Real-Time Siloxane Measurements at Landfill and Digester Sites using FTIR

Technology for Productivity

Barbara Marshik MKS Instruments Barbara_Marshik@MKSinst.com

Biogas

Alternative Source for Compressed Natural Gas

- Renewable and local source of energy
 - Landfills, Digesters, Farm waste
- Excess Biogas sent to CNG pipeline
- What are the Concerns?
 - Liquid Natural Gas
 - Higher BTUs US appliances not able to use
 - Very clean fuel source
 - Compressed Natural Gas from Asia
 - Higher BTUs US appliances not able to use
 - Pipeline owners want BTU range restricted
 - Biogas
 - Impurities Siloxanes and Chlorinated HCs
 - CH4 ~40 60%, rest is CO2

How and Who will monitor these alternative sources?

What to Monitor?

Assess Fuel quality before gas enters pipeline

- Quantify Methane and CO2 content
- Determine BTU content
- Determine Impurity Levels
 - Siloxane and Chlorinated impurities
 - Prevent impurities from entering natural gas pipeline
 - Minimizes system maintenance cost
 - At high temp operation SiO2 and SiO3 powders form
 - Turbines: mechanical wear and tear
 - Boilers: particulate build up

Current Siloxane Analysis

Method: GC – ICP – MS

- Sampling Methods
 - Solvent Extraction
 - Thermal Desorption tubes
 - Tedlar bags components stick
 - Suma Canisters must be coated with glass
 - Impingers
- Issues
 - Not on line sampling
 - Sample must be conditioned first (remove H2O)
 - Sample must be concentrated
 - Some Siloxanes unrecoverable
 - Sampling time long
 - 15 to 30 minutes after sample collection

• mks

Why FTIR?

- Sampling Conditions
 - On line sampling can be done
 - Gas pulled straight from filter to FTIR
 - No sample conditioning needed
 - Continuous Emission Monitoring (CEM) capability
- FTIR Analysis
 - FTIR detects multiple species at same instance
 - CH4, CO2, H2O, CO, Hydrocarbons, Siloxanes, etc.
 - Percent down to ppb or lower concentrations
 - Siloxanes have strong FTIR signal single digit ppb
 - L2 L4 straight chain siloxanes
 - D3 D6 cyclic siloxanes
 - Rapid Scanning and analysis
 - 20 seconds to 1 minute

Infrared (IR) Spectroscopy

- Based on IR light absorption
 - Energy (IR radiation) heats molecule vibrations and rotations
 - The pattern and intensity of the spectrum provides all the information about gas (type and concentration)

• mks

Siloxanes and Hydrocarbons

Current Studies

- Cylinder Dilution Study
 - Test Speciation versus Surrogate Methods
 - Gas Mix
 - 540ppb of L2, L3, L4, D3, D4, D5 Siloxanes in CH₄
 - 100% CH₄ used for blending
 - Dilution Factor not specified
 - MKS MG2030 FTIR
 - 5.11m gas cell
 - 40 C, ~ 20 sec data averaged to 100 sec
- Digester Dilution Study
 - Test Speciation versus multiple Surrogate Methods
 - Gas direct from digester then diluted with CH₄
 - Mainly D4 and D5 (75:25)
 - ~60% CH₄, ~40% CO2 plus some Ethane and Propane
 - MKS AIRGARD
 - 10.18m gas cell
 - 40 C, ~20 sec data averaged to 100 sec

Cylinder Study Speciated vs Surrogate

mks

Cylinder Dilution Expanded View Dilution of Total Siloxane (3.24 ppm-v) in 100% CH₄

9

Raw Digester Gas

Digester Dilution Study – Speciated

Digester Dilution Study – Surrogates

FTIR – Current Studies Summary

Siloxane Speciation Method

- L2 L4 straight chain siloxanes
- D3 D6 cyclic siloxanes
- DLs ~ 300 500 ppb level
- Suffers from high cross sensitivity to hydrocarbons

Siloxane Surrogate Method

- Mixture of cyclic and straight chain siloxanes
- DLs ~ <50 ppb level total Siloxanes
- Very low variance in the signal response
- Low sensitivity to hydrocarbons
- Tracks dilution study well but accuracy off
- May require a correction factor TBD

• mks

Next Steps - <50 ppb level Total Siloxane Analyzer

- Collect at line FTIR Landfill and Digester data
- Use the Filtered gas streams not raw
- Collect grab samples for cross validation points
- Perform careful spike dilution tests
 - Use filtered LFG or DG gas streams in the field
 - Use MFCs, Certified Cylinders with internal spike gas for blending