User Guide to the Docket for the 2015 Annual Review and the Preliminary 2016 Effluent Guidelines Program Plan EPA Docket Number EPA-HQ-OW-2015-0665 (www.regulations.gov) June 2016 DCN 08313 #### 1.0 OVERVIEW Under the Clean Water Act (CWA), EPA establishes technology-based national regulations, termed "effluent limitations guidelines and standards," to reduce pollutant discharges from categories of industrial facilities to waters of the United States. Under the CWA, EPA similarly establishes technology-based regulations, termed "pretreatment standards" to reduce indirect pollutant discharges from industrial facilities to waters of the United States. The CWA also specifies effluent guideline planning and review requirements. There are different requirements for direct and indirect dischargers, but both specify annual review of promulgated effluent guidelines and pretreatment standards. For direct dischargers, the CWA requires EPA to publish an Effluent Guidelines Program Plan every two years after allowing for public review and comment on the plan prior to final publication. This document provides information on the docket supporting the 2015 Annual Review and the Preliminary 2016 Effluent Guidelines Program Plan (Preliminary 2016 Plan). See the Federal Register Notice presenting EPA's 2015 Annual Review and the Preliminary 2016 Effluent Guidelines Program Plan, 81 FR 41535 (27 June 2016). Documents cited in the Preliminary 2016 Plan are listed in Attachment 3, with their Regulations.gov Document ID Numbers noted. Key supporting documents are also available on EPA's Effluent Guidelines Plan web page at www.epa.gov/eg/effluent-guidelines-plan. #### 2.0 BACKGROUND INFORMATION ON THE DOCKET What is the Docket and How Can I Gain Access to It? Docket ID No. EPA-HQ-OW-2015-0665 is the official docket for EPA's Preliminary 2016 Plan and its 2015 Annual Review of existing effluent limitations guidelines. The official docket consists of the documents specifically referenced in the Federal Register notices of these actions, any public comments received, and other related information. Although it is a part of the official docket, Confidential Business Information (CBI) or other information whose disclosure is restricted by statute is not included in the materials available to the public. The official public docket is the collection of electronic and hard copy materials that is available for public viewing at the Water Docket in the EPA Docket Center, (EPA/DC), located in the EPA Headquarters Library, WJC West Building, Room Number 3334, 1301 Constitution Ave., NW, Washington, DC. An electronic version of the public docket is available through a federal-wide electronic docket management system located at www.regulations.gov. You may use the Regulations.gov web site to view public comments, access a listing of the contents of the official docket, and access those documents in the public docket that are available electronically. Certain documents are not available in the electronic docket system. These documents include, but are not limited to copyright-protected material; physical objects such as maps, aerial photographs, colored charts; and information that has been claimed as confidential. Although not all docket materials may be available electronically, you may still access any of the publicly-available docket materials at the EPA Docket Center. ### Can I retrieve information that has been claimed "Confidential Business Information?" The docket may contain some documents that contain confidential business information (CBI). CBI documents are not available for review by the public, and are not filed in the Water Docket in the EPA Docket Center. Some documents are classified as CBI because companies providing the information specifically claimed certain information (e.g., operating or financial data) as CBI. Other documents are classified as CBI because release of these documents could indirectly reveal information claimed to be confidential. # How is the Docket for EPA's Preliminary 2016 Plan related to the Docket for the 2014 Effluent Guidelines Program Plan? The CWA requires EPA to publish an Effluent Guidelines Program Plan every two years after allowing for public review and comment on the plan prior to final publication. Documents supporting the Final 2014 Effluent Guidelines Program Plan, including the 2013 and 2014 annual reviews of existing effluent limitations guidelines are located in Docket ID No. EPA-HQ-OW-2014-0170. Docket ID No. EPA-HQ-OW-2014-0170 is incorporated by reference into the docket for the Preliminary 2016 Plan (Docket ID No. EPA-HQ-OW-2015-0665). See EPA-HQ-OW-2015-0665, DCN 08311. All of the documents in the docket supporting the Final 2014 Effluent Guidelines Program Plan also support the 2015 Annual Review and Preliminary 2016 Plan. EPA has also incorporated by reference all of the documents in the dockets supporting the Plans for 2004, 2006, 2008, 2010, and 2012, which include the annual reviews for years 2003-2012. See EPA-HQ-OW-2006-0771-0822 (DCN 05106), EPA-HQ-OW-2008-0517-0475 (DCN 06937), EPA-HQ-OW-2010-0824-0121 (DCN 07722), and EPA-HQ-OW-2014-0170-0078 (DCN 07987). #### 3.0 ACCESSING INFORMATION IN THE DOCKET #### How Do I Find Documents in the Docket? Water Docket in the EPA Docket Center The official public docket is the collection of electronic and hard copy materials that is available for public viewing at the Water Docket in the EPA Docket Center, (EPA/DC), located in the EPA Headquarters Library, WJC West Building, Room Number 3334, 1301 Constitution Ave., NW, Washington, DC. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The telephone number for the Public Reading Room is (202) 566–1744, and the telephone number for the Water Docket is (202) 566–2426. You can also contact the Water Docket via e-mail: OW-Docket@epa.gov. #### Regulations.gov You will find instructions for using Regulations.gov on its Internet home page. Regulations.gov provides limited electronic search capabilities. If you know the Document ID Number (e.g., EPA-HQ-OW-2015-0665-0290) of the document you wish to view, you can type that number directly into the field beneath the "Enter Keyword or ID." If you do not know the specific Document ID Number, you can input the docket identification number (EPA-HQ-OW-2015-0665) in the field beneath the "Enter Keyword or ID" heading and click Search. You will now see a listing of the contents of the official docket in the public record. The listing includes the Document Title (e.g., "Preliminary 2016 Effluent Guidelines Program Plan"), Document ID Number (e.g., EPA-HQ-OW-2015-0665-0290), Date Posted (e.g., "June 27, 2016"), Document Type (e.g., "Notice"), and other information. You have several options to narrow your search within the docket listing by using the filters under the "Select Document Type" field. For example, you can specify the Document Type (e.g., Public Submissions, Notices, or Rules) as well as status (e.g. Open for Comment/Submission). ## How are Documents Organized in the EPA-HQ-OW-2015-0665 Docket? Each document in the docket has two document identification numbers. One is the Regulations.gov Document ID Number (e.g., EPA-HQ-OW-2015-0665-0290) that was assigned when EPA added the document to the official docket. The last four digits are the unique consecutive regulations.gov document ID. The second is the document control number (DCN) that was assigned during the development of the document (e.g., DCN 08208). In documents prepared for the docket, EPA typically identifies references by their DCN. The DCN appears at the end of the document titles in the **Document Title** field listed in Regulations.gov (e.g., "Preliminary 2016 Effluent Guidelines Program Plan - DCN 08208"). ## What is the Docket EPA-HQ-OW-2015-0665 Subject Outline? EPA has prepared a *subject outline* of the documents included in EPA-HQ-OW-2015-0665 to help you locate documents that address related topics or subjects. The subject outline for EPA-HQ-OW-2015-0665 is provided in Attachment 1. With the exception of public submissions, each document in the docket has been assigned to an outline section. #### What is the Docket EPA-HQ-OW-2015-0665 Subject Index? The docket EPA-HQ-OW-2015-0665 *subject index* is a list of documents in the docket, sorted by subject outline section, available as Attachment 2 to this document. Because of its size, Attachment 2 is available separately, at DCN 08313A1. The subject index summarizes certain information for each document, including the subject outline section, Regulations.gov Document ID Number, DCN, document title, author, and abstract. EPA assigned each document to a subject outline section during the development of the document. The subject index for the docket includes the following fields: | Field Name | Description | |---------------------------------------|--| | Record Section | Section number from docket subject outline. | | Regulations.gov
Document ID Number | Unique document number assigned when EPA added the document to the official docket. The Document ID Number includes the Docket Number (e.g., EPA-HQ-OW-2015-0665) followed by a consecutive document number to distinguish the individual documents within the docket. | | Title | Title of document. | | Abstract | Additional description of document. | | Document Type | Type of supporting and related materials (e.g., publication, meeting materials, data, etc.). | | Author | Author of document (Last name, first full name). | | Author Date | Date of publication, issue, edition,
or version. Actual date of meeting or telephone call. | | Source Citation | For copyright protected documents, this is a bibliographic citation (without title or author) that you can use to find the document in a library. For materials retrieved from the Internet, Source Citation lists the URL. | | Category Industry | Industry category that the document is supporting. | | Page | Number of pages in document. | | CBI | Confidential Business Information (Yes/No). CBI is not available to the public. | | Copyrighted | (Materials that are copyright protected (e.g., books and other published material) (Yes/No). Copyrighted documents are not available through Regulations.gov; they are only available in hard copy at the EPA Docket Center. | | DCN | Unique document control number (DCN) assigned during the development of the document. | #### How Do I Use the Subject Index to Find Documents in the Docket? Review the subject outline (see Attachment 1) to determine which section may contain the documents of interest. Then, locate documents for that section in the index and note their Regulations.gov Document ID Number. Documents available electronically can be accessed through Regulations.gov. Other documents can be reviewed at the Water Docket in the EPA Docket Center in Washington, DC. See information on the Water Docket above. You may also be able to locate copyright protected materials (for example, articles from technical publications) at an academic or public library. ## 4.0 FURTHER INFORMATION The primary contact regarding questions or comments on Docket ID No. EPA-HQ-OW-2015-0665, the 2015 Annual Review, and the Preliminary 2016 Effluent Guidelines Program Plan is: Mr. William F. Swietlik U.S. EPA Office of Water Engineering and Analysis Division (4303T) 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 566-1129 (telephone) (202) 566-1053 (fax) swietlik.william@epa.gov | | | 1 | | . 1 | |----|-----|----|----|-----| | Λt | tac | hm | an | t I | | | | | | | ## **Attachment 1** SUBJECT OUTLINE FOR THE 2015 ANNUAL REVIEW AND THE PRELIMIARY 2016 EFFLUENT GUIDELINES PROGRAM PLAN DOCKET EPA-HQ-OW-2015-0665 ## 2015 Annual Review and Preliminary 2016 Effluent Guidelines Program Plan Docket Subject Outline ## **Docket EPA-HQ-OW-2015-0665** The following existing sections include the docket materials for the 2004 Effluent Guidelines Program Plan. - 1 Docket OW-2003-0074: Background Documents (includes TSD and appendices) - 2 Docket OW-2003-0074: Screening Level Review (supporting 2004 Plan) - 3 Docket OW-2003-0074: Industry Rankings The following sections will be used to organize the docket and project file materials for the 2006, 2008, 2010, 2012, 2014, and 2016 Effluent Guidelines Program Plans. #### 4 Public Comments Docket EPA-HQ-OW-2004-0032 Docket EPA-HQ-OW-2003-0074 Docket EPA-HQ-OW-2006-0771 Docket EPA-HQ-OW-2008-0517 Docket EPA-HQ-OW-2010-0824 Docket EPA-HQ-OW-2014-0170 Docket EPA-HQ-OW-2015-0665 - 5 No entries - 6 Federal Register Notices, Outreach Materials, and Other Background Documents - 6.1 Previous Dockets, by reference - 6.2 Federal Register Notices - 6.3 Outreach Efforts - 6.4 Technical Support Documents and Appendices - 7 Public and Inter-Agency Comments - 7.1 Public Comments on the 2004 Effluent Guidelines Program Plan - 7.2 Public Comments on the Preliminary 2006 Effluent Guidelines Program Plan - 7.3 Public Comments on the Final 2006 Effluent Guidelines Program Plan - 7.4 Public Comments on the Preliminary 2008 Effluent Guidelines Program Plan - 7.5 Public Comments on the First CBM ICR (January 2008) - 7.6 Public Comments on the first HCI ICR (August 2008) - 7.7 Public Comments on the Final 2008 Effluent Guidelines Program Plan - 7.8 Public Comments on the Preliminary 2010 Effluent Guidelines Program Plan - 7.9 Public Comments on the Final 2010 Effluent Guidelines Program Plan - 7.10 Public Comments on the Preliminary 2012 Effluent Guidelines Program Plan - 7.11 Public Comments on the Final 2012 Effluent Guidelines Program Plan - 7.12 Public Comments on the Preliminary 2014 Effluent Guidelines Program Plan ## 8 CWA §304(g) Review Review of the pretreatment standards for industrial point source categories composed entirely or almost entirely of indirect dischargers. - 8.1 Food Service Establishments - 8.2 Industrial Laundries - 8.3 Photo-processing - 8.4 Printing and Publishing - 8.5 Health Services Industries - 8.5.1 Independent and Stand-alone Medical and Dental Laboratories - 8.5.2 Offices and Clinics of Doctors of Medicine - 8.5.3 Offices and Clinics of Dentists - 8.5.4 Nursing and Personal Care Facilities - 8.5.5 Veterinary Care Services - 8.5.6 Hospitals and Clinics - 8.5.7 Health Services Industries Economic Information - 8.6 Independent and Stand-alone Laboratories - 8.7 Industrial Container and Drum Cleaning (ICDC) - 8.8 Tobacco Products Processing - 8.9 Correctional Institutions (Prisons) ## 9 Screening-Level Reviews Screening-level review of existing guidelines and standards and new categories. - 9.1 Analyses of the Toxics Release Inventory Plan, database, QC checks (including telecons) - 9.2 Analyses of Permit Compliance System data Plan, ICIS-NPDES Data Plan, database, QC checks (including telecons) - 9.3 Other Screening-Level Data Sources NAICS/SIC/Point Source Category Crosswalks - 9.4 Screening-Level Review Reports QA Project Plans for TRI and PCS Analysis, 2005 Screening-Level Analysis Report Nutrients Memo - 9.5 Toxic Weighting Factor Development ## 10 Existing Guidelines and Standards Review Further review based on National Strategy Factors, of industries with existing guidelines and standards, prioritized during screening-level review. The National Strategy Factors are: 1) human health and environment hazards; 2) technology innovation and process changes; 3) economics; 4) implementation and efficiency considerations. ### 10.1 Preliminary Review Reports Review of Prioritized Categories of Industrial Dischargers All existing categories are listed below. Potential new subcategories are included with their parent category. If no materials specific to a category are collected, the section will be identified as "no entries." Materials collected in support of detailed studies are organized in additional sections, following Section 11. - 10.2 Aluminum Forming, Part 467 - 10.3 Aquatic Animal Production Industry, Part 451 - 10.4 Asbestos Manufacturing, Part 427 - 10.5 Battery Manufacturing, Part 461 - 10.6 Centralized Waste Treaters, Part 437 - 10.7 Canned and Preserved Seafood, Part 408 - 10.8 Carbon Black Manufacturing, Part 458 - 10.9 Cement Manufacturing, Part 411 - 10.10 Coal Mining, Part 434 - 10.11 Coil Coating, Part 465 - 10.12 Concentrated Animal Feeding Operations, Part 412 - 10.13 Copper Forming, Part 468 - 10.14 Dairy Products Processing, Part 405 - 10.15 Electrical and Electronic Components, Part 469 - 10.16 Electroplating, Part 413 - 10.17 Explosives, Part 457 - 10.18 Ferroalloy Manufacturing, Part 424 - 10.19 Fertilizer Manufacturing, Part 418 - 10.20 Fruits and Vegetable Processing, Part 407 - 10.21 Glass Manufacturing, Part 426 - 10.22 Grain Mills Manufacturing, Part 406 - 10.23 Gum and Wood Chemicals, Part 454 - 10.24 Hospitals, Part 460 - 10.25 Ink Formulating, Part 447 - 10.26 Inorganic Chemicals, Part 415 - 10.27 Iron and Steel Manufacturing, Part 420 - 10.28 Landfills, Part 445 - 10.29 Leather Tanning and Finishing, Part 425 - 10.30 Meat and Poultry Products, Part 432 - 10.31 Metal Finishing, Part 433 - 10.32 Metal Molding and Casting (Foundries), Part 464 - 10.33 Metal Products and Machinery, Part 438 - 10.34 Mineral Mining and Processing, Part 436 - 10.35 Nonferrous Metals Forming and Metal Powders, Part 471 - 10.36 Nonferrous Metals Manufacturing, Part 421 - 10.37 Oil & Gas Extraction, Part 435 - 10 37 1 Coalbed Methane - 10.37.2 Shale Gas Extraction - 10.38 Ore Mining and Dressing, Part 440 - 10.39 Organic Chemicals, Plastics and Synthetic Fibers, Part 414 (including Thompson Report response materials) - 10.39.1 Chemical Formulating, Packaging and Repackaging - 10.39.2 Biodiesel, Ethanol, and Other Biofuels - 10.40 Paint Formulating, Part 446 - 10.41 Paving and Roofing Materials (Tars and Asphalt), Part 443 - 10.42 Pesticide Chemicals Manufacturing, Formulation and Repackaging, Part 455 - 10.43 Petroleum Refining, Part 419 - 10.43.1 Petroleum Bulk Stations and Terminals (PBST) - 10.44 Pharmaceutical Manufacturing, Part 439 - 10.45 Phosphate Manufacturing, Part 422 - 10.46 Photographic, Part 459 - 10.47 Plastic Molding and Forming, Part 463 - 10.48 Porcelain Enameling, Part 466 - 10.49 Pulp, Paper, and Paperboard, Part 430 (materials not related to detailed study, e.g., Phase III permit writers support materials) - 10.50 Rubber Manufacturing, Part 428 - 10.51 Soaps and Detergents Manufacturing, Part 417 - 10.52 Steam Electric Power Generation, Part 423 - 10.53 Sugar Processing, Part 409 - 10.54 Textile Mills, Part 410 - 10.55 Timber Products Processing, Part 429 - 10.56 Transportation Equipment Cleaning, Part 442 - 10.57 Waste Combustors (Commercial Incinerators Combusting Hazardous Waste), Part 444 ## 11 Review of Categories Without Existing Guidelines - 11.1 Airport Deicing Operations (now Part 449) - 11.2 Water Supply (Drinking Water Treatment) - 11.3 Miscellaneous Foods and Beverages - 11.4.1 Distilled and Blended Liquor - 11.4.2 Malt Beverages - 11.4.3 Soybean Oil Mills - 11.4.4 Miscellaneous Foods and Beverages Economic Information - 11.4 Liquefied Natural Gas Import Terminals - 11.5 Biofuel Manufacturing - 11.6 Engineered Nanomaterials Manufacturing and Production Use - 11.7 Brick and Structural Clay Products Manufacturing ## 12 Water Pollution Control Technologies, Water Reuse, Water Conservation Include information about pollution prevention, wastewater treatment, and other wastewater pollution control technologies that applies to multiple point source categories. Technologies or case studies that focus on one category should be included in the section
for the category or detailed study. - 12.1 Water Conservation Issues - 12.2 Wastewater Treatment Technologies Investigation #### 13 Steam Electric Power Generation Detailed Study (closed as of December 2009) - 13.1 Study Plans Detailed Study Plan, QA Project Plan - 13.2 Industry Profile - 13.3 NPDES Permits - 13.4 Stakeholder Meeting Material - 13.5 Pollution Control Technologies and Their Costs - 13.6 Industry Surveys - 13.7 Detailed Study Reports - 13.8 Site Visits - 13.9 Sampling - 13.10 EPA Data Request Development Files - 13.11 Technology Options, Costs, and Loads - 13.12 Environmental Assessment Documentation ## 14 Tobacco Products Processing Detailed Study (closed as of December 2006) - 14.1 Study Plans (Detailed Study Plan, QA Project Plan) - 14.2 Industry Profile (include information on companies and individual plants) - 14.3 Site Visits, Sampling and Analysis (include pre-sampling telephone contact reports) - 14.4 Pollution Control Technologies and Their Costs - 14.5 Detailed Study Reports - 14.6 Tobacco Products Economic Information #### Pulp, Paper, and Paperboard Detailed Study (closed as of December 2006) - 15.1 Study Plans (Detailed Study Plan) - 15.2 Industry Information - Meeting summary, AF&PA disputed loads letter with enclosures, AF&PA minimum monitoring letter with enclosures, Mill discharge data (i.e., minor discharger, Washington mills), Phase I Mill Industry Profile. - Draft TRI Guidance Document, TAPPI paper Comparing Chlorinated Phenolic loadings 15.2.1 Pulp and Paper Industry Economic Information - 15.3 Quality Review - Designation of SIC codes into Phase, Changes to Phases, telecons (i.e., Kimberly-Clark Everett WA, Weyerhaeuser surface impoundment, IP-Cantonment Permit Status) - 15.4 NPDES Permits (Includes factsheets and communication from mills that defined outfalls) 15.4.1 Phase I mill permits | 15.5 | 15.4.2 Phase II mill permits Detailed Study Reports | |---|---| | 16 | Coal Mining Detailed Study (closed as of 2006) | | 16.1
16.2
16.3 | Study Plans (Detailed Study Plan, QAPP) Industry profile for the coal mining industry Pollutant loads Data Obtained from states and IMCC Pollutant Loads Concept Memo Loads spreadsheets and results | | 16.4 | Treatment technologies and costs Model mine memo, AMD Treat review, costing spreadsheets and results | | 16.5 | Environmental assessment Memos addressing "Key questions" Articles collected related to impacts of manganese | | 16.6 | Flight 93 Memorial Site Information Joanne Hanley e-mails, Lenny Lichvar document, PBS Coals letters | | 16.7
16.8 | Non-CWA Regulations (SMCRA, Other Federal, and State Laws) Economics, Bonds, and Trust Funds | | 17 | Health Care Detailed Study (closed as of 2011) | | 17.1
17.2 | Study Plans and Reports Dental Hg Industry Profile and Background Information (including wastewater characteristics, regulations, guidance) | | 17.3
17.4
17.5
17.6 | Dental Hg BMPs, Control Technologies, and their Costs Dental Hg POTW Treatment Efficiencies, pass through, and interferences Dental Hg Economic Information Dental Hg Meetings | | 17.7 | Unused Pharmaceuticals Industry Profile and Background Information (including wastewater characteristics, regulations, guidance) | | 17.8
17.9
17.10
17.11
17.12 | Unused Pharmaceuticals Data Request and Responses Unused Pharmaceuticals BMPs, Control Technologies, and their Costs Unused Pharmaceuticals POTW Treatment Efficiencies, pass through, and interferences Unused Pharmaceuticals Economic Information Unused Pharmaceuticals Meetings and Site Visits | | 18 | Coalbed Methane Detailed Study (closed as of 2014) | | 18.1
18.2
18.3
18.4 | Plans Stakeholder Meetings Site Visits/Sampling Industry Survey Development and Distribution 18.4.1 Questionnaire Development 18.4.2 Survey Sampling Strategy includes development of mailing list 18.4.3 Information Collection Request includes burden estimate, drafts of ICRs Industry Survey Results | | | 10 5 1 | D | |------|----------|---| | | 18.5.1 | Responses raw completed questionnaires | | | 18.5.2 | Database(s) | | 18.6 | Technica | Background Information | | | 18.6.1 | Produced water quality and volume data | | | 18.6.2 | Reuse and Treatment Technologies technology performance and costs | | 18.7 | Economi | c Background Information | | 18.8 | Environn | nental Assessment Background Information | | 189 | Detailed | Study Reports | #### 19 **EPA's Even Year Analyses** - Review of Industrial Pollutants in Sewage Sludge Review of EPA Chemical Action Plans 19.1 - 19.2 - 19.3 Review of Air Regulations - Review of TRI Industry Sectors Expansion 19.4 - Review of Analytical Methods 19.5 ## User Guide Index for EPA-HQ-OW-2015-0665 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|--|-----------------------|--------------------------|----------------|---|----------------------|------|-----|-------------------|-------| | 6.01 | EPA-HQ-OW-2015-0665-0302 | Memorandum from W. Swietlik,
EPA, to Public Docket EPA-HQ-OW-
2015-0665 Re: Docket EPA-HQ-
OW-2014-0170 Incorporated by
Reference - DCN 08311 | Memorandum detailing the docket number EPA-HQ-OW-2014-0170 is incorporated by reference through the memorandum into the public record for the "Preliminary 2016 Effluent Guidelines Program Plan", EPA Docket Number OW-2015-0665. | Memorandum | William
Swietlik, EPA | 05/24/2016 | Swietlik, W. 2016. Memorandum from W. Swietlik, EPA, to Public Docket, EPA-HQ-OW-2015-0665. Re: Docket EPA-HQ-OW-2014-0170 Incorporated by Reference. | | 1 | No | No | 08311 | | 6.04 | EPA-HQ-OW-2015-0665-0290 | Preliminary 2016 Effluent
Guidelines Program Plan - DCN
08208 | Preliminary 2016 Plan for the Industrial Effluent Guidelines Program. | Publication;
USEPA | U.S. EPA | 06/17/2016 | U.S. EPA. 2016.
Preliminary 2016
Effluent
Guidelines
Program Plan.
Washington D.C. | | 62 | No | No | 08208 | | 6.04 | EPA-HQ-OW-2015-0665-0299 | The 2015 Annual Effluent
Guidelines Review Report - DCN
08209 | The report containing the analyses completed during the 2015 Annual Review. | Publication;
USEPA | U.S. EPA | 06/17/2016 | U.S. EPA. 2016.
The 2015 Annual
Effluent
Guidelines
Review Report.
Washington D.C. | | 198 | No | No | 08209 | June 27, 2016 Page 1 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|---|---|-----------------------|-----------------------------------|----------------|---|----------------------|------|-----|------------------|-------| | 6.04 | EPA-HQ-OW-2015-0665-0291 | The 2015 Annual Effluent
Guidelines Review Report
Appendices A-E - DCN 08210 | Appendices supporting the 2015 Annual Review Report | Publication;
USEPA | U.S. EPA | 06/17/2016 | U.S. EPA. 2016.
The 2015 Annual
Effluent
Guidelines
Review Report
Appendices A-E.
Washington D.C. | | 247 | No | No | 08210 | | 9.0 | EPA-HQ-OW-2015-0665-0284 | Memorandum from William Swietlik,
U.S. EPA, to Public Docket for the
Preliminary 2016 Effluent
Guidelines Program Plan, EPA
Docket Number EPA-HQ-OW-2015-
0665. Re: Summary of Methodology
for Handling Non-Detect Data:
304m and Steam Electric Power
Generating - DCN 08212 | | Memorandum | U.S. EPA | 02/16/2016 | U.S. EPA. 2016.
Memorandum
from William
Swietlik, U.S.
EPA, to the
Public Docket,
EPA-HQ-OW-
2015-0665. Re:
Non-Detect Data
Methodology. | | 5 | No | No | 08212 | | 9.1 | EPA-HQ-OW-2015-0665-0200 | 2013 Toxics Release Inventory
(TRI) Water Release Database -
DCN 08120 | 2013 TRI water release data supporting the 2015 Annual Review Report. | Data | Eastern
Research
Group, Inc | 12/01/2015 | DMR Loading
Tool Output –
2013 TRI Data | | 0 | No | No | 08120 | June 27, 2016 Page 2 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------
--|---|----------------------|---------------|----------------|--|----------------------|------|-----|-------------------|-------| | 9.1 | EPA-HQ-OW-2015-0665-0283 | Memorandum from William Swietlik,
U.S. EPA, to Public Docket for the
Preliminary 2016 Effluent
Guidelines Program Plan, EPA
Docket Number EPA-HQ-OW-2015-
0665. Re: Hydrogen Sulfide
Releases Reported to the Toxics
Release Inventory (TRI) in 2013 -
DCN 08211 | Memorandum detailing hydrogen sulfide releases reported to the TRI in 2013. | Memorandum | U.S. EPA | 10/29/2015 | U.S. EPA. 2015. Memorandum from William Swietlik, U.S. EPA, to Public Docket, EPA-HQ- OW-2015-0665. Re: H2S Releases in TRI. | | 12 | No | No | 08211 | | 9.1 | EPA-HQ-OW-2015-0665-0078 | Telephone and Email
Communication with Brian Beeler,
Lafayette WWTP, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 Hydrogen Sulfide
Discharges at POTWs - DCN 08217 | Telephone and email conversation between Brian Beeler, Lafayette WWTP, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 Hydrogen Sulfide Discharges at POTWs. | Meeting
Materials | Beeler, Brian | 12/19/2014 | Beeler, B. 2014. Correspondence between Brian Beeler, Lafayette WWTP, and Kim Bartell, ERG. Re: 2013 Hydrogen Sulfide Discharges at POTWs. (Dec 19). | | 3 | No | No | 08217 | | 9.1 | EPA-HQ-OW-2015-0665-0090 | Telephone and Email
Communication with David Tyler,
Tolleson WWTP, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 Hydrogen Sulfide
Discharges at POTWs - DCN 08229 | Telephone and email conversation between David Tyler, Tolleson WWTP, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 Hydrogen Sulfide Discharges at POTWs. | Meeting
Materials | Tyler, David | 12/19/2014 | Tyler, D. 2014. Correspondence between David Tyler, Tolleson WWTP, and Kim Bartell, ERG. Re: 2013 Hydrogen Sulfide Discharges at POTWs. (Dec 19). | | 3 | No | No | 08229 | June 27, 2016 Page 3 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|---|---|------------------|----------|----------------|--|----------------------|------|-----|------------------|-------| | 9.1 | EPA-HQ-OW-2015-0665-0091 | NRMRL Treatability Data Base,
Version 5.0 - DCN 08230 | Office of Research and Development. NRMRL
Treatability Database, Version 5.0 | Data | U.S. EPA | 02/01/2004 | U.S. EPA. 2004. Office of Research and Development. NRMRL Treatability Data Base, Version 5.0. Cincinnati, OH. (Feb). | | 2 | No | No | 08230 | | 9.1 | EPA-HQ-OW-2015-0665-0092 | EPA's Risk-Screening
Environmental Indicators (RSEI)
Methodology - DCN 08231 | Methodology for EPA's computer-based RSEI tool to identify toxic releases that may require further evaluation and to plan for the future. | Data | U.S. EPA | 07/01/2013 | U.S. EPA.
2013b. EPA's
Risk-Screening
Environmental
Indicators (RSEI)
Methodology.
Washington,
D.C. (July). | | 92 | No | No | 08231 | | 9.1 | EPA-HQ-OW-2015-0665-0094 | Document Search for the Louisiana
Department of Environmental
Quality - DCN 08233 | Louisiana Department of Environmental Quality Document Search for permit documents and DMRs. | Data | LA DEQ | 12/23/2015 | LA DEQ. 2015. LA Department of Environmental Quality. Document Search. Available online at: http://edms.deq.lo uisiana.gov/app/d oc/querydef.aspx. | | 1 | No | No | 08233 | June 27, 2016 Page 4 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN | |-------------------|--------------------------|---|---|------------------------|----------|----------------|---|----------------------|------|-----|-------------------|-------| | 9.1 | EPA-HQ-OW-2015-0665-0095 | CERCLA Compliance between
Other Laws Manual: Interim Final -
DCN 08234 | The CERCLA Compliance with Other Environmental Laws Manual was developed to provide guidance to Remedial Project Managers, State personnel at State-lead Superfund sites, On-Scene Coordinators, and other persons responsible for planning response actions un | | U.S. EPA | 08/01/1988 | U.S. EPA. 1988. CERCLA Compliance between Other Laws Manual: Interim Final. EPA-540-G-89- 006. OSWER Publication 9234.1-01. Washington, D.C. (Aug). | | 243 | No | No | 08234 | | 9.1 | EPA-HQ-OW-2015-0665-0096 | Guidance on Remedial Actions for
Contaminated Ground Water at
Superfund Sites - DCN 08235 | This document provides guidance for making key decisions in developing, evaluating, and selecting ground-water remedial actions at Superfund sites. | Publication; US
EPA | U.S. EPA | 12/01/1988 | U.S. EPA. 1988.
Guidance on
Remedial
Actions for
Contaminated
Ground Water at
Superfund Sites.
OSWER
Directive 9283.1-
2. EPA-540-G-
88-003. (Dec). | | 121 | No | No | 08235 | | 9.1 | EPA-HQ-OW-2015-0665-0097 | Known Data Problems for ECHO -
DCN 08236 | Known Data Problems for the Enforcement and Compliance History Online | Data | U.S. EPA | 08/01/2015 | U.S. EPA. 2015.
Known Data
Problems.
Enforcement and
Compliance
History Online.
Washington,
D.C. (August). | | 13 | No | No | 08236 | June 27, 2016 Page 5 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTE |) DCN | |-------------------|--------------------------|---|---|------------------|-----------------------------------|----------------|---|----------------------|------|-----|------------------|-------| | 9.1 | EPA-HQ-OW-2015-0665-0098 | Is My Facility's Six-Digit NAICS
Code a TRI-Covered Industry?
Toxics Release Inventory Program -
DCN 08237 | The North American Industry Classification System (NAICS) is a framework by which economic units that have similar production processes are classified into the same industry by a numerical designation, the most detailed of which is six digits. | Data | U.S. EPA | 02/03/2015 | U.S. EPA. 2015. Is My Facility's Six-Digit NAICS Code a TRI- Covered Industry? Toxics Release Inventory Program. Washington, D.C. (February 3). | | 10 | No | No | 08237 | | 9.1 | EPA-HQ-OW-2015-0665-0236 | Toxicological Review of Hydrogen
Sulfide - DCN 08276 | Toxicological review to provide scientific support and rationale for the hazard and dose-response assessment in IRIS pertaining to chronic exposure to hydrogen sulfide. | Report | U.S. EPA | 06/01/2003 | EPA. 2003. Toxicological Review of H2S. Washington, D.C. Available online at: http://www.epa.go v/ncea/iris/toxrevi ews/0061tr.pdf | | 74 | No | No | 08276 | | 9.1 | EPA-HQ-OW-2015-0665-0237 | 2013 Toxics Release Inventory
(TRI) Water Release Database -
Version 0 - DCN 08277 | 2013 TRI water release data prior to the hydrogen sulfide POTW percent removal update. | Data | Eastern
Research
Group, Inc | 11/01/2014 | DMR Loading
Tool Output –
2013 TRI Data | | 0 | No | No | 08277 | June 27, 2016 Page 6 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|----------------------|-----------------------------------
----------------|---|---|------|-----|-------------------|-------| | 9.2 | EPA-HQ-OW-2015-0665-0201 | 2013 Discharge Monitoring Report
(DMR) Database - DCN 08121 | 2013 DMR data supporting the 2015 Annual Review Report. | Data | Eastern
Research
Group, Inc | 12/01/2015 | DMR Loading
Tool Output –
2013 DMR Data | | 0 | No | No | 08121 | | 10.1 | EPA-HQ-OW-2015-0665-0086 | Telephone and Email
Communication with Gina Self,
Montana Department of
Environmental Quality, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR Arsenic
Discharges for Decker Coal Co -
DCN 08225 | Telephone and email conversation between Gina Self, Montana Department of Environmental Quality, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Arsenic Discharges for Decker Coal Co. | Meeting
Materials | Self, Gina | 11/14/2014 | Self, G. 2014. Correspondence between Gina Self, Montana DEQ, and Kim Bartell, ERG. Re: 2013 DMR Arsenic Discharges for Decker Coal Co. (Nov 14). | Coal Mining | 1 | No | No | 08225 | | 10.2 | EPA-HQ-OW-2015-0665-0084 | Telephone and Email
Communication with John Prigge,
JR Simplot, and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 TRI Hydrogen Sulfide
Discharges for JR Simplot in Grand
Forks, ND - DCN 08223 | Telephone and email conversation between John Prigge, JR Simplot, and Kimberly Bartell, Eastern Research Group, Inc., about: 2013 TRI Hydrogen Sulfide Discharges for JR Simplot in Grand Forks, ND. | Meeting
Materials | Prigge, John | 12/22/2014 | Prigge, J. 2014. Correspondence between John Prigge, JR Simplot, and Kim Bartell, ERG. Re: TRI H2S Discharges for JR Simplot. (Dec 22). | Canned and
Preserved Fruits
and Vegetable
Processing | 3 | No | No | 08223 | June 27, 2016 Page 7 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|--------|----------------|---|--------------------------|------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0202 | The 2014 Accord Plug-In - DCN
08242 | Model speciifications for American Honda 2014
Accord Plug-In | Publication
Copyrighted
Material | Honda | 01/01/2013 | American Honda
Motor Company,
Inc. 2013a. 2015
ARR | Battery
Manufacturing | 2 | No | Yes | 08242 | | 10.5 | EPA-HQ-OW-2015-0665-0203 | 2014 Fit EV - DCN 08243 | Model speciifications for American Honda 2014 Fit EV | Publication
Copyrighted
Material | Honda | 01/01/2013 | American Honda
Motor Company,
Inc. 2013b. 2015
ARR | Battery
Manufacturing | 3 | No | Yes | 08243 | | 10.5 | EPA-HQ-OW-2015-0665-0204 | CR-Z 2015 - DCN 08244 | Model speciifications for American Honda CR-Z 2015 | Publication
Copyrighted
Material | Honda | 01/01/2014 | American Honda
Motor Company,
Inc. 2014. 2015
ARR | Battery
Manufacturing | 11 | No | Yes | 08244 | June 27, 2016 Page 8 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|--|--|--|--------|----------------|---|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0205 | Accord 2015 - DCN 08245 | Model speciifications for American Honda Accord 2015 | Publication
Copyrighted
Material | Honda | 01/01/2015 | American Honda
Motor Company,
Inc. 2015a. 2015
ARR | Battery
Manufacturing | 11 | No | Yes | 08245 | | 10.5 | EPA-HQ-OW-2015-0665-0206 | Civic 2015 - DCN 08246 | Model speciifications for American Honda Civic 201 | 5 Publication
Copyrighted
Material | Honda | 01/01/2015 | American Honda
Motor Company,
Inc. 2015b
2015 ARR | Battery
Manufacturing | 11 | No | Yes | 08246 | | 10.5 | EPA-HQ-OW-2015-0665-0207 | FCX Clarity Specifications - DCN 08247 | Model specifications for American Honda FCX Clarity Specifications | Publication
Copyrighted
Material | Honda | 01/01/2015 | American Honda
Motor Company,
Inc. 2015c
2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08247 | June 27, 2016 Page 9 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--|---|--|----------------------|----------------|--|--------------------------|-------------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0208 | 2014 Insight Specifications - DCN
08248 | Model speciifications for American Honda 2014
Accord Plug-In | Publication
Copyrighted
Material | Honda | 01/01/2015 | American Honda
Motor Company,
Inc. 2015d
2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08248 | | 10.5 | EPA-HQ-OW-2015-0665-0209 | Vanadium Flow Batteries - DCN 08249 | As VFB solutions continue to be developed and implemented, new demand for vanadium is expected to raise the overall consumption of this critical element. | Publication
Copyrighted
Material | American
Vanadium | 09/10/2014 | American
Vanadium. 2014.
. 2015 ARR | Battery
Manufacturing | 4 | No | Yes | 08249 | | 10.5 | EPA-HQ-OW-2015-0665-0210 | Tesla CEO Elon Musk reveals
Powerwall home battery - DCN
08250 | Silicon Valley electric-vehicle automaker Tesla Motors is expanding its presence beyond luxury cars with plans to produce a wall-mounted battery pack designed to store renewable energy in the home. | Publication | Bomey, N. | 05/01/2015 | Bomey, N. 2015.
2015 ARR | Battery
Manufacturing | 3 | No | No | 08250 | June 27, 2016 Page 10 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|--|---|--|-----------------------|----------------|--|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0211 | Secondary Batteries - DCN 08251 | After 30 years of being the main battery technology used in space applications, the Nickel Cadmium (NiCd) battery is no longer the first choice energy storage system for space missions. | Publication
Copyrighted
Material | Clyde Space | 09/10/2014 | Clyde Space.
2014. 2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08251 | | 10.5 | EPA-HQ-OW-2015-0665-0212 | Nickel Metal Hydride (NiMH)
Handbook and Application Manual -
DCN 08252 | The number of portable battery operated electronic devices has grown tremendously. This handbook will provide a better understanding of rechargeable Nickel Metal Hydride (NiMH) batteries. | Publication
Copyrighted
Material | Energizer | 01/01/2010 | Energizer. 2010.
2015 ARR | Battery
Manufacturing | 16 | No | Yes | 08252 | | 10.5 | EPA-HQ-OW-2015-0665-0213 | National Pollutant Release
Inventory (NPRI) Online Data
Search - DCN 08253 | Canada's legislated, publicly accessible inventory of pollutant releases to air, water and land, and reviewed disposals and transfers for recycling by the company name and by industry. | Publication | Environment
Canada | 09/10/2014 | Environment
Canada. 2014.
2015 ARR | Battery
Manufacturing | 2 | No | No | 08253 | June 27, 2016 Page 11 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTE | | |-------------------|--------------------------|---|--|--|----------------|----------------|--|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0214 | Spark EV 2015 - DCN 08254 | Cotains specifications on SparkEV and its features | Publication
Copyrighted
Material | General Motors | 01/01/2014 | General Motors.
2014a. Spark EV
2015. 2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08254 | | 10.5 |
EPA-HQ-OW-2015-0665-0215 | Volt 2015 - DCN 08255 | Cotains specifications on Volt 2015 and its features | Publication
Copyrighted
Material | General Motors | 01/01/2014 | General Motors.
2014b. Volt
2015. 2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08255 | | 10.5 | EPA-HQ-OW-2015-0665-0216 | Rechargeable Batteries Product
Index - DCN 08256 | Introduces Prismatic Lithium-ion Rechargeable cells. Maxell offers these cells only as battery packs, which include electronic circuits to prevent overcharge, overdischarge, etc. | Publication
Copyrighted
Material | Maxell | 09/17/2014 | Maxell. 2012. Rechargeable Batteries Product Index. Available online at: http://biz.maxell.c om/en/product_in dex/?pci=6. Accessed: September 10, 2014 | Battery
Manufacturing | 3 | No | Yes | 08256 | June 27, 2016 Page 12 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|--|--|--|----------------------------|----------------|---|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0217 | How do batteries work? - DCN 08257 | An article on different components of a working battery and flow of electrons through a conductive path. | Publication | Northwestern
University | 09/16/2014 | Northwestern
University. 2014.
2015 ARR | Battery
Manufacturing | 2 | No | No | 08257 | | 10.5 | EPA-HQ-OW-2015-0665-0218 | Anode Materials for Lithium Ion
Batteries - DCN 08258 | Battery workshop on litihim ion batteries | Publication
Copyrighted
Material | Patterson,
Mary L. | 11/01/2009 | Patterson, Mary
L. 2009. 2015
ARR | Battery
Manufacturing | 33 | No | Yes | 08258 | | 10.5 | EPA-HQ-OW-2015-0665-0219 | Tesla confirms Nevada to get battery factory - DCN 08259 | Tesla confirmed on Thursday it would build a \$5 billion advanced battery factory in Nevada, a move that Gov. Brian Sandoval estimates would have a \$100 billion economic impact over the next 20 years | Publication . | Ramsey, M | 09/10/2014 | Ramsey, M.
2014. 2015 ARR | Battery
Manufacturing | 3 | No | No | 08259 | June 27, 2016 Page 13 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | | |-------------------|--------------------------|--|---|--|----------------|----------------|----------------------------------|--------------------------|------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0220 | Batteries, Other Secondary Cells -
DCN 08260 | The proliferation of portable electronic devices has fueled rapid market growth for the rechargeable battery industry. Miniaturization of electronics continues to spur interest in advanced battery systems. Interest also continues to run strong in electric vehicles (EVs). | Publication
Copyrighted
Material | Salkind, A. J. | 12/19/2003 | Salkind, A. J.,
2015 ARR | Battery
Manufacturing | 13 | No | Yes | 08260 | | 10.5 | EPA-HQ-OW-2015-0665-0221 | The German-American Vanadium
Flow Battery Connection - DCN
08261 | Over the past few years, flow battery startups have been vying for media attention for their attempts to bring this potentially disruptive technology for long-term, grid-scale energy storage to the commercial market. | Publication | St. John, J. | 02/24/2014 | St. John, J.
2014. 2015 ARR | Battery
Manufacturing | 6 | No | No | 08261 | | 10.5 | EPA-HQ-OW-2015-0665-0222 | Tesla Energy - DCN 08262 | Of all the fossil fuel consumed in the United States, one third is used in transportation and another third goes to electricity production. The EPA says it would require 1.6 billion acres of US forest to negate the environmental damage. | Publication
Copyrighted
Material | Tesla Motors | 06/11/2015 | Tesla Motors.
2015a. 2015 ARR | Battery
Manufacturing | 6 | No | Yes | 08262 | June 27, 2016 Page 14 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|------------------------------|---|--|--------------|----------------|--|--------------------------|------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0223 | Tesla Energy - DCN 08263 | Tesla's mission is to accelerate the world's transition to sustainable transportation. To achieve that goal, we must produce electric vehicles in sufficient volume to force change in the automobile industry. | Publication
Copyrighted
Material | Tesla Motors | 06/11/2015 | Tesla Motors.
2015b. 2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08263 | | 10.5 | EPA-HQ-OW-2015-0665-0224 | Tesla Energy - DCN 08264 | Model speciifications for Tesla Model S | Publication
Copyrighted
Material | Tesla Motors | 08/11/2015 | Tesla Motors.
2015c. 2015 ARR | Battery
Manufacturing | 5 | No | Yes | 08264 | | 10.5 | EPA-HQ-OW-2015-0665-0225 | 2013 Scion iQ EV - DCN 08265 | Model speciifications for Toyota's Scion iQ EV | Publication
Copyrighted
Material | Toyota | 11/20/2012 | Toyota. 2012.
2013 Scion iQ
EV. 2015 ARR | Battery
Manufacturing | 2 | No | Yes | 08265 | June 27, 2016 Page 15 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|-----------------------------|--|------------------|--------|----------------|---|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0226 | Avalon 2015 - DCN 08266 | Model speciifications for Toyota's Avalon 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015a.
Avalon 2015.
Available online
at:
http://www.toyota.
com/content/ebro
chure/2015/avalo
n_ebrochure.pdf.
Accessed June
11, 2015. | Battery
Manufacturing | 22 | No | No | 08266 | | 10.5 | EPA-HQ-OW-2015-0665-0227 | Camry 2015 - DCN 8267 | Model speciifications for Toyota's Camry 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015b. Camry 2015. Available online at: http://www.toyota. com/content/ebro chure/2015/camr y_ebrochure.pdf. Accessed June 11, 2015. | Battery
Manufacturing | 37 | No | No | 08267 | | 10.5 | EPA-HQ-OW-2015-0665-0228 | Highlander 2015 - DCN 08268 | Model speciifications for Toyota's Highlander 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015c. Highlander 2015. Available online at: http://www.toyota. com/content/ebro chure/2015/highla nder_ebrochure.p df. Accessed June 11, 2015. | Battery
Manufacturing | 22 | No | No | 08268 | June 27, 2016 Page 16 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|----------------------------------|--|------------------|--------|----------------|---|--------------------------|------|-----|------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0229 | Prius 2015 - DCN 08269 | Model speciifications for Toyota's Prius 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015d.
Prius 2015.
Available online
at:
http://www.toyota.
com/content/ebro
chure/2015/prius
_ebrochure.pdf.
Accessed June
11, 2015. | Battery
Manufacturing | 21 | No | No | 08269 | | 10.5 | EPA-HQ-OW-2015-0665-0230 | Prius c 2015 - DCN 08270 | Model speciifications for Toyota's Prius C 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015e. Prius c 2015. Available online at: http://www.toyota. com/content/ebro chure/2015/priusc _ebrochure.pdf. | Battery
Manufacturing | 21 | No | No | 08270 | | 10.5 | EPA-HQ-OW-2015-0665-0231 | Prius Plug-In Hybrid - DCN 08271 | Model speciifications for Toyota's Prius Plug-In
Hybrid | Publication | Toyota | 01/01/2015 | Toyota. 2015f.
2015 Prius Plug-
In Hybrid. 2015
ARR | Battery
Manufacturing | 6 | No | No | 08271 | June 27, 2016 Page 17 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY
-
RIGHTEL |) DCN | |-------------------|--------------------------|---|--|-----------------------|----------|----------------|---|--------------------------|------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0232 | Prius v 2015 - DCN 08272 | Model speciifications for Toyota's Prius v 2015 | Publication | Toyota | 01/01/2015 | Toyota. 2015g. Prius v 2015. Available online at: http://www.toyota. com/content/ebro chure/2015/priusv _ebrochure.pdf. Accessed June 11, 2015. | Battery
Manufacturing | 21 | No | No | 08272 | | 10.5 | EPA-HQ-OW-2015-0665-0233 | Development Document for Effluent
Limitations Guidelines and
Standards for the Battery
Manufacturing Point Source
Category, Volume I DCN 08273 | Development Document for Effluent Limitations
Guidelines and Standards for the Battery
Manufacturing Point Source Category | Publication;
USEPA | U.S. EPA | 09/01/1984 | U.S. EPA.
1984a. 2015 ARR | Battery
Manufacturing | 1126 | No | No | 08273 | | 10.5 | EPA-HQ-OW-2015-0665-0234 | Development Document for Effluent
Limitations Guidelines and
Standards for the Battery
Manufacturing Point Source
Category, Volume II DCN 08274 | Development Document for Effluent Limitations
Guidelines and Standards for the Battery
Manufacturing Point Source Category, Volume II. | Publication | U.S. EPA | 09/01/1984 | U.S. EPA.
1984b. 2015 ARR | Battery
Manufacturing | 712 | No | No | 08274 | June 27, 2016 Page 18 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|---|--|---|----------------|---|--------------------------------|------|-----|-------------------|-------| | 10.5 | EPA-HQ-OW-2015-0665-0235 | Lithium Ion Battery Manufacturing -
DCN 08275 | Lithium-ion batteries are common in consumer electronics. They are one of the most popular types of rechargeable battery for portable electronics, with one of the best energy densities, no memory effect, and a slow loss of charge when not in use. Beyond consumer electronics, LIBs are also growing in popularity for military, electric vehicle, and aerospace applications. | Publication
Copyrighted
Material | Vacuum
Products
Canada | 09/17/2014 | Vacuum
Products
Canada, Inc.
2013. 2015 ARR | Battery
Manufacturing | 5 | No | Yes | 08275 | | 10.6 | EPA-HQ-OW-2015-0665-0080 | Telephone and Email
Communication with Celina
Camarena, U.S. Ecology Texas
Inc., and Kara Edquist, Eastern
Research Group, Inc., Re: 2013
DMR Discharges for U.S. Ecology
Texas Inc., Robstown, TX - DCN
08219 | Telephone and email conversation between Celina Camarena, U.S. Ecology Texas Inc., and Kara Edquist, Eastern Research Group, Inc., about 2013 DMR Discharges for U.S. Ecology Texas Inc., Robstown, TX. | Meeting
Materials | Camarena,
Celina | 02/18/2015 | Camarena, C. 2015. Correspondence between Celina Camarena, U.S. Ecology Texas, and Kara Edquist, ERG. Re: DMR Discharges. (Feb 18). | Centralized
Waste Treatment | 1 | No | No | 08219 | | 10.6 | EPA-HQ-OW-2015-0665-0285 | Centralized Waste Treatment
Facility List - DCN 08312 | September 2015 memorandum detailing EPA's methodology for identifying and creating a list of U.S. CWT facilities. | Memorandum | O'Connell,
James and
Itle, Courtney,
ERG | 09/19/2015 | | Centralized
Waste Treaters | 34 | No | No | 08312 | June 27, 2016 Page 19 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|----------------------|-----------------------------------|----------------|--|-------------------------------|------|-----|-------------------|-------| | 10.8 | EPA-HQ-OW-2015-0665-0273 | Preliminary Category Review –
Facility Data Review and Revised
Calculations for Point Source
Category 458 – Carbon Black
Manufacturing - DCN 08122 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 458 – Carbon Black Manufacturing. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review and Revised Calculations for PSC 458 – Carbon Black Manufacturing. (Sept). | Carbon Black
Manufacturing | 0 | No | No | 08122 | | 10.8 | EPA-HQ-OW-2015-0665-0002 | Telephone Communication with
Scott Longon, Cabot Corporation
Canal Plant, and Kara Edquist,
Eastern Research Group, Inc., Re:
2013 TRI PAC Discharges for
Cabot Corporation's Canal Plant,
Franklin, LA - DCN 08123 | Telephone conversation between Scott Longon, Cabot Corporation Canal Plant, and Kara Edquist, Eastern Research Group, Inc., about TRI PAC discharges for Cabot Corporation's Canal Plant, Franklin, LA. | Meeting
Materials | Longon, Scott | 04/14/2015 | Longon, S. 2015.
Correspondence
between Scott
Longon, Cabot,
and Kara
Edquist, ERG.
Re: 2013 TRI
PAC Discharges.
(April 14). | Carbon Black
Manufacturing | 2 | No | No | 08123 | | 10.8 | EPA-HQ-OW-2015-0665-0003 | Telephone Communication with
Beverley Philpot, Graftech
International Holdings, Inc., and
Kara Edquist, Eastern Research
Group, Inc., Re: 2013 TRI PAC
Discharges for Graftech
International Holdings, Inc.,
Columbia, TN - DCN 08124 | Telephone conversation between Beverley Philpot,
Graftech International Holdings, Inc., and Kara
Edquist, Eastern Research Group, Inc., about 2013
TRI PAC discharges for Graftech International
Holdings, Inc., Columbia, TN. | Meeting
Materials | Philpot,
Beverley | 04/14/2015 | Philpot, B. 2015.
Correspondence
between
Beverley Philpot,
Graftech
International,
and Kara
Edquist, ERG.
Re: 2013 TRI
PAC Discharges.
(April 14). | Carbon Black
Manufacturing | 2 | No | No | 08124 | June 27, 2016 Page 20 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED DCN | | |-------------------|--------------------------|---|---|--|-----------------------------|----------------|---|--|------|-----|-----------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0254 | Treatment of CMP Waste Streams -
DCN 08292 | Powerpoint presentation on Treatment of CMP Waste Streams by Arizona Board of Regents for the University of Arizona. | Publication;
Copyrighted
Materials | Belongia, B.
M., et. al. | 01/01/1999 | Belongia, B. M.,
See 2015 ARR. | Electrical and
Electronic
Components | 45 | No | Yes | 08292 | | 10.15 | EPA-HQ-OW-2015-0665-0255 | Submicron-Size Patterning on the
Sapphire Substrate Prepared by
Nanosphere Lithography and
Nanoimprint Lithography
Techniques - DCN 08293 | Summary of the demonstration and comparison of the formation of ordered etching masks for submicron-size patterned sapphire substrates through use of the nanosphere lithography and nanoimprint lithography methods. | Publication;
Copyrighted
Materials | Chang, C-M.,
et. al. | 09/04/2012 | Chang, C-M.,
See 2015 ARR. | Electrical and
Electronic
Components | 6 | No | Yes | 08293 | | 10.15 | EPA-HQ-OW-2015-0665-0256 | ClearlySapphire.com: Growth -
DCN 08294 | Summary of process to grow sapphire
crystals from the ClearlySapphire.com website. | Publication;
Copyrighted
Materials | ClearlySapphir e.com. | 01/01/2014 | ClearlySapphire.c
om. 2014. See
2015 ARR. | Electrical and
Electronic
Components | 4 | No | Yes | 08294 | June 27, 2016 Page 21 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|-----------------------------|----------------|--|--|------|-----|-------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0257 | Polishing of Sapphire Substrates -
DCN 08295 | Article on the specification of sapphire substrate, processes to manufacture the sapphire substrate, and model for the CMP process. | Publication;
Copyrighted
Materials | Dinh, H | 01/01/2011 | Dinh, H. 2011.
See 2015 ARR. | Electrical and
Electronic
Components | 24 | No | Yes | 08295 | | 10.15 | EPA-HQ-OW-2015-0665-0258 | Sapphire Wafer Lapping - DCN 08296 | GRISH is the leading manufacturer of Polycrystalline Diamond Slurry and Silica Slurry in China. Summary of products for sapphire wafer lapping. | Publication | GRISH | 01/01/2011 | GRISH. 2011.
See 2015 ARR. | Electrical and
Electronic
Components | 1 | No | No | 08296 | | 10.15 | EPA-HQ-OW-2015-0665-0259 | GT Advanced Technologies:
Worldwide Locations - DCN 08297 | Overview of worldwide locations and products for GT Advanced Technologies (GTAT). | Publication;
Copyrighted
Materials | GT Advanced
Technologies | 01/01/2013 | GT Advanced
Technologies.
2013. See 2015
ARR. | Electrical and
Electronic
Components | 3 | No | Yes | 08297 | June 27, 2016 Page 22 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|--|--|-------------|----------------|--|--|------|-----|-------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0260 | A Century of Sapphire Crystal
Growth - DCN 08298 | Today, domes in the U.S. are made by "scooping" sapphire boules with diamond-impregnated cutting tools. Commercial markets for sapphire, especially in the semiconductor industry, are healthy and growing at the dawn of the 21st century. | Publication | Harris, D.C | 05/01/2004 | Harris, D.C.
2004. See 2015
ARR. | Electrical and
Electronic
Components | 74 | No | No | 08298 | | 10.15 | EPA-HQ-OW-2015-0665-0261 | Processing of Sapphire Surfaces for
Semiconductor Device
Applications - DCN 08299 | This thesis explores the preparation of sapphire surfaces for use in semiconductor device applications. Sapphire has shown promise in a few niche applications as a device substrate due to its insulating nature and extremely stable behavior. | Publication;
Copyrighted
Materials | Kirby, K.W. | 05/01/2008 | Kirby, K.W.
2008. See 2015
ARR. | Electrical and
Electronic
Components | 78 | No | Yes | 08299 | | 10.15 | EPA-HQ-OW-2015-0665-0262 | Apple factory in Mesa ramps up sapphire production - DCN 08300 | While significant startup challenges have slowed progress on Apple's sapphire-glass factory in Mesa, the massive facility is nearly finished and is ramping up production of the scratch-resistant material, GT Advanced Technologies CEO Tom Gutierrez recently said. | Publication | Leavitt, P | 08/11/2014 | Leavitt, P. 2014.
See 2015 ARR. | Electrical and
Electronic
Components | 3 | No | No | 08300 | June 27, 2016 Page 23 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN | |-------------------|--------------------------|---|--|--|----------------------------|----------------|--|--|------|-----|-------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0263 | Advancements in Lapping and Polishing with Diamond Slurries - DCN 08301 | A new diamond micron powder HYPERION™ and diamond slurry contains such powder was developed to improve fine lapping and polishing of advanced compound semiconductor materials such as sapphire and silicon carbide (SiC). Testing showed that the novel diamond and diamond slurry significantly increased effectiveness of fine lapping and polishing thereby allowing reduction in cost and increase in productivity. | Publication | Ng, K-Y., and
Dumm, T. | 01/01/2012 | Ng, K-Y., and
Dumm, T. 2012.
See 2015 ARR. | Electrical and
Electronic
Components | 4 | No | No | 08301 | | 10.15 | EPA-HQ-OW-2015-0665-0264 | History in the Making: Driving the
RF SOI Revolution - DCN 08302 | History of the Peregrine Semiconductor story. | Publication | Peregrine
Semiconductor | 01/01/2012 | Peregrine
Semiconductor
Corporation.
2012. See 2015
ARR. | Electrical and
Electronic
Components | 23 | No | No | 08302 | | 10.15 | EPA-HQ-OW-2015-0665-0265 | Sapphire Wafer Processing - DCN 08303 | Sapphire wafers, optics, and semiconductor wafers are an increasingly important manufacturing segment. Sapphire substrates for LED (GaN) light-emitting diodes are contributing to energy savings. | Publication;
Copyrighted
Materials | PR Hoffman | 01/01/2013 | PR Hoffman.
2013. See 2015
ARR. | Electrical and
Electronic
Components | 6 | No | Yes | 08303 | June 27, 2016 Page 24 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|--|--------------|----------------|---|--|------|-----|-------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0266 | Saint-Gobain Crystals Achieves ISO
9001 Certification - DCN 08304 | Saint-Gobain news release on crystals receiving ISO 9001 certification. | Publication;
Copyrighted
Materials | Saint-Gobain | 04/24/2009 | Saint-Gobain.
2009. See 2015
ARR. | Electrical and
Electronic
Components | 2 | No | Yes | 08304 | | 10.15 | EPA-HQ-OW-2015-0665-0267 | Rubicon Technology: a high tech
start-up successfully practices
strategic focus - DCN 08305 | Rubicon Technology is a materials science company focused primarily on the manufacture and marketing of high quality single crystals. Some of the major applications for its products include high brightness LEDs (light emitting diodes), integrated circuits for cellular telephones and high end computers, and semiconductor manufacturing equipment. | Publication | Sterling, J. | 01/01/2011 | Sterling, J. 2011.
See 2015 ARR. | Electrical and
Electronic
Components | 9 | No | No | 08305 | | 10.15 | EPA-HQ-OW-2015-0665-0268 | Development Document for the Electrical and Electronic Components Point Source Category: Phase I - DCN 08306 | Regulations and effluent guidelines for the Electrical and Electronic Components Point Source Category: Phase I. | Publication;
USEPA | U.S. EPA | 04/21/1983 | U.S. EPA. 1983.
See 2015 ARR. | Electrical and
Electronic
Components | 216 | No | No | 08306 | June 27, 2016 Page 25 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL | DCN | |-------------------|--------------------------|---|---|--|-----------------------|----------------
---|--|------|-----|-------------------|-------| | 10.15 | EPA-HQ-OW-2015-0665-0269 | Two-Step Chemical Mechanical
Polishing of Sapphire Substrate -
DCN 08307 | Chemical mechanical polishing CMP, as a widely used planarization technology, requires high removal rate and low surface roughness generally. However, it is difficult to meet these requirements in a single-step polishing process. | Publication;
Copyrighted
Materials | Zhang, Z., et.
al. | 05/03/2010 | Zhang, Z., See
2015 ARR. | Electrical and
Electronic
Components | 5 | No | Yes | 08307 | | 10.15 | EPA-HQ-OW-2015-0665-0270 | Sapphire crystal makers' business on upswing - DCN 08308 | Part of the trick of making larger wafers is forming the large boules of pure sapphire. Currently, the LED industry seems to be centered on boules in the 80–90 kg range, but Rubicon has demonstrated that it can produce a 200kg crystal. | | Wray, P. | 02/21/2011 | Wray, P. 2011.
See 2015 ARR. | Electrical and
Electronic
Components | 2 | No | Yes | 08308 | | 10.22 | EPA-HQ-OW-2015-0665-0004 | Draft Toxicological Profile for
Hydrogen Sulfide and Carbonyl
Sulfide - DCN 08125 | Toxicological profile for hydrogen sulfide and carbonyl sulfide, drafted by the Agency for Toxic Substances and Disease Registry. | Report | ATSDR | 10/01/2014 | ATSDR. 2014.
U.S. Department
of HHS, ATSDR.
Draft
Toxicological
Profile for
Hydrogen Sulfide
and Carbonyl
Sulfide. Atlanta,
GA. (Oct). | Grain Mills
Manufacturing | 317 | No | No | 08125 | June 27, 2016 Page 26 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | · DCN | |-------------------|--------------------------|--|--|--|-----------------------------------|----------------|---|------------------------------|------|-----|-------------------|-------| | 10.22 | EPA-HQ-OW-2015-0665-0274 | Preliminary Category Review –
Facility Data Review for Point
Source Category 406 – Grain Mills -
DCN 08126 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 406 – Grain Mills. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 406 – Grain Mills. (Sept). | Grain Mills
Manufacturing | 0 | No | No | 08126 | | 10.22 | EPA-HQ-OW-2015-0665-0005 | Telephone and Email
Communication with Jonathan
Razink, Cargill, Inc., and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 TRI Hydrogen Sulfide
Releases - DCN 08127 | Telephone and email conversation between Jonathan Razink, Cargill, Inc., and Kimberly Bartell, Eastern Research Group, Inc. about 2013 TRI Hydrogen Sulfide Releases from Cargill, Inc. in Wahpeton, ND. | Meeting
Materials | Razink,
Jonathan | 12/22/2014 | Razink, J. 2014.
Correspondence
between
Jonathan
Razink, Cargill,
Inc., and Kim
Bartell, ERG, Re:
2013 TRI
Hydrogen Sulfide
Releases.
(December 22) | Grain Mills
Manufacturing | 2 | No | No | 08127 | | 10.22 | EPA-HQ-OW-2015-0665-0006 | Hydrogen Sulfide in Drinking-water -
DCN 08128 | Background document for development of WHO Guidelines for Drinking-water Quality | Publication
Copyrighted
Material | WHO | 01/01/2003 | WHO. 2003. World Health Organization. Hydrogen Sulfide in Drinking- water. | Grain Mills
Manufacturing | 9 | No | Yes | 08128 | June 27, 2016 Page 27 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|----------------------|-----------------------------------|----------------|---|---------------------------------|------|-----|-------------------|-------| | 10.26 | EPA-HQ-OW-2015-0665-0099 | Telephone and Email
Communication with Cecil Hopper,
PCS Nitrogen Fertilizer LP, and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 TRI Surface Water
Releases - DCN 08238 | Telephone and email conversation between Cecil
Hopper, PCS Nitrogen Fertilizer LP, and Eva Knoth,
Eastern Research Group, Inc., Re: 2013 TRI
Surface Water Releases. | Meeting
Materials | Hopper, Cecil | 12/12/2014 | Hopper, C. 2014. Telephone Communication between Cecil Hopper, PCS Nitrogen, and Eva Knoth, ERG. Re: 2013 TRI Surface Water Releases. (Dec 12). | Inorganic
Chemicals | 5 | No | No | 08238 | | 10.27 | EPA-HQ-OW-2015-0665-0007 | Telephone Communication with
Doug Bley, ArcelorMittal Burns
Harbor LLC, and William Swietlik,
U.S. EPA, Re: 2013 TRI Lead
Discharges - DCN 08129 | Telephone conversation between Doug Bley,
ArcelorMittal Burns Harbor LLC, and William
Swietlik, U.S. EPA, about 2013 TRI Lead
Discharges. | Meeting
Materials | Bley, Doug | 06/30/2015 | Bley, D. 2015.
Correspondence
between Doug
Bley,
ArcelorMittal,
and William
Swietlik, U.S.
EPA, Re: 2013
TRI Lead
Discharges.
(June 30) | Iron and Steel
Manufacturing | 3 | No | No | 08129 | | 10.27 | EPA-HQ-OW-2015-0665-0279 | Preliminary Category Review –
Facility Data Review for Point
Source Category 420 – Iron and
Steel Manufacturing - DCN 08130 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 420 – Iron and Steel Manufacturing. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 420 –Iron and Steel Manufacturing. (Sept). | Iron and Steel
Manufacturing | 0 | No | No | 08130 | June 27, 2016 Page 28 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|---|--|-------------------------|--------------|----------------|--|---------------------------------|------|-----|------------------|-------| | 10.27 | EPA-HQ-OW-2015-0665-0008 | Indiana Department of Environmental Management (IDEM). National Pollutant Discharge Elimination System Facility Permit for NPDES IN0059650 - AK Steel Rockport Works, Rockport, IN - DCN 08131 | NPDES Facility Permit for AK Steel Rockport Works, Rockport, IN - IN0059650. | Permit,
Registration | Indiana DEM | 07/01/2011 | IDEM. 2011.
Indiana
Department of
Environmental
Management.
NPDES Permit:
AK Steel
Rockport Works,
Rockport, IN
(IN0059650).
(July 1). | Iron and Steel
Manufacturing | 225 | No | No | 08131 | | 10.27 | EPA-HQ-OW-2015-0665-0009 | Indiana Department of
Environmental Management
(IDEM). Amended National
Pollutant Discharge Elimination
System Facility Permit for NPDES
IN0000281 - U.S. Steel Gary
Works, Gary, IN - DCN 08132 | Amended NPDES Permit for U.S. Steel Gary Works, Gary, IN - IN0000281. | Permit,
Registration | Indiana DEM | 03/21/2014 | IDEM. 2014.
Indiana
Department of
Environmental
Management.
Amended
NPDES Permit:
U.S. Steel Gary
Works, Gary, IN
(IN0000281).
(July 1). | Iron and Steel
Manufacturing | 71 | No | No | 08132 | | 10.27 | EPA-HQ-OW-2015-0665-0010 | Illinois Environmental Protection
Agency (IL EPA). National Pollutant
Discharge Elimination System
Facility Permit for NPDES
IL0000329 - U.S. Steel Granite City
Works, Granite City, IL - DCN 08133 | NPDES Facility Permit for U.S. Steel Granite City Works, Granite City, IL - IL0000329. | Permit,
Registration | Illinois EPA | 05/22/2015 | ILEPA. 2015. Illinois Environmental Protection Agency. NPDES Permit: U.S. Steel Granite City Works, Granite City, IL (IL0000329). (May 22). | Iron and Steel
Manufacturing | 11 | No | No | 08133 | June 27, 2016 Page 29 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTE | |
-------------------|--------------------------|---|--|----------------------|----------------|----------------|---|---------------------------------|------|-----|------------------|-------| | 10.27 | EPA-HQ-OW-2015-0665-0011 | Telephone and Email
Communication with Brian Lasko,
U.S. Steel, and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 DMR and TRI Discharges for
U.S. Steel Facilities - DCN 08134 | Telephone and email conversation between Brian Lasko, U.S. Steel, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR and TRI Discharges for U.S. Steel Facilities. | Meeting
Materials | Lasko, Brian | 05/27/2015 | Lasko, B. 2015. Correspondence between Brian Lasko, U.S. Steel, and Kim Bartell, ERG. Re: 2013 DMR and TRI Discharges for U.S. Steel. (May 27). | Iron and Steel
Manufacturing | 9 | No | No | 08134 | | 10.27 | EPA-HQ-OW-2015-0665-0012 | Telephone and Email
Communication with Jay Lawniczak,
Charter Steel Cleveland, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 TRI Lead and
Lead Compound Discharges for
Charter Steel - DCN 08135 | Telephone and Email conversation between Jay
Lawniczak, Charter Steel Cleveland, and Kimberly
Bartell, Eastern Research Group, Inc., about 2013
TRI Lead and Lead Compound Discharges for
Charter Steel. | Meeting
Materials | Lawniczak, Jay | / 06/01/2015 | Lawniczak, J. 2015. Correspondence between Jay Lawniczak, Charter Steel, and Kim Bartell, ERG. Re: 2013 TRI Lead Discharges. (June 1). | Iron and Steel
Manufacturing | 5 | No | No | 08135 | | 10.27 | EPA-HQ-OW-2015-0665-0013 | Telephone and Email
Communication with Between Dave
Miracle, AK Steel, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 TRI Nitrate
Discharges - DCN 08136 | Telephone and email conversation between Dave Miracle, AK Steel, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 TRI Nitrate Discharges. | Meeting
Materials | Miracle, Dave | 05/21/2015 | Miracle, D. 2015. Correspondence between Dave Miracle, AK Steel, and Kimberly Bartell, ERG. Re: 2013 TRI Nitrate Discharges. (May 21). | Iron and Steel
Manufacturing | 4 | No | No | 08136 | June 27, 2016 Page 30 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|-------------------------|----------|----------------|---|---------------------------------|-------------|-----|-------------------|-------| | 10.27 | EPA-HQ-OW-2015-0665-0014 | Pennsylvania Department of
Environmental Protection (PA
DEP). 2002 National Pollutant
Discharge Elimination System
Facility Permit for NPDES
PA0004472 - U.S. Steel Clairton
Works, Clairton, PA - DCN 08137 | 2002 NPDES Facility Permit for U.S. Steel Clairton Works, Clairton, PA - PA0004472. | Permit,
Registration | U.S. EPA | 02/01/2002 | PADEP. 2002. Pennsylvania Department of Environmental Protection. NPDES Permit: U.S. Steel Clairton Works, Clairton, PA (PA0004472). (Feb 1). | Iron and Steel
Manufacturing | 64 | No | No | 08137 | | 10.27 | EPA-HQ-OW-2015-0665-0015 | Pennsylvania Department of
Environmental Protection (PA
DEP). 2012 National Pollutant
Discharge Elimination System
Facility Permit for NPDES
PA0004472 - U.S. Steel Clairton
Works, Clairton, PA - DCN 08138 | 2012 NPDES Facility Permit for U.S. Steel Clairton Works, Clairton, PA - PA0004472. | Permit,
Registration | U.S. EPA | 05/01/2012 | PADEP. 2012.
Pennsylvania
Department of
Environmental
Protection.
NPDES Permit:
U.S. Steel
Clairton Works,
Clairton, PA
(PA0004472).
(May 1). | Iron and Steel
Manufacturing | 88 | No | No | 08138 | | 10.27 | EPA-HQ-OW-2015-0665-0016 | Pennsylvania Department of
Environmental Protection (PA
DEP). 2015 National Pollutant
Discharge Elimination System
Facility Permit for NPDES
PA0004472 U.S. Steel Clairton
Works, Clairton, PA - DCN 08139 | 2015 NPDES Facility Permit for U.S. Steel Clairton Works, Clairton, PA - PA0004472. | Permit,
Registration | U.S. EPA | 02/01/2015 | PADEP. 2015. Pennsylvania Department of Environmental Protection. NPDES Permit: U.S. Steel Clairton Works, Clairton, PA (PA0004472). (Feb 1). | Iron and Steel
Manufacturing | 79 | No | No | 08139 | June 27, 2016 Page 31 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|--|---|-------------------------|----------------|----------------|--|---------------------------------|-------------|-----|------------------|-------| | 10.27 | EPA-HQ-OW-2015-0665-0017 | Telephone and Email
Communication with Patrick Smith,
Mountain State Carbon, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR Cyanide
Discharges - DCN 08140 | Telephone and email conversation between Patrick Smith, Mountain State Carbon, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Cyanide Discharges. | Meeting
Materials | Smith, Patrick | 05/13/2015 | Smith, P. 2015. Correspondence between Patrick Smith, Mountain State Carbon, and Kimberly Bartell, ERG. Re: 2013 DMR Cyanide Discharges. (May 13). | Iron and Steel
Manufacturing | 5 | No | No | 08140 | | 10.27 | EPA-HQ-OW-2015-0665-0018 | West Virginia Department of
Environmental Protection (WV
DEP). 2013 National Pollutant
Discharge Elimination System
Facility Permit for NPDES
WV0004499 - Mountain State
Carbon, Follansbee, WV - DCN
08141 | 2013 NPDES Facility Permit for Mountain State Carbon, Follansbee, WV - WV0004499. | Permit,
Registration | U.S. EPA | 08/29/2013 | WVDEP. 2013. West Virginia Department of Environmental Protection. NPDES Permit: Mountain State Carbon, Follansbee, WV (WV0004499). (Aug 29). | Iron and Steel
Manufacturing | 89 | No | No | 08141 | | 10.27 | EPA-HQ-OW-2015-0665-0019 | West Virginia Department of
Environmental Protection (WV
DEP). 2014 National Pollutant
Discharge Elimination System
Facility Permit for NPDES
WV0003336 - ArcelorMittal Weirton
Inc. (Weirton Steel Corporation),
Weirton, WV - DCN 08142 | 2014 NPDES Facility Permit for ArcelorMittal Weirton Inc., Weirton, WV - WV0003336. | Permit,
Registration | U.S. EPA | 03/18/2014 | WVDEP. 2014. West Virginia Department of Environmental Protection. NPDES Permit: ArcelorMittal Weirton Inc., Weirton, WV (WV0003336). (March 18). | Iron and Steel
Manufacturing | 112 | No | No | 08142 | June 27, 2016 Page 32 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|---|-------------------------|-----------------------|----------------|---|---------------------------------|-------------|-----|-------------------|-------| | 10.27 | EPA-HQ-OW-2015-0665-0077 | Telephone and Email
Communication with Krista
Armentrout, US Steel, and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 TRI Water
Releases - DCN 08216 | Telephone and email conversation between Krista Armentrout, US Steel, and Eva Knoth, Eastern Research Group, Inc., about 2013 TRI Water Releases for US Gary Works, Gary, IN. | Meeting
Materials | Armentrout,
Krista | 12/12/2014 | Armentrout, K. 2014. Correspondence between Krista Armentrout, US Steel, and Eva Knoth, ERG. Re: 2013 TRI Water Releases. (Dec 12). | Iron and
Steel
Manufacturing | 2 | No | No | 08216 | | 10.27 | EPA-HQ-OW-2015-0665-0087 | Telephone and Email
Communication with Patrick Smith,
Mountain State Carbon, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 TRI PAC
Discharges for Mountain State
Carbon - DCN 08226 | Telephone and email conversation between Patrick Smith, Mountain State Carbon, and Kimberly Bartell, Eastern Research Group, Inc., Re: 2013 TRI PAC Discharges for Mountain State Carbon. | Meeting
Materials | Smith, Patrick | 12/23/2014 | Smith, P. 2014.
Correspondence
between Patrick
Smith, Mountain
State Carbon,
and Kim Bartell,
ERG. Re: PAC
Discharges (Dec
23). | Iron and Steel
Manufacturing | 3 | No | No | 08226 | | 10.27 | EPA-HQ-OW-2015-0665-0271 | West Virginia Department of Environmental Protection (WV DEP). 2013 National Pollutant Discharge Elimination System Facility Fact Sheet Addendum for NPDES WV0003336 - ArcelorMittal Weirton Inc. (Weirton Steel Corporation), Weirton, WV - DCN 08310 | 2014 NPDES Facility Fact Sheet Addendum for ArcelorMittal Weirton Inc., Weirton, WV - WV0003336. | Permit,
Registration | WV DEP | 01/01/2013 | 23. WVDEP. 2013a. WVDEP. NPDES Fact Sheet Addendum: Arcelormittal Weirton Inc., Weirton, WV (WV0003336). | Iron and Steel
Manufacturing | 134 | No | No | 08310 | June 27, 2016 Page 33 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|---|---|----------------------|-----------------------------------|----------------|---|----------------------|------|-----|------------------|-------| | 10.28 | EPA-HQ-OW-2015-0665-0280 | Preliminary Category Review –
Facility Data Review for Point
Source Category 445 – Landfills -
DCN 08143 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 445 – Landfills. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 445 – Landfills. (Sept). | Landfills | 0 | No | No | 08143 | | 10.28 | EPA-HQ-OW-2015-0665-0020 | Telephone and Email
Communication with Beverly Gish,
SMR Laboratories, Inc., and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 DMR Iron Discharges
from Bluegrass Containment LLC -
DCN 08144 | Telephone and email conversation between Beverly Gish, SMR Laboratories, Inc., and Eva Knoth, Eastern Research Group, Inc., about 2013 DMR iron discharges from Bluegrass Containment LLC. | Meeting
Materials | Gish, Beverly | 05/21/2015 | Gish, B. 2015. Correspondence between Beverly Gish, SMR Laboratories, Inc., and Eva Knoth, ERG. Re: 2013 DMR Iron Discharges. (May 21). | Landfills | 1 | No | No | 08144 | | 10.28 | EPA-HQ-OW-2015-0665-0021 | Telephone and Email
Communication with Jerry Milburn,
Kentucky Department for
Environmental Protection, and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 DMR Iron Discharges
from Bluegrass Containment LLC -
DCN 08145 | Telephone and email conversation between Jerry Milburn, Kentucky Department for Environmental Protection, and Eva Knoth, Eastern Research Group, Inc., about 2013 DMR iron discharges from Bluegrass Containment LLC. | Meeting
Materials | Milburn, Jerry | 05/21/2015 | Milburn, J. 2015.
Correspondence
between Jerry
Milburn, KY
DEP, and Eva
Knoth, ERG. Re:
2013 DMR
Discharges from
Bluegrass
Containment
LLC. (May 21). | Landfills | 2 | No | No | 08145 | June 27, 2016 Page 34 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|---|---|-------------------------|----------------|----------------|--|----------------------|-------------|-----|------------------|-------| | 10.28 | EPA-HQ-OW-2015-0665-0022 | Telephone and Email Communication with Crystal Rippy, South Carolina Department of Health and Environmental Compliance, and Eva Knoth, Eastern Research Group, Inc., Re: 2013 DMR Selenium Discharges from SCGENCO/A.M. Williams Ash Disposal Facility - DCN 08146 | Telephone and email conversation between Crystal Rippy, South Carolina Department of Health and Environmental Compliance, and Eva Knoth, Eastern Research Group, Inc., about 2013 DMR selenium discharges from SCGENCO/A.M. Williams Ash Disposal Facility. | Meeting
Materials | Rippy, Crystal | 04/30/2015 | Rippy, C. 2015.
Correspondence
between Crystal
Rippy, SC
DHEC, and Eva
Knoth, ERG. Re:
2013 DMR Data
from SCGENCO.
(April 30). | Landfills | 3 | No | No | 08146 | | 10.28 | EPA-HQ-OW-2015-0665-0023 | South Carolina Department of
Health and Environmental
Compliance (SC DHEC). 2009
National Pollutant Discharge
Elimination System Facility Permit
Fact Sheet and Rationale for
SC0046175 - South Carolina
Generating Company (SCGENCO)
A.M. Williams Station-Highway 52
Ash Disposal Facility - DCN 08147 | 2009 NPDES Facility Permit Fact Sheet and Rationale for South Carolina Generating Company (SCGENCO) A.M. Williams Station-Highway 52 Ash Disposal Facility - SC0046175. | Permit,
Registration | SC DHEC | 02/27/2009 | SC DHEC. 2009a. SC Department of Health and Environmental Compliance. NPDES Permit Fact Sheet and Rationale: SCGENCO (SC0046175). (February 27). | Landfills | 32 | No | No | 08147 | | 10.28 | EPA-HQ-OW-2015-0665-0024 | South Carolina Department of
Health and Environmental
Compliance (SC DHES). 2009
National Pollutant Discharge
Elimination System Facility Permit
for SC0046175 - South Carolina
Generating Company (SCGENCO)
A.M. Williams Station-Highway 52
Ash Disposal Facility - DCN 08148 | 2009 NPDES Facility Permit for South Carolina
Generating Company (SCGENCO) A.M. Williams
Station-Highway 52 Ash Disposal Facility -
SC0046175. | Permit,
Registration | SC DHEC | 03/04/2009 | SC DHEC.
2009b. SC
Department of
Health and
Environmental
Compliance.
NPDES Permit:
SCGENCO.
(SC0046175).
(March 4). | Landfills | 24 | No | No | 08148 | June 27, 2016 Page 35 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTE | | |-------------------|--------------------------|---|---|-------------------------|-----------------|----------------|---|----------------------|------|-----|------------------|-------| | 10.28 | EPA-HQ-OW-2015-0665-0025 | South Carolina Department of
Health and Environmental
Compliance (SC DHES). 2013
National Pollutant Discharge
Elimination System Facility Permit
for SC0046175 - South Carolina
Generating Company (SCGENCO)
A.M. Williams Station-Highway 52
Ash Disposal Facility - DCN 08149 | 2013 NPDES Facility Permit for South Carolina
Generating Company (SCGENCO) A.M. Williams
Station-Highway 52 Ash Disposal Facility -
SC0046175. | Permit,
Registration | SC DHEC | 08/30/2013 | SC DHEC.
2013a. SC
Department of
Health and
Environmental
Compliance.
NPDES Permit:
SCGENCO
(SC0046175).
(August 30). | Landfills | 49 | No | No | 08149 | | 10.28 | EPA-HQ-OW-2015-0665-0026 | South Carolina Department of
Health and Environmental
Compliance (SC DHES). 2013
National Pollutant Discharge
Elimination System Facility Permit
Fact Sheet and Rationale for
SC0046175 - South Carolina
Generating Company (SCGENCO)
A.M. Williams Station-Highway 52
Ash Disposal Facility - DCN 08150 | 2013 NPDES Facility Permit Fact Sheet and Rationale for South Carolina Generating Company (SCGENCO) A.M. Williams Station-Highway 52 Ash Disposal Facility -
SC0046175. | Permit,
Registration | SC DHEC | 08/29/2013 | SC DHEC. 2013b. SC Department of Health and Environmental Compliance. NPDES Permit Fact Sheet and Rationale: SCGENCO (SC0046175). (August 30). | Landfills | 30 | No | No | 08150 | | 10.28 | EPA-HQ-OW-2015-0665-0027 | Telephone and Email
Communication with Brian Williams,
Henderson City Landfill, Henderson,
KY, and Kimberly Bartell, Eastern
Research Group, Inc., Re: 2013
DMR Cadmium Discharges - DCN
08151 | Telephone and email conversation between Brian Williams, Henderson City Landfill, Henderson, KY, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Cadmium Discharges. | Meeting
Materials | Williams, Brian | 02/12/2015 | Williams, B. 2015. Correspondence between Brian Williams, Henderson City Landfill, and Kim Bartell, ERG. Re: 2013 DMR Cadmium Discharges. (Feb 12). | Landfills | 3 | No | No | 08151 | June 27, 2016 Page 36 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|---|----------------------|-----------------------|----------------|---|---|-------------|-----|-------------------|-------| | 10.28 | EPA-HQ-OW-2015-0665-0076 | Telephone and Email
Communication with Jason
Anderson, SMR Environmental
Services, and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 DMR Cadmium Discharges for
Henderson City Landfill - DCN
08215 | Telephone and email conversation between Jason Anderson, SMR Environmental Services, and Kimberly Bartell, Eastern Research Group, Inc., Re: 2013 DMR Cadmium Discharges for Henderson City Landfill. | Meeting
Materials | Anderson,
Jason | 02/12/2015 | Anderson, J. 2015. Correspondence between J. Anderson, SMR Environmental, and K. Bartell, ERG. Re: DMR Data for Henderson City Landfill. (Feb 12). | Landfills | 3 | No | No | 08215 | | 10.28 | EPA-HQ-OW-2015-0665-0085 | Telephone and Email
Communication with Amanda
Sappington, Missouri Department of
Natural Resources, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Silver/Selenium
Discharges for Black Oak Landfill -
DCN 08224 | Telephone and email conversation between
Amanda Sappington, Missouri Department of
Natural Resources, and Kimberly Bartell, Eastern
Research Group, Inc., about 2013 DMR
Silver/Selenium Discharges for Black Oak Landfill. | Meeting
Materials | Sappington,
Amanda | 11/14/2014 | Sappington, A. 2014. Correspondence between Amanda Sappington, MO DNR, and Kim Bartell, ERG. Re: 2013 DMR Data for Black Oak Landfill. (Nov 14). | Landfills | 3 | No | No | 08224 | | 10.03 | EPA-HQ-OW-2015-0665-0081 | Telephone and Email
Communication with Kim Dirks,
Tyson Fresh Meats, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 TRI Hydrogen Sulfide
Discharges for Tyson Fresh Meats
in Hillsdale, IL - DCN 08220 | Telephone and email conversation between Kim Dirks, Tyson Fresh Meats, and Kimberly Bartell, Eastern Research Group, Inc., Re: 2013 TRI Hydrogen Sulfide Discharges for Tyson Fresh Meats in Hillsdale, IL. | Meeting
Materials | Dirks, Kim | 12/22/2014 | Dirks, K. 2014.
Correspondence
between Kim
Dirks, Tyson,
and Kim Bartell,
ERG. Re: 2013
TRI Hydrogen
Sulfide
Discharges for
Tyson. (Dec 22). | Meat and Poultry
Products, Part
432 | 3 | No | No | 08220 | June 27, 2016 Page 37 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN . | |-------------------|--------------------------|--|--|----------------------|-----------------------------------|----------------|---|---|------|-----|-------------------|-------| | 10.03 | EPA-HQ-OW-2015-0665-0083 | Telephone and Email
Communication with Susan Murphy,
Smithfield Farmland Corp., and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 TRI Hydrogen
Sulfide Discharges for Smithfield
Farmland Corp in Denison, IA.
(December 22) - DCN 08222 | Telephone and email conversation between Susan Murphy, Smithfield Farmland Corp., and Kimberly Bartell, Eastern Research Group, Inc., about 2013 TRI Hydrogen Sulfide Discharges for Smithfield Farmland Corp in Denison, IA. (December 22). | Meeting
Materials | Murphy, Susan | 12/22/2014 | Murphy, S. 2014. Correspondence between Susan Murphy, Smithfield, and Kim Bartell, ERG. Re: TRI Hydrogen Sulfide Discharges for Smithfield. (Dec 22). | Meat and Poultry
Products, Part
432 | 3 | No | No | 08222 | | 10.30 | EPA-HQ-OW-2015-0665-0028 | Telephone and Email
Communication between Kim Dirks
and Christopher Logue, Tyson
Fresh Meats, Inc., and Kimberly
Bartell, Eastern Research Group,
Inc., Re: TRI Clarification for
Hydrogen Sulfide Discharges - DCN
08152 | Telephone and email conversation between Kim Dirks and Christopher Logue, Tyson Fresh Meats, Inc., and Kimberly Bartell, Eastern Research Group, Inc., about TRI clarification for hydrogen sulfide discharges. | Meeting
Materials | Dirks, Kim &
Chris Logue | 12/22/2014 | Dirks, K. & C.
Logue. 2014.
Correspondence
between Kim
Dirks and Chris
Logue, Tyson,
and Kim Bartell,
ERG. Re: TRI
H2S Discharges.
(Dec 22). | Meat and Poultry
Products, Part
432 | 3 | No | No | 08152 | | 10.30 | EPA-HQ-OW-2015-0665-0281 | Preliminary Category Review –
Facility Data Review for Point
Source Category 432 – Meat and
Poultry - DCN 08153 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 432 – Meat and Poultry. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 432 – Meat and Poultry. (Sept). | Meat and Poultry
Products, Part
432 | 0 | No | No | 08153 | June 27, 2016 Page 38 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|---|-------------------------|-------------|----------------|---|--|-----|-------------------|-------| | 10.30 | EPA-HQ-OW-2015-0665-0029 | Telephone Communication with
Wendy Heeb, Iowa Department of
Natural Resources, and Kara
Edquist, Eastern Research Group,
Inc., Re: Obtaining Tyson Fresh
Meats, Columbus Junction, IA
NPDES permit - DCN 08154 | Telephone conversation between Wendy Heeb, lowa Department of Natural Resources, and Kara Edquist, Eastern Research Group, Inc., about obtaining Tyson Fresh Meats, Columbus Junction, IA NPDES permit. | Meeting
Materials | Heeb, Wendy | 06/08/2015 | Heeb, W. 2015. Correspondence between Wendy Heeb, IA DNR, and Kara Edquist, ERG. Re: Obtaining Tyson Fresh Meats NPDES permit. (June 8). | Meat and Poultry 1
Products, Part
432 | No | No | 08154 | | 10.30 | EPA-HQ-OW-2015-0665-0030 | lowa Department of Natural
Resources (IA DNR). National
Pollutant Discharge Elimination
System Facility Permit for NPDES
IA0060569 – Cargill Meat Solutions
Corporation, Ottumwa, IA - DCN
08155 | NPDES Facility Permit for Cargill Meat Solutions Corporation, Ottumwa, IA -IA0060569. | Permit,
Registration | IA DNR | 05/06/2009 | IA DNR. 2009.
lowa Department
of Natural
Resources.
NPDES Permit:
Cargill Meat
Solutions
Corporation,
Ottumwa, IA
(IA0060569).
(May 6). | Meat and Poultry 13
Products, Part
432 | No | No | 08155 | | 10.30 | EPA-HQ-OW-2015-0665-0031 | Mississippi Department of
Environmental Quality (MDEQ).
National Pollutant Discharge
Elimination System Facility Permit
Rationale
for Reissuance for
NPDES MS0026140 – Tyson
Foods, Inc., Carthage, MS - DCN
08156 | NPDES Facility Permit Rationale for Reissuance for Tyson Foods, Inc., Carthage, MS - MS0026140. | Permit,
Registration | MDEQ | 09/29/2010 | MDEQ. 2010. MS Department of Environmental Quality. NPDES Permit Rationale for Reissuance: Tyson Foods, Inc., Carthage, MS (MS0026140). (Sept 29). | Meat and Poultry 4
Products, Part
432 | No | No | 08156 | June 27, 2016 Page 39 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|--|-------------------------|---------------------|----------------|--|--|-----|-------------------|-------| | 10.30 | EPA-HQ-OW-2015-0665-0032 | Mississippi Department of
Environmental Quality (MDEQ).
National Pollutant Discharge
Elimination System Facility Permit
for NPDES MS0026140 – Tyson
Foods, Inc., Carthage, MS - DCN
08157 | NPDES Facility Permit for Tyson Foods, Inc.,
Carthage, MS - MS0026140. | Permit,
Registration | MDEQ | 12/06/2010 | MDEQ. 2010. Mississippi Department of Environmental Quality. NPDES Permit: Tyson Foods, Inc., Carthage, MS (MS0026140). (December 6). | Meat and Poultry 24
Products, Part
432 | No | No | 08157 | | 10.30 | EPA-HQ-OW-2015-0665-0033 | Telephone Communication with
Charles Schulz, John Morrell & Co.,
and Kimberly Bartell, Eastern
Research Group, Inc., Re: 2013 TRI
Hydrogen Sulfide Discharges for
John Morrell & Co - DCN 08158 | Telephone conversation between Charles Schulz, John Morrell & Co., and Kimberly Bartell, Eastern Research Group, Inc., about 2013 TRI Hydrogen Sulfide Discharges for John Morrell & Co. | Meeting
Materials | Schultz,
Charles | 12/22/2014 | Schultz, C. 2014.
Correspondence
between Charles
Schultz, John
Morrell, and Kim
Bartell, ERG. Re:
2013 TRI H2S
Discharges.
(December 22). | Meat and Poultry 2
Products, Part
432 | No | No | 08158 | | 10.30 | EPA-HQ-OW-2015-0665-0034 | South Dakota Department of
Environment and Natural
Resources (SD DENR). National
Pollutant Discharge Elimination
System Facility Permit for NPDES
SD0000078 – John Morell and
Company, Sioux Falls, SD - DCN
08159 | NPDES Facility Permit for John Morell and Company, Sioux Falls, SD - SD0000078. | Permit,
Registration | SD DENR | 04/01/2000 | SD DENR. 2000.
SD Department
of Environment
and Natural
Resources.
Facility Permit
for John Morell,
Sioux Falls, SD
(SD0000078).
(April 1). | Meat and Poultry 20
Products, Part
432 | No | No | 08159 | June 27, 2016 Page 40 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | | |-------------------|--------------------------|--|--|-------------------------|----------------|----------------|---|---|------|-----|-------------------|-------| | 10.30 | EPA-HQ-OW-2015-0665-0035 | South Dakota Department of
Environment and Natural
Resources (SD DENR). Addendum
for National Pollutant Discharge
Elimination System Facility Permit
for NPDES SD0000078 – John
Morell and Company, Sioux Falls,
SD - DCN 08160 | Addendum for NPDES Facility Permit for John Morell and Company, Sioux Falls, SD - SD0000078. | Permit,
Registration | SD DENR | 07/05/2000 | SD DENR. 2000.
SD Department
of Environment
and Natural
Resources.
Addendum for
Facility Permit
for John Morell
(SD0000078).
(July 5). | Meat and Poultry
Products, Part
432 | 17 | No | No | 08160 | | 10.30 | EPA-HQ-OW-2015-0665-0036 | Texas Commission on
Environmental Quality (TCEQ).
Notice of Application and
Preliminary Decision for Water
Quality Texas Pollutant Discharge
Elimination System Permit
Amendment for Industrial
Wastewater for NPDES
TX0062936 - Pilgrim's Pride Corp.,
Mount - DCN 08161 | Notice of Application and Preliminary Decision for Water Quality TPDES Permit Amendment for Industrial Wastewater for Pilgrim's Pride Corp., Mount Pleasant, TX - TX0062936. | Permit,
Registration | TCEQ | 06/01/2015 | TCEQ. 2015. Texas Commission on Environmental Quality. Notice of Application for TPDES Permit Amendment: Pilgrim's Pride Corp. (TX0062936). (June). | Meat and Poultry
Products, Part
432 | 70 | No | No | 08161 | | 10.31 | EPA-HQ-OW-2015-0665-0093 | Telephone and Email
Communication with Bill Williams,
Graftech International and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Arsenic
Discharges - DCN 08232 | Telephone and email conversation between Bill Williams, Graftech International and Kimberly Bartell, Eastern Research Group, Inc., Re: 2013 DMR Arsenic Discharges. | Meeting
Materials | Williams, Bill | 12/17/2014 | Williams, B. 2014. Correspondence between Bill Williams, Graftech International, and Kim Bartell, ERG. Re: 2013 DMR Arsenic Discharges. (Dec 17). | Metal Finishing,
Part 433 | 6 | No | No | 08232 | June 27, 2016 Page 41 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|--|---|--|-----------------------------|----------------|--|------------------------------|------|-----|------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0303 | Preliminary Study of the Metal
Finishing Category: 2015 Status
Report - DCN MF00001 | The report summarizes the analyses completed in 2015 supporting the preliminary study of the Metal Finishing Category. | Publication;
USEPA | U.S. EPA | 06/17/2016 | U.S. EPA. 2016.
Preliminary
Study of the
Metal Finishing
Category: 2015
Status Report. | Metal Finishing,
Part 433 | 118 | No | No | MF00001 | | 10.31 | EPA-HQ-OW-2015-0665-0103 | | Eutectic based ionic liquids containing choline chloride are shown to be useful for electrochemical applications that are currently use aqueous solutions. It is shown that an ionic liquid composed of ethylene glycol and choline chloride offers the first practical alternative to the use of phosphoric and sulphuric acid mixtures for the electropolishing of type 316 stainless steel. | Publication;
Copyrighted
Materials | A. Abbott, et al | . 07/23/2007 | Abbott, A 2007.
Electropolishing
and
Electroplating of
Metals Using
Ionic Liquids
Based on
Choline Chloride.
Ionic Liquids IV.
Chapter 13: 186-
197. | Metal Finishing,
Part 433 | 12 | No | Yes | MF00002 | | 10.31 | EPA-HQ-OW-2015-0665-0104 | Removal of Heavy Metals from
Their Aqueous Solutions through
Adsorption onto Natural Polymers -
DCN MF00003 | Commercial sodium alginate was converted into water insoluble material through a very simple acidification treatment with alcoholic HCl solution. The so-obtained acidified sodium alginate (ASA) was found to exhibit complete water insolubility and to have a carboxyl content of 465 mequi/100 g sample. The ASA was used to remove Zn (II) ions from their aqueous solutions and different factors affecting the adsorption of Zn (II) ions onto ASA were extensively studied. | Publication;
Copyrighted
Materials | Abdel-Halima,
E., et al. | 02/01/2011 | Abdel-Halima, E. 2011. Removal of Heavy Metals from Their Aqueous Solutions through Adsorption onto Natural Polymers. Carb. Polymers. 84(1): 454-58. | Metal Finishing,
Part 433 | 5 | No | Yes | MF00003 | June 27, 2016 Page 42 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ |
COPY -
RIGHTE | | |-------------------|--------------------------|---|---|--|----------------------------|----------------|--|------------------------------|------|-----|------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0105 | New environmentally friendly
noncyanide alkaline electrolyte for
copper electroplating - DCN
MF00004 | This article presents a novel noncyanide alkaline bath for electroplating thin copper films on stainless steel substrate. A detailed study was made about the effect of the operating parameters (current density and temperature), concentration of complexing agent on cathodic current efficiency (CCE %) and the characteristics of the deposited layers. The addition of sorbitol as complexing agent to the plating bath assists in the formation of finegrained and highly adherent copper film. | Publication;
Copyrighted
Materials | Abdel Hamid,
Z., et al. | 01/01/2009 | Abdel Hamid, Z
2009 New
Environmentally
Friendly NonCN
Alkaline
Electrolyte for Cu
Electroplating.
Surface &
Coatings
Technology 203
(10-11) 1360-
1365 | Metal Finishing,
Part 433 | 6 | No | Yes | MF00004 | | 10.31 | EPA-HQ-OW-2015-0665-0106 | Aluminum slurry coatings to replace cadmium for aeronautic applications - DCN MF00005 | The use of cadmium has been banned in Europe for most industrial applications; however, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. After several tests and analyses, the results indicate Al slurry coatings are an excellent alternative for Cd replacement. | Publication;
Copyrighted
Materials | Aguero, A., et al. | 10/21/2012 | Aguero, A.et al. 2012. Aluminum Slurry Coatings to Replace Cadmium for Aeronautic Applications. Surface & Coatings Technology. 213: 229-238. | Metal Finishing,
Part 433 | 10 | No | Yes | MF00005 | | 10.31 | EPA-HQ-OW-2015-0665-0107 | Microbial and plant derived biomass
for removal of heavy metals from
wastewater - DCN MF00006 | Biosorption of heavy metals by metabolically inactive non-living biomass of microbial or plant origin is an innovative and alternative technology for removal of these pollutants from aqueous solution. The purpose of this paper is to review the available information on various attributes of utilization of microbial and plant derived biomass and explores the possibility of exploiting them for heavy metal remediation. | Publication;
Copyrighted
Materials | Ahluwalia,
S.S., et al. | 10/01/2007 | Ahluwalia, S.S. 2007. Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater. Bioresource Technology. 98(12): 2243-2257. | Metal Finishing,
Part 433 | 15 | No | Yes | MF00006 | June 27, 2016 Page 43 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | | |-------------------|--------------------------|--|--|--|------------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0108 | Pilot-scale Removal of Chromium
from Industrial Wastewater Using
the ChromeBac System - DCN
MF00007 | The enzymatic reduction of Cr(VI) to Cr(III) by Cr(VI) resistant bacteria followed by chemical precipitation constitutes the ChromeBac™ system. A robust yet effective biotechnology to remove chromium from wastewater is demonstrated. | Publication;
Copyrighted
Materials | Ahmad, W.A.,
et al. | 06/01/2010 | Ahmad, 2010. Pilot-scale Removal of Chromium from Industrial Wastewater Using the ChromeBac System. Bioresource Technology. 101(12): 4371- 4378. (June) | Metal Finishing,
Part 433 | 8 | No | Yes | MF00007 | | 10.31 | EPA-HQ-OW-2015-0665-0109 | Rice Husk and Its Ash as Low-Cost
Adsorbents in Water and
Wastewater Treatment - DCN
MF00008 | Rice husk, which is a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various pollutants from water and wastewaters. This article presents a brief review on the role of rice husk and ash in the removal of various pollutants from wastewater. Studies on the adsorption of various pollutants by rice husk materials are reviewed and the adsorption mechanism, influencing factors, favorable conditions, etc., discussed in this article. | Publication;
Copyrighted
Materials | Ahmaruzzama
n, M., et al. | 10/28/2011 | Ahmaruzzaman,
M. 2011. Rice
Husk and Ash
Low-Cost
Adsorbents in
Water
Treatment.
Industrial &
Engineering
Chemistry
Research.
50(24): 13589-
13613. | Metal Finishing,
Part 433 | 25 | No | Yes | MF00008 | | 10.31 | EPA-HQ-OW-2015-0665-0110 | Management of Chromium Plating
Rinsewater Using Electrochemical
Ion Exchange - DCN MF00009 | The chrome plating industry effluent mainly contains Cr(VI) in dragout and rinsewater whose constituents reflect the plating bath characteristics As Cr(VI) is soluble in all pH ranges, an efficient treatment is required for recovery of chromium for the reuse of treated water. The present study endeavors to recover the chromium by an electrochemical ion exchange (EIX) method. The maximum chromium removal achieved is 98.82% in the batch recirculation mode of operation of EIX at voltage 12.5 V. | | Ahmen-Basha,
C., et al. | 03/05/2008 | Ahmen-Basha,C, 2008. Management of Chromium Plating Rinse Water Using Electrochemical Ion Exchange. Industrial & Eng. Chem. Research.47(7): 2279-2286. | Metal Finishing,
Part 433 | 8 | No | Yes | MF00009 | June 27, 2016 Page 44 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|-------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0111 | Adsorption studies on Citrus reticulata fruit peel of orange/: removal and recovery of Ni II/ from electroplating wastewater - DCN MF00010 | The ability of fruit peel of orange to remove Zn, Ni, Cu, Pb and Cr from aqueous solution by adsorption was studied. The extent of removal of Ni II. was found to be dependent on sorbent dose, initial concentration, pH and temperature. Desorption was possible with HCl and was found to be 95.83% in column and 76% in batch process, respectively. The spent adsorbent was regenerated and recycled. The removal and recovery was also done in wastewater and was found to be 89% and 93.33%, respectively. | | Ajmal, M., et al. | 11/01/2000 | Ajmal,
M.,2000.Adsorpti
on Studies on
Citrus reticulata:
Removal &
Recovery of
Ni(II) from
Electroplating
WW. Journal of
Haz.
Materials.79(1-
2):117-31. | Metal Finishing,
Part 433 | 15 | No | Yes | MF00010 | | 10.31 | EPA-HQ-OW-2015-0665-0112 | Removal and recovery of heavy
metals from electroplating
wastewater by using Kyanite as an
adsorbent - DCN MF00011 | Kyanite, a commercial mineral has been utilized as an adsorbent for the removal of heavy metals, such as Ni(II), Zn(II), Cr(VI) and Cu(II) from
electroplating wastewater. The adsorption of metal ions seems to be an ion exchange process. The adsorbed metals ions from electroplating wastewatwer were recovered by batch as well as column operation using dilute HCl solution. The column operation was found to be more effective compared to batch process. | Publication;
Copyrighted
Materials | Ajmal, M., et al. | 10/01/2001 | Ajmal, M.,
2001.Removal
and Recovery of
Heavy Metals
from
Electroplating
WW by using
Kyanite as
Adsorbent.
Journal of Haz.
Materials.87(1-
3): 127-137. | Metal Finishing,
Part 433 | 11 | No | Yes | MF00011 | | 10.31 | EPA-HQ-OW-2015-0665-0113 | Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater - DCN MF00012 | Adsorption behaviour of Ni(II), Zn(II), Cd(II) and Cr(VI) on untreated and phosphate-treated rice husk (PRH) showed that adsorption of Ni(II) and Cd(II) was greater when PRH was used as an adsorbent. Sorption of Cd(II) was dependent on contact time, concentration, temperature, adsorbent doses and pH of the solution. It was found that recovery of Cd(II) from synthetic wastewater by column operation was better than a batch process. | Publication;
Copyrighted
Materials | Ajmal, M., et al. | 01/01/2003 | Ajmal, M., 2003.
Adsorption
Studies on Rice
Husk: Removal
and Recovery of
Cd(II) from
Wastewater.
Bioresource
Technology.
86(2): 147-149. | Metal Finishing,
Part 433 | 3 | No | Yes | MF00012 | June 27, 2016 Page 45 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL | | |-------------------|--------------------------|---|--|--|----------------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0114 | Copper, chromium and nickel
removal from metal plating
wastewater by electrocoagulation -
DCN MF00013 | Removal of Cu, Cr and Ni from metal plating wastewater by electrocoagulation with Fe and Al electrodes with monopolar configurations was investigated. The results showed that metal removal increased with increasing current density, pH and conductivity. The results indicated that electrocoagulation with an Fe–Al electrode pair was very efficient and was able to achieve 100% Cu, 100% Cr and 100% Ni removal at an electrocoagulation time of 20 min, a current density of 10 mA/cm2 and a pH of 3.0. | Publication;
Copyrighted
Materials | Akbal, F., et al. | 02/01/2011 | Akbal, F. 2011. Copper, Chromium, and Nickel Removal from Metal Plating Wastewater by Electrocoagulatio n. Desalination. 269(1-3): 214- 222. | Metal Finishing,
Part 433 | 9 | No | Yes | MF00013 | | 10.31 | EPA-HQ-OW-2015-0665-0115 | Purification of metal electroplating waste waters using zeolites - DCN MF00014 | The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. Synthetic zeolite exhibited about 10 times greater sorption capacities, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used to purify metal electroplating waste waters. | Publication;
Copyrighted
Materials | Alvarez-
Ayuso, E., et
al. | 12/01/2003 | Alvarez-Ayuso,
E., 2003.
Purification of
Metal
Electroplating
Waste Waters
Using Zeolites.
Water Research.
37(20): 4855-
4862.
(December). | Metal Finishing,
Part 433 | 8 | No | Yes | MF00014 | | 10.31 | EPA-HQ-OW-2015-0665-0116 | Polymer-enhanced ultrafiltration
process for heavy metals removal
from industrial wastewater - DCN
MF00015 | The complexation–ultrafiltration technique has been shown to be a promising technique for removal of heavy metals in solution. In this study, a polymerenhanced ultrafiltration process has been investigated for removal of toxic heavy metals such as Cu(II), Ni(II), and Cr(III) from synthetic wastewater solutions. Results obtained revealed that the maximum percentage of the metal rejection was achieved at pH≥7 with increasing of the CMC concentration. | Publication;
Copyrighted
Materials | Barakat, M.A.,
et al. | 06/01/2010 | Barakat,
M.A.,2010.
Polymer-
enhanced
Ultrafiltration
Process for
Heavy Metals
Removal from
Inudstrial
Wastewaer.
Desalination.256
(1-3): 90-
93.(June) | Metal Finishing,
Part 433 | 4 | No | Yes | MF00015 | June 27, 2016 Page 46 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|--|--------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0117 | Evaluation of APCVD Aluminum
Coatings as an Environmentally
Acceptable Alternative to
Electroplated Cadmium Coatings -
DCN MF00016 | A study was initiated at the Air Force Research Laboratory to investigate the atmospheric pressure, chemical vapor deposition (APCVD) method to deposit aluminum coatings on high-strength steels to meet U.S. Air Force requirements. The advantages of this "dry" method over the IVD and electrodeposition methods include: No vacuum chamber, pumps, or ancillary control equipment, less complicated equipment, little hazardous chemicals, great throwing power, and desirable morphology of deposits. | Publication;
Copyrighted
Materials | Berman, E. S.,
et al. | 02/01/2009 | Berman, E. S.,2009. Evaluation of APCVD AI Coatings as an Environ. Acceptable Alternative to Electroplated Cd Coatings. Metal Finishing.107 (2):35-43. | Metal Finishing,
Part 433 | 9 | No | Yes | MF00016 | | 10.31 | EPA-HQ-OW-2015-0665-0118 | Self-Healing, Chromate-free
Conversion Coating for Magnesium
Alloys - DCN MF00017 | This paper describes a viable alternative self-healing conversion coating that is chromate free. NEI has completed initial development and testing of a chromate-free, self-healing conversion coating that significantly enhances the corrosion resistance of magnesium alloys, along with enhanced adhesion with an overlaying paint layer (primer). This new conversion coating, which is only a few micrometers thick, easily forms on the surface of a magnesium part when immersed in a waterborne solution. | Publication;
Copyrighted
Materials | Bhargava, G.,
et al. | 05/01/2012 | Bhargava, G., and Allen, F. 2012. Self-Healing, Chromate-free Conversion Coating for Magnesium Alloys. Metal Finishing. 110 (4): 32-38. (May). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00017 | | 10.31 | EPA-HQ-OW-2015-0665-0119 | Trivalent Chromium for Enhanced
Corrosion Protection on Aluminum
Surfaces - DCN MF00018 | This article outlines various chromate conversion techniques for aluminum. It addresses a new, environmentally friendly, cost-efficient, and performance- oriented chromate conversion coating with a unique and patented trivalent chromium pre and post-treatment chemistry for aluminum. | Publication;
Copyrighted
Materials | Bhatt, H., et al. | 07/01/2009 | Bhatt, H., 2009.
Trivalent
Chromium for
Enhanced
Corrosion
Protection on
Aluminum
Surfaces. Metal
Finishing. 107
(6): 39-47.
(June). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00018 | June 27, 2016 Page 47 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---
--|--|--------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0120 | Non-chrome-containing Conversion
Coatings for Zinc and Zinc Alloys:
Environmentally Friendly
Alternatives Provide Equal or Better
Adhesion and Corrosion Resistance
as Conventional Methods - DCN
MF00019 | Conversion coatings have been used on Zn and Zn alloys for more than 100 years, and there are many different processes used. The 4 primary conversion coatings available to the general public are: the production of a film of mixed Cr and Zn hydroxides and/or oxides; the generation of a film of heavymetal phosphates; the use of various synthetic polymers with or without various heavy metal phosphates and/or oxides; and the formation of various Mn oxide/Zn oxide films by the use of permanganates. | Publication;
Copyrighted
Materials | Bibber, J. | 04/01/2008 | Bibber, J. 2008.
Non-chrome-
containing
Conversion
Coatings for Zn
and Zn Alloys.
Metal Finishing.
106 (4): 41-46.
(April). | Metal Finishing,
Part 433 | 6 | No | Yes | MF00019 | | 10.31 | EPA-HQ-OW-2015-0665-0121 | Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment - DCN MF00020 | All data indicate that the Mg-rich (or Mg-alloy pigment-rich) primer + aircraft topcoat system gives excellent corrosion protection by mechanisms entirely different from the modes of protection for aircraft alloys given by the toxic, carcinogenic chromate compounds now in use in all corrosion protection systems for aircraft. | Publication;
Copyrighted
Materials | Bierwagen,
G.,et al. | 05/01/2010 | Bierwagen, G.,
2010. Active
Metal-based
Corrosion
Protective
Coating Systems
for Aircraft.
Progress in
Organic
Coatings. 68 (1-
2): 48-61. (May). | Metal Finishing,
Part 433 | 14 | No | Yes | MF00020 | | 10.31 | EPA-HQ-OW-2015-0665-0122 | Ecologically green conversion coating for zinc–cobalt alloy - DCN MF00021 | A phytic acid based conversion coating designed for Zn–Co alloys. The morphology of this coating was studied by SEM and showed that immersion of coatings for 15 min is smooth and compact. The composition of conversion coatings was analysed by X-ray photoelectron spectroscopy. The analysis data showed the coating is composed of Zn, C, P, N and O. Electrochemical corrosion measurement showed that corrosion resistance of the Zn–Co alloy has been improved by conversion treatment with phytic acid. | Publication;
Copyrighted
Materials | Bikulcius, G.,
et al. | 05/01/2010 | Bikulcius, G., 2010. Ecologically Green Conversion Coating for Zinc-Cobalt Alloy. Transactions of the Institute of Metal Finishing. 88 (3):163-165. | Metal Finishing,
Part 433 | 4 | No | Yes | MF00021 | June 27, 2016 Page 48 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0123 | Thinking Outside the Bucket with
Non-Drip Electrochemical
Processing - DCN MF00022 | Presentation discussing how a non-drip stylus continuously recirculates electrolytes from a holding tank through the head cleaning, anodizing and plating in any orientation, including overhead, eliminates drips and splashes, eliminates most of the fumes, and can treat in-place. | Report | Chaix, J-P., et
al. | 06/01/2013 | Chaix, J-P.,
Rose, A., and
Legg, K. 2013.
Thinking Outside
the Bucket with
Non-Drip
Electrochemical
Processing.
(June). | Metal Finishing,
Part 433 | 37 | No | No | MF00022 | | 10.31 | EPA-HQ-OW-2015-0665-0124 | Characterization and Application of
Dried Plants to Remove Heavy
Metals, Nitrate, and Phosphate Ions
from Industrial Wastewaters - DCN
MF00023 | Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. | Publication;
Copyrighted
Materials | Chiban, M., et
al | 04/01/2011 | Chiban, M.,
2011.
Characterization
and Application
of Dried Plants to
Remove Heavy
Metals, Nitrate,
and Phosphate
lons from
Industrial
Wastewaters | Metal Finishing,
Part 433 | 8 | No | Yes | MF00023 | | 10.31 | EPA-HQ-OW-2015-0665-0125 | Biosorption and Recovery of
Chromium from Industrial
Wastewaters By Using
Saccharomyces cerevisiae in a
Flow-Through System - DCN
MF00024 | This study investigated the possibility to adsorb and recycle Cr(VI) from the wastewater of a Crelectroplating process using Saccharomyces cerevisiae in a flow-through system at a pilot scale. The results obtained at pilot scale with chromium-containing wastewaters demonstrated the good metal sorption capability of the acid pretreated S. cerevisiae biomass and the possibility to recover, at a high purity, the metal from the biomass at the end of the treatment process | Publication;
Copyrighted
Materials | Colica, G., et al. | 01/01/2012 | Colica,G.,2012.Bi
osorption &
Recovery of Cr
from Ind.WWs
By Using S.
cerevisiae in a
Flow-Through
System. Ind. &
Eng. Chem.
Research.51(11):
4452-4457. | Metal Finishing,
Part 433 | 6 | No | Yes | MF00024 | June 27, 2016 Page 49 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | <i>PAGE</i> | СВІ | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|--|--|--------------------|----------------|---|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0126 | Alternative Plating Processes for
Metal Electroplating Based on Ionic
Liquids - DCN MF00025 | The objective of this project is to accelerate the application of ionic liquids and other neoteric solvents in nonaqueous electroplating that addresses the Department of Defense (DoD) lifecycle cost and environmental issues related to weapon systems. | Publication
Other
Government | Dai, S. | 01/01/2014 | Dai, S. 2014. U.S. DOE Strategic Environmental R&D Program (SERDP). Alternative Plating for Metal Electorplating using lonic Liquids. | Metal Finishing,
Part 433 | 2 | No | No | MF00025 | | 10.31 | EPA-HQ-OW-2015-0665-0127 | Electrodeposition, characterization and corrosion behaviour of tin–20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath - DCN MF00026 | Tin–zinc alloy electroplated coatings are recognized as a potential alternative to toxic cadmium as corrosion resistant deposits because they combine the barrier protection of tin with the cathodic protection afforded by zinc. The results show that the corrosion resistance of tin–20 wt.% zinc alloy coating is superior to that of cadmium and zinc–12 wt.% nickel coatings. Finally, sliding friction tests were conducted. | Publication;
Copyrighted
Materials | Dubent, S., et al. | 04/01/2010 | Dubent, S.,2010. Electrodeposition, Characterization and Corrosion Behavior of Sn- Zn Coatings
Electroplated from a Non-CN Alkaline Bath | Metal Finishing,
Part 433 | 10 | No | Yes | MF00026 | | 10.31 | EPA-HQ-OW-2015-0665-0128 | Zirconium Pretreatments: Not Just
for Early Adopters Anymore - DCN
MF00027 | Zirconium oxide conversion coatings have proven to be excellentreplacements for iron phosphate pretreatments in recent years. The substantial performance, operational, and environmental benefits have been well documented. This article addresses some frequently asked questions regarding zirconium pretreatments and shares some benefits of the most recent generation of the technology. | Copyrighted
Materials | Dunham, B. | 07/30/2012 | Dunham, B.
2012. Zirconium
Pretreatments:
Not Just for Early
Adopters
Anymore. Metal
Finishing. 110
(6): 18-21. (July-
August). | Metal Finishing,
Part 433 | 4 | No | Yes | MF00027 | June 27, 2016 Page 50 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|--|-----------------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0129 | Hexavalent Chromium Elimination:
An Aerospace Industry Progress
Report - DCN MF00028 | Aerospace has come together on the issue of hexavalent chromium to work toward the objective of complete elimination. This cooperation in the aerospace industry during the past decade has led to numerous successes. The purpose of this article is to review some of these successes and to identify a few areas where additional hexavalent chromium elimination work is required. | Publication;
Copyrighted
Materials | Eichinger, E.,
et al. | 03/01/1997 | Eichinger, E.,
1997.
Hexavalent
Chromium
Elimination: An
Aerospace
Industry
Progress Report.
Metal Finishing.
95 (3): 36, 38, 40-
41. (March). | Metal Finishing,
Part 433 | 4 | No | Yes | MF00028 | | 10.31 | EPA-HQ-OW-2015-0665-0296 | Summary of Metal Finishing
Facilities and Vendors Contacted
During Preliminary Study Activities
in 2015 - DCN MF00029 | Memorandum from Dan-Tam Nguyen, ERG to the 304m Record EPA-HQ-OW-2015-0665 listing a summary of the metal finishing facilities and vendors contacted during preliminary study activities in 2015. | Memorandum | Eastern
Research
Group, Inc | 02/01/2016 | ERG. 2016.
Summary of
Metal Finishing
Facilities and
Vendors
Contacted
During
Preliminary
Study Activities
in 2015.
Chantilly, VA.
(February). | Metal Finishing,
Part 433 | 2 | No | No | MF00029 | | 10.31 | EPA-HQ-OW-2015-0665-0300 | Quality Evaluation Tracking
Spreadsheet for the 2015 Literature
Review - DCN MF00030 | EPA collected over 130 documents from the literature search, recorded them on a quality evaluation tracking spreadsheet, and documented how each data source met (or did not meet) the quality criteria. | Data | Eastern
Research
Group, Inc | 08/01/2015 | ERG. 2015. Quality Evaluation Tracking Spreadsheet for the 2015 Literature Review. Chantilly, VA. (August). | Metal Finishing,
Part 433 | 0 | No | No | MF00030 | June 27, 2016 Page 51 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|---|--|----------------|----------------|---|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0130 | Reducing Operational Costs,
Environmental Impact Via Rigorous
Plating/Finishing Analysis - DCN
MF00031 | We will present the methodology used by the New York State Pollution Prevention Institute at Rochester Institute ofTechnology to determine the baseline costs of the finishing operation. Potential improvement methods or technologies will be presented for each area typically found in any finishing line. | Publication;
Copyrighted
Materials | Fister, D. | 06/01/2010 | Fister, D. 2010. Reducing Operational Costs, Environmental Impact Via Rigorous Plating/Finishing Analyses. Metal Finishing. 108(6): 39-46. (June). | Metal Finishing,
Part 433 | 8 | No | Yes | MF00031 | | 10.31 | EPA-HQ-OW-2015-0665-0131 | Removal of heavy metal ions from wastewaters: A review - DCN MF00032 | In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulationeflocculation, flotation and electrochemical methods. About 185 published studies (1988e2010) are reviewed in this paper. | Publication;
Copyrighted
Materials | Fu, F., et al. | 01/01/2011 | Fu, F., and
Wang, Q. 2011.
Removal of
heavy metal ions
from
wastewaters: A
review. Journal
of Environmental
Management.
93(3): 407-418. | Metal Finishing,
Part 433 | 12 | No | Yes | MF00032 | | 10.31 | EPA-HQ-OW-2015-0665-0132 | Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles - DCN MF00033 | We investigated the adsorption capacity of Fe3O4@APS@AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Fe3O4@APS@AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd2+, Zn2+, Pb2+ and Cu2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions. | Publication;
Copyrighted
Materials | Ge, F., et al. | 04/15/2012 | Ge,
F.,2012.Effective
removal of heavy
metal ionsfrom
aq solution by
polymer-modified
magnetic
nanoparticles. J
of Haz Materials.
211-212:366-372. | Metal Finishing,
Part 433 | 7 | No | Yes | MF00033 | June 27, 2016 Page 52 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|-------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0133 | Plaforization Process for Cleaning,
Degreasing, and Phosphating -
DCN MF00034 | Several industrial magazines!" have previously focused their attention on the proprietary Plaforization process, a one-step system for cleaning, degreasing, and phosphating metal surfaces before painting. The Plaforization process is completely different from typical conventional water-based processes, and it offers several benefits and advantages to users. | Publication;
Copyrighted
Materials | Guidetti, G., et
al. | 03/01/2009 | Guidetti, G., et al. 2009. Plaforization Process for Cleaning, Degreasing, and Phosphating. Metal Finishing. 107(3): 39-43 (March). | Metal Finishing,
Part 433 | 5 | No | Yes | MF00034 | | 10.31 | EPA-HQ-OW-2015-0665-0134 | Use of Industrial Wastes as Media
in Constructed Wetlands and Filter
Beds –
Prospects for Removal of
Phosphate and Metals from
Wastewater Streams - DCN
MF00035 | Removal of phosphate (P) and other metals have been demonstrated in pilot scale and/or full scale wetlands/filters. The extent to which these factors interact with, and affect, P and metal adsorption by active filter materials still requires quantification. Because P and metals are sequestered in the filter material, their possible remobilization under changed conditions (e.g. changes in pH and redox potential) is of environmental concern and also requires ongoing investigation. | Publication;
Copyrighted
Materials | Haynes, R.J. | 05/21/2014 | Haynes,
R.J.2014.Use of
Ind Wastes as
Media in
Constructed
Wetlands and
Filter Beds
Critical
Reviews in Env
Science and
Tech.45(10):1041
-1103. | Metal Finishing,
Part 433 | 113 | No | Yes | MF00035 | | 10.31 | EPA-HQ-OW-2015-0665-0135 | Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents - DCN MF00036 | Agricultural and industrial waste by-products are used for the elimination of heavy metals from ww for the treatment of the EL-AHLIA Company ww for electroplating industries as an actual case study. Results showed that low cost adsorbents can be fruitfully used for the removal of heavy metals with a concentration range of 20–60 mg/l also, using real ww showed that rice husk was effective in the simultaneous removal of Fe, Pb and Ni, where fly ash was effective in the removal of Cd and Cu. | Materials | Hegazi, H.A. | 12/01/2013 | Hegazi, H.A.
2013. Removal
of heavy metals
from wastewater
using agricultural
and industrial
wastes as
absorbents.
HBRC Journal.
9(3): 276-282.
(Dec). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00036 | June 27, 2016 Page 53 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|--|--|--|-----------------------------|----------------|---|------------------------------|------|-----|------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0136 | Heavy metal removal from
water/wastewater by nanosized
metal oxides: A review - DCN
MF00037 | The present review mainly focuses on nanosized metal oxides' (NMOs') preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. | Publication;
Copyrighted
Materials | Hua, M., et al. | 04/15/2012 | Hua, M. 2012.
Heavy metal
removal from
water/wastewater
by nanosized
metal oxides: A
review. Journal
of Hazardous
Materials. 211-
212: 317-331.
(April) | Metal Finishing,
Part 433 | 15 | No | Yes | MF00037 | | 10.31 | EPA-HQ-OW-2015-0665-0137 | Biologically produced sulphide for
purification of process streams,
effluent treatment and recovery of
metals in the metal and mining
industry - DCN MF00038 | Metal removal by sulphide precipitation is a well-known process that is characterised by compact residues and very high removal efficiencies. This paper describes a novel biological process for safe and cost effective production of sulphide from elemental sulphur, waste sulphuric acid or sulphate present in effluents. With this technology, gaseous or dissolved H2S is produced on-site and ondemand in an engineered, high rate bioreactor. | Publication;
Copyrighted
Materials | Huisman, J., et
al. | 09/01/2006 | Huisman,J.,2006.
Biologically
produced
sulphide for
purification of
process
streamsin the
metal and mining
industry.Hydrome
tallurgy.83(1-
4):106-113. | Metal Finishing,
Part 433 | 8 | No | Yes | MF00038 | | 10.31 | EPA-HQ-OW-2015-0665-0138 | Cadmium- and Chromate-Free
Coating Schemes for Corrosion
Protection of 15CDV6 Steel - DCN
MF00039 | Cadmium- and chromate-free scheme exhibited excellent performance in the long-term corrosion evaluation studies. The results obtained in accelerated tests show the possibility of replacement ofcadmium- and chromate-based schemes for corrosion protection of steels with an eco-friendly option. | Publication;
Copyrighted
Materials | Indumathi, S.
N., et al. | 04/01/2011 | Indumathi, S. N.
2011. Cadmium-
and Chromate-
Free Coating
Schemes for
Corrosion
Protection of
15CDV6 Steel.
Metal Finishing.
109 (3): 15-21.
(Apr/May) | Metal Finishing,
Part 433 | 7 | No | Yes | MF00039 | June 27, 2016 Page 54 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|---|--|--------------------------|----------------|--|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0139 | Development of a Precipitation
Based Separation Scheme for
Selective Removal and Recovery of
Heavy Metals from Cadmium Rich
Electroplating Industry Effluents -
DCN MF00040 | In this study, for selective removal and recovery of Cd from real electroplating bath wastewater (containing high amounts of Cd, medium amounts of Zn, Cu, Fe and small amounts of Ni, Co, Mn), a precipitation based separation scheme was developed. | Publication;
Copyrighted
Materials | Islamoglu, S.,
et al. | 01/01/2006 | Islamoglu, S., 2006. Development of a PrecipitationCd Rich Electroplating Industry Effluents. Separation Science and Technology. 41(15): 3367-3385 | Metal Finishing,
Part 433 | 20 | No | Yes | MF00040 | | 10.31 | EPA-HQ-OW-2015-0665-0140 | Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes - DCN MF00041 | The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. | Publication;
Copyrighted
Materials | Kabdasli, I., et al. | 06/15/2009 | Kabdasli,I.,2009.
Complexing
agent and heavy
metal
removalselectro
coagulation with
stainless steel
electrodes. J of
Haz Materials.
165(1-3):838-
845. | Metal Finishing,
Part 433 | 8 | No | Yes | MF00041 | | 10.31 | EPA-HQ-OW-2015-0665-0141 | Roll With the Changes: Ensuring readiness for phosphate-free conversion coatings - DCN MF00042 | Most everyone involved with metal finishing processes is aware of the new pretreatment technologies available. Several names have been used to identify these alternatives to phosphate-based treatments. Within this article I will use the acronym TMC, transitional metal conversion, as it describes what is on the substrate after treatmentsimilar to using the terms iron or zinc phosphate. | Publication;
Copyrighted
Materials | Kaluzny, K. | 05/01/2012 | Kaluzny, K.
2012. Roll with
the Changes.
Metal Finishing.
110 (4): 43-46.
(May). DOI:
10.1016/S0026-
0576(13)70130-2. | Metal Finishing,
Part 433 | 4 | No | Yes | MF00042 | June 27, 2016 Page 55 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--
--|--|----------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0142 | Treatment of metal finishing effluents by the electroflotation technique - DCN MF00043 | In the present work EF was used to reduce the concentrations of copper and nickel found in real wastewater. The effects of the following parameters were examined: current density, pH, heavy metal concentration, supporting electrolyte concentration, and the nature of the electrodes. By optimizing the operation, heavy metal removal reached 98-99%, and maintained final and global concentration to a value lower than the World Health Organization standard, which is 1 mg/L for nickel and copper. | Publication;
Copyrighted
Materials | Khelifa, A., et
al. | 09/05/2005 | Khelifa, A., et al. 2005. Treatment of metal finishing effluents by the electroflotation technique. Desalination. 181(1-3): 27-33. (September). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00043 | | 10.31 | EPA-HQ-OW-2015-0665-0143 | Electroplating - DCN MF00044 | Electroplating is a specific type of surface finishing; everyone has at one time seen and handled electroplated objects, even if they were not aware of it. Some typical examples include kitchen and bathroom faucets, inexpensive jewelry, and the trim on some automobiles. There are thousands of other examples. There are three basic reasons for surface finishing/electroplating: (1) To improve appearance, (2) To slow or prevent corrosion (rust), and (3) To increase strength and resistance to wear. | Publication;
Copyrighted
Materials | Kirk-Othmer. | 12/01/2004 | Kirk-Othmer.
2004.
Electroplating.
Krik-Othmer
Encyclopedia of
Chemical
Technology, 5th
Edition. 9: 759-
838. (December). | Metal Finishing,
Part 433 | 80 | No | Yes | MF00044 | | 10.31 | EPA-HQ-OW-2015-0665-0144 | Low-Temperature, Phosphate-Free
Conversion Coatings - DCN
MF00045 | Energy costs are a major concern for metal finishing operations and tie into environmental compliance issues. Wastewater treatment facilities in certain areas of the country are tightening phosphate and heavy metal discharge limits on metal finishers. To address these concerns, zirconium- and zirconium-vanadium- based inorganic conversion coatings have been developed. They focus on temperature reduction and phosphate discharge elimination while improving corrosion resistance. | Publication;
Copyrighted
Materials | Klingenberg,
C., et al. | 09/01/2007 | Klingenberg, C., and Jones, D. 2007. Low-Temperature, Phosphate-Free Conversion Coatings. Metal Finishing. 28-30. (September). | Metal Finishing,
Part 433 | 2 | No | Yes | MF00045 | June 27, 2016 Page 56 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | | |-------------------|--------------------------|---|--|--|----------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0145 | Treatment of cadmium and nickel electroplating rinse water by electrocoagulation - DCN MF00046 | Treatments of cadmium-cyanide and nickel-cyanide electroplating rinse water were investigated in an electrochemical reactor equipped with iron plate electrodes in a batch mode by electrocoagulation (EC). Effectsof the process variables such as pH, current density, and operating time were explored and the results indicated that EC was very effective treatment for the removals of cadmium, nickel, and cyanide ions from the electroplating rinse water. | Publication;
Copyrighted
Materials | Kobya, M., et
al. | 12/01/2010 | Kobya, M., 2010.
Treatment of
cadmium and
nickel
electroplating
rinse water by
electrocoagulatio
n. Environmental
Technology.
31(13):1471-
1481. (Dec) | Metal Finishing,
Part 433 | 12 | No | Yes | MF00046 | | 10.31 | EPA-HQ-OW-2015-0665-0146 | Biosorption of chromium(VI) from
aqueous solution and electroplating
wastewater using fungal biomass -
DCN MF00047 | Removal of Cr(VI) from electroplating wastewater was observedless than from synthetic solution. Higher value of correlation coefficient (r2 > 0.90) indicates that adsorption data are best fitted in both Freundlichand Langmuir isotherms model. The high value of Freundlich constants Kf and n, i.e. 17.92 mg/g and 1.18 L/mg and Langmuir constants Q0 and b17.61 mg/g and 0.0026 L/mg for A. niger indicate its better adsorption capacity than A. sydoni and P. janthinellum. | Publication;
Copyrighted
Materials | Kumar, R., et
al. | 02/01/2008 | Kumar, R., 2008.
Biosorption of
Cr(VI) from
aqueous solution
and
electroplating
wastewater
using fungal
biomass. ChemE
Journal. 135(3):
202-208. | Metal Finishing,
Part 433 | 7 | No | Yes | MF00047 | | 10.31 | EPA-HQ-OW-2015-0665-0147 | Comparisons of low-cost adsorbents for treating wastewater laden with heavey metals - DCN MF00048 | Low-cost adsorbents can be viable alternatives to activated carbon for the treatment of metals-contaminated wastewater. Adsorption capacities presented in this paper vary, depending on the characteristics of the individual adsorbent, the extent of surface modification and the initial concentration of the adsorbate. In general, technical applicability and cost-effectiveness are the key factors that play major roles in the selection of the most suitable adsorbent to treat inorganic effluent. | Publication;
Copyrighted
Materials | Kurniawan,
T.A., et al. | 08/01/2006 | Kurniawan, T.A., 2006. Comparisons of low-cost absorbents for treating ww laden with heavy metals. Science of The Total Environment. 366(2-3): 409-426 | Metal Finishing,
Part 433 | 18 | No | Yes | MF00048 | June 27, 2016 Page 57 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|--|------------------|--------------|----------------|---|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0148 | Non-Chromate/No VOC Coating
System for DoD Applications - DCN
MF00049 | This document reports the results of a three year program funded by the Strategic Environmental Research and Development Program (SERDP) to research, develop, and demonstrate military coatings systems that are hexavalent chromium free and use primers and topcoats with ultra low volatile organic compound (VOC) content while maintaining high protection against corrosion and the environment, high durability, high performance, and low cost. | Report | La Scala, J. | 03/31/2009 | La Scala, J.
2009. Army
Research
Laboratory. Non-
Chromate/No
VOC Coating
System for DoD
Applications. WP-
1521. (March
31). | Metal Finishing,
Part 433 | 211 | No | No | MF00049 | | 10.31 | EPA-HQ-OW-2015-0665-0149 | Greening DoD Surface Finishing
Operations - DCN MF00050 | Presentation about alternatives to coating applications that are more environmentally friendly coatings and processes. Presents changes and challenges to designing greener coating operations. | Report | Legg, Keith | 04/01/2008 | Legg, K. 2008.
Rowan
Technology
Group. Greening
DoD Surface
Finishing
Operations.
Presentation at
the Washington
Forum, April
2008. | Metal Finishing,
Part 433 | 21 | No | No | MF00050 | | 10.31 | EPA-HQ-OW-2015-0665-0150 | Hexavalent chrome issues and options - DCN MF00051 | Presentation about
alternatives to chromium coating applications, which are more sustainable processes. Presents the usage, typical coatings, challenges to more sustainable coatings, regulatory issues, and future options. | Report | Legg, Keith | 08/01/2009 | Legg, K. 2009. Rowan Technology Group. Hexavalent Chrome Issues and Options. Presentation at the DLA Shelf Life Symposium, August 2009. | Metal Finishing,
Part 433 | 22 | No | No | MF00051 | June 27, 2016 Page 58 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | | |-------------------|--------------------------|---|--|------------------|-------------|----------------|---|------------------------------|------|-----|------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0151 | Eliminating Cr6+, Cd, and other
hazardous materials without
compromising performanceArmy
Corrosion Summit, 2010 - DCN
MF00052 | Presentation about alternatives to chromium, cadmium, and other hazardous material coating applications. Presents options to comply with Restriction of Hazardous Substances (RoHS). | Report | Legg, Keith | 02/01/2010 | Legg, K. 2010.
Rowan
Technology
Group.
Eliminating Cr6+,
Cd, and Other
Hazardous
Materials without
Compromising
Performance. | Metal Finishing,
Part 433 | 47 | No | No | MF00052 | | 10.31 | EPA-HQ-OW-2015-0665-0152 | Overview of Development and Implementation of Non-Chromate Treatments for Aluminum in the US - DCN MF00053 | Presents the non-chromate conversion coating processes, formulations, requirements, and computational methods. | Report | Legg, Keith | 12/01/2011 | Legg, K. 2011. Rowan Technology Group. Overview of Development and Implementation of Non-Chromate Treatments for Aluminum in the U.S. | Metal Finishing,
Part 433 | 24 | No | No | MF00053 | | 10.31 | EPA-HQ-OW-2015-0665-0153 | Choosing a Cadmium Plate
Alternative - DCN MF00054 | Cadmium is a sacrificial coating – i.e. in a corrosive environment the cadmium corrodes preferentially, leaving the underlying steel intact. Even when scratched, the surrounding coating still protects the exposed steel. The only coating materials that have this property are the electronegative elements – Cd, Zn, Al (Mg and Be as well, but we do not use those as coatings). You can replace Cd with a barrier coating such as Ni or a polymer, but once it is scratched the protection is lost. | Guidance | Legg, Keith | 01/01/2012 | Legg, K. 2012.
Rowan
Technology
Group. Choosing
a Cadmium Plate
Alternative | Metal Finishing,
Part 433 | 4 | No | No | MF00054 | June 27, 2016 Page 59 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|--|--|------------------|-------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0154 | Choosing a Chromate Alternative -
DCN MF00055 | Chromates (salts containing hexavalent chromium in the chemistry Metal-CrO3) have the unusual property of affording corrosion protection even when scratched or damaged. They do this by going into solution in the corrosive environment, migrating to the exposed bare metal surface, and forming complexes to inhibit further corrosion. There are so many uses of chromates that there are numerous alternatives, depending on the application and the substrate, its service conditions, and other factors. | Guidance | Legg, Keith | 01/01/2012 | Legg, K. 2012.
Rowan
Technology
Group. Choosing
a Chromate
Alternative. | Metal Finishing,
Part 433 | 2 | No | No | MF00055 | | 10.31 | EPA-HQ-OW-2015-0665-0155 | Choosing a Hard Chrome
Alternative - DCN MF00056 | Hard chrome is used throughout manufacturing industry for a very large number of wear resistant applications in industrial equipment and vehicles, and for almost all metal fabricating tooling except cutting tools (which are usually carbide tools with very hard CVD or PVD thin coatings). There are several hard chrome plating alternatives that are now used, depending on the application and on whether it is an OEM part or a component to be repaired. | Guidance | Legg, Keith | 01/01/2012 | Legg, K. 2012.
Rowan
Technology
Group. Choosing
a Hard Chrome
Alternative. | Metal Finishing,
Part 433 | 8 | No | No | MF00056 | | 10.31 | EPA-HQ-OW-2015-0665-0156 | Successful cyanide free plating protocols onmagnesium alloys - DCN MF00057 | Three preplating processes of metal or alloy on magnesium alloys have been described. Ni–P alloy, Ni or Cu as the intermediate coating was fi rst deposited on magnesium alloys using three different pretreatments respectively. The composite layered coatings of Cu/Ni/Cr on magnesium alloy products were obtained using three intermediate cyanide free plating processes. Test results also showed that the compositecoatings had good adhesion and high corrosion resistance. | | Lei, X. P., et al | . 02/01/2010 | Lei, X. P. 2010.
Successful
Cyanide Free
Plating Protocols
on Magnesium
Alloys.
Transactions of
the Institute of
Metal Finishing.
88 (2):75 –
80.(Feb) | Metal Finishing,
Part 433 | 7 | No | Yes | MF00057 | June 27, 2016 Page 60 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--|--|--|--------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0157 | A study of chromium-free pickling
process before electroless Ni–P
plating on magnesium alloys - DCN
MF00058 | A chromium-free pickling process of magnesium alloys in H3PO4+Na2MoO4 solution for electroless Ni–P plating was described. The dosage of Na2MoO4 was established by detecting adhesion and corrosion resistance of chemical nickel coatings. This procedure of surface pretreatment before electroless nickel plating can replace the existing acid pickling containing chromium and HF activation. | Publication;
Copyrighted
Materials | Lei, X., et al. | 05/15/2011 | Lei, X.,2011.A
Study of Cr-free
Pickling Process
before
Elecroless Ni-P
Plating on
Magnesium
Alloys. Surface
and Coatings
Technology.205(
16):4058-63. | Metal Finishing,
Part 433 | 6 | No | Yes | MF00058 | | 10.31 | EPA-HQ-OW-2015-0665-0158 | Studies on potential applications of
biomass for the separation of heavy
metals from water and wastewater -
DCN MF00059 | This paper attempts to present a brief summary of the role of biomass in heavy metal removal fromaqueous solutions. This paper also discusses the equilibria and kinetic aspects of biosorption. It was apparent from a literature survey that the Langmuir and Freundlich isotherms are by far the most widely used models for the biosorption equilibria representation, while pseudo-first and second order kinetic models have gained popularity among kinetic studies for their simplicity. | Publication;
Copyrighted
Materials | Lesmana,
S.O., et al. | 04/15/2009 | Lesmana, S.O.,
2009. Studies on
potential
applications of
biomassheavy
metals from
water and
wastewater.
Biochem Eng
Journal. 44(1):19-
41.(April) | Metal
Finishing,
Part 433 | 23 | No | Yes | MF00059 | | 10.31 | EPA-HQ-OW-2015-0665-0159 | Zeolite Thin Films: From Computer
Chips toSpace Stations - DCN
MF00060 | These diverse applications of zeolites have the potential to initiate new industries while revolutionizing existing ones with a potentialeconomic impact that could extend into the hundreds of billions of dollars. We have licensed several of these inventions to companieswith millions of dollars invested in their commercial development. We expect that other related technologies will be licensed in thenear future. | Publication;
Copyrighted
Materials | Lew, C. M., et al. | 02/01/2010 | Lew, C. M., et al. 2010. Zeolite Thin Films: From Computer Chips to Space Stations. Accounts of Chemical Research. 43 (2): 210-219. (February). | Metal Finishing,
Part 433 | 10 | No | Yes | MF00060 | June 27, 2016 Page 61 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--|--|--|------------------|----------------|---|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0160 | Study on the treatment of copper-
electroplating wastewater
bychemical trapping and
flocculation - DCN MF00061 | The results show that the dosage of DDTC depends only on the content of complex copper, but not on the total amount of copper in the wastewater. When the molar ratio of DDTC to Cu is between 0.8 and 1.2, Cu removal efficiency could be higher than 99.6%. Poly-ferric sulphate and PAM have little effects on the Cu removal, but they have significant effects on the flocculating volume, precipitation rate and nephelometric of the upper clean water. | Publication;
Copyrighted
Materials | Li, Y., et al. | 04/01/2003 | Li, Y.2003. Study
on the treatment
of Cu-
electroplating ww
by chemical
trapping and
flocculation.
Separation and
Purification
Technology.31(1)
:91-95. | Metal Finishing,
Part 433 | 5 | No | Yes | MF00061 | | 10.31 | EPA-HQ-OW-2015-0665-0161 | Transitioning to Phosphorus-Free
Paint Pretreatment Processes: A
Comprehensive View - DCN
MF00062 | Metal degreasing, conversion coating and adhesion promoter processes are an essential for paint adhesion and corrosion resistance. However, these processes can impact the environment in a negative manner. Global regulations on effluent discharge and improper chemical disposal continue to progress and affect daily paint shop operations. Atotech developed paint pretreatment technologies that reduce paint applicators' environmental impact without sacrificing efficiency or performance. | Publication;
Copyrighted
Materials | List, B., et al. | 07/01/2012 | List, B., et al. 2012. Transitioning to Phosphorous-Free Paint Pretreatment Processes: A Comprehensive View. Metal Finishing. 110 (6): 12-16. (July). | Metal Finishing,
Part 433 | 5 | No | Yes | MF00062 | | 10.31 | EPA-HQ-OW-2015-0665-0162 | Use of High-Pressure CO2 for
Concentrating CrVI from
Electroplating Wastewater by
Mg-Al Layered Double Hydroxide -
DCN MF00063 | A pilot-scale experiment was carried out with 20 L CrVI-containing electroplating wastewater. The concentration of the desorbed CrVI solution could reach up to 10000 mg/L, which could be used in electroplating after appropriate adjustment. The main advantages of this method are high concentration of CrVI, direct reuse of enriched CrVI, and efficient regeneration of LDH adsorbent. This method showed promises in recycling CrVI and regenerating LDH in treating industrial wastewater. | Publication;
Copyrighted
Materials | Lv, X., et al. | 11/13/2013 | Lv, X., 2013. Use of high-pressure CO2 for concentrating CrVIMg-Al layered double hydroxide. ACS Applied Materials & Interfaces. 5(21):11271-75. | Metal Finishing,
Part 433 | 5 | No | Yes | MF00063 | June 27, 2016 Page 62 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--|---|--|--------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0163 | New Pretreatments and Non-
Chromated Chemfilm for
Magnesium Alloys - DCN MF00064 | A new environmentally friendly non-chromated chemfilm with differentpretreatments was studied as a replacement to conventional hexavalentchromium-based chemfilm technologies for magnesium alloys. The results of corrosion and paint adhesion studies revealed that the new non-chromated conversion coating technology could be a drop-in replacement to the conventional hexavalent chromium-based conversioncoatings. | Publication;
Copyrighted
Materials | Manavbasi, A.,
et al. | 10/01/2012 | Manavbasi, A., et al. 2012. New Pretreatments and Non-Chromated Chemfilm for Magnesium Alloys. Metal Finishing. 110 (8): 17-22. (October). | Metal Finishing,
Part 433 | 6 | No | Yes | MF00064 | | 10.31 | EPA-HQ-OW-2015-0665-0164 | Update on Alternatives for
Cadmium Coatings on Military
Electrical Connectors - DCN
MF00065 | The metal finishing industry has been impacted by numerous regulatory actions related to the hazardous materials that are used in decorative and functional coating processes. Recent excecutive orders require government agencies to reduce the quantity of toxic and hazardous chemicals and materials acquired, used, or disposed. | Publication;
Copyrighted
Materials | Mason, R., et al. | 03/01/2010 | Mason, R., et al. 2010. Update on Alternatives for Cadmium Coatings on Military Electrical Connectors. Metal Finishing. 108 (3): 12-20. (March). | Metal Finishing,
Part 433 | 9 | No | Yes | MF00065 | | 10.31 | EPA-HQ-OW-2015-0665-0165 | Alternatives to Dichromate Sealer in
Anodizing Operations - DCN
MF00066 | Ogden Air Logistics Center (OO-ALC) is the primary facility within the United States Air Force for maintaining and overhauling aircraft landing gear since it provides enhanced corrosion resistance, paint adhesion, and wear resistance. This paper describes requirements for anodizing and sealing operations within OO-ALC, as well as the sealing technologies that are available and a path forward to demonstrate/validate the most promising alternatives for the specific needs and applications of OO-ALC. | Publication;
Copyrighted
Materials | Mason, R., et al. | 06/01/2011 | Mason, R., et al. 2011. Alternatives to dichromate sealer in anodizing operations. Metal Finishing. 109 (4-5): 25-32. (June). | Metal Finishing,
Part 433 | 8 | No | Yes | MF00066 | June 27, 2016 Page 63 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|--|--|------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0166 | Removal turbidity and separation of
heavy metals
usingelectrocoagulation—electroflot
ation technique A
case study - DCN
MF00067 | The electrocoagulation (EC) process was developed to overcome the drawbacks of conventionalwastewater treatment technologies. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration, duration of treatment, current density, interelectrode distance and conductivity on a synthetic wastewater in the batch electrocoagulation–electroflotation (EF) process. | Publication;
Copyrighted
Materials | Merzouk, B.,
et al. | 05/15/2009 | Merzouk, B.,
2009. Removal
turbidity and
separationelectr
ocoagulation-
electroflotation
technique: A
case study. J of
Haz Materials.
164(1): 215-222 | Metal Finishing,
Part 433 | 8 | No | Yes | MF00067 | | 10.31 | EPA-HQ-OW-2015-0665-0167 | Zicronization™: The Future of Coating Pretreatment Processes: Alternative, phosphate-free, ecofriendly pretreatment procedure addresses energy and chemical consumption while improving product quality - DCN MF00068 | Recent technological advances have resulted in a new chemistry that addresses these drawbacks, while providing an effective replacement for phosphate chemistries in many pretreatment operations. This chemical process, known as Zirconization, not only matches or exceeds the ease of use paint adhesion, and corrosion resistance provided by typical phosphatebased chemistries, but it also provides additional benefits such as less chemical usage and lower operating temperatures. | Publication;
Copyrighted
Materials | Moore, R., et al. | 07/01/2008 | Moore, R., and Dunham, B. 2008. Zicronization™: improving product quality. Metal Finishing. 106 (7-8): 46-55. (July – August). | Metal Finishing,
Part 433 | 10 | No | Yes | MF00068 | | 10.31 | EPA-HQ-OW-2015-0665-0168 | Evaluation for Alternatives to
Hexavalent Chromium Sealants -
DCN MF00069 | Polysulfide sealants containing soluble hexavalent Cr compounds are currently being used in a variety of applications in aerospace/ defense manufacturing. The applications mostly involve the filling of gaps and recesses to prevent water intrusion and collection in an attempt to prevent corrosion of the base metal. These sealants are most commonly used on aluminum assemblies and are often over coated with a variety of common coating systems with hexavalent chromium-based corrosion inhibitors. | Publication;
Copyrighted
Materials | Morose, G. | 05/01/2013 | Morose, G. 2013. Evaluation for Alternatives to Hexavalent Chromium Sealants. Metal Finishing. 111 (3): 32 – 37, 63. (May/June). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00069 | June 27, 2016 Page 64 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|---|---|--|----------------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0169 | A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis - DCN MF00070 | The potential of these seaweeds to bio-reduce and detoxify elevated Cr(VI) concentrations over relatively short time periods has been demonstrated. Cr(VI) binding altered the quantities of carboxyl and alcohol groups in biomass polysaccharides, thus indicating reduction of Cr(VI) to Cr(III). This work, coupled with existing capacity data points towards the viability of these environmentally friendly biosorbents for use in packed columns in many industries including electroplating and tanning. | Publication;
Copyrighted
Materials | Murphy, V., et al | 05/15/2009 | Murphy, V., 2009. A novel study of hexavalent chromium using SEM-EDX and XPS analysis. Chemical Engineering Journal. 148(2-3): 425-433. (May). | Metal Finishing,
Part 433 | 9 | No | Yes | MF00070 | | 10.31 | EPA-HQ-OW-2015-0665-0170 | Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium - DCN MF00071 | Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. | Publication;
Copyrighted
Materials | Naik, U.C., et
al. | 07/04/2012 | Naik,
U.C.,2012.Isolatio
n and
characterization
of Bacillus
cereus
IST105of
hexavalent
chromium. Envir
Science and
Pollution
Research.19(7):3
005-14 | Metal Finishing,
Part 433 | 11 | No | Yes | MF00071 | | 10.31 | EPA-HQ-OW-2015-0665-0171 | Removal of chromium(VI) from water and wastewater usingsurfactant modified coconut coir pith as a biosorbent - DCN MF00072 | Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationicsurfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent. | Publication;
Copyrighted
Materials | Namasivayam,
C., et al. | 05/01/2008 | Namasivayam,
C.,2008.Removal
of Cr(VI) from
water and ww
using surfactant
modified coconut
coir pith as a
biosorbent.
Bioresource
Tech.99(7):2218-
25. | Metal Finishing,
Part 433 | 8 | No | Yes | MF00072 | June 27, 2016 Page 65 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN | |-------------------|--------------------------|--|--|------------------------------------|-----------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0172 | NANOMYTE® PT-60 Chromate-
Free Self-Healing Pretreatment for
Magnesium - DCN MF00073 | Magnesium is of increasing interest to industries such as automotive, construction, medical devices and electronics, as well as the military. The light weight and high strength of magnesium are attractive features, but Mg alloys also have the tendency to rapidly corrode. Traditional coatings made with chromate (hexavalent chromium) provide sufficient corrosion resistance, but are no longer acceptable due to their adverse environmental, health, and safety affects. | Fact/Data Shee | et NEI
Corporation | 01/01/2014 | NEI Corporation.
2014.
Nanomyte® PT-
60, Chromate-
Free Self-
Healing
Pretreatment for
Magnesium. | Metal Finishing,
Part 433 | 1 | No | No | MF00073 | | 10.31 | EPA-HQ-OW-2015-0665-0173 | Non-Chromate Aluminum Pretreatments. ESTCP Project WP- 200025 - DCN MF00074 | Aluminum finishing in Department of Defense applications utilizes chromate chemistries for anodizing, anodic sealing, and pretreatment. However, chromate conversion coatings contain hexavalent chromium, a known carcinogen. National and international regulations are restricting the use of this material. This report presents the results of laboratory and field tests to demonstrate and validate several non-chromate aluminum pretreatments. | Publication
Other
Government | Nickerson, W., et al. | 03/28/2012 | Nickerson, W.,
and Matzdorf, C.
2012. Non-
Chromate
Aluminum
Pretreatments.
ESTCP Project
WP-200025.
(March 28). | Metal Finishing,
Part 433 | 276 | No | No | MF00074 | | 10.31 | EPA-HQ-OW-2015-0665-0174 | Corrosion Finishing/Coating
Systems for DoD Metallic
Substrates Based on Non-
Chromate Inhibitors and UV
Curable, Zero Valent Materials.
SERDP Project WP-1519 - DCN
MF00075 | Corrosion resistant coatings containing non-
chromate inhibitors and no volatile organic
compounds were developed and evaluated for DoD
applications. Two layer multifunctional UV coating
properties such as flexibility and
fluid resistance
were improved throughout the project and
demonstrated the potential to meet aerospace
requirements. Results indicate that the technology
holds promise for replacing existing environmentally
hazardous corrosion coatings for military
applications. | Publication
Other
Government | O'Keefe, M. | 08/01/2010 | O'Keefe, M. 2010. Corrosion Finishing Systems for DoD Metallic Substrates Based on Non- Chromate Inhibitors and UV Curable, Zero Valent Materials. | Metal Finishing,
Part 433 | 78 | No | No | MF00075 | June 27, 2016 Page 66 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|---|--|----------------|----------------|---|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0175 | The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology - DCN MF00076 | In this study Response Surface Methodology (RSM) was employed to investigate the effects of different operating conditions on the removal of hexavalent chromium (Cr(VI)) by the electrocoagulation with stainless steel electrodes. Central Composite Design (CCD) was used for the optimization of the electrocoagulation process and to evaluate the effects and interactions of process variables: applied electric current, electrolyte concentration and application time on the removal of Cr(VI). | Publication;
Copyrighted
Materials | Olmez, T. | 03/15/2009 | Olmez, T. 2009. The optimization of Cr(VI) reductionelectro coagulation using response surface methodology. J of Haz Materials. 162(2-3): 1371-1378. | Metal Finishing,
Part 433 | 8 | No | Yes | MF00076 | | 10.31 | EPA-HQ-OW-2015-0665-0176 | High-Performance Characteristics
of Lead- and Cadmium-Free
Electroless Nickel - DCN MF00077 | Electroless nickel stands out as a coating that has evolved through many generations. Within the last 25 years, the costing demand has created an increase in both opportunities and challenges for suppliers continuously improving product corrosion resistance, brightness, hardness, adhesion, plating rate, bath stability, and bath life.Based on this continued trend, the need for an electroless nickel that is lead- and cadmium-free with equivalent or better properties and bath stability is necessary. | Publication;
Copyrighted
Materials | Orduz, M. | 01/01/2008 | Orduz, M. 2008.
High-
Performance
Characteristics
of Lead- and
Cadmium-Free
Electroless
Nickel. Metal
Finishing. 106
(1): 22-26.
(January). | Metal Finishing,
Part 433 | 5 | No | Yes | MF00077 | | 10.31 | EPA-HQ-OW-2015-0665-0177 | Removal of Hexavalent Chromium-
Contaminated Waterand
Wastewater: A Review - DCN
MF00078 | Cr(VI) is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. This article includes a survey of removal techniques for Cr(VI)-contaminated aqueous solutions. The primary objective of this article is to provide recent information about the most widely used techniques for Cr(VI) removal. | Copyrighted
Materials | Owlad, M.,et a | I. 06/01/2009 | Owlad,
M.,etal.2009.
Removal of
Hexavalent
Chromium-
Contaminated
Water and
Wastewater: A
Review. Water,
Air, & Soil
Pollution. 200(1):
59-77. (June). | Metal Finishing,
Part 433 | 20 | No | Yes | MF00078 | June 27, 2016 Page 67 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|--|--|------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0178 | Metal Recovery from Electroplating
Wastewater Using AcidophilicIron
Oxidizing Bacteria: Pilot-Scale
Feasibility Test - DCN MF00079 | The iron could be separated from the mixture of metal ions in ww by using biological oxidation of ferrous ion into ferric ion followed by stepwise CP with hydroxide ion. To improve the biological oxidation, an immobilized bioreactor using polyurethane foam as support media was developed. The bioreactor system showed a very good performance and worked stably over a long period of time. | Publication;
Copyrighted
Materials | Park, D., et al. | 02/01/2005 | Park, D., 2005. Metal Recovery from Electroplating WW Using Acidophilic Iron Oxidizing Bacteria: Ind & Eng Chem Research. 44(6): 1854-1859. | Metal Finishing,
Part 433 | 6 | No | Yes | MF00079 | | 10.31 | EPA-HQ-OW-2015-0665-0179 | Biosorption Process for Treatment
of Electroplating Wastewater
Containing Cr(VI): Laboratory-Scale
Feasibility Test - DCN MF00080 | Brown seaweed Ecklonia biomass was used for the treatment of electroplating wastewater that contains chromium and zinc ions. In conclusion, the abundant and inexpensive Ecklonia biomass can be used in the two-stage biosorption process for the treatment of electroplating wastewater that contains Cr(VI) and other metal ions, because it shows the promise of being environmentally friendlier than any existing chemical treatment process. | Publication;
Copyrighted
Materials | Park, D., et al. | 06/01/2006 | Park, D., 2006.
Biosorption
Process for
Treatment for
Electroplating
Wastewater
Containing
Cr(VI): Ind &
Eng Chem
Research.
45(14): 5059-65. | Metal Finishing,
Part 433 | 7 | No | Yes | MF00080 | | 10.31 | EPA-HQ-OW-2015-0665-0180 | UV Curable Non-Chrome Primer
and Advanced Topcoat System -
DCN MF00081 | The objective of this project is to develop sprayable ultraviolet (UV)-curable, corrosion-inhibiting primers and high-performance topcoats that will provide superior protection to aluminum substrates even when nonchromated surface pretreatments are employed. Further, a one-coatformulation will be developed in an attempt to combine the corrosion-inhibiting properties of the primer and superior durability of the topcoat into a single coating. | Publication
Other
Government | Phely-Bobin, T. | 08/01/2010 | Phely-Bobin, T. 2010. U.S. DOE Strategic Environmental Research and Development Program. UV Curable Non-Chrome Primer and Advanced Topcoat System. | Metal Finishing,
Part 433 | 7 | No | No | MF00081 | June 27, 2016 Page 68 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|-------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0181 | Alternative conversion coatings to chromate for the protectionof magnesium alloys - DCN MF00082 | Chromium Conversion Coatings (CCCs) are widely used for the protection of magnesium alloys against the corrosion but this approach is limited due to the toxicity of hexavalent chromium. This review details the deposition and protection mechanisms of CCC
technology and other promising processes. The development of new non-toxic conversion coatings remains a priority. | Publication;
Copyrighted
Materials | Pommiers, S.,
et al. | 07/01/2014 | Pommiers, S.,
2014. Alternative
Conversion
Coatings to
Chromate for the
Protection of
Magnesium
Alloys. Corrosion
Science. 84: 135-
146. (July). | Metal Finishing,
Part 433 | 12 | No | Yes | MF00082 | | 10.31 | EPA-HQ-OW-2015-0665-0182 | Optimized Deposition Parameters & Coating Properties of Cobalt Phosphorus Alloy Electroplating for Technology Insertion Risk Reduction - DCN MF00083 | Optimized plating deposition parameters were obtained using a Design of Experiment (DOE) approach. These parameters were validated through supplemental testing and found to be non-embrittling with improved fatigue and neutral salt fog corrosion performance as compared to hard chromium electroplate. The nCoP deposit did exhibit reduced hardness (560 VHN) and reduced taber wear abrasion performance as compared to hard chromium electroplate. | | Prado , R., et
al. | 10/01/2010 | Prado, R. 2010. Optimized Deposition Parameters & Coating Properties of Cobalt Phosphorus Alloy Electroplating. (October). | Metal Finishing,
Part 433 | 50 | No | No | MF00083 | | 10.31 | EPA-HQ-OW-2015-0665-0183 | The transition to a clean, dry, and energy efficient polishing process: an innovative upgrade of abrasive flow machining for simultaneous generation of micro-geometry and polishing in the tooling industry - DCN MF00084 | On account of the current different requirements in the field of finishing/polishing, e.g., reducing the finishing time, process control, ensuring a clean process, and energy efficiency, hand polishing needs tobe replaced with a superior process. As a contribution, a novel clean andenergy efficient AFMmm is presented, capable of synergistically shaping and polishing the geometry of the final product on a micro level and under dry conditions. | Publication;
Copyrighted
Materials | Pusavec, F., et al. | 08/01/2010 | Pusavec, F.,
2014. The
Transition to a
Clean, Dry, and
Energy Efficient
Polishing
Process:
AnIndustry.
Journal of
Cleaner
Production. 76:
180-189. | Metal Finishing,
Part 433 | 10 | No | Yes | MF00084 | June 27, 2016 Page 69 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTED | DCN | |-------------------|--------------------------|---|---|--|--------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0184 | A feasibility study on the treatment
and recycling of a wastewater from
metal plating - DCN MF00085 | A program of researchwas initiated to study the treatment of spent rinsewater from metal plating using reverse osmosis (RO) to meet the requirements for reuse as an alkaline rinsewater. categories of spent rinses were treated in the laboratory using flat sheet membranes from different manufacturers. A mechanism for the solvent to attack the composite RO membranes was proposed. The results also showed that the feed pH had a significant effect on the rejection of nickel. | Publication;
Copyrighted
Materials | Qin, J.J., et al. | 10/01/2002 | Qin, J.J., 2002. A
feasibility study
on the treatment
and recycling of
a wastewater
from metal
plating. J of
Memb Science.
208(1-2): 213-
221. (Oct) | Metal Finishing,
Part 433 | 9 | No | Yes | MF00085 | | 10.31 | EPA-HQ-OW-2015-0665-0185 | Heavy metal removal from industrial effluents by sorption on cross-linked starch: Chemical study and impact on water toxicity - DCN MF00086 | Batch sorption experiments using a starch-based sorbent were carried out for the removal of heavy metals present in industrial water discharges. The influence of contact time, mass of sorbent and pollutant load was investigated. Pollutant removal was dependent on the mass of sorbent and contact time, but independent of the contaminant load. The results show that the sorption using a starch-based sorbent as non-conventional material, is a viable alternative for treating industrial wastewaters. | Publication;
Copyrighted
Materials | Sancey, B., et al. | 03/01/2011 | Sancey, B.,
2011. Heavy
metal removal
from industrial
effluents by
sorption on cross-
linked starch:
Journal of Env
Mgmt. 92(3): 765-
772. (March). | Metal Finishing,
Part 433 | 8 | No | Yes | MF00086 | | 10.31 | EPA-HQ-OW-2015-0665-0186 | Removal of chromium from industrial waste by using eucalyptus bark - DCN MF00087 | Several low cost biomaterials such as baggase, charred rice husk, activated charcoal and eucalyptus bark (EB) were tested forremoval of chromium. All the experiments were carried out in batch process with laboratory prepared samples and wastewaterobtained from metal finishing section of auto ancillary unit. The adsorbent, which had highest chromium(VI) removal was EB. The results indicate that eucalyptus bark can be used for the removal of chromium. | Publication;
Copyrighted
Materials | Sarin, V., et al. | 01/01/2006 | Sarin, V., and
Pant, K.K. 2006.
Removal of
chromium from
industrial waste
by using
eucalyptus bark.
Bioresource
Technology.
97(1):15-20.
(January). | Metal Finishing,
Part 433 | 6 | No | Yes | MF00087 | June 27, 2016 Page 70 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|---|--|----------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0187 | Validation of HVOF WC/Co Thermal
Spray Coatings as a Replacement
for Hard Chrome Plating on Aircraft
Landing Gear - DCN MF00088 | The replacement of hard chrome plating in aircraft manufacturing activities and maintenance depots is a high priority for the U.S. DoD and the Canadian DoND. Hard chrome plating is a technique that has been in commercial production for over 50 years and is a critical process that is used both for applying hard coatings to a variety of aircraft components in manufacturing operations and for general rebuild of worn or corroded components that have been removed from aircraft during overhaul. | Publication
Other
Government | Sartwell, B., et al. | 03/31/2004 | Sartwell, B.
2004. Validation
of HVOF WC/Co
Thermal Spray
Coatings as a
Replacement for
Hard Chrome
Plating on
Aircraft Landing
Gear. | Metal Finishing,
Part 433 | 281 | No | No | MF00088 | | 10.31 | EPA-HQ-OW-2015-0665-0188 | PPG Industries Inc. Environmentally
Friendly Fastener Coating
Demonstartion - DCN MF00089 | Traditionally, steel fasteners have been used with cadmium electroplated coatings followed by a hexavalent chrome rinse. The objective of this project is to demonstrate for the Department of Defense (DoD) high performance coating technologies which eliminate the need for cadmium or hexavalent chromate coatings on high-strength fasteners. This will provide high-strength, corrosion resistant fasteners for use on legacy weapon systems and new weapon platforms. | Publication
Other
Government | Scott, M. | 01/01/2013 | Scott, M. 2013.
PPG Industries
Inc.
Environmentally
Friendly
Fastener Coating
Demonstartion.
ESTCP Project
WP-201315.
(January). | Metal Finishing,
Part 433 | 2 | No | No | MF00089 | | 10.31 | EPA-HQ-OW-2015-0665-0189 | The treatment of zinc-cyanide electroplating rinse water using an electrocoagulation process - DCN MF00090 | This paper investigates the treatment of zinc-cyanide electroplating rinse water using an electrocoagulation process (ECP). The optimum operating conditions were found to be 30 A/m2 and 40 min, for the Fe electrode at the original pH (9.5) of the rinse water. Considering efficiency and economy, the MP-P connection mode was determined as the optimum connection mode. | Publication;
Copyrighted
Materials | Senturk, E. |
01/01/2013 | Senturk, E. 2013. The treatment of Zn-CN electroplating rinse water using an electrocoagulation process. Water Science and Tech. 68(10): 2220-27. | Metal Finishing,
Part 433 | 9 | No | Yes | MF00090 | June 27, 2016 Page 71 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|--|-----------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0190 | Air Force Materiel Command.
Cadmium-Free Alternatives for
Brush Plating Repair Operations -
DCN MF00091 | This project focuses on elimination of toxic and carcinogenic cadmium (Cd) material for brush plating repair operations, and reduction of solid waste associated with adsorbents used to contain solution leakage attributed with traditional brush plating repair processes. | Publication
Other
Government | Slife, R. | 01/01/2014 | Slife, R. 2014. Air Force Materiel Command. Cadmium-Free Alternatives for Brush Plating Repair Operations. ESTCP Project WP-201412. (January). | Metal Finishing,
Part 433 | 2 | No | No | MF00091 | | 10.31 | EPA-HQ-OW-2015-0665-0191 | Metal Finishing with Ionic Liquids:
Scale-up and Pilot Plants from
IONMET Consortium - DCN
MF00092 | The authors describe the successful scale-up of five ionic liquid processes by the IONMET consortium. MF demonstrator technologies have been developed based on ionic liquid systems for the electropolishing of stainless steels and other alloys, galvanic immersion (dip coating) deposition of silver for finishing of printed circuit boards as well as electrolytic deposition of hard chrome coatings, aluminium coatings and barrel plating of Zn–Sn alloys. | Publication;
Copyrighted
Materials | Smith, E.L., et
al. | 10/01/2010 | Smith, E.L.,
2010. MF with
Ionic Liquids:
Scale-up and
Pilot Plants from
IONMET
Consortium.
Transactions of
the Inst. of MF.
88(6): 285-293. | Metal Finishing,
Part 433 | 10 | No | Yes | MF00092 | | 10.31 | EPA-HQ-OW-2015-0665-0192 | Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater - DCN MF00093 | Two pulp and paper industrial wastes, lime mud (LM) and recovery boiler ash (RB), have low moisture contents, low heavy metal contaminations and contain various carbonate compounds which contributeto a high pH. Treatment with LM gives a higher sludge volume than with RB. However, the leachability of heavy metals from LM is lower. Leachability of heavy metals in the sediment for all selected treatment conditions is within government standards. | Publication;
Copyrighted
Materials | Sthiannopkao,
S., et al. | 08/01/2009 | Sthiannopkao,
S., 2009.
Utilization of pulp
and paper
industrial wastes
to remove heavy
metals from MF
wastewater. J of
Env Mgmt.
90(11): 3283-
3289. | Metal Finishing,
Part 433 | 7 | No | Yes | MF00093 | June 27, 2016 Page 72 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|---|--|------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0193 | Evaluation of pre-treatment processes for HRS (hot rolled steel) in powder coating - DCN MF00094 | Hot rolled steel (HRS) is used extensively in the automotive, agricultural and appliance industries. The corrosive response of HRS was investigated after it had been exposed to various surface treatments, prior to powder coating. Good correlations were recorded showing that zincphosphate conversion coating gave the best performance, and zirconium-based nano-structured conversion coating, was superior to that of ironphosphate conversion coatings on HRS. | Publication;
Copyrighted
Materials | Tepe, B., et al. | 04/01/2008 | Tepe, B. 2008.
Evaluation of Pre-
Treatment
Processes for
Hot Rolled Steel
in Powder
Coating.
Progress in
Organic
Coatings. 62(2):
134-144. (April). | Metal Finishing,
Part 433 | 11 | No | Yes | MF00094 | | 10.31 | EPA-HQ-OW-2015-0665-0194 | One Step, Zero Discharge: Bri-Mar
Manufacturing goes 'greener' with
CPR's phosphate treatment
system - DCN MF00095 | The maintenance manager at Chambersburg, Pa. based Bri-Mar Manufacturing was faced with a daunting challenge: continue to efficiently and effectively clean and pretreat the high volume of large hydraulic dump trailers produced at the company's plant, while striving for a much more environmentally friendly parts washing process. The solution came in the form of the CPR System, a modular phosphate treatment system that provides the metal cleaning power of a 5-stage washer in one step. | Publication;
Copyrighted
Materials | Tucker, R. | 07/01/2013 | Tucker, R. 2013.
One Step, Zero
Discharge. Metal
Finishing.
111(4): 16-17.
(July/August). | Metal Finishing,
Part 433 | 2 | No | Yes | MF00095 | | 10.31 | EPA-HQ-OW-2015-0665-0301 | | Information on the chemicals, significant treatment studies, efficient control processes, and instrumentation for industrial wastewater treatment. | Publication;
Copyrighted
Materials | WEF | 01/01/2008 | WEF. 2008.
Industrial
Wastewater
Management,
Treatment, and
Disposal, Manual
of Practice No.
FD-3 (Third ed.).
Alexandria, VA:
McGraw-Hill. | Metal Finishing,
Part 433 | 15 | No | Yes | MF00096 | June 27, 2016 Page 73 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | | |-------------------|--------------------------|--|---|--|------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0195 | Chromium-free Corrosion Solutions:
Silica-based Electrolytic Method
Offers Viable Alternative to Both
Hex- and Trivalent-Chromate
Passivates - DCN MF00097 | Few would disagree with the notion that hexavalent chromate passivates do an exceptional job in protecting against corrosion in most circumstances. Not only does hexavalent chromium perform favorably, but it also offers a robust manufacturing process that has been proven in shops around the world for decades. | Publication;
Copyrighted
Materials | Winn, D., et al. | 06/01/2008 | Winn, D., 2008.
Cr-free
Corrosion
Solutions: Silica-
based
Electrolytic
MethodChroma
te Passivates.
Metal Finishing.
106 (6): 70-74.
(June). | Metal Finishing,
Part 433 | 5 | No | Yes | MF00097 | | 10.31 | EPA-HQ-OW-2015-0665-0196 | Removal of Cu and Pb from
electroplating wastewater using
tartaric acid modified rice husk -
DCN MF00098 | The potential of using tartaric acid modified rice husk (TARH) as a sorbent for the removal of Cu and Pb from semiconductor electroplating wastewater was investigated. Application of Langmuir isotherm indicated that there was no difference in the sorption capacity of TARH for Cu and Pb in synthetic solution and wastewater. Cu and Pb could be
recovered almost quantitatively by eluting the column with 0.1 M HCl and the column could be used repeatedly for at least 5 cycles. | Materials | Wong, K. K.,
et al. | 12/01/2003 | Wong, K. K.,
2003. Removal
of Cu and Pb
from
electroplating ww
using tartaric
acid modified
rice husk.
Process
Biochemistry.39(
4):437-45.
(December). | Metal Finishing,
Part 433 | 9 | No | Yes | MF00098 | | 10.31 | EPA-HQ-OW-2015-0665-0197 | Managing the Transition to
Hexavalent Chromium Free Anti-
Corrosion Coatings - DCN MF00099 | Suppliers are ideally placed to establish best practice techniques atthe applicator, and can work in partnership to achieve lowest operatingcost with maximum performance. Developments in trivalent passivates forblue and iridescent colour films will be described, followed by discussion of the use of an audit approval programme to manage the transition to hexavalent chromium free products. | Publication;
Copyrighted
Materials | Wynn, P. | 11/01/2006 | Wynn, P. 2006. Managing the Transition to Hex Chromium Free Anti-Corrosion Coatings. Transactions of the Institute of MF. 84 (6): 280-85. (November). | Metal Finishing,
Part 433 | 7 | No | Yes | MF00099 | June 27, 2016 Page 74 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|--|--|------------------|----------------|--|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0198 | Technology Integration for
Sustainable Manufacturing: An
Applied Study on Integrated
Profitable Pollution Prevention in
Surface Finishing Systems - DCN
MF00100 | Technology improvement and innovation are of utmost importance in achieving greenness while ensuring economic incentives in manufacturing. This paper explores opportunities for an effective integration of P3-oriented technologies in a systematic way. A successful application of an IP3 technology in an electroplating process, a main type of surface finishing system, demonstrates the methodological efficacy. | Publication;
Copyrighted
Materials | Xiao, J., et al. | 08/09/2012 | Xiao, J., 2012. Technology Integration for Sustainable Manufacturing: Industrial & Engineering Chemistry Research. 51 (35): 11434-44. (August 9) | Metal Finishing,
Part 433 | 11 | No | Yes | MF00100 | | 10.31 | EPA-HQ-OW-2015-0665-0199 | Zerolite Coating System for
Corrosion Control to Eliminate
Hexavalent Chromium from DoD
Applications - DCN MF00101 | Corrosion costs associated with corrosion prevention and correction of corrosion-generated failures account for more than \$1 billion a year. A majority of these costs is associated with compliance with new environmental regulations regarding worker safety and hazardous waste disposal. This increase is responsible for a significant portion of noncompliance with new environmental regulations, systems downtime, and failure of mission readiness. | Publication
Other
Government | Yan, Y. | 08/01/2009 | Yan, Y. 2009. Zerolite Coating System for Corrosion Control to Eliminate Hexavalent Chromium from DoD Applications. SERDP Project WP-1342. (August). | Metal Finishing,
Part 433 | 88 | No | No | MF00101 | | 10.31 | EPA-HQ-OW-2015-0665-0298 | NASF Preliminary Response to
EPA's Metal Finishing Study
Questions – November 2015 - DCN
MF00102 | Questions developed by EPA for the National Association of Surface Finishers (NASF) about the metal finishing preliminary study. NASF provide their responses to these questions in list form in this document. | Report | NASF | 11/01/2015 | NASF. 2015. Preliminary Response to EPA's Metal Finishing Study Questions. (November). | Metal Finishing,
Part 433 | 13 | No | No | MF00102 | June 27, 2016 Page 75 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|----------------------|----------------------------|----------------|--|------------------------------|-------------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0297 | Memorandum to Metal Finishing
Category Review Record: Meeting
Notes 11/23/2015 - DCN MF00103 | EPA drafted meeting notes from the meeting with the the National Association of Surface Finishers (NASF) on November 23, 2015. Provides a summary of the items discussed during the meeting. | Meeting
Materials | Flanders,
Phillip, EPA. | 12/21/2015 | U.S. EPA. 2015.
Meeting Notes
with the National
Assocoation of
Surface
Finishers (NASF)
on November 23,
2015. | Metal Finishing,
Part 433 | 1 | No | No | MF00103 | | 10.31 | EPA-HQ-OW-2015-0665-0277 | Memorandum to Metal Finishing
Category Review Record: Meeting
Notes 08/19/2015 - DCN MF00104 | EPA drafted meeting notes from the meeting with the the National Association of Surface Finishers (NASF) on August 19, 2015. Provides a summary of the items discussed during the meeting. | Meeting
Materials | Flanders,
Phillip, EPA. | 01/05/2016 | U.S. EPA 2015. Meeting Notes with the National Association of Surface Finishers (NASF) on August 19, 2015. (August). | Metal Finishing,
Part 433 | 2 | No | No | MF00104 | | 10.31 | EPA-HQ-OW-2015-0665-0278 | Memorandum to Metal Finishing
Category Review Record: AWCA
Meeting Notes 11/09/2015 - DCN
MF00105 | EPA drafted meeting notes from the meeting with the the Association of Clean Water Administrators (ACWA) on November 9, 2015. Provides a summary of the items discussed during the meeting. | Meeting
Materials | Flanders,
Phillip, EPA. | 01/05/2016 | U.S. EPA. 2015. Meeting notes with the Association of Clean Water Administrators (ACWA) on November 9, 2015. (November). | Metal Finishing,
Part 433 | 3 | No | No | MF00105 | June 27, 2016 Page 76 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|--|----------------------|---------------------------|----------------|---|------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0272 | Memorandum to James J. Dragna,
Bingham McCutchen LLP from
Alexis Strauss, EPA Water Division.
RE: "Chemical Etching" Metal
Finishing Option - DCN MF00106 | Response to Air Products Electronic Chemicals facility in Carlsbad, CA about industrial pretreatment water pollution requirements. The memo describes EPA's stance on acid washes and chemical etching pertaining to the Metal Finishing ELGs. | Memorandum | Alexis Strauss,
US EPA | 06/04/2004 | U.S. EPA. 2004. Memorandum to J. Dranga, Bingham McCutchen LLP from A. Strauss, EPA. RE: "Chemical Etching" Metal Finishing Option. (June). | Metal Finishing,
Part 433 | 8 | No | No | MF00106 | | 10.31 | EPA-HQ-OW-2015-0665-0286 | Guidance Manual for Implementing
Total Toxic Organics (TTO)
Pretreatment Standards - DCN
MF00107 | Categorical Pretreatment Standards have been established for different categories of industries. Six of the industrial categories have a pretreatment standard established for total toxic organics (TTO). | Publication
USEPA | U.S. EPA | 09/01/1985 | U.S. EPA. 1985.
Guidance
Manual for
Implementing
Total Toxic
Organics (TTO)
Pretreatment
Standards.
Washington,
D.C.
(September). | Metal Finishing,
Part 433 | 86 | No | No | MF00107 | | 10.31 | EPA-HQ-OW-2015-0665-0287 | Capsule Report: Managing Cyanide in Metal Finishing - DCN MF00108 | The purpose of the document is to provide guidance to surface finishing manufacturers, metal fishing decision makers and regulators on management practices and control technologies for managing cyanide in the workplace. | Publication
USEPA | U.S. EPA | 12/01/2000 |
U.S. EPA. 2000.
Capsule Report:
Managing
Cyanide in Metal
Finishing.
Washington,
D.C. (December). | Metal Finishing,
Part 433 | 36 | No | No | MF00108 | June 27, 2016 Page 77 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|--|----------------------|-----------------------------------|----------------|--|----------------------------------|------|-----|-------------------|---------| | 10.31 | EPA-HQ-OW-2015-0665-0288 | 5.6 Phosphorous. Water: Monitoring
& Assessment - DCN MF00109 | Summary of phosphorus monitoring and assessment. | Publication
USEPA | U.S. EPA | 03/06/2012 | U.S. EPA. 2012.
5.6
Phosphorous.
Water:
Monitoring &
Assessment. | Metal Finishing,
Part 433 | 5 | No | No | MF00109 | | 10.31 | EPA-HQ-OW-2015-0665-0289 | The USGS Water Science School:
Water Questions & Answers, What
Causes Fish Kills? - DCN MF00110 | Summary of information on what can cause a fish kill. | Report | USGS | 08/07/2015 | USGS. 2015.
The USGS
Water Science
School: Water
Questions &
Answers, What
Causes Fish
Kills? | Metal Finishing,
Part 433 | 1 | No | No | MF00110 | | 10.34 | EPA-HQ-OW-2015-0665-0282 | Preliminary Category Review –
Facility Data Review for Point
Source Category 436 – Mineral
Mining and Processing - DCN 08162 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 436 – Mineral Mining and Processing. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 436 – Mineral Mining. (Sept). | Mineral Mining
and Processing | 0 | No | No | 08162 | June 27, 2016 Page 78 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|---|-------------------------|---------------|----------------|--|----------------------------------|------|-----|-------------------|-------| | 10.34 | EPA-HQ-OW-2015-0665-0037 | Florida Department of
Environmental Protection (FL DEP).
National Pollutant Discharge
Elimination System Facility Permit
for NPDES FL0000655 – PCS
Phosphates White Springs, White
Springs, FL - DCN 08163 | NPDES Facility Permit for PCS Phosphates White Springs, White Springs, FL - FL0000655. | Permit,
Registration | FL DEP | 03/18/2013 | FL DEP. 2013.
Florida
Department of
Environmental
Protection.
NPDES Permit:
PCS Phosphates
White Springs,
White Springs,
FL (FL0000655).
(March 18). | Mineral Mining
and Processing | 138 | No | No | 08163 | | 10.34 | EPA-HQ-OW-2015-0665-0038 | Telephone and Email
Communication with Tom
Kallemeyn, Florida Department of
Environmental Protection, and Kara
Edquist, Eastern Research Group,
Inc., Re: 2013 DMR Fluoride
Discharges for PCS Phosphates
White Springs - DCN 08164 | Telephone and email conversation between Tom Kallemeyn, Florida Department of Environmental Protection, and Kara Edquist, Eastern Research Group, Inc., about 2013 DMR Fluoride Discharges for PCS Phosphates White Springs. | Meeting
Materials | FL DEP | 05/06/2015 | FL DEP. 2015. Correspondence between Tom Kallemeyn, FL DEP, and Kara Edquist, ERG. Re: 2013 DMR Fluoride Discharges. (May 6). | Mineral Mining
and Processing | 3 | No | No | 08164 | | 10.34 | EPA-HQ-OW-2015-0665-0039 | Telephone and Email
Communication with Billey Goble,
SES Services, and Diane Perkins,
Cirrus Associates, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Aluminum,
Chloride Discharges - DCN 08165 | Telephone and email conversation between Billey Goble, SES Services, and Diane Perkins, Cirrus Associates, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Aluminum and Chloride Discharges at SES Services (previously Lambert Dock). | Meeting
Materials | Goble, Billey | 12/18/2014 | Goble, B. 2014. Correspondence between B. Goble, SES Services, D. Perkins, Cirrus Associates, and K. Bartell, ERG. Re: 2013 DMR Discharges. (Dec 18). | Mineral Mining
and Processing | 5 | No | No | 08165 | June 27, 2016 Page 79 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|--|-------------------------|---------------------|----------------|---|--|-------------|-----|-------------------|-------| | 10.34 | EPA-HQ-OW-2015-0665-0040 | Texas Commission on
Environmental Quality (TCEQ).
2009 National Pollutant Discharge
Elimination System Facility Permit
Statement of Basis/Technical
Summary for NPDES TX0112038 –
Cooper Natural Resources, Cedar
Lake Plant, Seagraves, TX - DCN
08166 | 2009 NPDES Facility Permit Statement of
Basis/Technical Summary for Cooper Natural
Resources, Cedar Lake Plant, Seagraves, TX -
TX0112038. | Permit,
Registration | TCEQ | 12/19/2009 | TCEQ. 2009.
Texas
Commission on
Environmental
Quality. NPDES
Permit
Statement of
Basis: Cooper
Natural Res,
Seagraves, TX
(TX0112038).
(Dec 19). | Mineral Mining
and Processing | 8 | No | No | 08166 | | 10.34 | EPA-HQ-OW-2015-0665-0041 | Texas Commission on
Environmental Quality (TCEQ).
2015 National Pollutant Discharge
Elimination System Facility Permit
Statement of Basis/Technical
Summary for NPDES ID
TX0112038 – Cooper Natural
Resources, Cedar Lake Plant,
Seagraves, TX - DCN 08167 | 2015 NPDES Facility Permit Statement of
Basis/Technical Summary for Cooper Natural
Resources, Cedar Lake Plant, Seagraves, TX -
TX0112038. | Permit,
Registration | TCEQ | 03/31/2015 | TCEQ. 2015. Texas Commission on Environmental Quality. NPDES Permit Statement of Basis: Cooper Natural Res, Seagraves, TX (TX0112038). (March 31). | Mineral Mining
and Processing | 11 | No | No | 08167 | | 10.36 | EPA-HQ-OW-2015-0665-0042 | Telephone and Email
Communication with William
Crocker, Nyrstar, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Fluoride
Discharges - DCN 08168 | Telephone and email conversation between William Crocker, Nyrstar, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Fluoride Discharges. | Meeting
Materials | Crocker,
William | 12/11/2014 | Crocker, William.
2014.
Correspondence
between William
Crocker, Nyrstar,
and Kim Bartell,
ERG. Re: 2013
DMR Fluoride
Discharges. (Dec
11). | Nonferrous
Metals Forming
and Metal
Powders | 3 | No | No | 08168 | June 27, 2016 Page 80 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|---|---|----------------------|-----------------------------------|----------------|---|--|------|-----|------------------|-------| | 10.36 | EPA-HQ-OW-2015-0665-0293 | Preliminary Category Review –
Facility Data Review for Point
Source Category 421 – Nonferrous
Metals
Manufacturing - DCN 08169 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 421 – Nonferrous Metals Manufacturing. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 421 – NFMM. (Sept). | Nonferrous
Metals Forming
and Metal
Powders | 0 | No | No | 08169 | | 10.36 | EPA-HQ-OW-2015-0665-0043 | Horsehead Corporation End
Operations at Monaca, PA Facility -
DCN 08170 | Facility profile for Horsehead Corporation End
Operations at Monaca, PA. | Fact/Data
Sheet | Horsehead
Corporation | 05/05/2014 | Horsehead
Corporation.
2014. Horsehead
Corporation End
Operations at
Monaca, PA
Facility. (May 5). | Nonferrous
Metals Forming
and Metal
Powders | 2 | No | No | 08170 | | 10.36 | EPA-HQ-OW-2015-0665-0075 | Telephone and Email
Communication with Marcia
Allocco, North Carolina Department
of Environmental and Natural
Resources and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 DMR Cyanide Discharges for
ALCOA in Badin, NC - DCN 08214 | Telephone and email conversation between Marcia Allocco, North Carolina Department of Environmental and Natural Resources and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Cyanide Discharges for ALCOA in Badin, NC. | Meeting
Materials | Allocco, Marcia | 11/14/2014 | Allocco, M. 2014.
Correspondence
between Marcia
Allocco, NC
DENR and Kim
Bartell, ERG. Re:
2013 DMR
Cyanide
Discharges for
ALCOA. (Nov
14). | Nonferrous
Metals
Manufacturing | 1 | No | No | 08214 | June 27, 2016 Page 81 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|--|-------------------------|-------------------|----------------|---|----------------------------|------|-----|-------------------|-------| | 10.37 | EPA-HQ-OW-2015-0665-0102 | Telephone and Email
Communication between VelRey
Lozano, EPA Region 8, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR Sulfide
Discharges for Maverick Spring in
Cody WY - DCN 08241 | Telephone and email conversation between VelRey
Lozano, EPA Region 8, and Kimberly Bartell,
Eastern Research Group, Inc., Re: 2013 DMR
Sulfide Discharges for Maverick Spring in Cody WY. | Meeting
Materials | Lozano,
VelRey | 12/18/2014 | Lozano, V. 2014.
Telephone
Communication
between VelRey
Lozano, EPA
Region 8, and
Kim Bartell,
ERG. Re: 2013
DMR Sulfide
Data. (Dec 18). | Oil & Gas
Extraction | 29 | No | No | 08241 | | 10.38 | EPA-HQ-OW-2015-0665-0055 | Colorado Department of Public
Health and Environment (CDPHE).
National Pollutant Discharge
Elimination System Facility Permit
and Fact Sheet for NPDES
CO0036251 - Cotter Corporation –
JD-7 and JD-9 Mines, Naturita,
CO DCN 08186 | NPDES Facility Permit and Fact Sheet for Cotter Corporation – JD-7 and JD-9 Mines, Naturita, CO - CO0036251. | Permit,
Registration | CDPHE | 06/01/2011 | CDPHE. 2011. Colorado Department of Public Health and Environment. NPDES Permit: Cotter Corporation, Naturita, CO (CO0036251). (June 1). | Ore Mining and
Dressing | 52 | No | No | 08186 | | 10.38 | EPA-HQ-OW-2015-0665-0056 | Telephone and Email
Communication with Randy Conroy,
Michigan Department of
Environmental Quality (MI DEQ),
and Kimberly Bartell, Eastern
Research Group, Inc., Re: 2013
DMR Copper Discharges for
Copper Range Co DCN 08187 | Telephone and email conversation between Randy Conroy, Michigan Department of Environmental Quality (MI DEQ), and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR copper discharges for Copper Range Co. (MI0006114). | Meeting
Materials | Conroy, Randy | 06/10/2015 | Conroy, R. 2015. Correspondence between Randy Conroy, MI DEQ, and Kim Bartell, ERG. Re: 2013 DMR Copper Discharges for Copper Range Co. (June 10). | Ore Mining and
Dressing | 3 | No | No | 08187 | June 27, 2016 Page 82 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|---|----------------------|-----------------------------------|----------------|--|----------------------------|------|-----|-------------------|-------| | 10.38 | EPA-HQ-OW-2015-0665-0294 | Preliminary Category Review –
Facility Data Review for Point
Source Category 440 – Ore Mining
and Dressing DCN 08188 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 440 – Ore Mining and Dressing. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 440 – Ore Mining and Dressing. (Sept). | Ore Mining and
Dressing | 0 | No | No | 08188 | | 10.38 | EPA-HQ-OW-2015-0665-0057 | Telephone and Email
Communication with Andrea
Hayden, Cliffs Natural Resources,
and Kimberly Bartell, Eastern
Research Group, Inc., Re: 2013
DMR Copper Discharges for
Northshore Mining - DCN 08189 | Telephone and email conversation between Andrea Hayden, Cliffs Natural Resources, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR copper discharges for Northshore Mining (MN0055301). | Meeting
Materials | Hayden,
Andrea | 06/09/2015 | Hayden, A. 2015. Correspondence between Andrea Hayden, Cliffs Natural Resources, and Kim Bartell, ERG. Re: 2013 DMR Copper Discharges. (June 9). | Ore Mining and Dressing | 4 | No | No | 08189 | | 10.38 | EPA-HQ-OW-2015-0665-0058 | Telephone and Email
Communication with Brent
Ketzenberger, Cliffs Natural
Resources, and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 DMR Selenium Discharges for
Tilden Mine, Ishpeming, MI - DCN
08190 | Telephone and email conversation between Brent Ketzenberger, Cliffs Natural Resources, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR selenium discharges for Tilden Mine, Ishpeming, MI. | Meeting
Materials | Ketzenberger,
Brent | 06/09/2015 | Ketzenberger, B. 2015. Correspondence between Brent Ketzenberger, Cliffs N.R., and Kim Bartell, ERG. Re: 2013 DMR Selenium Discharges. (June 9). | Ore Mining and
Dressing | 4 | No | No | 08190 | June 27, 2016 Page 83 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|---|-------------------------|----------------------|----------------|--|----------------------------|-------------|-----|-------------------|-------| | 10.38 | EPA-HQ-OW-2015-0665-0059 | Copper Range Company Records,
MS-080 - DCN 08191 | Michigan Technological University: Copper Range Company Records and historical collections. The Copper Range Company (1899-1977) operated copper mines in Houghton County's South Range and in Ontonagon County. The second largest mining company in the Copper Country (after Calumet & Hecla), the Copper Range Company was the only one to survive the 1960s. The Copper Range Company Records document the history of the Copper Range Company, its subsidiaries, and the companies it acquired. | Fact/Data
Sheet | Michelson,
Daniel | 06/25/2014 | Michelson, D.
2014. Michigan
Technological
University.
Copper Range
Company
Records, MS-
080. (June 25). | Ore Mining and
Dressing | 1219 | No | No | 08191 | | 10.38 |
EPA-HQ-OW-2015-0665-0060 | Michigan Department of
Environmental Quality (MI DEQ).
National Pollutant Discharge
Elimination System Facility Permit
for NPDES MI0006114 - Copper
Range Company, White Pine, MI -
DCN 08192 | NPDES Facility Permit for Copper Range Company, White Pine, MI - MI0006114. | Permit,
Registration | MI DEQ | 11/01/2010 | MI DEQ. 2010. Michigan Department of Environmental Quality. NPDES Permit: Copper Range Company, White Pine, MI (MI0006114). (November 1). | Ore Mining and Dressing | 25 | No | No | 08192 | | 10.38 | EPA-HQ-OW-2015-0665-0061 | Telephone and Email
Communication with Kelly Morgan,
Colorado Department of Public
Health & Environment, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR Radium-
226 Discharges for JD-7 and JD-9
Mines (CO0036251) - DCN 08193 | Telephone and email conversation between Kelly Morgan, Colorado Department of Public Health & Environment, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Radium-226 Discharges for JD-7 and JD-9 Mines (CO0036251). | Meeting
Materials | Morgan, Kelly | 06/09/2015 | Morgan, K. 2015. Correspondence between Kelly Morgan, CDPHE, and Kim Bartell, ERG. Re: 2013 DMR Radium- 226 Discharges for JD-7 and JD- 9. (June 9). | Ore Mining and Dressing | 3 | No | No | 08193 | June 27, 2016 Page 84 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|---|---|----------------------|-----------------------|----------------|--|----------------------------|------|-----|-------------------|-------| | 10.38 | EPA-HQ-OW-2015-0665-0062 | Telephone and Email
Communication with Tom Nannini,
Rio Tinto Kennecott, and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 TRI Water Releases
for Kennecott Utah Copper - DCN
08194 | Telephone and email conversation between Tom
Nannini, Rio Tinto Kennecott, and Eva Knoth,
Eastern Research Group, Inc., about 2013 TRI
Water Releases for Kennecott Utah Copper. | Meeting
Materials | Nannini, Tom | 12/16/2014 | Nannini, T. 2014. Correspondence between Tom Nannini, Rio Tinto, and Eva Knoth, ERG. Re: 2013 TRI Water Releases for Kennecott Utah. (Dec 16). | Ore Mining and Dressing | 2 | No | No | 08194 | | 10.38 | EPA-HQ-OW-2015-0665-0063 | Telephone and Email
Communication with Amanda
Sappington, Missouri Department of
Natural Resources (MO DNR), and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 TRI Lead
Discharges for Fletcher Mine and
Buick Mine - DCN 08195 | Telephone and email conversation between
Amanda Sappington, Missouri Department of
Natural Resources, and Kimberly Bartell, Eastern
Research Group, Inc., about 2013 TRI Lead
Discharges for Fletcher Mine and Buick Mine. | Meeting
Materials | Sappington,
Amanda | 12/23/2014 | Sappington, A. 2014. Correspondence between Amanda Sappington, MO DNR, and Kim Bartell, ERG. Re: 2013 TRI Lead Discharges. (De 23). | Ore Mining and Dressing | 2 | No | No | 08195 | | 10.38 | EPA-HQ-OW-2015-0665-0064 | Doe Run Resources Corporation
Settlement - DCN 08196 | Consent Decree for Doe Run Resources Corp. of St. Louis, Missouri. Doe Run, North America's largest lead producer, has agreed to spend approximately \$65 million to correct violations of several environmental laws at ten of its lead mining, milling and smelting facilities in southeast Missouri. | Decree | U.S. EPA | 10/08/2010 | U.S. EPA. 2010.
Doe Run
Resources
Corporation
Settlement.
(October 8). | Ore Mining and
Dressing | 174 | No | No | 08196 | June 27, 2016 Page 85 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTED | DCN | |-------------------|--------------------------|--|--|-------------------------|--------------------|----------------|---|---|------|-----|-------------------|-------| | 10.38 | EPA-HQ-OW-2015-0665-0065 | Utah Department of Environmental
Quality (UT DEQ). National
Pollutant Discharge Elimination
System Facility Permit for NPDES
UT0000051 - Kennecott Utah
Copper LLC, Magna, UT - DCN
08197 | NPDES Facility Permit for Kennecott Utah Copper LLC, Magna, UT - UT0000051. | Permit,
Registration | UT DEQ | 11/12/2009 | UT DEQ. 2009.
Utah Department
of Environmental
Quality. NPDES
Permit:
Kennecott Utah
Copper LLC,
Magna, UT
(UT0000051).
(November 12). | Ore Mining and
Dressing | 65 | No | No | 08197 | | 10.38 | EPA-HQ-OW-2015-0665-0089 | Telephone and Email
Communication with Rhonda Thiele,
Utah Department of Environmental
Quality and Kara Edquist, Eastern
Research Group, Inc. Re: 2013
DMR Discharges for United Park
City Mines Co., Park City, UT - DCN
08228 | Telephone and email conversation between Rhonda Thiele, Utah Department of Environmental Quality and Kara Edquist, Eastern Research Group, Inc. about 2013 DMR Discharges for United Park City Mines Co., Park City, UT. | Meeting
Materials | Thiele,
Rhonda. | 02/13/2015 | Thiele, R. 2015. Correspondence between Rhonda Thiele, Utah DEQ and Kim Bartell, ERG. Re: DMR Discharges for United Park City Mines. (Feb 13). | Ore Mining and
Dressing | 1 | No | No | 08228 | | 10.39 | EPA-HQ-OW-2015-0665-0044 | Telephone and Email
Communication with Kevin Brewer,
ExxonMobil Chemical Co., and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 TRI PACs Releases
from ExxonMobil Chemical Co. in
Baytown, TX - DCN 08171 | Telephone and email conversation between Kevin Brewer, ExxonMobil Chemical Co., and Eva Knoth, Eastern Research Group, Inc., about 2013 TRI PACs releases from ExxonMobil Chemical Co. in Baytown, TX. | Meeting
Materials | Brewer, Kevin | 05/07/2015 | Brewer, K. 2015. Correspondence between Kevin Brewer, ExxonMobil Chemical Co., and Eva Knoth, ERG. Re: 2013 TRI PACs Releases. (May 7). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | | No | No | 08171 | June 27, 2016 Page 86 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|---|--|----------------------|-----------------------------------|----------------|--|---|-----|-------------------|-------| | 10.39 | EPA-HQ-OW-2015-0665-0045 | Telephone and Email
Communication with Elizabeth
Connell, DSM Chemicals NA, Inc.,
and Eva Knoth, Eastern Research
Group, Inc., Re: 2013 TRI Nitrate
Releases from DSM Chemicals NA,
Inc., Augusta, GA - DCN 08172 | Telephone and email conversation between Elizabeth Connell, DSM Chemicals NA, Inc., and Eva Knoth, Eastern Research Group, Inc., about 2013 TRI nitrate releases from DSM Chemicals NA, Inc., Augusta, GA. | Meeting
Materials | Connell,
Elizabeth | 05/07/2015 | Connell, E. 2015. Correspondence between Elizabeth Connell, DSM Chemicals, and Eva Knoth, ERG. Re: 2013 TRI Nitrate Releases. (May 7). | OCPSF (Organic 1
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08172 | | 10.39 | EPA-HQ-OW-2015-0665-0292 | Preliminary Category Review –
Facility Data Review for Point
Source Category - 414 – Organic
Chemicals, Plastics, and Synthetic
Fibers - DCN 08173 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for Point Source Category – 414 – Organic Chemicals, Plastics, and Synthetic Fibers. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 414 – Organic Chemicals, Plastics, and Synthetic Fibers.
(Sept). | OCPSF (Organic 0
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08173 | | 10.39 | EPA-HQ-OW-2015-0665-0046 | Telephone and Email
Communication with Michael
House, A.K.A Solutia, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR 2,3,7,8-TCDD
Discharges for A.K.A Solutia Nitro
Site, WV - DCN 08174 | Telephone and email conversation between Michael House, A.K.A Solutia, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR 2,3,7,8-TCDD discharges for A.K.A Solutia Nitro Site in WV. | • | House, Michael | 12/18/2014 | House, M. 2014.
Correspondence
between Michael
House, A.K.A
Solutia, and Kim
Bartell, ERG. Re:
2013 DMR
2,3,7,8-TCDD
Discharges.
(December 18). | OCPSF (Organic 4
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08174 | June 27, 2016 Page 87 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY PAGE | CBI | COPY -
RIGHTED |) DCN | |-------------------|--------------------------|--|---|-------------------------|----------------|----------------|---|---|-----|-------------------|-------| | 10.39 | EPA-HQ-OW-2015-0665-0275 | Telephone and Email
Communication with Shari Kennett,
Dow Chemical, and Eva Knoth,
Eastern Research Group, Inc., Re:
2013 TRI Dioxin Releases from
Dow Chemical Co., Midland, MI -
DCN 08175 | Telephone and email conversation between Shari Kennett, Dow Chemical, and Eva Knoth, Eastern Research Group, Inc., about 2013 TRI dioxin releases from Dow Chemical Co., Midland, MI. | Meeting
Materials | Kennett, Shari | 05/08/2015 | Kennett, S. 2015. Correspondence between Shari Kennett, Dow Chemical, and Eva Knoth, ERG. Re: 2013 TRI Dioxin Releases. (May 8). | OCPSF (Organic 5
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08175 | | 10.39 | EPA-HQ-OW-2015-0665-0047 | Louisiana Department of
Environmental Quality (LA DEQ).
2009 National Pollutant Discharge
Elimination System Facility Permit
for NPDES LA0003336 - Sasol
North America, Westlake, LA - DCN
08176 | 2009 NPDES Facility Permit for Sasol North America, Westlake, LA - LA0003336. | Permit,
Registration | LA DEQ | 11/13/2009 | LA DEQ. 2009.
Louisiana
Department of
Environmental
Quality. NPDES
Permit: Sasol
North America,
Westlake, LA
(LA0003336).
(November 13). | OCPSF (Organic 157
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08176 | | 10.39 | EPA-HQ-OW-2015-0665-0048 | Louisiana Department of
Environmental Quality (LA DEQ).
2009 National Pollutant Discharge
Elimination System Facility Permit
for NPDES LA0038890 - Nalco
Company, Garyville, LA - DCN
08177 | 2009 NPDES Facility Permit for Nalco Company, Garyville, LA - LA0038890. | Permit,
Registration | LA DEQ | 03/10/2009 | LA DEQ. 2009.
Louisiana
Department of
Environmental
Quality. NPDES
Permit: Nalco
Company,
Garyville, LA
(LA0038890).
(March 10). | OCPSF (Organic 58
Chemicals,
Plastics and
Synthetic Fibers) | No | No | 08177 | June 27, 2016 Page 88 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY F | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|---|-------------------------|----------------|----------------|--|---|------|-----|-------------------|-------| | 10.39 | EPA-HQ-OW-2015-0665-0049 | Louisiana Department of
Environmental Quality (LA DEQ).
2014 Amended National Pollutant
Discharge Elimination System
Facility Permit Fact Sheet and
Rationale for NPDES LA0003336 -
Sasol North America, Westlake,
LA - DCN 08178 | 2014 Amended NPDES Facility Permit Fact Sheet and Rationale for Sasol North America, Westlake, LA - LA0003336. | Permit,
Registration | LA DEQ | 04/29/2014 | LA DEQ. 2014.
Louisiana
Department of
Environmental
Quality.
Amended
NPDES Fact
Sheet: Sasol
North America,
Westlake, LA
(LA0003336).
(April 29). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 191 | No | No | 08178 | | 10.39 | EPA-HQ-OW-2015-0665-0050 | Telephone and Email
Communication with Scott Northey,
DuPont Chambers Works, and Eva
Knoth, Eastern Research Group,
Inc., Re: 2013 TRI Nitrate Releases
from DuPont Chamber Works,
Deepwater, NJ - DCN 08179 | Telephone and email conversation between Scott Northey, DuPont Chambers Works, and Eva Knoth, Eastern Research Group, Inc., about 2013 TRI nitrate releases from DuPont Chamber Works, Deepwater, NJ. | Meeting
Materials | Northey, Scott | 05/07/2015 | Northey, S. 2015. Correspondence between Scott Northey, DuPont Chambers, and Eva Knoth, ERG. Re: 2013 TRI Nitrate Releases. (May 7). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 4 | No | No | 08179 | | 10.39 | EPA-HQ-OW-2015-0665-0051 | Sasol North American Operations.
Lake Charles Chemical Complex
and R&D - DCN 08180 | Contains information about manufacturing units at the Lake Charles Chemical Complex of Sasol North American Operations. | Fact/Data
Sheet | Sasol | 07/17/2015 | Sasol. 2015. Sasol North American Operations. Lake Charles Chemical Complex. Available online at: http://www.sasoln orthamerica.com/l ouisiana. | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 1 | No | No | 08180 | June 27, 2016 Page 89 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTED | DCN | |-------------------|--------------------------|--|--|-----------------------|---------------|----------------|---|---|------|-----|-------------------|-------| | 10.39 | EPA-HQ-OW-2015-0665-0052 | Telephone and Email
Communication with Scott Shaw,
Sasol North America, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Dioxin
Discharges for Sasol - DCN 08181 | Telephone and email conversation between Scott Shaw, Sasol North America, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR dioxin discharges for Sasol. | Meeting
Materials | Shaw, Scott | 12/23/2014 | Shaw, S. 2014. Correspondence between Scott Shaw, Sasol North America, and Kim Bartell, ERG. Re: 2013 DMR Dioxin Discharges. (December 23). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 7 | No | No | 08181 | | 10.39 | EPA-HQ-OW-2015-0665-0053 | Preliminary Study of Carbon
Disulfide Discharges from Cellulose
Products Manufacturers - DCN
08182 | Study of wastewater discharges, specifically carbon disulfide (CS2) from regenerated cellulose manufacturers. | Publication;
USEPA | U.S. EPA | 12/01/2011 | U.S. EPA. 2011. Preliminary Study of Carbon Disulfide Discharges from Cellulose Products Manufacturers. Washington, D.C. (December). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 29 | No | No | 08182 | | 10.39 | EPA-HQ-OW-2015-0665-0252 | Telephone Communication with
Jack Webster, Viscofan USA, Inc.,
and Elizabeth Gentile, Eastern
Research Group, Inc., Re: 2013 TRI
Carbon Disulfide Discharges from
Viscofan USA, Inc - DCN 08183 | Telephone conversation between Jack Webster, Viscofan USA, Inc., and Elizabeth Gentile, Eastern Research Group, Inc., about 2013 TRI carbon disulfide discharges from Viscofan USA, Inc. | Meeting
Materials | Webster, Jack | 12/01/2014 | Webster, J. 2014. Correspondence between Jack Webster, Viscofan USA, Inc., and Liz Gentile, ERG. Re: 2013 TRI Carbon Disulfide Discharges. (Dec). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 1 | No | No | 08183 | June 27, 2016 Page 90 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTED | · DCN |
|-------------------|--------------------------|---|--|--|----------------|----------------|--|---|------|-----|-------------------|-------| | 10.39 | EPA-HQ-OW-2015-0665-0253 | Telephone and Email
Communication with Michael Yoder,
Viskase Corporation, and Elizabeth
Gentile, Eastern Research Group,
Inc., Re: 2013 TRI Carbon Disulfide
Discharges from Viskase Corp -
DCN 08184 | Telephone and email conversation between Michael Yoder, Viskase Corporation, and Elizabeth Gentile, Eastern Research Group, Inc., about 2013 TRI carbon disulfide discharges from Viskase Corp. | Meeting
Materials | Yoder, Michael | 12/01/2014 | Yoder, M. 2014.
Correspondence
between Michael
Yoder, Viskase
Corporation, and
Liz Gentile,
ERG. Re: 2013
TRI Carbon
Disulfide
Discharges.
(Dec). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 1 | No | No | 08184 | | 10.39 | EPA-HQ-OW-2015-0665-0054 | New DuPont Chambers Works plant
manager ready to take on big
change - DCN 08185 | South Jersey Times article on the new DuPont Chambers Works plant manager Dawn Hughes as she talks about her career and the future of the DuPont Chambers Works. | Publication
Copyrighted
Material | Young, Alex | 12/12/2014 | Young, Alex.
2014. New
DuPont
Chambers
Works plant
manager ready
to take on big
change. South
Jersey Times.
(December 12). | OCPSF (Organic
Chemicals,
Plastics and
Synthetic Fibers) | 3 | No | Yes | 08185 | | 10.43 | EPA-HQ-OW-2015-0665-0079 | Telephone and Email
Communication with Steve Brewer,
Valero Refining Co., and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 TRI Hydrogen Sulfide
Discharges for Valero Refining in
Memphis, TN - DCN 08218 | Telephone and email conversation between Steve
Brewer, Valero Refining Co., and Kimberly Bartell,
Eastern Research Group, Inc., about 2013 TRI
Hydrogen Sulfide Discharges for Valero Refining in
Memphis, TN. | Meeting
Materials | Brewer, Steve | 12/22/2014 | Brewer, S. 2014.
Correspondence
between Steve
Brewer, Valero
Refining, and
Kim Bartell,
ERG. Re: TRI
H2S Discharges
for Valero
Refining. (Dec
22). | Petroleum
Refining | 4 | No | No | 08218 | June 27, 2016 Page 91 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|---|--|-------------------------|----------------|----------------|--|--------------------------------|------|-----|-------------------|-------| | 10.43 | EPA-HQ-OW-2015-0665-0082 | Telephone and Email
Communication with Sergio Ibarra,
Tesoro Refining, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 TRI Hydrogen Sulfide
Discharges for Tesoro Refining in
Salt Lake City, UT - DCN 08221 | Telephone and email conversation between Sergio Ibarra, Tesoro Refining, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 TRI Hydrogen Sulfide Discharges for Tesoro Refining in Salt Lake City, UT. | Meeting
Materials | Ibarra, Sergio | 12/22/2014 | Ibarra, S. 2014. Correspondence between Sergio Ibarra, Tesoro Refining, and Kim Bartell, ERG. Re: TRI H2S Discharges for Tesoro Refining. (Dec 22). | Petroleum
Refining | 3 | No | No | 08221 | | 10.43 | EPA-HQ-OW-2015-0665-0088 | Telephone and Email
Communication with Neil Stanton,
Ergon West Virginia and Kimberly
Bartell, Eastern Research Group,
Inc. Re: 2013 DMR Sulfide
Discharges - DCN 08227 | Telephone and email conversation between Neil Stanton, Ergon West Virginia and Kimberly Bartell, Eastern Research Group, Inc. about 2013 DMR Sulfide Discharges. | Meeting
Materials | Stanton, Neil | 02/27/2015 | Stanton, N. 2015. Correspondence between Neil Stanton, Ergon West Virginia and Kim Bartell, ERG. Re: 2013 DMR Sulfide Discharges. (Feb 27). | Petroleum
Refining | 9 | No | No | 08227 | | 10.49 | EPA-HQ-OW-2015-0665-0066 | Alabama Department of
Environmental Management
(ADEM). National Pollutant
Discharge Elimination System
Facility Permit for NPDES
AL0002674 - International Paper
Company – Pine Hill
Containerboard Mill, Pine Hill, AL
DCN 08198 | 2012 NPDES Facility Permit for International Paper
Company - Pine Hill Containerboard Mill, Pine Hill,
AL - AL0002674. | Permit,
Registration | ADEM | 08/01/2012 | ADEM. 2012. Alabama Department of Environmental Management. NPDES Permit: IP – Pine Hill Containerboard Mill, Pine Hill, AL (AL0002674). (August 1). | Pulp, Paper, and
Paperboard | 56 | No | No | 08198 | June 27, 2016 Page 92 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|--|--|----------------------|-----------------------------------|----------------|--|--------------------------------|------|-----|-------------------|-------| | 10.49 | EPA-HQ-OW-2015-0665-0295 | Preliminary Category Review –
Facility Data Review and Revised
Calculations for Point Source
Category 430 – Pulp and Paper -
DCN 08199 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 430 – Pulp and Paper. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review and Revised Calculations for PSC 430 – Pulp and Paper. (Sept). | Pulp, Paper, and
Paperboard | 0 | No | No | 08199 | | 10.49 | EPA-HQ-OW-2015-0665-0067 | Resolute Forest Products. Legal
Entity Name Changes - DCN 08200 | Presents legal name changes for the company from AbitibiBowater Inc. to Resolute Forest Products, Inc. | | Resolute FP | 05/23/2012 | Resolute FP. 2012. Resolute Forest Products. Legal Entity Name Changes. (May 23). Available online at: http://www.resolut efp.com/About_U s/Identity/. | Pulp, Paper, and
Paperboard | 2 | No | No | 08200 | | 10.49 | EPA-HQ-OW-2015-0665-0068 | Telephone and Email
Communication Between Jerry
Schwartz, American Forest and
Paper Association, Paul Wiegand,
National Council for Air and Stream
Improvement, and Kimberly Bartell,
Eastern Research Group, Inc., Re:
2013 DMR and TRI Pulp and Paper
Discharges - DCN 08201 | Telephone and email conversation between Jerry Schwartz, American Forest and Paper Association (AF&PA), Paul Wiegand, National Council for Air and Stream Improvement (NCASI), and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR and TRI Pulp and Paper Discharges. | Meeting
Materials | J. Schwartz, P.
Wiegand | 12/04/2014 | Schwartz, J. and
P. Wiegand.
2014.
Communication
Between J.
Schwartz,
AF&PA, P.
Wiegand,
NCASI, and Kim
Bartell, ERG. Re:
2013 DMR & TRI
Data. (Dec). | Pulp, Paper, and
Paperboard | 52 | No | No | 08201 | June 27, 2016 Page 93 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN | |-------------------|--------------------------|--|--|--|----------------------|----------------
--|--------------------------------|------|-----|-------------------|-------| | 10.49 | EPA-HQ-OW-2015-0665-0069 | A Summary of Information
Regarding the Presence, Fate, and
Concentrations of Reduced Sulfur
in Pulp and Paper Mill Treated
Effluents - DCN 08202 | National Council for Air and Stream Improvement prepared a summary of information regarding the presence, fate, and concentrations of reduced sulfur in Pulp and Paper Mill treated effluents. | Fact/Data
Sheet | Wiegand, Paul | 01/01/2015 | Wiegand, P. 2015. NCASI. A Summary of Info Regarding the Presence, Fate, and Concentrations of Reduced Sulfur in Pulp and Paper Treated Effluents. | Pulp, Paper, and
Paperboard | 6 | No | No | 08202 | | 10.50 | EPA-HQ-OW-2015-0665-0238 | Chemical Book: 2-
Mercaptobenzothiaole - DCN 08278 | Properties of 2-Mercaptobenzothiaole from the chemical book | Publication;
Copyrighted
Materials | Chemical Book | 09/18/2014 | Chemical Book.
2014. See 2015
ARR. | Rubber
Manufacturing | 2 | No | Yes | 08278 | | 10.50 | EPA-HQ-OW-2015-0665-0239 | Chemical Land 21: 2-
Mercaptobenzothiazole - DCN
08279 | Properties of 2-Mercaptobenzothiaole from the chemicalland21.com | Data | ChemicalLand 21.com. | 06/11/2015 | ChemicalLand21.
com. 2015. See
2015 ARR. | Rubber
Manufacturing | 3 | No | No | 08279 | June 27, 2016 Page 94 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI |) DCN | |-------------------|--------------------------|--|---|--|------------------------|----------------|---|-------------------------|------|-----|-------------------|-------| | 10.50 | EPA-HQ-OW-2015-0665-0240 | CooperStandard: Products and Innovations Webpage - DCN 08280 | Cooper Standard is a leading global supplier of systems and components for the automotive industry. | Publication;
Copyrighted
Materials | CooperStandar
d | 01/01/2015 | CooperStandard.
2015. See 2015
ARR. | Rubber
Manufacturing | 1 | No | Yes | 08280 | | 10.50 | EPA-HQ-OW-2015-0665-0241 | Dober History Webpage - DCN
08281 | Webpage on the company history of Dober. | Publication;
Copyrighted
Materials | Dober | 01/01/2015 | Dober. 2015.
See 2015 ARR. | Rubber
Manufacturing | 2 | No | Yes | 08281 | | 10.50 | EPA-HQ-OW-2015-0665-0242 | Emerald Performance Materials
Home Webpage - DCN 08282 | Emerald Performance Materials, LLC produces and markets technologically advanced specialty chemicals for a broad range of food and industrial applications. | Publication;
Copyrighted
Materials | Emerald
Performance | 01/01/2006 | Emerald
Performance
Materials. 2006.
See 2015 ARR. | Rubber
Manufacturing | 2 | No | Yes | 08282 | June 27, 2016 Page 95 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTED | DCN | |-------------------|--------------------------|--|---|--|---------|----------------|---------------------------------|-------------------------|------|-----|-------------------|-------| | 10.50 | EPA-HQ-OW-2015-0665-0243 | GoldKey: The Intermix Technology -
DCN 08283 | For superior dispersion and mixing uniformity, Intermix Technology is regarded as the latest and best mixing process available. GoldKey Processing chose the Intermix process for its many advantages and serviceability. | Publication | GoldKey | 01/01/2015 | GoldKey. 2015.
See 2015 ARR. | Rubber
Manufacturing | 2 | No | No | 08283 | | 10.50 | EPA-HQ-OW-2015-0665-0244 | International Automotive
Components (IAC): Company
Webpage - DCN 08284 | International Automotive Components (IAC) is the third largest automotive interior components supplier in the world by market share and the only global supplier with a singular focus on interiors. | Publication;
Copyrighted
Materials | IAC | 01/01/2015 | IAC. 2015. See
2015 ARR. | Rubber
Manufacturing | 1 | No | Yes | 08284 | | 10.50 | EPA-HQ-OW-2015-0665-0245 | Emission Scenario Document on
Additives in Rubber Industry - DCN
08285 | Document providing information on the sources, use patterns and release pathways of chemicals used as additives in rubber industry to assist in the estimation of releases of chemicals to the environment. | Publication | OECD | 06/24/2004 | OECD. 2004.
See 2015 ARR. | Rubber
Manufacturing | 39 | No | No | 08285 | June 27, 2016 Page 96 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL |) DCN | |-------------------|--------------------------|---|---|--|----------------------|----------------|--|-------------------------|------|-----|-------------------|-------| | 10.50 | EPA-HQ-OW-2015-0665-0246 | Rubber Chemicals - DCN 08286 | Rubber chemicals are materials that are added in minor amounts to rubber formulations in order to improve their properties and make them commercially useful. | Publication;
Copyrighted
Materials | Ohm, R. F. | 01/01/2000 | Ohm, R. F. 2000.
See 2015 ARR. | Rubber
Manufacturing | 20 | No | Yes | 08286 | | 10.50 | EPA-HQ-OW-2015-0665-0247 | Rubber Compounding - DCN 08287 | Rubber compounding is the complex, multidisciplinary science of selecting and blending the appropriate combination of elastomers and other ingredients to meet the performance, manufacturing, environmental, and cost requirements for rubber goods made and used in commerce. | Publication;
Copyrighted
Materials | Rodgers, B., et. al. | 01/01/2004 | Rodgers, B.
2004. See 2015
ARR. | Rubber
Manufacturing | 58 | No | Yes | 08287 | | 10.50 | EPA-HQ-OW-2015-0665-0248 | Sigma-Aldrich: M3302 - 2-
Mercaptobenzothiazole - DCN
08288 | Properties of 2-Mercaptobenzothiaole from Sigma-Aldrich. | Publication;
Copyrighted
Materials | Sigma-Aldrich | 01/01/2015 | Sigma-Aldrich.
2015. See 2015
ARR. | Rubber
Manufacturing | 3 | No | Yes | 08288 | June 27, 2016 Page 97 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--|--|------------------|----------|----------------|----------------------------------|-------------------------|------|-----|-------------------|-------| | 10.50 | EPA-HQ-OW-2015-0665-0249 | Development Document for Effluent
Limitations Guidelines and New
Source Performance Standards for
the Tire and Synthetic Segment of
the Rubber Processing Point
Source Category - DCN 08289 | Development document for the tire and synthetic rubber segments of the rubber processing industry rulemaking. | Report | U.S. EPA | 02/01/1974 | U.S. EPA. 1974.
See 2015 ARR. | Rubber
Manufacturing | 206 | No | No | 08289 | | 10.50 | EPA-HQ-OW-2015-0665-0250 | R.E.D. FACTS: Sodium and Zinc
Salts of 2-Mercaptobenzothiazole -
DCN 08290 | All pesticides sold or distributed in the United States must be registered by EPA, based on scientific studies showing that they can be used without posing unreasonable risks to people or the environment. | Report | U.S. EPA | 09/01/1994 | U.S. EPA. 1994.
See 2015 ARR. | Rubber
Manufacturing | 6 | No | No | 08290 | | 10.50 | EPA-HQ-OW-2015-0665-0251 | Changes To The TRI List Of Toxic
Chemicals - DCN 08291 | Chemical deletions and modifications to the TRI List of Toxic Chemicals | Data | U.S. EPA | 02/27/2015 | U.S. EPA. 2015.
See 2015 ARR. | Rubber
Manufacturing | 13 | No | No | 08291 | June 27, 2016 Page 98 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEI | D DCN | |-------------------|--------------------------|--
--|-------------------------|-----------------------------------|----------------|---|----------------------|------|-----|-------------------|-------| | 10.54 | EPA-HQ-OW-2015-0665-0070 | Telephone and Email
Communication with Christopher
Beranek, Georgia Environmental
Protection Division, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Sulfide
Discharges for King America
Finishing - DCN 08203 | Telephone and email conversation between Christopher Beranek, Georgia Environmental Protection Division, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR sulfide discharges for King America Finishing. | Meeting
Materials | Christopher
Beranek | 05/11/2015 | Beranek, C. 2015. Correspondence between Christopher Beranek, Georgia EPD, and Kim Bartell, ERG. Re: 2013 DMR Sulfide Discharges. (May 11). | Textile Mills | 4 | No | No | 08203 | | 10.54 | EPA-HQ-OW-2015-0665-0276 | Preliminary Category Review –
Facility Data Review for Point
Source Category 410 – Textiles -
DCN 08204 | Underlying data analysis and calculations for facilities reviewed as part of the 2015 preliminary category review for PSC 410 – Textile Mills. | Data | Eastern
Research
Group, Inc | 09/01/2015 | ERG. 2015. Prelim Category Review – Facility Data Review for PSC 410 – Textiles. (Sept). | Textile Mills | 0 | No | No | 08204 | | 10.54 | EPA-HQ-OW-2015-0665-0071 | Georgia Department of Natural
Resources, Environmental
Protection Division. (GA EPD).
National Pollutant Discharge
Elimination System Facility Permit
for NPDES GA0003280 -King
America Finishing, Inc., Sylvania,
GA - DCN 08205 | 2013 NPDES Facility Permit for King America Finishing, Inc., Sylvania, GA - GA0003280. | Permit,
Registration | GA EPD | 11/19/2013 | GA EPD. 2013. Georgia DNR, EPD. NPDES Permit: King America Finishing, Inc., Sylvania, GA. (November 19). | Textile Mills | 23 | No | No | 08205 | June 27, 2016 Page 99 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | СВІ | COPY -
RIGHTE | D DCN | |-------------------|--------------------------|--|---|----------------------|----------------------|----------------|---|-------------------------------|------|-----|------------------|-------| | 10.54 | EPA-HQ-OW-2015-0665-0072 | Telephone and Email
Communication with Matthew
Hutcheson, King America Finishing,
and Kimberly Bartell, Eastern
Research Group, Inc., Re: 2013
DMR Sulfide Discharges for King
America Finishing - DCN 08206 | Telephone and email conversation between Matthew Hutcheson, King America Finishing, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR Sulfide Discharges for King America Finishing. | Meeting
Materials | Matthew
Hutcheson | 05/13/2015 | Hutcheson, M. 2015. Correspondence between Matthew Hutcheson, King America, and Kim Bartell, ERG. Re: 2013 DMR Sulfide Discharges. (May 13). | Textile Mills | 5 | No | No | 08206 | | 10.54 | EPA-HQ-OW-2015-0665-0073 | Telephone and Email
Communication with Crystal Rippy,
South Carolina Department of
Health and Environmental
Compliance, and Kara Edquist,
Eastern Research Group, Inc., Re:
2013 DMR Discharges for Mohawk
Industries - DCN 08207 | Telephone and email conversation between Crystal Rippy, South Carolina Department of Health and Environmental Compliance, and Kara Edquist, Eastern Research Group, Inc., about 2013 DMR Discharges for Mohawk Industries Oak River Facility. | Meeting
Materials | Crystal Rippy | 02/13/2015 | Rippy, C. 2015. Correspondence between Crystal Rippy, SC DHEC, and Kara Edquist, ERG. Re: 2013 DMR Discharges for Mohawk Industries. (Feb 13). | Textile Mills | 5 | No | No | 08207 | | 10.55 | EPA-HQ-OW-2015-0665-0074 | Telephone and Email
Communication with Keisha
Akhavein, Florida Department of
Environmental Protection, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR TCDD
Discharges for Koppers Inc - DCN
08213 | Telephone and email conversation between Keisha Akhavein, Florida Department of Environmental Protection, and Kimberly Bartell, Eastern Research Group, Inc., about 2013 DMR TCDD Discharges for Koppers Inc. | Meeting
Materials | Akhavein,
Keisha | 11/07/2014 | Akhavein, K. 2014. Correspondence between Keisha Akhavein, FL DEP, and Kim Bartell, ERG. Re: 2013 DMR TCDD Discharges for Koppers Inc. (Nov 7). | Timber Products
Processing | 4 | No | No | 08213 | June 27, 2016 Page 100 of 101 | RECORD
SECTION | DOCUMENT ID NUMBER | TITLE | ABSTRACT | DOCUMENT
TYPE | AUTHOR | AUTHOR
DATE | SOURCE
CITATION | CATEGORY
INDUSTRY | PAGE | CBI | COPY -
RIGHTEL | DCN | |-------------------|--------------------------|--|--|----------------------|--------------------|----------------|--|---|------|-----|-------------------|-------| | 11.2 | EPA-HQ-OW-2015-0665-0101 | Telephone and Email
Communication between Nestor
Louis, EPA Region 2, and Kimberly
Bartell, Eastern Research Group,
Inc., Re: 2013 DMR Discharges for
Wyndham Sugar Bay Resort - DCN
08240 | Telephone and email conversation between Nestor Louis, EPA Region 2, and Kimberly Bartell, Eastern Research Group, Inc., Re: 2013 DMR Discharges for Wyndham Sugar Bay Resort. | Meeting
Materials | Louis, Nestor | 02/13/2015 | Louis, N.
2015.Telephon
Communication
between Nestor
Louis, EPA
Region 2, and
Kim Bartell,
ERG. Re: 2013
DMR Discharges
for Wyndham
Sugar. (Feb 13). | Drinking Water
Treatment | 4 | No | No | 08240 | | 11.3 | EPA-HQ-OW-2015-0665-0100 | Telephone and Email
Communication between Murray
Lantner, EPA Region 2, and
Kimberly Bartell, Eastern Research
Group, Inc., Re: 2013 DMR
Discharges for Bacardi Corp - DCN
08239 | Telephone and email conversation between Murray
Lantner, EPA Region 2, and Kimberly Bartell,
Eastern Research Group, Inc., Re: 2013 DMR
Discharges for Bacardi Corp. | Meeting
Materials | Lantner,
Murray | 02/13/2015 | Lantner, M. 2015. Telephone and Email Communication between Murray Lantner, EPA Region 2, and Kim Bartell, ERG. Re: 2013 DMR Discharges. (Feb 13). | Miscellaneous
Foods and
Beverages | 108 | No | No | 08239 | June 27, 2016 Page 101 of 101 | ۸. | 440 | a١ | | en | 4 | 2 | |----|-----|-----|---|-----|---|---| | Α | па | (:1 | ш | ıeı | ш | ٦ | ## **Attachment 3** ## DOCUMENTS CITED IN THE PRELIMINARY 2016 EFFLUENT GUIDELINES PROGRAM PLAN | DCN | Title | Docket/Document ID | |---------|---|--------------------------| | 06636 | Notes from Telephone Conversation between Chris Krejci, ERG, and Steve Auchterlonie, Front St. Remedial Action – DCN 06636 | EPA-HQ-OW-2008-0517-0076 | | 07754 | Environmental Engineering Support for Clean Water Regulations
Programmatic Quality Assurance Project Plan (PQAPP) – DCN
07754 | EPA-HQ-OW-2010-0824-0229 | | 08312 | Memorandum: Centralized Waste Treatment Facility List – DCN 08312 | EPA-HQ-OW-2015-0665-0285 | | 00554 | A Strategy for National Clean Water Industrial Regulations: Effluent
Limitations Guidelines, Pretreatment Standards, and New Source
Performance Standards | EPA-HQ-OW-2003-0074-0215 | | 06557 | Technical Support Document for the Annual Review of Existing
Effluent Guidelines and Identification of Potential New Point Source
Categories – DCN 06557 | EPA-HQ-OW-2008-0517-0515 | | 06703 | Technical Support Document for the Preliminary 2010 Effluent
Guidelines Program Plan – DCN 06703 | EPA-HQ-OW-2008-0517-0514 | | 07755 | U.S. EPA National Pollution Discharge Elimination System (NPDES) Permit Writers' Manual – DCN 07755 | EPA-HQ-OW-2010-0824-0236 | | 07685 | The 2011 Annual Effluent Guidelines Review Report – DCN 07685 | EPA-HQ-OW-2010-0824-0195 | | 07501 | Toxic Weighting Factors Methodology – DCN 07501 | EPA-HQ-OW-2010-0824-0004 | | 07756 | Final 2012 and Preliminary 2014 Effluent Guidelines Program Plans – DCN 07756 | EPA-HQ-OW-2014-0170-0002 | | 08107 | Final 2014 Effluent Guidelines Program Plan – DCN 08107 | EPA-HQ-OW-2014-0170-0210 | | 08236 | Known Data Problems – DCN 08236 | EPA-HQ-OW-2015-0665-0097 | | 08209 | The 2015 Annual Effluent
Guidelines Review Report – DCN 08209 | EPA-HQ-OW-2015-0665-0299 | | MF00001 | Preliminary Study of the Metal Finishing Category: 2015 Status
Report – DCN MF00001 | EPA-HQ-OW-2015-0665-0303 |