Hydrogen Sulfide Remediation at King George County Landfill

January 18, 2012

Bill Tennant Waste Management Delmarva Area Gas Operations Manager

Agenda

- Site Overview / History
- H2S Detection and Determination of Extent
- Gas Collection and Control System Upgrades
- Intermediate Cap
- Evaluation of H2S removal systems
- Installation of Temporary/Intermediate H2S
 Scavenger System for LGTE Plant and Flares
- Way Ahead
- Questions

Site Overview

295 acres
190 acres filled
14 acres capped
11.4 M tons filled
1.2M tons in 2010
5K tons/day
(2,500 tons/day rail)

<u>Gas:</u> •Current: 7K Scfm •LGTE: 4 turbines •12.4 Mw

H2S Detection and Determination of Extent

Compliance Drivers

- Title V permit:
 - 240 Ton/Yr SO2 (770 ppm H2S @ 8000 Scfm)
 - No off site odors
- LFGTE Stationary Source Permit. :
 - 0.15lb/MMBtu SO2 (435 ppm H2S)
 - Stain tube test for H2S for 30 days upon startup Results 1200-1400 ppm(2007 test 235 ppm)
 - Stack Performance Test within 90 days

Results average .319lb/MMBtu

H2S Field Detection Methodology

- Stain tube testing at flare, plant and key areas of landfill (Cell 5A/B 2C)
- Tedlar bags at flare, plant and key areas of landfill
- 100% stain tube test of all collectors
- Tedlar bags of high concentration collectors (+2000ppm)
- 3 X daily monitoring of flare and LGTE plant

H2S Field Test Results

Projected SO2 Emissions Tons/Yr

12 Month Rolling Average

GCCS System as of Jan 2010

GCCS System as of Sep 2010

Exposed Intermediate Cap

Interim Cap

Evaluation of H2S Removal Systems

Design Criteria

- LFG flow rate: 8000 Scfm interim, 12000 Scfm life of site
- Input H2S levels: 1200 ppm
- Output H2S level: <1 ppm
- Implementation: as soon as practical. Only solutions with short implementation times were considered for the interim treatment solution

Technology Available

- Activated carbon
- Liquid scavenger chemicals (Q2, Benzeco Scientific)
- Solid scavenger chemicals (SulfaTreat®)
- Bio-process (THIOPAQ®)

Solid Scavenger System

- Ceramic base impregnated with Iron Oxide. (Fe₂O₃)
- Saturated LFG with H₂S flows through solid media, converted to Iron Pyrite. (FeS₂)

 $4H_2S + Fe_2O_3 \longrightarrow 2FeS_2 + 3H_2O + H_2$

- Lead lag system: 3 vessels (turbine) 4 vessels (flare)
- Change out done at 20ppm H₂S outlet of lag
- Lead changed out, lag becomes lead, standby becomes lag

Solid Scavenger

Pros

- Proven in LFG application
- Short implementation: used vessels available
- Relatively low capital cost
- Simple operation / controls
- Vessels can be reused when H₂S levels drop

Cons

- High pressure drop, upgrade compressor required
- Media replacement costs
- Disposal of spent media (landfill)

Solid Scavenger System

Flare treatment

Plant treatment

H2S Monitoring/Change Out

H2S Monitoring/Change Out

THIOPAQ®

- Biological process for removal of H2S from gas streams
- Gas is contacted with an aqueous soda solution
- H2S is absorbed by the soda
- H2S is removed from the soda by biological conversion to elemental sulfur using air
- Regenerated soda is returned to the absorber

THIOPAQ®

Pros

- Effective H₂S in large scale / life of site (12000 Scfm)
- Regenerative
- Waste product is organic elemental Sulfur which can be landfilled or used as organic fertilizer
- Lower operational costs
- Controls will improve gas system performance

Cons

- High capital costs
- Relatively new process in landfill environment
- One supplier for nutrient
- Extensive design and construction

THIOPAQ® Process Chemistry

- Absorption
 - $H_2S + OH \longleftrightarrow HS + H_2O$
- Bio- Regeneration

 $HS- + \frac{1}{2}O_2 \longrightarrow S^0 + OH-$

- Oxidation into sulfate (bleed) <5% HS- + 2O₂ \longrightarrow SO₄² + H+
- Bioreactor conditions
 - pH 8-9
 - Temperature 60-100 F
 - O₂ controlled to limit sulfate production

THIOPAQ® Process

Way Ahead

- Installation of 4th turbine June 2011
- Construction/startup of Cameron THIOPAQ® biological sulfur removal system
- Continuing GCCS upgrades of header, well installations and collection in Cell 14A/B
- Continuing H₂S monitoring
- Interim cap cell 14 A/B

Questions/Discussion

