Mapping MOVES TOG to Chemical Mechanism Species for Air Quality Modeling

Harvey Michaels

FACA MOVES Review Workgroup July 9, 2013

Air Quality & Modeling Center Assessment and Standards Division U.S. EPA Office of Transportation & Air Quality

MOVES Output is Used for Air Quality Modeling

Source: Zubrow & Baek MOVES Workshop, June 2011

What are "Chemical Mechanism Species" for AQ Models?

- To make the chemistry of air quality models computationally feasible, the thousands of actual hydrocarbons are mapped to a relatively few "chemical mechanism" (CM) species.
 - Some CM species are real species (e.g., ethanol)
 - Other are artificial constructs, sometimes referred to as lumped or surrogate species. For example, in CB05, acrolein is mapped 2/3 by weight to ALDX2 and 1/3 to OLE.
- CM species are specific to a particular chemical mechanism (e.g., CB05, SAPRC-07)

Mapping TOG to CM Species

- The mapping of pure species to CM species is not the problem.
- The problem is mapping TOG to CM species.
- The mapping depends on the composition of the TOG.
- The composition of the TOG depends on fuel, emission process, and technology.
 - Light duty gasoline: Pre-Tier 2 vs. Tier 2
 - Heavy-duty diesel: pre-2007 and 2007+

How do you map TOG to CM species?

- A separate "real speciation profile" is associated with the TOG from each fuel, technology, and process.
- Each real speciation profile is used to create a "CM speciation profile" that maps TOG from each fuel-technology-process combination to the CM species needed by the chemical mechanism of the air quality model.

What is the change in MOVES2013?

• We will move the mapping of TOG to CM species from outside MOVES to inside MOVES.

- MOVES2010b
 - MOVES produces TOG and some of its components
 - SMOKE maps these MOVES outputs into the CM species needed by the air quality model.
- MOVES2013
 - MOVES produces TOG and some of its components
 - MOVES maps these MOVES outputs into the CM species needed by the air quality model.

OTAQ

Problems with the current method

- Since speciation profiles depend on technology and fuels, they vary depending of the mix of model years and also on the location.
- Users create combined speciation profiles that approximate the mix of technologies and fuels

Internal Mapping in MOVES2013 solves these problems

- Since MOVES knows the MY, technology, and fuels for every emission factor, it applies the correct speciation profile internally.
- External approximations are not needed.
- Approximate, combined speciation profiles do not need to be constructed.
- MOVES emission factors may be aggregated without concern that the detail needed to apply speciation profiles will be lost.
- Simpler and less error-prone emissions processing in SMOKE.

"Integration" of MOVES's Pure Species

- MOVES's pure species are those it produces directly
- Those we intend to integrate are listed on the following slide.
- "Integration" means taking advantage of MOVES accuracy in estimating those species.

MOVES pollutantID	pollutantName
5	Methane (CH4)
20	Benzene
21	Ethanol
22	MTBE
24	1,3-Butadiene
25	Formaldehyde
26	Acetaldehyde
27	Acrolein
40	2,2,4-Trimethylpentane
41	Ethyl Benzene
42	Hexane
43	Propionaldehyde
44	Styrene
45	Toluene
46	Xylene
185	Naphthalene gas

Integration Procedure

- Choose the pure species that you want to integrate.
- Map each pure species to CM species
- Remove each pure species from each of the TOG real speciation profiles and renormalize.
- Residual TOG = TOG integrated species
- Run the residual TOG through the speciation tool.
- Repeat for each TOG speciation profile

Summary

- Speciation does not change regular MOVES output.
- Able to provide CM species for multiple mechanisms.
- Able to work with multiple integrated species sets
- Table driven

Appendices

OTAQ's Current TOG Speciation Profiles

Profile	Description
1001	CNG Exhaust
4547	Diesel Headspace
8750	Pre-Tier 2 E0 exhaust
8751	Pre-Tier 2 E10 exhaust
8752	Pre-Tier 2 E85 exhaust
8753	E0 Evap
8754	E10 Evap
8755	E85 Evap
8756	Tier 2 E0 Exhaust
8757	Tier 2 E10 Exhaust
8758	Tier 2 E15 Exhaust
8766	E0 evap permeation
8769	E10 evap permeation
8770	E15 evap permeation
8774	Pre-2007 MY HDD exhaust
8775	2007+ MY HDD exhaust
8855	Tier 2 E85 Exhaust
8869	E0 Headspace
8870	E10 Headspace
8871	E15 Headspace
8872	E15 Evap

Example: Measurement data of speciation profile 8754 (E10 Evap)

Species	Weight %	Species	Weight %	Species	Weight %
N-butane	15.28123	Methyl t-butyl ether (MTBE)	0.32299	Cis-1,3-dimethylcyclopentane	0.01536
Toluene	14.52534	Cis-2-pentene	0.26655	Trans-2-butene	0.01496
Ethyl alcohol	12.05397	1-Methyl-4-ethylbenzene	0.25152	Cis-2-hexene	0.00837
Isopentane (2-Methylbutane)	8.68314	1,3,5-trimethylbenzene	0.20641	2,2-dimethylpropane	0.00610
N-pentane	5.77987	1-pentene	0.18041	1-nonene	0.00503
2-methylpentane (isohexane)	4.76063	2,2,5-trimethylhexane	0.10195	Trans-3-hexene	0.00463
M & p-xylene	4.71071	N-propylbenzene	0.10093	4-methyl-1-pentene	0.00362
2,2,4-trimethylpentane	3.39812	N-octane	0.09355	2-methyl-2-hexene	0.00358
Benzene	3.22889	1,2-diethylbenzene (ortho)	0.08790	1-hexene	0.00283
N-hexane	2.57000	2,3-dimethylhexane	0.08696	4-methylheptane	0.00249
2,3,4-trimethylpentane	2.17414	3-methylheptane	0.08234	3,3-dimethylhexane	0.00184
3-methylpentane	2.07707	1,2,3-trimethylbenzene	0.07438	1-octene	0.00184
2,3-dimethylpentane	1.94405	Methylcyclohexane	0.06724	3,3-dimethylpentane	0.00163
O-xylene	1.79764	N-dodecane	0.05522	Trans-3-heptene	0.00148
Ethylbenzene	1.74398	3,5-dimethylheptane	0.04573	Trans-2-heptene	0.00140
2,3-dimethylbutane	1.53902	2,5-dimethylhexane	0.04538	Isoprene (2-methyl-1,3-butadiene)	0.00132
2,4-dimethylpentane	1.24435	N-butylbenzene	0.04403	2,2-dimethylpentane	0.00132
1-Methyl-3-ethylbenzene (3-Ethyltoluene)	1.08770	2-methylheptane	0.04300	Cis-2-heptene	0.00126
2,2-dimethylbutane	1.03006	Cis-2-butene	0.03893	2,4,4-trimethyl-1-pentene	0.00110
2-methyl-2-butene	0.93867	3-methyl-trans-2-pentene	0.03461	Trans-4-octene	0.00103
1,2,4-trimethylbenzene (1,3,4-trimethylbenzene)	0.93781	4-methyl-trans-2-pentene	0.03084	1-butene	0.00084
Isobutane	0.91797	3-methyl-1-butene	0.03022	Cis-1,3-dimethylcyclohexane	0.00082
Trans-2-pentene	0.83594	1-ethyltertbutylether	0.02959	2,2,3-trimethylbutane	0.00074
Methylcyclopentane	0.57393	Cyclohexane	0.02716	Cyclohexene	0.00073
3-methylcyclopentene	0.56980	Cyclopentene	0.02638	1,3-cyclopentadiene	0.00068
N-heptane	0.55577	Trans-2-hexene	0.02571	4-methyloctane	0.00068
2-methyl-1-butene	0.47804	2,4-dimethyloctane	0.02353	Isobutylene (isobutene)	0.00066
3-methylhexane	0.44654	Trans-1,2-dimethylcyclopentane	0.02319	3-Ethylpentene	0.00066
2-methylhexane	0.42919	1-Methyl-2-ethylbenzene	0.02192	2,2-dimethylhexane	0.00064
Propane	0.41839	2-methyl-2-pentene	0.02001	3-methyloctane	0.00053
2,4-dimethylhexane	0.33404	1,4-diethylbenzene (para)	0.01736	3,3-dimethyl-1-butene	0.00042
Cyclopentane	0.32339	2-methyl-1-pentene	0.01568	Trans-2-octene	0.00040

Example: CM Species for Speciation Profile 8754 (E10 evap)

		Divisor
CB05 Species	Mass fraction	(converts to moles)
ALD2	6.52E-03	28.0532
ALDX	1.63E-04	34.0583
FORM	1.63E-03	14.0266
IOLE	0.023	55.7057
ISOP	2.18E-05	68.117
OLE	1.47E-03	28.0505
PAR	0.8413	14.4007
TOL	1.81E-03	93.6146
UNR	6.62E-03	14.5616
XYL	0.1174	106.3957

Math

- Residual TOG = TOG integrated species
- IntermediateCMSpecies(gram-moles) = MOVES pollutant (grams) * speciationMassFraction/ speciationDivisor

where "MOVES pollutant" refers to residual TOG and the integrated species

 CMSpeciesSum(gram-moles) = SUM(IntermediateCMSpecies(gram-moles)) eq2

Speciation of MOVES HAPs

Pollutant Name	CMspecies	MassFraction	Divisor
Methane	CH4	1	16.04
Benzene	PAR	0.1667	13.0186
Benzene	UNR	0.8333	13.0186
Ethanol	ETOH	1	45.5934
MTBE	PAR	0.8	17.6296
MTBE	UNR	0.2	17.6296
1,3-Butadiene	OLE	1	27.0452
Formaldehyde	FORM	1	30.026
Acetaldehyde	ALD2	1	44.0526
Acrolein	ALDX	0.6667	37.3755
Acrolein	OLE	0.3333	37.3755
2,2,4-Trimethylpentane	PAR	0.875	14.2786
2,2,4-Trimethylpentane	UNR	0.125	14.2786
Ethyl Benzene	PAR	0.125	13.2706
Ethyl Benzene	TOL	0.875	92.8944
Hexane	PAR	1	14.3626
Propionaldehyde	ALDX	0.6667	38.7194
Propionaldehyde	PAR	0.3333	19.3597
Styrene	OLE	0.125	26.0373
Styrene	TOL	0.875	91.1305
Toluene	TOL	1	92.1384
Xylene	XYL	1	106.165
Naphthalene gas	PAR	0.2	12.8171
Naphthalene gas	XYL	0.8	102.536