PM2.5 Speciation in MOVES2013

Darrell Sonntag

FACA MOVES Review Workgroup July 9, 2013

Air Quality & Modeling Center Assessment and Standards Division U.S. EPA Office of Transportation & Air Quality

PM Speciation

- Background
- New Methodology
 - New PM2.5 species
 - New Speciation Calculator
 - New Sulfate Calculator
 - New Crankcase Emission Calculator

New data

- New speciation profiles
- Data on fuel and lubricating oil sulfur on sulfate emissions
- Data on updated crankcase emissions

MOVES

Background

• PM2.5 speciation data

- Shows differences in profiles according to:
 - Technology, Model year
 - Fuel Type
 - Emission process (running, start, extended idle)

• PM Speciation in MOVES2013

- Allows differentiation in PM speciation profiles by:
 - Technology/Regulatory class (e.g. pre-2007/2007+ diesel)
 - Model year
 - Fuel Type
 - Emission process (running, start, extended idle)
- Additional PM species needed for air quality models

PM_{2.5} Species in MOVES 2013

Revised definition in MOVES 2013 to be consistent with CMAQ5.0

New PM species in MOVES2013

New CMAQv5.0 species included to improve modeling of organic mass, atmospheric chemistry, anthropogenic sources, and model validations with receptor measurements¹

PM2.5 Species	CMAQv5.0 Species Name	Required in CMAQv4.7.1	Required in CAMx5.4
Primary organic carbon	РОС	х	x
Elemental carbon	PEC	х	x
Sulfate	PSO4	х	x
Nitrate	PNO3	х	x
Ammonium	PNH4	х	x
Non-carbon organic matter	PNCOM		x
Iron	PFE		
Aluminum	PAL		
Silica	PSI		
Titanium	PTI		
Calcium	PCA		
Magnesium	PMG		
Potassium	РК		
Manganese	PMN		
Sodium	PNA		x
Chloride	PCL		x
Water	PH2O		x
Primary unspeciated PM2.5	PMOTHR	х	х

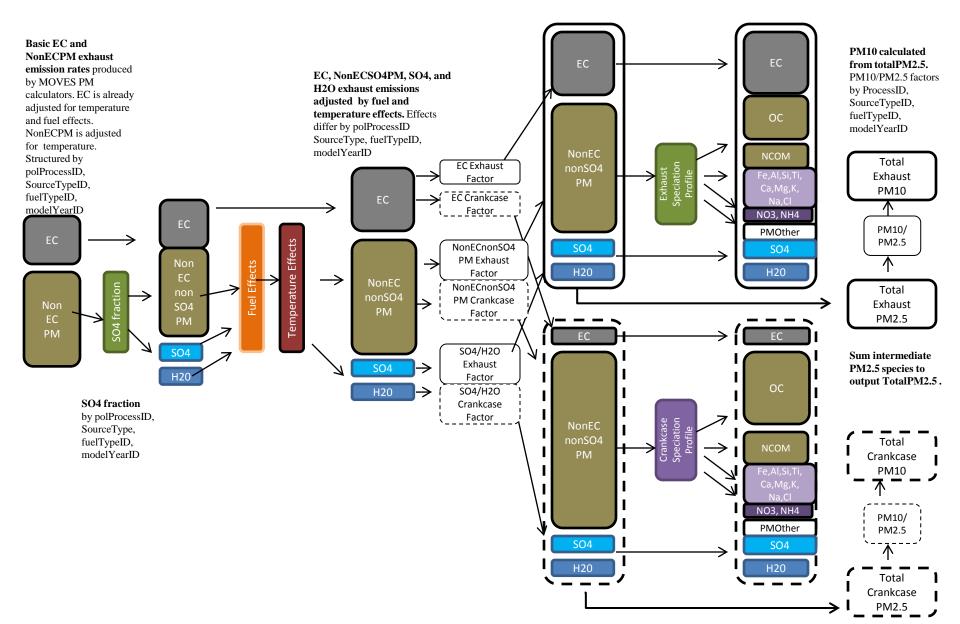
1. Simon, H.; CMAQv5.0 PM other speciation.

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0 PMother speciation

In MOVES 2010

PM Speciation Overview

1. Intermediate Speciation


- Individual and composite species used to simplify/facilitate
 PM2.5 emission rate adjustments and calculations
- Intermediate species:
 - EC: Elemental carbon
 - NonECPM: Non-elemental carbon
 - NonECnonSO4PM: Non-elemental carbon, non-sulfate particulate matter
 - SO4: Sulfate
 - H2O (aerosol): Sulfate-bound water
- Fuel & temperature effects applied to the intermediate species
- 2. Full Speciation
 - Produces all 18 PM2.5 species needed air quality models

Exhaust and crankcase intermediate

PM2.5 species. Individual ratios for EC, NonECnonSO4PM, SO4, and H2O. Ratios differ by polProcessID SourceType, fuelTypeID, modelYearID

Speciated PM2.5 emissions

by ProcessID (start/running/extended idle exhaust and start/running/extended idle crankcase emissions), SourceTypeID, fuelTypeID, modelYearID

MOVES

PM Speciation Steps

• Intermediate Speciation

1. Use EC and NonECPM emission rates

- EC already adjusted for fuel effects
- Both already adjusted for temperature effects
- Stored at the operating mode level to model EC/PM differences by operating mode
- 2. Calculate SO4, H2O (aerosol), and nonECnonSO4 from the nonECPM
- 3. Adjust SO4, H2O (aerosol) for fuel effects:
 - Sulfate Calculator: SO4/H2O
 - Fuel effects: nonECnonSO4
- 4. Adjust SO4, H2O, nonECnonSO4 for temperature effects
 - (Not used at this time because general temperature effects applied previous to step 1)
 - Coded such that different temperature effects can be applied

PM Speciation Steps

- 5. Calculate exhaust and crankcase emissions
- 6. Sum intermediate species (EC, nonECnonSO4, SO4, H2O (aerosol)) to calculate total PM2.5 emissions
- 7. Calculate PM10 emissions using $PM_{10}/PM_{2.5}$ ratios

	PM ₁₀ /PM _{2.5}
gasoline	1.130
diesel	1.087

- 8. **Full Speciation:** Apply speciation profiles to nonECnonSO4 to calculate PM2.5 species needed for CMAQ
- 9. Calculate additional particle-phase metal compounds required for the national emissions inventory, not included in the PM speciation calculator
 - Discussed in "Additional Toxics Presentations"

€PA

9

PM_{2.5} Profiles in MOVES 2013

• Kansas City Light-duty Gasoline Vehicle Study (CRC E-69)

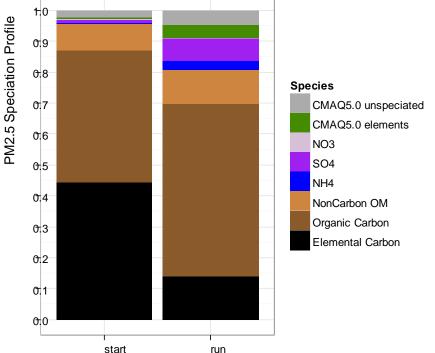
- Stratified random sample of vehicles in Kansas City Area
- Conducted in Summer/Winter of 2004-2005
- Source of PM_{2.5} emission rates in MOVES

MOVES

- Speciated PM_{2.5} data
 - 99 vehicles tested for speciation of total 496 tested vehicles
 - Included Summer/Winter testing
 - In-use vehicles ranging from 1976 to 2004 model year

• HD Vehicle Chassis Dyno Testing for Emissions Inventory (CRC E-55/E59)

- Conducted 2001-2005
- Source of PM Emission rates in MOVES
- Speciated PM_{2.5} data
 - Available by driving schedule (idle, cruise, transient)
 - 9 trucks tested for speciation of 75 total vehicles
 - In-use vehicles ranging from 1985 to 2004 model year


• Phase 1 of the HEI & CRC Advanced Collaborative Emissions Study

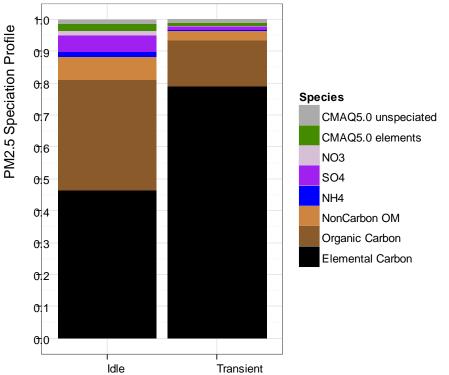
- 2007+ Technology
 - Four 2007 heavy-duty diesel engines
- Includes exhaust and crankcase speciation measurements
- Source of updated 2007+ Diesel crankcase emission factors

Kansas City Light-Duty Gasoline PM_{2.5}

Weighted Mean by Start and Running Emissions

- Weighted according to PM emissions and vehicle-miles traveled of each vehicle class
- Elemental Carbon
 - Used to update EC rates in MOVES2013
- Organic Matter
 - Organic matter (OM) scaled down to achieve mass balance and correct for positive artifact (Reff et al. 2009)
 - OM ~ 1.2 * OC
- Elements, Sulfate, other lons
 - Larger contribution to running
- PM sampling artifact removed from profile and emission rates
 - Silicone sampling lines contributed to PM measurements
 - PM2.5 LDGV running rates reduced ~ 13 - 14% compared to MOVES2010

CRC E-55/E59 Heavy-Duty Diesel PM_{2.5}

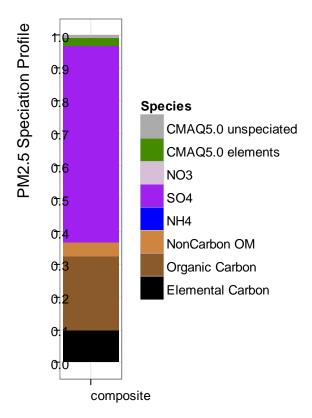

Median profile by idle and transient cycles

Median used due to small sample size

MOVES

- Idle cycle for extended idle and start
- Transient cycle for running emission
- MOVES2013 maintains load-based EC/PM fractions developed for conventional diesel in MOVES
 - EC/PM fractions compare well between load based rates and speciation profiles
 - Use updated profile fraction to estimate non-EC species:
 - Larger % of inorganic species on the idle cycle

	Extended Idle	Start	Running
MOVES2013 EC/PM Rates	26.6%	33.2%	79.4%
E55/59 PM _{2.5} Speciation profile	46.4%	46.4%	79.0%

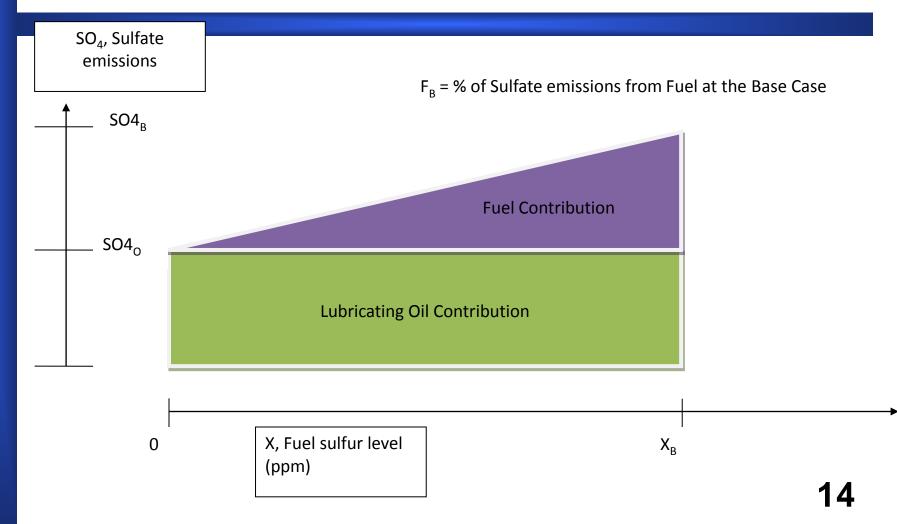


Phase 1 ACES 2007+ Heavy-Duty Diesel PM_{2.5}

- Contains tailpipe exhaust + crankcase emissions
 - Four 2007 heavy-duty diesel engines

MOVES

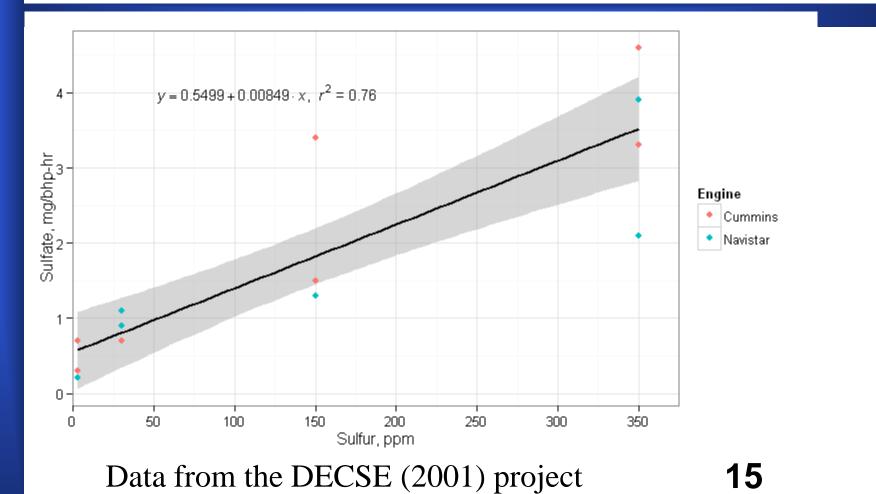
- 16-hour cycle
 - Contains FTP and CARB 5-Modes
 - Captures diesel particulate filter regeneration events
 - Gains sufficient PM mass for speciation analysis
- Large SO4 contribution
- Used to inform EC and SO4 speciation rates in MOVES2010
- Updated in MOVES2013 to include additional CMAQ PM2.5 species



MOVES2013 Sulfate Calculator

- 1. Sulfate emissions based on PM2.5 speciation profiles
 - MOVES can replicate PM profiles measured in exhaust testprograms
 - Sulfate contribution to base PM2.5 rates is accounted for
 - Total PM = Sum of PM species
- 2. Accounts for fuel and lube oil contributions
 - Adjusted to the fuel sulfur level
 - Accounts for contribution from lubricating oil

MOVES2013 Sulfate Calculator


MOVES

Sulfate Calculator Values for Conventional Diesel

MOVES2013 Sulfate Calculator

• Gasoline vehicles

 Coefficients estimated from sulfate measurements made with high sulfur fuel (Kansas City Light-duty Vehicle Emissions Study) and EPA in-house testing at low sulfur fuel, (Sobotowski,2013)

Conventional Diesel (pre-2007)

 Regression of sulfate vs. fuel sulfur measurements from the Diesel Emissions Control- Sulfur Effects Project (DECSE 2001)

• 2007+ Diesel

 Coefficients from model estimated by Kittelson et al. (2008) Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas Continuously Regenerating Trap.
 16

MOVES2013 Sulfate Calculator

Source	Process	SO ₄ /PM _{2.5} fraction	SO ₄ /NonEC PM fraction (S _B)	Fuel sulfur Level, ppm (x_B)	Estimated fraction from fuel sulfur (F _B)	
Gasoline	running exhaust	7.2%	8.4%	161.2	68.7%	
	start exhaust	0.9%	1.7%			
	running exhaust	1.0%	4.9%			
Pre-2007 diesel	extended idle and start	5.3%	9.8%	172.0	72.6%	
Post-2007 diesel	running, extended idle, start	67.6%	73.6%	11.0	48.3%	

$$SO4_x = NonECPM \times S_B \times \left[1 + F_B \times \left(\frac{x}{x_B} - 1\right)\right]$$

 S_B = reference sulfate fraction

x = the user- supplied or default fuel sulfur level for the MOVES run

 x_B = reference fuel sulfur level

 $\vec{F_B}$ = the percentage of sulfate originating from the fuel sulfur in the reference case, and $SO4_x$ = sulfate emissions at the fuel sulfur content for the MOVES run

MOVES2013 Sulfate Calculator: Example

1. Calculate sulfate emissions from 100 grams of gasoline PM from a passenger car at 5 ppm fuel sulfur content

MOVES

MOVES2013 Sulfate Calculator: Example

- 1. Calculate sulfate emissions from 100 grams of gasoline PM from a passenger car at 5 ppm fuel sulfur content
 - EC=14, NonECPM = 86
 - Fraction of sulfate in NonECPM, $S_B = 8.4\%$
 - Fuel contribution to sulfate, $F_B = 68.7\%$
 - Reference fuel sulfur level from Kansas City, $x_B = 161.2$
 - Fuel sulfur content, x = 5

		SO ₄ /PM ₂₅	SO ₄ /NonEC PM fraction	Fuel sulfur Level, ppm	Estimated fraction from
Source	Process	fraction	(S _B)	(x _B)	fuel sulfur (F _B)
Gasoline	running exhaust	7.2%	8.4%	161.2	68.7%

MOVES

MOVES2013 Sulfate Calculator: Example

- 1. Calculate sulfate emissions from 100 grams of gasoline PM from a passenger car at 5 ppm fuel sulfur content
 - EC=14, NonECPM = 86
 - Fraction of sulfate in NonECPM, $S_B = 8.4\%$
 - Fuel contribution to sulfate, $F_B = 68.7\%$
 - Reference fuel sulfur level from Kansas City, $x_B = 161.2$
 - Fuel sulfur content, x = 5

$$SO4_x = NonECPM \times S_B \times \left[1 + F_B \times \left(\frac{x}{x_B} - 1\right)\right]$$

$$SO4_x = 86 \times 0.084 \times \left[1 + 0.687 \times \left(\frac{5}{161.2} - 1\right)\right]$$

 $SO4_{x} = 7.2 \times [0.33] = 2.4$

Answer: By reducing the sulfur level from 161.2 to 5 ppm, the sulfate is reduced by 2/3 to 2.4 grams SO4

Updates to SO₂ Calculator

	MOVES2010b	MOVES2013
	SO2 conversion	SO2 conversion
Source	values (%)	values (%)
Gasoline	99.84%	99.69%
Pre-2007 Diesel	98.00%	97.48%
2007 Diesel	54.16%	88.15%

Large increase in SO2 conversion, because lube oil contribution large fraction of the diesel 2007+ sulfate emissions

SO2 fractions updated to be consistent with SO4 update21

MOVES2013 Crankcase Calculator

- 1. Speciation different between crankcase and exhaust emissions
- Crankcase emissions for 2007+ diesel engines are included with the exhaust measurements for certification

Background: Diesel Crankcase Emissions

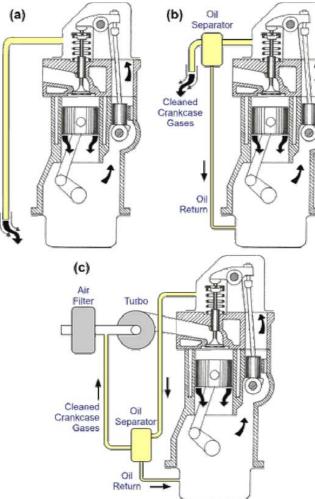


Figure 6. Crankcase Ventilation Systems (a) Open unfiltered crankcase ("road draft tube"); (b) Open crankcase filtration system; (c) Closed crankcase ventilation (CCV)

a) Open unfiltered crankcase

- 'Road draft tube'
- Used on pre-2007 turbocharged diesel engines

b) Open crankcase filtration system

- Most 2007+ heavy-duty diesel engines
- Crankcase emissions included in certification measurement
- DPFs lower emissions substantially, such that engines can meet the standard with <u>filtered</u> crankcase emissions.

c) Closed system

- Degrades turbocharger performance
- d) Routing the crankcase to the DPF (not shown)
 - Poisons the DPF
 - Requires a pump in the crankcase to overcome pressure differential in DPF

Source: Dieselnet, ACES program

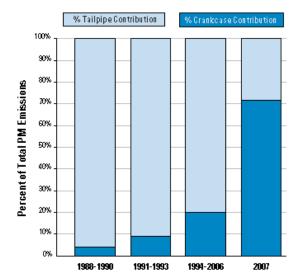
Speciation Differences

Conventional Diesel Crankcase Emissions

- Blow-by gases + oil droplets
- Large OC/PM fraction
- Conventional Diesel Exhaust
 - Large EC/PM fraction

Measurements made on two conventional diesel transit buses (Zielinska et al. 2008)

	Crankcase	Tailpipe Exhaust
	Clairkease	Talipipe Exhaust
EC/PM2.5	1.57%	81.05%

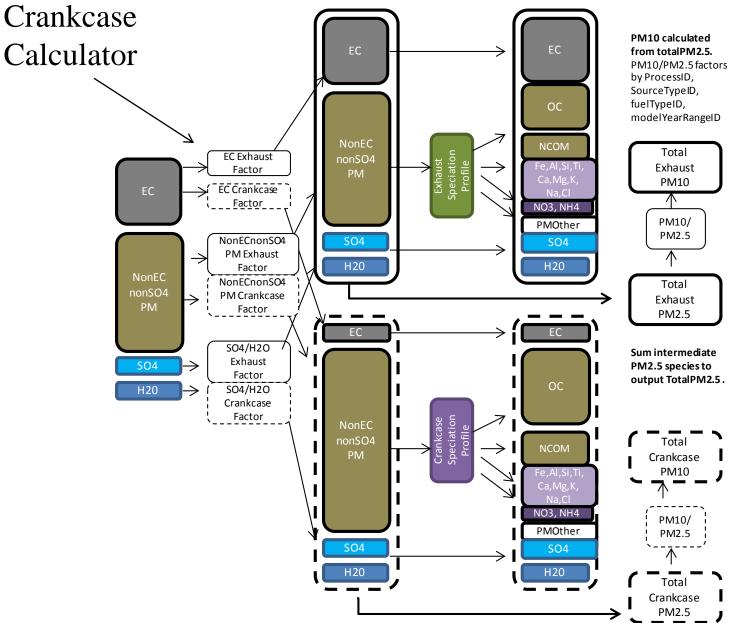

Large Crankcase Contribution

 Crankcase contributes a larger fraction of the total emissions

MOVES

 Crankcase emissions included in the regulatory measurements of 2007+ diesel engine

FIGURE 1 EMISSIONS CONTRIBUTIONS TAILPIPE & CRANKCASE


Crankcase emissions levels in diesel engines have remained relatively low compared to tailpipe emissions until 2006. On newer engines, as emissions from tailpipes reduce, crankcase emissions become a greater share of total allowable particulate matter (PM) emissions.

Source: Donaldson Filtration Solutions

Exhaust and crankcase intermediate PM2.5 species. Individual ratios for EC, NonECnonSO4PM, SO4, and H2O. Ratios differ by polProcessID SourceType, fuelTypeID, modelYearRangeID

Speciated PM2.5 emissions

by ProcessID (start/running/extended idle exhaust and start/running/extended idle crankcase emissions), SourceTypeID, fuelTypeID, modelYearRangeID

MOVES MOVES2013 Crankcase Values for Diesel PM2.5

			Pre-2007 D	iesel	2007+ Diesel	Splits 2007+ diesel emissions into exhaust and
				Extended	All	crankcase emissions
Pollutant	Process	Start	Running	Idle	processes	ennissions
EC		1	1	1	0.62	
nonECnonSO4PM	Exhaust	1	1	1	0.62 4	
SO4		1	1	1	0.62	
H2O		1	1	1	0.62	
EC		0.009	0.004	0.012	0.38	
nonECnonSO4PM	Crankcase	0.295	0.954	0.268	0.38	
SO4	Clairkease	0.295	0.954	0.268	0.38	
H2O		0.295	0.954	0.268	0.38	

The pre-2007 diesel crankcase emission factors shown are derived such that the crankcase PM2.5 emissions are 20% of the PM2.5 exhaust measurements, and have an EC/PM split of 1.57%.

1. Calculate Crankcase emissions from 100 grams of conventional diesel running PM. What is the EC/PM fraction?

1. Calculate Crankcase emissions from 100 grams of conventional diesel running PM. What is the EC/PM fraction?

	Running Emissions		
EC	79		
nonECnonSO4PM	20		
SO4	1		
H2O	0		
Sum =	100		
EC/PM =	79.4%		

1. Calculate Crankcase emissions from 100 grams of conventional diesel running PM. What is the EC/PM fraction?

			Crankcase		
	Running		Emissions		Crankcase
	Emissions		Factor		Emissions
EC	79	х	0.004	=	0.31
nonECnonSO4PM	20	х	0.954	=	18.72
SO4	1	Х	0.954	=	0.96
H2O	0	х	0.954	=	0
Sum =	100				
EC/PM =	79.4%				

1. Calculate Crankcase emissions from 100 grams of conventional diesel running PM. What is the EC/PM fraction?

			Crankcase		
	Running		Emissions		Crankcase
	Emissions		Factor		Emissions
EC	79	х	0.004	=	0.31
nonECnonSO4PM	20	х	0.954	=	18.72
SO4	1	Х	0.954	=	0.96
H2O	0	Х	0.954	=	0
Sum =	100				20
EC/PM =	79.4%				1.6%

Answer: Crankcase PM2.5 = 20 grams

EC/PM = 1.6% (same as measured by Zielinska et al. 2008)

MOVES

MOVES2013 2007+ Diesel Crankcase Emissions

PM2.5 Speciation

- Speciation measurements in ACES combined exhaust + crankcase emissions
- Same speciation applied to exhaust and crankcase emissions

• Crankcase emissions

- Included in the base PM rates for 2007 diesel which are estimated on certification standards
- 38% of total emissions (tailpipe+ crankcase)
 - CRC ACES Phase 1 Program

• MOVES2013

 Splits 2007+ diesel emissions into exhaust and crankcase emissions

	i	i
		2007+
		Diesel
		All
Pollutant	Process	processes
EC		0.62
nonECnonSO4PM	Exhaust	0.62
SO4	EXIIausi	0.62
H2O		0.62
EC		0.38
nonECnonSO4PM	Crank-case	0.38
SO4	Crank-case	0.38
H2O		0.38

Summary

- Calculates PM2.5 species needed for air quality modeling
- Incorporates differences in PM2.5 speciation by:
 - Source Type
 - Fuel type
 - Temperature
 - Model year/technology
 - Emission process
- New sulfate calculator
 - Based on PM2.5 speciation
 - Accounts for sulfate contribution from lubricating oil and fuel
- New crankcase calculator
 - Accounts for crankcase emissions in the exhaust measurements
 - Calculates separate PM2.5 speciation for tailpipe and crankcase.

MOVES

References:

- 1. Simon, H.; CMAQv5.0 PM other speciation. http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_PMother_speciation
- 2. Reff, A.; Bhave, P. V.; Simon, H.; Pace, T. G.; Pouliot, G. A.; Mobley, J. D.; Houyoux, M.; Emissions Inventory of PM2.5 Trace Elements across the United States. Environmental Science & Technology 2009 43 (15), 5790-5796
- 3. Kansas City PM Characterization Study. Final Report, EPA420-R-08-009. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency Ann Arbor, MI, EPA Contract No. GS 10F-0036K, October 27, 2006, Revised April 2008a by EPA staff. <u>http://www.epa.gov/oms/emission-factors-research/420r08009.pdf</u>.
- 4. Clark, N.N. and Gautam, M. HEAVY-DUTY Vehicle Chassis Dynamometer Testing for Emissions Inventory, Air Quality Modeling, Source Apportionment and Air Toxics Emissions Inventory. August 2007. CRC Report. No. E55/59
- 5. Khalek, I. A.; Bougher, T. L; Merrit, P. M.; Phase 1 of the Advanced Collaborative Emissions Study. CRC Report: ACES Phase 1, June 2009.
- 6. Sobotowski, R.; Test Program to establish LDV Full Useful Life PM Performance. EPA Docket # EPA-HQ-OAR-2011-0135. March 2, 2013.
- 7. Diesel Oxidation Catalysts and Lean-NOx Catalysts. Final Report. Diesel Emission Control –Sulfur Effects (DECSE) Program. June 2001. Sponsored by: The U.S. Department of Energy, Engine Manufacturers Association, Manufacturers of Emission Controls Association.
- 8. Kittelson, D. B.; Watts, W. F.; Johnson, J. P.; Thorne, C.; Higham, C.; Payne, M.; Goodier, S.; Warrens, C.; Preston, H.; Zink, U.; Pickles, D.; Goersmann, C.; Twigg, M. V.; Walker, A. P.; Boddy, R. Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas Continuously Regenerating Trap. Environmental Science & Technology. 2008 42 (24), 9276-9282.
- 9. Jääskeläinen, H. Crankcase Ventilation. DieselNet Technology Guide. www.DieselNet.com. Copyright © Ecopoint Inc. Revision 2012.12.
- 10. Kalayci, Veli. "Spiracle™ Crankcase Filtration Systems: Technical Article" . Donaldson Company, Inc. January 2011. Available at : www.donaldson.com/en/engine/support/datalibrary/053490.pdf
- 11. Zielinska, B.; Campbell, D.; Lawson, D. R.; Ireson, R. G.; Weaver, C. S.; Hesterberg, T. W.; Larson, T.; Davey, M.; Liu, L.-J. S. 2008. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics Environ. Sci. Technol. 42(15): 5661-5666.

PM Speciation

Reductions to PM2.5 in MOVES2013 compared to MOVES2010b due to silicone contamination.

Strata	Vehicle Type	Model group	Start	Running	
1		pre-1981	0%	35.3%	
2	Truck	1981-1990	0%	25.3%	
3		1991-1995	0%	34.5%	
4		1996-2005	0%	19.1%	
5		pre-1981	0%	14.6%	
6	Car	1981-1990	0%	3.5%	
7		1991-1995	0%	6.1%	
8		1996-2005	0%	8.5%	

Updated Light-duty EC/PM2.5 ratios

Updated EC/PM2.5 ratios by start and running in MOVES2013

	Start E	EC/PM	Running EC/PM		
Vehicle Type	MOVES2010	MOVES2013	MOVES2010	MOVES2013	
Car	35.0%	44 40/	18.0%	1/1 00/	
Truck	33.0%	44.4%	7.0%	14.0%	

MOVES2013 Crankcase Values

		Pre-2007 Diesel			2007+ Diesel	1969-2050 Gasoline/CNG	1960-1968 Gasoline Vehicles	Gasoline Motor- cycles
				Extended	All		All	All
Pollutant	Process	Start	Running	Idle	processes	All processes	processes	processes
EC		1	1	1	0.62	1	1	1
nonECnonSO4PM	Exhaust	1	1	1	0.62	1	1	1
SO4		1	1	1	0.62	1	1	1
H2O		1	1	1	0.62	1	1	1
EC		0.009	0.004	0.012	0.38	0.008	0.2	0
nonECnonSO4PM	Crankcase	0.295	0.954	0.268	0.38	0.008	0.2	0
SO4		0.295	0.954	0.268	0.38	0.008	0.2	0
H2O		0.295	0.954	0.268	0.38	0.008	0.2	0