 minutes 59 seconds West for a distance of 14.41 feet to a rod set, THENCE North 58 degrees 31 minutes 21 seconds West for a distance of 14.15 feet to a rod set; THENCE North 57 degrees 16 minutes 26 seconds West for a distance of 13.91 feet to a rod set; THENCE North 55 degrees 59 minutes 10 seconds West for a distance of 13.70 feet to a rod set; THENCE North 54 degrees 39 minutes 44 seconds West for a distance of 13.49 feet to a rod set; THENCE North 53 degrees 18 minutes 48 seconds West for a distance of 13.31 feet to a rod set; THENCE North 51 degrees 56 minutes 04 seconds West for a distance of 13.16 feet to a rod set; THENCE North 50 degrees 31 minutes 56 seconds West for a distance of 13.00 feet to a rod set; THENCE North 49 degrees 07 minutes 04 seconds West for a distance of 12.88 feet to a rod set; THENCE North 47 degrees 38 minutes 28 seconds West for a distance of 12.80 feet to a rod set; THENCE North 45 degrees 58 minutes 14 seconds West for a distance of 12.86 feet to a rod set; THENCE North 44 degrees 06 minutes 30 seconds West for a distance of
13.08 feet to a rod set; THENCE North 42 degrees 08 minutes 54 seconds West for a distance of 13.49 feet to a rod set; THENCE North 40 degrees 09 minutes 41 seconds West for a distance of 14.07 feet to a rod set; THENCE North 38 degrees 13 minutes 37 seconds West for a distance of 14.82 feet to a rod set; THENCE North 36 degrees 23 minutes 50 seconds West for a distance of 15.75 feet to a rod set; THENCE North 34 degrees 42 minutes 27 seconds West for a distance of 16.87 feet to a rod set; THENCE North 33 degrees 11 minutes 41 seconds West for a distance of 18.10 feet to a rod set; THENCE North 31 degrees 53 minutes 32 seconds West for a distance of 19.21 feet to a rod set; THENCE North 30 degrees 43 minutes 55 seconds West for a distance of 20.14 feet to a rod set; THENCE North 29 degrees 40 minutes 34 seconds West for a distance of 20.90 feet to a rod set; THENCE North 28 degrees 41 minutes 02 seconds West for a distance of 21.47 feet to a rod set; THENCE North 27 degrees 43 minutes 07 seconds West for a distance of 21.86 feet to a rod set; THENCE North 26 degrees 45 minutes 57 seconds West for a distance of 22.07 feet to a rod set; THENCE North 25 degrees 47 minutes 30 seconds West for a distance of 22.10 feet to a rod set; THENCE North 24 degrees 48 minutes 13 seconds West for a distance of 22.01 feet to a rod set; THENCE North 23 degrees 54 minutes 14 seconds West for a distance of 22.06 feet to a rod set; THENCE North 23 degrees 08 minutes 24 seconds West for a distance of 22.30 feet to a rod set; THENCE North 22 degrees 31 minutes 08 seconds West for a distance of 22.73 feet to a rod set; THENCE North 22 degrees 03 minutes 20 seconds West for a distance of 23.36 feet to a rod set; THENCE North 21 degrees 44 minutes 44 seconds West for a distance of 24.18 feet to a rod set; THENCE North 21 degrees 35 minutes 03 seconds West for a distance of 25.18 feet to a rod set; THENCE North 21 degrees 33 minutes 13 seconds West for a distance of 26.38 feet to a rod set; THENCE North 21 degrees 37 minutes 36 seconds West for a distance of 27.65 feet to a rod set; THĖNCE North 21 degrees 43 minutes 07 seconds West for a distance of 28.56 feet to a rod set; THENCE North 21 degrees 49 minutes 06 seconds West for a distance of 28.99 feet to a rod set; THENCE North 21 degrees 55 minutes 55 seconds West for a distance of 28.95 feet to a rod set; THENCE North 22 degrees 03 minutes 56 seconds West for a distance of 28.45 feet to a rod set; THENCE North 22 degrees 13 minutes 19 seconds West for a distance of 27.46 feet to a rod set; THENCE North 22 degrees 25 minutes 11 seconds West for a distance of 26.00 feet to a rod set, THENCE North 22 degrees 40 minutes 25 seconds West for a distance of 24.07 feet to a rod set; THENCE North 22 degrees 59 minutes 40 seconds West for a distance of 21.79 feet to a rod set; THENCE North 23 degrees 21 minutes 11 seconds West for a distance of 19.63 feet to a rod set; THENCE North 23 degrees 43 minutes 01 seconds West for a distance of 17.71 feet to a rod set; THENCE North 24 degrees 04 minutes 48 seconds West for a distance of 16.03 feet to a rod set; THENCE North 24 degrees 25 minutes 12 seconds West for a distance of 14.61 feet to a rod set; THENCE North 24 degrees 42 minutes 56 seconds West for a distance of 13.43 feet to a rod set; THENCE North 24 degrees 55 minutes 15 seconds West for a distance of 12.49 feet to a rod set; THENCE North 25 degrees 01 minutes 48 seconds West for a distance of 11.79 feet to a rod set; THENCE North 24 degrees 59 minutes 37 seconds West for a distance of 11.28 feet to a rod set; THENCE North 24 degrees 47 minutes 44 seconds West for a distance of 10.80 feet to a rod set; THENCE North 24 degrees 24 minutes 44 seconds West for a distance of 10.30 feet to a rod set; THENCE North 23 degrees 48 minutes 51 seconds West for a distance of 9.77 feet to a rod set; THENCE North 22 degrees 56 minutes 46 seconds West for a distance of 9.21 feet to a rod set; THENCE North 21 degrees 46 minutes 23 seconds West for a distance of 8.64 feet to a rod set, THENCE North 20 degrees 11 minutes 51 seconds West for a distance of 8.04 feet to a rod set; THENCE North 18 degrees 07 minutes 22 seconds West for a distance of 7.43 feet to a rod set; THENCE

North 15 degrees 29 minutes 24 seconds West for a distance of 6.82 feet to a rod set; THENCE North 12 degrees 34 minutes 03 seconds West for a distance of 6.28 feet to a rod set; THENCE North 09 degrees 30 minutes 04 seconds West for a distance of 5.82 feet to a rod set; THENCE North 06 degrees 21 minutes 44 seconds West for a distance of 5.42 feet to a rod set; THENCE North 03 degrees 14 minutes 54 seconds West for a distance of 5.10 feet to a rod set; THENCE North 00 degrees 17 minutes 02 seconds West for a distance of 4.85 feet to a rod set; THENCE North 02 degrees 21 minutes 59 seconds East for a distance of 4.65 feet to a rod set; THENCE North 04 degrees 35 minutes 26 seconds East for a distance of 4.51 feet to a rod set; THENCE North 06 degrees 22 minutes 59 seconds East for a distance of 4.42 feet to a rod set; THENCE North 08 degrees 13 minutes 51 seconds East for a distance of 4.34 feet to a rod set; THENCE North 10 degrees 15 minutes 04 seconds East for a distance of 4.29 feet to a rod set; THENCE North 12 degrees 24 minutes 37 seconds East for a distance of 4.25 feet to a rod set; THENCE North 14 degrees 42 minutes 48 seconds East for a distance of 4.23 feet to a rod set; THENCE North 17 degrees 07 minutes 40 seconds East for a distance of 423 feet to a rod set; THENCE North 19 degrees 35 minutes 45 seconds East for a distance of 4.25 feet to a rod set; THENCE North 22 degrees 07 minutes 53 seconds East for a distance of 429 feet to a rod set, THENCE North 24 degrees 41 minutes 03 seconds East for a distance of 4.35 feet to a rod set; THENCE North 27 degrees 18 minutes 10 seconds East for a distance of 4.51 feet to a rod set; THENCE North 29 degrees 49 minutes 48 seconds East for a distance of 4.77 feet to a rod set; THENCE North 32 degrees 09 minutes 14 seconds East for a distance of 5.11 feet to a rod set; THENCE North 34 degrees 11 minutes 49 seconds East for a distance of 5.55 feet to a rod set; THENCE North 35 degrees 55 minutes 47 seconds East for a distance of 6.08 feet to a rod set; THENCE North 37 degrees 21 minutes 01 seconds East for a distance of 6.70 feet to a rod set; THENCE North 38 degrees 29 minutes 45 seconds East for a distance of 7.42 feet to a rod set; THENCE North 39 degrees 22 minutes 38 seconds East for a distance of 8.18 feet to a rod set, THENCE North 39 degrees 57 minutes 42 seconds East for a distance of 8.88 feet to a rod set; THENCE North 40 degrees 19 minutes 25 seconds East for a distance of 9.47 feet to a rod set; THENCE North 40 degrees 31 minutes 55 seconds East for a distance of 9.96 feet to a rod set; THENCE North 40 degrees 34 minutes 40 seconds East for a distance of 10.34 feet to a rod set; THENCE North 40 degrees 30 minutes 42 seconds East for a distance of 10.61 feet to a rod set; THENCE North 40 degrees 19 minutes 18 seconds East for a distance of 10.78 feet to a rod set; THENCE North 40 degrees 01 minutes 01 seconds East for a distance of 10.83 feet to a rod set; THENCE North 39 degrees 36 minutes 24 seconds East for a distance of 1080 feet to a rod set; THENCE North 39 degrees 11 minutes 23 seconds East for a distance of 1072 feet to a rod set; THENCE North 38 degrees 46 minutes 26 seconds East for a distance of 10.60 feet to a rod set; THENCE North 38 degrees 21 minutes 39 seconds East for a distance of 10.45 feet to a rod set; THENCE North 37 degrees 56 minutes 26 seconds East for a distance of 10.26 feet to a rod set; THENCE North 37 degrees 30 minutes 49 seconds East for a distance of 1002 feet to a rod set; THENCE North 37 degrees 04 minutes 32 seconds East for a distance of 9.76 feet to a rod set; THENCE North 36 degrees 37 minutes 00 seconds East for a distance of 9.45 feet to a rod set; THENCE North 36 degrees 10 minutes 51 seconds East for a distance of 9.11 feet to a rod set; THENCE North 35 degrees 59 minutes 06 seconds East for a distance of 8.75 feet to a rod set; THENCE North 36 degrees 07 minutes 13 seconds East for a distance of 8.38 feet to a rod set; THENCE North 36 degrees 37 minutes 44 seconds East for a distance of 7.99 feet to a rod set; THENCE North 37 degrees 34 minutes 02 seconds East for a distance of 7.58 feet to a rod set; THENCE North 39 degrees 02 minutes 11 seconds East for a distance of 7.15 feet to a rod set;

THENCE North 41 degrees 06 minutes 12 seconds East for a distance of 6.72 feet to a rod set; THENCE North 43 degrees 57 minutes 01 seconds East for a distance of 6.29 feet to a rod set; THENCE North 47 degrees 34 minutes 24 seconds East for a distance of 5.87 feet to a rod set; THENCE North 51 degrees 28 minutes 54 seconds East for a distance of 5.51 feet to a rod set; THENCE North 55 degrees 30 minutes 39 seconds East for a distance of 5.17 feet to a rod set; THENCE North 59 degrees 35 minutes 30 seconds East for a distance of 4.88 feet to a rod set; THENCE North 63 degrees 39 minutes 02 seconds East for a distance of 4.63 feet to a rod set; THENCE North 67 degrees 35 minutes 30 seconds East for a distance of 4.42 feet to a rod set; THENCE North 71 degrees 22 minutes 05 seconds East for a distance of 4.23 feet to a rod set; THENCE North 74 degrees 51 minutes 45 seconds East for a distance of 4.06 feet to a rod set; THENCE North 78 degrees 11 minutes 04 seconds East for a distance of 3.91 feet to a rod set; THENCE North 81 degrees 52 minutes 50 seconds East for a distance of 3.78 feet to a rod set; THENCE North 86 degrees 04 minutes 48 seconds East for a distance of 3.67 feet to a rod set; THENCE South 89 degrees 12 minutes 11 seconds East for a distance of 3.60 feet to a rod set; THENCE South 84 degrees 03 minutes 00 seconds East for a distance of 3.55 feet to a rod set; THENCE South 78 degrees 34 minutes 56 seconds East for a distance of 355 feet to a rod set; THENCE South 72 degrees 55 minutes 06 seconds East for a distance of 3.59 feet to a rod set; THENCE South 67 degrees 15 minutes 20 seconds East for a distance of 3.68 feet to a rod set; THENCE South 61 degrees 46 minutes 58 seconds East for a distance of 3.82 feet to a rod set; THENCE South 56 degrees 47 minutes 47 seconds East for a distance of 3.98 feet to a rod set; THENCE South 52 degrees 22 minutes 43 seconds East for a distance of 4.18 feet to a rod set; THENCE South 48 degrees 29 minutes 16 seconds East for a distance of 4.39 feet to a rod set; THENCE South 45 degrees 03 minutes 41 seconds East for a distance of 4.62 feet to a rod set; THENCE South 42 degrees 03 minutes 26 seconds East for a distance of 4.86 feet to a rod set; THENCE South 39 degrees 26 minutes 02 seconds East for a distance of 5.11 feet to a rod set; THENCE South 37 degrees 08 minutes 05 seconds East for a distance of 5.36 feet to a rod set, THENCE South 35 degrees 10 minutes 21 seconds East for a distance of 5.62 feet to a rod set; THENCE South 33 degrees 41 minutes 05 seconds East for a distance of 5.86 feet to a rod set; THENCE South 32 degrees 39 minutes 08 seconds East for a distance of 6.09 feet to a rod set; THENCE South 32 degrees 02 minutes 17 seconds East for a distance of 6.31 feet to a rod set; THENCE South 31 degrees 46 minutes 06 seconds East for a distance of 652 feet to a rod set; THENCE South 31 degrees 49 minutes 39 seconds East for a distance of 6.69 feet to a rod set; THENCE South 32 degrees 10 minutes 16 seconds East for a distance of 6.85 feet to a rod set; THENCE South 32 degrees 48 minutes 41 seconds East for a distance of 7.01 feet to a rod set; THENCE South 33 degrees 39 minutes 40 seconds East for a distance of 7.14 feet to a rod set; THENCE South 34 degrees 28 minutes 17 seconds East for a distance of 7.30 feet to a rod set; THENCE South 35 degrees 12 minutes 51 seconds East for a distance of 7.50 feet to a rod set; THENCE South 35 degrees 52 minutes 01 seconds East for a distance of 7.72 feet to a rod set; THENCE South 36 degrees 26 minutes 16 seconds East for a distance of 7.98 feet to a rod set; THENCE South 36 degrees 54 minutes 31 seconds East for a distance of 8.27 feet to a rod set; THENCE South 37 degrees 18 minutes 31 seconds East for a distance of 8.60 feet to a rod set; THENCE South 37 degrees 37 minutes 55 seconds East for a distance of 8.95 feet to a rod set; THENCE South 37 degrees 53 minutes 18 seconds East for a distance of 9.33 feet to a rod set; THENCE South 38 degrees 08 minutes 54 seconds East for a distance of 9.71 feet to a rod set, THENCE South 38 degrees 24 minutes 38 seconds East for a distance of 10.09 feet to a rod set; THENCE South 38 degrees 40 minutes 52 seconds East for a distance of 10.47 feet to a
rod set; THENCE South 38 degrees 57 minutes 25 seconds East for a distance of 10.83 feet to a rod set; THENCE South 39 degrees 14 minutes 18 seconds East for a distance of 11.21 feet to a rod set; THENCE South 39 degrees 31 minutes 21 seconds East for a distance of 11.59 feet to a rod set; THENCE South 39 degrees 48 minutes 53 seconds East for a distance of 11.96 feet to a rod set, THENCE South 40 degrees 06 minutes 21 seconds East for a distance of 12.33 feet to a rod set, THENCE South 40 degrees 22 minutes 48 seconds East for a distance of 12.76 feet to a rod set; THĖNCE South 40 degrees 37 minutes 17 seconds East for a distance of 13.24 feet to a rod set; THENCE South 40 degrees 50 minutes 42 seconds East for a distance of 13.77 feet to a rod set; THENCE South 41 degrees 02 minutes 29 seconds East for a distance of 14.36 feet to a rod set; THENCE South 41 degrees 12 minutes 53 seconds East for a distance of 15.01 feet to a rod set; THENCE South 41 degrees 21 minutes 38 seconds East for a distance of 15.71 feet to a rod set; THENCE South 41 degrees 29 minutes 01 seconds East for a distance of 16.46 feet to a rod set; THENCE South 41 degrees 36 minutes 09 seconds East for a distance of 17.25 feet to a rod set; THENCE South 41 degrees 43 minutes 44 seconds East for a distance of 17.98 feet to a rod set; THENCE South 41 degrees 53 minutes 04 seconds East for a distance of 18.63 feet to a rod set; THENCE South 42 degrees 03 minutes 38 seconds East for a distance of 19.19 feet to a rod set; THENCE South 42 degrees 15 minutes 17 seconds East for a distance of 19.68 feet to a rod set; THENCE South 42 degrees 28 minutes 54 seconds East for a distance of 20.08 feet to a rod set; THENCE South 42 degrees 43 minutes 33 seconds East for a distance of 20.40 feet to a rod set; THENCE South 42 degrees 59 minutes 59 seconds East for a distance of 20.64 feet to a rod set; THENCE South 43 degrees 18 minutes 10 seconds East for a distance of 20.82 feet to a rod set; THENCE South 43 degrees 38 minutes 56 seconds East for a distance of 20.99 feet to a rod set; THENCE South 44 degrees 01 minutes 36 seconds East for a distance of 21.19 feet to a rod set; THENCE South 44 degrees 26 minutes 57 seconds East for a distance of 21.40 feet to a rod set; THENCE South 44 degrees 54 minutes 03 seconds East for a distance of 21.63 feet to a rod set; THENCE South 45 degrees 23 minutes 20 seconds East for a distance of 21.88 feet to a rod set; THENCE South 45 degrees 54 minutes 20 seconds East for a distance of 22.15 feet to a rod set; THENCE South 46 degrees 27 minutes 07 seconds East for a distance of 22.43 feet to a rod set; THENCE South 47 degrees 00 minutes 30 seconds East for a distance of 22.74 feet to a rod set; THENCE South 47 degrees 32 minutes 19 seconds East for a distance of 23.04 feet to a rod set; THENCE South 48 degrees 01 minutes 24 seconds East for a distance of 23.32 feet to a rod set; THENCE South 48 degrees 28 minutes 14 seconds East for a distance of 23.61 feet to a rod set; THENCE South 48 degrees 52 minutes 54 seconds East for a distance of 2388 feet to a rod set; THENCE South 49 degrees 15 minutes 31 seconds East for a distance of 24.14 feet to a rod set; THENCE South 49 degrees 35 minutes 54 seconds East for a distance of 24.39 feet to a rod set; THENCE South 49 degrees 54 minutes 29 seconds East for a distance of 24.62 feet to a rod set; THENCE South 50 degrees 12 minutes 01 seconds East for a distance of 24.87 feet to a rod set, THENCE South 50 degrees 31 minutes 16 seconds East for a distance of 25.18 feet to a rod set; THENCE South 50 degrees 52 minutes 48 seconds East for a distance of 22.85 feet to the point and place of BEGINNING.

Said SWMU D - INACTIVE FLYASH POND contains 19.571 acres more or less. AOC FTA
BEGINNING at a rod set at the northwest corner of the AOC - FIRE TRAINING AREA; THENCE South 72 degrees 01 minutes 33 seconds East for a distance of 48.73 feet to a rod set; THENCE South 19 degrees 49 minutes 42 seconds West for a distance of
201.37 feet to a rod set; THENCE North 70 degrees 37 minutes 31 seconds West for a distance of 45.25 feet to rod set; THENCE North 18 degrees 50 minutes 25 seconds East for a distance of 200.18 feet to rod set;

Said AOC - FIRE TRAINING AREA contains 0.217 acre more or less.
SWMU C - Former Burning Ground
BEGINNING at a rod set in the southwest quadrant of SWMU C - FORMER BURNING GROUND; THENCE North 59 degrees 15 minutes 56 seconds West for a distance of 2.57 feet to a rod set; THENCE North 55 degrees 11 minutes 37 seconds West for a distance of 4.85 feet to a rod set; THENCE North 51 degrees 45 minutes 30 seconds West for a distance of 5.18 feet to a rod set; THENCE North 48 degrees 54 minutes 57 seconds West for a distance of 5.56 feet to a rod set; THENCE North 46 degrees 35 minutes 14 seconds West for a distance of 6.00 feet to a rod set; THENCE North 44 degrees 45 minutes 01 seconds West for a distance of 6.49 feet to a rod set; THENCE North 43 degrees 18 minutes 41 seconds West for a distance of 7.03 feet to a rod set; THENCE North 42 degrees 14 minutes 40 seconds West for a distance of 7.62 feet to a rod set; THENCE North 41 degrees 28 minutes 01 seconds West for a distance of 8.25 feet to a rod set; THENCE North 40 degrees 55 minutes 33 seconds West for a distance of 8.93 feet to a rod set; THENCE North 40 degrees 34 minutes 20 seconds West for a distance of 9.62 feet to a rod set; THENCE North 40 degrees 13 minutes 19 seconds West for a distance of 10.20 feet to a rod set; THENCE North 39 degrees 50 minutes 49 seconds West for adistance of 10.66 feet to a rod set, THENCE North 39 degrees 26 minutes 05 seconds West for a distance of 10.98 feet to a rod set, THENCE North 38 degrees 59 minutes 00 seconds West for a distance of 11.17 feet to a rod set; THENCE North 38 degrees 27 minutes 35 seconds West for a distance of 11.23 feet to a rod set; THENCE North 37 degrees 51 minutes 25 seconds West for a distance of 11.16 feet to a rod set; THENCE North 37 degrees 09 minutes 24 seconds West for a distance of 10.95 feet to a rod set; THENCE North 36 degrees 16 minutes 04 seconds West for a distance of 10.69 feet to a rod set; THENCE North 34 degrees 59 minutes 51 seconds West for a distance of 10.54 feet to a rod set; THENCE North 33 degrees 20 minutes 01 seconds West for a distance of 10.61 feet to a rod set; THENCE North 31 degrees 23 minutes 10 seconds West for a distance of 10.89 feet to a rod set; THENCE North 29 degrees 16 minutes 29 seconds West for a distance of 11.38 feet to a rod set; THENCE North 27 degrees 08 minutes 22 seconds West for a distance of 12.09 feet to a rod set; THENCE North 25 degrees 05 minutes 27 seconds West for a distance of 13.02 feet to a rod set; THENCE North 23 degrees 11 minutes 43 seconds West for a distance of 14.17 feet to a rod set; THENCE North 21 degrees 33 minutes 22 seconds West for a distance of 15.48 feet to a rod set; THENCE North 20 degrees 20 minutes 37 seconds West for a distance of 16.69 feet to a rod set; THENCE North 19 degrees 29 minutes 15 seconds West for a distance of 17.73 feet to a rod set; THENCE North 18 degrees 54 minutes 13 seconds West for a distance of 18.59 feet to a rod set; THENCE North 18 degrees 32 minutes 25 seconds West for a distance of 19.28 feet to a rod set; THENCE North 18 degrees 21 minutes 36 seconds West for a distance of 19.79 feet to a rod set; THENCE North 18 degrees 21 minutes 14 seconds West for a distance of 20.13 feet to a rod set; THENCE North 18 degrees 30 minutes 26 seconds West for a distance of 20.28 feet to a rod set; THENCE North 18 degrees 46 minutes 08 seconds West for a distance of 20.24 feet to a rod set; THENCE North 18 degrees 57 minutes 30 seconds West for a distance of 19.97 feet to a rod set; THENCE North 19 degrees 01 minutes 53 seconds West for a distance of 19.44 feet to a rod set; THENCE North 18 degrees 58 minutes 22 seconds West for a distance of 18.67 feet to a rod set; THENCE North 18
degrees 46 minutes 23 seconds West for a distance of 17.64 feet to a rod set; THENCE North 18 degrees 23 minutes 18 seconds West for a distance of 16.36 feet to a rod set; THENCE North 17 degrees 45 minutes 20 seconds West for a distance of 14.83 feet to a rod set; THENCE North 16 degrees 44 minutes 38 seconds West for a distance of 13.05 feet to a rod set; THENCE North 15 degrees 10 minutes 35 seconds West for a distance of 11.10 feet to a rod set; THENCE North 12 degrees 56 minutes 18 seconds West for a distance of 9.29 feet to a rod set; THENCE North 09 degrees 50 minutes 23 seconds West for a distance of 7.69 feet to a rod set; THENCE North 05 degrees 28 minutes 52 seconds West for a distance of 6.31 feet to a rod set, THENCE North 00 degrees 31 minutes 52 seconds East for a distance of 5.18 feet to a rod set; THENCE North 08 degrees 34 minutes 34 seconds East for a distance of 4.31 feet to a rod set; THENCE North 18 degrees 29 minutes 19 seconds East for a distance of 3.71 feet to a rod set; THENCE North 29 degrees 08 minutes 11 seconds East for a distance of 3.40 feet to a rod set; THENCE North 38 degrees 54 minutes 23 seconds East for a distance of 3.30 feet to a rod set, THENCE North 48 degrees 09 minutes 48 seconds East for a distance of 3.28 feet to a rod set; THENCE North 57 degrees 06 minutes 28 seconds East for a distance of 3.29 feet to a rod set; THENCE North 65 degrees 43 minutes 13 seconds East for a distance of 3.32 feet to a rod set; THENCE North 74 degrees 03 minutes 00 seconds East for a distance of 337 feet to a rod set; THENCE North 82 degrees 08 mınutes 03 seconds East for a distance of 3.43 feet to a rod set; THENCE South 89 degrees 54 minutes 08 seconds East for a distance of 3.51 feet to a rod set; THENCE South 82 degrees 01 minutes 05 seconds East for a distance of 3.61 feet to a rod set; THENCE South 72 degrees 48 minutes 49 seconds East for a distance of 3.83 feet to a rod set; THENCE South 59 degrees 46 minutes 33 seconds East for a distance of 4.73 feet to a rod set; THENCE South 48 degrees 28 minutes 16 seconds East for a distance of 6.59 feet to a rod set; THENCE South 41 degrees 09 minutes 02 seconds East for a distance of 9.42 feet to a rod set; THENCE South 36 degrees 45 minutes 02 seconds East for a distance of 13.16 feet to a rod set; THENCE South 34 degrees 05 minutes 05 seconds East for a distance of 17.80 feet to a rod set; THENCE South 32 degrees 24 mınutes 54 seconds East for a distance of 23.31 feet to a rod set; THENCE South 31 degrees 19 minutes 56 seconds East for a distance of 29.67 feet to a rod set; THENCE South 30 degrees 37 minutes 44 seconds East for a distance of 36.45 feet to a rod set; THENCE South 30 degrees 10 minutes 56 seconds East for a distance of 41.87 feet to a rod set; THENCE South 29 degrees 52 minutes 30 seconds East for a distance of 45.50 feet to a rod set; THENCE South 29 degrees 38 minutes 09 seconds East for a distance of 47.32 feet to a rod set; THENCE South 29 degrees 25 minutes 57 seconds East for a distance of 47.35 feet to a rod set; THENCE South 29 degrees 14 minutes 22 seconds East for a distance of 45.59 feet to a rod set; THENCE South 29 degrees 01 minutes 48 seconds East for a distance of 42.02 feet to a rod set; THENCE South 28 degrees 46 minutes 40 seconds East for a distance of 3665 feet to a rod set; THENCE South 28 degrees 24 minutes 34 seconds East for a distance of 29.93 feet to a rod set; THENCE South 27 degrees 51 minutes 04 seconds East for a distance of 23.63 feet to a rod set; THENCE South 26 degrees 59 minutes 09 seconds East for a distance of 18.21 feet to a rod set; THENCE South 25 degrees 36 minutes 36 seconds East for a distance of 13.66 feet to a rod set; THENCE South 23 degrees 23 minutes 38 seconds East for a distance of 9.98 feet to a rod set; THENCE South 19 degrees 51 minutes 36 seconds East for a distance of 7.20 feet to a a rod set; THENCE South 14 degrees 41 minutes 17 seconds East for a distance of 5.31 feet to a rod set; THENCE South 08 degrees 52 minutes 21 seconds East for a distance of 4.31 feet to a rod set; THENCE South 04 degrees 42 minutes 46 seconds East for a distance of 4.03 feet to a rod set; THENCE South 00 degrees 32 minutes 40 seconds East for a distance of 3.89 feet to a rod set;

THENCE South 04 degrees 24 minutes 25 seconds West for a distance of 3.77 feet to a rod set, THENCE South 10 degrees 09 minutes 27 seconds West for a distance of 3.69 feet to a rod set; THENCE South 16 degrees 41 minutes 14 seconds West for a distance of 3.64 feet to a rod set; THENCE South 23 degrees 47 minutes 48 seconds West for a distance of 3.65 feet to a rod set; THENCE South 31 degrees 17 minutes 46 seconds West for a distance of 3.72 feet to a rod set; THENCE South 38 degrees 47 minutes 37 seconds West for a distance of 3.88 feet to a rod set; THENCE South 45 degrees 51 minutes 39 seconds West for a distance of 4.09 feet to a rod set; THENCE South 51 degrees 56 minutes 08 seconds West for a distance of 430 feet to a rod set; THENCE South 57 degrees 12 minutes 30 seconds West for a distance of 4.46 feet to a rod set; THENCE South 61 degrees 57 minutes 07 seconds West for a distance of 4.56 feet to a rod set; THENCE South 66 degrees 27 minutes 07 seconds West for a distance of 4.61 feet to a rod set; THENCE South 70 degrees 53 minutes 51 seconds West for a distance of 4.59 feet to a rod set; THENCE South 75 degrees 30 minutes 04 seconds West for a distance of 4.50 feet to a rod set; THENCE South 80 degrees 30 minutes 42 seconds West for a distance of 4.37 feet to a rod set; THENCE South 86 degrees 07 minutes 21 seconds West for a distance of 4.19 feet to a rod set; THENCE North 87 degrees 48 minutes 33 seconds West for a distance of 4.08 feet to a rod set; THENCE North 81 degrees 31 minutes 44 seconds West for a distance of 4.04 feet to a rod set; THENCE North 75 degrees 17 minutes 29 seconds West for a distance of 4.07 feet to a rod set; THENCE North 69 degrees 24 minutes 31 seconds West for a distance of 4.18 feet to a rod set; THENCE North 64 degrees 00 minutes 45 seconds West for a distance of 4.35 feet to a rod set; THENCE North 59 degrees 15 minutes 07 seconds West for a distance of 2.00 feet to the point and place of BEGINNING.

Said SWMU C - FORMER BURNING GROUND contains 1.239 acres more or less SWMU B - Inactive Coal Ash Pond
BEGINNING at a rod set at the southwest corner of SWMU B - INACTIVE COAL ASH POND, THENCE North 49 degrees 10 minutes 35 seconds East for a distance of 329.21 feet to a rod set; THENCE North 57 degrees 03 minutes 22 seconds East for a distance of 7.20 feet to a rod set; THENCE North 63 degrees 15 minutes 53 seconds East for a distance of 7.38 feet to a rod set; THENCE North 69 degrees 33 minutes 51 seconds East for a distance of 7.37 feet to a rod set; THENCE North 75 degrees 52 minutes 10 seconds East for a distance of 736 feet to a rod set; THENCE North 82 degrees 12 minutes 13 seconds East for a distance of 7.36 feet to a rod set; THENCE North 88 degrees 32 minutes 04 seconds East for a distance of 7.35 feet to a rod set; THENCE South 85 degrees 07 minutes 04 seconds East for a distance of 7.34 feet to a rod set; THENCE South 78 degrees 45 minutes 49 seconds East for a distance of 7.34 feet to a rod set; THENCE South 72 degrees 23 minutes 43 seconds East for a distance of 734 feet to a rod set; THENCE South 66 degrees 01 minutes 18 seconds East for a distance of 7.33 feet to a rod set; THENCE South 59 degrees 38 minutes 51 seconds East for a distance of 7.33 feet to a rod set; THENCE South 53 degrees 16 minutes 26 seconds East for a distance of 7.34 feet to a rod set; THENCE South 46 degrees 54 minutes 22 seconds East for a distance of 7.33 feet to a rod set; THENCE South 40 degrees 32 minutes 25 seconds East for a distance of 7.34 feet to a rod set; THENCE South 34 degrees 10 minutes 45 seconds East for a distance of 7.34 feet to a rod set, THENCE South 27 degrees 49 minutes 38 seconds East for a distance of 7.35 feet to a rod set; THENCE South 21 degrees 30 minutes 18 seconds East for a distance of 7.36 feet to a rod set; THENCE South 15 degrees 10 minutes 06 seconds East for a distance of 7.36 feet to a rod set; THENCE South 08 degrees 51 minutes 47 seconds East for a distance
of 7.37 feet to a rod set; THENCE South 02 degrees 33 minutes 47 seconds East for a distance of 7.38 feet to a rod set; THENCE South 03 degrees 43 minutes 35 seconds West for a distance of 7.39 feet to a rod set; THENCE South 09 degrees 59 minutes 47 seconds West for a distance of 7.39 feet to a rod set; THENCE South 16 degrees 15 minutes 33 seconds West for a distance of 7.40 feet to a rod set; THENCE South 22 degrees 32 minutes 01 seconds West for a distance of 7.40 feet to a rod set; THENCE South 28 degrees 46 minutes 54 seconds West for a distance of 7.40 feet to a rod set; THENCE South 35 degrees 02 minutes 43 seconds West for a distance of 7.40 feet to a rod set; THENCE South 41 degrees 18 minutes 01 seconds West for a distance of 7.40 feet to a rod set; THENCE South 45 degrees 17 minutes 09 seconds West for a distance of 1.98 feet to a rod set; THENCE South 49 degrees 34 minutes 43 seconds West for a distance of 329.17 feet to a rod set; THENCE North 39 degrees 36 minutes 05 seconds West for a distance of 13060 feet to the point and place of BEGINNING.

Said SWMU B - INACTIVE COAL ASH POND contains 1.142 acres more or less.

AOC Former Incinerator Area

BEGINNING at a rod set at the southwest corner if the AOC - FORMER INCINERATOR AREA; THENCE North 36 degrees 14 minutes 40 seconds West for a distance of 31.56 feet to a rod set; THENCE North 40 degrees 11 minutes 32 seconds West for a distance of 24.36 feet to a rod set; THENCE North 52 degrees 13 minutes 51 seconds West for a distance of 33.09 feet to a rod set; THENCE North 60 degrees 26 minutes 42 seconds West for a distance of 13.14 feet to a rod set; THENCE North 64 degrees 28 minutes 41 seconds West for a distance of 27.05 feet to a rod set; THENCE North 69 degrees 26 minutes 37 seconds West for a distance of 14.03 feet to a rod set; THENCE North 69 degrees 43 minutes 14 seconds West for a distance of 24.82 feet to a rod set, THENCE North 62 degrees 28 minutes 12 seconds West for a distance of 35.56 feet to a rod set; THENCE North 58 degrees 29 minutes 14 seconds East for a distance of 183.37 feet to a rod set; THENCE South 44 degrees 23 minutes 43 seconds East for a distance of 42.34 feet to a rod set; THENCE South 34 degrees 36 minutes 50 seconds East for a distance of 44.02 feet to a rod set; THENCE South 24 degrees 14 minutes 22 seconds East for a distance of 35.99 feet to a rod set; THENCE South 11 degrees 15 minutes 26 seconds East for a distance of 37.04 feet to a rod set; THENCE South 04 degrees 21 minutes 36 seconds West for a distance of 19.38 feet to a rod set; THENCE South 17 degrees 46 minutes 31 seconds West for a distance of 21.59 feet to a rod set; THENCE South 61 degrees 35 minutes 15 seconds West for a distance of 68.86 feet to the point an place of BEGINNING

Said AOC - FORMER INCINERATOR AREA contains 0.564 acre more or less.

SWMU H1 - Former Finish Oil Disposal Pond

BEGINNING at a rod set at the northwest corner of SWMU H1 - FORMER FINISH OIL DISPOSAL POND; THENCE South 66 degrees 11 minutes 37 seconds East for a distance of 114.65 feet to a rod set; THENCE South 23 degrees 55 minutes 27 seconds West for a distance of 134.78 feet to a rod set, THENCE North 66 degrees 11 minutes 37 seconds West for a distance of 114.65 feet to a rod set; THENCE North 23 degrees 55 minutes 27 seconds East for a distance of 134.78 feet to a rod set;

Said SWMU- FORMER FINISH OIL DISPOSAL POND contains 0.355 acre more or less.

AOC Construction Landfill

BEGINNING at a rod set at the northeast corner of the AOC - CONSTRUCTION LANDFILL; THENCE South 18 degrees 36 minutes 57 seconds West for a distance of 174.46 feet to a rod set; THENCE North 77 degrees 50 minutes 57 seconds West for a distance of 531.48 feet to a rod set; THENCE North 80 degrees 48 minutes 29 seconds West for a distance of 206.24 feet to a rod set; THENCE North 14 degrees 11 minutes 46 seconds East for a distance of 167.63 feet to a rod set; THENCE South 79 degrees 49 minutes 04 seconds East for a distance of 20837 feet to a rod set; THENCE South 78 degrees 49 minutes 57 seconds East for a distance of 54294 feet to the point and place of BEGINNING;

Said AOC - CONSTRUCTION LANDFILL contains 2.866 acres more or less.

Former Concoco Pond - Flyash

BEGINNING at a rod set at the southeast corner of the FORMER CONOCO POND FLYASH; THENCE South 72 degrees 39 minutes 27 seconds West for a distance of 32.08 feet to a rod set; THENCE South 77 degrees 45 minutes 08 seconds West for a distance of 37.64 feet to a rod set; THENCE South 78 degrees 10 minutes 44 seconds West for a distance of 31.59 feet to a rod set, THENCE South 75 degrees 57 minutes 52 seconds West for a distance of 17.79 feet to a rod set; THENCE South 84 degrees 48 minutes 21 seconds West for a distance of 1588 feet to a rod set, THENCE North 90 degrees 00 minutes 00 seconds West for a distance of 5.75 feet to a rod set; THENCE North 88 degrees 02 minutes 23 seconds West for a distance of 8.36 feet to a rod set; THENCE North 74 degrees 30 minutes 08 seconds West for a distance of 15.66 feet to a rod set; THENCE North 23 degrees 46 minutes 30 seconds West for a distance of 1191 feet to a rod set; THENCE North 03 degrees 11 minutes 31 seconds West for a distance of 35.02 feet to a rod set; THENCE North 03 degrees 41 minutes 28 seconds West for a distance of 22.34 feet to a rod set; THENCE North 03 degrees 18 minutes 25 seconds West for a distance of 40.08 feet to a rod set; THENCE North 08 degrees 32 minutes 54 seconds East for a distance of 17.63 feet to a rod set; THENCE North 17 degrees 47 minutes 03 seconds East for a distance of 24.39 feet to a rod set; THENCE North 30 degrees 15 minutes 55 seconds East for a distance of 39.51 feet to a rod set; THENCE North 43 degrees 55 minutes 18 seconds East for a distance of 20.37 feet to a rod set; THENCE North 52 degrees 41 minutes 19 seconds East for a distance of 22.48 feet to a rod set; THENCE North 60 degrees 31 minutes 23 seconds East for a distance of 19.00 feet to a rod set; THENCE North 54 degrees 29 minutes 11 seconds East for a distance of 19.47 feet to a rod set; THENCE South 01 degrees 24 minutes 01 seconds East for a distance of 15.43 feet to a rod set; THENCE South 20 degrees 21 minutes 12 seconds East for a distance of 49.75 feet to a rod set; THENCE South 18 degrees 35 minutes 28 seconds East for a distance of 43.66 feet to a rod set; THENCE South 19 degrees 00 minutes 19 seconds East for a distance of 35.81 feet to a rod set, THENCE South 19 degrees 26 minutes 22 seconds East for a distance of 20.34 feet to a rod set, THENCE South 18 degrees 05 minutes 04 seconds East for a distance of 19.39 feet to a rod set; THENCE South 29 degrees 44 minutes 42 seconds East for a distance of 18.20 feet to a rod set; THENCE South 36 degrees 13 minutes 30 seconds East for a distance of 19.69 feet to a rod set;

Said FORMER CONOCO POND FLYASH contains 0.582 acre more or less.
SWMU H2 - Former Finish Oil Disposal Pond

BEGINNING at a rod set at the southeast quadrant of SWMU H2 - FORMER FINISH OIL DISPOSAL POND; THENCE North 38 degrees 47 minutes 27 seconds West for a distance of 6.83 feet to a rod set; THENCE North 31 degrees 57 minutes 59 seconds West for a distance of 6.83 feet to a rod set; THENCE North 25 degrees 08 minutes 14 seconds West for a distance of 6.84 feet to a rod set, THENCE North 18 degrees 19 minutes 54 seconds West for a distance of 6.85 feet to a rod set; THENCE North 11 degrees 32 minutes 28 seconds West for a distance of 6.85 feet to a rod set; THENCE North 04 degrees 45 minutes 27 seconds West for a distance of 6.86 feet to a rod set; THENCE North 02 degrees 00 minutes 10 seconds East for a distance of 6.87 feet to a rod set; THENCE North 08 degrees 45 minutes 18 seconds East for a distance of 6.87 feet to a rod set; THENCE North 15 degrees 29 minutes 57 seconds East for a distance of 6.88 feet to a rod set; THENCE North 22 degrees 13 minutes 47 seconds East for a distance of 6.88 feet to a rod set; THENCE North 28 degrees 57 minutes 36 seconds East for a distance of 6.88 feet to a rod set; THENCE North 35 degrees 41 minutes 51 seconds East for a distance of 6.88 feet to a rod set; THENCE North 42 degrees 25 minutes 10 seconds East for a distance of 6.88 feet to a rod set; THENCE North 49 degrees 09 minutes 52 seconds East for a distance of 6.87 feet to a rod set; THENCE North 55 degrees 54 minutes 43 seconds East for a distance of 6.87 feet to a rod set; THENCE North 62 degrees 40 minutes 24 seconds East for a distance of 6.86 feet to a rod set; THENCE North 69 degrees 26 minutes 42 seconds East for a dıstance of 6.86 feet to a rod set; THENCE North 76 degrees 13 minutes 54 seconds East for a distance of 6.85 feet to a rod set, THENCE North 83 degrees 01 minutes 51 seconds East for a distance of 6.84 feet to a rod set; THENCE North 89 degrees 50 minutes 57 seconds East for a distance of 6.83 feet to a rod set; THENCE South 83 degrees 18 minutes 51 seconds East for a distance of 6.83 feet to a rod set; THENCE South 76 degrees 28 minutes 52 seconds East for a distance of 6.83 feet to a rod set; THENCE South 69 degrees 37 minutes 40 seconds East for a distance of 6.82 feet to a rod set; THENCE South 62 degrees 46 minutes 38 seconds East for a distance of 6.82 feet to a rod set; THENCE South 55 degrees 55 minutes 23 seconds East for a distance of 6.82 feet to a rod set; THENCE South 49 degrees 03 minutes 38 seconds East for a distance of 6.82 feet to a rod set; THENCE South 42 degrees 13 minutes 12 seconds East for a distance of 6.82 feet to a rod set; THENCE South 35 degrees 22 minutes 47 seconds East for a distance of 6.83 feet to a rod set; THENCE South 28 degrees 32 minutes 56 seconds East for a distance of 6.83 feet to a rod set; THENCE South 21 degrees 44 minutes 21 seconds East for a distance of 6.84 feet to a rod set; THENCE South 14 degrees 55 minutes 51 seconds East for a distance of 6.85 feet to a rod set; THENCE South 08 degrees 09 minutes 01 seconds East for a distance of 6.86 feet to a rod set; THENCE South 01 degrees 22 minutes 39 seconds East for a distance of 6.86 feet to a rod set; THENCE South 05 degrees 22 minutes 43 seconds West for a distance of 6.87 feet to a rod set; THENCE South 12 degrees 08 minutes 02 seconds West for a distance of 6.88 feet to a rod set; THENCE South 18 degrees 51 minutes 42 seconds West for a distance of 6.88 feet to a rod set; THENCE South 25 degrees 35 minutes 49 seconds West for a distance of 6.88 feet to a rod set, THENCE South 32 degrees 19 minutes 39 seconds West for a distance of 6.88 feet to a rod set; THENCE South 39 degrees 03 minutes 33 seconds West for a distance of 6.88 feet to a rod set, THENCE South 45 degrees 47 minutes 43 seconds West for a distance of 6.88 feet to a rod set; THENCE South 52 degrees 32 minutes 17 seconds West for a distance of 6.87 feet to a rod set; THENCE South 59 degrees 17 minutes 07 seconds West for a distance of 6.87 feet to a rod set; THENCE South 66 degrees 03 minutes 28 seconds West for a distance of 6.86 feet to a rod set; THENCE South 72 degrees 50 minutes 04 seconds West for a distance of 6.85 feet to a rod set; THENCE South 79 degrees 37 minutes 51 seconds West for a distance
of 684 feet to a rod set; THENCE South 86 degrees 26 minutes 40 seconds West for a distance of 6.84 feet to a rod set; THENCE North 86 degrees 44 minutes 08 seconds West for a distance of 6.83 feet to a rod set; THENCE North 79 degrees 54 minutes 30 seconds West for a distance of 6.83 feet to a rod set; THENCE North 73 degrees 02 minutes 50 seconds West for a distance of 6.82 feet to a rod set; THENCE North 66 degrees 12 minutes 20 seconds West for a distance of 6.82 feet to a rod set; THENCE North 59 degrees 20 minutes 46 seconds West for a distance of 6.81 feet to a rod set; THENCE North 52 degrees 29 minutes 47 seconds West for a distance of 6.82 feet to a rod set; THENCE North 45 degrees 38 minutes 50 seconds West for a distance of 6.82 feet to the point and place of BEGINNING

Said SWMU H2 - FORMER FINISH OIL DISPOSAL POND contains 0.240 acre more or less.

BEGINNING at a rod set at the northwest corner of SWMU H2 - FORMER FINISH OIL DISPOSAL POND; THENCE North 46 degrees 28 minutes 54 seconds East for a distance of 140.23 feet to a rod set; THENCE South 51 degrees 48 minutes 39 seconds East for a distance of 204.05 feet to a rod set; THENCE South 44 degrees 09 minutes 00 seconds West for a distance of 137.72 feet to a rod set; THENCE North 52 degrees 17 minutes 59 seconds West for a distance of 209.98 feet to the point and place of BEGINNING

Said SWMU H2 - FORMER FINISH OIL DISPOSAL POND contains 0.655 acre more or less.

BEGINNING at a rod set at the northwest corner of SWMU H2 - FORMER FINISH OIL DISPOSAL POND;THENCE North 57 degrees 23 minutes 13 seconds East for a distance of 118.12 feet to a rod set; THENCE South 29 degrees 56 minutes 33 seconds East for a distance of 84.82 feet to a rod set; THENCE South 59 degrees 11 minutes 11 seconds West for a distance of 116.21 feet to a rod set; THENCE North 31 degrees 12 minutes 35 seconds West for a distance of 81.10 feet to the point and place of BEGINNING.

Said SWMU H2 - FORMER FINISH OIL DISPOSAL POND contains 0223 acre more or less.

BEGINNING at a rod set at the southwest corner of SWMU H2 - FORMER FINISH OIL DISPOSAL POND; THENCE North 23 degrees 00 minutes 51 seconds West for a distance of 209.13 feet to a rod set; THENCE South 55 degrees 15 minutes 45 seconds East for a distance of 210.56 feet to a rod set; THENCE South 51 degrees 32 minutes 08 seconds West for a distance of 116.57 feet to a rod set at the point and place of BEGINNING

Said SWMU H2 - FORMER FINISH OIL DISPOSAL POND contains 0.270 acre more or less.

Polygon Plats of Survey:

4. Notice of Limitations in Future Conveyances. Each instrument hereafter conveying

 any interest in the Property subject to this environmental covenant shall contain a notice of the activity and use limitations set forth in this environmental covenant and shall provide the recorded location of this environmental covenant.
5. Compliance and Use Reporting.

a. By March 1 of each year following the Agency's approval of this environmental covenant, and whenever else requested in writing by the Agency, the then current owner of the Property shall submit, to the Agency and any Holder listed in the Acknowledgments below, written documentation stating whether or not the activity and use limitations in this environmental covenant are being observed. This documentation shall be signed by a qualified and certified professional engineer who has inspected and investigated compliance with this environmental covenant
b. In addition, within one (1) month after any of the following events, the then current owner of the Property shall submit, to the Agency and any Holder listed in the Acknowledgments below, written documentation describing the following. noncompliance with the activity and use limitations in this environmental covenant; transfer of the Property; changes in use of the Property; or filing of applications for building permits for the Property and any proposals for any site work, if such building or proposed site work will affect the contamination on the Property subject to this environmental covenant.
6. Access by the Holder(s) and the Agency. In addition to any rights already possessed by the Holder(s) and the Agency, this environmental covenant grants to the Holder(s) and the Agency a right of reasonable access to the Property in connection with implementation, inspection or enforcement of this environmental covenant.

7. Subordination.

If there is an agreement to subordinate one or more prior interests in the Property to this environmental covenant, then the subordination agreement(s) is/are set forth as follows:

The results of a title search conducted by Fidelity National Title Insurance Company are included as Attachment 3

The Department has reviewed the title search and has determined that no subordination is required.

8. Recording \& Proof \& Notification.

*a. Within 90 days after the date of the Agency's approval of this UECA environmental covenant, the Grantor shall record, or cause to be recorded, this environmental covenant with the Clerk of the Circuit Court for each locality wherein the Property is located. The Grantor shall likewise record, or cause to be recorded, any amendment, assignment, or termination of this UECA environmental covenant with the applicable Clerk(s) of the Circuit Court within 90 days of their execution. Any UECA environmental covenant, amendment, assignment, or termination recorded outside of these periods shall be invalid and of no force and effect.
*b. The Granter shall send a file-stamped copy of this environmental covenant, and of any amendment, assignment, or termination, to the Holders) and the Agency within 60 days of recording. Within that time period, the Granter also shall send a file-stamped copy to the chief administrative officer of each locality in which the Property is located, any persons who are in possession of the Property who are not the Granters, any signatories to this covenant not previously mentioned, and any other parties to whom notice is required pursuant to the Uniform Environmental Covenants Act
*9. Termination or Amendment. This environmental covenant is perpetual and runs with the land unless terminated or amended (including assignment) in accordance with UECA.

10 Enforcement of environmental covenant. This environmental covenant shall be enforced in accordance with § 10.1-1247 of the Code of Virginia.

ACKNOWLEDGMENTS:

*GRANTOR(S)
Date:

STATE OF DELAWARE

COUNTY OF NEW CASTLE

On this $3^{R D}$ day of June, 20 , , before me, the undersigned officer, personally appeared Christopher Hest. I DU PONT DE NEMOURS AND COMPANY, Grantee) who acknowledged himself/herself to be the person whose name is subscribed to this environmental covenant, and acknowledged that she freely executed the same for the purposes therein contained.

In witness whereof, I hereunto set my hand and official seal.

My commission expires:
Registration \#. \qquad LOIS A. SMITH NOTARY PUBLIC STATE OF DELAWARE My commission exploits July 18, 2015

*AGENCY

APPROVED by the \{Department of Environmental Quality and/or other Agency\} as required by Virginia Code § 10.1-1238 et seq.

Date: 633012014
By (signature):

Attachment 1

Legal Description

Attachment 1 Legal Description

A certain area of land situate in the State of Virginia, County of Henry, presently standing in the name of E. I. DU PONT DE NEMOURS AND COMPANY, being Henry County Tax Parcel Identification numbers $41.8-\mathrm{A}-59,41.8-\mathrm{A}-59 \mathrm{~B}, 41.8-\mathrm{A}-59 \mathrm{C}, 41.8-\mathrm{A}-59 \mathrm{D}$, and $41.8-\mathrm{A}-61$, and more particularly described as follows:

BEGINNING at a point near the terminus of the northern margin of State Route 721 (DuPont Road, said point being approximately 40 feet north of the center of the plant's main entrance road;

THENCE across said entrance road South 57 degrees 51 minutes 34 seconds East for a distance of 213.35 feet to a point on the bank of the Smith River;

THENCE with the bank of the Smith River as it generally meanders the following 137 tie lines:

1) South 50 degrees 17 minutes 49 seconds West for a distance of 30.13 feet, 2) South 44 degrees 09 minutes 37 seconds West for a distance of 101.30 feet, 3) South 37 degrees 22 minutes 51 seconds West for a distance of 104.43 feet, 4) South 33 degrees 52 minutes 43 seconds West for a distance of 71.56 feet, 5) South 27 degrees 26 minutes 01 seconds West for a distance of 58.64 feet, 6) South 27 degrees 07 minutes 41 seconds West for a distance of 77.57 feet, 7) South 23 degrees 58 minutes 10 seconds West for a distance of 66.33 feet, 8) South 15 degrees 16 minutes 45 seconds West for a distance of 121.14 feet, 9) South 14 degrees 30 minutes 18 seconds West for a distance of 76.41 feet, 10) South 04 degrees 26 minutes 10 seconds West for a distance of 95.29 feet, 11) South 01 degrees 44 minutes 39 seconds East for a distance of 74.76 feet, 12) South 09 degrees 49 minutes 34 seconds East for a distance of 83.46 feet, 13) South 11 degrees 35 minutes 17 seconds East for a distance of 162.62 feet, 14) South 17 degrees 20 minutes 01 seconds East for a distance of 72.90 feet, 15) South 27 degrees 47 minutes 50 seconds East for a distance of 104.51 feet, 16) South 29 degrees 34 minutes 53 seconds East for a distance of 175.86 feet, 17) North 84 degrees 42 minutes 43 seconds East for a distance of 247.57 feet, 18) South 19 degrees 24 minutes 16 seconds East for a distance of 117.37 feet, 19) South 20 degrees 12 minutes 04 seconds East for a distance of 160.29 feet, 20) South 26 degrees 19 minutes 03 seconds East for a distance of 220.49 feet, 21) South 14 degrees 49 minutes 43 seconds East for a distance of 164.96 feet, 22) South 10 degrees 31 minutes 13 seconds East for a distance of 107.85 feet, 23) South 04 degrees 25 minutes 13 seconds East for a distance of 193.77 feet, 24) South 02 degrees 30 minutes 27 seconds West for a distance of 259.61 feet, 25) South 10 degrees 43 minutes 08 seconds West for a distance of 178.58 feet, 26) outh 17 degrees 50 minutes 08 seconds West for a distance of 351.48 feet, 27) South 17 degrees 40 minutes 41 seconds West for a distance of 205.51 feet, 28) South 16 degrees 34 minutes 24 seconds West for a distance of 362.47 feet, 29) South 35 degrees 18 minutes 18 seconds West for a distance of 45.78 feet, 30) South 05 degrees 43 minutes 37 seconds West for a distance of 154.37 feet, 31) South 09 degrees 40 minutes 05 seconds West for a distance of 239.98 feet, 32) South 13 degrees 55 minutes 12 seconds West for a distance of 127.42 feet, 33) South 18 degrees 31 minutes 41 seconds West for a distance of 117.34 feet, 34) South 43 degrees 45 minutes 43 seconds West for a distance of 53.87 feet, 35) South 70 degrees 08 minutes 19 seconds West for a distance of
80.21 feet, 36) South 83 degrees 12 minutes 54 seconds West for a distance of 118.74 feet, 37) North 86 degrees 46 minutes 24 seconds West for a distance of 127.89 feet, 38) North 76 degrees 53 minutes 46 seconds West for a distance of 189.64 feet, 39) North 70 degrees 11 minutes 39 seconds West for a distance of 204.42 feet, 40) North 67 degrees 07 minutes 03 seconds West for a distance of 106.84 feet, 41) North 56 degrees 59 minutes 20 seconds West for a distance of 155.86 feet, 42) North 49 degrees 17 minutes 32 seconds West for a distance of 227.55 feet, 43) North 40 degrees 54 minutes 26 seconds West for a distance of 244.35 feet, 44) North 41 degrees 17 minutes 14 seconds West for a distance of 183.40 feet, 45) North 54 degrees 03 minutes 16 seconds West for a distance of 167.00 feet, 46) North 53 degrees 23 minutes 22 seconds West for a distance of 216.09 feet, 47) North 58 degrees 56 minutes 52 seconds West for a distance of 212.23 feet, 48) North 70 degrees 00 minutes 02 seconds West for a distance of 193.23 feet, 49) North 69 degrees 58 minutes 03 seconds West for a distance of 167.12 feet, 50) North 69 degrees 40 minutes 21 seconds West for a distance of 229.52 feet, 51) North 72 degrees 35 minutes 40 seconds West for a distance of 196.47 feet, 52) North 62 degrees 57 minutes 07 seconds West for a distance of 149.81 feet, 53) North 64 degrees 02 minutes 53 seconds West for a distance of 42.14 feet, 54) North 51 degrees 26 minutes 00 seconds West for a distance of 46.77 feet, 55) North 46 degrees 05 minutes 19 seconds West for a distance of 188.22 feet, 56) North 30 degrees 56 minutes 54 seconds West for a distance of 213.82 feet, 57) North 19 degrees 14 minutes 15 seconds West for a distance of 181.42 feet, 58) North 19 degrees 33 minutes 59 seconds West for a distance of 198.92 feet, 59) North 22 degrees 47 minutes 25 seconds West for a distance of 228.68 feet, 60) North 22 degrees 41 minutes 59 seconds West for a distance of 113.61 feet, 61) North 09 degrees 19 minutes 18 seconds West for a distance of 16.59 feet, 62) North 25 degrees 40 minutes 07 seconds West for a distance of 140.90 feet, 63) North 18 degrees 28 minutes 02 seconds West for a distance of 179.15 feet, 64) North 08 degrees 43 minutes 13 seconds West for a distance of 61.10 feet, 65) North 15 degrees 41 minutes 17 seconds West for a distance of 205.43 feet, 66) North 10 degrees 56 minutes 47 seconds West for a distance of 172.29 feet, 67) North 34 degrees 45 minutes 54 seconds West for a distance of 164.06 feet, 68) North 41 degrees 06 minutes 22 seconds West for a distance of 201.59 feet, 69) North 48 degrees 47 minutes 05 seconds West for a distance of 133.06 feet, 70) North 50 degrees 30 minutes 44 seconds West for a distance of 90.98 feet, 71) North 46 degrees 45 minutes 19 seconds West for a distance of 61.87 feet, 72) North 55 degrees 18 minutes 11 seconds West for a distance of 87.49 feet, 73) North 54 degrees 31 minutes 58 seconds West for a distance of 68.47 feet, 74) North 64 degrees 28 minutes 28 seconds West for a distance of 130.97 feet, 75) North 67 degrees 09 minutes 06 seconds West for a distance of 83.08 feet, 76) North 68 degrees 47 minutes 56 seconds West for a distance of 116.58 feet, 77) North 70 degrees 15 minutes 01 seconds West for a distance of 91.29 feet, 78) North 65 degrees 57 minutes 08 seconds West for a distance of 121.61 feet, 79) North 64 degrees 39 minutes 51 seconds West for a distance of 81.07 feet, 80) North 65 degrees 07 minutes 33 seconds West for a distance of 70.81 feet, 81) North 61 degrees 09 minutes 30 seconds West for a distance of 137.45 feet, 82) North 57 degrees 15 minutes 46 seconds West for a distance of 135.21 feet, 83) North 44 degrees 16 minutes 57 seconds West for a distance of 65.42 feet, 84) North 37 degrees 08 minutes 53 seconds West for a distance of 96.98 feet, 85) North 28 degrees 09 minutes 49 seconds West for a distance of 124.14 feet, 86) North 21 degrees 38 minutes 20 seconds West for a distance of 75.46 feet, 87) North 12 degrees 03 minutes 12 seconds East for a distance of 117.09 feet, 88) North 06 degrees 41 minutes 55 seconds West for a distance of 105.77 feet, 89) North 00 degrees 26 minutes 10 seconds West for a distance of 147.09 feet, 90)

North 09 degrees 06 minutes 07 seconds East for a distance of 121.08 feet, 91) North 06 degrees 02 minutes 31 seconds East for a distance of 74.18 feet, 92) North 09 degrees 09 minutes 34 seconds West for a distance of 122.94 feet, 93) North 14 degrees 05 minutes 10 seconds West for a distance of 83.94 feet, 94) North 14 degrees 46 minutes 12 seconds West for a distance of 87.10 feet, 95) North 17 degrees 40 minutes 22 seconds West for a distance of 89.60 feet, 96) North 25 degrees 17 minutes 28 seconds West for a distance of 86.18 feet, 97) North 26 degrees 09 minutes 05 seconds West for a distance of 146.57 feet, 98) North 29 degrees 31 minutes 42 seconds West for a distance of 106.79 feet, 99) North 22 degrees 48 minutes 04 seconds West for a distance of 90.62 feet, 100) North 27 degrees 14 minutes 04 seconds West for a distance of 98.75 feet, 101) North 08 degrees 09 minutes 23 seconds West for a distance of 59.53 feet, 102) North 11 degrees 19 minutes 32 seconds West for a distance of 71.90 feet, 103) North 28 degrees 51 minutes 46 seconds East for a distance of 57.06 feet, 104) North 23 degrees 42 minutes 10 seconds East for a distance of 66.69 feet, 105) North 61 degrees 24 minutes 46 seconds East for a distance of 64.04 feet, 106) North 71 degrees 12 minutes 53 seconds East for a distance of 82.05 feet, 107) North 67 degrees 37 minutes 34 seconds East for a distance of 54.25 feet, 108) South 89 degrees 48 minutes 24 seconds East for a distance of 56.69 feet, 109) South 80 degrees 41 minutes 01 seconds East for a distance of 84.70 feet, 110) South 87 degrees 48 minutes 12 seconds East for a distance of 82.90 feet, 111) South 85 degrees 46 minutes 46 seconds East for a distance of 73.22 feet, 112) South 78 degrees 28 minutes 17 seconds East for a distance of 65.16 feet, 113) South 81 degrees 05 minutes 33 seconds East for a distance of 61.05 feet, 114) South 72 degrees 49 minutes 26 seconds East for a distance of 127.05 feet, 115) South 75 degrees 55 minutes 35 seconds East for a distance of 44.65 feet, 116) South 71 degrees 09 minutes 31 seconds East for a distance of 269.35 feet, 117) South 68 degrees 04 minutes 15 seconds East for a distance of 70.49 feet, 118) South 60 degrees 05 minutes 51 seconds East for a distance of 81.57 feet, 119) South 55 degrees 35 minutes 26 seconds East for a distance of 81.97 feet, 120) South 45 degrees 29 minutes 56 seconds East for a distance of 44.38 feet, 121) South 63 degrees 13 minutes 39 seconds East for a distance of 67.78 feet, 122) South 68 degrees 11 minutes 21 . seconds East for a distance of 39.84 feet, 123) South 82 degrees 28 minutes 52 seconds East for a distance of 280.69 feet, 124) South 85 degrees 17 minutes 55 seconds East for a distance of 310.76 feet, 125) South 80 degrees 19 minutes 04 seconds East for a distance of 322.73 feet, 126) South 75 degrees 00 minutes 20 seconds East for a distance of 205.68 feet, 127) South 74 degrees 37 minutes 28 seconds East for a distance of 133.49 feet, 128) South 67 degrees 18 minutes 44 seconds East for a distance of 351.88 feet, 129) South 69 degrees 48 minutes 15 seconds East for a distance of 99.47 feet, 130) North 85 degrees 18 minutes 58 seconds East for a distance of 45.75 feet, 131) North 78 degrees 12 minutes 16 seconds East for a distance of 52.33 feet, 132) North 64 degrees 59 minutes 54 seconds East for a distance of 46.18 feet, 133) North 45 degrees 01 minutes 58 seconds East for a distance of 93.36 feet, 134) North 37 degrees 04 minutes 21 seconds East for a distance of 206.78 feet, 135) North 33 degrees 24 minutes 16 seconds East for a distance of 241.01 feet, 136) North 22 degrees 18 minutes 34 seconds East for a distance of 169.82 feet, 137) North 21 degrees 12 minutes 45 seconds East for a distance of 494.39 feet to a point and the east bank of the Smith River;

THENCE leaving the east bank of the Smith River South 58 degrees 39 minutes 37 seconds East for a distance of 608.22 feet to an old concrete monument found; THENCE South 21 degrees 09 minutes 37 seconds East for a distance of 1286.64 feet to an old concrete monument found; THENCE South 43 degrees 23 minutes 50 seconds East for a distance of 211.73 feet to an iron
pipe found; THENCE South 56 degrees 41 minutes 08 seconds West for a distance of 35.02 feet to an iron rod found; THENCE North 40 degrees 24 minutes 09 seconds West for a distance of 195.06 feet to an iron rod found; THENCE North 34 degrees 20 minutes 02 seconds West for a distance of 72.96 feet to an iron rod found; THENCE North 31 degrees 48 minutes 02 seconds West for a distance of 103.33 feet to an iron rod found; THENCE South 89 degrees 16 minutes 00 seconds West for a distance of 41.57 feet to an iron rod found; THENCE South 12 degrees 56 minutes 13 seconds West for a distance of 86.60 feet to an iron rod found; THENCE South 02 degrees 55 minutes 20 seconds East for a distance of 129.96 feet to an iron rod found; THENCE South 06 degrees 50 minutes 47 seconds West for a distance of 75.51 feet to an iron rod found; THENCE North 89 degrees 47 minutes 21 seconds West for a distance of 225.96 feet to an iron rod found; THENCE North 07 degrees 20 minutes 00 seconds West for a distance of 88.11 feet to an iron rod found; THENCE North 62 degrees 24 minutes 29 seconds West for a distance of 78.25 feet to an iron rod found; THENCE South 61 degrees 43 minutes 49 seconds West for a distance of 122.74 feet to an iron rod found; THENCE North 82 degrees 23 minutes 33 seconds West for a distance of 81.92 feet to an iron rod found; THENCE South 35 degrees 53 minutes 16 seconds West for a distance of 260.15 feet to an iron rod found; THENCE South 02 degrees 27 minutes 16 seconds West for a distance of 287.18 feet to an iron rod found; THENCE South 49 degrees 57 minutes 20 seconds East for a distance of 196.53 feet to an iron rod found; THENCE South 57 degrees 57 minutes 58 seconds East for a distance of 144.33 feet to an iron rod found; THENCE South 80 degrees 56 minutes 53 seconds East for a distance of 63.30 feet to an iron rod found; THENCE North 80 degrees 01 minutes 53 seconds East for a distance of 58.93 feet to an iron rod found; THENCE North 53 degrees 19 minutes 12 seconds East for a distance of 115.54 feet to an iron rod found; THENCE North 52 degrees 53 minutes 36 seconds East for a distance of 75.34 feet to an iron rod found; THENCE North 20 degrees 10 minutes 29 seconds East for a distance of 70.29 feet to an iron rod found; THENCE North 11 degrees 20 minutes 11 seconds West for a distance of 95.22 feet to an iron rod found; THENCE North 40 degrees 30 minutes 48 seconds West for a distance of 135.84 feet to an iron rod found; THENCE North 30 degrees 35 minutes 59 seconds East for a distance of 95.80 feet to an iron rod found; THENCE South 82 degrees 23 minutes 09 seconds East for a distance of 84.26 feet to an iron rod found; THENCE North 64 degrees 07 minutes 19 seconds East for a distance of 72.41 feet to an iron rod found; THENCE North 26 degrees 11 minutes 24 seconds East for a distance of 64.61 feet to an iron rod found; THENCE North 15 degrees 06 minutes 41 seconds East for a distance of 78.52 feet to an iron rod found; THENCE North 06 degrees 53 minutes 06 seconds East for a distance of 74.95 feet to an iron rod found; THENCE North 02 degrees 21 minutes 51 seconds West for a distance of 135.39 feet to an iron rod found; HENCE South 42 degrees 08 minutes 20 seconds East for a distance of 32.71 feet to an iron rod found; THENCE South 34 degrees 21 minutes 46 seconds East for a distance of 78.71 feet to an iron rod found; THENCE South 40 degrees 21 minutes 21 seconds East for a distance of 494.76 feet to an iron rod found; THENCE South 40 degrees 45 minutes 29 seconds East for a distance of 284.97 feet to an iron rod found; THENCE South 39 degrees 08 minutes 11 seconds East for a distance of 84.65 feet to an iron rod found; THENCE South 28 degrees 46 minutes 15 seconds East for a distance of 47.42 feet to an iron rod found; THENCE South 12 degrees 32 minutes 53 seconds East for a distance of 41.70 feet to an iron rod found; THENCE South 02 degrees 51 minutes 55 seconds West for a distance of 45.94 feet to an iron rod found; THENCE North 36 degrees 51 minutes 00 seconds East for a distance of 287.26 feet to an iron rod found; THENCE North 40 degrees 02 minutes 08 seconds East for a distance of 24.79 feet to an iron rod found, said iron rod found being the

POINT OF BEGINNING.

Together with and subject to covenants, easements, and restrictions of record.
Said property contains 464.269 acres more or less.

Attachment 2

Statement of Basis

. 1422044 P60083

STATEMENT OF BASIS

DUPONT MARTINSVILLE (VAD003114865)

September 2012

TABLE OF CONTENTS

I. INTRODUCTION 1
II. DUPONT MARTINSVILLE HISTORY 1
III. SUMMARY OF ENVIRONMENTAL INVESTIGATIONS 2
IV. CONSTITUENTS OF POTENTIAL CONCERN (COPCS) 7
A. Groundwater COPCs 7
B. SOIL COPCS 7
C. SURPACE WATER COPCS 8 8
D. Innoor Air COPCs 8
V. INTERIM MEASURES 9
VI. SUMMARY OF EXPOSURE PATHWAYS 9
A. Soll Exposure Pathways 9
B. Subsurface. 10
C.. Groundwater exposure patuways 10
VII. CORRECTIVE ACTION OBJECTIVES 11
A. Soils 11
B. GROUNDWATEER 11
VIII. SUMMARY OF PROPOSED REMEDY 12
A. EPA'S PROPOSED REMEDIES FOR SWMUS AND AOCS 12
B. SURFacr. Water 14
C. COMPLIANCE WITK AND MAINTENANCE OF INṠCiTUİONAL CONTROL 14
D. REPORTING REQUIREMENTS 15
IX. EVALUATION OF PROPOSED REMEDY 16
X. PUBLIC COMMENT 18

List of Figures
Figure 1 Site Location Map
Figure 2 Detailed Site Map depicting SWMUs and AOCs
Figure 3 Groundwater Wells and Surface Water sampling locations

I. INTRODUCTION

The United States Environmental Protection Agency (EPA) has prepared this Statement of Basis (SB) to solicit public comment on its proposed remedy for the DuPont Martinsville facility in Martinsville, Virginia (hereinafter referred to as the Facility or Site). EPA's proposed remedy for the Facility consists of soil vapor extraction, zero-valance iron (ZVI) clay treatment, capping, groundwater monitoring, other engineering controls and institutional controls.

The Facility is subject to the Corrective Action program under the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA) of 1976, and the Hazardous and Solid Waste Amendments (HSWA) of 1984, 42 U.S.C. Sections 6901 to 6992k, The Corrective Action program is designed to ensure that certain facilities subject to RCRA have investigated and cleaned up any releases of hazardous waste and hazardous constituents that have occurred at their property.

The Administrative Record (AR) for the Facility contains all documents, including data and quality assurance information, on which EPA's proposed decision is based. See Section X, Public Comment, for information on how you may review the AR.

Information on the Corrective Action program as well as a fact sheet for the DuPont Martinsville Facility can be found by navigating http://www.epa gov/reg3wand/correctiveaction.htm.

II. DUPONT MARTINSVILLE HISTORY

The Facility occupies approximately 500 acres on a large bend of the Smith River immediately adjacent to the City of Martinsville, Virginia (see Figure 1). Figure 2 is a more detailed Site map that shows solid waste management units (SWMUs) and areas of concern (AOCs).
Beginning in 1941, the Facility was used to produce nylon fiber and equipment components, known as spinnerettes, for manufacturing nylon and other fibers. Nylon manufacturing at the Facility ceased in June 1998 and the manufacturing plant was demolished. Some of the remaining structures on Site include the DuPont Precision Concepts machine shop (DPC) and administrative buildings. Koch Invista currently owns the Precision Concepts Building and uses it to manufacture spinnerettes.
The Site is surrounded on three sides (north, west, and south) by the Smith River. The southeastern third of the Site was the area used for manufacturing. Much of the remainder of the Site is wooded and undeveloped, although former disposal areas are located in portions of the northern half of the Site. In addition, the Lynwood Golf Club occupies the central portion of the Site. A parcel north of the golf course that includes the former residence of DuPont plant managers was donated to the Martinsville Christian Fellowship Church in 1995.

Property located across the Smith River and to the east of the Site is primarily undeveloped, with only scattered residences along State Highway 174 south of the Site and along U.S. Highway 220, west of the Site. Property adjacent to the east side of the Site is incorporated in the City of Martinsville and is largely undeveloped.

The Henry County Public Service Authority provides water for drinking and industrial use to the Site. Former deep production wells that were used for high-quality process water were abandoned and grouted in 1998. The Smith River is used for recreational purposes (e.g., boating and fishing) by the general population. Fishing opportunities around the Site are not good due to the sediment layer that exists in the Smith River at this location.

III. SUMMARY OF ENVIRONMENTAL INVESTIGATIONS

In February 1986, Virginia's Department of Waste Management, which subsequently changed its name to Vịrginia Department of Environmental Quality (DEQ), issued a RCRA permit, Permit No. VAD 003114865 , to E. I. du Pont de Nemours and Company (DuPont) for the operation of a hazardous waste storage pad (DEQ Permit) at the Facility. The DEQ Permit addresses the provisions of the Virginia Waste Management Act, Virginia Code $\$ \$ 10.1-1400$ et seq.; for which the Commonwealth of Virginia (State) has received authorization under. Section 3006(b) of RCRA, 42 U.S.C. § 6926(b).
The complete RCRA permit for purposes of Section 3005(c) of RCRA, 42 U.S.C. §6925(c), consists of the DEQ Permit and a Corrective Action permit (CA Permit) issued by EPA in July 1991 under RCRA Section 3004(u), 42 U.S.C. Section 6924(u). The CA Permit requires DuPont, among other things, to investigate SWMU̇s at the Facility, prepare a Comprehensive RCRA Facility Investigation (RFI) Report and prepare a Corrective Measures Study (CMS).
DuPont closed the permitted waste pad and the DEQ Permit expired February 21, 1996. The CA Permit, which on its terms expired in July 2001, has been administratively extended.
DuPont submitted a Comprehensive RFI Report to EPA in January 2007 (2007 Comprchensive RFI Report). EPA approved the 2007 Comprehensive RFI Report in August 2011. The table immediately below lists and describes the 10 SWMUs and 8 AOCs identified in the Comprehensive RFI Report.

No.	Designation	SWMU or AOC Description 1 SWMU A - Nylon Fiber Landfills
2	Approximately 5,000 cubic yards of inert waste nylon fiber was used to help level three portions of the Facility property along the entrance road. The nylon was covered with soil and is presently either grass-covered or under a road. The EPA-approved Comprehensive RFI Report determined that there were no hazardous constituents released at this SWMU and that no further action was required.	
SWMU B- Inactive Coal Ash Pond	This unit was constructed by building a small impoundment dam across a ravine. Unit B received approximately 5,000 cubic yards of flyash (from the combustion of coal at the on-site power plant). In 1957, ash was no longer deposited in this unit, and it was covered with soil. It is currently covered by part of the golf fairway and tennis courts. The EPA-approved Comprehensive RFI Report determined that this unit had been fully characterized.	

3	SWMU C - Former Burning Ground	The unit was described as a former burning ground for wooden pallets and waste plastic sheeting. Unit C is now grass-covered and part of Lynwood Golf Club's 18th fairway. The EPA-approved Comprehensive RFI Report determined that this unit had been fully characterized.
4	SWMU D Inactive Flyash Pond	This unit was used to dispose of flyash. It is used as a storm-water basin and has a vegetative cover. DuPont monitors the groundwater associated with this unit. The EPA-approved Comprehensive RFI Report determined that this unit had been fully characterized.
5	SWMU E Spinneret Burial Area	Associated with the DPC building, unit E received proprietary equipment components manufactured on-Site and used in the manufacture of nylon fiber. The unit is described as a series of boreholes drilled into the ground that received the equipment. It is believed that each vault was capped with concrete. A portion of the unit is covered by the DPC and the rest is under asphalt. The EPÄ-approved Comprehensive RFI Report determined that there were no hazardous constituents released at this SWMU and that no further action was required.
6	SWMUF - Former Trash/Ash Landfill	This unit was constructed by building a berm across a ravine in the northern portion of the Site. Based on an evaluation of Site photographs, it was built sometime between 1963 and 1970. The unit is reported to have received primarily municipal trash from the plant. Coal ash was also placed into Unit F. Unit F is capped with a soil cover. The EPA-approved Comprehensive RFI Report determined that this Unit had been fully characterized.
7	SWMU G Closed Flyash Landfill	Unit G was constructed across a wide ravine in the northern portion of the Site. Reports indicate that the unit began receiving coal ash in the 1950s; however, Site photographs do not show Landfill G until sometime between 1970 and 1982. After being seeded with grass, a large portion of Unit G was converted to a driving range. This driving range was closed during Site demolition, and inert debris (brick and concrete) was placed over a portion of Unit G. Under the DEQ Permit, DuPont is required to conduct post-closure monitoring and maintenance. The EPA-approved Comprehensive RFI Report determined that this unit had been fully characterized.

8	SWMU H- Former Finish Oil Disposal Ponds	Unit H consisted of three unlined ponds referred to as Units H1, H2 and H3. The ponds received spent nylon finish oils (vegetable or animal-based oils) until 1977. Each pond was excavated into the underlying clayey saprolite. Units H1, H2, and H3 have been filled in with native soil, flyash, and some coal tailings. Traces of chlorinated volatile organic compounds (VOCs) and constituents of concern (COCs) associated with coal ash were detected during the site investigations in unit H1. The EPA-approved Comprehensive, RFI Report recommended that this unit (H1) be included in the Corrective Measures Study.
9	SWMU I- Former Lab Disposal Pits	
Unit I consisted of two pits that reportedly received labatory wastes including nitric and formic acids, carbon tetrachloride, phenol, and chromate (see Figure 2). Both pits were unlined at the bottom and filled with limestone gravel. One pit had concrete walls. Both pits were filled in with soil and gravel. This unit is at the edge of a hillside that overlooks Unit D. The EPA-approved Comprehensive RFI Report recommended that this unit be included in the Corrective Measures Study.		
10	SWMU J - Spent Finish Oil Collection System	Unit J consisted of three units referred to as JI - Finish Oil Above-ground Storage Tank; J2 - Finish Oil Sumi Collection Sewer; and J3 - Finish Oil Collection Sump. These units handled waste finish oil used in the nylon manufacturing process (see Figure 1-13). Early in the plant history, these oils were trucked to Unit H ponds, but the oil was later reclaimed and burned in the power plant. The EPA-approved Comprehensive RFI Report determined that there were no hazardous constituents released at this SWMU and that no further action was required.
11	AOC - Fire Training Area (FTA)	This AOC was used for fire training field exercises from the mid-1960s until 1997. A concrete pit, approximately 20 feet by 10 feet by 3 feet deep, was used for the fire training. During the RFI, a former buried interceptor ditch was found on the east side of the fire pit. This ditch intercepted water used to fight the fire and unburned fuel before a drain to an oil water separator was built. The EPA-approved Comprehensive RFI Report recommended that this Unit be included in the Corrective Measures Study.

12	AOC - DuPont Precision Concepts (DPC)	The DPC building houses a machine shop that manufactures proprietary equipment components for nylon and other manufacturing. Historically, equipment had been degreased in "glove-box" cleaning booths using trichloroethene (TCE), tetrachloroethene (PCE), and possibly carbon tetrachloride and chloroform. These solvents were replaced with a soapy water mixture in 1986. A storage tank contained in an underground vault is believed to have been the source of the COCs detected in groundwater in the parking lot area near this AOC. The EPA-approved Comprehensive RFI Report recommended that this unit be included in the Corrective Measures Study.
13	AOC- Bedrock Production Wells	Four production wells (Maintenance, Beaming, Railroad, and New Well) were located on-Site. The wells ranged from 300 to S50 feet deep, and reportedly produced water from fractures in "granite" The wells were used only for the production of high purity water for process use in the production of nylon polymer. The New Well was never used. Nylon flake production (producing nylon from its intermediates) at the Site ceased in 1994, and all four wells were removed from service and plugged in 1998. The EPA-approved Comprehensive RFI Report determined that there were no hazardous constituents
released at this SWMU and that no further action was		
required.		

17	AOC-Former No. 6 Fuel Storage	This tank was built in 1947 and held 270,000 gallons of No. 6 fuel oil, a highly viscous fluid that is unpumpable at standard temperature and pressure. Prior to pumping to the Site's power house, the oil would be pre-heated to between 110 and 245 degrees Fahrenheit and gravity fed through an underground 8 -inch steel pipeline to a steamdriven reciprocating pump. This tank was located immediately east of the Finish Oil Above-Ground Storage Tank (AST) and north of the coal yard. The EPAapproved Comprehensive RFI Report determined that there were no hazardous constituents released at this AOC and that no further action was required.
18	AOC - Former Dowtherm ${ }^{\text {® }}$ Areä	The former Dowtherm ${ }^{0}$ area was on the west side of the manufacturing building across the street from the power house: Most of the Dowtherm ${ }^{*}$ containing equipment was located on either side of the railroad tracks. Dowtherm ${ }^{*}$ was heated in the Dowtherm ${ }^{(1)}$ Vaporizers near the powerhouse, and the heated Dowtherm. was used in the nylon plant as a non-contact heat transfer fluid. The EPA-approved Comprehensive RFI Report determined that there were no hazardous constituents released at this AOC and that no further action was required.

DuPont submitted a supplemental workplan to EPA in March 2009 to address concerns raised by DEQ with respect to the Smith River's Total Maximum Daily Load (TMDL) for polycyclic aromatic hydrocarbons (PAHs). The TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive and still safely meet water quality standards. DEQ was concerned that existing SWMUs and AOCs maybe contributing to the TMDL for PAHs. DuPont submitted the 2009 Annual Monitoring and Supplemental RFI data Report in October 2009 (October 2009 Report). The October 2009 Report did not identify any new concerns related to the existing units.

Data from the Comprehensive RFI Report and the annual groundwater sampling reports show that Well MWD-04, located on edge of Unit D and next to the Smith River, had arsenic concentrations above that contaminant's applicable Maximum Contaminant Level (MCL) promulgated at 40 C.F.R. 141, pursuant to Section 1412 of the Safe Drinking Water Act (SDWA), 42 USC Section $300 \mathrm{~g}-1$. In January 2010, EPA requested additional sampling for arsenic around Unit D. DuPont conducted extensive surface water and pore water sampling in the spring of 2011. EPA subsequently approved a Smith River Investigative Report in June 2011. The results of the sampling showed that arsenic concentrations in sediment and pore water samples collected adjacent to Unit D are lower than the threshold effect concentration (TEC) and National Recommended Water Quality Criterion (NRWQC), respectively.

In October 2010, DuPont notified EPA of a release of fly ash from the former Conoco Pond. The former Conoco Pond had been previously capped with a soil cover and had not been identified as a SWMU or AOC in the 2007 Comprehensive RFI Report. DuPont determined that the release was due to a storm drain failure under the former Conoco Pond. DuPont rerouted the storm drain, filled in the old storm drain and repaired the soil cap. EPA added the former Conoco Pond to the list of SWMUs requiring long-term monitoring.

EPA approved the 2007 RFI Comprehensive Report in August 2011 after approving the Smith River Investigative Report in June 2011. EPA approved the Corrective Measures Study in January 2010, with the understanding that the additional Unit D investigation might require an addendum to the CMS. The subsequent investigation of Unit D did not require any changes to the CMS.

IV. CONSTTTUENTS OF POTENTIAL CONCERN (COPCs)

A. Groundwater COPCs

The 2007 RFI Comprehensive Report evaluated groundwater analytical data from monitoring events conducted between October 2005 and April 2006. During the monitoring period, groundwater was sampled from 30 monitoring wells. Nine off-site monitoring well locations were also sampled. Monitoring well locations are shown in Figure 3. Groundwater samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), pesticides, metals and sulfide, depending on event and location. Groundwater seeping through springs near Unit H was included in the surface-water data set.

The following constituents of potential concern (COPCs) exceeded their respective MCL or tap water Risk Based Screening Concentration (RBSC) in at least one sample: PCE, TCE, chloroform, cis-1,2-DCE, carbon tetrachloride, CFC-11, methylene chloride, arsenic, alphaBHC, benzene, vinyl chloride, heptachor epoxide, thallium, 1,1,2-trichloroethane, thallium, aldrin, bromodichloromethane.

B. Soil COPCs

1. Surface Soil - Potential Direct Contact Pathways

During the RFI investigations, approximately 69 surface soil samples (defined as 0 - to 2 -foot below ground surface [bgs]) were collected. Samples were analyzed for VOCs, SVOCs, dioxin and furan congeners, and metals, depending on location and event. Soil samples results from each unit were compared to RBSCs for residential and industrial criteria. The following COPCs exceeded their respective RBSÇ for industrial soil: arsenic, benzene, benzo(a)pyrene, iron, and PCE.

2. Subsurface Soll - Potential Direct Contact Pathways

During the RFI and supplemental investigations, approximately 146 subsurface soil samples taken at a depth of greater than 2-feet bgs were collected. Samples were analyzed for VOCs, SVOCs, dioxin and furan congeners, and metals, depending on location and event. The following COPCs exceeded their respective RBSCs for industrial soil: arsenic, benzene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(a, h) anthracene, indeno($1,2,3-\mathrm{cd}$)pyrene, iron, TCE, and PCE. Concentrations of dioxin-like PCBs exceeded the applicable RBSC for industrial soil at one sample collected at Unit H1. However, the sample results from this location did not exceed EPA action levels of 5,000 picograms per gram (pg / g) for dioxin in commercial/industrial soil.

Two VOCs detected in subsurface soils, 2-hexanone and methyl chloride, did not have a screening level.

C. Surface Water COPCs

Between October 2005 and July 2006, surface water was sampled at the Facility from golf course pondș, groundwater seeping through springs near Unit H, a Smith River Outfall Channel, and the Smith River Intake Channel. The surface water samples were analyzed for VOCs, total and dissolved arsenic and lead, depending on the event and location.

Carbon tetrachloride and PCE were detected above screening criteria in groundwater seep samples collected below AOC No. 12, the DPC; in the Outfall Channel and in the inland end of the Intake Channel. Total lead exceeded screening criterion in samples collected from the Smith River entrance to the Intake Channel, however, dissolved lead was not detected at the same location. None of these constituents was detected in downstream sample locations.

D. Indoor Air COPCs

Indoor air samples were collected in the DPC and administration buildings in 1998. These samples were collected to evaluate the potential for Site-related VOCs to migrate from the groundwater into these buildings. These samples were non-detect for the COPCs.
In addition, an evaluation of the vapor intrusion to indoor air from groundwater pathways was completed for Site. The evaluation followed the principles outlined in Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils, Subsurface Vapor Intrusion Guidance, (USEPA, 2002). Shallow groundwator data from on-Site monitoring wells located near the DPC and administration buildings were evaluated. Based on this evaluation, there were no VOCs that exceeded the applicable screening levels.
Based on the above-described data, EPA has determined that vapor intrusion of VOCs from groundwater to indoor areas is not a potential concern at this time.

V. INTERIM MEASURES

Following the recommendation of the 2000 RFI Update Report, pursuant to the Interim Measure (IM) provisions of the CA Permit DuPont implemented zero-valance iron (ZVI) treatment to remediate carbon tetrachloride at SWMU I, the Spent Finish Oil Collection System. DuPont mixed iron and kaolinite into shallow soil during October and November 2002.
Post-remediation soil sampling was conducted in September 2003 and October 2004 and confimmatory soil samples were taken twice after the ZVI treatment was completed. Sample results show that carbon tetrachloride concentrations in the source area at Unit I were reduced by approximately five orders of magnitude to below carbon tetrachloride's direct contact residential RBSC.

Since completion of the ZVI treatment, groundwater monitoring data have shown a steady decrease in carbon tetrachloride concentrations. Unit I was subsequently capped with asphalt to prevent groundwater infiltration.

VI. SUMMARY OF EXPOSURE PATHWAYS

Potential receptors are defined as human populations ot individuals and environmental systems that are susceptible to contaminant exposure from the Site. Current land- and water-use conditions were considered in determining exposure scenarios in the 2007 Comprehensive RFI Report.

DuPont, or its successor, will control land use as industrial. The following potential receptors were identified, given the Site setting and anticipated land uses at and adjacent to the Site:

- On-site Industrial Worker
- On-site Construction/Excavation Worker
- On-site Youth Trespasser
- Recreational User of the Smith River (swimming, fishing and boating)

Ecological receptors (terrestrial and aquatic) were also considered relevant receptors. Results of an EPA-approved May 2000 Habitat Survey concluded that natural areas at the Site are in good condition, offer good-quality habitat for wildlife, and are not impacted by potential releases from SWMUs and AOCs. The Smith River is the main receptor for potential releases from the RFI units.

No downgradient receptors of off-Site groundwater exist due to the prevailing flow direction towards the Smith River. Likewise, impacted soils are contained within Facility boundaries. Therefore, off-Site residents or workers were not considered potential receptors.

A. Soil Exposure Pathways

The potential for exposure to COPCs in surface soil is low for most receptors under current conditions because the principal areas of surface soil contamination have limited access, are located in remote/inactive portions of the Site, or are covered by gravel, asphalt or an established
vegetative cover. The receptor with the greatest potential for exposure is the on-Site construction/excavation worker, where a greater likelihood of direct contact with impacted soil is associated with intrusive activities, e.g., boring, drilling and excavation.
The Facility currently uses an internal permitting process that requires authorization from DuFont Martinsville Site Manager before any intrusive activities into Site soils or building foundations may occur. The purpose of the internal permitting process is to ensure that:

- Appropriate measures are taken to protect personnel should subsurface activity encounter impacted soils or groundwater (i.e., personal protective cquipment [PPE]).
- Construction methods are protective from groundwater contamination or transfer of contaminants laterally or vertically.
- Construction practices minimize the generation of potentially impacted media and ensure that such media are properly characterized and disposed of in accordance with regulatory requirements.

In addition to the intermal permitting process, the former operating areas of the Site are fenced, and security is present seven (7) days a week from 6:00AM until 12:00PM (Midnight).

Due to the Site permitting process required for intrusive work and the location and limited accessibility of surface soilexceedances, potential on-Site receptor exposures to impacted surface soil are not significant.

B. Subsurface

Because subsurface soil contamination is only present on-Site and exposure to subsurface soil is only achieved during excavation and construction activities, the only potential receptor for this medium is the on-Site construction/excavation worker through incidental ingestion of and dermal contact with soil and inhalation of soil-derived particulates or vapors.

The internal permitting process for intrusive activities would preclude access to impacted soils without protective measures, such as PPE, to prevent exposures. Due to the intrusive activity permitting process that is required at the Site, potential on-site construction/excavation worker exposures to impacted subsurface soil are not significant.

C. Groundwater Exposure Pathways

Groundwater is not used at the Facility or downgradient of the Facility for drinking water due to the prevailing groundwater flow direction towards the Smith River, the hydraulic sink for regional groundwater. The Smith River is classified as a public water supply. However, the nearest downstream public water intake is in Eden, North Carolina (slightly over 15 miles downstream). Therefore, direct contact (ingestion or dermal contact) with groundwater for onSite industrial workers and off-Site residents is remote.

Since impacted groundwater underlies much of the Site, there are potentially complete exposure pathways for on-Site construction/excavation workers engaged in excavation activities where the water table might be encountered. With regard to the on-Site construction worker, the exposure
pathway would be considered insignificant since most construction, excavation, or utility workers would not spend any appreciable time in contact with the water. Furthermore, DuPont's current internal permitting process greatly reduces the potential exposure of on-Site construction/excavation workers to impacted groundwater.

D. Surface Water

Exceedances of screening criteria in surface water at the Site are localized to the Intake Channel and the near bank of the Outfall Channel below AOC No. 12, the DPC. No detections were observed in downstream surface water samples. Occasional maintenance on pumps in the lntake Channel does occur. Similarly, the habitat survey conducted in 2000 identified potential ecological receptors in the Smith River. Therefore, DuPont evaluated on-Site industrial worker receptors through incidental ingestion of and dermal contact with surface water and ccological receptors (Terrestrial and Aquatic) through ingestion/uptake of and dermal contact with surface water.

On-site Industrial Workers conduct maintenance at the Intake Channel infrequently. In addition, any maintenance work would be performed in accordance with a Site-specific health and safety plan (HSP) that includes extensive procedurcs and mandated PPE to provent contaminant exposure. As a result, potential exposure to COPCs in the Intake Channel by on-Site industrial workers is considered insignificant.

Exceedances of ecological screening criteria in surface water at the Site are localized in the Intake Chanuel and near the bank of the Outfall Channel below AOC No. 12, the DPC. No detections were observed in downstream surface water samples, suggesting that the minor local effects on surface water quality are not affecting water quality downstream of the Site As a result, potential exposure of COPCs in surface water by ecological receptors is also considered insignificant.

VII. CORRECTIVE ACTION OBJECTIVES

EPA has identified the following Corrective Action Objectives for soils and groundwater at the Facility:

A. Soils

The Corrective Action Objective for Facility soils is the control of human and environmental exposure to the hazardous wastes and hazardous constituents that remain in place at the Facility. EPA has determined that EPA Region III's Screening Levels for Industrial Soils for direct contact with soils are protective of human health and the environment for individual contaminants at this Facility, provided that the Facility is not used for residential purposes.

B. Groundwàter

The Corrective Action Objective for contaminated groundwater at the Facility is the restoration of groundwater to drinking water standards. These standards are established by the Maximum Contaminant Levels (MCLs) promulgated at 40 CFR 141, pursuant to Section 1412 of the Safe

Drinking Water Act (SDWA), 42 USC Section $300 \mathrm{~g}-1$. For contaminants of concern without an applicable MCL, EPA's Risk Based Screening Concentration (RBSC) for tap water established by EPA Region III in 2012 was used.

VIII. SUMMARY OF PROPOSED REMEDY

EPA's proposed remedy for the Site consists of the following components which EPA intends to implement through the issuance of a Permit Modification to DuPont's CA Permit:
A. EPA's Proposed Remedies for SWMUs and AOCs

	SWMU or AOC	EPA Proposed Remedy
1	SWMU A - Nylon Fiber Landfills	No Action
2	SWMU B - Inactive Coal Ash Pond	Maintenance and monitoring of existing soil and/or vegetative cap.
3	SWMU C - Former Burning Ground	Maintenance and monitoring of existing soil and/or vegetalive cap.
4	SWMU D - Inactive Flyash Pond	Maintenance and monitoring of existing soil and/or vegetative cap. Groundwaler shall be monitored to ensure groundwater objectives are met.
5	SWMU E - Spinneret Burial Area	No Action
6	SWMU F - Former Trash/Ash Landfill	Maintenance and monitoring of existing soil and/or vegetative cap.
7	SWMU G - Closed Flyash Landfill: (required by the DEQ permit)	Maintenance and monitoring of existing soil and/or vegetative cap.
8	SWMU H1 - Former Finish Oil Disposal Ponds	EPA proposes ZVI-clay treaiment for the contaminated source soils. ZVI-clay will destroy the constituents of concern. A one-foot soil cap will be placed over the treated material to help stabilize SWMU H1 soils and allow vegetation to be reestablished. Maintenance and monitoring of the cap will be required. In conjunction with the ZVI clay treatment, groundwater will be monitored to ensure that groundwater objectives are met.

9	SWMU I - Former Lab Disposal Pits	Under an interim measures, the SWMU I source area (soil) was remediated in 2002. While constituents in groundwater have decreased from this unit after the interim measure was implemented, groundwater will continue to be monitored to ensure groundwater objectives are met.
10	SWMU J- Spent Finish Oil Collection System	No Action
11	AOC - Fire Training Area	EPA proposes capping the Fire Training Area. DuPont performed a preliminary analysis of the soil in the Fire Training Area in Scptember 2011 to test the feasibility of using passive bioventing. Soil results indicated that passive bioventing would not work in remediating the contaminated soils, therefore capping is being proposed as the final remedy. Operation, maintenance and monitoring of the cap will be required. In conjunction with the proposed cap, groundwater will be monitored to ensure groundwater objectives are met.
13	AOC -Construction Landfill	AOC - Bedrock Production Wells
12	AOC - DuPont Precision Concepts	Maintenance and monitoring of existing soil and/or vegetative cap.

15	AOC-Dredge Spoil Area	No Action
16	AOC - Former Incinerator Area	Maintenance and monitoring of existing soil and/or vegetative cap.
17	AOC - Former No. 6 Fuel Storage	No Action
18	AOC-Former Dowtherm Area	No Action
19	Former Closcd Conoco pond - Flyash	Maintenance and monitoring of existing soil and/or vegetalive cap.

Along with the SWMU and AOC specific corrective measures listed above, EPA proposes to require DuPont to develop and implement an EPA-approved Facility-wide Matcrials Management Plan which will detail how all excavated soils will be handled and disposed'so as to protect human health and the environment in the SWMUs and \triangle QCs listed in Section VIII.A (excluding those SWMUs and AOCs for which No Action is proposed). EPA proposes that the Materials Managencot Plan include, at a minimum, the requirements already contained in DuPont's internal permitting process described in Scetion VI.A, above.

B. Surface Water

EPA is proposing to require DuPont to continue the surface water monitoring in conjunction with the groundwater monitoring. Surface water detections in the Intake Channel, associated with SWMU 1, Former Lab Disposal Pits, and surface water detections associated with AOC DPC area will continue to be monitored until groundwater cleanup levels are met for these two units.

C. Compliance with and Maintenance of Institutional Controls

ICs are non-engineered instruments such as administrative and/or legal controls that ninimize the potential for human exposure to contamination by limiting land or resource use and inform subsequent purchasers of the environmental conditions at the Facility and of EP'A's final remedy for the Facility. Under EPA's proposed remedy, some contaminants remain in the groundwater and soil at the Facility above levels appropriate for residential uses. Because some contaminants remain in the soil and groundwater at the Facility at levels which exceed residential use, EPA's proposed decision requires the compliance with and maintenance of land and groundwater use restrictions.

ICs may include, but may not be limited to, an environmental covenant to be entered pursuant to the Virginia Uniform linvironmental Covenants Act, § 10,1-1238 et seq. of the Code of Virginia (UECA) and to be recorded with the deed for the Facility property. The Environmental Covenant is required to include the following:

1. Groundwater at the Facility shall not be used for any purpose other than 1) industrial use as non-contact cooling water and 2) the operation, maintenance, and monitoring activities required by DEQ and EPA, unless it is demonstrated to EPA, in consultation with DEQ, that such usc will not pose a threat to human health or the environment or adversely affect or interfere with the final remedy to
be selected by EPA after public comment on this SB (Final Remedy); and EPA, in consultation with DEQ, provides prior written approval for such use;
2. The Facility property shall not be used for residential purposes unless it is demonstrated to EPA, in consultation with DEQ, that such use will not pose a threat to human health or the environment or adversely affect or interfere with the Final Remedy, and EPA, in consultation with DEQ, provides prior written approval for such use;
3. No new groundwater wells shall be installed at the Facility unless it is demonstrated to EPA, in consultation with DEQ, that such wells are necessary to implement the Final Remedy, and EPA provides prior written approval to install such wells;;
4. EPA, DEQ and their authorized agents and representatives will be provided access to the Facility to inspect and evaluate the continued effectiveness of the final remedy;
5. EPA and DEQ shall be notified at least thirty (30) calendar days prior to the sale of any interest in the Facility property or any portion thereof; and
6. All earth moving activities, including excavation, drilling and construction activities, in the SWMUs and AOCs listed in Section VIII.A (excluding those SWMUs and AOCs for which No Action is proposed) at the Facility shall be conducted in accordance with a Materials Management Plan approved by EPA in consultation with DEQ and in such a manner that such activity will not pose a threat to human health and the environment or adversely affect or interfere with the Final Remedy.

D. Reporting Requirements

EPA's proposed remedy includes the following reporting requirements:

1. Compliance with and effectiveness of institutional controls and engineering controls implemented at the Facility shall be evaluated at a minimum every three (3) years. The evaluation will include, but not be limited to, a review of groundwater and land uses within one (1) mile of the Facility property boundary, and zoning maps or planning documents that may affect future land use in the impacted area. A report documenting the findings of the evaluation shall be provided to EPA and DEQ, and
2. Compliance with and effectiveness of the Final Remedy for SWMU H1, the Former Finish Oil Disposal Ponds; AOC No. 11, the FTA; and AOC No. 12, the DPC, in reducing contaminant concentrations and restoring the groundwater to MCLs shall be evaluated and included in the Groundwater Monitoring Plan. Groundwater results from SWMU I, Former Lab Disposal Pits, and SWMU D, Inactive Flyash Pond; shall also be reported in Groundwater Monitoring Plan.

IX. EVALUÁTION OF PROPOSED REMEDY

This section provides a description of the criteria EPA used to evaluate the proposed remedy consistent with EPA guidance. The criteria are applied in two phases. In the first phase, EPA evaluates three decision threshold criteria as general goals. In the second phase, for those remedies which meet the threshold criteria, EPA then evaluates seven balancing criteria.

A. Threshold Criteria

1. Protect Human Health and the Environment

With respect to groundwater, while significant levels of contaminants remain in the groundwater beneath the Facility, the contaminants that flow into the Smith River are below ecological screening criteria. In addition, groundwater is not used for drinking water at the Facility or downgradient of the Facility. Furthermore, the groundwater monitoring program already in place will continue until groundwater clean-up standards are met. With respect to future uses, the proposed remedy requires groundwater use restrictions to minimize the potential for human exposure to contamination and protect the integrity of the remedy.

With respect to Facility soils, three areas (SWMU H1, AOC DPC, AOC FTA) will undergo soil treatment or capping as either the remedy or part of the remedy for those areas. Existing units that contain fly ash, construction material or incinerator ásh will maintain their existing soil or vegetative caps, to prevent exposure. These capped units have not impacted groundwater, with the exception of SWMU D. Results of an 2011 investigation indicated arsenic concentrations measured in sediment and pore water samples collected adjacent to SWMU D are lower than the threshold effect concentration (TEC) and National Recommended Water Quality Criterion (NRWQC) respectively.

There is no direct exposure of industrial workers to subsurface soil under current land use, and direct exposure of construction/excavation workers is controlled by the existing Facility administrative controls including the internal permitting process and appropriate health and safety plans. With respect to future uses, EPA has proposed land use restrictions in order to minimize the potential for human exposure to contamination. In addition, EPA proposes to require compliance with a Materials Management Plan. The Materials Management Plan will require DuPont, among other things, to continue to implement and maintain its internal permitting process.

2. Achieve Media Cleanup Objectives

The proposed soil remedy for SWMU HI and AOC DPC will target the source areas which will reduce contamination in soil and, eventually, in groundwater. The cleanup objective for SWMUH H and AOC DPC is to eliminate, to the extent practicable, the source of contamination to groundwater: Enhanced biological stimulation will be used to further remediate groundwater
in the AOC DPC area. In addition, a groundwater monitoring program and a surface water monitoring program already in place will continue until the groundwater clean-up standards are met. EPA's proposed remedy also requires the implementation and maintenance of institutional controls to ensure that Facility property is not used for residential purposes and a restriction on the use of groundwater beneath the property for potable purposes until groundwater is restored to drinking water standards.

3. Remediating the Source of Releases

EPA seeks to eliminate or reduce further releases of hazardous wastes and hazardous constituents that may pose a threat to human health and the environment. The proposed remedy for SWMU H1 and AOC DPC will remediate the two main sources of groundwater contamination at the Facility. For AOC FTA, capping the PAH contaminated soil will prevent migration to groundwater. In addition, a groundwater monitoring program already in place will continue until groundwater clean-up standards are met.

B. Balancing/Evaluation Criteria

1. Long-Term Effectiveness .

A groundwater monitoring and surface water monitoring program already in place will continue until groundwater clean-up standards are met. With respect to Facility soils, SWMU H1, AOC DPC, and AOC FTA will be treated or capped thereby eliminating the source of groundwater contamination at the Facility. In addition, EPA's proposed remedy requires the compliance with and maintenance of land use and groundwater use restrictions at the Facility. The proposed restrictions will maintain protection of human health and the environment over time by controlling exposure to the hazardous constituents remaining in soils and groundwater.

2. Reduction of Toxicity, Mobility, or Volume of the Hazardous Constituents

The proposed remedies for SWMU H1, AOC DPC, and AOC FTA will reduce the toxicity, mobility and volume of hazardous constituents at the Facility in soil and groundwater by eliminating the source of groundwater contamination at the Facility. In addition, a groundwater monitoring program already in place will continue until groundwater clean-up standards are met.

3. Short-Term Effectiveness

EPA's proposed remedy does not involve any activities, such as construction or excavation, that would pose short-term risks to workers, residents, and the environment. In addition, EPA anticipates that the land use and groundwater use restrictions can be fully implemented shortly after the issuance of the Final Decision and Response to Comments (FDRTC).

4. Implementability

EPA's proposed remedy is readily implementable. DuPont has performed a preliminary feasibility study using soil vapor extraction (SVE) at AOC DPC. That study showed that SVE is
capable of remediating the source area at AOC DPC. In addition, EPA proposes to implement the Final Remedy through modifying the existing DuPont's CA Permit. EPA does not anticipate any regulatory constraints in issuing the modified permit since EPA is the issuing authority.

5. Cost-Effectiveness

EPA's proposed remedy for SWMU H1, AOC DPC and AOC FTA was evaluated during a pilot program to determine how the concepts of remediation sustainability could be applied to remedy selection during the CMS process. The sustainability measures were compared with other balancing factors, including cost, to propose the remedy that best fit the criteria. The proposed remedies for SWMU H1, AOC DPC and AOC FTA provided the best combination of balancing factors, including cost.

6. Community Aeceptance

EPA will cvaluate Community acceptance of the proposed decision during the public comment period and it will be described in the FDRTC.

7. State/Support Agency Acceptance

DEQ has reviewed and concurred with the proposed remedy for the Facility. Furthermore, EPA has solicited DEQ input and involvement throughout the investigation process at the Facility.

X. PUBLIC COMMENT

Before EPA makes a final decision on its proposed remedy for the Facility, the public may participate in the decision selection process by reviewing this SB and documents contained in the Administrative Record (AR) for the Facility. The AR contains all information considered by EPA in reaching this proposed decision. It is available for public review during normal business hours at:

> U:S. EPA Region III
> 1650 Arch Street
> Philadelphia, PA 19103
> Contact: Michael Jacobi
> Phone: (215) 814-3435
> Fax: (215) 814-3113
> Email: jacobi.mike@epa.gov

Interested parties are encouraged to review the AR and comment on EPA's proposed remedy. The public comment period will last thirty (30) calendar days from the date that notice is published in the Martinsville Bulletin. Comments may be submitted by mail, fax, e-mail, or phone to Michael Jacobi at the address listed above. EPA will hold a public meeting to discuss this proposed decision upon request. Requests for a public meeting should be made to Michael Jacobi.

EPA will respond to all relevant comments received during the comment period. If EPA determines that new information warrant a modification to the proposed remedy, EPA will modify the proposed remedy or select other alternatives based on such new information and/or public comments. EPA will announce its final decision and explain the rationale for any changes in a document entitled the Final Decision and Response to Comments (FDRTC). All persons who comment on this proposed decision will receive a copy of the FDRTC. Others may obtain a copy by contacting Michael Jacobi at the address listed above.

DATE: $9 / 13 / 12$

Attachment 3

Title Search

Fidelity National Title Insurance Company

Title Search Report

Issued by
Fidelity National Title Insurance Company
The attached Title Search Report is Issued for the use of the agent to whom it is addressed. This Report is to be used only by the agent to determine the insurability of title to the property described herein in conjunction with issuance of commitments, policies and endorsements by Chicago Title Insurance Company, Fidelity National Title Insurance Company or Commonwealth Land Title Insurance Company ("the Company").

The agent reviewing this Title Search Report must follow all underwriting guidelines set forth in the underwriting Manual and Bulletins issued by the Company. This is a report of matters appearing in the official land records of the county or city wherein the property is located. No search has been made for any matters recorded in the Federal District Courts. Not Included in this Report are matters, such as mortgages, judgments and other liens, for which the Company has found recorded satisfactions or releases, and possible other matters which, according to custom and practice, would not appear in a title search. At the time of this Report, the Company may have had and relied upon title evidence in the form of a title policy, master file, title report or abstract which predates the period searched.

The amount shown in this Report for any deeds of trust, judgments and/or taxes is for informational purposes only. The recipient is responsible for confirming amounts for payoff and/or proration purposes.

Use of this Title Search Report for any reason other than the issuance of a Company commitment, pollcy or endorsement is not authorized. This Report may not be relled upon by any other party nor may it be relled upon for any other purpose. No liablity is assumed by the Company for unauthorized use or reliance. The liablity under this Title Search Report is limited to the llablility under the policy or policies issued pursuant to this Title Search Report. This Title Search Report is not an opinion, warranty or guarantee of title. The llability under this Title Search Report shall cease and terminate six months after the ending date set forth in the Period of the Search, unless extended in writing by the Company.

$$
\text { dill2 } 2014 \mathrm{a} \text { G0109 }
$$

Fidelity National Title Insurance Company TITLE SEARCH REPORT

Agent:

Fidelity National Title Insurance Company
1515 Market Street, Suite 1325
Philadelphia, PA 19102
Phone: 215-875-4137

1. PERIOD SEARCHED:

The period covered in the search ended: July 23, 2013 at 8:00 a.m.
2. Policy or Policies to be issued:

ALTA Loan Policy (6/17/2006)
Proposed Insured:
Amount of Insurance:

ALTA Owner's Policy (6/17/2006)
Proposed Insured:
Amount of Insurance:
3. The estate or interest in the land described or referred to in this report is:

Fee Simple
4. Last grantee of record for the period searched:
E.I. Dupont De Nemours \& Company, a Corporation duly chartered and existing under the laws of the State of Delaware
5. The land is described as follows:

See attached Exhlbit "A"

11022014 PGQ11 1 For all questions regarding this TItle Search Report
Please contact our
Virginla Search Assistance Team
vasearchhelp@fnf.com
$[s m a l l ~ l o g o]$

TITLE SEARCH REPORT REQUIREMENTS

1. Instrument(s) creating the estate or interest to be insured must be approved, executed and filed for record.
A. Warranty Deed from E. I. Dupont Denemours \& Company, vesting fee simple title in .
B. Deed of Trust from, securing your loan.
2. The Company requires receipt In writing of the name of anyone not referenced in this commitment who will acquire an interest in the land or who will execute a deed of trust encumbering the land herein. Additional requirements and/or exceptions may then be added.
3. Payment of all outstanding water, sewer and public utillty charges to date of settlement.
4. Payment of all real estate taxes, charges and assessments which are due and payable.
5. The Company must be provided with an approved form of executed Owner's Affidavit and Agreement relating to, among other items, mechanics' liens and partles in possession.
6. Payment of full consideration to or for the account of the grantor(s) or mortgagor(s).
7. Payment of the premiums, fees and charges for the policy/policies.
8. Settlement agent must ascertain Identity of all parties executing instruments required for this transaction in compliance with Virginia statutes (eg. Section 47.1-14).
9. Payment of all HOA/POA assessments, charges, and fees, which the subject property may be subject to, plus any penalty and interest which may be due.
10. Receipt and review of all corporate/entity documents for subject parties as may bé required under Virginia underwriting guidelines.

TITLE SEARCH REPORT
 EXCEPTIONS

1. Defects, liens, encumbrances, adverse claims or other matters, if any, created or first appearing in the public records or attaching to the title subsequent to the date of this commitment.
2. This tax information is furnished for your Information only. No liability of any nature whatsoever is hereby assumed for errors as to these figures. The settlement agent/attorney must verify these figures for the purposes of certifying title to the Company and preparing settlement pro rations.

Tax Assessment for 2012

```
BILL # 9694
MAP or PARCEL ID/GPIN # 057680002
DESCRIPTION IN TAX RECORD: E. I. DuPont De Nemours
LAND ASSESSMENT: $3,658,000.00
IMPROVEMENTS ASSESSMENT: $2,212,000.00
TOTAL ASSESSMENT: $5,870,000.00
ANNUAL TAX: $27,002.00
TAX PAYMENT DUE DATE(S): June 5th and December 5th
TAXES HAVE BEEN PAID THROUGH: }201
```

3. Financing Statement (UCC) No. 120000031 filed August 10, 2012 showing Lynwood Golf and Country Club, Inc. as Debtor and American National Bank and Trust Company, a National Banking Association as Secured Party.
4. The exact acreage or volume of land stated in Schedule A is not insured.
5. Easement granted to Norfolk and Western Railway Company by instrument recorded in Deed Book 69, Page 323.
6. Easement granted to APCO by instrument recorded in Deed Book 129, Page 196.
7. Easement granted to APCO (partial release for Deed Book 129, Page 196) by instrument recorded in Deed Book 167, Page 79.
8. Easements granted to APCO by Instruments recorded In Deed Book 162, Page 432; Deed Book 202, Page 723; Deed Book 221, Page 507; Deed Book 256, Page 373; Deed Book 256, Page 412; Deed Book 844, Page 314; Deed Book 908, Page 712; and Instrument No. 010007341.
9. Easements granted to Lee Telephone Company by Instruments recorded in Deed Book 189, Page 53 and Deed Book 204, Page 671.
10. Easement granted to City of Martinsville by instrument recorded in Deed Book 197, Page 885.
11. Easement granted for road access as described in Instrument recorded in Deed Book 248, Page 236.
12. Easement granted to Henry County Public Service Authority by Instrument recorded In Deed Book 861, Page 500.
13. Title to 2.203 acre landfill site as described in Deed Book 700, Page 29 and as shown on plat recorded In Plat Book 87, Page 605.
14. Declarations of Severance recorded In Deed Book 906, Page 242 and Deed Book 906, Page 250.
15. Terms and conditions of conveyance as described in Instrument recorded In Deed Book 697, Page 95.

$$
\text { H2 } 214 \text { PGOL12 }
$$

TITLE SEARCH RĖPORT/ABSTRACT

EXCEPTIONS continued
16. Memorandum of Lease to Arteva Specialties S.a.r.I dated April 30, 2004 recorded in Instrument No. 040003423.
17. Right of Way Easement agreement to Southwestern Virginia Gas Company recorded in Instrument No. 040004067.
18. Quitclaim Deed to the County of Henry dated December 14, 2004 recorded in Instrument No. 040008231.
19. Easement granted to Appalachian Power Company dated April 2, 2009 in Instrument No. 090002263.
20. Easement granted to Central Telephone Company of Virginia d/b/a Century Link dated December 12, 2011 recorded in Instrument No. 120000079.
21. Easement granted to Appalachian Power Company dated December 5, 2012 recorded in Instrument No. 130000404.
22. All matters shown on plats recorded in Henry County, Virginia in Plat Book 2, Page 232; Plat Book 2, Page 233; Plat Book 7, Page 72; Plat Book 16, Page 103; Plat Book 41, Page 28; Plat Book 42, Page 97; Plat Book 87, Page 605; Plat Book 88, Page 203; Plat Book 88, Page 204; Plat Book 88, Page 264; Plat Book 88, Page 265; and Plat Book 91, Page 280.
23. Parcel One - Property Number 1877 -TMP \# 41.8(000)-000 59

Subject to rights of City of Martinsville to back up water and create dam as described in instruments recorded in Deed Book 33, Page 488; Deed Book 67, Page 33; Deed Book 67, Page 37; Deed Book 42, Page 361; Deed Book 52, Page 5; and LOB 7, Page 278.
24. Parcel Two - Property Number 1876 -TMP \# 41.8(000)-000 59

1. Subject to rights of City of Martinsville to back up water and create dam as described in instruments recorded in Deed Book 33, Page 488; Deed Book 67, Page 33; Deed Book 67, Page 37; Deed Book 42, Page 361; Deed Book 52, Page 5; and LOB 7, Page 278.
2. Matters on plat by J. A Gustin \& Associates dated October 14, 1998 (unrecorded).
3. Parcel Three - Properly Number 1876A -IMP \# 41.8(000)-000-59

No Additional/Separate Exceptions
26. Parcel Four - Property Number 3395 -TMP \# 41.8(000)-000-62A

1. Sewer Easement granted to City of Martinsville by instrument recorded in Deed Book 213, Page 691.
2. Flowage Easement to City of Martinsville by Instrument recorded in Deed Book 215, Page 60.
3. Parcel Five - Property Number 3394 -TMP \#49(03)00/02 and 31.8(000)-000-61
4. Flowage Easement to City of Martinsville by instruments recorded in Deed Book 33, Page 25; Deed Book 34, Page 511; Deed Book 42, Page 361; Deed Book 52, Page 5; and Deed Book 215, Page 63.
5. Gas Line Easement granted Southwestern Virginia Gas Company by Instrument recorded in Deed Book 170, Page 412.
6. Sewer Easement granted to the City of Martinsville by instrument recorded in Deed Book 197, Page 713.

TITLE SEARCH REPORT/ABSTRACT EXCEPTIONS continued

4. Rights of others in and to the continued uninterrupted flow of Doe Run Creek.
5. Title to that portion of insured premises lying within the bounds of Norfolk and Western Rallway and Virginla Secondary Road Route No. 721.
6. Riparian rights incident to the insured premises.
7. All matters shown and described on plat of J. A. Gustin and Associates dated December 14, 1998.
8. Roadway Easement granted to E. I. DuPont De Nemours and Co. by Instrument recorded in Deed Book 111, Page 836.
9. Sewer line easement granted to the City of Martinsvilie by Instrument recorded Deed Book 104, Page 910.
10. Parcel Six - Property Number 3489 -TMP \#41.8(000)-000-63A
11. Flowage Easement to Clty of Martinsville by Instruments recorded in Deed Book 33, Page 254 and Deed Book 34, Page 511.
12. Easement granted to Lee Telephone Company by instrument recorded in Deed Book 70, Page 537.
13. Easement granted to APCO by instrument recorded in Deed Book 84, Page 380.
14. Sewer Easement granted to City of Martinsville by instrument recorded In Deed Book 197, Page 316.
15. Parcel Seven - Property Number 50046 -TMP \#41.9(045)000/024, 24A, 25, 25A

Alf matters shown and described on plat by J. A. Gustin and Assoclates dated March 25, 1993, recorded in Plat Book 86, Page 198.
30. Parcel Eight - Property Number 50045 -TMP \#41.9(045)000/024B, 25B

All matters shown and described on plat of J. A. Gustin and Associates dated March 25, 1993, recorded in Plat Book 86, Page 198.

TITLE SEARCH REPORT
 EXHIBIT "A"
 LEGAL DESCRIPTION

Parcel One: All that certain tract or parcel of land, situated in Henry County, Virginia, containing 296.15 Acres, more or less, and being more particularly described by metes and bounds in Deed dated October 23, 1940, recorded in Deed Book 67, Page 33.

Less and Except Tract 0 (1.153 Acres, more or less) and Tract F (16.677 Acres, more or less) conveyed out in deeds recorded in Deed Book 906, Page 242 and Deed Book 906, Page 250, respectively.

Parcel Two: All that certain tract or parcel of land, situated in Henry County, Virginia, containing 213.69 Acres, more or less, and being more particularly described by metes and bounds in Deed dated October 22, 1940, recorded In Deed Book 67, Page 37.

Less and except Tract L (9.721 Acres, more or less) conveyed out In Deed Book 697, Page 95.
Parcel Three: All that certain tract or parcel of land situated in Henry County, Virginia, containing 5.20 Acres, more or less, and being more particularly described by metes and bounds in Deed dated April 1, 1940, recorded In Deed Book 68, Page 501.

Parcel Four: All that certain tract or parcel of land, situated in Henry County, Virginia, containing 1.68 Acres less, and being more particulariy described by metes and bounds in Deed dated February 19, 1969, recorded in Deed Book 215, Page 60.

Parcel Five: All that certain tract or parcel of land consisting of Tract W (30.097 Acres, more or less) and Tract H (16.208 acres, more or less) on Virginia Secondary Route 721, along the waters of Smith River and Doe Run Creek, partly in the City of Martinsville and partly in Horsepasture (formerly Martinsville) Magisterial District, Henry County, Virginia as shown on an unrecorded plat by J. A Gustin \& Associates dated December 14, 1998.

Parcel Six: All that certain tract or parcel of land in Henry County, Virginia containing . 633 Acres, more or less, more particularly described by metes and bounds in Deed dated August 29, 1969, recorded in Deed Book 218, Page 117.

Parcel Seven: All of those certain lots or parcels of land, situated on the North side of DuPont Road and the West side of South Askin Street In the Horsepasture (formerly Martinsville) District of Henry County, Virginia, and being all of Lots \#24A and \#25A, and all of Lots \#24 and \#25, as shown on plat of survey by E.I. DuPont de Nemours and Company dated March 25, 1993, prepared by J. A Gustin \& Associates. P.E. \& LLs. recorded in the Clerk's Office, Circuit Court, Henry County, Virginia in Plat Book 86, Page 198.

Parcel Eight: All of those certain lots or parcels of land, situated on the North side of DuPont Road in the Horsepasture (formerly Martinsville) District of Henry County, Virginia and being all of Lots \#24B and \#25B as shown on plat of survey for E. I. DuPont de Nemmours and Company dated March 25, 1993 prepared by J. A. Gustin \& Associates, P.E. \& LLS, recorded in the Clerk's Office, Circuit Court, Henry County. Virginia in Plat Book 86, Page 198.

Being the same property conveyed to E.I. DuPont De Nemours \& Company, a Corporation duly chartered and existing under the laws of the State of Delaware by Deed from F. P. Burton and John D. Hooker, as Trustees dated October 23, 1940, recorded November 25, 1940 in Deed Book 67, Page 33 in the Clerk's Office of the Circuit Court of Henry County, Virginia.

Being the same property conveyed to E.I. DuPont De Nemours \& Company, a Corporation duly chartered and existing under the laws of the State of Delaware by Deed from A.L. Tuggle and Katherine W. Tuggle dated October 22, 1940, recorded November 25, 1940 in Deed Book 67, Page 37 in the Clerk's Office of the Circuit Court of Henry County, Virginia.

TITLE SEARCH REPORT/ABSTRACT
 LEGAL DESCRIPTION continued

Being the same property conveyed to E.I. DuPont De Nemours \& Company, a Corporation duly chartered and existing under the laws of the State of Delaware by Deed from A.L. Tuggle and Katherine W. Tuggle, his wife dated April 1, 1941, recorded August 27, 1941 in Deed Book 68, Page 501 in the Clerk's Office of the Circuit Court of Henry County, Virginia.

Being the same property conveyed to E.I. DuPont De Nemours \& Company by Deed from Mobile Manufacturers Corporation, successors to Home Counselors \& Erectors, Inc. dated February 19, 1969, recorded April 8, 1969 in Deed Book 215, Page 60 in the Clerk's Office of the Circuit Court of Henry County, Virginia.

Being the same property conveyed to E. I. DuPont De Nemours \& Company by Deed from Katherine T. Byrd, widow, and Mary T. Gerlaugh and Arthur Gerlaugh, her husband dated February 19, 1969, recorded February 20, 1969 in Deed Book 215, Page 63 in the Clerk's Office of the Circult Court of Henry County, Virginla.

Being the same property conveyed to E. I. DuPont De Nemours \& Company by Deed from Building Supply Company, Incorporated, a Virginia Corporation dated August 29, 1969, recorded September 20, 1969 in Deed Book 218, Page 117 in the Clerk's Office of the Circult Court of Henry County, Virginia.

Being the same property conveyed to E. I. DuPont De Nemours and Company, a Delaware corporation by Deed from Margaret M. Sprinkle dated June 1, 1993, recorded in Deed Book 610, Page 20 in the Clerk's Office of the Circuit Court of Henry County, Virginia.

Being the same property conveyed to E. I. DuPont de Nemours and Company, a Delaware corporation by Deed from Frank L Taylor and Mary Jackson Dodge Taylor and Grace Matthew Taylor dated June 1, 1993, recorded N/A in Deed Book 610, Page 23 in the Clerk's Office of the Circuit Court of Henry County, Virginla.

$$
10222014 \mathrm{PGOL16}
$$

SHANKS ASSOCLATES, P.C.
 ENGINEERSYISURYEYORS PLANNERS

509 Loyal'Street • Danville, Virginia 24541
tel: 434-797-5446 • fax: 434-793-1455 • website: www.shenks-pc.com θ-mail: ShanksAssociates@verizon.net
December 13, 2013
Mr. Herman W. Cook
Site Manager
DuPont Martinsville Site
1000 DuPont Road
Martinsville, Virginia 24112
RE: Title Binder exceptions - ALTA Survey
DuPont Martinnsville Plant Job No. 313005 B

Good afternoon Herman,
I have traced the four referenced items; and found the following:
Exception 10 is a sanitary sewer line which crosses former DuPont property lying east of the remaining DuPont property and near Route 220. The line runs from Route 220 and crosses the Wildlife Habitat area. It also crosses the 105.357 acres tract northeast of the Golf Course.

Exception 11is an abandoned old County road (Route 688) that the Henry County Board of Supervisors officially abandoned September 22, 194]. The road would have been across the Main Plant site, the Golf Course and the 105.357 acres tract northeast of the Golf Course.

Exception 12 is for a Henry County Service Authority water line that crosses the river, passing by the Heary County Public Safety Building, crosses the main entrance road, runs behind the Credit Union and your office and serves the Invista site.

Exception 13 is a 2.203 acre closed "non-hazardous solid waste" landfill site northwest of the Golf Course club house.

Please let me know if this is what you need.

Fred o. Shanks, III

Serving southside and southwest Virginia

OFFICIAL RECEIPT
HENRY COUNTY CIRCUIT COURT
3160 KINGS MOUNTAIN RD. STE. B MARTINSVILLE, VA 24112

276-634-4880
FINANCE STATEMENY

CLERK OF COURT: VICKIE S. HBLMSTUTLER

PAYOR'S COPY
RECEIPT COPY 1 OF 2

[^1]HL2 $214 \mathrm{PCOL19}$

INGTRUMENT $\# 140002371$
 RECORDED IN THE CLERK'S DFFICE OF COUNTY OF HEMEY ON JUY $22 ; 2014$ AT 11:05AM VICKIE S. HELMSTUTLER CLERK RECDRDED BY: JFG

[^0]: 1022014 PG 0041

[^1]: FILING OFFICE COPY - UCC FINANGING STATEMENT AMENDMENT (Fom UCC3) (Rev 04/20/11)

