Real-Time Siloxane Measurements at Landfill and Digester Sites using FTIR

Barbara Marshik
MKS Instruments
Barbara_Marshik@MKSimst.com
Biogas

- Alternative Source for Compressed Natural Gas
 - Renewable and local source of energy
 - Landfills, Digesters, Farm waste
 - Excess Biogas sent to CNG pipeline

- What are the Concerns?
 - Liquid Natural Gas
 - Higher BTUs – US appliances not able to use
 - Very clean fuel source
 - Compressed Natural Gas from Asia
 - Higher BTUs – US appliances not able to use
 - Pipeline owners want BTU range restricted
 - Biogas
 - Impurities – Siloxanes and Chlorinated HCs
 - CH4 ~40 - 60%, rest is CO2

- How and Who will monitor these alternative sources?
What to Monitor?

- Assess Fuel quality before gas enters pipeline
 - Quantify Methane and CO2 content
 - Determine BTU content

- Determine Impurity Levels
 - Siloxane and Chlorinated impurities
 - Prevent impurities from entering natural gas pipeline
 - Minimizes system maintenance cost
 - At high temp operation SiO2 and SiO3 powders form
 - Turbines: mechanical wear and tear
 - Boilers: particulate build up
Current Siloxane Analysis

- **Method:** GC – ICP – MS
 - **Sampling Methods**
 - Solvent Extraction
 - Thermal Desorption tubes
 - Tedlar bags – components stick
 - Suma Canisters – must be coated with glass
 - Impingers
 - **Issues**
 - Not on line sampling
 - Sample must be conditioned first (remove H2O)
 - Sample must be concentrated
 - Some Siloxanes unrecoverable
 - Sampling time long
 - 15 to 30 minutes after sample collection
Why FTIR?

● **Sampling Conditions**
 - On line sampling can be done
 ● Gas pulled straight from filter to FTIR
 - No sample conditioning needed
 - Continuous Emission Monitoring (CEM) capability

● **FTIR Analysis**
 - FTIR detects multiple species at same instance
 ● CH4, CO2, H2O, CO, Hydrocarbons, Siloxanes, etc.
 ● Percent down to ppb or lower concentrations
 - Siloxanes have strong FTIR signal – single digit ppb
 ● L2 – L4 straight chain siloxanes
 ● D3 – D6 cyclic siloxanes
 - Rapid Scanning and analysis
 ● 20 seconds to 1 minute
Infrared (IR) Spectroscopy

- Based on IR light absorption
 - Energy (IR radiation) heats molecule - vibrations and rotations
 - The pattern and intensity of the spectrum provides all the information about gas (type and concentration)
Siloxanes and Hydrocarbons

- D3
- D4
- D5
- Ethane
- Butane
- Propane
- L4
- L3
- L2
Current Studies

● Cylinder Dilution Study
 – Test Speciation versus Surrogate Methods
 – Gas Mix
 ● 540ppb of L2, L3, L4, D3, D4, D5 Siloxanes in CH₄
 ● 100% CH₄ used for blending
 – Dilution Factor not specified
 – MKS MG2030 FTIR
 ● 5.11m gas cell
 ● 40 C, ~ 20 sec data averaged to 100 sec

● Digester Dilution Study
 – Test Speciation versus multiple Surrogate Methods
 – Gas direct from digester then diluted with CH₄
 ● Mainly D4 and D5 (75:25)
 ● ~60% CH₄, ~40% CO₂ plus some Ethane and Propane
 – MKS AIRGARD
 ● 10.18m gas cell
 ● 40 C, ~20 sec data averaged to 100 sec
Cylinder Study
Speciated vs Surrogate

Cylinder Blend Tests

Speciated
Surrogate #2
Surrogate #2 (x1.25)

3.11 ppm-v

Cylinder Dilution Expanded View
Dilution of Total Siloxane (3.24 ppm-v) in 100% CH₄
Raw Digester Gas

- CH4
- C2H6
- C3H8
- CO2
- D4
Digester Dilution Study – Speciated

Speciation Method Comparison

- Dilution Calc
- Speciated, HC#1
- Speciated, HC#2
- Surrogate #1, HC#1
- Surrogate #1, HC#2

Total Siloxanes (ppm-v)
Digester Dilution Study – Surrogates

Surrogate Method Comparison

- Total Siloxanes (ppm-v)

- Dilution Calc
- Surrogate #1
- Surrogate #2
FTIR – Current Studies Summary

- **Siloxane Speciation Method**
 - L2 – L4 straight chain siloxanes
 - D3 – D6 cyclic siloxanes
 - DLs ~ 300 - 500 ppb level
 - Suffers from high cross sensitivity to hydrocarbons

- **Siloxane Surrogate Method**
 - Mixture of cyclic and straight chain siloxanes
 - DLs ~ <50 ppb level total Siloxanes
 - Very low variance in the signal response
 - Low sensitivity to hydrocarbons
 - Tracks dilution study well but accuracy off
 - May require a correction factor – TBD
Next Steps - <50 ppb level Total Siloxane Analyzer

- Collect at line FTIR Landfill and Digester data
- Use the Filtered gas streams – not raw
- Collect grab samples for cross validation points
- Perform careful spike dilution tests
 - Use filtered LFG or DG gas streams in the field
 - Use MFCs, Certified Cylinders with internal spike gas for blending