SAMPLING AND ANALYSIS PLAN / QUALITY ASSURANCE PROJECT PLAN

BNSF SANGAMON RIGHT-OF-WAY CHICAGO, COOK COUNTY, ILLINOIS

December 2015

Prepared for:

BNSF Railway Company Minneapolis, Minnesota

Sampling and Analysis Plan / Quality Assurance Project Plan

BNSF SANGAMON RIGHT-OF-WAY CHICAGO, COOK COUNTY, ILLINOIS

Prepared for:

BNSF Railway Company Minneapolis, Minnesota

Prepared by:

TRC Environmental Corporation 230 West Monroe Street, Suite 2300 Chicago, Illinois 60606

TRC Project No. 230807

December 2015

TABLE OF CONTENTS

Page

	LIST	OF ACRONYMS vi
1.0	INTR	ODUCTION1-1
	1.1	Site Description and Removal Work Plan Activities1-1
	1.2	Purpose and Objectives
	1.3	Project Organization and Responsibilities
	1.4	Project Schedule1-2
2.0	EXC	VATION SAMPLING ACTIVITIES
	2.1	Portable XRF Techniques
		2.1.1 XRF Screening Methodology
		2.1.2 XRF Screening Frequency
		2.1.3 XRF Screening Criteria2-2
	2.2	Laboratory Confirmation Sampling and Analysis2-2
	2.3	Field Documentation2-3
3.0	DAT	A QUALITY OBJECTIVES
4.0	QUA	LITY ASSURANCE / QUALITY CONTORL (QA/QC)
	4.1	Decontamination Procedures
	4.2	Field Equipment
		4.2.1 Field Calibration
		4.2.2 Preventative Maintenance
	4.3	Field Sampling Methods4-3
		4.3.1 Field Sample Designation
	4.4	Laboratory Sampling Methods
		4.4.1 Laboratory Sample Designation
		4.4.2 Chain of Custody
		4.4.3 Custody Seals
		4.4.4 Sample Handling, Packaging, and Shipping
	4.5	Quality Control Samples
5.0	FIEL	D SAMPLING DOCUMENATION
6.0	DAT	A VALIDATION
7.0	COR	RECTIVE ACTION
	7.1	Field Sampling Corrective Action7-1
	7.2	Laboratory Corrective Action7-1
	7.3	Data Evaluation QA Corrective Action

8.0	REFERENCES	8-	1
-----	------------	----	---

LIST OF FIGURES

- Figure 1. Site Location Map
- Figure 2. Removal Areas / Sampling Results Cullerton Street to West 18th Street
- Figure 3. Fence Location Map West 18th Street to West 16th Street

LIST OF APPENDICES

- Appendix A XRF Instruction Manual
- Appendix B Pace QAPP

LIST OF ACRONYMS

AMP	Air Monitoring Plan
bgs	below ground surface
BNSF	BNSF Railway Company
COC	Chain of custody
°C	degrees Celsius
DQOs	Data Quality Objectives
Delta XRF	Delta Premium XRF Spectrometer
HASP	health and safety plan
Loewenthal	former Loewenthal Metals facility
LCSs	Laboratory control samples
mg/kg	milligrams per kilogram
mg/L	milligram per liter
MS/MSD	Matrix spike / matrix spike duplicate
NELAP	National Environmental Laboratory Accreditation Program
OSHA	Occupational Safety and Health Administration
Pace	Pace Analytical Services, Inc.
PID	Photoionization detector
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
XRF	X-ray fluorescence
RAWP	Removal Action Work Plan
ROW	right-of-way
SAP	Sampling and Analysis Plan
TCLP	toxic characteristic leaching procedure
TRC	TRC Environmental Corporation
US EPA	United States Environmental Protection Agency

1.0 INTRODUCTION

On behalf of BNSF Railway Company (BNSF), TRC Environmental Corporation (TRC) prepared this *Draft Sampling and Analysis Plan / Quality Assurance Project Plan* (SAP / QAPP) for the property along the railroad right-of-way (ROW) east of South Sangamon Street between Cullerton Street to the south and West 16th Street to the north in Chicago, Illinois (the Site). This SAP / QAPP provides the soil sampling and soil analytical requirements associated with the *Removal Action Work Plan* (RAWP), dated _______. Health and safety requirements to be followed during the on-site sampling activities are described in the *Site-Specific Health and Safety Plan* (HASP, 2015) included as Attachment A of the RAWP. Air monitoring requirements to be followed during the removal activities are described in the *Air Monitoring Plan* (AMP) included as Attachment D of the RAWP.

1.1 Site Description and Removal Work Plan Activities

The Site is located in Section 20, Township 39N, Range 14E in Chicago, Cook County, Illinois. The Site is located in a predominantly residential area with outlying industrial properties east of the BNSF ROW. The Site is the BNSF ROW that runs parallel to South Sangamon Street between 16th Street to the north to 21st Street to the south (Figure 1).

Removal activities will take place between West 18th Street to the north and West 21st Street to the south. The characteristically hazardous lead removal activities that will take place between West 18th Street to the north and Cullerton Street to the south as shown on Figure 2. A fence will be installed to restrict access of the BNSF ROW between West 18th Street and West 16th Street.

Initial activities at the Site will include the installation of traffic controls, temporary fencing and the removal of existing trees/shrubs, railroad track and ties as well as other limited structures. Excavation of the characteristically hazardous lead-impacted soil will be conducted first followed by the excavation of the remaining ROW soil material to approximately 2 feet below grade. All materials will be directly loaded into trucks and disposed of off-site at licensed facilities. While excavation activities are taking place, TRC will conduct air monitoring, evaluating the need for fugitive dust management, and coordinating dust control as necessary. In addition, TRC will coordinate traffic and road control at the Site. Following excavation activities, a demarcation geotextile will be installed as well as a clean soil cap. The clean soil cap will be seeded with grass.

During the excavation removal activities, x-ray fluorescence (XRF) soil screening will be conducted. Refer to Section 2.1 for additional details on the XRF soil screening. In addition, confirmation soil sampling will be conducted at the excavation boundaries of the

hazardous waste areas. Refer to Section 2.2 for additional details on the confirmation soil sampling and analysis.

1.2 Purpose and Objectives

The purpose of this SAP / QAPP is to provide the approach for soil screening / sampling to confirm attainment of cleanup levels for hazardous lead-impacts in soils as defined by previous soil investigations and during the implementation of the RAWP activities. The QAPP describes the quality assurance / quality control (QA/QC) and other technical activities that will be implemented to ensure that the results of the sampling to be performed will meet project requirements.

1.3 Project Organization and Responsibilities

The overall responsibility for the soil screening, confirmation soil sampling and air monitoring sampling during implementation of the RAWP is assigned to the TRC Project Manager, who will be responsible for overseeing the QA/QC for the work. The RAWP provides detailed project organization and field personnel assignments.

The project team will perform the project planning, XRF soil screening, confirmation soil sampling, air monitoring and data summary tasks. Details on the air monitoring are provided in the AMP in **Attachment D** of the RAWP.

The project team members assigned for the Site work will be health and safety trained under OSHA (29 CFR 1910.120). TRC personnel will participate in the removal oversight, soil XRF screening, confirmation soil sampling, quality management, and local coordination activities. The selected laboratory will be certified by United States Environmental Protection Agency (US EPA) for analysis of lead in soil. At this time, that laboratory is tentatively selected as Pace Analytical Services, Inc. (Pace) located in Green Bay, Wisconsin.

1.4 Project Schedule

Refer to Section 5.0 of the RAWP for the anticipated schedule. Overall, the plan is to begin removal activities by Spring 2016 with reporting completed by the end of June 2016.

2.0 EXCAVATION SAMPLING ACTIVITIES

Three separate areas have toxic characteristic leaching procedure (TCLP) lead concentrations above the characteristically hazardous criteria of 5 milligram per liter (mg/L) between West 18th Street to the north, and Cullerton Street to the south. Based on the soil analytical results, each excavation is estimated to measure approximately 20 feet by 20 feet by 2 feet below grade surface (bgs). No excavations will be conducted beyond BNSF ROW property boundaries. The removal of the characteristically hazardous soil will be confirmed using XRF screening techniques and confirmation soil sampling at the excavation boundaries of the three separate areas.

2.1 Portable XRF Techniques

Once the 20 feet by 20 feet excavations have been completed, a portable, hand-held XRF will be used to screen the remaining in-situ soil (sidewalls and bottom of excavation) for lead. The XRF will only be utilized at the excavations where characteristically hazardous soil above 5 mg/L have been detected during previous investigations.

Previous investigations and removal activities showed a correlation between XRF and laboratory results. In general, if the XRF shows lead screening concentrations at 2,100 milligrams per kilogram (mg/kg) of less, the removal action is deemed complete. In the event that hazardous levels of lead are detected above the soil screening level (2,100 mg/kg) at the hazardous lead zone excavation boundaries, additional soil will be excavated and disposed. The excavation of the hazardous lead zones will continue until 1) soil screening results at all excavation boundaries are below the soil screening level, or 2) the BNSF property boundary has been encountered.

2.1.1 XRF Screening Methodology

This procedure establishes a uniform method for screening soil for lead using an Innov-X-Systems portable XRF analyzer in accordance with US EPA Method 6200. **Appendix A** provides the Specifications and Instruction Manual for the Olympus Innov-x Delta Premium XRF Spectrometer (Delta XRF). The Delta XRF uses patented SmartBeam technology utilizing a miniature, rugged x-ray tube system. This technology replaces the three radioactive isotopes used in earlier hand-held XRFs, eliminating the need to control and account for radioactive materials. The excitation source is an enclosed x-ray tube which operates with a 10⁻³⁵ kilovolt (kV), five 50 uA silver anode. Analysis is completed utilizing a preset, internal instrument calibration.

Instrument preparations and standard sample analysis will follow the manufacturer's operation procedures and includes the following:

- In-situ soil testing: Placing the XRF unit directly onto the ground for testing with care taken to ensure that the XRF is placed flush to the soil, and
- Bagged soil sample testing: Collecting the soil sample in a plastic bag.

To confirm the in-situ field screening results, composite soil samples will be collected in the field in plastic bags, and screened with the XRF as wet weight samples. The samples will be placed into labeled plastic bags and mechanically homogenized by the field technician, and a minimum of five readings will be taken for total lead only. Results will be recorded in the field logbook.

2.1.2 XRF Screening Frequency

In-situ XRF soil screening will be conducted a minimum of every 5 feet along each sidewall at 0.5 foot bgs, 1 foot bgs, and 1.5 feet bgs. The bottom of each excavation will also be in-situ field screened at 4 random locations. For excavations adjacent to buildings or large trees, the face of the slope will be analyzed using the XRF a minimum of every 5 feet of sloped sidewall.

To confirm the in-situ field screening results, a bagged composite sidewall sample will be collected every 5 feet at the above listed depths. A minimum of five XRF readings will be taken for total lead only. A bagged composite sample will also be collected at 4 random locations from the floor of the excavation. A minimum of five XRF readings will be taken for total lead only. An arithmetic average will be completed of the five readings and compared to the screening criteria.

2.1.3 XRF Screening Criteria

If any of the in-situ field screening results exceed 2,100 mg/kg of lead, additional excavation will be completed at the sidewall location or bottom of the excavation. An arithmetic average will be completed of the five readings as noted above and compared to the screening criteria (2,100 mg/kg of lead). If the average of the five readings is above 2,100 mg/kg, additional in-situ field screening will be conducted to evaluate where additional soil excavation is necessary.

2.2 Laboratory Confirmation Sampling and Analysis

Confirmation soil samples will be collected and analyzed by an off-site laboratory for total and TCLP lead at the boundaries of the hazardous lead excavation limits. Note, hazardous waste excavations will not extend beyond BNSF ROW boundaries.

If any one or more of the excavations have reached the BNSF ROW property boundaries, field screening will be conducted as described above and a composite confirmation soil sample for laboratory analysis will be collected and analyzed to evaluate the total and TCLP lead concentration remaining at the BNSF ROW property boundary. Excavation will not be conducted beyond the BNSF ROW property boundaries.

The laboratory confirmation soil analysis methods are described in Section 4.2. The requirements for QA/QC samples are provided in Section 4.4.

2.3 Field Documentation

A bound field notebook indicating the time, date, and location of sampling screening locations and/or confirmation sample locations, if applicable (including a written description and figure references), description of the sample preservation, sample identification number, analysis completed or requested and laboratory to which any off-site analytical confirmation samples were sent will be kept on Site. This notebook and associated figures, laboratory reports, and copies of chain-of-custody will be maintained as part of the project records. Additional information on field documentation is provided in Section 5.0.

3.0 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQOs) are quantitative and qualitative statements specifying the quality of the environmental data required to support the decision making process. Data quality will be assured through compliance with the field screening, analytical and project management procedures set forth in this SAP / QAPP.

The principal quantitative DQO requiring quality assurance is determining the presence of total lead concentrations above 2,100 mg/kg (the XRF field screening criteria) and confirming by laboratory analysis the remaining total and TCLP lead concentrations at BNSF ROW property boundaries.

Hazardous waste excavation limits will be confirmed by portable XRF field screening techniques, and confirmation laboratory analysis at BNSF ROW property boundaries. Section 4 describe how these methods will be applied.

4.0 QUALITY ASSURANCE / QUALITY CONTORL (QA/QC)

Data quality will be maintained through compliance with the analytical, field, and project management procedures set forth in this QAPP. The purpose of this section is to detail the analytical quality assurance program dictated by the DQOs defined in Section 3 above. All data generated by the field sampling and analytical laboratory will be required to meet the quality standards of the methods used. Sample holding times are provided in the summary table below. Analytical methods, detection limits, and analytical quality control procedures in accordance with SW-846 in the event that confirmation soil sampling is conducted, Pace will tentatively be utilized for all submitted laboratory analytical results. The Laboratory Quality Assurance Program of Pace is provided in **Appendix B**.

4.1 Decontamination Procedures

Any non-disposable sampling equipment shall be fully decontaminated between locations, and before it is removed from the site. Decontamination will consist of soap and water wash and potable water rinse with the addition of a distilled water rinse. Additional scrubbing may be required to remove all encrusted materials.

Potentially lead-impacted soil is present at the Site. TRC personnel and contractors shall take precautions to prevent the spread of potentially impacted soil onto adjoining roadways and properties.

Heavy equipment (i.e. excavator and/or backhoe) utilized for excavation activities will be visually inspected prior to, and at the completion of each excavation area (hazardous and non-hazardous areas). If the tracks on the heavy equipment become soiled, the driver will physically clean the tracks of soil with a shovel and place the material within the last truck-load of soil going off for treatment and disposal prior to leaving the excavation area and the Site. The driver of heavy equipment will inspect his/her vehicle for loose soil hanging off the truck, truck tracks, and bucket prior to leaving an excavation area. Decontamination water, if generated will be mixed into the impacted soil and placed within the last truck-load of soil going off for treatment and disposal.

Trucks and equipment will use the pre-determined access road to the excavation area. Refer to the *Traffic Management Plan*. Trucks will be lined, tarped and inspected prior to leaving the excavation area. Street sweeping shall be made available to keep streets and curbs clean in the exit of the haul road and beyond.

A truck route will be prepared and adhered to for the drivers to minimize travel on the side roads near the community and will bypass the local grammar school two blocks to the East and South of the right of way. Main City of Chicago roads will be utilized with proper weight limits and overhead clearances to the main interstate roads.

4.2 Field Equipment

This section outlines the necessary field equipment for sample collection.

List of Equipment Needed

- Photoionziation detector (PID)
- Delta-XRF
- Field logbook and field data sheets
- Personal protective equipment (Level D)
- Tape measure
- Camera
- Zip-lock type bags
- Sample containers, labels, and appropriate Chain-Of-Custody paperwork (provided by the selected laboratory)
- Stainless steel or Disposable trowel
- Disposable containers (sample homogenization)
- Cooler and sealed ice packs
- Shipping labels
- Indelible ink pens

4.2.1 Field Calibration

Calibration procedures, calibration frequency, and standards for measurement will be conducted according to manufacturers' guidelines. To ensure that field instruments are properly calibrated and remain operable, the following procedures will be used, at a minimum:

- Operation, maintenance, and calibration will be performed in accordance with the instrument manufacturers' specifications.
- All standards used to calibrate field instruments will meet the minimum requirements for source and purity recommended in the equipment operation manual. Standards will be used before any expiration dates that may be printed on the bottle.
- Acceptable criteria for calibration will be based on the limits set in the operations manual.
- All users of the equipment will be trained in the proper calibration and operation of the instrument.

- Operation and maintenance manuals for each field instrument will be brought to the site.
- Field instruments will be inspected before they are taken to the site.
- Field instruments will be calibrated at the start and end of each work period. Meters will be recalibrated, as necessary, during the work period.
- Calibration procedures (including time, standards used, and calibration results) will be recorded in a field notebook. Although not reviewed during routine QA/QC checks, the data will be available if problems are encountered.

4.2.2 Preventative Maintenance

Preventive maintenance of field instruments and equipment will follow the operations manuals. A schedule of preventive-maintenance activities will be followed to minimize downtime and ensure the accuracy of measurement systems. Maintenance will be documented in the field notebook.

4.3 Field Sampling Methods

Details of the field screening and sampling are provided in Section 2 of this document. In general, sampling procedures and collection techniques follow the procedures presented in Section 2 to assure consistent collection and reliable data generation. Field sampling activities include the collection of field soil XRF screening sampling. The table below summarizes the container, method and hold time. Operation guidelines for the XRF equipment are presented in **Appendix A**. Field staff will refer to the SAP and instruction procedures for the XRF equipment when conducting field screening and sampling activities.

Summary of Sample Collection, Preservation and Hold Times Criteria for Field Soil Sampling

Parameter	Methods	Container Type	Preservation	Extraction Hold Time	Analysis Hold Time
Total lead (on- site XRF)	6200	Plastic bag	None	N/A	180 days

4.3.1 Field Sample Designation

XRF field-screening sampling locations will be documented in the field logbook. The plastic-bagged soil screening samples will be labeled directly on the plastic bag to match the sampling location documented in the field logbook as follows:

• Excavation identification, sidewall direction or bottom of excavation, and depth

For example, GP-3-NS-2 represents the XRF sample collected from excavation GP-3, north sidewall at 2 feet; GP-3-B-3 represents the XRF sample collected from excavation GP-3 bottom at 3 feet.

4.4 Laboratory Sampling Methods

TRC will collect confirmation composite soil samples from the side walls and floor of the hazardous waste excavations and submit them for laboratory analysis including total and TCLP lead. At least three grab samples will be collected from each sidewall and floor of each hazardous waste excavation and placed within a zip-lock bag and comingled to homogenize the soil sample. The composite soil sample will then be transferred and placed in unpreserved 4 or 8 ounce glass jars, labeled accordingly, and placed on ice into coolers. The table below summarizes the container, method and applicable hold times. The coolers will be shipped overnight to Pace in Green Bay, Wisconsin.

Summary of Sample Collection, Preservation and Hold Times Criteria for Off-Site Laboratory Confirmation Soil Samples

Parameter	Methods	Container Type	Preservation	Extraction Hold Time	Analysis Hold Time
Total lead (off- site laboratory)	6010 Met ICP Red. Interference; preparation method 3050	One, lab-		N/A	180 days
TCLP lead (off- site laboratory)	Preparation Method EPA 3010; Leachate Method 1311; 6010 Met ICP Red. Interference	provided 4-8 ounce clear, wide mouth glass jar with lid	None	14 days	180 days

4.4.1 Laboratory Sample Designation

Confirmation laboratory composite soil sampling locations will be marked with stakes or flags and measured using appropriate measuring tools. Once the stakes are marked and in place, the area will be photographed.

Composite samples collected from each location, other than those collected for onsite field measurements or analyses, shall be identified by using a standard label which is attached to the sample container. The following information shall be included on the sample label:

- Site name;
- Date and time of sample collections;

- Designation of the sample;
- Type of sample with brief description of sampling location (depth);
- Signature of sampler;
- Sample preservative used, if applicable; and,
- General types of analyses to be conducted.

4.4.2 Chain of Custody

As few persons as possible will handle the confirmation laboratory composite soil samples. The sample collector is personally responsible for the care and custody of samples collected until they are transferred to another person. The Site team leader will determine whether proper custody procedures were followed during field work and decide if additional samples are required.

The chain-of-custody (COC) record must be completed by the person responsible for sample shipment to the subcontracting laboratory. All constraints on time and analytical procedures should be marked on the record. The custody record should also indicate any special preservation or filtering techniques required by the laboratory.

COC records must be kept with the samples at all times. When transferring the samples, the parties relinquishing and receiving them must sign, date, and note the time on the record. Each shipment of samples to the laboratory must have its own COC record with the contents of the shipment, method of shipment, name of courier, and other pertinent information written on the record.

4.4.3 Custody Seals

Custody seals are preprinted adhesive-backed seals with security slots designed to break if the seals are disturbed. Seals are placed on all shipping containers, if off-site confirmation soil sampling is conducted. The seals shall be signed and dated before use.

4.4.4 Sample Handling, Packaging, and Shipping

All soil samples to be analyzed for total and/or TCLP lead will be placed laboratory provided clean glass jars with Teflon-lined lids. The soil samples for laboratory analyses will be immediately placed on ice and maintained at a temperature of approximately 4 degrees Celsius (°C). Samples collected by the project team will be relinquished to the laboratory courier or shipped to the laboratory using the method described below.

• Select a sturdy cooler in good repair. Secure and tape the drain plug with fiber or duct tape.

- Allow sufficient space in all laboratory bottles to compensate for any pressure and temperature changes (approximately 10 percent of the volume of the container).
- Be sure the lids on all bottles are tight (will not leak), and baggies are sealed.
- Put "blue ice" (or ice that has been placed in heavy duty polyethylene bags and properly sealed) on top of or between the samples. Pack samples securely to eliminate breakage during shipment.

Place the COC form into a plastic bag, tape the bag to the inner side of the cooler lid and then close the cooler and securely tape (preferably with fiber tape) the top of the cooler shut. Custody seals should be affixed to the top and side of the cooler so that the cooler cannot be opened without breaking the seal.

4.5 Quality Control Samples

Field duplicate samples will not be collected for total lead field XRF analysis. Duplicate soil samples will be collected at a rate of 1 per 20 samples or 5% for the confirmation soil samples. No additional QC samples will be collected and analyzed.

Laboratory precision and accuracy will be assessed as described in the Pace QAPP which is an approved National Environmental Laboratory Accreditation Program (NELAP). A copy of the Pace QAPP is included as **Appendix B.**

For each cooler shipped or transported to the analytical laboratory, a laboratoryprovided sample will be included that is marked "temperature blank." This blank will be used by the laboratory sample custodian to check the temperature of samples upon receipt.

Trip blanks will not be necessary since volatiles will not be analyzed.

5.0 FIELD SAMPLING DOCUMENATION

Field staff will be required to adhere to the health and safety protocols provided in the HASP (**Attachment A** of the RAWP). Personnel with appropriate up-to-date health and safety training certifications per Occupational Health and Safety requirements will comprise the field team. Prior to field activities, all on-site personnel will be instructed on site-specific health and safety protocols. Field logbooks will be maintained to document all activities performed in the field. General information to be recorded each day include time of each activity performed, weather conditions, and other pertinent observations. The referenced procedures contained in the SAP and Appendix A will be used to guide or direct field personnel in decision making and collection practices. Actual procedures will be determined in the field and may follow one or more of the referenced procedures or be modified in response to field conditions. The type of and rationale for any modifications to procedures will be recorded in a field logbook.

The following records are to be documented and maintained:

- 1. A copy of the HASP and original sign-off sheet;
- 2. Documentation of the "Level of Protection" donned during sampling (can be in field logbook) and instances where the "Level of Protection" was upgraded, if applicable;
- 3. Copy of any accident or injury reports;
- 4. Completed record of field work including; logbook, personnel, the amount, in tons or cubic yards, of removed or backfilled material; instances where work was stopped or postponed; and record of street sweeping;
- 5. Air monitoring results;
- 6. Calibration and equipment maintenance logs;
- 7. Photographs; and
- 8. Chains of custody.

6.0 DATA VALIDATION

Validation of the confirmation sampling analytical results as received from the laboratory will be performed by trained TRC personnel. TRC utilizes a data validation checklist which will be conducted for each data package as necessary. The purpose of data validation is to verify and retrace the path of the sample from the time of receipt for analysis to the time the final data package report is generated.

The following information will be reviewed during data evaluation, as applicable:

- Sampling locations and blind sample numbers
- Sampling dates
- Requested analysis
- COC documentation
- Sample preservation, if applicable
- Holding times
- Method blanks
- Surrogate recoveries
- Matrix spike / matrix spike duplicate (MS/MSD) results
- Laboratory duplicates (if analyzed)
- Field duplicates
- Laboratory control samples (LCSs)
- Method reporting limits above requested levels
- Any additional comments or difficulties reported by the laboratory
- Overall assessment

The results of the data evaluation review will be summarized for each data package on the TRC data assessment checklist.

The Pace data deliverables will be Level 2 and provided in PDF format via email to the TRC Project Manager.

7.0 CORRECTIVE ACTION

When field sampling activities or laboratory QC results show the need for corrective action, immediate action will take place and will be properly documented. In the event that a problem arises, corrective action will be implemented. Any error or problem will be corrected by an appropriate action which may include:

Replacing or repairing a faulty measurement system; discarding erroneous data; collecting new data; and, accepting the data and acknowledging a level of uncertainty.

7.1 Field Sampling Corrective Action

The on-site field supervisor will be responsible for all field QA. Any out of protocol occurrence discovered during field monitoring or sampling will be documented in the field logbook and immediate corrective action will be taken. For problems or situations which cannot be solved through immediate corrective action, the field supervisor will immediately notify the TRC Project Manager. The TRC Project Manager and field supervisor will investigate the situation and determine who will be responsible for implementing the corrective action. Corrective action will be implemented upon approval by the TRC Project Manager. The Project Manager and at a later date, verify that the corrective action has been taken, appears effective, and at a later date, verify that the problem has been resolved. The successfully implemented corrective action will be documented in the field logbook by the on-site field supervisor. Any deviations from the QA protocol in this QAPP must be justified, approved by the TRC Project Manager (and BNSF, as necessary), and properly documented.

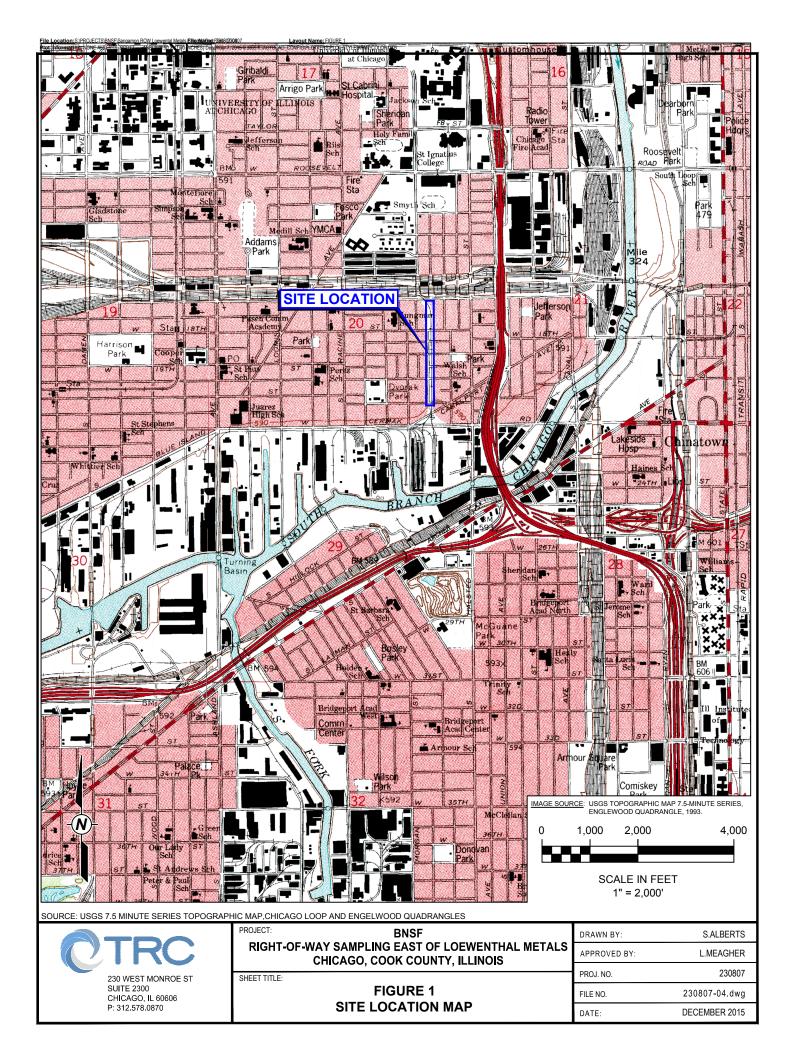
7.2 Laboratory Corrective Action

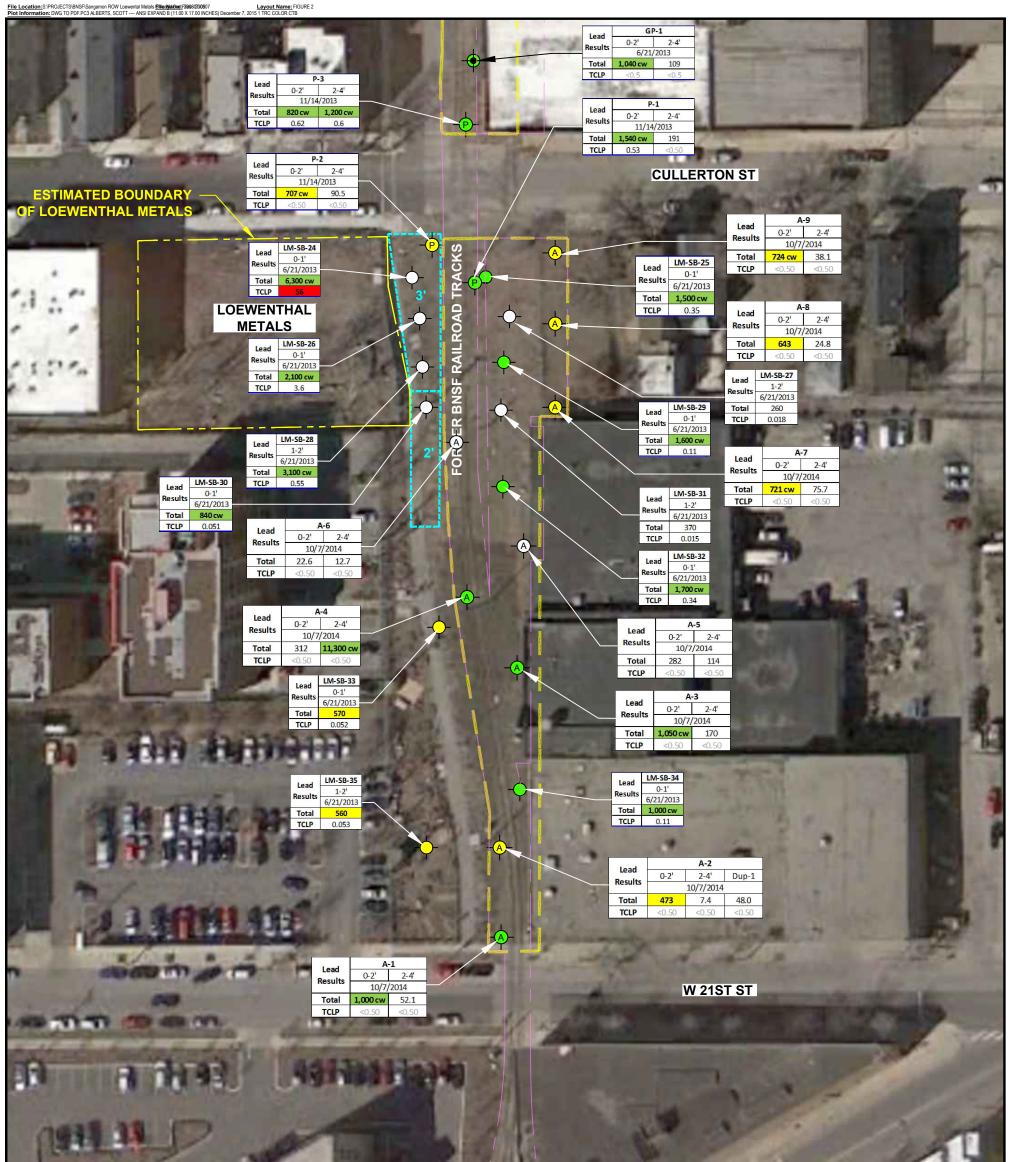
Corrective action will be implemented to correct discrepancies found which affect the validity or quality of confirmation soil analytical data, and to identify any analytical data that may have been affected. Limits of data acceptability are addressed in the Pace QAPP. Whenever possible, immediate corrective action procedures will be employed. All laboratory corrective actions are to be followed according to their QAPP (**Appendix B**). Any corrective action performed by the laboratory and associated analyst will be noted in laboratory logbooks.

7.3 Data Evaluation QA Corrective Action

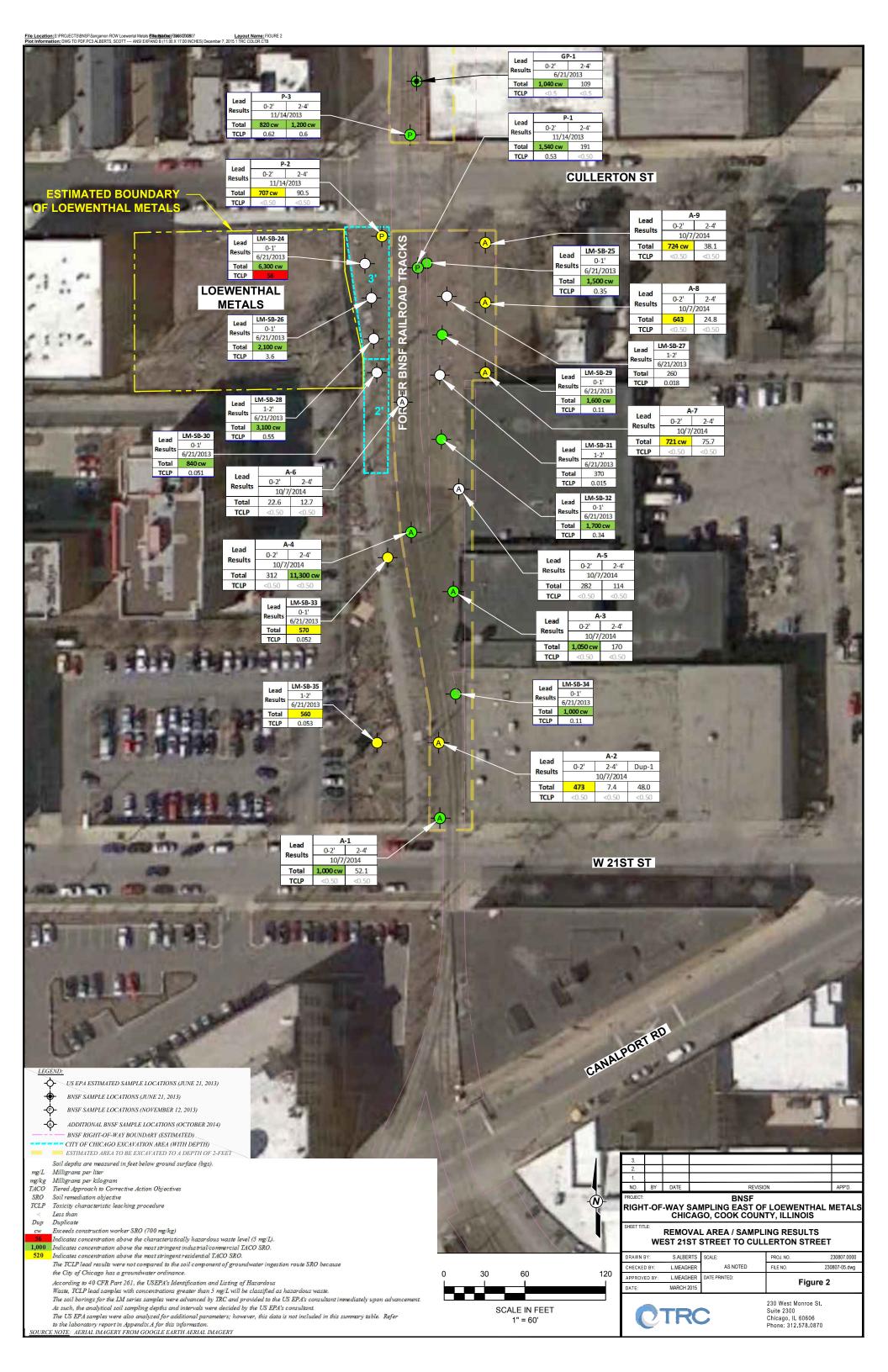
Upon completion, sample data packages in PDF format will be sent from the laboratory to TRC for data validation via email. If all project samples are not present in the data packages or any deficiencies affecting the sample results are noted, TRC will contact the Laboratory Project Manager via email. The Laboratory Project Manager may respond via email or phone to any inquiries and provide any changes to the data packages to TRC. Any errors, problems, questionable data values, or data values outside of established control

limits will be corrected by the appropriate action which may include disregarding erroneous data, collecting new data, and accepting the data and acknowledging a level of uncertainty. The data validation report will provide a description of the usability of the data.

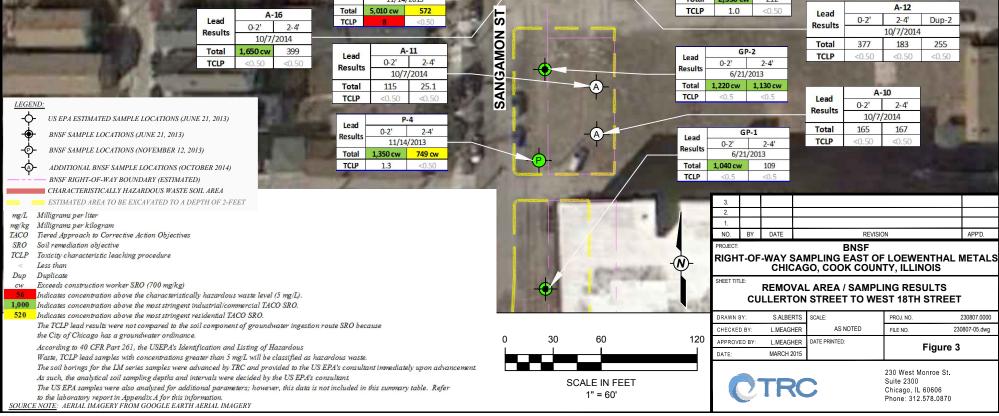

8.0 **REFERENCES**


TRC. 2014. Soil Sampling Results. TRC Environmental Corporation. December 1.

US EPA. 2015. Loewenthal Website; http://www.epa.gov/region5/cleanup/loewenthal/



FIGURES



LEGEND:				CANAI	PORTRE		1		
	2001 2-4				Sec.		1000	Contrading of the	1.000
BNSF SAMPLE LOCATIONS (JUNE 21, 2013)	Λ	1		10			-	-	-
-O- BNSF SAMPLE LOCATIONS (NOVEMBER 12, 2013)		1		1000				Contraction of the	Contraction of the local division of the loc
-A- ADDITIONAL BNSF SAMPLE LOCATIONS (OCTOBER 2014)		100		21				1000	-
BNSF RIGHT-OF-WAY BOUNDARY (ESTIMATED)					- N				100
CITY OF CHICAGO EXCAVATION AREA (WITH DEPTH)			2 - 1		100		All states in the local st	manage of the local division of the local di	
ESTIMATED AREA TO BE EXCAVATED TO A DEPTH OF 2-FEET						-			
Soil depths are measured in feet below ground surface (bgs).			1		3.				
ng/L Milligrans per liter				1.12	2.				
mg/kg Milligrams per kilogram TACO Tiered Approach to Corrective Action Objectives					NO. BY	DATE	REVIS	SION	APP'D.
SRO Soil remediation objective				J.	PROJECT:		BNSF		
TCLP Toxicity characteristic leaching procedure				-W-	RIGHT-OF	-WAY SAM	IPLING EAST O	F LOEWENT	AL METALS
< Less than							O, COOK COU		
Dup Duplicate cw Exceeds construction worker SRO (700 mg/kg)				10.0	SHEET TITLE:				
 cw Exceeds construction worker SRO (700 mg/kg) Indicates concentration above the characteristically hazardous waste level (5 mg/L). 							AREA / SAMP		
1,000 Indicates concentration above the most stringent industrial/commercial TACO SRO.				Cho I	VVE	5121513	STREET TO CUI	LERION SI	KEET
520 Indicates concentration above the most stringent residential TACO SRO.					DRAWN BY:	S.ALBERTS	SCALE:	PROJ. NO.	230807.0000
The TCLP lead results were not compared to the soil component of groundwater ingestion route SRO because					CHECKED BY:	L.MEAGHER	AS NOTED	FILE NO.	230807-05.dwg
the City of Chicago has a groundwater ordinance.	0	30	60	120	APPROVED BY:	L.MEAGHER	DATE PRINTED:	E i au	
According to 40 CFR Part 261, the USEPA's Identification and Listing of Hazardous Waste, TCLP lead samples with concentrations greater than 5 mg/L will be classified as hazardous waste.					DATE:	MARCH 2015		Fig	ure 2
many, i can sample who concentrations greater what i may be more cleaning and an analysis and and a mass. The soil borings for the LM series samples were advanced by IRC and provided to the US EPA's consultant immediately upon advanceme	ent.								
As such, the analytical soil sampling depths and intervals were decided by the US EPA's consultant.		SC	ALE IN FEET					230 West Monroe Suite 2300	St.
The US EPA samples were also analyzed for additional parameters; however, this data is not included in this summary table. Refer		50	1" = 60'			IR	2	Chicago, IL 6060	
to the laboratory report in Appendix A for this information. SOURCE NOTE: AERIAL IMAGERY FROM GOOGLE EARTH AERIAL IMAGERY								Phone: 312.578.0	870

File Location:SVPROJECTSIBNSPSangamon ROW Loewenial Metals Effect/add/027068050607 Layout Name: FIGURE 3 Plot Information: DWG TO PDF.PC3 ALBERTS, SCOTT — ANSI EXPAND B (11.00 X 17.00 INCHES) December 7, 2015 1 TRC COLOR CTB	
P-19 Total 24.5 72.2 11/14/2013 Total 24.5 72.2 Total 3,180 cw 168 TCLP 13.6 <0.5	P-20 Results 0-2' 2-4' 11/14/2013 Total 163 214 TCLP <0.5 <0.5 Lead Results 0-2' Dup-4 2-4' 10/8/2014 Total 639 505 101 Total 639 505 101
Lead Results A-28 TCLP 2.0 <0.2' 2.4' 10/8/2014 Total 638 288 TCLP 2.0 <0.50	Lead 0-2' 2-4' Results 10/8/2014 Total 127 185 TCLP <0.50
TCLP <0.50 <0.50 TCLP <0.50	Lead Results P-18 0-2' Total 1,320 cw 790 cw Total 417 201 TCLP <0.5
Lead Results RE2 0-2' 2-4' 10/7/2014 10/7/2014 Total 819 cw 463 TCLP <0.50	Lead Results A-22 0-2' 2-4' A P-16 Total 715 cw 139 Total 0-2' 2-4' 11/14/2013 TCLP <0.50
Lead Results P-15 0-2' 2-4' 11/14/2013 Total 834 cw 288 TCLP 0.53 <0.5	Lead Results 0-2' Dup-3 2-4' 10/7/2014 10/7/2014 Total 631 534 335 TCLP <0.50
Lead Results P-13 0-2' 2-4' 11/14/2013 11/14/2013 Total 343 86.9	TCLP <0.5
	Image: TCLP <0.50 Image: TCLP <0.50
	W 19TH ST
Lead Results 0-2' 2-4' 11/14/2013 11/14/2013 Total 661 115 TCLP <0.5	Lead A-18 Results 0-2' 2-4' 10/7/2014 10/7/2014 Total 1,400 cw 37.9 TCLP 3.0 0.50
Total 2,460 cw 1,040 cw TCLP 1.1 0.74	Results 0-2' 2-4' 6/21/2013 6/21/2013 6/21/2013 Total 3,190 cw 169 TCLP 49.8 <0.5
Lead 0-2' 2-4' Results 11/14/2013 11/14/2013 Total 1,320 cw 275 TCLP 0.64 <0.5	A Lead A-17 Results 0.2' 2.4' 10/7/2014 10/7/2014 Total 637 647 TCLP 1.3 2.2
Total 120 4,960 cw Lead Results A-15 TCLP 1.9 <0.50 10/7/2014 10/7/2014 1.9 <0.50	A A A Column 2 2-4' Image: A -13 Image: A-13 Image: Column 2 Image: A-13 Image: A -13 Image: Column 2 Image: A-13 Image: A -13 Image: Column 2 Image: A-13 Image: A -13 Image: Column 2 Image: A -13 Image: Column 2 Image: A -13 Image: Column 2 Image: A -12 Image: Column 2 Image: A

APPENDIX A XRF INSTRUCTION MANUAL

User Manual

Delta[™] Family: Handheld XRF Analyzers

PN_103201 Rev_A: June/2010

General

This Manual is solely the property of Innov-X Systems, Inc. and, along with the Delta[™] XRF analyzer to which it applies, is provided for the exclusive use of Innov-X clients under contractual agreement for Innov-X test and analysis equipment and services.

In no event does Innov-X Systems, Inc. assume the liability for any technical or editorial errors of commission or omission; nor is Innov-X liable for direct, indirect, incidental, or consequential damages arising out of the inability to use this Manual.

Government Restricted Rights Legend

Use, Duplication, or Disclosure by the US Government is subject to restrictions as set forth in subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software - Restricted Rights Clause at FAR 52.227-19.

Copyright

This Manual is protected by copyright, all rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise without written permission from the Innov-X Systems, Inc.

Trademarks

Innov-X, the Innov-X logo, Delta, Delta Docking Station, and Delta TestStand/Workstation are trademarks of Innov-X Systems, Inc.

Microsoft, Windows, Windows XP, and Windows CE are registered trademarks of Microsoft Cor-

poration in the United States and/or other countries.

All other products, companies, or service trademarks mentioned herein are the property of their respective owners.

Changes

Material in this Manual is for information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, Innov-X assumes no liability from errors or omissions in this document, or from the use of the information contained herein.

Innov-X Systems, Inc. reserves the right to make changes in the product design without reservation and without notification to its users.

Revision History

Release Date for this document and its individual sections is June, 2010. This enters the Innov-X document control system as Revision A

The material is available as Adobe PDF-type files. Distribution of the files or hard-copy representations is at the discretion of Innov-X Systems, Inc.

GO TO

See "A7. Legal Information" for information concerning Innov-X Systems, Inc.'s warranties, licenses, and liabilities.

Copyright[©] 2005-2010. By Innov-X Systems, Inc. All Rights Reserved

CONTENTS - Page 1 of 3

<u>Sec</u>	TION	Торіс	<u>Page</u>
Prefa	ce		7
	Manual S	Structure	7
	Documer	nt Conventions	9
		Messages	10
		Type Styles	10
C1 In	troductio	n	11
C 1. III		on of Delta System	11
	Description	Applications	11
	Delta Far	nily: Types, Models, Modes and	12
	Calibratio Inspectio		13
	•	le Delta Carry Case	14
		Istrument	15
		1. Handheld Analyzer	15
		2. Delta Docking Station (DDS)	16
		3. Accessories-	17
	STANDA	RD Accessories	17
		Batteries	17
		Delta Docking Station (DDS)	17
		Power Adapter for DDS	18
		I/O Cables	18
		Cal_Check (Standardization) Coupon	19
		Measurement Window Films	19
		Application Software	19
	OPTION	AL Accessories	20
		AC Power Adapter	20
		PC Software	20
		XRF Workstation	20
C2. S	afety Info		21
	Radiatior	a Safety Information	21
		Radiation Safety Program	22
	_ ··	X-Ray Safety	22
	General I	Precautions	22
		Service Considerations	23
	Electrical	Precautions	23
		Cables and Cords	24
		Cable Guidelines Delta Docking Station (DDS) and Li	24 24
		ion Battery Packs	24
		Indicator and Warning Lights	25
		Power Switch w/ Integral Indicator Light	25
		X-Ray Indicator Light Array	25
		X-Ray Indicator ON (Blinking)	26
		X-Ray Indicator ON Continuously (Not	26
		Blinking)	
		Proximity Sensor	26
		Back of Analyzer	26
		X-Ray Label	27
		Other Safety Features	27
		Proximity Sensor	27

<u>Sec</u>	TION TOPIC	<u>Page</u>
C2.	Safety Information, Continued	
	Safety Interlock Structure	28
	Software Trigger Lock	28
	Software Proximity Sensor	28
	Safeguards	28
	Instrument Usage Scenarios	29
	Correct Usage	29
	Test in Place	29
	Small Component Testing	29
	Incorrect (Unsafe) Usage	31
	Compliance	32
	Radiation Doses for Several Scenarios	32
	Radiation Doses from Typical Exposures	34
	Radiation Safety: Common Questions & Answers	35
	Analyzer Shut Down	36
	Delta Radiation Profile	37
~2	Safety Administration	39
55.	Radiation Safety Training Recommendations 39	39
	Dosimeter Badges	39 40
	Dosimeter Dadges Dosimeter Safety Program	41
	Registration Requirements	42
	rogionation requiremente	
C4.	Operations	43
	Safety First !	43
	Set Up and Use the Delta Docking Station	43
	Configure Delta Docking Station	44
	Use the Delta Docking Station for Charging	45
	Batteries	
	Use the Delta Docking Station for Startup - Initial Cal Check	46
		47
	SNAPSHOT of Delta's User Interface Typical Test Procedure	47 48
	End of Day Operations	40 49
	.DATA connection between analyzer and PC	49 49
	Battery Issues	- 50
	1 — Changing a Battery	50
	2 — Battery Status	50
	3 — HOT SWAP for Delta Battery	50
	Cal_Check Information	51
	TIPS - or - things you should know about the Delta	52
C5.	Alloy Analysis Modes	53
	Introduction to Alloy Analysis Modes	53
	Alloy, Alloy Plus, FastID, Pass/Fail,	
	Precious Metals Additions	F 4
	Determination of Grade Identification:	54 55
	Match Issues	55 56
	Grade Match Messaging	56 56
	SmartSort Nominal Chemistry	56 57
	Tramp Library	57 57
		57

CONTENTS - Page 2 of 3

SECTION	Торіс	<u>Page</u>				
C5. Alloy Analysis Modes, Continued						
Tes	st Sample Considerations	58				
	Coated or Painted Samples	58				
	Mixed Samples, Heterogeneous Materials	58				
	Small and Irregularly Shaped Samples	s 58				
Introduc	ction to FastID Mode (All Models)	59				
Introduc	ction to Pass/Fail Mode (All Models)	60				
	1. Fingerprint Option	60				
	2. Chemistry Option	60				
C6. Mining Mo		61				
Minir	ng, 2 Beam Mining, CAR Catalyst					
	Check Standards	62				
	Sample Presentation	62				
	in situ testing	62				
	Bagged or prepared sample testing Optional Accessories	62 62				
	Typical Test Procedure	62				
Mining	Mode Options	63				
winning	Factors	63				
	Procedure	63				
C7. Soil Mode		65				
	d 3 Beam Soil	65				
	vironmental and Exploration calibrations					
	de Beam Selection	65				
	SmartShot	65				
	PowerShot	65				
	Check Standards	66				
	Sample Preparation	66				
	r Goods Analysis Modes	67				
	and Consumer Products					
Introduc	ction to RoHS Mode	68				
	Test Overview Check Standards	68 69				
	Sample Presentation	69				
IEC Out	antitative Screening Requirements	69				
	Elemental Range/Limits for RoHS	70				
	Compliance	70				
	Grade Definitions for Screening	71				
Introduc	ction to Consumer Products Mode	72				
A1. Overview Spectrom	: X-Ray Fluorescence (XRF) netry	73				
Basic T		73				
History		75				
	Timeline for XRF Spectrometry	75				
	Elemental Analysis	76				
	EDXRF Spectrometers	77				

SECTION	<u>TOPIC</u>	<u>Page</u>
A2. Soil Tes	ting	79
	n 1: Commonly Accepted Methods for Portable XRF	79
Sectio	n 2: Overview of Field Usage:	80
Sectio	n 3: Quality Assurance	83
Sectio	n 4: Calibration for Innov-X Portable XRF	85
Sectio	n 5: Effects of Moisture on XRF Results	87
	n 6: Comparing XRF Results to atory Results	88
Sectio	n 7: Common Interferences	89
	n 8: Sample Prep Procedures and g Protocols	90
Sectio	n 9: NIST Certificates of Analysis	91
A3. Specific	ations	95
	Handheld Analyzer	95
	Docking Station	95
	Accessories	96
A4. Typical I	Delta Test Sequence	97
	X Delta User Interface	97
	Typical Sample Test Procedure	97
Best P	Practices for Testing Various Modes	99
	Check Standards	99
	Sample Presentation	100
A5. User Ma	intenance	101
	Alternative Techniques for Powering or Charging the Delta	101
	5.1.1. AC Power Adapter Kit	101
	5.1.2. Li ion Battery Charger	102
	Assembly Window Replacement for "Hinged Plate" Analyzers	104
A6 Packing	and Shipping	107
AU. FACKING	Instructions for Obtaining a RMA	107
	0	-
	Contact Points for Innovx Offices and Depots	107
	Special Regulations & Label for Shipping Li-Ion Batteries	108

CONTENTS - Page 3 of 3

SECTION	Τορις	PAGE			
A7. Legal Info	109				
Innov->	Innov-X Delta Analyzer Limited Warranty				
	General Terms	109			
	Limitation of Liability	110			
	Software	111			
	Warranty Period	111			
	Warranty Returns	111			
	Warranty Repairs	111			
Contac	ting Innov-X	111			
End Us	er Software License Agreement	112			
	Title	112			
	Copyright	112			
License	9	113			
	Use of the Software	113			
	Restrictions	113			
	Termination	114			
	U.S. Government End Users	114			
	European Community End Users	114			
	Medical or Therapeutic Use Prohibited	114			
Limited	warranty and Limitation of Remedies	115			
Limitati	on of liability	116			
Genera	1	116			
	tory Grade Libraries	117			
	brary Complement	117			
Tramp	•	117			
	Classic Factory Grade Library	118			
	Standard Factory Grade Library	120			
	Premium Factory Grade Library	122			

Delta Family End User Documentation Resources

During Delta's development and initial product shipments several End User documents have been created. They are listed in the table below.

Delta Documentation Resources		
Innovx	Release	
Part #	Date	Title
103202_RevA	July/2010	Delta User Interface Guide (UI version 2.5))
103201_RevR	June/2010	Delta Family User Manual (This document)
103076_RevA	3/2010	Delta Family Quick Start
101593_RevA	11/2007	Window Replacement: Hinged Plate HandHeld Analyzers
102922_RevA	2/2010	Delta Family User Manual (Canadian Edition)
103158_RevA	3/2010	HOW TO: Setup and Configure A-020-D Teststand/Workstation for Delta Analyzer
ТВА	6/2010	HOW TO: Convert A-020-A or A-020-O Teststand/Workstation to Support a Delta Analyzer

Preface

This *Preface* provides the following information:

- "Manual Structure" ٠
- "Document Conventions"

Manual Structure

This User Manual consists of eight chapters, ten appendices, this Preface, Table of Contents, and a Cover. Individual chapter material is summarized below:

C1. Introduction describes the basics of the system:

- The Innov-X Delta[™] Family •
- . Visual tour of the instrument noting all the major components
- **C2.** Safety Information describes general safety information:
 - **Priority Information**
 - **General Precautions** •
 - **Electrical Precautions**
 - X-ray Safety
 - Safety Interlock Structure
 - Safe and Unsafe Usage Scenarios
 - **Radiation Doses for Several Scenarios**
 - Comparative Analysis of Typical Exposure
 - **Common Questions and Answers**
 - **Delta Radiation Profile**
 - **Required Certification**
 - Analyzer Shut-down Procedures

C3. Safety Administration describes safety program information:

- **Radiation Safety Training Recommendations**
- Dosimeter badges
- A typical dosimeter monitoring program
- Dosimeter service contractors
- **Registration requirements**

C4. Operations describes operations and testing procedures:

- Configure and Use Delta Docking Station (DDS)
 - Start-up Procedure
 - Cal Check Issues
 - **Battery Issues**
 - Conducting and Ending Test Operations

NOTE

Information concerning the Delta Family's user interface is supplied in the companion document "Delta User Interface Guide" (PN103202_Rev2.5 June/2010). The goal is to provide revised Delta UI Guides when a substantial software change is released.

C5. Alloy Analysis Modes describes five specific modes and calibrations including:

 Alloy - Pass/Fail - Alloy Plus Precious Metal Additions FastID

C6. Mining Analysis Modes describes three specific modes and calibrations including:

- Minina
- Car Catalyst - Two Beam Mining

C7. Soil Analysis Modes describes two specific modes and two calibrations including:

— Soil	 Environmental
Three Deems Call	E La matta a

- Three Beam Soil Exploration
- LEAP issues for Classic Delta (PiN detector)
- Check Standards
- Sample Preparation

C8. Consumer Goods Modes describes two specific modes including:

- *RoHS Mode* provides a details from EU regulation directives which list the limits for RoHS elements and information for qualitative measurements.
- Consumer Products Mode is dedicated to testing for Lead (Pb)
- A1. Overview: X-Ray Fluorescence (XRF) Spectrometry presents background information and general knowledge, including:
 - Basic Theory and X-ray History
 - Elemental Analysis
 - EDXRF Spectrometers

A2. Soil Testing presents information on using the analyzer for soil analysis within certain accepted guidelines, including:

- Status for Field Portable XRF and Overview of Field Usage
- Quality Assurance
- Calibration for Innov-X Portable XRF
- Effects of Moisture on XRF Results
- Comparing XRF Results to Laboratory Results
- Common Interferences
- Sample Prep Procedures and Testing Protocols

A3. Specifications presents analyzer hardware and software specifications.

A4. Typical Delta Test Sequence

- Prerequisites noted by Mode
 - Grade Libraries
 - Check Standards
 - Sample Presentations
- Typical Test Sequence

A5. User Maintenance provides a key procedure/technique:

- Using the AC Power Adapter kit to replace a Li-ion battery
- Using the stand-alone battery charger
- Replacing a Prolene, Mylar, or Kapton Window

A6. Packing and Shipping gives the procedure for returning a unit to Innov-x.

• Warning Label for shipping products with Li-ion batteries

A7. Legal Information presents material, including:

- Analyzer Limited Warranty including:
- Limitation of Liability
- Warranty Period, Returns, and Repairs
- Instructions for Contacting Innov-X
- End User Software License Agreement including:
 - Use, Restrictions, and Termination of Software
 - Liability Limitations
- *A8. Alloy Grade Libraries* including the Alloy Factory Grade library for each Model, and a "Tramp" Library with seven base alloys.

Document Conventions

Messages

There are four messages used in this Manual:

WARNING, CAUTION, NOTE, and GOTO.

They are characterized by an icon and a message box topped with a colored banner. The message text is on a gray background. An example of each message is below:

	WARNING
	DEMANDS that you observe the actions given in the text. The WARNING message has a bold type style. <i>Remember</i> . The WARNING icon signifies information that denotes a potentially hazardous situation, which if not avoided, may result in serious injury or death.
	CAUTION
	SUGGESTS that you review the referenced details and heed the instructions offered. The CAUTION message has a regular type style with <i>emphasized keywords</i> .
	NOTE
	REQUESTS that you pay particular attention to a specified procedure or piece of infor- mation. Adds details that make it easier to use the system and this manual. The NOTE message has a regular type style.
	GO TO
*	DIRECTS the user to another portion of this manual, or to other reference materials containing relevant data.

The GOTO (or Pointer) message has a regular type style.

Type Styles

These conventions are used to present information:

Convention (Type Style)	Description
Bold	Indicates an action taken on a button or other item.
Italic	Menu commands, names of keys, buttons, tabs, or items from picklists. User-entered text. It is used for references to other documents, C(hapter) titles, and A(ppendix) titles (for example, " see " <i>C2. Safety Information"</i>). Labels on unit's I/O panels; panel or window names of the UI (User Interface).
Courier type- face	Computer displayed text or filename.

Pagination

Page numbering in this Manual is consecutive with the Front Cover being assigned Page Number 1. This enables the PDF document file and any hard-copy print to map to the Page field information in the Adobe Reader.

C1. Introduction

C1 includes a:

- Description of the Innov-X Delta[™] family of handheld XRF analyzers.
- Visual tour of the instrument(s) noting all the major features, and accessories.

Description of Delta System

What Is It?

The *Delta* is a handheld energy dispersive X-Ray fluorescence spectrometer, generally referred to as an XRF analyzer. A complete **Delta** package consists of:

- Handheld analyzer using an integrated group of instrument components that are sealed in an ergonomically designed, light-weight body. They include --
 - Controller
 - Color touchscreen (ergonomically mounted interactive display)
 - Membrane navigation keys
 - Choice of detectors (PiN or SDD) to meet wide-ranging application goals

Coordinated with these robust characteristics, the instrument's *key feature* is Innov-X's proprietary control, data acquisition, and analysis software with customer configured options.

Additional accessories (standard and optional) include:

- Li-lon batteries (2) {Standard}
- Delta Docking Station (DDS) Dedicated charging and calibration unit {Standard}
- Rugged waterproof carry case {Standard}
- Portable test stand to create a Delta workstation (A-020-D) {Optional}
- Soil foot (A-035) (Optional)
- Soil extension pole (990055) (Optional)
- Trimble Xplorer Package (Optional)

What Does It Do?

The expanded *Delta* family of handheld XRF instruments delivers fast and precise identification and analysis for elements from magnesium to uranium (Mg to U) depending on the selected model. A weatherproof/dustproof ultra rugged design including an integral heat sink permits users to conduct diverse analysis testing under severe operating conditions. An added convenience feature for field use is battery "Hot Swapping."

Applications

The analyzer gives accurate chemical analysis for commercial or industrial areas, such as:

- Positive Material Identification
 So
 - Scrap ProcessingEnvironmental Testing
- Mining and Exploration

Consumer Safety

Light Element & Aluminum Analysis

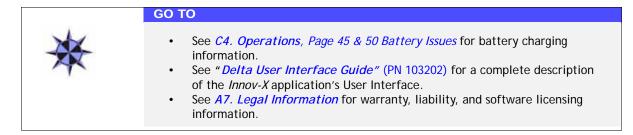
Delta Family: Types, Models, Modes and Calibrations

Delta Types and Models

Туре	Modes Models	
Premium	Alloy DP-2000	
	Environmental	DP-4000
	Mining	DP-6000
	RoHS	DP-6500
Standard	Alloy	DS-2000
	Environmental	DS-4000
	Mining	DS-6000
	RoHS	DS-6500
Classic	Alloy	DC-2000
	Environmental	DC-4000
	Mining	DC-6000
	RoHS	DC-6500

Modes and Calibrations

ALLOY Analysis	Alloy	MINING	Mining Mode	LEAD PAINT	Lead in Paint (HUD)
	Alloy Plus		2 Beam Mining		Lead in Paint (Industrial)
	FastID & Pass/Fail		Car Catalyst		
	Precious Metals			THIN	Filter Analysis
		CONSUMER	RoHS		Dust Wipe
SOIL Analysis	Environmental	GOODS	Consumer Products		
	Exploration				


Inspection

Inspection

Use this procedure:

- 1. Remove the carry case from the shipping cartons; save cartons.
- 2. Open the carry case Remove the shipping documentation
- 3. Verify that all the parts and accessories are included. Remember that the case has TWO FOAM LAYERS.
- 4. Verify that no visible damage occurred during shipping.

WARNING	
If there is damage to any of the components, DO NOT attempt to use the instrument. Immediately contact Innov-X Customer Support at:	
• United States: 1-781-938-5005	
• Europe: +31 (0)73 62 72 590	
• Canada: 1-778-960-6279	
• Australia: 02-9577-9500	
Or call your local distributor.	

Tour of the Delta Package

The figure below depicts *Delta's* major components as initially shipped to a customer. Note that the protective foam in the Carry Case has TWO LAYERS.

	Component Key	2 Foam: Top Layer Image: Cutout Image: Cutout 7 Image: Cutout
	—Foam: Top Layer—	3
1	Delta Analyzer	6
2	Carry Case	
3	Docking Station Charger	
4	USB Cable #1	
5	USB Cable #2	
6	Li-ion Batteries (2)	
7	Cal Check Coupon	
8	Extra Windows (Bag of 10)	
9	End/User Documentation	
	-Foam: 2nd Layer-	
10 11	Docking Station AC Power Adapter (Optional)	
		Foam: 2nd Layer

PN 103201 Rev_A: May/2010

Tour of Instrument

1. Handheld Analyzer

Component Key

	Delta – All Models
1	Delta Analyzer (Premium Model Shown)
2	Probe
3	Measurement Window (Prolene Film)
4	Hinged Window Plate
5	Docking Station Connector
6	Trigger
7	Handle - Non-Slip Rubber Grip
8	Battery Boot
9	Data Port w/ Rubber Cover
10	Heat Sink
11	I/O (Power) Switch w/ LED Indicator
12	X-ray Warning Light Array
13	Touchscreen for User Interface
14	Navigation Buttons

2. Delta Docking Station (DDS)

Component Key

	Delta - All Model
1	Delta Docking Station (Empty)
2	Analyzer Signal/Control Connector
3	Spare Battery Charge Socket
4	CalCheck Test Cup (316 stainless steel coupon)
5	Docking Station (Loaded)
6	Second Battery in Socket
7	Data Port(s): — Docking Station ->Rear
	— Analyzer -> Left Side
8	Input Power (12 VDC)
9	Indicator Lights
а	Second Battery Charging
h	Analyzan England

b Analyzer Engaged

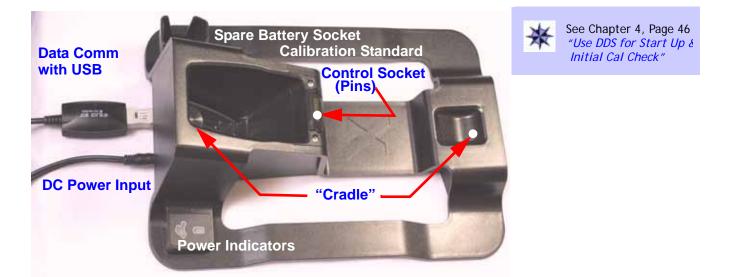
3. Accessories- List the Standard and Optional Accessories

Standard

- Batteries
- Delta Docking Station (DDS)
- DDS Power Adapter
- USB Cables 1 USB mini to USB A
- USB Cable 2 two part powered data cable
- Windows- Bags of Kapton and Prolene films
- Cal Check (Standardization) Coupon

STANDARD Accessories

Batteries


Two removable Li-ion batteries are standard accessories for the Delta.

Delta Docking Station (DDS)

This is key accessory. It provides three functions:

- Cal Check by one of two means "On Demand" or Automatically
- Charge internal battery in handle
- Charge additional battery in auxiliary socket

Optional

- AC Power Adapter (Battery Replacement)
- A-020-D TestStand/Workstation for Delta

Power Adapter for DDS

See Chapter 4, Page 44 "Configure DDS"

I/O Cables

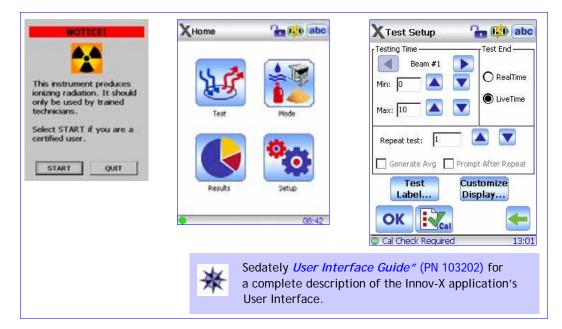
PN 101310: This *standard accessory* provides a means to transfer information into or out of the sealed analyzer. It is good practice to export the current day's testing results to your PC.

PN 103209 and 103210: This is a two part assembly that supports communication between the Delta Docking Station and a PC.

PN 103201 Rev_A: May/2010

Cal Check (Standardization) Coupon

This part is used as a reference sample to provide a test standard for a Cal Check procedure if the Docking Stations is not available. The instrument indicates when a Cal_Check is necessary.


Measurement Window Films

A bag of 10 window films are a standard accessory. The composition of the film is model and application dependent

Application Software

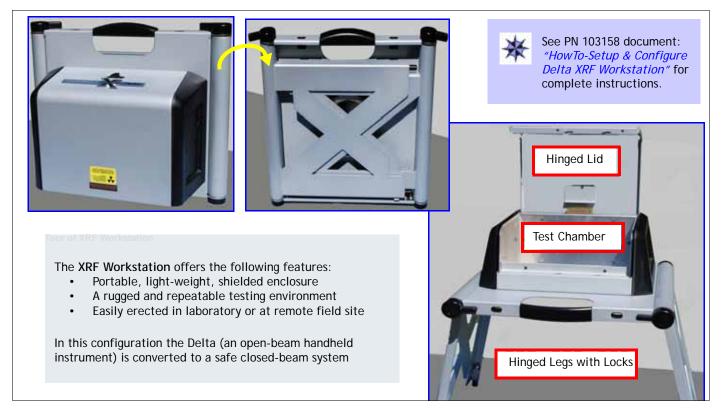
The *Delta* instrument is shipped with proprietary InnovX data acquisition and processing software and Windows Embedded CE[®] operating system. The User Interface employs an icon-based home page graphic style. Factory calibration has been completed on all purchased modes.

OPTIONAL Accessories

AC Power Adapter

PN 100043: This accessory enables the user to operate the instrument without the limitation of battery charge status. The unit comes with approximately ten feet of power cord that defines the effective range of use.

PC Software


This application package permits an operator to execute Innovx S/W functions from a PC. With cable PN 101310, a user can connect from the Delta's mini-USB data port to a PC's USB port. This package is optional for a handheld instrument and standard for A-020-D TestStand/Workstation. When used with the A-020-D the proper configuration cable is the powered USB assembly (PN 103209 - PN 103210)

XRF Workstation

The Delta XRF Workstation is comprised of two major components:

- A-020-D Test Stand, and
- Any Delta analyzer

In this configuration, the Delta is controlled by Innovx Delta PC Software. The open-beam handheld instrument is converted to a closed-beam workstation.

INNOV SYSTEMS

C2. Safety Information

C2 presents the following information:

- Radiation Safety Information
- General Precautions
- Electrical Precautions
- X-Ray Safety
- Compliance
- Instrument Usage Scenarios
- Radiation Dosage for Several Scenarios
- Radiation Safety: Common Questions and Answers
- Analyzer Shut Down Procedure

Radiation Safety Information

Always make Operational Safety your HIGHEST PRIORITY.

The *Delta* Handheld XRF Analyzer is a secure and dependable instrument when used according to Innov-X's recommended testing techniques and safety procedures. However, this instrument produces ionizing radiation; only individuals trained in correct operating techniques and authorized to use X-ray producing devices should be permitted to use it. The radiation detected at any outside surface (excluding the Prolene, Mylar, or Kapton window area) is below that required for an unrestricted area.

- Heed all warning labels and messages
 - Observe the safety interlock features

X-ray tubes in Delta instruments can emit dangerous levels of ionizing radiation.

Prolonged exposure can cause serious illness, injury, or death.

It is the responsibility of Innov-X Systems' customers to follow the operating instructions and safety recommendations of this guide and good radiation control practices.

Radiation Safety Program

Innov-X strongly recommends that organizations using *Delta* analyzers implement a formal *Radiation Safety Program* that includes:

- Dose monitoring of critical personnel.
- Monitoring of area radiation levels.
- Information specific to the site and application of the XRF system.
 - An annual review (and update, if necessary).

"C3. Safety Administration" provides a more comprehensive safety discussion for operators and managers.

X-Ray Safety

X-ray safety is a priority at any time and in any testing situation.

WARNING
 Innov-X analyzers must be used by trained and authorized operators, according to proper safety procedures. Improper usage may circumvent safety protections and could potentially cause harm to the user.
Heed all warning labels and messages.
 DO NOT USE the instrument if there is any chance that it is damaged or might leak radiation. In such a case, arrange for qualified personnel to perform a radiation safety test and repair any analyzer damage.

General Precautions

Apply these general safety guidelines when managing or operating the *Delta* instrument:

- Retain and follow all product safety and operating instructions.
- Comply with all warnings on the product and in the operating instructions.

Comply with the precautions listed in this section to reduce the risk to:

- Users
 - Physical injury
 - Electric shock
 - Radiation exposure
- Equipment damage
 - Measurement window
 - Overheated electronics and other internal components

Service Considerations

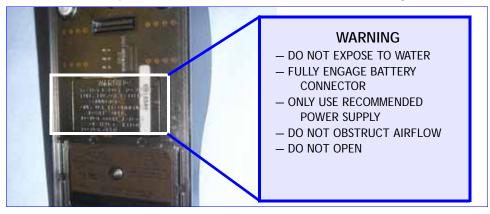
Except as expressly noted here, do not service any Innov-X product yourself. Opening or removing the external housings may expose you to electric shock and the instrument to mechanical damage. It also voids the warranty.

CAUTION

If service is required, it must be performed by Innov-X or its authorized service represen tatives. Failure to observe this can result in loss of warranty. The **ONLY EXCEPTION** is replacing a damaged measurement window (see "A5. Window Replacement").

Damage Requiring Service

- Types of problems or conditions that require service are (*but not limited to*):
 - Power cords are damaged.
 - Excessive or corrosive liquids spilled on the instrument or accessories.
 - Instrument impacted, dropped, or physically damaged.
 - Noticeable signs of overheating.
 - Instrument or docking station does not perform normally when you follow the usual operating instructions.


Electrical Precautions

Guidelines for safe electrical operation of a *Delta instrument*:

- Use the correct battery or AC power adapter.
 - Install the battery or AC power adapter carefully, don't damage connections.
- Use the correct external AC power sources for the Delta Docking Station (DDS) (battery charging and Cal Checking) and the AC power adapter:
 - Ensure that the voltage is appropriate (100V-240 V/ 50-60 Hz) for operating either accessory.

See "A3. Specifications" for electrical specifications.

- Do not overload an electrical outlet, power strip, or convenience receptacle.
- Do not exceed 80% of the branch circuit rating.
 - Comply with the warning messages on the under side of the Battery Charger.
 - Similar precautions should be observed for the Delta Docking Station (DDS).

Cables and Cords

The *Delta* instrument and docking station is delivered with:

- AC power adapter (1) for Docking Station (standard)
- AC power adapter (2) as battery replacement for instrument (optional)

Each device has a standard IEC 3 conductor power cord which includes a safety grounding plug.

• If necessary, have an authorized individual replace these plugs to conform to local conventions.

Two data cables are supplied:

- Data cable (1) with connectors USB A to USB B
- Data cable (2) with connectors USB A to mini USB B

Cable Guidelines

Use these guidelines to ensure safety and proper equipment performance:

- The power cords MUST be connected to a properly grounded and easily accessible power outlet.
- Use a surge protector device, if possible.
- Do not defeat or bypass the ground conductor.
- Do not pull on cords or cables. Grasp the plug housing when removing the cord from the electrical outlet.
- Install all cords in accordance with applicable regulations.
- If you substitute a USB cable, ensure that the length doesn't exceed 10 feet.

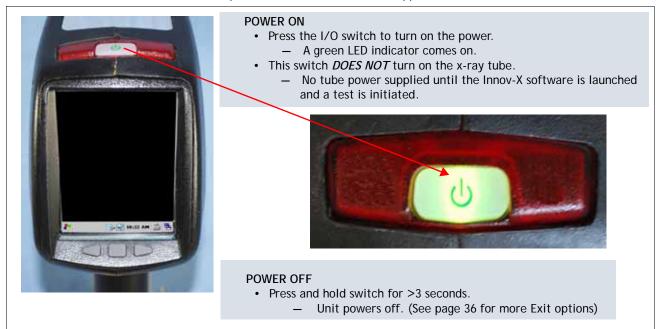
Delta Docking Station (DDS) and Li ion Battery Packs

Plug the Delta Docking Station (and optional battery charger, if utilized) into a grounded electrical outlet that is easily accessible at all times.

- To handle battery packs properly do not:
 - Disassemble
 - Crush
 - Puncture
 - Short external contacts
 - Dispose of in fire or water
 - Expose to temperatures higher than 60 °C (140 °F).

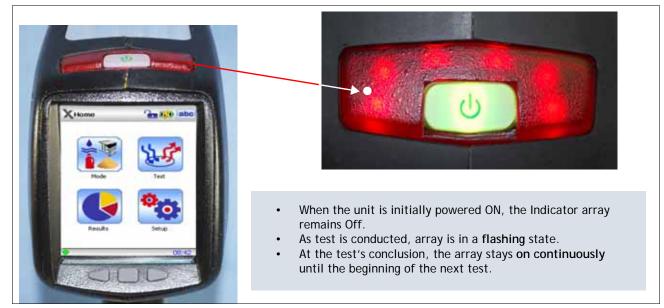
GO TO

See **"C4. Battery Issues"** for instructions concerning Batteries, the Battery Charger, and the AC Power Adapter.


WARNING
Danger of explosion if battery is incorrectly substituted.
Replace only with Innov-X specified batteries.
Used batteries may be returned to Innov-X Systems for disposal.
If returning batteries, or equipment with batteries installed, the shipping container must display a special caution label.
See "A6. Packing and Shipping" for label details.

PN_103201 Rev_ A: May/2010

Indicator and Warning Lights


Power Switch w/ Integral Indicator Light

The Delta power switch is located at the upper rear of the unit.

X-Ray Indicator Light Array

An indicator light array (six red LEDs) alerts the operator when the tube is receiving power, and when x-rays are emitted from the analyzer through the measurement window.

X-Ray Indicator ON (Blinking)

When the indicator array is flashing, this signifies:

- X-ray tube is powered to full operational level
- Internal filter wheel is in operational position
- Analyzer is emitting x-ray radiation through the analysis window.

In this condition, the analyzer must be pointed at a test sample.

X-Ray Indicator ON Continuously (Not Blinking)

When the indicator array is on continuously, this signifies:

- X-ray tube's current is set to 0.0
- X-ray tube is producing a minimum level of x-rays
- Internal filter wheel is closed so there is no radiation exposure to you or bystanders.

The instrument is *safe* to be carried or set down in this condition.

Back of Analyzer

In addition to the I/O switch and the X-Ray indicator array, the back of the Delta analyzer has:

- Touch screen which displays and controls the Delta User Interface.
- Three Navigation Buttons below the screen. They permit the user to conveniently step through the Test Results Spectrum screens.

Navigation Buttons

X-Ray Label

The Delta has a warning label affixed to the lower surface of the probe.

The analyzer has a label on the lower surface of analyzer's probe/nose.

- This label is *required* by most regulatory agencies. Do not remove it.
- The label term "*WHEN ENERGIZED*" refers to the condition where the tube is fully energized and the filter wheel is open.
 - This condition corresponds with the blinking red LEDs that comprise the X-ray indicator array.

Other Safety Features

Proximity Sensor

The Delta automatically detects when it is engaged with a test sample. It immediately shuts off the X-ray tube if:

(a) Initially there is no sample in front of the window,

— or —

(b) Instrument is pulled away from the sample before the test time has expired.

Safety Interlock Structure

For controlling the Delta's X-ray emissions and therefore minimizing the possibility of accidental exposure, there is a standard safety interlock structure consisting of the three features listed below.

Software Trigger Lock

If five minutes elapse between tests (default time), the trigger locks automatically and you must tap on the lock icon and to unlock it. See Safety Software instructions in *"Delta User Interface Guide"*.

Software Proximity Sensor

• Within two seconds of a test start, the analyzer detects a sample in front of the measurement window. If not, the test aborts, the filter wheel closes, and the x-rays shut off. The tube is placed in standby and the red light stops blinking.

Safeguards

As an owner of an Delta handheld XRF instrument, your safeguards are:

- A. Limited Access
- B. Trained Operators
- C. Shielding Issues
- A. Limited Access Keep the instrument in a controlled location, where only trained and authorized users are likely to have access.
- B. Trained Operators Keep a sign with the analyzer indicating that in order to use it an operator must have completed a training class provided by your company, or must have attended an Innov-X training course and completed any other requirements as dictated by the local regulating authority. When the Innov-X system is turned on, the controller screen displays a message indicating that the system should only be used by authorized personnel.

C. Shielding Issues

Background	The Delta emits a tightly collimated beam of X-ray radiation. The beam projects many meters when only air attenuates it.
	NOTE
	Refer to governing regulations on compliance in the jurisdiction installed, dose limits, etc. Requirements differ from state to state, region to region, country to country. <i>DO NOT</i> rely solely on this manual for instruction.
Action	 Adequate shielding is achieved by: Establishing a <i>no-admittance zone</i> sufficiently distant from the instrument's measurement window that allows air to attenuate the beam. Enclosing the beam working area with <i>protective panels</i> (for example, 1/8" stainless steel can attenuate the beam to background levels)

Contact your Innov-X Systems representative for assistance and suggestions on interlocks and applications for limiting radiation exposure.

Instrument Usage Scenarios

The Delta is used in several testing configurations. Obey the guidelines listed below.

Practical Safety Guidelines for Handheld Analyzers

WARNING

- DO NOT POINT the unit at yourself or any other person during operation.
- Never perform a test by holding the sample with your fingers or in the palm of your hand.
- Always wear both a ring-style and a badge-style dosimeter.

Correct Usage

Test in Place

Test targets can include pipes, valves, large pieces of scrap metal, soil, or any sample large enough to be tested in place.

In this configuration the proper procedure is as follows:

- 1. Always observe the relevant parts of the *Practical Safety Guidelines* shown above.
- 2. Point the instrument at the sample such that *no part* of your body (including hands and/or fingers) is near the measurement window.
- 3. Ensure that the Delta's nose (with window) is firmly placed on the target.
- 4. Perform the test using one of these methods:
 - Tap Start on the UI
 - or —
 - Pull the trigger (this toggles the instrument to ON state)
 - or —
 - Pull-and-hold the trigger with the "deadman trigger" active.

Employing Steps 3 & 4 assures that no operator's body part is exposed to an excess radiation dose. The radiation detected at user interface areas is $< 5 \ \mu$ Sv/h.

Take care that during testing, personnel are not located within three feet (one meter) of the Delta's probe head, in the direction of the x-ray beam. Provided the window is completely covered, there is minimal radiation being emitted around the area of the sample.

Small Component Testing

Examples of small component targets include metal turnings, weld rod, wires, fasteners, nuts and/or bolts.

For analysis of these types of components, use this procedure:

- 1. Always observe the relevant parts of the *Practical Safety Guidelines* shown above.
- 2. Place the sample on a flat surface.
- 3. Carefully place the nose/window over the sample.
- 4. Perform the test using one of these techniques:
 - Tap Start on the UI
 - or —
 - Pull the trigger (this toggles the instrument to ON state)
 - or —
 - Pull-and-hold the trigger with the "deadman trigger" active.

1. Sample lying on a flat surface

SAFETY PRECAUTIONS

WARNING

Do not test samples while sitting at a desk or table If the desk is made of wood or another non-metallic material, some radiation will penetrate the desk and may provide exposure to legs or feet.

ANALYTICAL PRECAUTIONS

If the sample does not completely cover the window, ensure that your *background surface* does not contain metals or even trace levels of metals, as this may affect the accuracy of the XRF result. The XRF may report the presence of additional metals in the surface material.

2. Clamp-held sample

NOTE A handheld plastic locking clamp can be an effective and safe tool when analyzing small, irregular shaped samples.

Incorrect (Unsafe) Usage

WARNING

Never hold a sample in your hand such that any part of your body or appendages are exposed to the x-ray beam. Testing samples in this way may generate significant radiation exposure to your fingers.

Unsafe Testing Technique

The sample is held up to the measurement window with fingers. The sample does not completely cover the window.

Even though the analyst is wearing a ring dosimeter, this is an unsafe testing technique.

Here, the only value that the ring provides is to validate the level of unnecessary radiation exposure that has been experienced.

Unsafe Testing Technique

The sample is held up to the measurement window with fingers. The sample does not completely cover the window.

To compound the danger, the analyst is not wearing a ring dosimeter.

There is no measure of the radiation exposure endured.

Summary InnovX repeats the Warning ---

NEVER hold a sample in your hand.

Testing samples in this way generates significant radiation exposure to your fingers.

Compliance

Complying Agency Statements

United States of America: FCC

Changes or modifications not expressly approved by Innov-X Systems, Inc. could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Radiation Doses for Several Scenarios

In this section we provide data, concrete examples of use and misuse of the analyzer and common questions and answers we encounter when training personnel on the safe use of the Innov-X analyzer. The goal is to explain scenarios of safe versus improper usage.

WARNING
For the x-ray energy emitted by portable XRF analyzers (8-60 keV region), the bone in the fingers will absorb radiation about 3-5 times more than soft tissue, so the bone would be at an elevated radiation risk compared to soft tissue. For this reason, no person shall hold a test specimen in front of the window with the fingers in the direct beam, or direct the beam at any part of the human body.
Reference: Health Physics 66(4):463-471;1994.

The table below presents radiation doses for normal operating conditions and also for examples of misuse of the analyzer and even extreme misuse. Innov-X provides installation training that includes detailed radiation safety training and documentation designed to prevent misuse of the analyzer.

Although the doses shown below are derived from experiments with TLD (thermo-luminescent dosimeters) and may or may not represent actual absorbed dose in human tissue and bone in each scenario, they are examples of the level of x-ray radiation being emitted from the device.

The message is simple:

USE CAUTION AND PROPER TECHNIQUE when operating the device.

PN_103201 Rev_ A: May/2010

Example: Instrument Usage	Radiation Exposure and Comments
Normal Operation- Dose to Hand	
User analyzes samples according to standard operating procedures described in this manual. Assumption: Operator using system with x-ray tube ON for eight hours/day, five days/week, 50 weeks/year. (Alloy sample).	Maximum exposure is to operator's hand, at the trigger is < 1µSv/h. Annual exposure to hand is then < 2mSv. Maximum exposure under ICRP regulations is 500 mSv for radiation workers and 50 mSv for the general public. Thus continuous operation provides a dosage 250 times lower for a radiation worker and and 25 times lower for the general pub- lic.
Normal Operation- Dose to Torso	
Analyzer is used under the same operating conditions described above.	Exposure to Torso is so low it cannot be measured (essentially background). To be conservative we use 1/2 the value as the trigger, < 0.5μ Sv/h. Annual exposure using operating conditions above is then estimated at less than 1 mSv. Maximum allowed is 20 mSv under ICRP for radiation workers (1 mSv for general public).
Misuse Example 1:	At the window, in the primary beam, the maximum dose to the fingers is 20,000
Operator holds samples in front of window with fingers, such that fin- gers are directly in the primary beam. Presumption is sample does not block any radiation. Do not do this!	 mSv/hr. Assume an operator performs a 10 sec. test (typical). The dose to the operator's fingers or hand is 20,000 x (10/3600) = 550 mSv. If the operator did this just once a year he would exceed the allowable annual dose of 500 mSv to an extremity. Take the extra time to test a sample on a surface or use a testing stand. Note: If the operator takes a shortcut and places his/her fingers within the primary x-ray beam at the window, they will exceed the annual dose rate.
Misuse Example 2:	
Operator places analyzer against body and pulls the trigger to start a test. Analyzer tests to preset test- ing time (usually ten seconds) unless operator pulls trigger again to stop test. This applies to ana- lyzer being in contact with opera- tor or with bystander. Do not do this!	Dose at exit of sampling window is 20,000 mSv/h. Dose for a ten second exposure with analyzer in contact with Torso: 550 mSv. If an operator did this act just once, he would exceed the annual safe dosage to the torso of 20 mSv/year by a significant amount! PLEASE NOTE: The maximum dose of 20 mSv/year is a whole body limit, which does not truly apply in this case because the x-ray beam size is small (about 25 mm ² area at the port). Applying correction factors for the beam size is complex and beyond the scope of this manual. The important point is that for proper operation there is no reason to ever expose any part of the human body directly to the x-ray source. This example serves to provide estimated exposure in the event this occurs.

Misuse Example 3: Operator manages to initiate a test for ten seconds running normal soil mode and exposes a bystander that is standing ten cm away from ana- lyzer port. What is exposure to bystander?	Dose to bystander at ten cm is 215 mSv/hr. For a ten second exposure the dose is 0.6 mSv. This is 33 times lower than the allowable dose to a nuclear worker in a year. This would have to happen 33 times to for that worker or bystander to obtain the maximum allowable dose. Formula for calculating other scenarios: DOSE (in mSv) = 6T/D ²
Note: The proximity sensor would automatically shut down the x-ray tube immediately, so this is an extremely improbable occurrence. It would require a malfunction of the instrument - this safety feature in NOT modifiable.	D = distance from port in inches T = testing time Example: Bystander is 30 cm away from port for a 30 second test. In this case the dose is calculated as: DOSE = $6(30)/30^2 = 0.2 \text{ mSv}$
Note 2: Equations to scale these to other scenarios involving longer or shorter tests, and bystander being at distances other than ten cm are provided at right.	

Comparative Analysis: Radiation Doses from Typical Exposures to Ionizing Radiation

Activity	Typical Dose
Smoking	2.8 mSv per year
Dental x-ray	100 μSv per x-ray
Chest x-ray	80 μSv per x-ray
Drinking water	50 μSv per year
Cross country round-trip by air	50 μSv per trip
Mammogram	1-2 mSv per examination
Yearly exposure from background* radiation * depends on geographic location	3.6 mSv

Radiation Safety: Common Questions & Answers

Question: When I'm shooting a piece of pipe or valve on a rack or on a table top, is there any exposure to people standing several feet away from the analyzer?

Answer: Even a thin amount of a dense metal sample (three to four mm thickness, not Al alloy) is enough to completely attenuate the emitted x-ray beam. Shooting a piece of material that covers the sampling window on the analyzer completely shields any bystanders from radiation exposure. However, use good practice: Keep the area clear of people for at least four to five feet in front of the analyzer.

Question: If I forget to lock the trigger, I pick up the analyzer and accidentally pull the trigger, is that dangerous to nearby personnel?

Answer: No, this example of misuse is not dangerous, but it may produce a non-negligible radiation exposure to nearby personnel. For an exposure to occur, the following things must happen.

First, you must be holding the analyzer so that a bystander is actually standing in the x-ray beam being emitted. Just being near the analyzer is totally safe otherwise.

Second, the bystander must be within one meter from the nose of the analyzer to receive any appreciable dose. If all of these conditions are true, the dose received by a bystander is still extremely low. Please see Misuse Example 3 in the table above.

Third, it would require failure of the proximity hardware and software.

Question: Do I need to create restricted areas where I am using the analyzer?

Answer: No, provided you are following normal operating procedures there is no reason to restrict access to an area where the analyzer is in use. However, the operator should take precautions to keep any personnel more than three feet away from the sampling window of the analyzer in the event of accidental misuse as detailed above. Should operators also elect to test small samples as shown on pages 34 and 35, they should also be sure that no personnel are standing within about four to five feet of the sampling window.

Question: How does the x-ray tube in the Innov-X system compare to a radiography system used for taking images of metal parts?

Answer: The x-ray tube used in the Innov-X system produces between 1,000 and 10,000 times less power than most radiography systems (0.5-1 watt versus multiple-kW). A portable XRF is designed to perform <u>surface analysis</u> of alloys and other samples, whereas a radiography system is designed to shoot x-rays <u>entirely through</u> metal components in order to obtain an image on the other side of the test object. For example, many tube-based radiography systems use a 300-400 kV tube and currents in the tens or hundreds of milliamperes (mA). The Delta uses a tube operating at a maximum of 40kV and typically 6 -10 μ A. The radiation levels produced by an Delta are thousands, or tens of thousands, times lower than a radiography unit.

Question: Should we use dosimeter badges with the Innov-X analyzer?

Answer: Dosimeter badges are required by some provincial regulatory agencies, and optional with others. Innov-X recommends that operators wear badges, at least for the first year of operation, as a general precaution to flag any misuse of the analyzer. Dosimeter badges are available for the torso (generally worn in a shirt pocket) and also as "ring" badges.

The best practice is to wear a ring badge on a finger on the opposite hand used to hold the analyzer. This records accidental exposure for the most likely case – an operator grabbing a small sample and holding it in one hand while analyzing it.

Note: These badges generally have a threshold of 100 μ Sv and are renewed monthly. So it takes several cases of misuse even to obtain a reading on a typical badge. When purchasing a badge, obtain the type used for x-ray and low energy gamma ray radiation.

Analyzer Shut Down

There are several techniques for shutting off the Delta. They can be categorized by whether the action is taken under normal or emergency conditions. *Shut down* or *turned off* is defined as: *The analyzer cannot provide X-ray emissions*.

Under normal conditions

Use one of following actions:

- Press the trigger.
- Tap STOP icon on the UI touchscreen.
- Navigate from Setup > Exit, then choose the Power OFF icon.

- Release the trigger if in "Deadman Trigger" mode.
- Press the I/O power switch; ensure that the On/Off LED goes off.

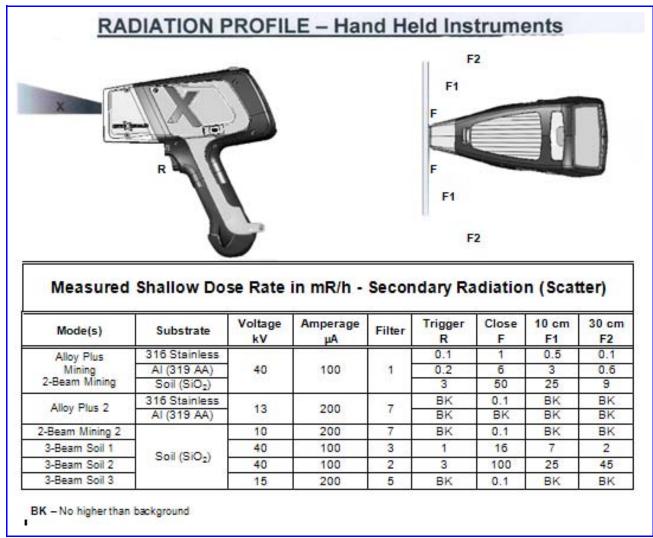
In an emergency

Because the Innov-X system is a battery-operated, x-ray tube-based analyzer, the Emergency Response plan is simple. If you believe that the analyzer is locked up in an *OPEN* position, the red X-ray indicator array remains illuminated or blinking:

- 1. Press the I/O power switch as noted above. If the power does not turn off, continue to Step 2.
- 2. Open the battery cover and immediately remove the battery.

If you are using the AC Power Adapter:

Remove the Battery Eliminator from the Delta's handle


— or —

• Pull the AC cord from the AC Power Adapter or pull the plug from the receptacle.

Delta Radiation Profile_

This is the current Delta Radiation Profile.

TEST CONDITION: Instrument run at normal setting for mode and represents typical production unit.

NOTES

C3. Safety Administration

C3 provides information regarding:

- Radiation safety training recommendations
- Dosimeter badges
- A typical dosimeter monitoring program
- Dosimeter service contractors
- Typical registration requirements for operating XRF equipment (in the USA)

Radiation Safety Training Recommendations

Individual companies and states have specific regulations and guidelines for using ionizing radiation generated by an X-ray tube.

	NOTES
e	 For the convenience of clients, Innov-X has compiled a list of recommendations that: Provide generic guidance for an ALARA (as low as reasonably achievable) approach to radiation safety. Do not replace the requirement to understand and comply with specific policies of any state or organization.

Personal Monitoring

Radiation control regulations may require implementation of a radiation monitoring program, where each instrument operator wears a film badge or TLD detector for an initial period of one year to establish a baseline exposure record. Continuing radiation monitoring after this period is recommended, but may be discontinued if accepted by radiation control regulators. See *Dosimeter Suppliers* for a list of film badges providers.

Proper Usage

Never point the instrument at a person. Never point the instrument into the air and perform a test. Never hold a sample in your hand during a test.

Establish Controlled Areas

Restrict access to the location of instrument storage and use to limit potential exposure to ionizing radiation. In use, the target should not be hand held and the area at least three paces beyond the target should be unoccupied.

Specific Controls

When not in use, store the instrument in a locked case or locked cabinet. When in use, keep it in the direct control of a factory trained, certified operator.

Time - Distance - Shielding Policies

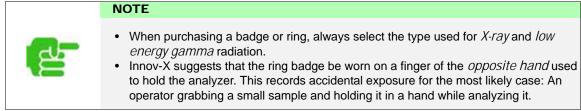
Operators should minimize the time around the energized instrument, maximize the distance from the instrument window, and shoot into high density materials whenever possible.

Prevent Exposure to Ionizing Radiation

All reasonable measures, including labeling, operator training and certification, and the concepts of time, distance, & shielding, should be implemented to limit radiation exposure to *as low as reasonably achievable* (ALARA).

Dosimeter Badges

A dosimeter badge consists of a radiation-sensitive material, generally an aluminum oxide crystalline layer, which is worn in a small container. It is most often attached to a person's clothing, on a belt loop, or shirt pocket. It is worn on the body in location(s) that most closely simulate the pattern of potentially absorbed dose.


The protection can also be provided in a plastic ring format. Here the detection material is lithium fluoride crystal.

These devices record a person's accumulated radiation exposure over a period of time. They monitor individuals working with, or near someone working with devices which emit ionizing radiation.

Dosimeter badges are required by some regulatory agencies, and are optional with others.

Innov-X recommends that (at a minimum) all *Delta* operators wear badges (both clip-on and ring styles) for the first year that their system is in use.

Every country (including every region, state, or province within a country) can have differing regulations. Always consult your local radiation protection authority or Innov-X Systems for information and recommendations.

Dosimeter Safety Program

A typical dosimeter-based safety program uses the following steps:

- 1. The company develops a dosimeter program with an independent service contractor.
 - They establish the quantity of badges needed and the frequency of analysis (a monthly or quarterly interval)
- 2. The company receives the first lot of badges and provides them to their analyst/operators.
- 3. At the end of the interval:
 - The company collects the badges and returns them to the service contractor for analysis.
 - Simultaneously, the service contractor delivers another lot.
- 4. The company provides the new set of badges to maintain a continuous protection /monitoring program for their employees.
- 5. The service contractor prepares a report for the company that tabulates any X-ray dose received and identifies any personnel with readings higher than typical background radiation.
- 6. The safety monitoring cycle repeats with Steps 1 through 5.

NOTE

The service contractor's written records are very important to a company's overall safety documentation plan.

Dosimeter Suppliers

Some dosimeter service companies are:

Company	Location	Telephone
AEIL	Houston, TX	713-790-9719
Global Dosimetry Solutions	Irvine, CA	800-251-3331
Landauer	Glenwood, II	708-755-7000
Landauer, Inc.	Oxford, England	+44-1 86-537-3008
Nagase Landauer, Itd.	Japan	+81-3-36 66-4300
LCIE Landauer	Paris, France	+33-(0)1-40 95 62 90
Landauer	Beijing, China	+86-10-62 21 56 35

Registration Requirements

Contact Innov-X for assistance with locating registration requirements information.

- Most states require some form of registration. Generally they require the
- registration to be received within 30 days of receipt of the system. Some states require no registration.
- Some states require notification in advance.

Customers are advised to consult their local radiation protection authority for specific regulatory information.

Typical Device Registration Information

The following information is usually requested by a licensing agency:

Purpose of device:

Response is Analytical or Industrial.

Be sure to inform the government registration office that the system will NOT be used for radiography or for medical uses.

Radiation Safety Officer:

List person who monitors training, safe use, and controls access to the system.

Authorized Users:

List the analyst/operators who have been trained and authorized by the instrument owner and/or regulating agency to operate the XRF equipment.

Operating parameters of the Delta XRF analyzer:

8— 40 kV, 5 - 200 uA max.

Type of system:

Response is: Handheld/Portable

User Training Specified:

Indicate that only individuals receiving manufacturer training, *documented by a manufacturer's training certificate*, will operate the system. Additional training may be required. Verify with the local regulating agencies the level and type of training required.

Personal Monitoring

Many government agency registration forms require that you indicate whether or not you intend to perform dosimeter monitoring.

See "Dosimeter Safety Program" on previous page for information regarding typical personal radiation monitoring.

	CAUTION
<u> </u>	 Always keep the following documentation at the job site: Copy of <i>License Registration</i> Other pertinent <i>government agency</i> documentation Copies of any <i>dosimeter analysis</i> reports Copy of this equipment's <i>User Manual</i>.

C4. Operations

This chapter provides information regarding:

- Configure the Delta Docking Station (DDS)
- Use DDS for Initial Cal Check
- Operation General
- Start Up Procedure
- Snapshot of Delta User Interface
- Typical Test Procedure
- Ending Test Operations
- Battery Issues
- Additional Cal Check Information
- TIPS Things You Should Know About the Delta

Safety First !

As emphasized in *"C2.Safety Information,"* it is a priority to keep the analyzer operator's safety in mind at all times.

 Operators, before turning on the analyzer or using the Delta Docking Station, should review the safety procedures ("C2.Safety Information").

Set Up and Use the Delta Docking Station

Background

The Delta Docking Station (DDS) provides several key functions:

- Supports an automatic or on-demand Cal_Check procedure
- Charges the "Main" battery located in the instrument's handle
- Simultaneously charges a "Spare" battery in an auxiliary socket
- Provides control information so that both batterys' status can be monitored
- Allows data communication from the Delta to a PC via a powered USB cable

The first phase for preparing to operate a Delta involves:

- 1. Configuring the DDS with its power and communication cables
- 2. Using the DDS to support the Delta's initial:
 - a. Start up sequence, and
 - b. Cal Check procedure.

NOTE

A new instrument is shipped with two fully charged Li lon batteries. Therefore, prior to **initially** using the analyzer, it is not necessary to charge a battery.

GO TO

- See *Pages 45 and 50* for battery information, including charging, changing, determining status, and Hot Swap techniques.
- See *Page 51* for Cal Check background information.

Configure Delta Docking Station

PN_103201 Rev_ A: May/2010

Use the Delta Docking Station for Charging Batteries

Use the Delta Docking Station for Startup - Initial Cal Check

- Place analyzer into the Delta Docking Station cradle. Ensure that the Delta indicator light is ON. This signifies that the instrument is properly seated in the cradle.
- 2. Press analyzer's I/O switch (>1 second to turn it ON.)

DDS w/Premium Delta in Cradle

XHome

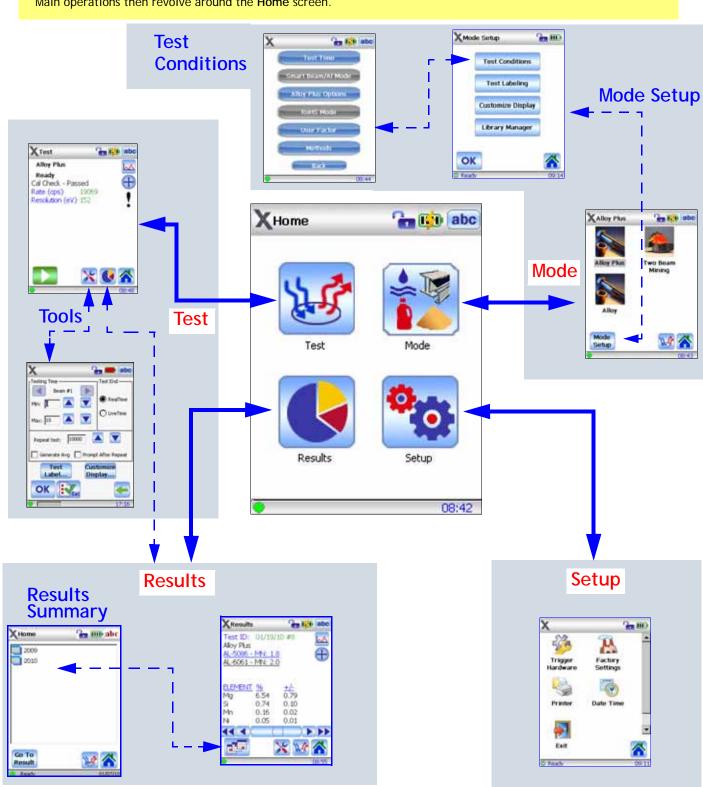
DDS - Indicator Light Delta is engaged in cradle

Radiation Safety NOTICE appears after a few seconds.

- 3. Read and respond to notice
 - Tap START to acknowledge that you are a certified user.
 - The UI begins its launch with the following messages:

Initializing System Starting System Loading Files

- 4. Unit displays a Test screen using the Mode last selected.
 - 4a. If the mode should be changed, go to Home screen.
 - 4b. Select the Mode button
 - $\ensuremath{\mathsf{4c.}}$ Choose the desired Mode
- Return to Test (now with your selected Mode) Note that message Cal Check Required is present.
- 6. Choose Tools icon: This launches Test Setup screen with Cal_Check button
- Tap Cal_Check
 If necessary, unlock the Trigger with the icon at top of screen.
 Procedure begins immediately; it concludes in about 15 seconds.
- Message Cal Check Passed means you may begin testing. Message Cal Check - Failed will give error message, such as"! Wrong Count Rate" Re-try the procedure
 If unit fails repeatedly, contact input contact and a straight fails of the second distributor.


If unit fails repeatedly, contact InnovX service or your local distributor.

abc abc

SNAPSHOT of Delta's User Interface

The Delta's user interface is introduced by the startup **Radiation Safety** and **Initialization** screens. Main operations then revolve around the **Home** screen.

Typical Test Procedure

Background

Details of routine testing operations vary depending on the selected analysis mode. Some relevant modes for Delta XRF users are:

 Alloy Modes Alloy Plus Fast ID & Pass/Fail Precious Metals 	 Mining Modes Two-Beam Mining Mining Car Catalyst 	 Soil Modes Environmental Exploration 	Consumer Goods RoHS Consumer Products
---	---	--	---

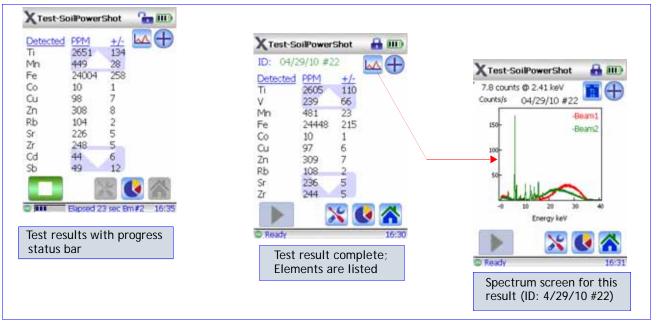
For the test sequence (below) the instrument has:

- Mode selected (Soil 3 Beam), and
- Cal Check procedure successfully completed.

To conduct a typical test:

1. Remove the instrument from the Delta Docking Station. Place the the measurement window flush against the sampling area. Ensure the sampling area is covered by the window.

Do not point the unit at yourself or any other person during operation. Do not test small samples in your hand. Place them on a surface for testing. See C2, Safety Information, Pages 29-31 for examples of safe and unsafe testing techniques	WARNING
techniques.	small samples in your hand. Place them on a surface for testing.


2. Use one of these techniques to initiate the X-ray beam:

- a. Tap Start Test (Green Arrow Icon), or
- b. Pull the trigger (toggles unit ON); can release the trigger during the test, or
- c. Pull-and-hold the trigger (deadman trigger function is enabled) This is a mandatory technique in Canada.

Trigger options are configurable from:

Setup > Trigger Hardware > Trigger Settings

The Test screens are as follow:

PN_103201 Rev_ A: May/2010

End of Day Operations

Save Results

When finishing testing for the day (or shift, or current session) InnovX recommends that test results be saved (e.g. exported) to a PC.

A necessary prerequisite is a DATA connection between the analyzer and PC.

This connection is made in one of two ways:

- Analyzer in DDS cradle use the powered hub USB cable assembly (PN 103209 and PN 103210) from the DDS' rear Data port to a USB port of the PC
- Analyzer NOT in DDS cradle use the mini USB B to USB A (PN 101310) cable from the analyzer's Data port to a USB port on the PC

The UI operational sequence is:

- 1. Navigate from Home > Results > Calendar
- 2. Select Year, Month, Day listing; it lists the total number of tests for the day
- 3. Select Tools, then Results Setup
- 4. Select the Export icon (button)
- 5. Choose the results to be exported
- 6. Name the export file (or accept default name)
- 7. Select Destination to save to
- 8. Tap the Export button

The file is exported.

See "Delta SW User Interface Guide" for the details (including options) of this sequence.

Ending Test Operations

GO TO

When testing and exporting are complete, the user has the following options:

- Turn off Delta with I/O switch or UI (see Exit Options procedure below); store unit in a secure location
- Place Delta in Docking Station and use the "Automatic" option:
 - Leave Delta powered ON;
 - Ensure that DDS is On (Delta ICON is lit);
 - Unit initiates Cal_Check after being idle for five minutes, then every ten hours thereafter.

Exit Option Procedure from UI

Battery Issues

1 — Changing a Battery

To CHANGE the battery:

- 1. Hold the instrument by the handle, upside down, so the bottom of the instrument base is pointing upward with the nose pointing away from the operator.
- 2. Pull the rubber latch and lift cover.
- 3. Remove the existing battery using the tab. A new instrument will not have an installed battery.
- 4. Insert the charged battery into the analyzer with the battery connectors facing to the left. The battery slot is keyed so that the battery can be inserted only one way.

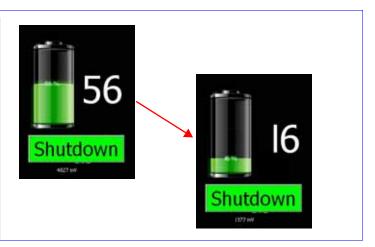
2 — Battery Status

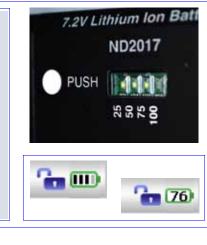
To TEST a Li-ion battery's charge status:

EXTERNAL battery test -

- Push the white button on the battery. The green lamps indicate the percent of charge, from less than 25% to 100%.
- 2. If a battery has a charge of less than 25%, use the Delta Docking Station to establish a full charge. See *Page 45*.

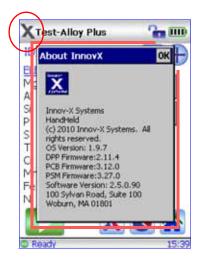
INTERNAL MAIN battery test -


- 1. The battery icon from any UI screen (upper right side) shows an approximate value of charge.
- 2. Tap the battery icon and a more precise charge percentage is displayed as a number.


A battery HOT SWAP capability is a **standard feature** with the Delta analyzer. An operator can remove and replace a battery without having to shut down, restart, or Cal Check.

When the battery is removed:

- A "Shutdown" status display gives the percentage of internal charge remaining.
- If the internal charge reaches 0, you have to re-start the unit with the I/O switch, after inserting a fresh battery.
- If red X-ray indicator lights flash, the battery voltage is too low.

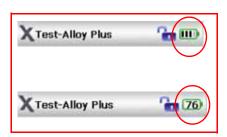


Cal_Check Information

Cal_Check Facts	Question: What is involved with the Cal_Check procedure?
	Answer: The analyzer:
	 Collects a spectrum on a known standard (Alloy 316 Stainless Steel) Compares a variety of parameters to values stored when the instrument was calibrated at the factory. When comparisons are within pre-set tolerances, the unit determines
	that it remains properly calibrated.
	GENERAL FACTS INCLUDE:
	 Cal_Check must be performed when the analyzer requests the procedure. The <i>Start</i> button and trigger are disabled until a successful Cal_Check is achieved.
	 You can run a Cal_Check at any time during <i>InnovX</i> software operation, except during a test.
	 When Cal_Check is in progress, the x-ray indicator light assembly blinks. This indicates that the X-ray tube is energized and the filter wheel is operational. In addition, a status bar appears on the UI display, showing the percentage completion for the measurement.
	The Cal_Check procedure takes about 15 seconds.
Cal_Check	There are two separate techniques:
Procedures	 In the test laboratory - Use the DDS to initiate "on-demand" procedure. Described above in "Use the DDS for Startup - Initial Cal Check":
	Also have the "Automatic" option, as follows:
	Leave Delta powered On and InnovX software running;
	Ensure that DDS is On (Delta ICON is lit); Unit initiates Cal_Check after being idle for five minutes,
	Unit initiates Cal_Check after being idle for five minutes, then every 10 hours thereafter.
	• In the field - Use the Coupon {the procedure is described below)
	 Place the 316 stainless steel Cal_Check coupon on a flat surface. See C2. Safety Information, Page 29 for safety measures that must be observed.
	2. Position the analyzer's measurement window flush over the coupon.
	3. With the Test Setup screen invoked, tap the Cal Check icon. There are now two techniques to choose from:
	Tap the "Start Test" icon, or
	 Pull the trigger (or pull-and-hold if using "Deadman Trigger") 4. The procedure takes about fifteen seconds.
	NOTE Improperly positioning the window over the coupon can result in a failure.
	5. When Cal_Check completes successfully, you may begin testing.
	6. If Cal_Check fails, ensure that:
	Coupon is positioned correctly.
	 X-ray indicator assembly is blinking during the procedure. You have waited several seconds before starting the procedure.
	7. If Cal_Check fails again,
	Shut down the Delta software.
	Shutdown and restart the analyzer.
	tributor. Contact information is available at appendix <i>A6. Packing and Shipping</i>
	 Shutdown and restart the analyzer. Launch another attempt to Cal Check. If Cal_Check fails repeatedly, contact Innov-X Systems Customer Service or your local dis-

TIPS - or - things you should know about the Delta

System Information


To call information "About InnovX" tap the X (InnovX icon) in upper left of UI screen. This provides various firmware and software versions that are installed on the analyzer.

UI Screen Note

All User Interface screens have a time-out (power saving) feature that causes the screen to go blank after 45 seconds if the UI is not accessed or the unit is not moved. However, the analyzer is still running. Restore the screen by tapping it or by moving the instrument.

Battery Status Info #1

When you turn on the instrument and you may not be aware that the battery is low, the X-ray indicator (Red LEDs) flashes dimly and briefly. The unit will not turn ON. Swap out the battery.

Battery Status Info #2

The on-screen battery icon (in upper right corner of UI) shows "real-time" battery charge status in a graphical way. Tap this icon to receive a numeric value for battery charge level.

Delta Docking Station to Delta Analyzer: Contact Status

Keep the rubber boot attached to instrument when inserting it into the DDS. This helps ensure that the DDS contact pins are engaged.

The DDS analyzer icon (rear left corner) should be ON.

If the rubber boot is not available, and the analyzer icon remains OFF, use a small piece of padding under the handle to ensure contact.

C5. Alloy Analysis Modes

Alloy analysis for the Delta family includes:

- Wide range of modes and calibrations
- Outstanding performance for a variety of materials

There are five Alloy modes/calibrations:

ALLOY Use with: AL	L Models
ALLOY	Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb Fundamental Parameters Analysis for metal alloys. Alloy library including 300+ grade specifications, common tramp limits, including full editing capabilities.
ALLOY Plus Use with	th: Premier and Standard Only
ALLOY PLUS	 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb PLUS Mg, AI, Si, P Fundamental Parameters Analysis for metal alloys. Optimized beam condition for extended light element performance. Alloy library including 300+ grade specifications, common tramp limits, including full editing capabilities.
FastID Use with: All	Models
*	Spectral signature matching for alloy grade & chemistry calculation. Full library editing & alloy matching capabilities included.
Pass/Fail Use with: A	II Models
3	Spectral signature or chemistry matching for alloy grades. Customer created library with min/max grade specifications. Full library editing & alloy matching capabilities included.
Precious Metals Addi	tions Use with: All Models
	ADDS Ir, Pt, Au, Rh, and Pd to Analytical Analysis calibration suite.

Introduction to Alloy Analysis Modes

The Delta family of instruments currently presents six unique modes for alloy analysis. The core analytical analyzer modes/types are:

- Alloy mode Classic (PiN detector based) type
- Alloy Plus mode Standard (SDD detector based) type

- Premium (SDD detector based) type

All three analyzer types can support additional alloy-oriented modes, such as FastID

astiD

Pass/Fail

Precious Metals (No added details)

Alloy analysis utilizes a Fundamental Parameters (FP) algorithm to determine elemental chemistry. This method calculates chemistry from the spectral data, without the requirement of stored fingerprints. The Analytical FP calibration is done at the factory, and requires no user set-up or recalibration. The software also searches an alloy grade library to produce a grade match based on the calculated chemistry. Analytical mode can provide a grade ID and chemistry in as little as one second, with increased precision for longer test times.

Alloy mode/Classic type supports Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb.

Alloy Plus mode /Standard type and Premium type supports light elements Mg, Al, Si, and P in addition to the core list of elements from the Alloy mode.

Standard and Premium units expand the Limits of Detection range permitting operators to analyze these light elements without a vacuum or helium purge requirement.

Both modes have a feature, Altitude Compensation, which automatically corrects calibrations based on barometric pressure.

Determination of Grade Identification:

Analytical modes utilize a Factory Grade Library consisting of a set of minimum and maximum values for each element in an alloy.

There is a SPECIFIC Alloy Factory Grade Library for EACH Delta model.

See appendix *A8. Alloy Grade Libraries* for a listing of the alloys that are contained in each Factory Grade Library.

Additionally, every analyzer is shipped with a "Tramp" library comprised of seven base alloys. These seven items with their min/max element values are increasingly valuable to fast and accurate sorting in Pass/Fail and FastID modes.

The libraries can be searched individually or together. All libraries, including each Factory Grade Library, can be edited by the user. However, InnovX strongly suggests that users NOT edit the Factory Grade Library. Instead, copy the Factory Grade Library to a USER library, then make any edits on it.

Match Number Concept

After calculating chemistry with the Fundamental Parameters algorithm, *Innov-X* compares the chemical composition values to grade tables stored in a grade library. The application calculates the value for a parameter called *Match Number*. This provides an indication of how close the measured alloy's chemistry is to library values.

- The *lower* the Match Number, the *better* the match.
- A Match Number of 0 is an *exact match*, meaning that the calculated chemistry for all elements falls within the grade table specifications.

- See "Delta User Interface Guide" (PN 103202) for a complete description of the Innov-X application's User Interface.
- See A8. Alloy Grade Libraries for listing of each model's "Factory Grade Library"
 - A "Spectral Fingerprint" library that would be used for "FastID" and "Pass/Fail" analysis is created by the customer.

Match Issues

There are three Match determination possibilities provided within the Analytical modes: EXACT MATCH

An unknown alloy is matched to one of the grades contained in the Grade Libraries, and a *Grade ID* appears on the *Results* screen. Often other grades are listed with their accompanying Match Numbers. The analyst has the opportunity to view their elemental chemistries and see how they differ from an exact match.

MULTIPLE MATCHES

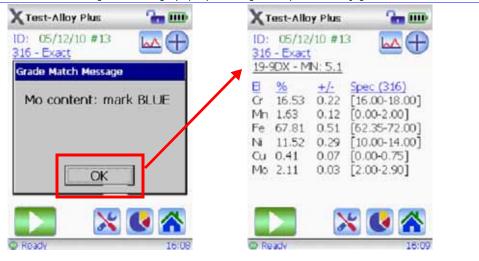
In some cases, several grades are shown as possible matches. This can signify one of two conditions:

- There was not enough statistical information to definitively separate two or more alloys. The actual identification of the unknown alloy is one of the grades listed. Often increasing the testing time makes it possible to separate the alloys.
- There was sufficient statistical information, but the test sample did not meet any of the existing specifications with enough precision to cause an exact match identification.

No Match

If no matches are found within the libraries, the words NO MATCH appear.

There are several causes for a NO MATCH result:


- The test sample does not meet any of the specifications in the Grade Library.
- The test sample is coated; Remove the coating by grinding, filing, or sanding and repeat the test.
- The testing time was too short.
 - Increase the testing time and measure the sample again.
- The Match Number is too low.
 - If possible, increase the Match Number

Scrap and Recycling Features

Delta analyzers in Alloy or Alloy Plus modes support many new features to specifically enhance scrap processing by maximizing speed and accuracy.

Grade Match Messaging (GMM)

User or Yard Manager can assign pop-up messages to specific alloy grades

- Quick start for next test, or
 - view the chemistry details with one click

Grade Match Messaging offers:

•

- Immediate sorting instructions
- Less operator training
- More efficiency and higher throughput

SmartSort

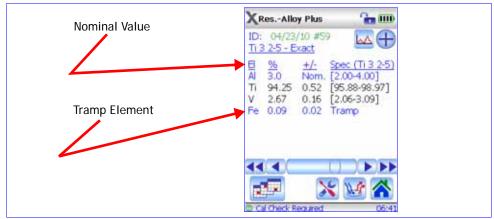
Automated sorting decisions that allow users to maximize speed and sorting accuracy. Some features include:

- Specific grades set up to automatically extend testing time.
- Maximize efficiency for speed testing by automatically extending test time for light elements (Mg, AI, Si, P, S)
 - Eliminate unnecessary long tests

Nominal Chemistry

Nominal Chemistry looks for 'invisible' elements, based on grade ID, including:

Elements not tested under active beam, (like Al in Beam 1)
 – or –


— 0r —

• XRF invisible elements (like B or C)

Tramp Library

Analyzers with Alloy or Alloy Plus mode come pre-loaded with a tramp library based on industry standards.

- Operators may assign other "Tramp" elements with max tolerated concentration for individual elements in seven unique graded families.
- Analyzers can report tramp material (optionally) and simplify grade match by not counting small, expected amounts of tramp elements against the grade match.

See appendix *A8. Alloy Grade Libraries* for a discussion of the Tramp Library concept, including:

- How the InnovX Tramp Library works
- Practical advantages of the Tramp element approach
- List of seven Tramp Base Alloys

Test Sample Considerations

Coated or Painted Samples

XRF is a surface analysis technique, where X-rays penetrate a very short distance into most alloy samples. Therefore, the analyzer detects what is on the surface of an alloy, rather than what comprises the bulk of the material. If a material has been coated, plated, painted, or has had some sort of surface treatment, such as heat treating, it may be misidentified.

For example, a steel piece painted grey may show high concentrations of titanium from the paint, and may be misidentified as a titanium alloy. In another example, large amounts of metal dust or turnings on a surface may be detected by the analyzer.

To ensure proper identification of coated materials, grind an area slightly larger than the analyzing window to remove the coating. It is important to select the correct grinding material so as to not interfere with the analysis.

Do not use Silica for a Silicon analysis.

It may not be necessary to completely clean and polish all materials, however, remove obvious metal dust.

Mixed Samples, Heterogeneous Materials

Often finished metal pieces may consist of more than one type of metal. In addition, you may wish to measure mixed turnings, or an assortment of small pieces. In these cases, remember that the analyzer measures the entire area covered by the analyzing window and reports an average chemistry. For turnings, this is useful, as the analyzer provides an average composition. However, if two or more pieces of metal cover the window, the results is just an average reading, and may tell very little about the composition of one piece or the other.

When shooting metal pieces, or welds, ensure that **only** the metal of interest is covering the analyzing window.

Small and Irregularly Shaped Samples

To measure samples smaller than the analyzing window:

- Increase the testing time.
- and —
- Maximize the material in contact with the window.

The precision of analysis for small parts measurements is reduced, as the signal from smaller samples is less than for samples that completely cover the window. If possible, analyze the largest, flattest side of an irregularly shaped object.

GO TO

- See A4. Typical Test Procedure for description of a Test sequence.
- See "*Delta User Interface Guide*" (PN 103202) for a complete description of the *Innov-X* application's User Interface.

PN_103201 Rev_ A: May/2010

Introduction to FastID Mode (All Models)

FastID mode is designed to quickly identify an alloy. It uses an empirical calibration method known as a "type" calibration. It is most useful where the number of alloys to test is small and well known.

FastID is best suited for Positive Material Identification (PMI) and QA/QC applications.

For example, where alloy producers or fabricators handle materials that may be very similar or where maximum user simplicity is a primary concern.

This mode offers:

- Simplified results (grade name only or less information on tramp elements).
- A narrow, customized grade library base upon stored spectral fingerprint reference standards.
- Full chemical analysis based on reference standard assays.
 - Results which are the best combination of SPEED and ACCURACY.
 - A Grade and Chemistry result in as little as one to two seconds.
- User selectable match criteria settings.
- Expansion of up to 500 additional alloy grades and assays (alloy chemistries) password protected.
- Multiple independent grade libraries. You choose to search one or more libraries.
- All libraries are editable

How FastID works:

Prerequisite: The operator creates a "custom FastID fingerprint' library by testing an array of reference standards. This list spans the number of alloys for which he is interested.

- 1. Delta's XRF process allows a test sample to create a spectral fingerprint.
- 2. Analyzer compares this spectral fingerprint to entries from library of many certified spectra, the "custom FastID fingerprint" library.
- **3.** Analyzer finds the best spectral match to the sample spectra: thus identifying and reporting the matching alloy grade.
- 4. If concentration data has been entered for the standards, the instrument then calculates the sample's **chemistry**.

The reported chemistry data are an extrapolation from standard intensity data stored in the customer -generated fingerprint library.

The user gets a real time grade match and a precise report of the chemical composition of the sample.

di la

NOTE

 Because FastID mode performs a spectral match to a library of reference standards, it is important that before testing, a "likely" stored reference standard be in the customer-created FastID fingerprint library.

Introduction to Pass/Fail Mode (All Models)

Pass/Fail mode is designed for high-throughput alloy sorting and quality control.

Mode Features

- All test samples are sorted by comparison to an operator-selected reference standard.
- Results are displayed as a *PASS* or a *FAIL*, depending on whether they match the reference standard.
- Pass/Fail criteria may be based on:
 - "quality of fit" to the selected spectral fingerprint
 - or —
 - elemental chemistry.
- Pass/Fail ranges may be implemented for one or more elements.
- This mode offers a full range of options from the simple sorting of mixed loads in a recycling facility to QC on specific element(s) of the most complex superalloys.

Pass/Fail mode has two options: Fingerprint and Chemistry:

1. Fingerprint Option

Select this method when the goal is to determine whether or not test samples are a **specific grade**.

Fingerprint Pass/Fail and FastID use the same method to determine a match.

Data from analyzed samples are compared to the reference standard fingerprint. If the differences between the fingerprints are small enough, the sample is judged to be of the same grade as the reference sample.

This method requires:

Only that the library contains a valid fingerprint for the reference standard.

2. Chemistry Option

Select this method to determine whether the chemistries for specific elements fall within specified min/max grade specifications.

Chemistry pass/fail process is:

1. Analyzer uses the fingerprint method to determine whether the sample matches the reference sample.

If it does not, it automatically fails.

- 2. If Step 1 has a match, the alloy chemistry is calculated from assays stored for the standard fingerprint.
- **3**. The calculated chemistry for each element is compared to the values stored in a *Grade Table*.

In order for a sample to pass, all the chemistries must be within "n" standard deviations of the min and max values specified in the grade table. Number "n" is specified by the user.

This method requires three items:

(1) a valid fingerprint, (2) assays for that fingerprint, and (3) Min/Max values saved in the library.

PN_103201 Rev_ A: May/2010

C6. Mining Modes

There are three Mining modes

MINING Use	with: ALL models
Mining	 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, As, Pb, Bi, Zr, Mo, Ag, Cd, Sn, Sb (elements may be customized on request) Fundamental Parameter based calibration for ore grading and percent-level analysis of process bulk samples. Suitable for measurement of percentage level analyte concentrations, 0.5% and greater.
2 BEAM MINING	Use with: Premier and Standard Only
Mining	Mg, AI, Si, P, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, As, Pb, Bi, Zr, Mo, Ag, Cd, Sn, Sb (elements may be customized on request) Mining mode optimized for SDD based systems to enhance SPEED and LOD for light elements
CAR Catalyst	Use with: All Models
Mode ICON T.B.A.	Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb PLUS Rh, Pt, Pd Accurate analysis of bulk recycled catalyst materials
	The Mining modes/types are: Mining mode - Classic (PiN detector based) type 2 Beam Mining mode - Standard (SDD detector based) type Beam Mining mode - Premium (SDD detector based) type Car Catalyst mode - All types

These modes utilize a Fundamental Parameters algorithm which automatically corrects for inter-element results.

The units can analyze:

- in situ (directly on the ground),
- prepared soil samples (in sample cups)
- bagged samples

Best Practices

Check Standards

Measure a check standard after each Cal Check, and periodically throughout the day. This confirms that data continues to be as accurate as possible.

The standards provided with Delta instruments are contained in special XRF sample cups. These cups have film windows (through which the soil can be viewed and analyzed) on one side, and solid caps on the other side.

Sample Presentation

in situ testing

In situ testing is performed by pointing the analyzer at the ground. Clear any grass or large rocks away and hold the analyzer with the probe head front flush to the ground. Since dirt can accumulate on the analyzer window, wipe the window clean after each analysis. Ensure the window is not ripped or punctured.

Bagged or prepared sample testing

Analyze prepared samples in a sample cup, through its Mylar window. Place the instrument's measurement window directly over the sample cup with the Mylar side up. Preparation considerations include:

- Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 15 mm of packed samples.
- When analyzing bagged samples, ensure that sufficient sample material exists in the bag to completely cover the window with a sample thickness of a minimum of 15 mm.
- When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).

Optional Accessories

Accessories that can assist in Mining mode testing are:

- A-035: Soil Foot
- 990055: Soil Extension Pole
- A-020-D: Workstation portable, fully shielded, closed beam test stand for bench-top or remote controlled testing.
- Trimble Xplorer Package

Typical Test Procedure

Mining Mode Options

Test length in Mining Mode is user defined.

*

Refer to *"Delta User Interface Guide, User Factors"* for procedure to modify User Factors..

Factors

GO TO

Mining modes allow you to create your own set of **factors**, focusing on particular elements of interest or correcting for matrix effects.

You can make several different *Factor* tables, allowing analysis of a variety of samples.

Setting Mining User Factors

Example:

A group of samples covering the full concentration range for each element of interest are identified. Each sample is homogenized and split. A portion of each sample is sent to an outside lab for analysis. The other portion is analyzed with the analyzer. For best results ensure that the samples are very well homogenized, and characterized, so the correlation is quite good.

Procedure:

Plot the data. Innov-X data must be on the X-axis, lab values on the y-axis.

CAUTION

ENSURE that you use this order: Innov-X data on X-axis and lab data on the Y-axis.

Determine the linear best fit with both the slope and intercept for each element. The slope and intercepts for these graphs are entered directly into the analyzer. In many cases it is sufficient to enter just a correction for the slope as the intercept is almost zero. In others, enter the slope and intercept.

You can enter multiple sets of user factors for different applications, or different ore bodies. A group of factors is given a name, and then the factors are entered. The factor set can then be selected by name.

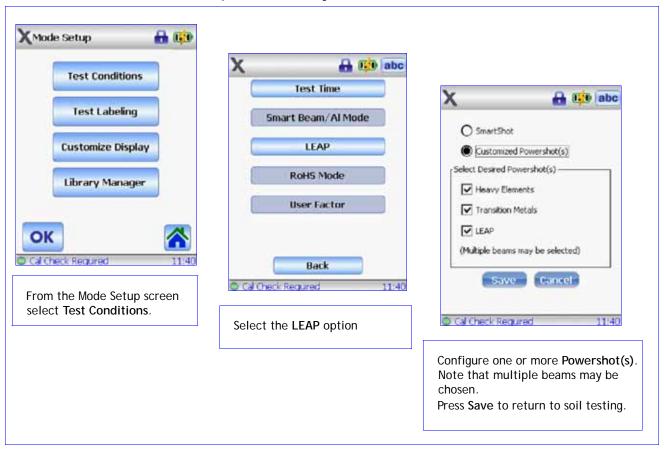
NOTES

C7. Soil Modes

The Delta family currently supports two soil modes, **Soil** and **3 Beam Soil**. Each mode has a possibility of two default element suites, **Environmental** and **Exploration**. Note that both calibration packages cannot reside on one instrument.:

SOIL Environmental	e with: All Models K, Ca, S, P, CI, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Hg, As, Pb, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba (elements may be customize on request) Compton Normalization algorithm designed for achieving lowest Limit of Detection (LOD) possible for SOIL and BULK samples. PowerShot and SmartShot 3-beam modes included.
SOIL Exploration Use with the second	ith: All Models K, Ca, S, P, CI, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hg, As, Pb, Bi, Se, Th, Rb, U, Sr, Zr, Mo, Ag, Cd, Sn, Sb (elements may be customized on request) Compton Normalization algorithm designed for achieving lowest Limit of Detection (LOD) possible for exploration samples. PowerShot and SmartShot 3-beam modes included.

Soil Mode Beam Selection


SmartShot Beam Mode:

Uses a single incident bean setting (Transition Metals) otimized to deliver ultra fast results with solid LOD performance across the periodic table. SmartShot offers excellent sensitivity in the fastest testing time possible.

PowerShot Beam Mode:

Offers a fully optimized, multi-beam analysis method that provides exceptional LODs for all elements analyzed - heavy metals, transition metals, and light elements. PowerShot can be used to analyze the full element range, or to focus in on a particular element of interest, such as Cr, Cd, Ni, or Cu. Any or all of the following beams conditions may be selected:

- Heavy Elements
- Transition Metals
- LEAP (Light Elements)

Use this procedure to configure beam selections:

Best Practices

Check Standards

Measure a check standard after each standardization, and periodically throughout the day, for a minimum of one minute. Elemental concentrations for elements of interest, in the range expected at the site, plus or minus the error on the reading, should be within 20 percent of the standard value. *A2. Soil Testing* describes recommended quality assurance considerations in detail.

The standards provided with the analyzer are contained in XRF sample cups. These containers have a film window (through which the soil can be viewed) on one side, and a solid cap on the other side. Always measure samples through the film window.

Sample Preparation

Preparation considerations include:

- Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 0.5" (usually 4-8 grams) of packed samples.
- When analyzing bagged samples, ensure that sufficient sample material exists in the bag to create a a sample thickness of a minimum of 15 mm for a spot size that is larger than the analyzer's measurement window.

PN_103201 Rev_ A: June/2010

• When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).

C8. Consumer Goods Analysis Modes

There are two consumer goods modes:	
-------------------------------------	--

RoHS	
RoHS	RoHS regulated elements- Cr, Hg, As, Pb, Br, Cd, PLUS CI, Ti, Fe, Co, Ni, Cu, Zn, Sn, Sb, Ba Analysis software for measurement of restricted elements in electronics and consumer goods. Auto-compensations built in for metal, polymer, and mixed matrices.
Consumer Products	
Consumer	Analysis software designed for CPSIA & Prop 65 testing. Pb content displayed as Pass/Fail based on regulated limits. Additional elements CI, Ti, Cr, Fe, Co, Ni, Cu, Zn, Hg, As, Br, Cd, Sn, Sb, Ba also reported.

Introduction to RoHS Mode

Toxic metals in consumer electronics are the focus of EU regulations that have worldwide ramifications. These new directives currently include:

- *Restriction of Hazardous Substances* (RoHS)
 - Designates maximum allowable levels of Pb, Cd, Cr⁶⁺, Hg and certain Br-containing flame retardants (PBB and PBDE) in new electrical and electronic equipment sold into the EU.

The limits for RoHS elements are:

- <0. 1% Pb, Cr6+, Hg, Br (as flame retardants, PBB and PBDE)
- <0.01% Cd

The Innov-X analyzer is a screening tool for RoHS Compliance. It is used to:

- Directly analyze the amount of toxic metals in electronics,
- Identify quickly whether a plastic is made of or contains:
 - PVC
 - A brominated flame retardant.

XRF measures *total elemental composition*, regardless of speciation of the element. Therefore, it reports

- Total chromium including the concentration of hexavalent chromium plus any other forms of Cr.
- Total bromine, however cannot distinguish the type of brominated flame retardant present in analyzed materials.

In order for XRF to be quantitative, samples must be:

- Homogeneous
- Have a certain minimum sample thickness
 - Five (5) mm for polymers and light alloys
 - Fifteen (15) mm for liquid samples
 - One (1) mm for other alloys

If samples are heterogeneous, too thin, or too small, only qualitative screening is possible.

The IEC-ACEA (International Electro-technical Commission – Advisory Committee on Environmental Aspects) recommends XRF screening.

Test Overview

The Delta analyzer controlled by *InnovXPC* application software (in RoHS mode) automatically executes a test sequence to determine:

- Whether a sample is an alloy, polymer, or mixed.
 - "Mixed" indicates heterogeneous samples consisting of both polymer and alloy, such as wires or circuit boards.
- Whether each RoHS element passes, fails, or is inconclusive when compared to a set of stored criteria.
 - These criteria are either those recommended by the IEC, or ones added by the user.

The sequence begins with the instrument utilizing tube settings appropriate for analyzing a polymer sample. The following logic applies:

- If the sample is determined to be a polymer or mixed, the test continues, and a calibration based on a polymer matrix is used.
- If the sample is found to be a metal alloy, the analyzer switches to a secondary test, using an alloy matrix calibration, in order to determine correct alloy concentrations.

Check Standards

Innov-X Systems recommends that a check standard be measured after each Cal Check procedure, and periodically throughout the day.

Two certified standards are provided for verification.

- At least one standard should be measured for a minimum of two minutes.
- Concentrations for target elements (plus or minus the error on the reading) should be within 20% of the standard value.
- Standards provided are contained in XRF sample cups with a Mylar window (through which the plastic pellets can be viewed) on one side, and a solid cap on the other side.
- Samples should be measured in the sample cup, through the Mylar window.

Sample Presentation

Since many pieces of plastic analyzed for ROHS compliance are very small, take care to measure them in a safe and accurate manner. See the IEC-ACEA recommendations for minimum thickness of test samples.

IEC Quantitative Screening Requirements

RoHS requirements are derived from the *"Directive 2002/95/EC of the European Parliament and of the Council of the European Union on the restriction of the use of certain hazardous substances in electrical and electronic equipment."* Dated 27 January 2003.

Important Current Issues

- At this User Manual's release date (May, 2010), the IEC requirements (including limits and exemptions) have not been formally accepted.
 A timetable for acceptance has not been established.
- Users must be aware that the information in Figure 1 concerning RoHS screening limits has been extracted from proposed/draft IEC-ACEA documentation.
- Innov-X strongly advises users to have their own compliance departments determine the current status of the requirements that they must meet.

		Polymer Materials			
—RoHS— Elements	P A S S	Lower Limit	Incon- clusive	Upper Limit	F A I L
Cd	Ρ	<u><(</u> 70-3s)	< X <	(130 +3s) <u><</u>	F
Pb	Ρ	<u>≺(</u> 700-3s)	< X <	(1300+3s) <u><</u>	F
Hg	Ρ	<u>≺(</u> 700-3s)	< X <	(1300+3s) <u><</u>	F
Br	Ρ	<u><(</u> 300-3s)<	Х		
Cr	Ρ	<u>≺(</u> 700-3s)<	Х		
		M	etallic Mater	ials	

Elemental Range/Limits for RoHS Compliance

	Metallic Materials				
Cd	Ρ	<u><(</u> 70-3s)	< X <	(130 +3s) <u><</u>	F
Pb	Ρ	<u>≺(</u> 700-3s)	< X <	(1300+3s) <u><</u>	F
Hg	Ρ	<u>≺(</u> 700-3s)	< X <	(1300+3s) <u><</u>	F
Br			N/A		
Cr	Ρ	<u><(</u> 700-3s)<	Х		

			Electronics		
Cd	Ρ	LOD	< X <	(150 +3s) <u><</u>	F
Pb	Ρ	<u><(</u> 500-3s)	< X <	(1500+3s) <u><</u>	F
Hg	Ρ	<u><(</u> 500-3s)	< X <	(1500+3s) <u><</u>	F
Br	Ρ	<u><(</u> 250-3s)<	Х		
Cr	Ρ	<u><(</u> 500-3s)<	Х		

Figure 1: Proposed Screening Limits for RoHS Elements

Grade Definitions for Screening

Grade	Proposed Screening Criteria
PASS	Results for ALL elements are lower than the lower limits shown in Figure 1.
FAIL	Result for ANY element higher than the higher limits shown in Figure 1.
INCONCLUSIVE	Result of the quantitative analysis, for any of the elements Hg, Pb, or Cd, is in the region defined as intermediate, OR if the result of the elements BR and Cr is higher than the higher limits shown in Figure 1, the analysis is inconclusive. Additional investigation must be performed.

GO TO

See A4. Typical Test Procedure for description of a Test sequence.
See "Delta User Interface Guide" (PN 103202) for a complete description of the Innov-X application's User Interface.

Introduction to Consumer Products Mode

Background

This mode is dedicated to testing items for Lead (Pb) content.

The result output is **Pass/Fail** based on the regulated limits that are specified in:

- CPSIA (the Consumer Products Safety Improvement Act of 2008)
- **Prop 65** refers to California Proposition 65 enacted in 1986

Additional elements that may be reported are:

CI, Ti, Cr, Fe, Co, Ni, Cu, Zn, Hg, As, Br, Cd, Sn, Sb, Ba

Regulatory limits vary with the governing body, state-to-state, and country-to-country. European Union nations generally use the RoHS limits and testing practices.

The regulatory limits for Pb are:

- CSPIA: 300ppm currently, but going to 100ppm
- RoHS: see Table 1.0 on Page 70

GO TO

- See A4. Typical Test Procedure for description of a Test sequence.
 - See "*Delta User Interface Guide*" (PN 103202) for a complete description of the *Innov-X* application's User Interface.

PN_103201 Rev_ A: June/2010

A1. Overview: X-Ray Fluorescence (XRF) Spectrometry

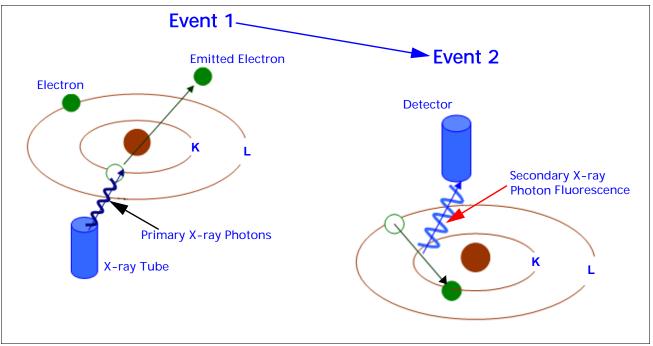
Basic Theory

Although most commonly known for diagnostic applications in the medical field, x-rays are the basis of many powerful analytical measurement techniques, including X-ray Fluorescence (XRF) Spectrometry.

XRF Spectrometry determines the elemental composition of a material. This method identifies elements in a substance and quantifies the amount present of those elements. An element is defined by its characteristic X-ray emission wavelength (λ) or energy (E). The amount of an element present is determined by measuring the intensity of its characteristic line.

All atoms have a fixed number of electrons (negatively charged particles) arranged in orbitals around their nucleus. The number of electrons in a given atom is equal to the number of protons (positively charged particles) in the nucleus. In the classical Periodic Table of Elements, the Atomic Number is specified by the number of protons. Each Atomic Number is assigned an elemental name, such as Iron (Fe), with Atomic Number 26.

XRF Spectrometry typically utilizes activity in the first three electron orbitals, the K, L, and M lines, where K is closest to the nucleus. Each electron orbital corresponds to a specific and different energy level for a given element.

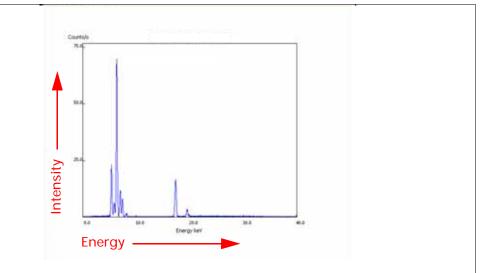

In XRF Spectrometry, high-energy primary X-ray photons are emitted from a source (X-ray tube or *radioisotope*) and strike the sample. The primary photons from the X-ray source have enough energy to knock electrons out of the innermost, K or L, orbitals. When this occurs, the atoms become unstable ions. Electrons seek stability; therefore, an electron from an outer orbital, L or M, moves into the newly vacant space at the inner orbital. As the electron from the outer orbital moves into the inner orbital space, it emits an energy known as a secondary X-ray photon.

This phenomenon is called fluorescence.

The secondary X-ray produced is characteristic of a specific element.

The energy (E) of the emitted fluorescent X-ray photon is determined by the difference in energies between the initial and final orbitals of the individual transitions.

This is described by the formula $E=hc/\lambda$ where h is Planck's constant; c is the velocity of light; and λ is the characteristic wavelength of the photon.



Creating a Secondary X-ray - Photon Fluorescence

Wavelengths are inversely proportional to the energies; they are characteristic for each element.

For example, the Ka energy for Iron (Fe) is about 6.4keV. The number of element-specific characteristic X-rays produced in a sample over a given period of time, or the intensity, is measured. This determines the quantity of a given element in that sample.

Typical spectra for EDXRF Spectrometry appear as a plot of Energy (E) versus the Intensity (I).

Typical Spectrum Plot: Energy vs. Intensity

History

Timeline for XRF Spectrometry

- Wilhelm Roentgen discovered X-rays in 1895.
- Henry Moseley first published methods for identifying and quantifying elements using XRF in 1913.
- XRF research and development continued, especially during WWII.
 - Critical developments in the aircraft, automotive, steel, and other metals industries increased the need to identify alloys *quickly* and *reliably*.
- The first commercial XRF Spectrometers became available in the early 1950's. These systems were based on Wavelength Dispersive (WD) XRF technology.
 - The characteristic wavelength of an element was measured one element at a time.
 - WDXRF systems were useful for elemental analyses, however, the equipment had the following properties:
 - Large size
 - High initial cost
 - Required highly skilled operators to use and maintain them.
 - In the late 1960's, **Energy Dispersive (ED) XRF** technology emerged as a viable commercial choice:
 - EDXRF measured the characteristic energy of an element.
 - Improvements in solid state detectors offered better energy resolution of the signal.
 - Had potential to collect and display information on all of the elements in a sample at the same time.
- Many of the early EDXRF systems used radioisotopes for excitation. They had the following properties:
 - Required changing sources to determine all the elements of interest.
 - Did not easily resolve multiple elements in a single analytical run.
 - The current state-of-the-art in EDXRF is the result of
 - Advancements in technology (particularly X-ray tubes, solid-state components, electronics, computers, software)
 - Application of the technology by instrument manufacturers, research scientists, engineers, and industrial users.
- Now a mature technology, XRF Spectrometry is routinely used for R&D, QC, production support, and regulatory compliance.

Elemental Analysis

Investigators involved with elemental analysis generally have two working instrument techniques – *Wet Chemistry* and *XRF Spectrometry*. They are compared operationally as follows.

Wet Chemistry

Important considerations are:

- Instrument techniques are time-consuming.
 - Often takes twenty minutes to several hours for specimen preparation and analysis.
- Specimen is destroyed.
- Often necessary to employ *concentrated acids* or other *hazardous materials*.
- Requires *disposal* of waste streams generated during the analytical process.
- Relatively *high cost* per sample.

However, wet chemistry instrument techniques are necessary if the primary measurement requirement involves elemental concentrations in the PPB (or lower) range

XRF Spectrometry

Important considerations are:

- Easily and quickly identifies and quantifies elements over a wide dynamic concentration range, from PPM levels up to virtually 100% by weight.
- Does *not destroy* the sample.
- Overall sample turnaround time is fast.
 - Requires little, if any, specimen preparation.
 - Often results are available within seconds, minutes for some details.
- Relatively *low cost* per sample

Interferences

All elemental analysis techniques experience chemical and physical interferences. They must be corrected or compensated for in order to achieve adequate analytical results.

WET CHEMISTRY ISSUES

Most suffer from interferences that are corrected only by extensive and complex specimen preparation techniques.

XRF SPECTROMETRY ISSUES

The primary interference is from other specific elements in a substance that can influence (matrix effects) the analysis of the target element(s) of interest.

However, this interference style is well known and documented.

Both types of analyzer techniques benefit from (a) instrumentation advancements, and (b) mathematical corrections in the system's software.

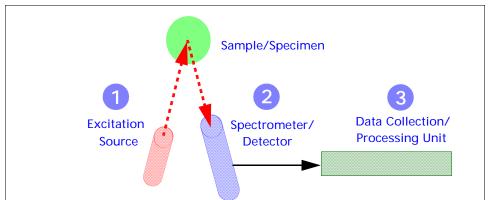
In certain cases, the *geometry* of the sample can effect XRF analysis.

- This is compensated for by:
 - Grinding or polishing the sample
 - Pressing a pellet
 - Making glass beads

Quantitative analysis

XRF Spectrometry supporting quantitative analysis typically employs one of two software applications:

- Empirical Methods Uses calibration curves derived from standards similar in property to the target unknown sample.
- Fundamental Parameters (FP)


FP is frequently preferred because it allows elemental analysis to be performed *without* standards or calibration curves.

The analyst can use the system immediately.

Modern computers support this *no-standard* mathematical analysis, FP, accompanied by stored libraries of known materials. These systems quickly determine not only the elemental composition of an unknown material, but even identify the unknown material itself.

EDXRF Spectrometers

An EDXRF instrument typically has three major subsystems:

Three Subsystems of EDXRF Analyzer

EDXRF analyzers are mechanically very simple; there are *no moving parts* in the excitation and detection subsystems. However, a bench-top analyzer can have moving parts. When compared to WDXRF systems, EDXRF systems exhibit the following attributes:

- Ease of use
- Rapid analysis time
- Lower initial purchase price
- Substantially lower long-term maintenance costs

EDXRF analysis equipment is useful for many applications, including:

- Environmental analysis
- RoHS/WEEE compliance
- Scrap alloy sorting
- Forensic science
- Archaeometry

NOTES

A2. Soil Testing

This appendix explains usage of all of the company's hand-held portable analyzers with the *Soil* or *3 Beam Soil*_mode option installed.

This document offers instructions/procedures and regulations, as well as useful reference material, regarding:

- Portable XRF equipment usage in accordance with accepted methods.
- Basic overview of the technique of x-ray fluorescence (XRF).
- Appropriate data quality assurance protocols.
 - Sample preparation steps for operators analyzing prepared soil samples.
- Tables of certified values for selected standards.

If LEAP mode is enabled, refer to configuration help in *PN 103202*.

Section 1: Commonly Accepted Methods for Field Portable XRF

A commonly accepted method is shown: *Field Portable XRF Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.* Features of this method are:

- It is a field screening method, for analysis of *in-situ* or bagged samples.
- The method provides basic quality assurance methods, including calibration verification, determination of instrument precision, accuracy and limit of detection.
- The method recognizes that some XRF instruments do not require site-specific calibrations by the operator, that is, the factory calibration provides appropriate data quality.
- The method recommends that a minimum of 5-10% of samples tested by XRF be confirmed by an outside laboratory, using a total-digestion EPA analytical reference method.

The purpose of this method is *NOT* to replace laboratory analysis. There are two primary sources of error in assessing a site for metal concentration: *Analytical error* and *Sampling error*.

ANALYTICAL ERROR

<u>The error in the analysis of any one sample by whatever technique is used</u>, for example XRF, ICP, or AA.

SAMPLING ERROR

This arises when too few samples are collected and tested.

In this case an incomplete picture of the extent of metals contamination may be obtained. Although any one sample may be analyzed with very high analytical accuracy, measuring too few samples may result in contamination plumes being mis-judged in size, or depth into the soil. In extreme cases contamination can be missed entirely.

Methods have been developed to reduce Sampling Errors by increasing the number of samples measured. In general, a large number of screening-level measurements provide a better characterization of contamination than a small number of measurements produced by sample removal and analytical analysis. A large number of in-situ samples provide detailed data on contamination profiles, depth (provided surface soil is moved aside), and approximate contamination levels. Portable XRF can provide results with a high degree of analytical accuracy on any given sample.

Section 2: Overview of Field Usage:

Field portable XRF is generally used in three ways to test for metals in soil:

IN-SITU SOIL TESTING:

The XRF is placed directly onto the ground for soil testing. Operators remove any plant growth and foreign objects so that the analyzer probe is flush to the soil.

BAGGED SOIL SAMPLE TESTING:

A soil sample is collected in a thin plastic bag (i.e. a *Baggie*) and testing occurs directly through the Baggie. Except for a few elements – namely Cr, V and Ba – testing through the thin plastic bag has little effect on the test result. However, results for Cr, V and Ba will be lower by 20-30%.

PREPARED SOIL SAMPLE TESTING:

Prepared sample testing assures the operator of the maximum possible accuracy. Prepared sample tests require a sample to be collected, dried if necessary, sieved and ground into a powder. The prepared sample is then placed into a baggie or XRF cup for analysis.

Sample prep procedures are provided on Section 8: Sample Prep Procedures and Testing Protocols on page 130.

ALL analytical methods require a *uniform, homogenous* sample for the best results. XRF is no different!

The methods generally used, namely In-situ and bagged sample testing, are considered *field-screening methods*. Although a field-screening method, in-situ testing is a valuable technique because it generates a great deal of data very quickly. Prepared soil samples generally offer the best accuracy, albeit with several minutes of sample preparation required per sample.

Subsection 2-A: Data Quality Objectives

The objective of testing is generally to determine the mixture of in-situ versus prepared sample testing. It is important to understand your data quality objectives (DQO) in order to determine the appropriate mix of field screening and prepared sample testing.

In-situ testing usually provides only screening-level data quality.

This is because analytical testing always requires a uniform, homogeneous sample matrix. A laboratory achieves this by digesting the sample into a hot acid before analysis. Testing directly on the ground does not ensure that uniformity is met. Preparing a sample provides a uniform sample and likely better analytical data quality, although several minutes of testing time is required.

Most portable XRF operators use a mixture of in-situ and prepared sample testing. The exact mixture of in-situ and prepared sample testing depends upon the goals of the soil testing. The examples below serve as guidelines.

<u>Example 1:</u> Initial site investigation to provide detailed contamination data with efficient use of laboratory analysis costs.

PROBLEM:

The site needs to be assessed for metals contamination. Little information is available about what metals are present, likely contamination levels or geographic profile of contamination.

The goal of testing is to determine what metals are present at what levels, both in area and in depth into soil. Additionally, testing will locate possible contamination plumes and/or possible sources of contamination.

RECOMMENDED TESTING PLAN:

This example uses predominately in-situ testing. The analyst will perform in-situ testing, and gather samples into plastic bags for XRF analysis. A testing grid should be established in two or three dimensions, every several feet. XRF tests can be taken at each location or bagged samples can be collected from each location for later analysis. The in-situ data for each element analyzed may be plotted in a 2-dimensional grid (X, Y coordinates versus elemental concentration) to profile a site. These concentration profiles are ideal for showing contamination patterns, boundaries and plumes. Combining this data with historical use data from the site often allows the operator to deduce sources of contamination. Obtaining this level of geographic data with purely laboratory analysis would produce excessive analytical costs.

Prepared sample analysis should also be done to confirm the regions where in-situ data indicates low or non-detected levels of metal contaminant. There is little need to prepare areas where in-situ testing indicates high concentration levels.

Innov-X recommends this procedure:

For locations where in-situ tests indicate low or non-detected concentrations, calculate the total number of in-situ tests, collect 5% of this number of tests from the various locations. Prepare these samples according to instructions on "Section 8: Sample Prep Procedures and Testing Protocols on page 130." Use these prepared samples to confirm the findings of the in-situ testing. Send a subset of these prepared samples to a laboratory for confirmatory results.

COST JUSTIFICATION:

To adequately characterize a site may require 100-200 samples/acre to be sure the contaminated areas are firmly established. This work may be done with in-situ testing to generate laboratory savings of \$5,000 - \$10,000/acre depending upon the number of elements being analyzed. The cost reduction in off-site analysis often justifies the price of the XRF.

<u>Example 2</u>: Monitor remediation efforts and assure site meets clearance levels before contractors leave the site.

GOAL:

Minimize remediation costs by only treating contaminated soil, and obtain immediate verification that various site locations meet clearance objectives.

RECOMMENDED TESTING PLAN:

This type of project uses a lot of both in-situ and prepared sample testing. Use in-situ testing to thoroughly delineate contamination regions in both area and depth. To determine depth profiles, test surface soil, remove at least 1-2', and retest. Repeat this step as necessary to profile contamination depth to guide remediation activities (XRF is a surface technique and only analyzes the first few mm of soil sample). As part of clearance, collect several samples from *cleared* area. Prepare samples according to *"Section 8: Sample Prep Procedures and Testing Protocols"* on page 92. Test with portable XRF. If XRF indicates that concentration levels are:

- In excess of clearance requirements, then continue remediation efforts.
- Below clearance requirements, then discontinue remediation efforts, and send a subset of the samples to an analytical laboratory to confirm results. Most operators safely assume that the cleanup requirements have been met for the elements in question, but await final analysis from the laboratory.

If XRF lists concentration levels as non-detected, but the detection level reported exceeds clearance requirements, send samples to a laboratory for final results. Cost Justification: In-situ results are used to guide remediation efforts, in order to obtain maximum efficiency. Efficiency is produced because contamination boundaries are firmly established, thus avoiding remediation efforts with *clean* soil. Prepared sample testing is used to assure that clearance requirements are met on-site in near real-time (pending laboratory confirmation). Costs savings are generated by avoiding clearance failures. The contractors can leave the site earlier and will not be called back to the site for additional cleanup.

IMPORTANT NOTE:

Never clear a site based solely on in-situ testing. Always use well-prepared samples to make a clearance decision.

Example 3: Minimize volume of hazardous waste for treatment or disposal.

GOAL:

For some cleanup projects, the cost of soil disposal in a hazardous waste landfill is much greater than disposal in a standard landfill. Testing soil samples with XRF may minimize the amount of *clean* soil that is inadvertently shipped to a hazardous-waste landfill.

RECOMMENDED TESTING PLAN:

This example is almost entirely based on prepared sample testing. Representative samples are removed from the soil being hauled to landfill. Obtaining an accurate analysis of the samples is crucial for making a hazardous versus non-hazardous determination. For this reason, prepared sample testing is strongly recommended.

IMPORTANT NOTE:

These types of samples are subject to Toxicity Characteristic Leaching Procedures (TCLP) for the landfill determination. In general, 20 times the XRF result should be less than the allowable limit for the metal in question. Please contact Innov-X Systems for more details on testing samples versus TCLP regulatory requirements.

Section 3: Quality Assurance

Quality assurance is detailed for both the proper use of the analyzer and for verifying the data quality of in-situ testing. All operators should perform the QC procedure, regardless of their data quality objectives. There must be strict requirements about quality assurance. Additionally, Innov-X recommends that operators verify the data quality of in-situ test results, if they are using in-situ data to guide their reporting or remediation decisions. Procedures are listed below:

Proper verification of instrument operation

Quality assurance here consists of testing known standards to verify calibration, as well as testing blank standards to determine limits of detection and to check for sample cross-contamination or instrument contamination. We recommend a detailed procedure, which is provided here in abbreviated form.

Components of instrument QC:

- An energy calibration check sample at least twice daily
- An instrument blank for every 20 environmental samples
- A method blank for every 20 *prepared* samples
- A calibration verification check sample for every 20 samples
- A precision sample at least one per day
- A confirmatory sample for every 10 environmental samples

Energy Calibration Check: The Innov-X analyzer performs this automatically; this is the purpose of the standardization check when the analyzer is started. The software does not allow the analyzer to be used if the standardization is not completed.

Instrument Blank: The operator should use the SiO₂ (silicon dioxide) blank provided with the analyzer. The purpose of this test is to verify there is no contamination on the analyzer window or other component that is *seen* by the x-rays. We recommend an instrument blank at least once per day, preferably every 20 samples. For either in-situ or prepared-sample testing, the operator should just test the SiO₂ blank to be sure there are no reported contaminant metals.

Method Blank: The purpose of the method blank is to verify that cross-contamination is not introduced into samples during sample preparation. We recommend following the sample preparation procedures with clean SiO_2 once very 20 prepared samples. This QC step is not required if the operator is not preparing samples.

Calibration Verification: Innov-X provides standard reference samples for calibration check by operator. The operator should perform a two minute test on a standard. The difference between the XRF result for an element and the value of the standard should be 20% or less. Calibration Verification should be performed upon instrument startup and periodically during testing.

NOTE

Innov-X recommends a calibration check every 4 hours. Some users make a calibration check every 20 samples. Reference standards are generally applicable for Pb, As, Cr, Cu, Zn. Innov-X provides additional reference standards for Priority Pollutant metals including Cd, Se, Ag, Hg, Ag, Ba, Sn, Sb, and Ni.

Precision Verification: It is good practice to make a minimum of one precision sample run per day by conducting from 7 to 10 replicate measurements of the sample. The precision is assessed by calculating a relative standard deviation (RSD) of the replicate measurements for the analyte. The RSD values should be less than 20 percent for most analytes, except chromium, for which the value should be less than 30 percent.

Confirmatory Sample: It is recommended that one confirmatory sample is run for every 10 samples collected. It is good practice to have confirmatory samples collected from the same sample material that is analyzed on site, but are sent to an off-site laboratory for formal analysis. The purpose of a confirmatory sample is to judge the accuracy of the data obtained by analysis on site and to allow corrections, if necessary."

Important Notes about confirmatory samples:

Innov-X always recommends that customers compare prepared-sample results to laboratory results. To do this, collect and prepare a sample following the protocols shown on *"Section 8: Sample Prep Procedures and Testing Protocols"* on page 92. Take a subsample and submit to the laboratory for analysis. The single largest error in XRF analysis is lack of sample preparation. For the best comparison, always use prepared samples.

Determining data quality of in-situ testing:

For operators relying extensively on in-situ testing, it is important to determine the data quality of this testing at a given site. *This protocol is not intended for every sample, but rather for a small percentage of samples considered representative of the site.* If the operator can demonstrate that quantitative data is achieved with little or no sample preparation, then the site characterization will be completed much more quickly but correctly.

For example, an operator may be able to demonstrate that the XRF result changes considerably when samples are passed through a 2 mm sieve, but that XRF results do NOT change appreciably upon finer sieving. In this case, the operator can conclude that good XRF data is achievable with only 2 mm sieving. Sieving only to this level requires far less time than a more robust sample preparation.

A protocol to determine the *appropriate level of sample preparation* is the following:

- 1. Delineate a region of soil approximately 4" x 4".
- 2. Perform several in-situ tests in this area, or collect the top (approximately) quarter inch of soil from this region, bag the soil, test through the bag. In either case, average the results.
- 3. If you did not bag the in-situ test sample, collect the top (approximately) quarter inch of soil from this region and sieve through the 2 mm sieve provided. Otherwise sieve the bagged sample used for the in-situ test. Thoroughly mix the sieved sample, and place some of the sieved material into an XRF cup, and perform a test of this sample.
- 4. If the results of this prepared sample differ by:
 - Less than 20% with the average in-situ result, this indicates the soil in this region is reasonably homogeneous. The data quality in this case is probably at the semi-quantitative level, rather than just screening data.
 - More than 20%, this indicates the soil is not very homogeneous, and there are serious particle size effects affecting your in-situ measurements. In this case, sieve the sample through the ~250 m sieve. Mix this sample and place a sub-sample into an XRF cup for testing. If this result differs from the previous by less than 20% then this indicates that at a minimum the 2 mm sieving is necessary to achieve higher data quality.

If this result differs by more than 20% from the sample sieved through 2 mm, then particle size effects are still affecting the XRF result. In this case samples should be sieved through 125 μ m to assure data quality at the quantitative level.

Section 4: Calibration for Innov-X Portable XRF

The Innov-X analyzer can run *three* different calibration methods, described below.

COMPTON NORMALIZATION:

In nearly all cases, customers use the Compton Normalization method. This method (recognized in EPA 6200) offers speed, ease of use, and generally good accuracy for concentration ranges from the ppm level up to 2-3% concentrations. As most field-testing is seeking to remediate or locate environmental contaminants, the upper limit of the calibration (2-3%) is generally not a limitation.

FUNDAMENTAL PARAMETERS (FP):

If customers do require a calibration up to 100% concentration (i.e. a pure element), then Innov-X recommends they also include the Fundamental Parameters (FP) software module with the analyzer. The FP module may be added at time of purchase or as an upgrade at any later date.

In general, customers do not need to calibrate Innov-X analyzers for soil testing. The analyzer is delivered with a factory calibration, generally based upon the Compton Normalization (CN) method. The CN method has been proven over the past several years to provide a robust calibration generally independent of site-specific soil matrix chemistry.

All customers should follow the QC procedure described in Section 3, which includes a check of the calibration.

EMPIRICAL CALIBRATION:

In this case, customers run standards to generate calibration curves for various elements in specific soil matrices. With a well-prepared sample, the empirical method generally yields the most accurate result. In our experience, the accuracy gains going *from* Compton Normalization *to* Empirical Mode are small and not worth the extra effort in setting up calibration curves.

The empirical calibration module is an optional software package, available for an upgrade fee at the time of purchase, or as an upgrade at any later date.

CAUTION

The *greatest source of error* for in-field XRF analysis of soil is *lack of adequate sample preparation*, thus there is little gained in developing a sophisticated empirical calibration if the operator does not grind and homogenize the all measured samples.

Calibration Requirements:

The concentration of an element in a soil sample is well-described by the formula:

$$w_i = \frac{k_i}{M(Z,i)} I_i$$

where:

- k_i = calibration constant for element *i*
- ω_i = concentration of element *i* the quantity being measured
- I_i = measured x-ray intensity from element *i*
- M(Z,I) = Soil matrix value

The factory calibration determines the value of the calibration constants k_i for each element, and a typical value M(Z,I). The calibration method – either CN, fundamental parameters, or empirical – performs the necessary corrections to the value M(Z,I) that are important for the site-specific soil chemistry. The XRF analyzer uses the measured intensity of each element's fluorescence from the sample, and the calibration data, to produce elemental concentrations.

COMPTON NORMALIZATION CALIBRATION:

The Compton Normalization method calibration consists of the analysis of a single, well-characterized standard, such as an SRM or SSCS. The standard data are normalized to the Compton peak. The Compton peak is produced from incoherent backscattering of X-ray radiation from the excitation source and is present in the spectrum of every sample. The matrix affects the way in which source radiation is scattered off the samples. This scatter is directly related to the intensity of the Compton peak. For that reason, normalizing to the Compton peak can reduce problems with matrix effects that vary among samples. Compton normalization is similar to the use of internal standards in analysis for organic analytes.

FUNDAMENTAL PARAMETERS CALIBRATION:

The fundamental parameters (FP) calibration is a *standardless* calibration. Rather than establishing a unit's calibration curve by measuring its response to standards that contain analytes of known concentrations, FP calibration relies on the known physics of the spectrometer's response to pure elements to set the calibration. Built-in mathematical algorithms are used to adjust the calibration for analysis of soil samples and to compensate for the effects of the soil matrix. The FP calibration is performed by the manufacturer, but the analyst can adjust the calibration curves (slope and y-intercept) on the bases of results of analyses of check samples, such as SRMs which are analyzed in the field.

EMPIRICAL CALIBRATION:

The empirical calibration method requires that a number of site-specific calibration standards (SSCS) are used to establish calibration parameters. The instrument response to known analytes is measured and used to create calibration curves. Empirical calibration is effective because the samples used closely match the sample matrix. SSCSs are well-prepared samples collected from the site of interest in which the concentrations of analytes have been determined by inductively coupled plasma (ICP), atomic absorption (AA), or other methods.

The standards should contain all the analytes of interest and interfering analytes. Manufacturers recommend that 10 to 20 calibration samples be used to generate a calibration curve. The empirical method is the least desirable calibration method as it requires that new standards and curves are generated for each site that is analyzed.

Section 5: Effects of Moisture on XRF Results

Sample moisture has two effects on XRF results:

- It alters the soil chemistry, since water is another chemical compound that comprises the soil matrix.
- Moisture impedes the ability to properly prepare samples.
- There is a further testing consideration:
 - Laboratory results are provided on a *dry weight* basis.

EFFECT ON SOIL CHEMISTRY:

While the presence of significant moisture does impact the soil chemistry, modern XRF analyzers all perform automatic corrections for variations in soil chemistry from site to site. Indeed, such variations are expected, and that is the reason analyzers use Compton Normalization or fundamental parameters, in order to correct for moisture content changes as well as other differences in soil geochemistry.

It is known that moisture content above 20 percent may cause problems, since moisture alters the soil matrix for which the FPXRF has been calibrated. However, the Compton Normalization or fundamental parameters methods are implemented in order to automatically correct results for changes to the soil matrix. Thus, we believe that soil moisture is not a significant effect on accuracy due to effects of soil matrix, except for the *dilution* effect that can cause discrepancies with laboratory results which is described below.

SAMPLE PREPARATION ISSUES:

The inability to adequately prepare a wet sample is, we believe, the single biggest contributor to errors when testing wet samples. It is very difficult to grind or sieve a wet sample. The highest quality XRF results are generally obtained from prepared samples.

CAUTION

If the operator is unwilling to dry the sample to prepare it, comparisons to the laboratory may yield poorer correlation since the samples are <u>not homogeneous</u>.

Laboratory Tests on Dry-Weigh Basis:

Laboratories always dry samples prior to analysis. They report percent weight content based upon a dry sample basis. Portable XRF may often be used to analyze wet samples in the field, and results are thus reported that include the moisture content. Thus, with all other factors the same, the laboratory will report results higher than portable XRF. The results are higher by the amount of moisture content in the sample. For example, laboratory results will be 10% higher compared to XRF results, if the sample contained 10% by weight water when it was tested with XRF. Recall, this applies to samples where other possible sources of error are the same or negligible.

Section 6: Comparing XRF Results to Laboratory Results

Innov-X strongly recommends that operators compare prepared sample results to laboratory results. This is because prepared-sample results yield the best possible accuracy with portable XRF. Moreover, the most common source of error is due to non-uniform samples. No analytical technique, including the XRF technique, can properly account for non-uniform sample types.

To perform a comparison between XRF results and laboratory:

- 1. Collect a sample and prepare it according to the sample preparation guide given in *"Section 8: Sample Prep Procedures and Testing Protocols"* on *page 90*.
- 2. Take a sub-sample (5-10 grams) of the fully-prepared sample, place it into an XRF cup and perform at least a one-minute test on that sample.
- 3. Send the same sample to the laboratory for wet chemistry analysis.
- 4. Require the laboratory to use a *total-digestion method*. If the laboratory does not, they may not extract all of the elemental metal from the sample. In this case, the lab result will be lower than the XRF result. Incomplete sample digestion is one of the *most common* sources of laboratory error, thus it is very important to request a total digestion method.

Example of Error: The operator collects a bag of sample, performs XRF analysis on one part of the bag, and sends the bag, or part of the bag of sample to a laboratory for analysis. The laboratory reports a very different value than the operator obtained with the XRF.

Problem:

Since the sample is very non-homogeneous, the operator did not obtain a result that was representative of the entire bag of sample. The lab analyzed a different part of the sample and obtained a very different result due to the non-uniformity of the sample. The solution to this problem is, at a minimum, to test several locations in the bag of sample and report the average value. Also note the differences between the tests, as this is indicative of the non-uniformity of the sample. The operator should send entire bag of sample to the lab, and instruct the lab to prepare the sample before removing the sub-sample for lab analysis.

Best Practice:

The operator should homogenize and prepare the entire bag of sample, and then collect a sub-sample for XRF testing. After testing, the *same sample* should be sent to the lab.

Section 7: Common Interferences

Interference occurs when the spectral peak from one element overlaps either partially or completely with the spectral peak of another.

Case 1 Conditions

If the instrument is calibrated for both elements, one causing the interference and one being interfered with, it is generally capable of correctly handling the interference. In this instance, the element being interfered with may be measured with a poorer detection limit or poorer precision, but the analytical results should still be acceptable for field-portable XRF.

Case 2 Conditions

If the XRF is not calibrated for the element causing the interference, then the instrument may report the presence of elements not in the sample, or greatly elevated concentrations of elements in or not in the sample.

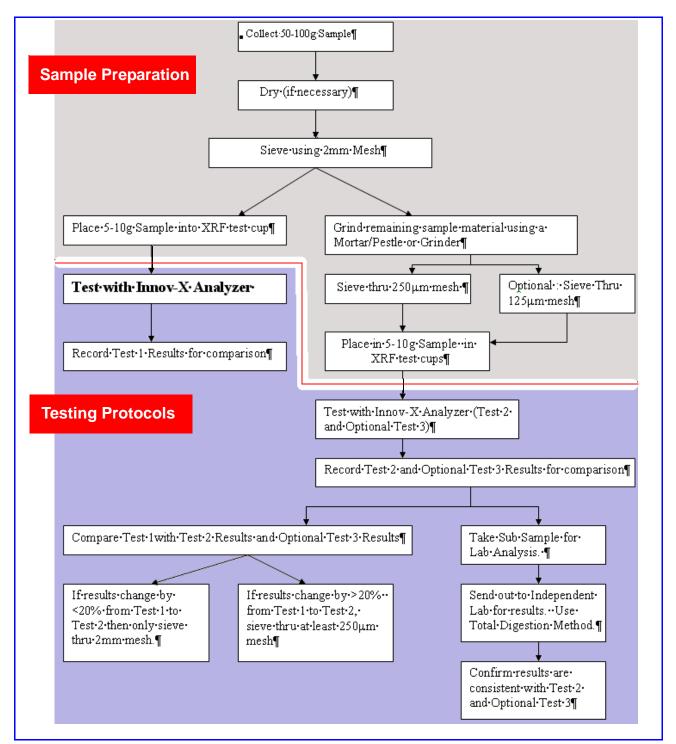
Example CASE 1: Lead and arsenic

Lead and arsenic. Most XRFs are calibrated for lead and arsenic. Lead interferes with arsenic (not vice-versa though). The net effect is a worsened detection limit for arsenic, and poorer precision. The XRF handles the correction automatically, but the precision is affected. The loss of precision is also reported by the XRF.

(Refer to Innov-X Applications Sheet: *In-field Analysis of Lead and Arsenic in Soil Using Portable XRF* which is now available as *Arsenic and Lead in Soil.PDF* for more detail).

Example CASE 2: Bromine

Bromine in the sample, but the XRF is not calibrated for bromine. Bromine, as a fire retardant, is being seen more and more in soil and other sample types. For this reason, Innov-X analyzers include Br in the calibration data. If Br is not calibrated, but is present in the sample, the analyzer will report highly elevated levels of Pb, Hg and As. The levels will depend upon the concentration of Br in the sample.


Interferences between elements can be broadly categorized into two types:

Z, Z-1, Z+1 interferences

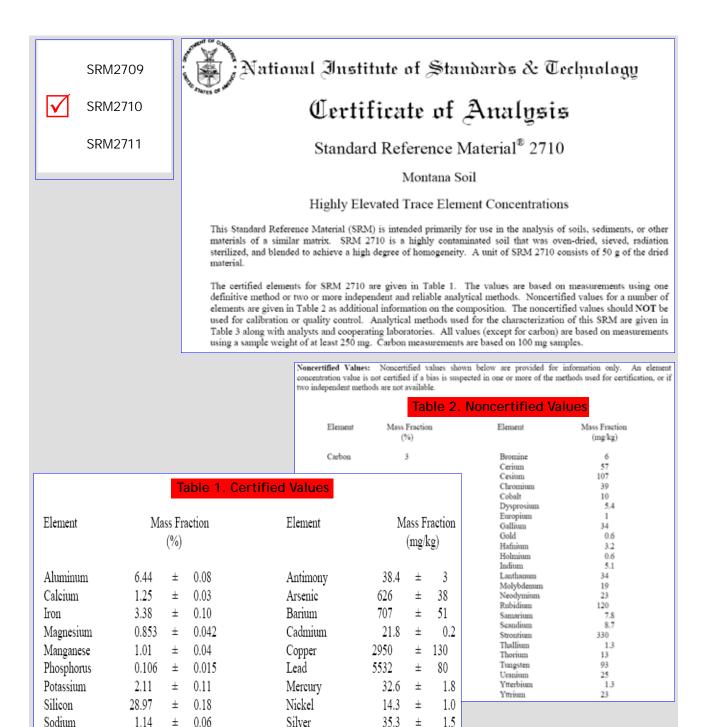
Occurs when high levels of an element of atomic number Z are present. This can cause elevated levels of elements with atomic number Z-1 or Z+1. Generally, portable XRFs have good correction methods, so this interference only causes problems with very high levels of the element in question. Example: High concentrations of Fe (Z=26) in excess of 10% may cause elevated levels of Mn or Co (Z=25 or Z=27 respectively).

K/L interferences

Occurs when the L-shell line of one element overlaps with the K-shell spectral line of another element. The most common example is the lead/arsenic interference where the L-alpha line of lead is in nearly the exact same location as the K-alpha line of arsenic.

- A2. Soil Testing -

Section 8: Sample Prep Procedures and Testing Protocols


PN_103201 Rev_ A: May/2010

Section 9: NIST Certificates of Analysis

Innov-X systems provides three NIST standards (subject to change with availability). Each standard's certified values are given in Table 1 and Non-certified values are in Table 2 in the graphics below.

SRM2	2709		() N	ational Ir	ıstitute of	f Stand	ards &	Technology	
SRM2710 Certificate of Analysis									
	Standard Reference Material [®] 2709								
SRM2	SRM2711 Standard Reference Material ² 2709								
					San	Joaquin So	1		
				Ba	seline Trace	Element Co	ncentrations	s	
			This Standa	rd Reference Materia	l (SRM) is intende	d primarily for	use in the analys	sis of soils, sediments, or other	
			materials of	a similar matrix. SR	M 2709 is an agric	ultural soil that	was oven-dried,	sieved, radiation sterilized, and 0 g of the dried material.	
								ed on measurements using one	
			elements ar	e given in Table 2 as	additional informat	tion on the com	position. The no	certified values for a number of oncertified values should NOT	
								ization of this SRM are given in on) are based on measurements	
			using a sam	ple weight of at least 2	*				
						due may not b	e certified if a	bias is suspected in one or more	I for information only. An eleme re of the methods used for certification
							Table 2	. Noncertified Va	alues
						-			
					Elemen	at	Mass Fractic	on Element	Mass Fraction
					Elemen	at	Mass Fractic (%)	on Element	Mass Fraction (µg/g)
		_			Carbor	at		Cerium	(µg/g) 42
		Та	ible 1. Cer	tified Valu	Carbor	at		Cerium Cesium Dysprosium	(µg/g) 42 5.3 3.5
Flamout	Ma				Jes		(%)	Cerium Cesium	(µg/g) 42 5.3
Element		ss Fi	able 1. Cer		Carbor	Mass I	Fraction	Cerium Cesium Dysprosium Europium Gallium Gold	(µg/g) 42 5.3 3.5 0.9 14 0.3
Element					Jes	Mass I	(%)	Cerium Cesium Dysprosium Europium Galium Gold Hafnium Holmium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54
Element		ss Fi		Ele	Jes	Mass I	(%) Fraction	Cerium Cesium Dysprosium Europium Gold Hafnium Holmium Iodine Lanthanum	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23
		ss F1 (%)	raction	Ele	J <mark>es</mark> ment	Mass I (µg	(%) Fraction t/g) ⊧ 0.6	Cerium Cesium Dysprosium Europium Gold Hafnium Holmium Iodine Lanthanum Molybdenum	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0
Aluminum	7.50	ss F1 (%) ±	naction 0.06	Ele Ant Ars	ies ment	Mass I (μg 7.9 =	(%) Fraction t/g) ⊨ 0.6 ⊨ 0.8	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lauthanum Neodynnium Rubidium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96
Aluminum Calcium	7.50 1.89	ss F1 (%) ± ±	0.06 0.05	Ele Ant Ars Bar	ies ment timony enic	Mass I (με 7.9 = 17.7 =	(%) Fraction y/g) = 0.6 = 0.8 = 40	Cerium Cesium Dysprosium Europium Galiium Gold Hafnium Holmium Iodine Lanthanum Molybdenum Neodymium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19
Aluminum Calcium Iron	7.50 1.89 3.50	ss F1 (%) ± ±	0.06 0.05 0.11	Ele Ant Ars Bar Cao	ies ment timony enic ium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 =	(%) Fraction y/g) = 0.6 = 0.8 = 40	Cerium Cesium Dysprosium Europium Gallium Gold Hafinium Holmium Iodine Lanthanum Neodynaium Neodynaium Samarium Samarium Samarium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11
Aluminum Calcium Iron Magnesium	7.50 1.89 3.50 1.51	ss F1 (%) ± ± ±	0.06 0.05 0.11 0.05	Ele Ant Ars Bar Cao Chr	ies ment timony tenic ium lmium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 130 =	(%) Fraction g/g) ⊨ 0.6 ⊨ 0.8 ⊨ 40 ⊨ 0.01	Cerium Cesium Dysprosium Galiiom Gold Hafnium Holmium Iodine Lanthanum Molybdenum Neodymium Rubidium Samarium Seandium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12
Aluminum Calcium Iron Magnesium Phosphorus	7.50 1.89 3.50 1.51 0.062	ss F1 (%) ± ± ± ±	0.06 0.05 0.11 0.05 0.005	Ele Ant Ars Bar Cac Chr Col	ies ment timony tenic tum hmium romium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 130 = 13.4 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4	Cerium Cesium Dysprosium Europium Galilium Gold Hafnium Holmium Iodine Lanthanum Molybdenum Neodynium Rubidium Sanarium Sanarium Thorium Tungsten Uranium Ytterbium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16	ss Fi (%) ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03	Ele Anti Arss Bar Cac Chr Col Col Cop Lea	ies ment timony senic tium lmium comium comium coalt pper id	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 130 = 13.4 = 34.6 = 18.9 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.5	Cerium Cesium Dysprosium Galiiom Gold Hafnium Holmium Iodine Lanthanum Molybdenum Neodynium Rubidium Samarium Samarium Thorium Thorium Tungsten Uranium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon	7.50 1.89 3.50 1.51 0.062 2.03 29.66	ss Fi (%) ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23	Ele Anti Ars Bar Cac Chr Col Cop Lea Ma	Ies ment timony tenic tium Imium comium conium conium colt pper id nganese	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 130 = 13.4 = 34.6 = 18.9 = 538 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.5 = 17	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16	ss F1 (%) ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03	Ele Anti Ars Bar Cac Chr Col Cop Lea Ma Me	Ies ment timony senic tium lanium comium con	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 13.0 = 13.4 = 34.6 = 18.9 = 538 = 1.40 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.5 = 17 = 0.08	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Anti Ars Bar Cao Chr Col Cop Lea Ma Me Nic	IES ment timony tenic ium Imium romium palt opper id nganese rcury kel	Mass I (µg 7.9 = 17.7 = 968 = 130 = 13.4 = 13.4 = 13.4 = 18.9 = 538 = 1.40 = 88 =	(%) Fraction (g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.7 = 0.5 = 17 = 0.08 = 5	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Ani Ars Bar Cac Chr Col Cop Lea Ma Me Nic Sel	Ies ment timony tenic ium hnium comium palt pper id nganese rcury kel enium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 13.4 = 13.4 = 13.4 = 13.4 = 13.4 = 13.8 = 1.40 = 88 = 1.57 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.5 = 17 = 0.08 = 5 = 0.08	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Anti Ars Bar Cac Chr Col Cop Lea Ma Me Nic Sel Silv	Ies ment timony tenic tium hnium comium conium conium conium conium colt pper id nganese reury kel enium reury	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 13.4 = 13.57 = 0.41 =	(%) Fraction (g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.7 = 0.7 = 0.5 = 17 = 0.08 = 5 = 0.08 = 0.08 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.05 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.03 = 0	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Anti Ars Bar Cao Chr Col Cop Lea Ma Me Nic Sel Silv Stro	IES ment timony enic ium dmium comium palt pper id nganese rcury kel enium ver ontium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 13.4 = 13.5 = 13.4 = 13.5 = 13.4 = 13.5 = 13.4 = 13.5 = 13.5 = 13.4 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 = 13.5 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.7 = 0.5 = 17 = 0.08 = 5 = 0.08 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.05 = 0.08 = 0.05 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.03 =	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Anti Ars Bar Cao Chr Col Cop Lea Ma Me Nice Sel Silv Stro Tha	IES ment timony enic tium dmium comium palt opper id nganese reury kel enium /er ontium dlium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 13.4 =	(%) Fraction (g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.8 = 0.08 = 5 = 0.08 = 0.01 = 0.08 = 0.08 = 0.08 = 0.01 = 0.08 = 0.08 = 0.08 = 0.01 = 0.08 = 0.03 = 0.03 = 0.03 = 0.03 = 0.05 = 0.03 = 0.05 = 0.05 = 0.03 = 0.05 = 0	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	7.50 1.89 3.50 1.51 0.062 2.03 29.66 1.16 0.089	ss Fr (%) ± ± ± ± ± ± ± ± ±	0.06 0.05 0.11 0.05 0.005 0.06 0.23 0.03 0.002	Ele Anti Ars Bar Cao Chr Col Cop Lea Ma Me Nice Sel Silv Stro Tha	IES ment timony enic tium dmium comium palt opper dd nganese reury kel enium /er ontium dlium nadium	Mass I (µg 7.9 = 17.7 = 968 = 0.38 = 130 = 13.4 = 34.6 = 18.9 = 538 = 1.40 = 88 = 1.57 = 0.41 = 231 = 0.74 = 112 =	(%) Fraction g/g) = 0.6 = 0.8 = 40 = 0.01 = 4 = 0.7 = 0.7 = 0.7 = 0.5 = 17 = 0.08 = 5 = 0.08 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.05 = 0.08 = 0.05 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.08 = 0.08 = 0.05 = 0.08 = 0.03 =	Cerium Cesium Dysprosium Europium Gallium Gold Hafnium Holmium Iodine Lanthanum Neodynium Rubidium Samarium Scandium Thorium Tungsten Uranium Ytterium	(µg/g) 42 5.3 3.5 0.9 14 0.3 3.7 0.54 5 23 2.0 19 96 3.8 12 11 2 3 1.6 18

76.6 ±

± 91

6952

2.3

Vanadium

Zine

Sulfur

Titanium

0.240

0.283

±

±

0.006

0.010

SRM	12709			Natio	nal I	nstitu	te o	f Sta	ndards d	& Technology
SRM	SRM2710 Certificate of Analysis					ļsis				
SRM2711				Standard Reference Material® 2711						
							М	ontana S	Soil	
			4		Moder	ately Elev	ated	Trace E	lement Conc	entrations
				materials of a simila	ar matrix.	SRM 2711 i	a mod	lerately con	taminated soil that	aalysis of soils, sediments, or other t was oven-dried, sieved, radiation 1 2711 consists of 50 g of the dried
				definitive method or elements are given i be used for calibrati	two or mo in Table 2 a on or qualit malysts and	re independe as additional ty control. A l cooperating	nt and i inform nalytics laborat	reliable ana ation on the al methods u cories. All u	lytical methods. 1 e composition. The ased for the chara- values (except for	based on measurements using one Noncertified values for a number of the noncertified values should NOT terization of this SRM are given in carbon) are based on measurements 0 mg samples.
					concentration		t be cert ds are n	ified, if a bia ot available.		rovided for information only. An elemen or more of the methods used for certification
					Eler	ment M	ass Frac (%)	tion	Element	Mass Fraction (µg/g)
					Car	bon	2		Bromine Cerium	5
			Tat	ole 1. Certifie	d Value	25			Cesium Chromium	6.1 47
									Cobalt	10
Element		ss F1 (%)	action	Ele	ement	Ma	ss Fra (µg∕g		Dysprosium Europium Gallium Gold	5.6 1.1 15 .03
Aluminum			action		ement timony	19.4			Europium Gallium Gold Hafnium Holmium	1.1 15 .03 7.3 1
	6.53 2.88	(%) ±		An Ar	timony senic	19.4 105	(µg/g) 1.8 8	Europium Gallium Gold Hafnium Holmium Indium Iodine	1.1 15 .03 7.3 1 1.1 3
Aluminum Calcium Iron	6.53 2.88 2.89	(%) ± ±	0.09 0.08 0.06	An Ar Ba	timony senic rium	19.4 105 726	(μg/g ± ± ±) 1.8 8 38	Europium Gallium Gold Hafnium Holmium Indium Iodine Lanthanum	1.1 15 .03 7.3 1 1.1 3 40
Aluminum Calcium Iron Magnesium	6.53 2.88 2.89 1.05	(%) ± ± ± ±	0.09 0.08 0.06 0.03	An Ar Ba Ca	timony senic rium dmium	19.4 105 726 41.70	(μg/g ± ± ±) 1.8 8 38 0.25	Europium Gallium Gold Hafnium Indium Iodine Lanthanum Molybdenum Neodymium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31
Aluminum Calcium Iron Magnesium Phosphorus	6.53 2.88 2.89 1.05 0.086	(%) ± ± ± ±	0.09 0.08 0.06 0.03 0.007	An Ar Ba Ca Co	timony senic rium dmium pper	19.4 105 726 41.70 114	(μg/g ± ± ± ±) 1.8 8 38 0.25 2	Europium Gallium Gold Hafnium Indium Indium Iodine Lanthanum Molybdenum	1.1 15 .03 7.3 1 1.1 3 40 1.6
Aluminum Calcium Iron Magnesium Phosphorus Potassium	6.53 2.88 2.89 1.05 0.086 2.45	(%) ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08	An Ar Ba Ca Co Le	timony senic rium dmium pper ad	19.4 105 726 41.70 114 1162	(μg/g ± ± ± ± ±	1.8 8 38 0.25 2 31	Europium Gallium Gold Hafnium Indium Indium Iodine Lanthanum Molybdenum Neodymium Rubidium Samarium Scandium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon	6.53 2.88 2.89 1.05 0.086 2.45 30.44	(%) ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19	An Ar Ba Ca Co Le Ma	timony senic rium dmium pper ad anganese	19.4 105 726 41.70 114 1162 638	(μg/g ± ± ± ± ±	1.8 8 38 0.25 2 31 28	Europium Gallium Gold Hafnium Indium Iodine Lanthanum Molybdenum Neodynium Rubidium Samarium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14	(%) ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03	An Ar Ba Ca Co Le Ma Ma	timony senic rium dmium pper ad anganese ercury	19.4 105 726 41.70 114 1162 638 6.25	(μg/g ± ± ± ± ± ±	1.8 8 38 0.25 2 31 28 0.19	Europium Gallium Gold Hafnium Indium Indium Indium Lauthanum Molybdenum Neodymium Neodymium Samarium Samarium Samarium Tungsten Uranium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14 0.042	(%) ± ± ± ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03 0.001	An Ar Ba Ca Co Le Ma Ma Nie	timony senic rium dmium pper ad mganese ercury ckel	19.4 105 726 41.70 114 1162 638 6.25 20.6	(μg/g ± ± ± ± ± ±) 1.8 8 38 0.25 2 31 28 0.19 1.1	Europium Gallium Gold Hafnium Indium Indium Indium Lanthanum Molybdenum Neodymium Rubidium Samarium Samarium Thorium Thorium Tungsten Uranium Ytterbium Ytterbium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6 2.7 25
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14	(%) ± ± ± ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03	An Ar Ba Ca Co Le Ma Ma Nie Sel	timony senic rium dmium pper ad anganese ercury ckel lenium	19.4 105 726 41.70 114 1162 638 6.25 20.6 1.52	(μg/g ± ± ± ± ± ± ± ± ± ±) 1.8 8 38 0.25 2 31 28 0.19 1.1 0.14	Europium Gallium Gold Hafnium Iodium Iodium Iodine Lanthanum Molybdenum Neodymium Rubidium Samarium Samarium Scandium Thorium Tungsten Uranium Ytterbium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6 2.7
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14 0.042	(%) ± ± ± ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03 0.001	An Ar Ba Ca Co Le Ma Ma Nie Sel Sil	ttimony senic rium dmium pper ad anganese ercury ckel lenium ver	$ \begin{array}{r} 19.4 \\ 105 \\ 726 \\ 41.70 \\ 114 \\ 1162 \\ 638 \\ 6.25 \\ 20.6 \\ 1.52 \\ 4.63 \\ \end{array} $	(μg/g ± ± ± ± ± ±) 1.8 8 38 0.25 2 31 28 0.19 1.1 0.14 0.39	Europium Gallium Gold Hafnium Indium Indium Indium Lanthanum Molybdenum Neodymium Rubidium Samarium Samarium Thorium Thorium Tungsten Uranium Ytterbium Ytterbium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6 2.7 25
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14 0.042	(%) ± ± ± ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03 0.001	An Ar Ba Ca Co Le Ma Ma Sei Sil Str	timony senic rium dmium pper ad anganese ercury ckel lenium ver ontium	19.4 105 726 41.70 114 1162 638 6.25 20.6 1.52	(μg/g ± ± ± ± ± ± ± ± ±) 1.8 8 38 0.25 2 31 28 0.19 1.1 0.14	Europium Gallium Gold Hafnium Indium Indium Indium Lanthanum Molybdenum Neodymium Rubidium Samarium Samarium Thorium Thorium Tungsten Uranium Ytterbium Ytterbium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6 2.7 25
Aluminum Calcium Iron Magnesium Phosphorus Potassium Silicon Sodium Sulfur	6.53 2.88 2.89 1.05 0.086 2.45 30.44 1.14 0.042	(%) ± ± ± ± ± ± ± ± ± ± ± ± ±	0.09 0.08 0.06 0.03 0.007 0.08 0.19 0.03 0.001	An Ar Ba Ca Co Le Ma Me Nid Sel Sil Str Th	ttimony senic rium dmium pper ad anganese ercury ckel lenium ver	$ \begin{array}{r} 19.4\\105\\726\\41.70\\114\\1162\\638\\6.25\\20.6\\1.52\\4.63\\245.3\end{array} $	(µg/g ± ± ± ± ± ± ± ± ±	1.8 8 38 0.25 2 31 28 0.19 1.1 0.14 0.39 0.7	Europium Gallium Gold Hafnium Indium Indium Indium Lanthanum Molybdenum Neodymium Rubidium Samarium Samarium Thorium Thorium Tungsten Uranium Ytterbium Ytterbium	1.1 15 .03 7.3 1 1.1 3 40 1.6 31 110 5.9 9 14 3 2.6 2.7 25

NOTES

A3. Specifications

Handheld Analyzer	Description				
Weight	3.35 lbs. (Base wt.), 3.70 lbs. (1.6 kg) with battery				
Excitation Source	4 Watt X-ray tube - Au, Ag, Rh, or Ta anode (application optimized), 8-40 keV, 5 - 200 $\mu A,$ eight filter positions				
Detector	Various: Si PIN diode or Si Drift detector, thermo-electrically cooled, high resolution				
Power	Removable Li-ion batteries, or AC power unit				
Battery Life	Battery life varies depending on usage patterns				
Display	Color "transflective" touchscreen (800 x 600) with 16-bit LCD in	nterface)			
Cal Check Coupon	316 Stainless Steel Alloy see also Docking Station				
Power Requirements for AC Adapter	110-220 VAC, 50-60 Hz, 600 W max (P/N 100043)				
Pressure Correction	Built-in barometer for automatic altitude correction				
Operating Environment	Temperature: -10°C to 45°C Humidity: 10 to 90% Relative Humidity, non-condensing Altitude Rating: 2000 meters	Operating specifications a posted as nominal .			
Operating System	Windows Embedded CE [®]				
Application Software	Innov-X Systems' proprietary Data Acquisition and Processing pa	ackage.			
USB Interface	USB 2.0				
Docking Station	Description				
Dimensions	L=14.0 in x W=8.75 in x H=4.75 in (H w/ spare battery = 6.5 in); Wt = 3.25 lbs.				
Power Requirement	AC adapter standard: 110-220 VAC, 50-60 Hz, 600 W max				
Cal Check Cup	Automatically performs Cal Check on inserted instrument				
Battery Charging	Charges battery in unit; can simultaneously charge spare batter	ry in separate socket			
Accessories	Description				
AC Battery Charger	P/N 120253				
TestStand/Workstation	A-020-D - portable equipment stand making a fully shielded closures Delta PC Software.	sed beam system.			
Soil Foot	A-035				
Soil Extension Pole	P/N 990055				
Trimble Xploration Package (P6000FDC)	XPLORER FIELD DATA COLLECTION BUNDLE Trimble Nomad 800G-LC - Ruggedized 800Mhz Field Computer with integrated GPS, Wi-Fi, Bluetooth, Camera, 16Gb Memory, SD Card Slot Options: Barcode Scanner, Cell Phone Interface, Fully DGPS compatible running Windows Mobile 6.0 OS.				

Trimble Xploration	XPLORER TOTAL FIELD GEOCHEM BUNDLE	
Package	Includes all features supplied with Field Data Collection Package and:	
(P6000TFG)	Soil Extension Pole - Ergonomic extension pole facilitating soil	
	analysis by a standing (and walking) operator.	
	Soil Foot - Attaches to nose of DELTA analyzer balancing	
	analyzer on ground for hands-free, extended in-situ testing.	
	ioGAS - ioAnalytics GeoChemical Analysis Software Suite, an	
	advanced spatial data analysis package for visualization, interrogation &	
	validation of geochemical data for mineral exploration, mining, &	
	environmental industries.	

PN_103201 Rev_A: June/2010

A4. Typical Delta Test Sequence

Innov-X Delta User Interface

Operators manage their measurement, analysis, and results activities from the *Innov-X* UI when in ANY of the Alloy modes/calibrations. This Appendix presents:

- Typical Sample Test Procedure, and
- Prerequisites for testing necessary for various modes

GO TO

The operational features of the *Home, Mode, Setup, Test, and Results* screens are explained in *"Delta User Interface Guide" (PN 103202)* In this document, *"Delta User Manual,"* see *C4, Operations, Page 47* for a SNAP-SHOT of the UI.

Typical Sample Test Procedure

This sample procedure features the Alloy Plus mode.

Other modes follow a similar sequence, however, the **Test Condition** screens are generally unique to each testing situation.

Use these steps:

- 1. From the Home screen, tap Mode icon
- 2. From Mode screen, tap the Alloy Plus icon
- 3. Select Mode Setup button

- 4. Select Test Conditions, then Test Time
- 5. Ensure that the Testing Time and other parameters are properly selected

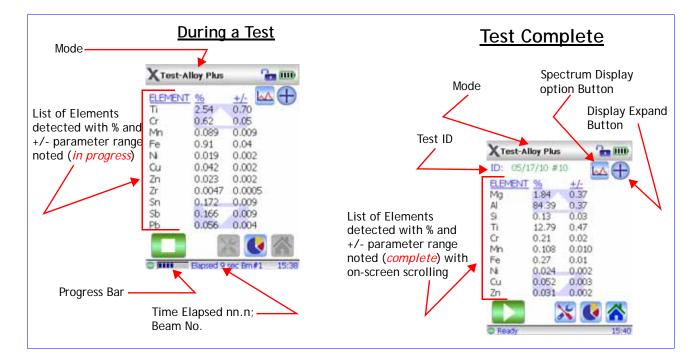
X General ab	Alloy Plus Options	X Can me abc	For best light element accuracy, please enter the local atmospheric pressure or atitude.
Smart Beam/A1 Mode Alloy Plus Options Rol (S Mode	Single Beam - Suppress LE detection Single Beam - With LE detection Two Beams - Al ₂ Si ₂ Mg ₂ P ₂ S detection	Min: 0 C A RealTime Max: 5 C A UveTime	Pressure O Abbude I014
User Factor	OK	Repeat test: 1 Generate Avg Pranct After Repeat Pressure/Aftertude	mbar n. Hg OK Cancel
Buck D Ready 15:	24 © Ready 15:25	OK (* 15:24	Ready 15:25

- 6. Press OK button, the Back, then OK again
- 7. Return to Home screen, select Test to call the Test-Alloy Plus screen

Testing Tips for Certain Modes

Alloy:

- Place the analyzer's window on/over the test specimen, cover the window completely.
- Remember the Safety information (C2, Pages 29-31) to ensure your own personal safety.
- Take care not to damage the window film, such as when testing "metal turnings" or hot surfaces.


Soil or Mining:

- Place the analyzer's measurement window directly over the sample cup with the film side up.
- Specify the altitude or atmospheric pressure to gain increased accuracy for light elements.
- Confirm that the Testing Time and other parameters are properly selected
- Take care not to damage the window film, such as when testing uneven surfaces

RoHS:

- In order for XRF testing to be *quantitative*, samples must be:
 - Homogeneous
 - Have a certain minimum sample thickness
 - Five (5) mm for polymers and light alloys
 - Fifteen (15) mm for liquid samples
 - One (1) mm for other alloys
- If samples are heterogeneous, too thin, or too small, only *qualitative* screening is possible.
 - 8. Start a new test by using one of these methods:
 - a. Tap Start button on the UI (toggles Delta to X-ray ON state)
 - or —
 - b. Pull the trigger (toggles instrument to X-ray ON state)
 - or —
 - c. Pull-and-hold the trigger when the "Deadman Trigger" is active.

Best Practices for Testing

Alloy Mode

Prior to a test session, analysts should have an understanding of *Innov-X*'s implementation of:

- Grade Libraries -> populated by alloy Grades -> their chemistry characterized by Grade Tables.
 - See Grade Libraries for library management procedures.
- Match Issues including the concept and use of Match Numbers. See *Match Issues*

Prior to initiating testing with the analyzer software, ensure that the following tasks are complete:

- 1. Analyzer does not require a Cal Check procedure.
- 2. The analyzer's measurement window is properly positioned in front of or over the test sample.
- 3. The *Match Cutoff* and *nSigma* parameters are configured.

Mining and Soil Modes

Check Standards

- Measure a **check standard** after each Cal Check, and periodically throughout the day. Test for a recommended minimum of one minute.
- Concentrations for elements of interest, in the range expected, plus or minus the error on the reading, should be within 20 percent of the standard value.
- A2. Soil Testing describes recommended quality assurance details.

• The standards provided with the analyzer are contained in XRF sample cups. These containers have a window (through which the soil can be viewed) on one side, and a solid cap on the other side.

Always measure samples through the window.

Sample Presentation

IN SITU TESTING

In situ testing is performed by pointing the analyzer at the ground. Clear any grass or large rocks away and hold the analyzer with the probe head front flush to the ground. Since dirt can accumulate on the analyzer window, gently wipe the window clean after each analysis. Ensure the window is not ripped or punctured.

BAGGED OR PREPARED SAMPLE TESTING

Analyze prepared samples in a sample cup, through its window. Place the instrument's measurement window directly over the sample cup with the film side up. Preparation considerations include:

- Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 15 (usually 4-8 grams) mm of packed samples.
- When analyzing bagged samples, ensure that sufficient sample material exists in the bag to create a a sample thickness of a minimum of 15 mm for a spot size that is larger than the analyzer's measurement window.
- When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).

Consumer Mode

RoHS Best Practices

Check Standards

Innov-X Systems recommends that a check standard be measured after each Cal Check procedure, and periodically throughout the day.

Two certified standards are provided for verification.

- At least one standard should be measured for a minimum of two minutes.
- Concentrations for target elements (plus or minus the error on the reading) should be within 20% of the standard value.
- Standards provided are contained in XRF sample cups with a window (through which the plastic pellets can be viewed) on one side, and a solid cap on the other side.
- Samples should be measured in the sample cup, through the window.

Sample Presentation

Since many pieces of plastic analyzed for ROHS compliance are very small, take care to measure them in a safe and accurate manner.

See the IEC-ACEA recommendation for minimum thickness of test samples as shown in Chapter *C.8*.

A5. User Maintenance 5.1 Alternative Techniques for Powering or Charging the Delta

5.1.1. AC Power Adapter Kit

The kit is an **optional** accessory.

It is supplied with a 10 foot AC power cord, a switching AC adapter, and a Battery Module. This kit eliminates the Li-ion battery requirement, however the user is constrained by the length of the AC power cord.

The procedure for using the AC adapter is shown below.

Ensure that each AC supply circuit has adequate power load capability and is provided from a grounded AC receptacle.

TO SETUP THE ADAPTER:

WARNING

1. Plug the three-prong male plug into the receptacle.

2. Insert the three-prong female plug into the male receptacle on the *Switching AC Adaptor* brick.

3. Slide the Battery Eliminator unit into the analyzer with the contacts to the left. It is keyed to only go in oriented this way.

Contacts -

4. The user now has no limit to instrument power; not restricted by battery charge level. The range of action is constrained by the length of the power cord.

5.1.2. Li ion Battery Charger Assembly

This section describes the procedure for charging the Li-ion batteries when the Delta Docking Station is NOT available. It features a single socket standalone battery charger (P/N 120253) The unit takes about two hours to completely charge a battery. Status of the battery's charge is shown by two lights on the power adaptor.

TO CHARGE THE BATTERY:

1. Plug the three-prong male plug into the Modes receptacle.

2. Plug the three-prong female plug into the male receptacle on the AC Adaptor brick.

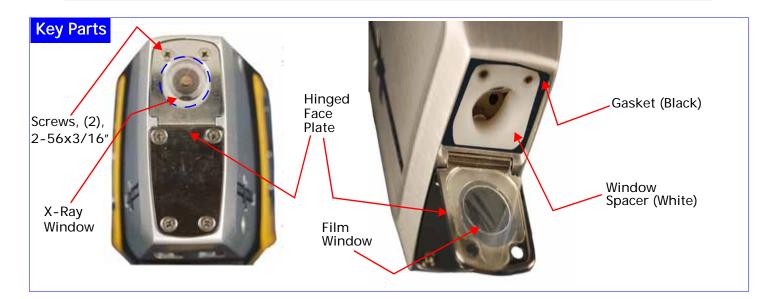
3. Plug the connector labeled *CH4500 24 VDC* into the connector labeled *SWC* on the back of the charger.

4. Insert the Li-ion battery into the charger with the contacts facing right.

CAUTION

Forcing the battery in with the contacts oriented improperly will injure the contacts and destroy the battery.

Battery Charger Status Lights


Left Light (Green only)	Right Light (Red only)	Status
On - Flashing	Off	Battery is charging
On - Solid	Off	Battery is charged
Off	On - Solid	Error. Remove battery and replace on charger. If the error persists, call Innov-X Systems Technical support.
Off	Off	No battery is on charger

5.2 — Window Replacement for "Hinged Plate" Analyzers

How to Replace the Window on a Delta Analyzer (All Models)


Tools: *Required* - Small Phillips Head Screwdriver *Recommended* - Tweezers or Needle nose pliers; Can of compressed air *As needed:* - Lint-free wipes or swabs

Remove Old Window	 Use these guidelines: During this entire removal process, keep dust or foreign material out of the instrument. Ensure that the instrument is powered off. Take care to have clean hands. Orient the instrument with the nose pointing up. Review the removal TIPS section on next page before opening the hinged plate. Use Phillips head screwdriver to remove the two screws. Carefully set aside the screws.
	 Swing the hinged face plate out to expose the film window. Remove the old window. Observe the white plastic window spacer and the black rubber gasket Remove any dirt or foreign material from the gasket with compressed air Take EXTREME CARE to not harm any internal components

TIPS	 Do not touch the film in the center opening (on either side). When using the screwdriver, keep a finger or thumb between the tool and the X-ray window. This prevents accidentally sticking the tool through the film and causing internal damage. The cost for replacement windows is quite low. Users are encouraged to change them
CL.	frequently in order to obtain optimum test results.
	When not operating an instrument, experienced users routinely keep it the Delta Docking
	Station cradle.
	This keeps the window clean, and
	Prevents accidental damage to the window film, and
	 Takes advantage of the battery charging and Cal Checking procedure that the DDS offers.

NOTES

A6. Packing and Shipping

If the instrument is not returned in the protective case, it can be damaged during shipping. Innov-X Systems reserves the right to void the warranty on instruments that are damaged during return shipping that are sent <u>without</u> the protective case.

Prior to returning a unit, contact Customer Service at the appropriate depot:

– United States –		– Europe –		
 Phone: 1-781-938-5005 Fax: 1-781-938-0128 Email: Service@Innov-Xsys.com 	 Mail & Shipping Address: Innov-X Systems, Inc. 100 Sylvan Road Woburn, MA 01801 	 Phone: +31 (0)73 62 72 590 Fax: +31 (0)73 62 72 599 Email: info@innovx-europe.com 	 Mail & Shipping Address: Innov-X Systems, Inc. Kasteleinenkampweg 9R 5222 AX 's-Hertogenbosch The Netherlands 	
— Ca	nada —	– Australia –		
 Phone: 1-778-960-6279 Fax: 1-604-568-2474 Toll Free Fax: 1-888-873-6598 Email: <u>service@innovx.ca</u> 	 Mail & Shipping Address: Innov-X Canada 1201 West Georgia, Ste. 2 Vancouver BC Canada V6E 3J5 	 Phone: 02 9577 9500 Fax: 02 9519 1850 Email: service@innovx.com 	 Mail & Shipping Address: Innov-X Systems Australia PTY LTD Suite 6, Level 3 215 Euston Road Alexandria NSW 2015 Australia 	

Or call your local distributor.

Ensure that you receive the required RMA number.

Follow these instructions to return your XRF Analyzer:

- 1. Pack the analyzer in the black protective case in which it arrived, using the original packing materials.
- 2. Include the RMA in the case and reference the RMA number in your shipping documents.
- 3. Close the protective case and either:
 - Secure it with plastic zip ties,
 - or —
 - Pack the protective case within another box.

Regulations for Shipping Products with Lithium Ion Batteries

The United States and many other countries have instituted regulations that require shippers to use a special Caution label referring to a Lithium Ion Battery.

- Label must be prominently displayed on the outer shipping container of any product that contains a Lithium Ion battery.
- Shipper may copy the label shown below to facilitate making the warning label. Use a color copier if possible.

A7. Legal Information

This section provides copies of the following:

- Delta Analyzer Limited Warranty including:
 - Limitation of Liability
 - Warranty Period, Returns, and Repairs
 - Instructions for Contacting Innov-X
- End User Software License Agreement including:
 - Use, Restrictions, and Termination of Software
 - Governmental End User Conditions
 - Limited Warranty and Limitation of Liability

Innov-X Delta Analyzer Limited Warranty

General Terms

EXCEPT AS EXPRESSLY SET FORTH IN THIS LIMITED WARRANTY, INNOV-X SYSTEMS, INC. (INNOV-X) MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-LAR PURPOSE. INNOV-X EXPRESSLY DISCLAIMS ALL WARRANTIES AND CONDITIONS NOT STATED IN THIS LIMITED WARRANTY. ANY IMPLIED WARRANTIES THAT MAY BE IMPOSED BY LAW ARE LIMITED IN DURATION TO THE LIMITED WARRANTY PERIOD.

This Limited Warranty applies to Innov-X analyzers sold or leased from Innov-X, its affiliates, authorized resellers, or country distributors (collectively referred to in this Limited Warranty as "Innov-X."

Innov-X warrants that the analyzer and all its internal and external components that you have purchased are free from defects in materials or workmanship under normal use during the Limited Warranty Period. The Limited Warranty Period starts on the date of shipment by Innov-X. You may be required to provide proof of purchase or lease as a condition of receiving warranty service. You are entitled to warranty service according to the terms and conditions of this document if a repair to your Innov-X analyzer is required within the Limited Warranty Period.

During the Limited Warranty Period, Innov-X will repair or replace the defective component parts. All component parts removed under this Limited Warranty become the property of Innov-X. In the unlikely event that your Innov-X analyzer has a recurring failure, Innov-X, at its discretion, may elect to provide you with a replacement unit of Innov-X's choosing that is at least equivalent to your Innov-X analyzer. This is your exclusive remedy for defective products. The repaired or replacement analyzer is warranted for the remainder of the limited Warranty Period.

YOU SHOULD MAKE PERIODIC BACKUP COPIES OF THE DATA STORED ON THE ANALYZER'S SYSTEM COMPUTER AS A PRECAUTION AGAINST POSSIBLE FAILURES, ALTERATION, OR LOSS OF THE DATA. BEFORE RETURNING ANY UNIT FOR SERVICE, BE SURE TO BACK UP DATA AND REMOVE ANY CONFIDENTIAL, PROPRIETARY, OR PERSONAL INFORMATION. INNOV-X IS NOT RESPONSIBLE FOR DAMAGE TO OR LOSS OF ANY PROGRAMS, OR DATA. INNOV-X IS NOT RESPONSIBLE FOR THE RESTORATION OR REINSTALLATION OF ANY PROGRAMS OR DATA OTHER THAN SOFTWARE INSTALLED BY INNOV-X WHEN THE ANALYZER IS MANUFACTURED. Innov-X does not warrant that the operation of this analyzer will be uninterrupted or error-free. Innov-X is not responsible for damage that occurs as a result of your failure to follow the instructions that came with the Innov-X analyzer.

This Limited Warranty does not apply to expendable parts. This Limited Warranty does not extend to any analyzer from which the serial number has been removed or that has

been damaged or rendered defective (a) as a result of accident, misuse, abuse, or other external causes; (b) by operation outside the usage parameters stated in user documentation that shipped with the product; (c) by modification or service by anyone other than (i) Innov-X, or (ii) an Innov-X authorized service provider; (d) installation of software not approved by Innov-X.

These terms and conditions constitute the complete and exclusive warranty agreement between you and Innov-X regarding the Innov-X analyzer you have purchased or leased. These terms and conditions supersede any prior agreements or representations --- includ-ing representations made in Innov-X sales literature or advice given to you by Innov-X or any agent or employee of Innov-X --- that may have been made in connection with your purchase or lease of the Innov-X analyzer. No change to the conditions of this Limited Warranty is valid unless it is made in writing and signed by an authorized representative of Innov-X.

Limitation of Liability

IF YOUR INNOV-X ANALYZER FAILS TO WORK AS WARRANTED ABOVE, YOUR SOLE AND EXCLUSIVE REMEDY SHALL BE REPAIR OR REPLACEMENT. INNOV-X'S MAXIMUM LIABILITY UNDER THIS LIMITED WARRANTY IS EXPRESSLY LIMITED TO THE LESSER OF THE PRICE YOU HAVE PAID FOR THE ANALYZER OR THE COST OF REPAIR OR REPLACEMENT OF ANY COMPONENTS THAT MALFUNCTION IN CONDITION OF NORMAL USE.

INNOV-X IS NOT LIABLE FOR ANY DAMAGE CAUSED BY THE PRODUCT OR THE FAILURE OF THE PRODUCT TO PERFORM INCLUDING ANY LOST PROFITS OR SAVINGS OR SPECIAL, INCI-DENTAL, OR CONSEQUENTIAL DAMAGES. INNOV-X IS NOT LIABLE FOR ANY CLAIM MADE BY A THIRD PARTY OR MADE BY YOU FOR A THIRD PARTY.

THIS LIMITATION OF LIABILITY APPLIES WHETHER DAMAGES ARE SOUGHT, OR A CLAIM MADE, UNDER THIS LIMITED WARRANTY OR AS A TORT CLAIM (INCLUDING NEGLIGENCE AND STRICT PRODUCT LIABILITY), A CONTRACT CLAIM, OR ANY OTHER CLAIM. THIS LIMI-TATION OF LIABILITY CANNOT BE WAIVED OR AMENDED BY ANY PERSON. THIS LIMITATION OF LIABILITY WILL BE EFFECTIVE EVEN IF YOU HAVE ADVISED INNOV-X OR AN AUTHORIZED REPRESENTATIVE OF INNOV-X OF THE POSSIBILITY OF ANY SUCH DAMAGES.

PN_103201 Rev- A : May/2010

Software

This Limited Warranty does not warrant software products. The Innov-X software installed on the analyzer's system computer is covered by the Innov-X End User Software License Agreement.

Warranty Period

The warranty period for an Innov-X Delta Analyzer is two years. This warranty does not extend to expendable parts. Extended warranties are available from Innov-X.

Warranty Returns

A Return Material Authorization (RMA) Number must be obtained from the INNOV-X Service Department before any items can be shipped to the factory. Returned goods will not be accepted without an RMA Number. Customer will bear all shipping charges for warranty repairs. All goods returned to the factory for warranty repair should be properly packed to avoid damage and clearly marked with the RMA Number.

Warranty Repairs

Warranty repairs will be done either at the customer's site or at the INNOV-X plant, at our option. All service rendered by INNOV-X will be performed in a professional manner by qualified personnel.

Contacting Innov-X

Be sure to have the following information available before you call Innov-X:

- Analyzer serial number, model name, and model number
- Applicable error messages
- Description of problem
- Detailed questions

•

Methods of Contact

— United States —		— Europe —		
 Phone: 1-781-938-5005 Fax: 1-781-938-0128 Email: <u>Service@Innov-Xsys.com</u> 	 Mail & Shipping Address: Innov-X Systems, Inc. 100 Sylvan Road Woburn, MA 01801 	 Phone: +31 (0)73-62 72 590 Fax: +31 (0)73-62 72 599 Email: info@innovx-europe.com 	 Mail & Shipping Address: Innov-X Systems, Inc. Kasteleinenkampweg 9R 5222 AX 's-Hertogenbosch The Netherlands 	
— Ca	nada —	— Aus	stralia —	
 Phone: 1-778-960-6279 Fax: 1-604-568-2474 Toll Free FAX: 1-888-873-6598 Email: service@innovx.ca 	 Mail & Shipping Address: Innov-X Canada 1201 West Georgia, Ste. 2 Vancouver BC Canada V6E 3J5 	 Phone: 02 9577 9500 Fax: 02 9519 1850 Email: service@innovx.com 	 Mail & Shipping Address: Innov-X Systems Australia PTY LTD 215 Euston Road, # 6 / L3 Alexandria, NSW, 2015 Australia 	

Or call your local distributor.

End User Software License Agreement

THIS END USER SOFTWARE LICENSE AGREEMENT IS FOR THE SOFTWARE USED TO OPERATE THE INNOV-X SYSTEMS' Delta[™] XRF ANALYZER AND LIMITED PRODUCT WARRANTY NOTICE TO USER:

PLEASE READ THIS DOCUMENT CAREFULLY. THIS IS THE CONTRACT BETWEEN YOU AND INNOV-X SYSTEMS, INC. (INNOV-X), REGARDING THE OPERATING SOFTWARE FOR YOUR INNOV-X DeIta[™] XRF ANALYZER INSTRUMENT.

THIS LICENSE COVERS THE INNOV-X SOFWARE INSTALLED ON THE DELTA™ XRF ANALYZER'S SYSTEM COMPUTER AND THE INNOV-X SOFTWARE OR FIRMWARE INSTALLED ON THE COM-PUTER CHIPS WITHIN YOUR ANALYZER ENCLOSURE. THIS AGREEMENT CONTAINS WAR-RANTY AND LIABILITY DISCLAIMERS AND LIMITATIONS. YOUR INSTALLATION AND USE OF THE INNOV-X SOFTWARE IS SUBJECT TO THE TERMS AND CONDITIONS CONTAINED IN THIS END USER SOFTWARE LICENSE AGREEMENT. THIS LICENSE DOES NOT COVER THE OPERAT-ING SYSTEM SOFTWARE AND OTHER SOFTWARE THAT MAY BE INCLUDED.

This Innov-X Systems, Inc. End User Software License Agreement accompanies an Innov-X Systems, Inc. Analyzer (including the external System Computer) with the software product installed ("Software") and related explanatory materials ("Documentation"). The term "Software" also includes any upgrades, modified versions, updates, additions and copies of the Software licensed to you by Innov-X Systems, Inc. The term "License" or "Agreement" means this End User Software License Agreement. The term "you" or "Licensee" means the purchaser of this license to use the Software.

Title

Title, ownership rights and intellectual property rights in and to the Software and Documentation shall at all times remain with Innov-X Systems, Inc., and their suppliers. All rights not specifically granted by this License, including Federal and international copyrights, are reserved by Innov-X Systems, Inc. or their respective owners.

Copyright

The Software, including its structure, organization, code, user interface and associated Documentation, is a proprietary product of Innov-X Systems, Inc. or its suppliers, and is protected by international laws of copyright. The law provides for civil and criminal penalties for anyone in violation of the laws of copyright.

PN 103201 Rev- A : May/2010

License

Use of the Software

- 1. Subject to the terms and conditions of this Agreement, Innov-X Systems, Inc. grants the purchaser of this product a non-exclusive license only to use the Software installed on the system computer that is integrated with your Analyzer and to use the software installed on the circuit boards that are installed in your Innov-X analyzer.
- 2. You may make one copy of the Software in machine-readable form solely for backup or archival purposes. You must reproduce on any such copy all copyright notices and any other proprietary legends found on the original. You may not make any other copies of the Software.

Restrictions

- 1. You may not copy, transfer, rent, modify, use or merge the Software, or the associated documentation, in whole or in part, except as expressly permitted in this Agreement.
- 2. You may not reverse assemble, decompile, or otherwise reverse engineer the Software.
- 3. You may not remove any proprietary, copyright, trade secret or warning legend from the Software or any Documentation.
- 4. You agree to comply fully with all export laws and restrictions and regulations of the United States or applicable foreign agencies or authorities. You agree that you will not export or re-export, directly or indirectly, the Software into any country prohibited by the United States Export Administration Act and the regulations there under or other applicable United States law.
- 5. You may not modify, sell, rent, transfer (except temporarily in the event of a computer malfunction), resell for profit, or distribute this license or the Software, or create derivative works based on the Software, or any part thereof or any interest therein. Notwithstanding the foregoing, you may transfer this Software to a purchaser of the specific Innov-X Analyzer in or for which this Software is installed in connection with any sale of such Analyzer, provided that the transferee agrees to be bound by and to comply with the provisions of this Agreement. A re-licensing fee may be charged for any such replacement software.

Termination

You may terminate this Agreement by discontinuing use of the Software, removing all copies from the system computer' hard drive and returning the Software and Documentation, and all copies thereof, to Innov-X Systems, Inc. Innov-X Systems, Inc. may terminate this Agreement if you fail to comply with all of its terms, in which case you agree to discontinue using the Software, remove all copies from the system computer and storage media, and return all copies of the Documentation thereof, to Innov-X Systems, Inc.

WARNING: Although it is theoretically possible for you to write software to operate the Innov-X analyzer, you are required to return the software as a result of failing to comply with the terms of this license, it is likely that the Analyzer purchased with the software covered by this License will not work properly. In addition, any remaining term under the warranty on the Analyzer will be voided.

U.S. Government End Users

The Software is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct. 2006 ED.), consisting of "commercial computer software" and "commercial computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Oct. 2006 ED). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (Oct. 2006 ED.), all U.S. Government End Users acquire the Software with only those rights set forth herein.

European Community End Users

If this Software is used within a country of the European Community, nothing in this Agreement shall be construed as restricting any rights available under the European Community Software Directive 2006/116/EC.O.J. Published in (L.372) V49 (27 Dec. 2006).

Medical or Therapeutic Use Prohibited

You acknowledge that the Software has not been cleared, approved, registered or otherwise qualified (collectively, "Approval") by Innov-X Systems, Inc. with any regulatory agency for use in diagnostic or therapeutic procedures, or for any other use requiring compliance with any federal or state law regulating diagnostic or therapeutic products, blood products, medical devices or any similar product (hereafter collectively referred to as "federal or state drug laws"). The Software may not be used for any purpose that would require any such Approval unless proper Approval is obtained. You agree that if you elect to use the Software for a purpose that would subject you or the Software to the jurisdiction of any federal or state drug laws, you will be solely responsible for obtaining any required Approvals and otherwise ensuring that your use of the Software complies with such laws.

Limited warranty and Limitation of remedies

Limited Warranty

Innov-X Systems, Inc. warrants that for a period of ninety days from the beginning of the applicable warranty period (as described below), or for the designated warranty period if a different warranty period is designed as the warranty period for the Software in the current version of an instrument operating manual or catalog or in a specific written warranty including with and covering the Software, the Software will function substantially in accordance with the functions and features described in the Documentation delivered with the Software when properly installed.

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation outside of the Innov-X analyzer or use specifications, or not in conformance with the instructions for any instrument system, software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with software or products not supplied or authorized by Innov-X Systems, Inc.; and modification or repair of the analyzer not authorized by Innov-X Systems, Inc.

Warranty Period Commencement Date.

The applicable warranty period for software begins on the earlier of the date of installation or three (3) months from the date of shipment for software installed by Innov-X Systems, Inc.' personnel. For software installed by the purchaser or anyone other than Innov-X Systems, Inc., the warranty period begins on the date the software is delivered to you. The applicable warranty period for media begins on the date the media is delivered to the purchaser.

INNOV-X SYSTEMS, INC. MAKES NO OTHER WARRANTIES OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE OR DOCUMENTATION, INCLUDING BUT NOT LIMITED TO WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MER-CHANTABILITY OR THAT THE SOFTWARE OR DOCUMENTATION IS NON-INFRINGING. ALL OTHER WARRANTIES ARE EXPRESSLY DISCLAIMED. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, INNOV-X SYSTEMS, INC. MAKES NO WARRANTIES THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT OPERATION OF THE LICENSED SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE OR WILL CONFORM EXACTLY TO THE DOCUMENTATION, OR THAT INNOV-X SYSTEMS, INC. WILL CORRECT ALL PROGRAM ERRORS, INNOV-X SYS-TEMS, INC.' SOLE LIABILITY AND RESPONSIBILITY FOR BREACH OF WARRANTY RELATING TO THE SOFTWARE OR DOCUMENTATION SHALL BE LIMITED, AT INNOV-X SYSTEMS, INC.' SOLE OPTION, TO (1) CORRECTION OF ANY ERROR IDENTIFIED TO INNOV-X SYSTEMS, INC. IN WRITING FROM YOU IN A SUBSEQUENT RELEASE OF THE SOFTWARE, WHICH SHALL BE SUP-PLIED TO YOU FREE OF CHARGE, (2) REPLACEMENT OF THE DEFECTIVE SOFTWARE WITH A FUNCTIONALLY EQUIVALENT PROGRAM AT NO CHARGE TO YOU, OR (3) PROVIDING A REA-SONABLE WORK AROUND WITHIN A REASONABLE TIME. INNOV-X SYSTEMS, INC. SOLE LIA-BILITY AND RESPONSIBILITY UNDER THIS AGREEMENT FOR BREACH OF WARRANTY RELATING TO MEDIA IS THE REPLACEMENT OF DEFECTIVE MEDIA RETURNED WITHIN 90 DAYS OF THE DELIVERY DATE. THESE ARE YOUR SOLE AND EXCLUSIVE REMEDIES FOR ANY BREACH OF WARRANTY. WARRANTY CLAIMS MUST BE MADE WITHIN THE APPLICABLE WAR-RANTY PERIOD.

Limitation of liability

IN NO EVENT SHALL INNOV-X SYSTEMS, INC. OR ITS SUPPLIERS BE RESPONSIBLE OR LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION ANY TRADE PRACTICE, UNFAIR COMPETITION OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS FOR SPECIAL, INDIRECT, INCIDENTAL, MULTIPLE, PUNI-TIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE POSSESSION OR USE OF, OR THE INABILITY TO USE, THE SOFTWARE OR DOCUMENTATION, EVEN IF INNOV-X SYSTEMS, INC. IS ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIM-ITATION DAMAGES ARISING FROM OR RELATED TO LOSS OF USE, LOSS OF DATA, DOWNTIME, OR FOR LOSS OF REVENUE, PROFITS, GOODWILL OR BUSINESS OR OTHER FINANCIAL LOSS. IN ANY CASE, THE ENTIRE LIABILITY OF INNOV-X SYSTEMS, INC.' AND ITS SUPPLIERS UNDER THIS LICENSE, OR ARISING OUT OF THE USE OF THE SOFTWARE, SHALL NOT EXCEED IN THE AGGREGATE THE PURCHASE PRICE OF THE PRODUCT. SOME STATES, COUNTRIES OR JURISDICTIONS LIMIT THE SCOPE OF OR PRECLUDE LIMITA-TIONS OR EXCLUSION OF REMEDIES OR DAMAGES, OR OF LIABILITY, SUCH AS LIABILITY FOR GROSS NEGLIGENCE OR WILLFUL MISCONDUCT. AS OR TO THE EXTENT SET FORTH ABOVE. OR DO NOT ALLOW IMPLIED WARRANTIES TO BE EXCLUDED. IN SUCH STATES, COUNTRIES OR JURISDICTIONS, THE LIMITATION OR EXCLUSION OF WARRANTIES, REMEDIES, DAMAGES OR LIABILITY SET FORTH ABOVE MAY NOT APPLY TO YOU. HOWEVER, ALTHOUGH THEY

SHALL NOT APPLY TO THE EXTENT PROHIBITED BY LAW, THEY SHALL APPLY TO THE FULLEST EXTENT PERMITTED BY LAW. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY

STATE, COUNTRY OR OTHER JURISDICTION.

General

This Agreement shall be governed by laws of the State of Massachusetts, exclusive of its conflict of laws provisions. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. This Agreement contains the complete agreement between the parties with respect to the subject matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral or written. If any provision of this Agreement is held by a court of competent jurisdiction to be contrary to law that provision will be enforced to the maximum extent permissible and the remaining provisions of this Agreement will remain in full force and effect. The controlling language of this Agreement, and any proceedings relating to this Agreement, shall be English. You agree to bear any and all costs of translation, if necessary. The headings to the sections of this Agreement are used for convenience only and shall have no substantive meaning. All questions concerning this Agreement shall be directed to Innov-X Systems, Inc., 100 Sylvan Road, Suite 500, Woburn, MA 01801 USA. Tel: 1-781-938-5005 Fax: 1-781-938-0128

A8. Alloy Grade Libraries

Every Delta unit is supplied with four libraries:

- 1. "Factory" Library unique to every Model
 - See following pages for tables showing Model/Factory grade names
- 2. Tramp Library
- 3. User Library #1 (user may store more than 500 grade names)
- 4. User Library # 2 (user may store more than 500 grade names)

Libraries are editable. However, InnovX does not recommend that users edit the "Factory" grade library.

Tramp Library

Every analyzer is shipped with a "Tramp" library comprised of seven base alloys. The "Tramp" library supports other grade libraries.

Users can set Tramp Limits, element by element, alloy base by alloy base, to meet their specific requirements.

A single click can select/deselect (globally) the Tramp feature.

How the Tramp Library works:

- 1. Tramp Grades are matched to alloy bases rather than specific grades.
 - Each sample is determined to be one of seven possible base alloys see list below
 - Analyzer applies the Tramp Grade/base specific tramp limits from the matching Tramp Grade;
- 2. These "Tramp Limits" or "alloy base specific" limits are applied when an element is detected in a specific grade.
 - But, the nearest grade match has no specification for that element,
 - And, the concentration of the sample is less than the max limit specified by the matching Tramp Grade.
- 3. When conditions of #2 are met, the element is reported on the User Interface screen.
 - In blue:
 - Is labeled as a "Tramp" material in the grade comparison table;
 - But the grade match is not penalized.

PRACTICAL ADVANTAGES

of this "tramp element" approach:

- Faster sorting,
- Fewer ambiguous or • incorrect matches,
- Improved grade library integrity,
- · Prominent labeling of tramp elements.

TRAMP Library Base Alloys

_AIAIloyBase
Common Tramp Elements: Pb, Bi, Sn, Fe, Cu, Zn
_CoAlloyBase
Common Tramp Elements: AI, Ti, V, Cu, Nb, Ta, Zr
_CuAlloyBase
Common Tramp Elements: S, As, Ag, Sb, Sn; not as common Pb, Co, Ni
_FeAlloyBase
Common Tramp Elements: V, Co, Cu, Ni, As - sometimes Si, W, Nb
_GenericAlloyBase
Common Tramp Elements: V, Co, Cu, Ni, As - sometimes Si, W, Nb
_NiAlloyBase
Common Tramp Elements: V, Co, W, Zr, Nb - sometimes Ta, Mo, Cr, Cu
_TiAlloyBase
Common Tramp Elements: Fe is common, Cu & Si show up at low levels.

Factory Grade Library {Table A9.1-Classic}

Aluminums- C	Cobalt Alloys - C	Spe Gra
2007 2011 2018 2117 2618 4032 5454 6040 6061 6070 6253 6262 7005 7016 7019 7039 7050 7075 7016 7019 7039 7050 7072 7075 7104 1100-plus 2024-plus 2098-2195 2219-2519 3003 or 4 or 5 355-2 5052-plus 5086-plus 6063-plus 7049-149-249	Alloy 686 AlnicoVIII Cobalt Elgiloy F75 FSX-414 Haynes188 Haynes36 HS-1 HS-12 HS-19 HS-21 HS25-L605 HS-31 HS-4 HS-6B Jetalloy MarM302 MarM509 MarM905 MP35N MPN159 Star J Ultimet	A A S S S S A A E O O O E H M M M M F F F S S S T T N M M
Low Alloy Steels-C	Chrome- Moly Steels	
3310 4130 4140 4340 8620 9310 12L14 A10 Carb 1-2 Moly Carbon Steel 20Mo4	-C 1 1-4 Cr 2 1-4 Cr 5 Cr 9 Cr P91	Z

Со	pper Allo	ys -C
C 110 C 172 C 194 C 210 C 220 C 260 C 270 C 310 C 314 C 330 C 332 C 340 C 342 C 360 C 377 C 425 C 443 C 464 C 482 C 485	C 510 C 524 C 534 C 544 C 623 C 630 C 655 C 667 C 673 C 675 C 706 C 710 C 715 C 745 C 745 C 752 C 814 C 836 C 857	C 864 C 867 C 868 C 875 C 8932 C 903 C 922 C 932 C 937 C 955 C194HiCu C197HiCu Elec Cu Muntz NarloyZ SeBiLOYI SeBiLOYI SeBiLOYII SeBiLOYII

Factory Grade Library {Table A9.2-Classic}

Stainless Grades - C				
201 203 304 309 310 316 317 321 329 330 347 422 430 431 434 440 441 446 2003 2101 2507 13-8 Mo 15-5 PH 15Mn7Cr 17-4 PH 17-7 PH 19-9DL 19-9DX 20Cb3 20Mo6	21-6-9 25-4-4 254SMO 26-1 29-4 29-4-2 29-4C 302HQ 410 Cb 410-16-20 904L A-286 AL6XN Alloy42 Alnicoll Alnicoll AlnicoV AMS350 AMS355 CD4MCU Custom450 Custom455 Duplex2205 E-bite Ferallium25 5 GreekAs- coloy H12 H13	Haynes556 Incoloy840 Invar 36 Kovar M152 Maraging35 0 MaragingC2 00 MaragingC2 50 MaragingC3 00 N-155 Ni-hard#1 Ni-hard#4 Ni-Span902 Nitronic40 Nitronic50 Nitronic60 RA330 RA85H Zeron100		

Cp Ti Cp Ti Pd Ti 12 Ti 17 Ti 3 2-5 Ti 6-22-22 Ti 6-2-4-2 Ti 6-2-4-6 Ti 6-4 Ti 6-6-2 Ti 8 Ti 8-1-1 Ti10-2-3 Ti15-3-3-3 Ti3-11-13 Ti5 - 2-5 Ti6-2-1-1 TiBetaC

Tool
Steels- C
A2
A6
A7
D2 or D4
D7
H-11
M1
M2
M4
M42
01
02
06
07
S1
S5
S6
S7
T1

Factory Grade Library {Table A9.3-Standard}

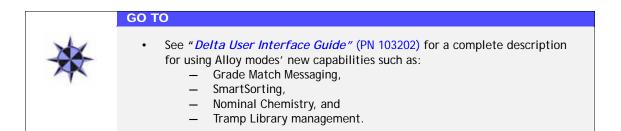
Factory Grade Library {Table A9.4-Standard}

S	Stainless Grades	s - S	Ti Grades - S
201 203 303 304 309 310 316 317 321 329 330 347 410 416 420 422 430 422 430 431 434 440 441 446 2003 2101 2205 2205 2507 13-8 Mo 15-5 PH 15Mn7Cr	17-4 PH 17-7 PH 19-9DL 19-9DX 20Cb3 20Mo6 21-6-9 25-4-4 254SMO 26-1 29-4 29-4-2 29-4C 302HQ 410 Cb 410-16-20 904L A-286 AL6XN Alloy42 Alnicoll Alnicoll Alnicoll AlnicoV AMS350 AMS355 CD4MCU Custom450 Custom455 E-bite Ferallium255 GreekAscoloy	H12 H13 Haynes556 Incoloy840 Invar 36 Kovar M152 Maraging2200 MaragingC200 MaragingC200 MaragingC200 MaragingC300 N-155 Ni-hard#1 Ni-hard#4 Ni-Span902 Nitronic40 Nitronic50 Nitronic60 RA330 RA85H Zeron100	Cp Ti Cp Ti Pd Ti 12 Ti 17 Ti 3 2-5 Ti 6-22-22 Ti 6-2-4-2 Ti 6-2-4-6 Ti 6-4 Ti 6-6-2 Ti 8 Ti 8-1-1 Ti10-2-3 Ti15-3-3-3 Ti3-11-13 Ti5 - 2-5 Ti6-2-1-1 TiBetaC

Tool Steels- S
A2
A6
A7
D2 or D4
D7
H-11
M1
M2
M4
M42
01
02
06
07
S1
S5
S6
S7
T1

Factory Grade Library {Table A9.5-Premium}

Aluminums-	Cobalt	Specialty	Co	opper Alloys	-P
Ρ	Alloys - P	Grades- P			
	711033		C 110	C 510	C 863
210			C 172	C 524	C 864
319	Alloy 686	60Sn-40Pb			
333	AlnicoVIII	63Sn-37Pb	C 194	C 534	C 867
356	Cobalt	96-4	C 210	C 544	C 868
357	Elgiloy	AZ31B	C 220	C 623	C 875
380	F75	AZ91A or C	C 240	C 630	C 8932
383	FSX-414	SAC 300	C 260	C 642	C 903
384	Haynes188	SAC 305	C 270	C 655	C 922
1100			C 310	C 667	C 932
	Haynes36	SAC 400	C 314	C 673	C 937
2007	HS-1	SAC 405			
2011	HS-12	97-3	C 330	C 675	C 954
2018	HS-19	Ag	C 332	C 687	C 955
2024	HS-21	Au	C 340	C 706	C194HiCu
2117	HS25-L605	Bi	C 342	C 710	C197HiCu
2618	HS-31	Cb 103	C 360	C 715	Elec Cu
3002	HS-4	CP Ta	C 377	C 745	Muntz
3002			C 425	C 752	NarloyZ
3003	HS-6B	Cr	C 425 C 443	C 814	SeBiLOYI
	Jetalloy	Densalloy			
3005	MarM302	Hf	C 464	C 836	SeBiLOYII
3105	MarM509	Mn	C 482	C 857	SeBiLOYIII
4032	MarM905	Мо	C 485	C 861	
5005	MP35N	Nb			
5042	MPN159	Ni	NI	ickel Alloys -	D
5052	Star J	Pb	INI	ickel Alloys -	P
5083					
	Ultimet	Pd	20Mo4	I-102	MarM246
5086		Re	B 1900	I-49	MarM247
5154		Sb	B-1900 Hf	I-600	MarM421
5454		Se	C-1023	I-601	Monel400
5657		Sn			
6040		TungCarb C	Colmonoy	1-602	Monel411
6061	Low Alloy	TungCarb S	6	I-617	MonelK500
6063	Steels-P	V	GMR235	I-625	MuMetal
6070			GTD222	I-690	Ni 200
	2210	W	Hast BC1	I-700	NichromeV
6253	3310	Zn	HastB	I-702	Nim101
6262	4130	Zr	HastB2	I-706	Nim263
7005	4140	Zr 2 or 4	HastB3	I-713	Nimonic75
7016	4340	Zr 702			
7019	8620	Zr 704	HastC2000	I-718	Nimonic80A
7039	9310	Zr 705	HastC22	I-720	Nimonic90
7050	12L14	21705	HastC276	I-722	PWA1480
7072	A10		HastC4	I-725	PWA1484
			HastF	I-738	RA333
7075	Carb 1-2		HastG	I-750	Rene125
7104	Moly	Chrome-	HastG2	I-792	Rene142
1100-plus	Carbon Steel	Moly Steels	HastG2	1-800	Rene220
2014-17	P20	J			
2024-plus	135 N	-P	HastG30	I-801	Rene41
2098-2195			HastN	I-825	Rene77
2219-2519]	1 1-4 Cr	HastR	I-901	Rene80
		2 1-4 Cr	HastS	I-903	Rene95
3003 or 4 or 5			HastW	I-907-909	Supertherm
355-2		5 Cr	HastX	I-939	Udimet500
5052-plus		9 Cr	Haynes214	IN100	Udimet520
5056-82		P91			
5086-plus			Haynes230	MarM002	Udimet700
6063-plus			HR160	MarM200	Waspaloy
			1.1.1.1		
			HyMu80		
7049-149-249			Hymu80		



Factory Grade Library {Table A9.6-Premium}

	Stainless Grac	les - P	Ti Grades -	Tool
201 203 303 304 309 310 316 317 321 329 330 347 410 416 420 422 430 431 434 440 441 446 2003 2101 2205 2205 2205 2507 13-8 Mo 15-5 PH 15Mn7Cr	17-4 PH 17-7 PH 19-9DL 20Cb3 20Mo6 21-6-9 25-4-4 254SMO 26-1 29-4 29-4-2 29-4C 302HQ 410 Cb 410-16-20 904L A-286 AL6XN Alloy42 Alnicoll Alnicoll AlnicoV AMS350 AMS355 CD4MCU Custom450 Custom455 E-bite Ferallium255 GreekAscoloy	H12 H13 Haynes556 Incoloy840 Invar 36 Kovar M152 Maraging350 MaragingC200 MaragingC200 MaragingC200 MaragingC300 N-155 Ni-hard#1 Ni-hard#4 Ni-Span902 Nitronic40 Nitronic50 Nitronic60 RA330 RA85H Zeron100	P Cp Ti Cp Ti Pd Ti 12 Ti 17 Ti 3 2-5 Ti 6-22-22 Ti 6-2-4-2 Ti 6-2-4-2 Ti 6-2-4-6 Ti 6-4 Ti 6-6-2 Ti 8 Ti 8-1-1 Ti10-2-3 Ti15-3-3-3 Ti3-11-13 Ti5 - 2-5 Ti6-2-1-1 TiBetaC	A2 A6 A7 D2 or D4 D7 H-11 M1 M2 M4 M42 O1 O2 O6 O7 S1 S5 S6 S7 T1

- Factory Grade Library {Table A9.6-Premium} -

APPENDIX B PACE ANALYTICAL QAPP

Pace Analytical®

Document Name: Quality Assurance Manual Document Revised: May 12, 2015 Effective Date of Last Signature Page 1 of 132

Document No.: Ouality Assurance Manual rev.18.0

Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office

QUALITY ASSURANCE MANUAL

Quality Assurance/Quality Control Policies and Procedures

Pace Analytical Services - Green Bay 1241 Bellevue St. Suite 9 Green Bay, WI 54302 920-469-2436

CORPORATE APPROVAL Vanlarbo

Date

07/28/2015

Steve A. Vanderboom President/CEO 1800 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Richard M. Henson Corporate Director of Quality 1800 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

LOCAL APPROVAL

Mil, KMolling		07/20/15
Nils Melberg, Laboratory General Manager	Date	
920-469-2436		
Kate E. Grams		. 07/21/2015
Kate Grams, Laboratory Quality Manager	Date	
920-469-2436		
scottom		07/21/2015
Scott Turner, Laboratory Technical Director	Date	
920-469-2436		
Chill		07/15/2015
Chad Rusch, Laboratory Technical Director	Date	

920-469-2

Date

Chris Haase, Laboratory Technical Director 920-469-2436

© 2002 - 2015 Pace Analytical Services, Inc. This Quality Assurance Manual may not be reproduced, in part or in full, without written consent of Pace Analytical Services, Inc. Whether distributed internally or as a "courtesy copy" to clients or regulatory agencies, this document is considered confidential and proprietary information.

Any printed documents in use within a Pace Analytical Services, Inc. laboratory have been reviewed and approved by the persons listed on the cover page. They can only be deemed official if proper signatures are present.

This is COPY#

____ Distributed on ______ by _____ and is ____ CONTROLLED or X UNCONTROLLED

07/21/15

07/28/2015

Date

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 2 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Table of Contents

1.0.	INTRODUCTION AND ORGANIZATIONAL STRUCTURE	5
1.1.	INTRODUCTION TO PASI	5
1.2.	STATEMENT OF PURPOSE	5
1.3.	QUALITY POLICY STATEMENT AND GOALS OF THE QUALITY SYSTEM	5
1.4.		6
1.5.	CODE OF ETHICS	6
1.6.	STANDARDS OF CONDUCT	7
1.7.		8
1.8.		9
1.9.		14
1.10		15
1.11		15
1.12		16
1.13	6. COMMUNICATIONS	16
2.0. \$	SAMPLE CUSTODY	17
2.1.	SAMPLING SUPPORT	17
2.2.	FIELD SERVICES	17
2.3.	PROJECT INITIATION	17
2.4.	CHAIN OF CUSTODY	18
2.5.	SAMPLE ACCEPTANCE POLICY	19
2.6.	SAMPLE LOG-IN	20
2.7.	SAMPLE STORAGE	21
2.8.	SAMPLE PROTECTION	22
2.9.	SUBCONTRACTING ANALYTICAL SERVICES	23
2.10	SAMPLE RETENTION AND DISPOSAL	24
3.0. A	NALYTICAL CAPABILITIES	25
3.1.	ANALYTICAL METHOD SOURCES	25
3.2.	ANALYTICAL METHOD DOCUMENTATION	25
3.3.	ANALYTICAL METHOD VALIDATION	25
3.4.	DEMONSTRATION OF CAPABILITY (DOC)	26
3.5.	REGULATORY AND METHOD COMPLIANCE	26
4.0. (UALITY CONTROL PROCEDURES	29
4.1.	METHOD BLANK	27
4.2.	LABORATORY CONTROL SAMPLE	27
4.3.		29
4.4.		29
4.5.		30
4.6.	INTERNAL STANDARDS	30
4.7.		30
4.8.	TRIP BLANKS	30
4.9.		31
4.10		32
4.1 1	. ESTIMATE OF ANALYTICAL UNCERTAINTY	32
4.12	PROFICIENCY TESTING (PT) STUDIES	32
4.13	8. ROUNDING AND SIGNIFICANT FIGURES	33

		Document Name:	Document Revised: May 12, 2015	
Pac	e Analytical	Quality Assurance Manual	Effective Date of Last Signature Page 3 of 132	
140	or mary trour		1 450 5 61 152	
		Document No.:	Issuing Authorities:	
		Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Ga Bay Quality Office	reen
4.1.4				24
4.14.	RETENTION TIME			34
5.0. DO	OCUMENT MANA	GEMENT AND CHANGE CONTROL		35
5.1.	DOCUMENT MANA			35
5.2. 5.3.	DOCUMENT CHANG MANAGEMENT OF			36 37
		ASUREMENT TRACEABILITY		38
6.1.	STANDARDS AND T			38
6.2.		ICAL INSTRUMENT CALIBRATION PROC	EDURES	39
6.3.		ENT CALIBRATION PROCEDURES		42
6.4.	INSTRUMENT/EQU	IPMENT MAINTENANCE		43
7.0. CON	NTROL OF DATA			45
7.1.	ANALYTICAL RESU	LTS PROCESSING		45
7.2.	DATA VERIFICATIO	DN		45
7.3.	DATA REPORTING			47
7.4. 7.5.	DATA SECURITY DATA ARCHIVING			49 49
7.5. 7.6.	DATA ARCHIVING DATA DISPOSAL			49 49
8.0. QUA		DITS AND REVIEWS		50
8.1.	INTERNAL AUDITS			50
8.2.	EXTERNAL AUDITS			52
8.3.	QUARTERLY QUAL	ITY REPORTS		52
8.4.	ANNUAL MANAGE			53
8.5.	CUSTOMER SERVIC	CE REVIEWS		53
9.0. COI	RRECTIVE ACTION	NS		58
9.1.		ION DOCUMENTATION		55
9.2.	CORRECTIVE ACTIV			56
9.3.		ON DOCUMENTATION		57
	GLOSSARY			59
	FERENCES			77
	EVISIONS			78
ATTACH	IMENT I- QUALITY	Y CONTROL CALCULATIONS		79
ATTACH	IMENT I- QUALITY	Y CONTROL CALCULATIONS (CON	NTINUED)	80
ATTACE	IMENT IIA- LABOI	RATORY ORGANIZATIONAL CHAI	RT (CURRENT AS OF ISSUE DATI	E) 81
ATTACH	IMENT IIB- CORPO	DRATE ORGANIZATIONAL CHART	(CURRENT AS OF ISSUE DATE)	82
ATTACH	IMENT III- EQUIPN	MENT LIST (CURRENT AS OF ISSU	E DATE)	83
ATTACH	IMENT IV- LABOR	ATORY FLOOR PLAN (CURRENT A	AS OF ISSUE DATE)	85
ATTACH	ATTACHMENT V- LABORATORY SOP LIST (CURRENT AS OF ISSUE DATE) 86			86
ATTACH	IMENT VI- LABOR	ATORY CERTIFICATION LIST (CU	URRENT AS OF ISSUE DATE)	90
ATTACH	IMENT VII- PACE	CHAIN-OF-CUSTODY (CURRENT A	AS OF ISSUE DATE)	91

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 4 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

ATTACHMENT VIII- METHOD HOLD TIME, CONTAINER AND PRESERVATION GUIDE (CURRENT AS OF ISSUE DATE)

ATTACHMENT IX- NELAC CERTIFICATION

92

108

Document Name: Quality Assurance Manual

Document No.: Quality Assurance Manual rev.18.0 Document Revised: May 12, 2015 Effective Date of Last Signature Page 5 of 132

Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

1.0. INTRODUCTION AND ORGANIZATIONAL STRUCTURE

"Working together to protect our environment and improve our health" Pace Analytical Services Inc. - Mission Statement

1.1. Introduction to PASI

1.1.1. Pace Analytical Services, Inc. (PASI) is a privately held, full-service analytical testing firm operating a nationwide system of laboratories. PASI offers extensive services beyond standard analytical testing, including: bioassay for aquatic toxicity, air toxics, dioxins and coplanar PCB's by high resolution mass spectroscopy, radiochemical analyses, product testing, pharmaceutical testing, field services and mobile laboratory capabilities. PASI has implemented a consistent Quality System in each of its laboratories and service centers. In addition, the company utilizes an advanced data management system that is highly efficient and allows for flexible data reporting. Together, these systems ensure data reliability and superior on-time performance. This document defines the Quality System and QA/QC protocols.

1.1.2. Our goal is to combine our expertise in laboratory operations with customized solutions to meet the specific needs of our customers.

1.2. Statement of Purpose

1.2.1. To meet the business needs of our customers for high quality, cost-effective analytical measurements and services.

1.3. Quality Policy Statement and Goals of the Quality System

1.3.1. PASI management is committed to maintaining the highest possible standard of service for our customers by following a documented quality system that is fully compliant with the applicable NELAC, TNI, or ISO standards and is in accordance with the stated methods and customer requirements. The overall objective of this quality system is to provide reliable data of known quality through adherence to rigorous quality assurance policies and quality control procedures as documented in this Quality Assurance Manual.

1.3.2. All personnel within the PASI network are required to be familiar with all facets of the quality system relevant to their position and implement these policies and procedures in their daily work. This daily focus on quality is applied with initial project planning, continued through all field and laboratory activities, and is ultimately included in the final report generation.

1.3.3. PASI management demonstrates its commitment to quality by providing the resources, including facilities, equipment, and personnel to ensure the adherence to these documented policies and procedures and to promote the continuous improvement and effectiveness of the quality system. All PASI personnel must comply with all current applicable state, federal, and industry standards (2003 NELAC Standard, 2009 TNI Standard, ISO/IEC 17025 standard, etc.), and are required to perform all tests in accordance with stated methods and customer requirements.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 6 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office

1.4. Core Values

1.4.1. **Integrity-** Pace personnel are required to abide by the PASI Code of Ethics and all Pace employees must go through Data Integrity/Ethics training upon initial orientation and as an annual refresher.

1.4.2. **Value Employees-** Pace management views employees as our most important asset and communicates to them the relevance and importance of their activities within their job functions and how they contribute to the achievement of the objectives of the quality management system.

1.4.3. **Know Our Customers-** Pace makes every effort to know our customers and address their sampling and analytical needs. More information on this item can be found in section 2.0.

1.4.4. **Honor Commitments-** Pace labs focus on making solid commitments with regards to quality, capacity, and agreed upon turnaround time to our customers.

1.4.5. **Flexible Response To Demand-** Pace labs are equipped with both the material and personnel resources to enable them to be responsive to the demands of customers when situations or projects need change.

1.4.6. **Pursue Opportunities-** Pace is committed to pursuing opportunities for the growth of the company by constantly exploring markets and areas where we can expand.

1.4.7. **Continuously Improve-** Pace has committed much time and effort into establishing a continuous improvement program where company personnel meet on a regular basis to share ideas in cost reduction, production improvement and standardization in order to develop best practices. This information, as well as company financial and production metrics, are tracked, evaluated, and shared with each Pace facility.

1.5. Code of Ethics

1.5.1. PASI's fundamental ethical principles are as follows:

1.5.1.1. Each PASI employee is responsible for the propriety and consequences of his or her actions;

1.5.1.2. Each PASI employee must conduct all aspects of Company business in an ethical and strictly legal manner, and must obey the laws of the United States and of all localities, states and nations where PASI does business or seeks to do business;

1.5.1.3. Each PASI employee must reflect the highest standards of honesty, integrity and fairness on behalf of the Company with customers, suppliers, the public, and one another.

1.5.1.4. Each PASI employee must recognize and understand that our daily activities in environmental laboratories affect public health as well as the environment and that environmental laboratory analysts are a critical part of the system society depends upon to improve and guard our natural resources:

1.5.2. Strict adherence by each PASI employee to this Code of Ethics and to the Standards of Conduct is essential to the continued vitality of PASI and to continue the pursuit of our common mission to protect our environment and improve our health.

1.5.3. Failure to comply with the Code of Ethics and Standards of Conduct will result in disciplinary action up to and including termination and referral for civil or criminal prosecution

Pace Analytical*	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 7 of 132
1	Document No.: Ouality Assurance Manual rev.18.0	Issuing Authorities:
	Quanty Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green Bay Quality Office

where appropriate. An employee will be notified of an infraction and given an opportunity to explain, as prescribed under current disciplinary procedures.

1.5.4. Any Pace employee can contact corporate management to report an ethical concern by calling the anonymous hotline at 612-607-6431.

1.6. Standards of Conduct

1.6.1. Data Integrity

1.6.1.1. The accuracy and integrity of the analytical results and its supporting documentation produced at PASI are the cornerstones of the company. Lack of data integrity is an assault on our most basic values putting PASI and its employees at grave financial and legal risk and will not be tolerated. Therefore, employees are to accurately prepare and maintain all technical records, scientific notebooks, calculations, and databases. Employees are prohibited from making false entries or misrepresentations of data for any reason.

1.6.1.2. Managerial staff must make every effort to ensure that personnel are free from any undue pressures that may affect the quality or integrity of their work including commercial, financial, over-scheduling, and working condition pressures.

1.6.2. Confidentiality

1.6.2.1. PASI employees must not use or disclose confidential or proprietary information except when in connection with their duties at PASI. This is effective over the course of employment and for an additional period of two years thereafter.

1.6.2.2. Confidential or proprietary information, belonging to either PASI and/or its customers, includes but is not limited to test results, trade secrets, research and development matters, procedures, methods, processes and standards, company-specific techniques and equipment, marketing and customer information, inventions, materials composition, etc.

1.6.3. Conflict of Interest

1.6.3.1. PASI employees must avoid situations that might involve a conflict of interest or could appear questionable to others. The employee must be careful in two general areas:

1.6.3.1.1. Participation in activities that conflict or appear to conflict with the employees' PASI responsibilities.

1.6.3.1.2. Offering or accepting anything that might influence the recipient or cause another person to believe that the recipient may be influenced to behave or in a different manner than he would normally. This includes bribes, gifts, kickbacks, or illegal payments.

1.6.3.2. Employees are not to engage in outside business or economic activity relating to a sale or purchase by the Company. Other problematic activities include service on the Board of Directors of a competing or supplier company, significant ownership in a competing or supplier company, employment for a competing or supplier company, or participation in any outside business during the employee's work hours.

1.6.4. Compliance

1.6.4.1. All employees are required to read, understand, and comply with the various components of the standards listed in this document. As confirmation that they understand their responsibility, each

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 8 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

employee is required to sign an acknowledgment form annually that then becomes part of the employee's permanent record. Employees will be held accountable for complying with the Quality Systems as summarized in the Quality Assurance Manual.

1.7. Laboratory Organization

1.7.1. The PASI Corporate Office centralizes company-wide accounting, business development, financial management, human resources development, information systems, marketing, quality, safety, and training activities. PASI's Director of Quality is responsible for assisting the development, implementation and monitoring of quality programs for the company. See Attachment IIB for the Corporate Organizational structure.

1.7.2. Each laboratory within the system operates with local management, but all labs share common systems and receive support from the Corporate Office.

1.7.3. A Senior General Manager (SGM) oversees all laboratories and service centers in their assigned region. Each laboratory or facility in the company is then directly managed by an SGM, a General Manager (GM), an Assistant General Manager (AGM), or an Operations Manager (OM). Quality Managers (QM) or Senior Quality Managers (SQM) at each laboratory report directly to the highest level of local laboratory management, however named, that routinely makes day-to-day decisions regarding that facility's operations. The QMs and SQMs will also receive guidance and direction from the corporate Director of Quality.

1.7.4. The SGM, GM, AGM or OM, or equivalent functionality in each facility, bears the responsibility for the laboratory operations and serves as the final, local authority in all matters. In the absence of these managers, the SQM/QM serves as the next in command, unless the manager in charge has assigned another designee. He or she assumes the responsibilities of the manager, however named, until the manager is available to resume the duties of their position. In the absence of both the manager and the SQM/QM, management responsibility of the laboratory is passed to the Technical Director, provided such a position is identified, and then to the most senior department manager until the return of the lab manager or SQM/QM. The most senior department manager in charge may include the Client Services Manager or the Administrative Business Manager at the discretion of the SGM/GM/AGM/OM.

1.7.5. A Technical Director who is absent for a period of time exceeding 15 consecutive calendar days shall designate another full-time staff member meeting the qualifications of the technical director to temporarily perform this function. The laboratory SGM/GM/AGM/OM or SQM/QM has the authority to make this designation in the event the existing Technical Director is unable to do so. If this absence exceeds 35 consecutive calendar days, the primary accrediting authority shall be notified in writing.

1.7.6. The SQM/QM has the responsibility and authority to ensure the Quality System is implemented and followed at all times. In circumstances where a laboratory is not meeting the established level of quality or following the policies set forth in this Quality Assurance Manual, the SQM/QM has the authority to halt laboratory operations should he or she deem such an action necessary. The SQM/QM will immediately communicate the halting of operations to the SGM/GM/AGM/OM and keep them posted on the progress of corrective actions. In the event the SGM/GM/AGM/OM and the SQM/QM are not in agreement as to the need for the suspension, the Chief Operating Officer and Director of Quality will be called in to mediate the situation.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 9 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office

1.7.7. The lab is required to appoint deputies for key managerial personnel. These deputies must be documented for auditing purposes.

1.7.8. The technical staff of the laboratory is generally organized into the following functional groups:

- Organic Sample Preparation
- Wet Chemistry Analysis
- Metals Analysis
- Volatiles Analysis
- Semi-volatiles Analysis
- Radiochemical Analysis
- Microbiology

1.7.9. Appropriate support groups are present in each laboratory. The actual organizational structure for PASI – Green Bay is listed in Attachment IIA. In the event of a change in SGM/GM/AGM/OM, SQM/QM, or any Technical Director, the laboratory will notify its accrediting authorities and revise the organizational chart in the Quality Assurance Manual (QAM) within 30 days. For changes in Department Managers or Supervisors or other laboratory personnel, no notifications will be sent to the laboratory's accrediting agencies; changes to the organizational chart will be updated during or prior to the annual review process. Changes or additions in these key personnel will also be noted by additional signatures on the QAM, as applicable. In any case, the QAM will remain in effect until the next scheduled revision.

1.8. Laboratory Job Descriptions

1.8.1. Senior General Manager

- Oversees all functions of all the operations within their designated region;
- Oversees the development of local GMs/AGMs/OMs within their designated region;
- Oversees and authorizes personnel development including staffing, recruiting, training, workload scheduling, employee retention and motivation;
- Oversees the preparation of budgets and staffing plans for all operations within their designated region;
- Ensures compliance with all applicable state, federal and industry standards;
- Works closely with Regional Sales Management.

1.8.2. General Manager

- Oversees all functions of their assigned operations;
- Authorizes personnel development including staffing, recruiting, training, workload scheduling, employee retention and motivation;
- Prepares budgets and staffing plans;
- Monitors the Quality Systems of the laboratory and advises the SQM/QM accordingly;
- Ensures compliance with all applicable state, federal and industry standards.

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 10 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.8.4. Quality Manager

• Responsible for implementing, maintaining and improving the quality system while functioning independently from laboratory operations. Reports directly to the highest level of local laboratory facility management, however named, that routinely makes day-to-day decisions regarding laboratory operations, but receives direction and assistance from the Corporate Director of Quality. They may also report to a Senior Quality Manager;

• Ensures that communication takes place at all levels within the lab regarding the effectiveness of the quality system and that all personnel understand their contributions to the quality system;

• Monitors Quality Assurance/Quality Control activities to ensure that the laboratory achieves established standards of quality (as set forth by the Corporate Quality office). The Quality Manager is responsible for reporting the lab's level of compliance to these standards to the Corporate Director of Quality on a quarterly basis;

• Maintains records of quality control data and evaluates data quality;

• Conducts periodic internal audits and coordinates external audits performed by regulatory agencies or customer representatives;

- Reviews and maintains records of proficiency testing results;
- Maintains the document control system;
- Assists in development and implementation of appropriate training programs;
- Provides technical support to laboratory operations regarding methodology and project QA/QC requirements;
- Maintains certifications from federal and state programs;
- Ensures compliance with all applicable state, federal and industry standards;
- Maintains the laboratory training records, including those in the Learning Management
- System (LMS), and evaluates the effectiveness of training;
- Monitors corrective and preventive actions;
- Maintains the currency of the Quality Manual.

1.8.5. Quality Assurance Analyst

• Assists the SQM/QM in the performance of quality department responsibilities as delegated by the SQM/QM;

- Assists in monitoring QA/QC data;
- Assists in internal audits;
- Assists in maintaining training records;
- Assists in maintaining the document control system;

1.8.6. Technical Director

- Monitors the standards of performance in quality assurance and quality control data;
- Monitors the validity of analyses performed and data generated;
- Reviews tenders, contracts and QAPPs to ensure the laboratory can meet the data quality objectives for any given project;

• Serves as the manager of the laboratory in the absence of the SGM/GM/AGM/OM and SQM/QM;

• Provides technical guidance in the review, development, and validation of new methodologies.

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 11 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.8.7. Administrative Business Manager

- Responsible for financial and administrative management for the entire facility;
- Provides input relative to tactical and strategic planning activities;
- Organizes financial information so that the facility is run as a fiscally responsible business;
- Works with staff to confirm that appropriate processes are put in place to track revenues and expenses;

• Provide ongoing financial information to the SGM/GM/AGM/OM and the management team so they can better manage their business;

• Utilizes historical information and trends to accurately forecast future financial positions;

• Works with management to ensure that key measurements are put in place to be utilized for trend analysis—this will include personnel and supply expenses, and key revenue and expense ratios;

- Works with SGM/GM/AGM/OM to develop accurate budget and track on an ongoing basis;
- Works with entire management team to submit complete and justified capital budget requests and to balance requests across departments;
- Works with project management team and administrative support staff to ensure timely and accurate invoicing.

1.8.8. Client Services Manager

• Oversees all the day to day activities of the Client Services Department which includes Project Management and, possibly, Sample Control;

- Responsible for staffing and all personnel management related issues for Client Services;
- Serves as the primary senior consultant to customers on all project related issues such as set up, initiation, execution and closure;
- Performs or is capable of performing all duties listed for that of Project Manager.

1.8.9. Project Manager

- Coordinates daily activities including taking orders, reporting data and analytical results;
- Serves as the primary technical and administrative liaison between customers and PASI;
- Communicates with operations staff to update and set project priorities;
- Provides results to customers in the requested format (verbal, hardcopy, electronic, etc.);

• Works with customers, laboratory staff, and other appropriate PASI staff to develop project statements of work or resolve problems of data quality;

• Responsible for solicitation of work requests, assisting with proposal preparation and project initiation with customers and maintain customer records;

- Mediation of project schedules and scope of work through communication with internal resources and management;
- Responsible for preparing routine and non-routine quotations, reports and technical papers;
- Interfaces between customers and management personnel to achieve customer satisfaction;
- Manages large-scale complex projects;
- Supervises less experienced project managers and provide guidance on management of complex projects;
- Arranges bottle orders and shipment of sample kits to customers;

• Verifies login information relative to project requirements and field sample Chains-of-Custody.

1.8.10. Project Coordinator

- Responsible for preparation of project specifications and provides technical/project support;
- Coordinates project needs with other department sections and assists with proposal preparation;
- Prepares routine proposals and invoicing;
- Responsible for scanning, copying, assembling and binding final reports;
- Other duties include filing, maintaining forms, process outgoing mail, maintaining training database and data entry.

1.8.11. Department Manager/Supervisor

- Oversees the day-to-day production and quality activities of their assigned department;
- Ensures that quality assurance and quality control criteria of analytical methods and projects are satisfied;
- Assesses data quality and takes corrective action when necessary;
- Approves and releases technical and data management reports;
- Ensures compliance with all applicable state, federal and industry standards.

1.8.12. Group Supervisor/Leader

- Trains analysts in laboratory operations and analytical procedures;
- Organizes and schedules analyses with consideration for sample holding times;
- Implements data verification procedures by assigning data verification duties to appropriate personnel;
- Evaluates instrument performance and supervises instrument calibration and preventive maintenance programs;
- Reports non-compliance situations to laboratory management including the SQM/QM.

1.8.13. Laboratory Analyst

- Performs detailed preparation and analysis of samples according to published methods and laboratory procedures;
- Processes and evaluates raw data obtained from preparation and analysis steps;
- Generates final results from raw data, performing primary review against method criteria;
- Monitors quality control data associated with analysis and preparation. This includes examination of raw data such as chromatograms as well as an inspection of reduced data, calibration curves, and laboratory notebooks;
- Reports data in LIMS, authorizing for release pending secondary approval;
- Conducts routine and non-routine maintenance of equipment as required;
- Performs or is capable of performing all duties associated with that of Laboratory Technician.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 13 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.8.14. Laboratory Technician

- Prepares standards and reagents according to published methods or in house procedures;
- Performs preparation and analytical steps for basic laboratory methods;
- Works under the direction of a Laboratory Analyst on complex methodologies;
- Assists Laboratory Analysts on preparation, analytical or data reduction steps for complex methodologies;

• Monitors quality control data as required or directed. This includes examination of raw data such as chromatograms as well as an inspection of reduced data, calibration curves, and laboratory notebooks.

1.8.15. Sample Management Personnel

- Signs for incoming samples and verifies the data entered on the Chain of custody forms;
- Enters the sample information into the Laboratory Information Management System (LIMS) for tracking and reporting;
- Stages samples according to EPA requirements;
- Assists Project Managers and Coordinators in filling bottle orders and sample shipments.

1.8.16. Systems Administrator or Systems Manager

- Assists with the creation and maintenance of electronic data deliverables (EDDs);
- Coordinates the installation and use of all hardware, software and operating systems;
- Performs troubleshooting on all aforementioned systems;
- Trains new and existing users on systems and system upgrades;
- Maintains all system security passwords;
- Maintains the electronic backups of all computer systems.

1.8.17. Safety/Chemical Hygiene Officer

- Maintains the laboratory Chemical Hygiene Plan;
- Plans and implements safety policies and procedures;
- Maintains safety records;
- Organizes and/or performs safety training;
- Performs safety inspections and provides corrective/preventative actions;
- Assists personnel with safety issues.

1.8.18. Program Director/Hazardous Waste Coordinator (or otherwise named)

- Evaluates waste streams and helps to select appropriate waste transportation and disposal companies;
- Maintains complete records of waste disposal including waste manifests and state reports;
- Assists in training personnel on waste-related issues such as waste handling and storage, waste container labeling, proper satellite accumulation, secondary containment, etc.;
- Conducts a weekly inspection of the waste storage areas of the laboratory.
- Conducts monthly inspections of the satellite waste containers throughout the laboratory.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 14 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.9. Training and Orientation

1.9.1. Training for Pace employees is managed through a web-based Learning Management System. After a new employee has been instructed in matters of human resources, they are given instructional materials for the LMS and a password for access.

1.9.2. A new hire training checklist is provided to the new employee that lists training items for the employee to work through either independently on LMS or with their supervisor or trainer. The training items that can be completed independently include:

- Reading through applicable Standard Operating Procedures;
- Reviewing the Quality Manual and Chemical Hygiene Plan;
- Core training modules such as quality control indicators, basic laboratory skills, etc.;
- Quality Systems training including traceability of measurements, method calibration, calibration verification, accuracy, precision and uncertainty of measurements, corrective actions, documentation, and root cause analysis;
- Data Integrity/Ethics training.

1.9.3. The new employee's Department Supervisor provides the employee with a basic understanding of the role of the laboratory within the structure of PASI and the basic elements of that individual's position. Supervised training uses the following techniques:

- Hands-on training
- Training checklists/worksheets
- Lectures and training sessions
- Method-specific training
- Conferences and seminars
- Short courses
- Specialized training by instrument manufacturers
- Proficiency testing programs.
- On-line courses

1.9.4. Group Supervisors/Leaders are responsible for providing documentation of training and proficiency for each employee under their supervision. The employee's training file indicates what procedures an analyst or a technician is capable of performing, either independently or with supervision. The files also include documentation of continuing capability, which are fully detailed in Section 3.4. Training documentation files for each person are maintained by the Quality Office either in hardcopy format or within the LMS.

1.9.5. All procedures and training records are maintained and available for review during laboratory audits. These procedures are reviewed/updated periodically by laboratory management. Additional information can be found in SOP S-ALL-Q-020 **Training and Employee Orientation** or its equivalent revision or replacement.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 15 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.10. Data Integrity System

1.10.1. The data integrity system at PASI provides assurances to management that a highly ethical approach is being applied to all planning, training and implementation of methods. Data integrity is crucial to the success of our company and Pace Analytical is committed to creating and maintaining a culture of quality throughout the organization. To accomplish this goal, PASI has implemented a data integrity system that encompasses the following four requirements:

1.10.1.1. A data integrity training program: standardized training is given to each new employee and a yearly refresher is presented to all employees. Key topics addressed by this training include:

- 1.10.1.1.1. Need for honesty and transparency in analytical reporting
- 1.10.1.1.2. Process for reporting data integrity issues
- 1.10.1.1.3. Specific examples of unethical behavior and improper practices
- 1.10.1.1.4. Documentation of non-conforming data that is still useful to the data user
- 1.10.1.1.5. Consequences and punishments for unethical behavior
- 1.10.1.1.6. Examples of monitoring devices used by management to review data and systems

1.10.1.2. Signed data integrity documentation for all employees: this includes a written quiz following the Ethics training session and written agreement to abide by the Code of Ethics and Standards of Conduct explained in the employee manual.

1.10.1.3. In-depth, periodic monitoring of data integrity including peer data review and validation, internal raw data audits, proficiency testing studies, etc.

1.10.1.4. Documentation of any review or investigation into possible data integrity infractions. This documentation, including any disciplinary actions involved, corrective actions taken, and notifications to customers must be retained for a minimum of five years.

1.10.2. PASI management makes every effort to ensure that personnel are free from any undue pressures that affect the quality of their work including commercial, financial, over scheduling, and working condition pressures.

1.10.3. Corporate management also provides all PASI facilities a mechanism for confidential reporting of data integrity issues that ensures confidentiality and a receptive environment in which all employees are comfortable discussing items of ethical concern. The anonymous message line is monitored by the Corporate Director of Quality who will ensure that all concerns are evaluated and, where necessary, brought to the attention of executive management and investigated. Any Pace employee can contact corporate management to report an ethical concern by calling the anonymous hotline at 612-607-6431.

1.11. Laboratory Safety

1.11.1. It is the policy of PASI to make safety and health an integral part of daily operations and to ensure that all employees are provided with safe working conditions, personal protective equipment, and requisite training to do their work without injury. Each employee is responsible for his/her own safety as well as those working in the immediate area by complying with established company rules and procedures. These rules and procedures as well as a more detailed description of the employees' responsibilities are contained in the corporate Safety Manual and Chemical Hygiene Plan.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 16 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

1.12. Security and Confidentiality

1.12.1. Security is maintained by controlled access to laboratory buildings. Exterior doors to laboratory buildings remain either locked or continuously monitored by PASI staff. Computer access codes/logins are changed periodically. Posted signs direct visitors to the reception office and mark all other areas as off limits to unauthorized personnel. All visitors, including PASI staff from other facilities, must sign the Visitor's Logbook maintained by the receptionist. A staff member will accompany them during the duration of their stay on the premises unless the SGM/GM/AGM/OM, SQM/QM, or Technical Director specify otherwise. In this instance, the staff member will escort the visitor back to the reception area at the end of his/her visit where he/she signs out. The last staff member to leave their department for the day must ensure that all outside access points to that area are secure.

1.12.2. Additional security is provided where necessary, (e.g., specific secure areas for sample, data, and customer report storage), as requested by customers, or cases where national security is of concern. These areas are lockable within the facilities, or are securely offsite. Access is limited to specific individuals or their designees. Security of sample storage areas is the responsibility of the Client Services Manager. Security of customer report archives is the responsibility of the Client Services Manager. These secure areas are locked whenever these individuals or their designees are not present in the facility.

1.12.3. Access to designated laboratory sample storage locations is limited to authorized personnel only. Provisions for lock and key access are provided. No samples are to be removed without proper authorization. If requested by customer or contract, samples are not to be removed from secure storage areas without filling out an associated internal chain of custody.

1.12.4. Standard business practices of confidentiality are applied to all documents and information regarding customer analyses. Specific protocols for handling confidential documents are described in PASI SOPs. Additional protocols for sample identification by internal laboratory identification numbers only are implemented as required under contract specific Quality Assurance Project Plans (QAPPs).

1.12.5. All information pertaining to a particular customer, including national security concerns will remain confidential. Data will be released to outside agencies only with written authorization from the customer or where federal or state law requires the company to do so.

1.13. Communications

1.13.1. Management within each lab bears the responsibility of ensuring that appropriate communication processes are established and that communication takes place regarding the effectiveness of the management/quality system. These communication processes may include email, regular staff meetings, senior management meetings, etc.

1.13.2. Corporate management bears the responsibility of ensuring that appropriate communication processes are established within the network of facilities and that communication takes place at a company-wide level regarding the effectiveness of the management/quality systems of all Pace facilities. These communication processes may include email, quarterly continuous improvement conference calls for all lab departments, and annual continuous improvement meetings for all department supervisors, quality managers, client services managers, and other support positions.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 17 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

2.0. SAMPLE CUSTODY

2.1. Sampling Support

2.1.1. Each individual PASI laboratory provides shipping containers, properly preserved sample containers, custody documents, and field quality control samples to support field-sampling events. Guidelines for sample container types, preservatives, and holding times for a variety of methods are listed in Attachment VIII. Note that all analyses listed are not necessarily performed at all PASI laboratories and there may be additional laboratory analyses performed that are not included in these tables. Customers are encouraged to contact their local Pace Project Manager for questions or clarifications regarding sample handling. PASI – Green Bay may provide pick-up and delivery services to their customers when needed.

2.2. Field Services

2.2.1. Pace Analytical has a large Field Services Division which is based in their Minneapolis facility as well as limited field service capabilities in some of our other facilities. Field Services provides comprehensive nationwide service offerings including:

- Stack Testing
- Ambient Air
- CEM Certification Testing
- Air Quality Monitoring
- Onsite Analytical Services- FTIR and GC
- Real-time Process Diagnostic/Optimization Testing
- Wastewater, Groundwater and Drinking Water Monitoring
- Storm Water and Surface Water Monitoring
- Soil and Waste Sampling
- Mobile Laboratory Services

2.2.2. Field Services operates under the PASI Corporate Quality System, with applicable and necessary provisions to address the activities, methods, and goals specific to Field Services. All procedures and methods used by Field Services are documented in Standard Operating Procedures and Procedure Manuals.

2.3. Project Initiation

2.3.1. Prior to accepting new work, the laboratory reviews its performance capability. The laboratory confirms that sufficient personnel, equipment capacity, analytical method capability, etc., are available to complete the required work. Customer needs, certification requirements, and data quality objectives are defined and the appropriate sampling and analysis plan is developed to meet the project requirements by project managers or sales representatives. Members of the management staff review current instrument capacity, personnel availability and training, analytical procedures capability, and projected sample load. Management then informs the sales and client services personnel whether or not the laboratory can accept the new project via written correspondence, email, and/or daily operations meetings.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 18 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i>
	Quality Assurance Manual Teviloro	Bay Quality Office

2.3.2. The laboratory maintains records of all such reviews, including discussions with customers. Routine analytical project documentation of quotes, notes, dates, initials, and/or recordings is maintained in a project folder by project management. Conditions for new and more complex contracts are determined by the SGM/GM/AGM/OM and sales representatives. Quality Management is consulted on technical requirements and operations staff provides input on volume capacities. Evidence of these reviews is maintained in the form of awarded Request for Proposals (RFPs), signed quotes or contracts, and a Customer Relationship Management (CRM) database. If a review identifies a potential mismatch between customer requirements and laboratory capabilities and/or capacities, Pace will specify its level of commitment by listing these exceptions to the requirements within the RFP, quote or contract.

2.3.3. Additional information regarding specific procedures for reviewing new work requests can be found in SOP S-GB-C-012 **Review of Analytical Requests** or its equivalent revision or replacement.

2.4. Chain of Custody

2.4.1. A chain of custody (COC) provides the legal documentation of samples from time of collection to completion of analysis. PASI has implemented Standard Operating Procedures to ensure that sample custody traceability and responsibility objectives are achieved for every project.

2.4.2. Field personnel or client representatives must complete a chain of custody for all samples that are received by the laboratory. The importance of completeness of COCs is stressed to the samplers and is critical to efficient sample receipt and to insure the requested methods are used to analyze the correct samples.

2.4.3. If sample shipments are not accompanied by the correct documentation, the Sample Receiving department notifies a Project Manager. The Project Manager then obtains the correct documentation/information from the customer in order for analysis of samples to proceed.

2.4.4. The sampler is responsible for providing the following information on the chain of custody form:

- Customer project name
- Project location or number
- Field sample number/identification
- Date and time sampled
- Sample matrix
- Preservative
- Requested analyses
- Sampler signature
- Relinquishing signature
- Date and time relinquished
- Sampler remarks as needed
- Custody Seal Number if present
- Regulatory Program Designation
- The state where the samples were collected to ensure all applicable state requirements are met
- Turnaround time requested
- Purchase order number

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 19 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

2.4.5. The COC is filled out completely and legibly with indelible ink. Errors are corrected by drawing a single line through the initial entry and initialing and dating the change. All transfers of samples are recorded on the chain of custody in the "relinquished" and "received by" sections. All information except signatures is printed.

2.4.6. Additional information can be found in S-GB-C-010 **Sample Management** or its equivalent revision or replacement.

2.5. Sample Acceptance Policy

2.5.1. In accordance with regulatory guidelines, PASI complies with the following sample acceptance policy for all samples received.

2.5.2. If the samples do not meet the sample receipt acceptance criteria outlined below, the laboratory is required to document all non-compliances, contact the customer, and either reject the samples or fully document any decisions to proceed with analyses of samples which do not meet the criteria. Any results reported from samples not meeting these criteria are appropriately qualified on the final report.

2.5.3. All samples must:

- Have unique customer identification that is clearly marked with indelible ink on durable waterproof labels affixed to the sample containers that match the chain of custody.
- Have clear documentation on the chain of custody related to the location of the sampling site with the time and date of sample collection.
- Have the sampler's name and signature.
- Have all requested analyses clearly designated on the COC.
- Have clear documentation of any special analytical or data reporting requirements.
- Be in appropriate sample containers with clear documentation of the preservatives used.
- Be correctly preserved unless the method allows for laboratory preservation.
- Be received within holding time. Any samples with hold times that are exceeded will not be processed without prior customer approval.
- Have sufficient sample volume to proceed with the analytical testing. If insufficient sample volume is received, analysis will not proceed without customer approval.
- Be received within appropriate temperature ranges not frozen but $\leq 6^{\circ}C$ (See Note 1), unless program requirements or customer contractual obligations mandate otherwise (see Note 2). The cooler temperature is recorded directly on the COC and the SCUR. Samples that are delivered to the laboratory immediately after collection are considered acceptable if there is evidence that the chilling process has been started. For example, by the arrival of the samples on ice. If samples arrive that are not compliant with these temperature requirements, the customer will be notified. The analysis will NOT proceed unless otherwise directed by the customer. If less than 72 hours remain in the hold time for the analysis, the analysis may be started while the customer is contacted to avoid missing the hold time. Data associated with any deviations from the above sample acceptance policy requirements will be appropriately qualified.

Note 1: Temperature will be read and recorded based on the precision of the measuring device. For example, temperatures obtained from a thermometer graduated to 0.1°C will be read and recorded to

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 20 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

 $\pm 0.1^{\circ}$ C. Measurements obtained from a thermometer graduated to 0.5°C will be read to $\pm 0.5^{\circ}$ C. Measurements read at the specified precision are not to be rounded down to meet the $\leq 6^{\circ}$ C limit

Note 2: Some microbiology methods allow sample receipt temperatures of up to 10°C. Consult the specific method for microbiology samples received above 6°C prior to initiating corrective action for out of temperature preservation conditions.

Note 3: Biological Tissue Samples must be received on ice at $\leq 6^{\circ}$ C. TNI rules also apply if the samples are brought straight from the field; they are acceptable if evidence of cooling is present (i.e., received on ice).

2.5.4. Upon sample receipt, the following items are also checked and recorded:

- Presence of custody seals or tapes on the shipping containers;
- Sample condition: Intact, broken/leaking, bubbles in VOA samples, etc.;
- Sample holding time;
- Sample pH and residual chlorine when required;
- Appropriate containers.

2.5.5. Samples for drinking water analysis that are improperly preserved, or are received past holding time, are rejected at the time of receipt, with the exception of VOA samples that are tested for pH at the time of analysis.

2.5.6. Additional information can be found in S-GB-C-010 **Sample Management** or its equivalent revision or replacement.

2.6. Sample Log-in

2.6.1. After sample inspection, all sample information on the chain of custody is entered into the Laboratory Information Management System (LIMS). This permanent record documents receipt of all sample containers including:

- Customer name and contact
- Customer number
- Pace Analytical project number
- Pace Analytical Project Manager
- Sample descriptions
- Due dates
- List of analyses requested
- Date and time of laboratory receipt
- Field ID code
- Date and time of collection
- Any comments resulting from inspection for sample rejection

2.6.2. All samples received are logged into the LIMS within one working day of receipt. Sample login may be delayed due to customer clarification of analysis needed, corrective actions for sample receipt non-conformance, or other unusual circumstances. If the time collected for any sample is unspecified and Pace is unable to obtain this information from the customer, the laboratory will use 12:01am as the

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 21 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

time sampled. All hold times will be based on this sampling time and qualified accordingly if exceeded.

2.6.3. The Laboratory Information Management System (Epic Pro) automatically generates a unique identification number for each sample created in the system. The LIMS sample number follows the general convention of 40-XXXXX-YYY. The 40 represents the laboratory identification within Pace's laboratory network. The 6 digit "X" number represents the project number followed by a 3 digit sample number. The project number is a sequential number that is assigned as a new project is created. The sample number corresponds to the number of samples submitted by the client. In addition to the unique sample ID, there is a sample container ID that consists of the sample number, the container type (ex. BP1U), and bottle 1 of Y, where Y represents the total number of containers of that particular type. Together the sample LIMs number and sample container ID number create a unique barcode encryption that can be linked to the sample analysis requested by the client. This unique identification number is placed on the sample container as a durable label and becomes the link between the laboratory's sample management system and the customer's field identification; it will be a permanent reference number for all future interactions.

2.6.4. Sample labels are printed from the LIMS and affixed to each sample container.

2.6.5. Samples with hold times that are near expiration date/time may be sent directly to the laboratory for analysis at the discretion of the Project Manager and/or SGM/GM/AGM/OM.

2.6.6. Additional information can be found in S-GB-C-010 **Sample Management** or its equivalent revision or replacement.

2.7. Sample Storage

2.7.1. Storage Conditions

2.7.1.1. Samples are stored away from all standards, reagents, or other potential sources of contamination. Samples are stored in a manner that prevents cross contamination. Volatile samples are stored separately from other samples. All sample fractions, extracts, leachates, and other sample preparation products are stored in the same manner as actual samples or as specified by the analytical method.

2.7.1.2. Storage blanks are stored with volatile samples and are used to measure crosscontamination acquired during storage. If applicable, laboratories must have documented procedures and criteria for evaluating storage blanks, appropriate to the types of samples being stored.

2.7.1.3. Additional information can be found in S-GB-Q-028 Monitoring Temperature Controlled Units.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 22 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

2.7.2. Temperature Monitoring

2.7.2.1. Samples are taken to the appropriate storage location immediately after sample receipt and check-in procedures are completed. All sample storage areas are located in limited access areas and are monitored to ensure sample integrity.

2.7.2.2. The temperature of each refrigerated storage area is maintained at $\leq 6^{\circ}$ C (but above freezing) unless state or program requirements differ. The temperature of each freezer storage area is maintained at $< 10^{\circ}$ C unless state or program requirements differ. The temperature of each storage area is checked and documented each day of use (each calendar day). If the temperature falls outside the acceptable limits, the following corrective actions are taken and appropriately documented:

• The temperature is rechecked after two hours to verify temperature exceedance. Corrective action is initiated and documented if necessary.

- The SQM/QM and/or laboratory management are notified if the problem persists.
- The samples are relocated to a proper environment if the temperature cannot be maintained after corrective actions are implemented.
- The affected customers are notified.
- Documentation is provided on analytical report.

Additional information can be found in S-GB-Q-028 Monitoring Temperature Controlled Units.

2.7.3. Hazardous Materials

2.7.3.1. Pure product or potentially heavily contaminated samples must be tagged as "hazardous" or "lab pack" and stored separately from other samples.

2.7.4. Foreign/Quarantined Soils

2.7.4.1. Depending on the soil disposal practices of the laboratory, foreign soils and soils from USDA regulated areas are adequately segregated to enable proper sample disposal. The USDA requires these samples to be incinerated or sterilized by an approved treatment procedure. Additional information regarding USDA regulations and sample handling can be found in applicable local laboratory SOPs.

2.7.4.2. Additional information on sample storage can be found in S-GB-C-010 **Sample Management** or its equivalent revision or replacement and in S-GB-W-001 **Waste Handling and Management**.

2.8. Sample Protection

2.8.1. PASI laboratory facilities are operated under controlled access protocols to ensure sample and data integrity. Visitors must register at the front desk and be properly escorted at all times.

2.8.2. Samples are removed from storage areas by designated personnel and returned to the storage areas, if necessary, immediately after the required sample quantity has been taken.

2.8.3. Upon customer request, additional and more rigorous chain of custody protocols for samples and data can be implemented. For example, some projects may require internal chain-of-custody protocols.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 23 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

2.8.4. Additional information can be found in S-GB-C-010 **Sample Management** or its equivalent revision or replacement.

2.9. Subcontracting Analytical Services

2.9.1. Every effort is made to perform all analyses for PASI customers within the laboratory that receives the samples. When subcontracting to a laboratory other than the receiving laboratory, whether inside or outside the PASI network, becomes necessary, a preliminary verbal communication with that laboratory is undertaken. Customers are notified in writing of the laboratory's intention to subcontract any portion of the testing to another laboratory. Work performed under specific protocols may involve special considerations.

2.9.2. Prior to subcontracting samples to a laboratory outside Pace Analytical, the potential subcontract laboratory will be pre-qualified by verifying that the subcontractor meets the following criteria:

- All certifications required for the proposed subcontract are in effect,
- Sufficient professional liability and other required insurance coverage is in effect, and
- Is not involved in legal action by any federal, state, or local government agency for data integrity issues and has not been convicted in such investigation at any time during the past 5 years.

2.9.3. The contact and preliminary arrangements are made between the PASI Project Manager and the appropriate subcontract laboratory personnel. The specific terms of the subcontract laboratory agreement include:

- Method of analysis
- Number and type of samples expected
- Project specific QA/QC requirements
- Deliverables required
- Laboratory certification requirement
- Price per analysis
- Turn-around time requirements

2.9.4. Chain-of-custody forms are generated for samples requiring subcontracting to other laboratories. Sample receiving personnel re-package the samples for shipment, create a transfer chain of custody form and record the following information:

- Pace Analytical Laboratory Number
- Matrix
- Requested analysis
- Special instructions regarding turnaround, required detection or reporting limits, or any unusual information known about the samples or analytical procedure.
- Signature in "Relinquished By"

2.9.5. All subcontracted sample data reports are sent to the PASI Project Manager. Pace will provide a copy of the subcontractor's report to the client when requested.

2.9.6. Any Pace Analytical work sent to other labs within the PASI network is handled as subcontracted work and all final reports are labeled clearly with the name of the laboratory performing the work. Any non-TNI work is clearly identified. PASI will not be responsible for analytical data if the subcontract laboratory was designated by the customer.

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 24 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

2.9.7. Additional information can be found in S-GB-C-009 **Subcontracting Samples** or its equivalent revision or replacement.

2.10. Sample Retention and Disposal

2.10.1. Samples, extracts, digestates, and leachates must be retained by the laboratory for the period of time necessary to protect the interests of the laboratory and the customer.

2.10.2. Unused portions of samples are retained by each laboratory based on program or customer requirements for sample retention and storage. The minimum sample retention time is 45 days from receipt of the samples. Samples requiring thermal preservation may be stored at ambient temperature when the hold time is expired, the report has been delivered, and/or allowed by the customer, program, or contract. Samples requiring storage beyond the minimum sample retention time due to special requests or contractual obligations may be stored at ambient temperature unless the laboratory has sufficient capacity and their presence does not compromise the integrity of other samples.

2.10.3. After this period expires, non-hazardous samples are properly disposed of as non-hazardous waste. The preferred method for disposition of hazardous samples is to return the excess sample to the customer. If it is not feasible to return samples, or the customer requires PASI to dispose of excess samples, proper arrangements will be made for disposal by an approved contractor.

2.10.4. Additional information can be found in S-GB-W-001 **Waste Handling and Management** and S-GB-C-010 **Sample Management** or their equivalent revisions or replacements.

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

3.0. ANALYTICAL CAPABILITIES

3.1. Analytical Method Sources

3.1.1. PASI laboratories are capable of analyzing a full range of environmental samples from a variety of matrices, including air, surface water, wastewater, groundwater, soil, sediment, biota, and other waste products. The latest valid editions of methodologies are applied from regulatory and professional sources including EPA, ASTM, USGS, NIOSH, Standard Methods, and State Agencies. Section 11 is a representative listing of general analytical protocol references. PASI discloses in writing to its customers and regulatory agencies any instances in which modified methods are being used in the analysis of samples.

3.1.2. In the event of a customer-specific need, instrumentation constraint or regulatory requirement, PASI laboratories reserve the right to use valid versions of methods that may not be the most recent edition available.

3.2. Analytical Method Documentation

3.2.1. The primary form of PASI laboratory documentation of analytical methods is the Standard Operating Procedure (SOP). SOPs contain pertinent information as to what steps are required by an analyst to successfully perform a procedure. The required contents for the SOPs are specified in the company-wide SOP template for Preparation of SOPs (SOT-ALL-Q-001).

3.2.2. The SOPs may be supplemented by other training materials that further detail how methods are specifically performed. This training material will undergo periodic, documented review along with the other Quality System documentation.

3.3. Analytical Method Validation and Instrument Validation

3.3.1. In some situations, PASI develops and validates methodologies that may be more applicable to a specific problem or objective. When non-standard methods are required for specific projects or analytes of interest, or when the laboratory develops or modifies a method, the laboratory validates the method prior to applying it to customer samples. Method validity is established by meeting criteria for precision and accuracy as established by the data quality objectives specified by the end user of the data. The laboratory records the validation procedure, the results obtained and a statement as to the usability of the method. The minimum requirements for method validation include evaluation of sensitivity, quantitation, precision, bias, and selectivity of each analyte of interest.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 26 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

3.4. Demonstration of Capability (DOC)

3.4.1. Analysts complete an initial demonstration of capability (IDOC) study prior to performing a method or when there is a change in instrument type, personnel, or test method, or at any time that a method has not been performed by the laboratory or analyst in a 12-month period. The mean recovery and standard deviation of each analyte, taken from 4 replicates of a quality control standard is calculated and compared to method criteria (if available) or established laboratory criteria for evaluation of acceptance. Each laboratory maintains copies of all demonstrations of capability, including those that fail acceptance criteria, and corresponding raw data for future reference, and must document the acceptance criteria prior to the analysis of the DOC. Demonstrations of capability are verified on an annual basis.

3.4.2. For Continuing Demonstrations of Capability, the laboratories may use Performance Testing (PT) samples in lieu of the 4-replicate approach listed above. For methods or procedures that do not lend themselves to the "4-replicate" approach, the demonstration of capability requirements will be specified in the applicable SOP. Drinking Water DOCs must be done at or below the MCL.

3.4.3. Additional information can be found in SOP S-ALL-Q-020 **Training and Employee Orientation** or its equivalent revision or replacement.

3.5. Regulatory and Method Compliance

3.5.1. PASI understands that expectations of our customers commonly include the assumption that laboratory data will satisfy specific regulatory requirements. Therefore PASI attempts to ascertain, prior to beginning a project, what applicable regulatory jurisdiction, agency, or protocols apply to that project. This information is also required on the chain of custody submitted with samples.

3.5.2. PASI makes every effort to detect regulatory or project plan inconsistencies, based upon information from the customer, and communicate them immediately to the customer in order to aid in the decision making process. PASI will not be liable if the customer chooses not to follow PASI recommendations.

3.5.3. It is PASI policy to disclose in a forthright manner any detected noncompliance affecting the usability of data produced by our laboratories. The laboratory will notify customers within 30 days of fully characterizing the nature of the nonconformance, the scope of the nonconformance and the impact it may have on data usability.

Pace Analytical®

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace Green

Bay Quality Office

4.0. QUALITY CONTROL PROCEDURES

Quality control data is analyzed and where they are found to be outside pre-defined criteria, planned action is taken to correct the problem in order to prevent incorrect results from being reported. Quality control samples are to be processed in the same manner as client samples.

4.1. Method Blank

4.1.1. A method blank is used to evaluate contamination in the preparation/analysis system and is processed through all preparation and analytical steps with its associated samples.

4.1.2. A method blank is processed at a minimum frequency of one per preparation batch (see glossary section of this document for further clarification of the definition of batch). In the case of a method that has no separate preparation step, a method blank is processed with no more than 20 samples of a specific matrix performed by the same analyst, using the same method, standards, and reagents.

4.1.3. The method blank consists of a matrix similar to the associated samples that is known to be free of analytes of interest. Method blanks are not applicable for certain analyses, such as pH, conductivity, flash point and temperature.

4.1.4. Each method blank is evaluated for contamination. The source of any contamination is investigated and documented corrective action is taken when the concentration of any target analyte is detected above the reporting limit and is greater than 1/10 of the amount of that analyte found in any associated sample. Some labs, due to client requirements, etc., may have to evaluate their method blanks down to $\frac{1}{2}$ the reporting limit or down to the method detection limit as opposed to the reporting limit itself. Corrective actions for blank contamination may include the re-preparation and re-analysis of all samples (where possible) and quality control samples. Data qualifiers must be applied to results that are considered affected by contamination in a method blank.

4.1.5. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

4.2. Laboratory Control Sample

4.2.1. The Laboratory Control Sample (LCS) is used to evaluate the performance of the entire analytical system including preparation and analysis.

4.2.2. An LCS is processed at a minimum frequency of one per preparation batch. In the case of a method that has no separate preparation step, an LCS will be processed with no more than 20 samples of a specific matrix performed by the same analyst, using the same method, standards, and reagents.

4.2.3. The LCS consists of a matrix similar to the associated samples that is known to be free of the analytes of interest that is then spiked with known concentrations of target analytes.

4.2.4. The LCS contains **all** analytes specified by a specific method or by the customer or regulatory agency, which may include full list of target compounds, with certain exceptions. These exceptions may include analyzing only specific Aroclors when PCB analysis is requested or not spiking with all EPA Appendix IX compounds when a full Appendix IX list of compounds is requested. However, the lab must ensure that all target components in its scope of accreditation are included in the spike

mixture for the LCS over a one (1) year period. In the absence of specified components, the laboratory will spike the LCS with the following compounds:

- For multi-peak analytes (e.g. PCBs, technical chlordane, toxaphene), a representative standard will be processed.
- For methods with long lists of analytes, a representative number of target analytes may be chosen. The following criteria is used to determine the number of LCS compounds used:
 - For methods with 1-10 target compounds, the laboratory will spike with all compounds;
 For methods with 11-20 target compounds, the laboratory will spike with at least 10 compounds or 80%, whichever is greater;

• For methods with greater than 20 compounds, the laboratory will spike with at least 16 compounds.

4.2.5. The LCS is evaluated against the method default or laboratory-derived acceptance criteria. For those methods that require laboratory-derived limits, method default control limits may be used until the laboratory has a minimum of 20, but preferably greater than 30, data points from which to derive internal acceptance criteria. Any compound that is outside of these limits is considered to be 'out of control' and must be qualified appropriately. Any associated sample containing an 'out-of-control' compound must either be re-analyzed with a successful LCS or reported with the appropriate data qualifier. When the acceptance criteria for the LCS are exceeded high, and there are associated samples that are non-detects, then those non-detects can be reported with data qualifiers. When the acceptance criteria are exceeded low, those associated sample results may be reported with data qualifiers if they exceed the maximum regulatory limit/decision level.

4.2.6. For LCSs containing a large number of analytes, it is statistically likely that a few recoveries will be outside of control limits. This does not necessarily mean that the system is out of control, and therefore no corrective action would be necessary (except for proper documentation). TNI has allowed for a minimum number of marginal exceedances, defined as recoveries that are beyond the LCS control limits (3X the standard deviation) but less than the marginal exceedance limits (4X the standard deviation). The number of allowable exceedances depends on the number of compounds in the LCS. If more analyte recoveries exceed the LCS control limits than is allowed (see below) or if any one analyte exceeds the marginal exceedance limits, then the LCS is considered non-compliant and corrective actions are necessary. The number of allowable exceedances is as follows:

- >90 analytes in the LCS- 5 analytes
- 71-90 analytes in the LCS- 4 analytes
- 51-70 analytes in the LCS- 3 analytes
- 31-50 analytes in the LCS- 2 analytes
- 11-30 analytes in the LCS- 1 analyte
- <11 analytes in the LCS- no analytes allowed out)

Note: the use of marginal exceedances is not approved for work from the state of South Carolina.

4.2.7. A matrix spike (MS) can be used in place of a non-compliant LCS in a batch as long as the MS passes the LCS acceptance criteria (this is a TNI allowance). Note: the use of the MS to replace a non-compliant LCS is not approved for work from the state of South Carolina. When this happens, full documentation must be made available to the data user. If this is not allowed by a customer or regulatory body, the associated samples must be rerun with a compliant LCS (if possible) or reported with appropriate data qualifiers.

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 29 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

4.2.8. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

4.3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

4.3.1. A matrix spike (MS) is used to determine the effect of the sample matrix on compound recovery for a particular method. The information from these spikes is sample or matrix specific and is not used to determine the acceptance of an entire batch unless the MS is actually used as the LCS.

4.3.2. A **Matrix Spike/Matrix Spike Duplicate** (MS/MSD) set is processed at a frequency specified in a particular method or as determined by a specific customer request. This frequency will be specified in the applicable method SOP or customer QAPP. In the absence of such requirements, an MS/MSD set is routinely analyzed once per every 20 samples per matrix per method.

4.3.3. The MS and MSD consist of the sample matrix that is then spiked with known concentrations of target analytes. Laboratory personnel spike customer samples that are specifically designated as MS/MSD samples or, when no designated samples are present in a batch, randomly select samples to spike that have adequate sample volume or weight. Spiked samples are prepared and analyzed in the same manner as the original samples and are selected from different customers if possible.

4.3.4. The MS and MSD contain all analytes specified by a specific method or by the customer or regulatory agency. In the absence of specified components, the laboratory will spike the MS/MSD with the same number of compounds as previously discussed in the LCS section. However, the lab must ensure that all targeted components in its scope of accreditation are included in the spike mixture for the MS/MSD over a one (1) year period.

4.3.5. The MS and MSD are evaluated against the method or laboratory derived criteria. Any compound that is outside of these limits is considered to be 'out of control' and must be qualified appropriately. Batch acceptance, however, is based on method blank and LCS performance, not on MS/MSD recoveries. The spike recoveries give the data user a better understanding of the final results based on their site specific information.

4.3.6. A matrix spike and sample duplicate will be performed instead of a matrix spike and matrix spike duplicate when specified by the customer or method.

4.3.7. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

4.4. Sample Duplicate

4.4.1. A sample duplicate is a second portion of sample that is prepared and analyzed in the laboratory along with the first portion. It is used to measure the precision associated with preparation and analysis. A sample duplicate is processed at a frequency specified by the particular method or as determined by a specific customer.

4.4.2. The sample and duplicate are evaluated against the method or laboratory derived criteria for relative percent difference (RPD). Any duplicate that is outside of these limits is considered to be 'out of control' and must be qualified appropriately.

4.4.3. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 30 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

4.5. Surrogates

4.5.1. Surrogates are compounds that reflect the chemistry of target analytes and are typically added to samples for organic analyses to monitor the effect of the sample matrix on compound recovery.

4.5.2. Surrogates are added to each customer sample (for applicable organics), method blank, LCS, MS, and calibration standard prior to extraction or analysis. The surrogates are evaluated against the method or laboratory derived acceptance criteria or against project-specific acceptance criteria specified by the client, if applicable. Any surrogate compound that is outside of these limits is considered to be 'out of control' and must be qualified appropriately. Samples with surrogate failures are typically re-extracted and/or re-analyzed to confirm that the out-of-control value was caused by the matrix of the sample and not by some other systematic error. An exception to this would be samples that have high surrogate values but no reportable hits for target compounds. These samples would be reported, with a qualifier, because the implied high bias would not affect the final results. For methods with multiple surrogates, documentation regarding acceptance and associated compounds will be found in the individual method SOPs.

4.5.3. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

4.6. Internal Standards

4.6.1. Internal Standards are method-specific analytes added to every standard, method blank, laboratory control sample, matrix spike, matrix spike duplicate, sample, and calibration standard at a known concentration, prior to analysis for the purpose of adjusting the response factor used in quantifying target analytes. At a minimum, the laboratory will follow method specific guidelines for the treatment of internal standard recoveries as they are related to the reporting of data.

4.6.2. Deviations made from this policy must be approved by the SQM/QM prior to release of the data.

4.7. Field Blanks

4.7.1. Field blanks are blanks prepared at the sampling site in order to monitor for contamination that may be present in the environment where samples are collected. These field quality control samples are often referenced as field blanks, rinsate blanks, or equipment blanks. The laboratory analyzes these field blanks as normal samples and informs the customer if there are any target compounds detected above the reporting limits.

4.8. Trip Blanks

4.8.1. Trip blanks are blanks that originate from the laboratory as part of the sampling event and are used to monitor for contamination of samples during transport. These blanks accompany the empty sample containers to the field and then accompany the collected samples back to the laboratory. These blanks are routinely analyzed for volatile methods where ambient background contamination is likely to occur.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 31 of 132
n	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

4.9. Limit of Detection (LOD)

4.9.1. PASI laboratories are required to use a documented procedure to determine a limit of detection for each analyte of concern in each matrix reported. All sample processing steps of the preparation and analytical methods are included in this determination including any clean ups. For any test that does not have a valid LOD, sample results below the limit of quantitation (LOQ) cannot be reported.

4.9.2. The LOD is initially established for the compounds of interest for each method in a clean matrix with no target analytes present and no interferences at a concentration that would impact the results. The LOD is then determined every time there is a change in the test method that affects how the test is performed or when there has been a change in the instrument that affects the sensitivity. If required by customer, method or accreditation body, the LOD will be re-established annually for all applicable methods.

4.9.3. Unless otherwise noted, the method used by PASI laboratories to determine LODs is based on the Method Detection Limit (MDL) procedure outlined in 40 CFR Part 136, Appendix B. Where required by regulatory program or customer, the above referenced procedure will be followed.

4.9.4. Where specifically stated in the published method, LODs or MDLs will be performed at the listed frequency.

4.9.5. The validity of the LOD must be shown by detection (a value above zero) of the analytes in a QC sample in each quality system matrix. The QC sample must contain the analyte at no more than 3X the LOD for a single analyte test and 4X the LOD for multiple analyte tests. This verification must be performed on each instrument used for sample analysis and reporting of data. The validity of the LOD must be verified as part of the LOD determination process. This verification must be done prior to the use of the LOD for sample analysis.

4.9.6. An LOD study is not required for any analyte for which spiking solutions or quality control samples are not available such as temperature.

4.9.7. The LOD, if required, shall be verified annually for each quality system matrix, technology and analyte. In lieu of performing full LOD (MDL) studies annually, the laboratory can verify the LOD (MDL) on an annual basis, providing this verification is fully documented and does not contradict other customer or program requirements that the laboratory must follow. The requirements of this verification are:

- The spike concentration of the verification must be no more than 3X times the LOD for single analyte tests and 4X the LOD for multiple analyte tests.
- The laboratory must verify the LOD on each instrument used for the reporting of sample data.
- The laboratory must be able to identify all target analytes in the verification standard (distinguishable from noise).

4.9.8. Additional information can be found in SOP S-GB-Q-020 **Determination of LOD and LOQ** or its equivalent revision or replacement.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 32 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

4.10. Limit of Quantitation (LOQ)

4.10.1. A limit of quantitation (LOQ) for every analyte of concern must be determined. For PASI laboratories, this LOQ is referred to as the RL, or Reporting Limit. This RL is based on the lowest calibration standard concentration that is used in each initial calibration. Results below this level are not allowed to be reported without qualification since the results would not be substantiated by a calibration standard. For methods with a determined LOD, results can be reported out below the LOQ but above the LOD if they are properly qualified (e.g., J flag).

4.10.2. The LOQ must be higher than the LOD.

4.10.3. To verify the LOQ, the laboratory will prepare a sample in the same matrix used for the LCS. The sample will be spiked with each target analyte at a concentration equivalent to the RL or 2X the RL. This sample must undergo the routine sample preparation procedure including any routine sample cleanup steps. The sample is then analyzed and the recovery of each target analyte determined. The recovery for each target analyte must meet the laboratories current control limits for an LCS. The annual LOQ verification is not required if the LOD was determined or verified annually on that instrument.

4.10.4. Additional information can be found in SOP S-GB-Q-020 **Determination of LOD and LOQ** or its equivalent revision or replacement.

4.11. Estimate of Analytical Uncertainty

4.11.1. PASI laboratories can provide an estimation of uncertainty for results generated by the laboratory. The estimate quantifies the error associated with any given result at a 95% confidence interval. This estimate does not include bias that may be associated with sampling. The laboratory has a procedure in place for making this estimation. In the absence of a regulatory or customerspecific procedure, PASI laboratories base this estimation on the recovery data obtained from the Laboratory Control Spikes. The uncertainty is a function of the standard deviation of the recoveries multiplied by the appropriate Student's t Factor at 95% confidence. Additional information pertaining to the estimation of uncertainty and the exact manner in which it is derived are contained in the SOP S-GB-Q-010 **Estimation of Measurement Uncertainty** or its equivalent revision or replacement.

4.11.2. The measurement of uncertainty is provided only on request by the customer, as required by specification or regulation and when the result is used to determine conformance within a specification limit.

4.12. Proficiency Testing (PT) Studies

4.12.1. PASI laboratories participate in the TNI defined proficiency testing program. PT samples are obtained from NIST approved providers and analyzed and reported at a minimum of two times per year for the relevant fields of testing per matrix.

4.12.2. The laboratory initiates an investigation whenever PT results are deemed 'unacceptable' by the PT provider. All findings and corrective actions taken are reported to the SQM/QM or their designee. A corrective action plan is initiated and this report is sent to the appropriate state accreditation agencies for their review. Additional PTs will be analyzed and reported as needed for certification purposes.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 33 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

4.12.3. PT samples are treated as typical customer samples, utilizing the same staff, methods, equipment, facilities, and frequency of analysis. PT samples are included in the laboratory's normal analytical processes and do not receive extraordinary attention due to their nature.

4.12.4. Comparison of analytical results with anyone participating in the same PT study is prohibited prior to the close of the study.

4.12.5. Additional information can be found in SOP S-GB-Q-021 **Proficiency Testing Program** or its equivalent revision or replacement.

4.13. Rounding and Significant Figures

4.13.1. In general, the PASI laboratories report data to no more than three significant digits. Therefore, all measurements made in the analytical process must reflect this level of precision. In the event that a parameter that contributes to the final result has less than three significant figures of precision, the final result must be reported with no more significant figures than that of the parameter in question. The rounding rules listed below are descriptive of the LIMS and not necessarily of any supporting program such as Excel.

4.13.2. Data is compared to the reporting limits and MDLs to determine if qualifiers are needed before the rounding step occurs.

4.13.3. **Rounding:** PASI-Green Bay follows the odd / even guidelines for rounding numbers:

• If the figure following the one to be retained is less than five, that figure is dropped and the retained ones are not changed (with three significant figures, 2.544 is rounded to 2.54).

• If the figure following the ones to be retained is greater than five, that figure is dropped and the last retained one is rounded up (with three significant figures, 2.546 is rounded to 2.55).

• If the figure following the ones to be retained is five and if there are no figures other than zeros beyond that five, then the five is dropped and the last figure retained is unchanged if it is even and rounded up if it is odd (with three significant figures, 2.525 is rounded to 2.52 and 2.535 is rounded to 2.54).

4.13.4. Significant Digits

4.13.4.1. PASI-Green Bay follows the following convention for reporting to a specified number of significant figures. Unless specified by federal, state, or local requirements or on specific request by a customer, the laboratory reports:

Values > 10 – Reported to 3 significant digits Values ≤ 10 – Reported to 2 significant digits

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 34 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

4.14. Retention Time Windows

4.14.1. When chromatographic conditions are changed, retention times and analytical separations are often affected. As a result, two critical aspects of any chromatographic method are the determination and verification of retention times and analyte separation. Retention time windows must be established for the identification of target analytes. The retention times of all target analytes in all calibration verification standards must fall within the retention time windows. If an analyte falls outside the retention time window in an ICV or CCV, new absolute retention time windows must be calculated, unless instrument maintenance fixes the problem. When a new column is installed, a new retention time window study must be performed.

4.14.2. One process for the production of retention time windows: Make 3 injections of all single component or multi-component analytes over a 72-hour period. Record the retention time in minutes for each analyte and surrogate to 3 decimal places. Calculate the mean and standard deviation of the three absolute retention times for each target analyte and surrogate. For multi-component analytes, choose 3-5 major peaks and calculate the mean and standard deviation for each of the peaks. If the standard deviation of the retention times of a target analyte is 0.000, the lab may use a default standard deviation of 0.01. The width of the retention time window for each analyte and surrogate and major peak in a multi-component analyte is defined as +/- 3 times the standard deviation of the retention time established during that 72-hour period or 0.03 minutes, whichever is greater.

4.14.3. The center of the retention time window is established for each analyte and surrogate by using the absolute retention times from the CCV at the beginning of the analytical shift. For samples run with an initial calibration, use the retention time of the mid-point standard of the initial calibration curve.

4.14.4. For more information, please reference the local facility's analytical SOPs.

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

5.0. DOCUMENT MANAGEMENT AND CHANGE CONTROL

5.1. Document Management

5.1.1. Additional information can be found in SOP S-GB-Q-029 **Document Control and Management** or its equivalent revision or replacement. Information on Pace's policy for electronic signatures can also be found in this SOP.

5.1.2. Pace Analytical Services, Inc. has an established procedure for managing documents that are part of the quality system. The list of managed documents includes, but is not limited to, Standard Operating Procedures (both technical and non-technical), Quality Assurance Manuals, quality policy statements, training documents, work-processing documents, charts, posters, memoranda, notices, forms, software, and any other procedures, tables, plans, etc. that have a direct bearing on the quality system (including applicable data records and non-technical documents).

5.1.3. A master list of all managed documents is maintained at each facility identifying the current revision status and distribution of the controlled documents. This establishes that there are no invalid or obsolete documents in use in the facility. All documents are reviewed periodically and revised if necessary. Obsolete documents are systematically discarded or archived for audit or knowledge preservation purposes.

5.1.4. Each managed document is uniquely identified to include the date of issue, the revision identification, page numbers, the total number of pages and the issuing authorities. For complete information on document numbering, refer to SOP S-ALL-Q-003 **Document Numbering**.

5.1.5. SOPs, specifically, are available to all laboratory staff via the Learning Management System (LMS) which is a secure repository that is accessed through an internet portal. As a local alternative to the hard copy system of controlled documents, secured electronic copies of controlled documents may be maintained on the laboratory's local server. These document files must be read-only for all personnel except the Quality Department and system administrator. Other requirements for this system are as follows:

- Electronic documents must be readily accessible to all facility employees.
- Electronic documents must be locked from printing. All hardcopy SOPs must be obtained from the Quality Department.

5.1.6. **Quality Assurance Manual (QAM):** The Quality Assurance Manual is the company-wide document that describes all aspects of the quality system for PASI. The base QAM template is distributed by the Corporate Quality Department to each of the SQMs/QMs. The local management personnel modify the necessary and permissible sections of the base template and submit those modifications to the Corporate Director of Quality for review. Once approved and signed by both the CEO and the Director of Quality; the SGM/GM/AGM/OM, the SQM/QM, and any Technical Directors sign the Quality Assurance Manual. Each SQM/QM is then in charge of distribution to employees, external customers or regulatory agencies and maintaining a distribution list of controlled document copies. The Quality Assurance Manual template is reviewed on an annual basis by all of the PASI SQMs/QMs and revised accordingly by the Director of Quality.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 36 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

5.1.7. Standard Operating Procedures (SOPs)

5.1.7.1. SOPs fall into two categories: company-wide documents and facility specific documents. Company-wide SOPs start with the prefix S-ALL- and local SOPs start with the individual facility prefix.

5.1.7.2. The purpose of the company-wide SOPs is to establish policies and procedure that are common and applicable to all PASI facilities. Company-wide SOPs are document-controlled by the corporate quality office and signed copies are distributed to all of the SQMs/QMs. The local management personnel sign the company-wide SOPs. The SQM/QM is then in charge of distribution to employees, external customers, or regulatory agencies and maintaining a distribution list of controlled document copies.

5.1.7.3. Local PASI facilities are responsible for developing facility-specific SOPs applicable to their respective facility. The local facility develops these facility-specific SOPs based on the corporate-wide SOP template. This template is written to incorporate a set of minimum method requirements and PASI best practice requirements. The local facilities may add to or modify the corporate-wide SOP template provided there are no contradictions to the minimum method or best practice requirements. Facility-specific SOPs are controlled by the applicable SQM/QM according to the corporate document management policies.

5.1.7.4. SOPs are reviewed every two years at a minimum although a more frequent review may be required by some state or federal agencies or customers. If no revisions are made based on this review, documentation of the review itself is made by the addition of new signatures on the cover page. If revisions are made, documentation of the revisions is made in the revisions section of each SOP and a new revision number is applied to the SOP. This provides a historical record of all revisions.

5.1.7.5. All copies of superseded SOPs are removed from general use and the original copy of each SOP is archived for audit or knowledge preservation purposes. This ensures that all PASI employees use the most current version of each SOP and provides the SQM/QM with a historical record of each SOP.

5.1.7.6. Additional information can be found in SOP S-GB-Q-017 **Preparation of SOPs** or its equivalent revision or replacement.

5.2. Document Change Control

5.2.1. Changes to managed documents are reviewed and approved in the same manner as the original review. Any revision to a document requires the approval of the applicable signatories. After revisions are approved, a revision number is assigned and the previous version of the document is officially retired. Copies may be kept for audit or knowledge preservation purposes.

5.2.2. All controlled copies of the previous document are replaced with controlled copies of the revised document and the superseded copies are destroyed or archived. All affected personnel are advised that there has been a revision and any necessary training is scheduled.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 37 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
	-	Bay Quality Office

5.3. Management of Change

5.3.1. The process for documenting necessary changes within the laboratory network are not typically handled using the corrective or preventive action system as outlined in section 9.0. Management of Change is a proactive approach to dealing with change to minimize the potential negative impact of systematic change in the laboratory and to ensure that each change has a positive desired outcome. This process will primarily be used for the implementation of large scale projects and information system changes as a means to apply consistent systems or procedures within the laboratory network. The request for change is submitted by the initiator and subsequently assigned to an individual or team for development and planning. The final completion of the process culminates in final approval and verification that the procedure was effectively implemented. Additional information can be found in SOP S-GB-Q-016 **Management of Change** or its equivalent revision or replacement.

Pace Analytical"

Document No.: Quality Assurance Manual rev.18.0 Document Revised: May 12, 2015 Effective Date of Last Signature Page 38 of 132

Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

6.0. EQUIPMENT AND MEASUREMENT TRACEABILITY

Each PASI facility is equipped with sufficient instrumentation and support equipment to perform the relevant analytical testing or field procedures performed by each facility. Support equipment includes chemical standards, thermometers, balances, disposable and mechanical pipettes, etc. This section details some of the procedures necessary to maintain traceability and to perform proper calibration of instrumentation and support equipment. See Attachment III for a list of equipment currently used at the Green Bay PASI facility.

6.1. Standards and Traceability

6.1.1. Each PASI facility retains all pertinent information for standards, reagents, and chemicals to assure traceability to a national standard. This includes documentation of purchase, receipt, preparation, and use.

6.1.2. Upon receipt, all purchased standard reference materials are recorded into a standard logbook or database and assigned a unique identification number. The entries include the facility's unique identification number, the chemical name, manufacturer name, manufacturer's identification numbers, receipt date, and expiration date. Vendor's certificates of analysis for all standards, reagents, or chemicals are retained for future reference.

6.1.3. Subsequent preparations of intermediate or working solutions are also documented in a standard logbook or database. These entries include the stock standard name and lot number, the manufacturer name, the solvents used for preparation, the solvent lot number and manufacturer, the preparation steps, preparation date, expiration dates, preparer's initials, and a unique PASI identification number. This number is used in any applicable sample preparation or analysis logbook so the standard can be traced back to the standard preparation record. This process ensures traceability back to the national standard.

6.1.4. All prepared standard or reagent containers include the PASI identification number, the standard or chemical name, the date of preparation, the date of expiration, the concentration with units, and the preparer's initials. This ensures traceability back to the standard preparation logbook or database.

6.1.5. For containers that are too small to accommodate labels that list all of the above information associated with a standard, the minimum required information will be PASI standard ID, concentration, and expiration date. This assures that no standard will be used past its assigned expiration date.

6.1.6. If a second source standard is required to verify an existing calibration or spiking standard, this standard must be obtained from a different manufacturer or from a different lot unless client specific QAPP requirements state otherwise.

6.1.7. Additional information concerning the procurement of standards and reagent and their traceability can be found in the SOP S-GB-Q-026 **Standard and Reagent Management and Traceability** or its equivalent revision or replacement.

6.2. General Analytical Instrument Calibration Procedures (Organic and Inorganic)

6.2.1. All support equipment and instrumentation are calibrated or checked before use to ensure proper functioning and verify that the laboratory's requirements are met. All calibrations are performed by, or under the supervision of, an experienced analyst at scheduled intervals against either certified standards traceable to recognized national standards or reference standards whose values have been statistically validated.

6.2.2. Calibration standards for each parameter are chosen to establish the linear range of the instrument and must bracket the concentrations of those parameters measured in the samples. The lowest calibration standard is the lowest concentration for which quantitative data may be reported. Data reported below this level is considered to have less certainty and must be reported using appropriate data qualifiers or explained in a narrative. The highest calibration standard is the highest concentration for which quantitative data may be reported. Data reported above this level is considered to have less certainty and must be reported to have less certainty and must be reported using appropriate data qualifiers or explained in the narrative. The highest calibration standard is the highest concentration for which quantitative data may be reported. Data reported above this level is considered to have less certainty and must be reported using appropriate data qualifiers or explained in the narrative. Any specific method requirement for number and type of calibration standards supersedes the general requirement. Instrument and method specific calibration criteria are explained within the specific analytical standard operating procedures for each facility.

6.2.3. Results from all calibration standards analyzed must be included in constructing the calibration curve with the following exceptions:

6.2.3.1. The lowest level calibration standard may be removed from the calibration as long as the remaining number of concentration levels meets the minimum established by the method and standard operating procedure. For multi-parameter methods, this may be done on an individual analyte basis. The reporting limit must be adjusted to the lowest concentration included in the calibration curve;

6.2.3.2. The highest level calibration standard may be removed from the calibration as long as the remaining number of concentration levels meets the minimum established by the method and standard operating procedure. For multi-parameter methods, this may be done an individual analyte basis. The upper limit of quantitation must be adjusted to the highest concentration included in the calibration curve;

6.2.3.3. Multiple points from either the high end or the low end of the calibration curve may be excluded as long as the remaining points are contiguous in nature and the minimum number of levels remains as established by method or standard operating procedure. The reporting limit or quantitation range, whichever is appropriate, must be adjusted accordingly;

6.2.3.4. Results from a concentration level between the lowest and highest calibration levels can only be excluded from an initial calibration curve for a documentable and acceptable cause with approval from the responsible department supervisor and the local SQM/QM or their designee. An acceptable cause is defined as an obvious sample introduction issue that resulted in no response, documentation of an incorrectly prepared standard, or a documented response of a single standard that is greater than 2X the difference from the expected value of that standard. The results for all analytes are to be excluded and the point must be replaced by re-analysis. Re-analysis of this interior standard must occur within the same method-specified tune time period for GC/MS methodologies and within 8 hours of the initial analysis of that standard for non-GC/MS methodologies. All samples analyzed prior to the re-analyzed calibration curve point must be re-analyzed after the calibration curve is completed and re-processed against the final calibration curve.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 40 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

6.2.4. Instrumentation or support equipment that cannot be calibrated to specification or is otherwise defective is clearly labeled as out-of-service until it has been repaired and tested to demonstrate it meets the laboratory's specifications. All repair and maintenance activities including service calls are documented in the maintenance log. Equipment sent off-site for calibration testing is packed and transported to prevent breakage and is in accordance with the calibration laboratory's recommendations.

6.2.5. In the event that recalibration of a piece of test equipment indicates the equipment may have been malfunctioning during the course of sample analysis, an investigation is performed. The results of the investigation along with a summary of the information reviewed are documented and maintained by the quality manager. Customers must be notified within 30 days after the data investigation is completed and the impact to final results is assessed. This allows for sufficient investigation and review of documentation to determine the impact on the analytical results. Instrumentation found to be consistently out of calibration is either repaired and positively verified or taken out of service and replaced.

6.2.6. Raw data records are retained to document equipment performance. Sufficient raw data is retained to reconstruct the instrument calibration and explicitly connect the continuing calibration verification to the initial calibration.

6.2.7. General Organic Calibration Procedures

6.2.7.1. Calibration standards are prepared at a minimum of five concentrations for organic analyses (unless otherwise stipulated in the method).

6.2.7.2. Initial calibration curves are evaluated against appropriate statistical models as required by the analytical methods. Curves that do not meet the appropriate criteria require corrective action that may include re-running the initial calibration curve. Rounding to meet initial calibration criteria is not allowed, that is, 15.3 cannot be rounded down to meet a $\leq 15\%$ RSD requirement. This also applies to linear and non-linear fit requirements. All initial calibrations are verified with an initial calibration verification standard (ICV) obtained from a second manufacturer or second lot from the same manufacturer if that lot can be demonstrated as prepared independently from other lots prior to the analysis of samples. Sample results are quantitated from the initial calibration unless otherwise required by regulation, method, or program.

6.2.7.3. The calibration curve is periodically verified by the analysis of a mid-level continuing calibration verification (CCV) standard during the course of sample analysis. This standard is from the same source as the initial calibration unless otherwise specified in the source method to be from an alternate source material. Rounding to meet continuing calibration criteria is not allowed. Continuing calibration verification is performed at the beginning and end of each analytical batch except if an internal standard is used, then only one verification at the beginning of the batch is needed, whenever it is expected that the analytical system may be out of calibration, if the time period for calibration has expired, or for analytical systems that have specific calibration verification requirements. This verification standard must meet acceptance criteria in order for sample analysis to proceed.

6.2.7.4. In the event that the CCV does not meet the acceptance criteria, a second CCV may be injected as part of the diagnostic evaluation and corrective action investigation. If the second CCV is acceptable, the analytical sequence may be continued. If both CCVs fail, the analytical sequence is terminated and corrective action is initiated. Sample analysis cannot begin until after documented corrective action has been completed and either two consecutive passing CCVs have been analyzed

or the instrument has successfully passed a new initial calibration. All samples analyzed since the last compliant CCV are re-analyzed for methodologies utilizing external calibration.

6.2.7.5. When instruments are operating unattended, autosamplers may be programmed to inject consecutive CCVs as a preventative measure against CCV failure with no corrective action. In this case, both CCVs must be evaluated to determine potential impact to the results. A summary of the decision tree and necessary documentation are listed below:

• If both CCVs meet the acceptance criteria, the analytical sequence is allowed to continue without corrective action. The method-specified clock begins with the injection of the second CCV.

• If the first CCV does not meet the acceptance criteria and the second CCV is acceptable, the analytical sequence is continued and the results are reported.

- If the first CCV meets the acceptance criteria and the second CCV is out of control, the samples after the out of control CCV must be re-analyzed in a compliant analytical sequence.
- If both CCVs are out of control, all samples since the last acceptable CCV must be reanalyzed in a compliant analytical sequence.

6.2.7.6. Some analytical methods require that samples be bracketed by passing CCVs analyzed both before and after the samples. This is specific to each method but, as a general rule, all external calibration methods require bracketing CCVs. Most internal standard calibrations do not require bracketing CCVs.

6.2.7.7. Some analytical methods require verification based on a time interval; some methods require a frequency based on an injection interval. The type and frequency of the calibration verifications is dependent on both the analytical method and possibly on the quality program associated with the samples. The type and frequency of calibration verification will be documented in the method specific SOP employed by each laboratory.

6.2.8. General Inorganic Calibration Procedures

6.2.8.1. The instrument is initially calibrated with standards at multiple concentrations to establish the linearity of the instrument's response. A calibration blank is also included. Initial calibration curves are evaluated against appropriate statistical models as required by the analytical methods. Rounding to meet initial calibration criteria is not allowed. This also applies to linear and non-linear fit requirements. The number of calibration standards used depends on the specific method criteria or customer project requirements, although normally a minimum of three standards is used.

6.2.8.2. The ICP and ICP/MS can be standardized with a zero point and a single point calibration if:

- Prior to sample analysis, the zero point and the single point calibration are analyzed and a linear range has been established,
- Zero point and single point calibration standards are analyzed with each batch
- A standard corresponding to the LOQ is analyzed with the batch and meets the established acceptance criteria
- The linearity is verified at the frequency established by the method or manufacturer.

6.2.8.3. All initial calibrations are verified with an initial calibration verification standard (ICV) obtained from a second manufacturer or second lot from the same manufacturer if the lot can be demonstrated as prepared independently from other lots prior to the analysis of samples. Sample

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 42 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

results are quantitated from the initial calibration unless otherwise required by regulation, method, or program.

6.2.8.4. During the course of analysis, the calibration curve is periodically verified by the analysis of calibration verification standards (CCV). A calibration verification standard is analyzed within each analytical batch at method/program specific intervals to verify that the initial calibration is still valid. The CCV is also analyzed at the end of the analytical batch.

6.2.8.5. A calibration blank is also run with each calibration verification standard to verify the cleanliness of the system. All reported results must be bracketed by acceptable CCVs. Instrument and method specific calibration acceptance criteria are explained within the specific analytical standard operating procedures for each facility.

6.2.8.6. Interference check standards are also analyzed per method requirements and must meet acceptance criteria for metals analyses.

6.3. Support Equipment Calibration Procedures

6.3.1. All support equipment is calibrated or verified at least annually using NIST traceable references over the entire range of use. The results of calibrations or verifications must be within the specifications required or the equipment will be removed from service until repaired. The laboratory maintains records to demonstrate the correction factors applied to working thermometers.

6.3.2. On each day the equipment is used, balances, ovens, refrigerators (those used to keep samples and standards at required temperatures), freezers, and water baths are checked in the expected use range with NIST traceable references in order to ensure the equipment meets laboratory specifications and these checks are documented appropriately.

6.3.3. Analytical Balances

6.3.3.1. Each analytical balance is calibrated or verified at least annually by a qualified service technician. The calibration of each balance is verified each day of use with weights traceable to NIST bracketing the range of use. Calibration weights are ASTM Class 1 or other class weights that have been calibrated against a NIST standard weight and are re-certified every 5 years at a minimum against a NIST traceable reference. Some accrediting agencies may require more frequent checks. If balances are calibrated by an external agency, verification of their weights must be provided. All information pertaining to balance maintenance and calibration is recorded in the individual balance logbook and/or is maintained on file in the Quality department.

6.3.4. Thermometers

6.3.4.1. Certified, or reference, thermometers are maintained for checking calibration of working thermometers. Reference thermometers are provided with NIST traceability for initial calibration and are re-certified, at a minimum, every 3 years with equipment directly traceable to NIST.

6.3.4.2. Working thermometers are compared with the reference thermometers annually according to corporate metrology procedures. Each thermometer is individually numbered and assigned a correction factor based on the NIST reference source. In addition, working thermometers are visually inspected by laboratory personnel prior to use and temperatures are documented.

6.3.4.3. Laboratory thermometer inventory and calibration data are maintained in the Quality department.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 43 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

6.3.5. pH/Electrometers

6.3.5.1. The meter is calibrated before use each day, using fresh buffer solutions. Additional information regarding pH/Electrometers can be found in SOP S-GB-I-071 *Measurement of pH in Water, Soil and Waste* or its equivalent revision or replacement.

6.3.6. Spectrophotometers

6.3.6.1. During use, spectrophotometer performance is checked at established frequencies in analysis sequences against initial calibration verification (ICV) and continuing calibration verification (CCV) standards.

6.3.7. Mechanical Volumetric Dispensing Devices

6.3.7.1. Mechanical volumetric dispensing devices including bottle top dispensers (those that are critical in measuring a required amount of reagent), pipettes, and burettes, excluding Class A volumetric glassware, are checked for accuracy on a quarterly basis.

6.3.7.2. Additional information regarding calibration and maintenance of laboratory support equipment can be found in SOP S-GB-Q-030 **Support Equipment** or its equivalent revision or replacement.

6.4. Instrument/Equipment Maintenance

6.4.1. The objectives of the Pace Analytical maintenance program are twofold: to establish a system of instrument care that maintains instrumentation and equipment at required levels of calibration and sensitivity, and to minimize loss of productivity due to repairs.

6.4.2. The Operations Manager and/or department manager/supervisors are responsible for providing technical leadership to evaluate new equipment, solve equipment problems, and coordinate instrument repair and maintenance. Analysts have the primary responsibility to perform routine maintenance.

6.4.3. To minimize downtime and interruption of analytical work, preventative maintenance is routinely performed on each analytical instrument. Up-to-date instructions on the use and maintenance of equipment are available to staff in the department where the equipment is used.

6.4.4. Department manager/supervisors are responsible for maintaining an adequate inventory of spare parts required to minimize equipment downtime. This inventory includes parts and supplies that are subject to frequent failure, have limited lifetimes, or cannot be obtained in a timely manner should a failure occur.

6.4.5. All major equipment and instrumentation items are uniquely identified to allow for traceability. Equipment/instrumentation is, unless otherwise stated, identified as a system and not as individual pieces. The laboratory maintains equipment records that include the following:

- The name of the equipment and its software
- The manufacturer's name, type, and serial number
- Approximate date received and date placed into service
- Current location in the laboratory
- Condition when received (new, used, etc.)
- Copy of any manufacturer's manuals or instructions
- Dates and results of calibrations and next scheduled calibration (if known)

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 44 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

- Details of past maintenance activities, both routine and non-routine
- Details of any damage, modification or major repairs

6.4.6. All instrument maintenance is documented in maintenance logbooks that are assigned to each particular instrument or system.

6.4.7. The maintenance log entry must include a summary of the results of that analysis and verification by the analyst that the instrument has been returned to an in-control status. In addition, each entry must include the initials of the analyst making the entry, the dates the maintenance actions were performed, and the date the entry was made in the maintenance logbook, if different from the date(s) of the maintenance.

6.4.8. Any equipment that has been subjected to overloading or mishandling, or that gives suspect results, or has been shown to be defective, is taken out of service and clearly identified. The equipment shall not be used to analyze customer samples until it has been repaired and shown to perform satisfactorily. In the event of instrumentation failure, to avoid hold time issues, the lab may subcontract the necessary samples to another Pace lab or to an outside subcontract lab if possible.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 45 of 132
<u>^</u>	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

7.0. CONTROL OF DATA

Analytical results processing, verification, and reporting are procedures employed that result in the delivery of defensible data. These processes include, but are not limited to, calculation of raw data into final concentration values, review of results for accuracy, evaluation of quality control criteria and assembly of technical reports for delivery to the data user.

All analytical data undergo a well-defined, well-documented multi-tier review process prior to being reported to the customer. This section describes procedures used by PASI for translating raw analytical data into accurate final sample reports as well as PASI data storage policies.

7.1. Analytical Results Processing

7.1.1. When analytical, field, or product testing data is generated, it is either recorded in a bound laboratory logbook (e.g., Run log or Instrument log) or copies of computer-generated printouts that are appropriately labeled and filed. These logbooks and other laboratory records are kept in accordance with each facility's Standard Operating Procedure for documentation storage and archival. If the laboratory chooses to minimize or eliminate its paper usage, these records can be kept on electronic media. In this case, the laboratory must ensure that there are sufficient redundant electronic copies so no data is lost due to unforeseen computer issues.

7.1.2. The primary analyst is responsible for initial data reduction and review. This includes confirming compliance with required methodology, verifying calculations, evaluating quality control data, noting non-conformances in logbooks or as footnotes or narratives, and uploading analytical results into the LIMS. The primary analyst must be clearly identified in all applicable logbooks, spreadsheets and LIMS fields.

7.1.3. The primary analyst then compiles the initial data package for verification. This compilation must include sufficient documentation for data review. It may include standard calibrations, chromatograms, manual integration documentation, electronic printouts, chain of custody forms, and logbook copies.

7.1.4. Some agencies or customers require different levels of data reporting. For these special levels, the primary analyst may need to compile additional project information, such as initial calibration data or extensive spectral data, before the data package proceeds to the verification step.

7.2. Data Verification

7.2.1. Data verification is the process of examining data and accepting or rejecting it based on predefined criteria. This review step is designed to ensure that reported data are free from calculation and transcription errors, that quality control parameters are evaluated, and that any non-conformances are properly documented.

7.2.2. Analysts performing the analysis and subsequent data reduction have primary responsibility for quality of the data produced. The primary analyst initiates the data verification process by reviewing and accepting the data, provided QC criteria have been met for the samples being reported. Data review checklists, either hardcopy or electronic, are used to document the data review process. The primary analyst is responsible for the initial input of the data into the LIMS. The primary analyst and reviewer must be clearly identified on all applicable data review checklists.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 46 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

7.2.3. The completed data package is then sent to a designated qualified reviewer (this cannot be the primary analyst). The following criteria have been established to qualify someone as a data reviewer. To perform secondary data review, the reviewer must:

7.2.3.1. Have a current Demonstration of Capability (DOC) study on file and have an SOP acknowledgement form on file for the method/procedure being reviewed; or, ^{See Note}

7.2.3.2. Have a DOC on file for a similar method/technology (i.e., GC/MS) and have an SOP acknowledgment form on file for the method/procedure being reviewed; or, ^{See Note}

7.2.3.3. Supervise or manage a Department and have an SOP acknowledgment form on file for the method/procedure being reviewed; or,

7.2.3.4. Have significant background in the department/methods being reviewed through education or experience and have an SOP acknowledgment form on file for the method/procedure being reviewed.

7.2.4. **Note:** Secondary reviewer status must be approved personally by the SQM/QM or SGM/GM/AGM/OM in the event that this person has no prior experience on the specific method or general technology.

7.2.5. This reviewer provides an independent technical assessment of the data package and technical review for accuracy according to methods employed and laboratory protocols. This assessment involves a quality control review for use of the proper methodology and detection limits, compliance to quality control protocol and criteria, presence and completeness of required deliverables, and accuracy of calculations and data quantitation. The reviewer validates the data entered into the LIMS and documents approval of manual integrations.

7.2.6. Once the data have been technically reviewed and approved, authorization for release of the data from the analytical section is indicated by initialing and dating the data review checklist or otherwise initialing and dating the data (or designating the review of data electronically). The Operations or Project Manager examines the report for method appropriateness, detection limits and QC acceptability. Any deviations from the referenced methods are checked for documentation and validity, and QC corrective actions are reviewed for successful resolution. Alternately, final reports can be set to auto email to the client after the analytical results are final and have been run through the Data Checker program for errors. These are set up on a case-by-case basis.

7.2.7. Additional information regarding data review procedures can be found in SOP S-GB-Q-032 **Data Review** or its equivalent revision or replacement, as well as in SOP S-GB-Q-024 **Manual Integration** or its equivalent revision or replacement.

7.2.8. The Data Checker program will process validated data for a given project against a set of predetermined requirements and known chemistry relationships. The program creates a report that includes a series of warnings and errors for any requirement or condition determined to be suspect or incorrect. These warnings and error counts are displayed on the "Project Inquiry by Client" screen and on the final Data Checker reports. For projects that have any number of warnings or errors, the Data Checker report will provide a message that identifies the source and condition of the error or warning.

7.2.9. Some reports and/or data packages may be reviewed by the QM or SQM or designee based on program requirements (e.g., DoD) or client requirements. In this case a thorough review for completeness and accuracy may include a compilation of raw data and QC summaries in addition to the final report to produce a full deliverable package. In the case of DoD, 100% of all packages must have a final administrative review (to confirm that primary and secondary reviews were completed and

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 47 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

documented and that data packages are complete) and 10% of all data packages must be reviewed by the Quality Manager for technical completeness/accuracy. This 10% review can be done after the data packages have been submitted to the clients. See SOP S-GB-Q-022 (or equivalent replacement), **Audits and Inspections**, for full Quality department final report and raw data review requirements.

7.3. Data Reporting

7.3.1. Data for each analytical fraction pertaining to a particular PASI project number are delivered to the Project Manager for assembly into the final report. All points mentioned during technical and QC reviews are included in data qualifiers on the final report or in a separate case narrative if there is potential for data to be impacted.

7.3.2. Final reports are prepared according to the level of reporting required by the customer and can be transmitted to the customer via hardcopy or electronic deliverable. A standard PASI final report consists of the following components:

7.3.2.1. A title which designates the report as "Final Report", "Laboratory Results", "Certificate of Results", etc.;

7.3.2.2. Name and address of laboratory (or subcontracted laboratories, if used);

7.3.2.3. Phone number and name of laboratory contact to where questions can be referred;

7.3.2.4. A unique identification number for the report. The pages of the report shall be numbered and a total number of pages shall be indicated;

7.3.2.5. Name and address of customer and name of project;

7.3.2.6. Unique identification of samples analyzed as well as customer sample IDs;

7.3.2.7. Identification of any sample that did not meet acceptable sampling requirements of the relevant governing agency, such as improper sample containers, holding times missed, sample temperature, etc.;

7.3.2.8. Date and time of collection of samples, date of sample receipt by the laboratory, dates of sample preparation and analysis, and times of sample preparation and analysis when the holding time for either is 72 hours or less;

7.3.2.9. Identification of the test methods used;

7.3.2.10. Identification of sampling procedures if sampling was conducted by the laboratory;

7.3.2.11. Deviations from, additions to, or exclusions from the test methods. These can include failed quality control parameters, deviations caused by the matrix of the sample, etc., and can be shown as a case narrative or as defined footnotes to the analytical data;

7.3.2.12. Identification of whether calculations were performed on a dry or wet-weight basis;

7.3.2.13. Reporting limits used;

7.3.2.14. Final results or measurements, supported by appropriate chromatograms, charts, tables, spectra, etc.;

7.3.2.15. A signature and title, electronic or otherwise, of person accepting responsibility for the content of the report;

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 48 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

7.3.2.16. Date report was issued;

7.3.2.17. A statement clarifying that the results of the report relate only to the samples tested or to the samples as they were received by the laboratory;

7.3.2.18. If necessary, a statement indicating that the report must not be reproduced except in full, without the written approval of the laboratory;

7.3.2.19. Identification of all test results provided by a subcontracted laboratory or other outside source;

7.3.2.20. Identification of results obtained outside of quantitation levels.

In addition to the requirements listed above, final reports shall also contain the following items when necessary for the interpretation of results:

7.3.2.21. Deviations from, additions to, or exclusions from the test method, and information on specific test conditions, such as environmental conditions;

7.3.2.22. Where relevant, a statement of compliance/non-compliance with requirements and/or specifications (e.g., the TNI standard);

7.3.2.23. Where applicable, a statement on the estimated uncertainty of measurement; information on uncertainty is needed in test reports when it is relevant to the validity or application of the test results, when a customer's instruction so requires, or when the uncertainty affects compliance to a specification limit;

7.3.2.24. Where appropriate and needed, opinions and interpretations, which may include opinions on the compliance/non-compliance of the results with requirements, fulfillment of contractual requirements, recommendations on how to use the results, and guidance to be used for improvement;

7.3.3. Additional items may be required per Client QAPPs or different state regulations, i.e. Affidavit for Ohio VAP reports.

7.3.4. Any changes made to a final report shall be designated as "Revised" or equivalent wording. The laboratory must keep sufficient archived records of all laboratory reports and revisions. For higher levels of data deliverables, a copy of all supporting raw data is sent to the customer along with a final report of results. When possible, the PASI facility will provide electronic data deliverables (EDD) as required by contracts or upon customer request.

7.3.5. Customer data that requires transmission by telephone, telex, facsimile or other electronic means undergoes appropriate steps to preserve confidentiality.

7.3.6. The following positions are the only approved signatories for PASI final reports:

- Senior General Manager
- General Manager
- Assistant General Manager
- Senior Quality Manager
- Quality Manager
- Client Services Manager
- Project Manager
- Project Coordinator

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 49 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

7.4. Data Security

7.4.1. All data including electronic files, logbooks, extraction/digestion/distillation worksheets, calculations, project files and reports, and any other information used to produce the technical report are maintained secured and retrievable by the PASI facility.

7.5. Data Archiving

7.5.1. All records compiled by PASI are maintained legible and retrievable and stored secured in a suitable environment to prevent loss, damage, or deterioration by fire, flood, vermin, theft, and/or environmental deterioration. Records are retained for a minimum of five years unless superseded by federal, state, contractual, and/or accreditation requirements. These records may include, but are not limited to, customer data reports, calibration and maintenance of equipment, raw data from instrumentation, quality control documents, observations, calculations, and logbooks. These records are retained in order to provide for possible historical reconstruction including sampling, receipt, preparation, analysis, and personnel involved. TNI-related records will be made readily available to accrediting authorities. Access to archived data is documented and controlled by the SQM/QM or a designated Data Archivist.

7.5.2. Records that are computer generated have either a hard copy or electronic write protected backup copy. Hardware and software necessary for the retrieval of electronic data is maintained with the applicable records. Archived electronic records are stored protected against electronic and/or magnetic sources.

7.5.3. In the event of a change in ownership, accountability or liability, reports of analyses performed pertaining to accreditation will be maintained by the acquiring entity for a minimum of five years. In the event of bankruptcy, laboratory reports and/or records will be transferred to the customer and/or the appropriate regulatory entity upon request.

7.6. Data Disposal

7.6.1. Data that has been archived for the facility's required storage time may be disposed of in a secure manner by shredding, returning to customer, or utilizing some other means that does not jeopardize data confidentiality. Records of data disposal will be archived for a minimum of five years unless superseded by federal, contractual, and/or accreditation requirements. Data disposal includes any preliminary or final reports that are disposed.

Document Name: Quality Assurance Manual

Document No.: Quality Assurance Manual rev.18.0 Document Revised: May 12, 2015 Effective Date of Last Signature Page 50 of 132

Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

8.0. QUALITY SYSTEM AUDITS AND REVIEWS

8.1. Internal Audits

8.1.1. Responsibilities

8.1.1.1. The SQM/QM is responsible for managing and/or conducting internal audits in accordance with a predetermined schedule and procedure. Since internal audits represent an independent assessment of laboratory functions, the auditor must be functionally independent from laboratory operations to ensure objectivity. The auditor must be trained, qualified, and familiar enough with the objectives, principles, and procedures of laboratory operations to be able to perform a thorough and effective evaluation. The SQM/QM evaluates audit observations and verifies the completion of corrective actions. In addition, a periodic corporate audit will be conducted. The corporate audits will focus on the effectiveness of the Quality System as outlined in this manual but may also include other quality programs applicable to an individual laboratory.

8.1.2. Scope and Frequency of Internal Audits

8.1.2.1. The complete internal audit process consists of the following four sections:

- Raw Data Review audits- conducted according to a schedule per local SQM/QM. A certain number of these data review audits are conducted per quarter to accomplish this yearly schedule;
- Quality System audits- considered the traditional internal audit function and includes analyst interviews to help determine whether practice matches method requirements and SOP language;
- Final Report reviews;
- Corrective Action Effectiveness Follow-up.

8.1.2.2. Internal systems audits are conducted yearly at a minimum. The scope of these audits includes evaluation of specific analytical departments or a specific quality related system as applied throughout the laboratory.

8.1.2.3. Where the identification of non-conformities or departures cast doubt on the laboratory's compliance with its own policies and procedures, the lab must ensure that the appropriate areas of activity are audited as soon as possible. Examples of system-wide elements that can be audited include:

- Quality Systems documents, such as Standard Operating Procedures, training documents, Quality Assurance Manual, and all applicable addenda
- Data records and non-technical documents
- Personnel and training files.
- General laboratory safety protocols.
- Chemical handling practices, such as labeling of reagents, solutions, and standards as well as all associated documentation.
- Documentation concerning equipment and instrumentation, calibration/maintenance records, operating manuals.
- Sample receipt and management practices.

- Analytical documentation, including any discrepancies and corrective actions.
- General procedures for data security, review, documentation, reporting, and archiving.
- Data integrity issues such as proper manual integrations.

8.1.2.4. When the operations of a specific department are evaluated, a number of additional functions are reviewed including:

- Detection limit studies
- Internal chain of custody documentation
- Documentation of standard preparations
- Quality Control limits and Control charts

8.1.2.5. Certain projects may require an internal audit to ensure laboratory conformance to site work plans, sampling and analysis plans, QAPPs, etc.

8.1.2.6. A representative number of data audits are completed annually. Findings from these data audits are handled in the same manner as those from other internal and external audits.

8.1.2.7. The laboratory, as part of their overall internal audit program, ensures that a review is conducted with respect to any evidence of inappropriate actions or vulnerabilities related to data integrity. Discovery and reporting of potential data integrity issues are handled in a confidential manner. All investigations that result in findings of inappropriate activity are fully documented, including the source of the problem, the samples and customers affected the impact on the data, the corrective actions taken by the laboratory, and which final reports had to be re-issued. Customers must be notified within 30 days after the data investigation is completed and the impact to final results is assessed.

8.1.3. Internal Audit Reports and Corrective Action Plans

8.1.3.1. Additional information can be found in SOP S-GB-Q-022 **Internal and External Audits** or its equivalent revision or replacement.

8.1.3.2. A full description of the audit, including the identification of the operation audited, the date(s) on which the audit was conducted, the specific systems examined, and the observations noted are summarized in an internal audit report. Although other personnel may assist with the performance of the audit, the SQM/QM writes and issues the internal audit report identifying which audit observations are deficiencies that require corrective action.

8.1.3.3. When audit findings cast doubt on the effectiveness of the operations or on the correctness of validity of the laboratory's environmental test results, the laboratory will take timely corrective action and notify the customer in writing within three business days, if investigations show that the laboratory results may have been affected.

8.1.3.4. Once completed, the internal audit report is issued jointly to the SGM/GM/AGM/OM and the manager(s)/supervisor(s) of the audited operation at a minimum. The responsible manager(s)/supervisor(s) responds within 14 days with a proposed plan to correct all of the deficiencies cited in the audit report. The SQM/QM may grant additional time for responses to large or complex deficiencies (not to exceed 30 days). Each response must include timetables for completion of all proposed corrective actions.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 52 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

8.1.3.5. The SQM/QM reviews the audit responses. If the response is accepted, the SQM/QM uses the action plan and timetable as a guideline for verifying completion of the corrective action(s). If the SQM/QM determines that the audit response does not adequately address the correction of cited deficiencies, the response will be returned for modification.

8.1.3.6. To complete the audit process, the SQM/QM performs a re-examination of the areas where deficiencies were found to verify that all proposed corrective actions have been implemented. An audit deficiency is considered closed once implementation of the necessary corrective action has been audited and verified. This is usually within 60-90 days after implementation. If corrective action cannot be verified, the associated deficiency remains open until that action is completed.

8.2. External Audits

8.2.1. PASI laboratories are audited regularly by regulatory agencies to maintain laboratory certifications and by customers to maintain appropriate specific protocols.

8.2.2. Audit teams external to the company review the laboratory to assess the effectiveness of systems and degree of technical expertise. The SQM/QM and other QA staff host the audit team and assist in facilitation of the audit process. Generally, the auditors will prepare a formalized audit report listing deficiencies observed and follow-up requirements for the laboratory. In some cases, items of concern are discussed during a debriefing convened at the end of the on-site review process.

8.2.3. The laboratory staff and supervisors develop corrective action plans to address any deficiencies with the guidance of the SQM/QM. The SGM/GM/AGM/OM provides the necessary resources for staff to develop and implement the corrective action plans. The SQM/QM collates this information and provides a written response to the audit team. The response contains the corrective action plan and expected completion dates for each element of the plan. The SQM/QM follows-up with the laboratory staff to ensure corrective actions are implemented and that the corrective action was effective.

8.3. Quarterly Quality Reports

8.3.1. The SQM/QM is responsible for preparing a quarterly report to management summarizing the effectiveness of the laboratory Quality Systems. This status report will include:

- Overview of quality activities for the quarter
- Certification status
- Proficiency Testing study results
- SOP revision activities
- Internal audit (method/system) findings
- Manual integration audit findings (Mintminer)
- Raw Data and Final Report review findings
- MDL activities
- Other significant Quality System items

8.3.2. The Corporate Director of Quality utilizes the information from each laboratory to make decisions impacting the quality program compliance of the company as a whole. Each

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 53 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

SGM/GM/AGM/OM utilizes the quarterly report information to make decisions impacting Quality Systems and operational systems at a local level.

8.3.3. Additional information can be found in SOP S-ALL-Q-014 **Quality System Review** or its equivalent revision or replacement.

8.4. Annual Managerial Review

8.4.1. A managerial review of Management and Quality Systems is performed on an annual basis at a minimum. This allows for assessing program effectiveness and introducing changes and/or improvements.

8.4.2. The managerial review must include the following topics of discussion:

- Suitability of quality management policies and procedures
- Manager/Supervisor reports
- Internal audit results
- Corrective and preventive actions
- External assessment results
- Proficiency testing studies
- Sample capacity and scope of work changes
- Customer feedback, including complaints
- Recommendations for improvement,
- Other relevant factors, such as quality control activities, resources, and staffing.

8.4.3. This managerial review must be documented for future reference by the SQM/QM and copies of the report are distributed to laboratory staff. Results must feed into the laboratory planning system and must include goals, objectives, and action plans for the coming year. The laboratory shall ensure that any actions identified during the review are carried out within an appropriate and agreed upon timescale.

8.5. Customer Service Reviews

8.5.1. As part of the annual managerial review listed previously, the sales staff is responsible for reporting on customer feedback, including complaints. The acquisition of this information is completed by performing surveys.

8.5.2. The sales staff continually receives customer feedback, both positive and negative, and reports this feedback to the laboratory management in order for them to evaluate and improve their management system, testing activities and customer service.

8.5.3. In addition, the labs must be willing to cooperate with customers or their representatives to clarify customer requests and to monitor the laboratory's performance in relation to the work being performed for the customers. This cooperation may include providing the customer reasonable access to relevant areas of the lab for the witnessing of tests being performed; or the preparation of samples or data deliverables to be used for verification purposes. If the lab has a customer feedback SOP, please refer to that SOP for more details.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 54 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

8.5.4. Customer service is an important aspect to Pace's overall objective of providing a quality product. Good communication should be provided to the customer's throughout projects. The lab should inform the customer of any delay or major deviations in the performance of analytical tests.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 55 of 132
AL DE L	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

9.0. CORRECTIVE ACTION

Additional information can be found in SOP S-GB-Q-027 **Corrective and Preventive Actions** or its equivalent revision or replacement.

During the process of sample handling, preparation, and analysis, or during review of quality control records, or during reviews of non-technical portions of the lab, certain occurrences may warrant the necessity of corrective actions. These occurrences may take the form of analyst errors, deficiencies in quality control, method deviations, or other unusual circumstances. The Quality System of PASI provides systematic procedures for the documentation, monitoring, completion of corrective actions, and follow-up verification of the effectiveness of these corrective actions. This can be done using PASI's LabTrack system that lists among at a minimum, the deficiency by issue number, the deficiency source, responsible party, root cause, resolution, due date, and date resolved.

9.1. Corrective Action Documentation

9.1.1. The following items are examples of sources of laboratory deviations or non-conformances that warrant some form of documented corrective action:

- Internal Laboratory Non-Conformance Trends
- PE/PT Sample Results
- Internal and External Audits
- Data or Records Review (including non-technical records)
- Client Complaints
- Client Inquiries
- Holding Time violations

9.1.2. Documentation of corrective actions may be in the form of a comment or footnote on the final report that explains the deficiency (e.g., matrix spike recoveries outside of acceptance criteria) or it may be a more formal documentation (either paper system or computerized spreadsheet). This depends on the extent of the deficiency, the impact on the data, and the method or customer requirements for documentation.

9.1.3. The person who discovers the deficiency or non-conformance initiates the corrective action documentation on the Non-Conformance Corrective/ Preventive Action report and/or LabTrack. The documentation must include the affected projects and sample numbers, the name of the applicable Project Manager, the customer name, and the sample matrix involved. The person initiating the corrective action documentation must also list the known causes of the deficiency or non-conformance as well as any corrective/preventative actions that they have taken. Preventive actions must be taken in order to prevent or minimize the occurrence of the situation.

9.1.4. In the event that the laboratory is unable to determine the cause, laboratory personnel and management staff will start a root cause analysis by going through an investigative process. During this process, the following general steps must be taken into account: defining the non-conformance, assigning responsibilities, determining if the condition is significant, and investigating the root cause of the nonconformance. General non-conformance investigative techniques follow the path of the sample through the process looking at each individual step in detail. The root cause must be documented within LabTrack or on the Corrective/Preventive Action Report.

Pace Analytical*	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 56 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

9.1.5. After all the documentation is completed, the routing of the Corrective/Preventive Action Report and /or LabTrack will continue from the person initiating the corrective action, to their immediate supervisor or the applicable Project Manager and finally to the SQM/QM, if applicable, who may be responsible for final review and signoff of corrective/preventive actions.

9.1.6. In the event that analytical testing or results do not conform to documented laboratory policies or procedures, customer requirements, or standard specifications, the laboratory shall investigate the significance of the non-conformance and document appropriate corrective actions. The proper level of laboratory management will review any departure from these requirements for technical suitability. These departures are permitted only with the approval of the SGM/GM/AGM/OM or the SQM/QM. Where necessary, Project Management will notify the customer of the situation and will advise of any ramifications to data quality (with the possibility of work being recalled). The procedures for handling non-conforming work are detailed in SOP S-GB-Q-027 **Corrective and Preventive Actions** or its equivalent revision or replacement.

9.2. Corrective Action Completion

9.2.1. Internal Laboratory Non-Conformance Trends

9.2.1.1. There are several types of non-conformance trends that may occur in the laboratory that would require the initiation of a corrective action report. Laboratories may choose to initiate a corrective action for all instances of one or more of these categories if they so choose, however the intent is that each of these would be handled according to its severity; one time instances could be handled with a footnote or qualifier whereas a systemic problem with any of these categories may require an official corrective action process. These categories, as defined in the Corrective Action SOP are as follows:

- Login error
- Preparation Error
- Contamination
- Calibration Failure
- Internal Standard Failure
- LCS Failure
- Laboratory accident
- Spike Failure
- Instrument Failure
- Final Reporting error

9.2.2. PE/PT Sample Results

9.2.2.1. Any PT result assessed as "not acceptable" requires an investigation and applicable corrective actions. The operational staff is made aware of the PT failures and they are responsible for reviewing the applicable raw data and calibrations and list possible causes for error. The SQM/QM reviews their findings and initiates another external PT sample or an internal PT sample to try and correct the previous failure. Replacement PT results must be monitored by the SQM/QM and reported to the applicable regulatory authorities.

9.2.2.2. Additional information, such as requirements regarding time frames for reporting failures to states, makeup PTs, and notifications of investigations, can be found in SOP template S-GB-Q-021 **Proficiency Testing Program** or its equivalent revision or replacement.

9.2.3. Internal and External Audits

9.2.3.1. The SQM/QM is responsible for documenting all audit findings and their corrective actions. This documentation must include the initial finding, the persons responsible for the corrective action, the due date for responding to the auditing body, the root cause of the finding, and the corrective actions needed for resolution. The SQM/QM is also responsible for providing any back-up documentation used to demonstrate that a corrective action has been completed.

9.2.4. Data Review

9.2.4.1. In the course of performing primary and secondary review of data or in the case of raw data reviews (e.g., by the SQM/QM), errors may be found which require corrective actions. Any finding that affects the quality of the data requires some form of corrective action, which may include revising and re-issuing of final reports.

9.2.5. Client Complaints

9.2.5.1. Project Managers are responsible for issuing corrective action forms, when warranted, for customer complaints. As with other corrective actions, the possible causes of the problem are listed and the form is passed to the appropriate analyst or supervisor for investigation. After potential corrective actions have been determined, the Project Manager reviews the corrective action form to ensure all customer needs or concerns are being adequately addressed.

9.2.6. Client Inquiries

9.2.6.1. When an error on the customer report is discovered, the Project Manager is responsible for initiating a formal corrective action form that describes the failure (e.g., incorrect analysis reported, reporting units are incorrect, or reporting limits do not meet objectives). The Project Manager is also responsible for revising the final report if necessary and submitting it to the customer.

9.2.7. Holding Time Violations

9.2.7.1. In the event that a holding time has been missed, the analyst or supervisor must complete a formal corrective action form. The Project Manager and the SQM/QM must be made aware of all holding time violations.

9.2.7.2. The Project Manager must contact the customer in order that appropriate decisions are made regarding the hold time excursion and the ultimate resolution is then documented and included in the customer project file.

9.3. Preventive Action Documentation

9.3.1. Pace laboratories can take advantage of several available information sources in order to identify needed improvements in all of their systems including technical, managerial, and quality. These sources may include:

• Management Continuous Improvement Plan (CIP) metrics which are used by all production departments within Pace. When groups compare performance across the company, ways to

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 58 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

improve systems may be discovered. These improvements can be made within a department or laboratory-wide.

• Annual managerial reviews- part of this TNI-required and NVLAP-required review is to look at all processes and procedures used by the laboratory over the past year and to determine ways to improve these processes in the future.

• Quality systems reviews- any frequent checks of quality systems (monthly logbook reviews, etc.) can uncover issues that can be corrected or adjusted before they become a larger issue.

9.3.2. When improvement opportunities are identified or if preventive action is required, the laboratory can develop, implement, and monitor preventive action plans.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 59 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

10.0. GLOSSARY

The source of some of the definitions is indicated previous to the actual definition (e.g., TNI, DoD).

	Terms and Definitions
3P Program	The Pace Analytical continuous improvement program that focuses on Process, Productivity, and Performance. Best Practices are identified that can be used by all PASI labs.
Acceptance Criteria	TNI- Specified limits placed on characteristics of an item, process, or service defined in requirement documents.
Accreditation	TNI- The process by which an agency or organization evaluates and recognizes a laboratory as meeting certain predetermined qualifications or standards, thereby accrediting the laboratory.
Accreditation Body	DoD- Entities recognized in accordance with the DoD-ELAP that are required to operate in accordance with ISO/IEC 17011, <i>Conformity assessment:</i> <i>General requirements for accreditation bodies accrediting conformity</i> <i>assessment bodies.</i> The AB must be a signatory, in good standing, to the International Laboratory Accreditation Cooperation (ILAC) mutual recognition arrangement (MRA) that verifies, by evaluation and peer assessment, that its signatory members are in full compliance with ISO/IEC 17011 and that its accredited laboratories comply with ISO/IEC 17025.
Accuracy	TNI- The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components that are due to sampling and analytical operations; a data quality indicator.
Aliquot	DoD- A discrete, measured, representative portion of a sample taken for analysis.
Analysis	DoD- A combination of sample preparation and instrument determination.
Analysis Code (Acode)	All the set parameters of a test, such as Analytes, Method, Detection Limits and Price.
Analysis Sequence	A compilation of all samples, standards and quality control samples run during a specific amount of time on a particular instrument in the order they are analyzed.
Analyst	TNI- The designated individual who performs the "hands-on" analytical methods and associated techniques and who is the one responsible for applying required laboratory practices and other pertinent quality controls to meet the required level of quality.
Analyte	DoD- The specific chemicals or components for which a sample is analyzed; it may be a group of chemicals that belong to the same chemical family and are analyzed together.
Analytical Uncertainty	TNI- A subset of Measurement Uncertainty that includes all laboratory activities performed as part of the analysis.

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 60 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office
Assessment	TNI - The evaluation process used to measure	ure or establish the performance

Assessment FM - The evanuation process used to inclusite or establish the performance of an organization and/or its system to defined criteria (to the standards and requirements of laboratory accreditation). DoD - An all-inclusive term used to denote any of the following: audit, performance evaluation, peer review, inspection, or surveillance conducted onsite. Atomic Absorption Instrument used to measure concentration in metals samples. Spectrometer A process in which a sample is converted to free atoms. Audit TN1 - A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conducted as planned and whether QA/QC and technical activities are being conductives. Batch TN1: Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, digestates or concentrates which are analyzed together as a group. An analytical batch as include prepared	Assessment	TNI - The evaluation process used to measure or establish the performance,		
criteria (to the standards and requirements of laboratory accreditation). DoD- An all-inclusive term used to denote any of the following: audit, performance evaluation, peer review, inspection, or surveillance conducted on- site. Atomic Absorption Instrument used to measure concentration in metals samples. Spectrometer A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned oriteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sa	Assessment			
DoD- An all-inclusive term used to denote any of the following: audit, performance evaluation, peer review, inspection, or surveillance conducted on-site. Atomic Absorption Instrument used to measure concentration in metals samples. Spectrometer A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting sapects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples (star prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared and/vex analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.c., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exported to the analyzed sample stream in order to monintor contamination during sampling, transport, storage or analy				
performance evaluation, peer review, inspection, or surveillance conducted on- site. Atomic Absorption Instrument used to measure concentration in metals samples. Spectrometer A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-kceping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of regarts. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a				
site. Atomic Absorption Spectrometer Instrument used to measure concentration in metals samples. Spectrometer Audit A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Blank TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measure				
Atomic Absorption Spectrometer Instrument used to measure concentration in metals samples. Atomization A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. Do		performance evaluation, peer review, inspection, or surveillance conducted on-		
Spectrometer Atomization A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correret orutine analytical rotord samples, which typically include f		site.		
Atomization A process in which a sample is converted to free atoms. Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contanination during samplies, which typically include field blank samples (e.g., rip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank). Blank TNI and DoD- A sample that has not beene syneed to the analyzed sample stream in order to mo	Atomic Absorption	Instrument used to measure concentration in metals samples.		
Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch is composed of samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to adjust or correet routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, calibration blank, and storage blank). Bland A sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know t	Spectrometer			
Audit TNI- A systematic and independent examination of facilities, equipment, personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch is composed of samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to adjust or correet routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, calibration blank, and storage blank). Bland A sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know t	*	A process in which a sample is converted to free atoms.		
personnel, training, procedures, record-keeping, data validation, data management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Blank TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperatu	Audit			
management, and reporting aspects of a system to determine whether QA/QC and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero bascline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank). Blind Sample A sub-sample for analysis with a composition known to the submitter. The a				
and technical activities are being conducted as planned and whether these activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. Bours. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Blank TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, caujempent (rinsate) blank, and temperature blank, calibration blank, and storage blank). Blind Sample A sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its compos				
activities will effectively achieve quality objectives. Batch TNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours. Bias TNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Blank TNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinstate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank). Blind Sample A use-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the				
BatchTNI- Environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, calibration blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/alboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A d list of semi-volatile compounds		č 1		
the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analysit/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.Blind SampleA list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be	D (1			
preparation batch is composed of one to 20 environmental samples of the same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analysit/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A dist of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutr	Batch			
same quality systems matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. N				
maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A cid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A cid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A cid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.		maximum time between the start of processing of the first and last sample in		
analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.		the batch to be 24 hours. An analytical batch is composed of prepared		
analyzed together as a group. An analytical batch can include prepared samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.		environmental samples (extracts, digestates or concentrates) which are		
samples originating from various quality system matrices and can exceed 20 samples. South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A clic compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
samples.South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
South Carolina- same definition as TNI except 24 hours should be changed to 8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
8 hours.BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
BiasTNI- The systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.				
causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up	Diag			
different from the sample's true value).BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up	Dias			
BlankTNI and DoD- A sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral A cid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up	Blank			
process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results.DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
to adjust or correct routine analytical results.DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up		or analysis. The blank is subjected to the usual analytical and measurement		
DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up		process to establish a zero baseline or background value and is sometimes used		
DoD- Blank samples are negative control samples, which typically include field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up		to adjust or correct routine analytical results.		
field blank samples (e.g., trip blank, equipment (rinsate) blank, and temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
temperature blank) and laboratory blank samples (e.g., method blank, reagent blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
blank, instrument blank, calibration blank, and storage blank).Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
Blind SampleA sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up	Blind Sample			
composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up	Dinid Sampic			
execution of the measurement process.BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
BNA (Base Neutral Acid compounds)A list of semi-volatile compounds typically analyzed by mass spectrometry methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
Acid compounds)methods. Named for the way they can be extracted out of environmental samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up		*		
samples in an acidic, basic or neutral environment.BOD (BiochemicalChemical procedure for determining how fast biological organisms use up				
BOD (Biochemical Chemical procedure for determining how fast biological organisms use up	Acid compounds)			
Oxygen Demand) oxygen in a body of water.	BOD (Biochemical	Chemical procedure for determining how fast biological organisms use up		
	Oxygen Demand)	oxygen in a body of water.		

Prace Analytical"		Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 61 of 132	
		Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office	
Calibration	TNI- A set of operations that establish, under specified conditions, the relationship between values of quantities indicated by a measuring instrument or measuring system, or values represented by a material measure or a reference material, and the corresponding values realized by standards. 1) In calibration of support equipment, the values realized by standards are established through the use of reference standards that are traceable to the International System of Units (SI); 2) In calibration according to test methods, the values realized by standards are either purchased by the laboratory with a certificate of analysis or purity, or prepared by the laboratory using support equipment that has been calibrated or verified to meet specifications.			
Calibration Curve	TNI- The mathematical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response.			
Calibration Method	A de	fined technical procedure for performin	ng a calibration.	
Calibration Range	calib with high	- The range of values (concentrations) ration standards of a multi-level calibra a single-point calibration, the low-leve standard establish the linear calibration mic range.	tion curve. For metals analysis l calibration check standard and the	
Calibration Standard	TNI-	A substance or reference material used	l for calibration.	
Certified Reference Material (CRM)	TNI- Reference material accompanied by a certificate, having a value, measurement uncertainty, and stated metrological traceability chain to a national metrology institute.			
Chain of Custody	An u	nbroken trail of accountability that veri les, data, and records.	fies the physical security of	
Chain of custody Form (COC)	TNI- colle numl	Record that documents the possession ction to receipt in the laboratory. This r per and type of containers; the mode of ction; preservation; and requested analy	ecord generally includes: the collection, the collector, time of	
Chemical Oxygen Demand (COD)	A tes in wa	t commonly used to indirectly measure ater.	e the amount of organic compounds	
Client (referred to by ISO as Customer)		individual or organization for whom its performed in response to defined requ		
Code of Federal Regulations (CFR)	A codification of the general and permanent rules published in the Federal Register by agencies of the federal government.			
Comparability	An assessment of the confidence with which one data set can be compared to another. Comparable data are produced through the use of standardized procedures and techniques.			
Completeness	The p the a	percent of valid data obtained from a m mount of valid data expected under non pleteness is:		
	% Co	ompleteness = (Valid Data Points/Expe	cted Data Points)*100	

Prace Analytical"		Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 62 of 132	
		Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office	
Confirmation	appro may : wave or ad DoD meas techn	Verification of the identity of a compo- pach with a different scientific principle include, but are not limited to: second- length; derivatization; mass spectral in ditional cleanup procedures. - Includes verification of the identity ar ured by another means (e.g., by anothe ology, or column). Additional cleanup dered confirmation techniques.	e from the original method. These column confirmation; alternate aterpretation; alternative detectors; and quantity of the analyte being er determinative method,	
Conformance	An affirmative indication or judgment that a product or service has met the requirements of the relevant specifications, contract, or regulation; also the state of meeting the requirements.			
Congener		ember of a class of related chemical co	mpounds (e.g., PCBs, PCDDs).	
Consensus Standard	DoD- A standard established by a group representing a cross-section of a particular industry or trade, or a part thereof.			
Continuing Calibration Blank (CCB)	A bla	nk sample used to monitor the cleanlin ency determined by the analytical met	ness of an analytical system at a	
Continuing Calibration Check Compounds (CCC)	instru	pounds listed in mass spectrometry me iment calibration from the standpoint ob bility would suggest leaks or active site	of the integrity of the system. High	
Continuing Calibration Verification	DoD- analy both	- The verification of the initial calibrat rsis and at periodic intervals. Continuir external and internal standard calibration-linear calibration models.	ion. Required prior to sample ag calibration verification applies to	
Continuing Calibration Verification (CCV) Standard	Also initia	referred to as a CVS in some methods l calibration of compounds in an analy juency determined by the analytical m	tical method. CCVs are analyzed at	
Continuous Emission Monitor (CEM)	A flue gas analyzer designed for fixed use in checking for environmental pollutants.			
Contract Laboratory Program (CLP)	A national network of EPA personnel, commercial labs, and support contractors whose fundamental mission is to provide data of known and documented quality.			
Contract Required Detection Limit (CRDL)	Detec contr	ction limit that is required for EPA Con acts.	ntract Laboratory Program (CLP)	
Contract Required Quantitation Limit (CRQL)	~	titation limit (reporting limit) that is re ratory Program (CLP) contracts.	equired for EPA Contract	
		1	1/ / /1 1/ 1/ 1/ 1/	

A graphic representation of a series of test results, together with limits within

A range within which specified measurement results must fall to verify that the

corrective action or require investigation and flagging of non-conforming data.

which results are expected when the system is in a state of statistical control

analytical system is in control. Control limit exceedances may require

DoD- Action taken to eliminate a detected non-conformity.

(see definition for Control Limit)

Control Chart

Control Limit

Correction

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 63 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

	-
Corrective Action	DoD- The action taken to eliminate the causes of an existing non-conformity, defect, or other undesirable situation in order to prevent recurrence. A root cause analysis may not be necessary in all cases.
Corrective and	The primary management tools for bringing improvements to the quality
Preventative Action	system, to the management of the quality system's collective processes, and
(CAPA)	to the products or services delivered which are an output of established
(CAFA)	
0	systems and processes.
Customer	DoD- Any individual or organization for which products or services are
	furnished or work performed in response to defined requirements and
	expectations.
Data Quality	Systematic strategic planning tool based on the scientific method that
Objective (DQO)	identifies and defines the type, quality, and quantity of data needed to satisfy a
	specified use or end user.
Data Reduction	TNI- The process of transforming the number of data items by arithmetic or
	statistical calculation, standard curves, and concentration factors, and collating
	them into a more usable form.
Definitive Data	DoD- Analytical data of known quantity and quality. The levels of data
	quality on precision and bias meet the requirements for the decision to be
	made. Data that is suitable for final decision-making.
Demonstration of	TNI- A procedure to establish the ability of the analyst to generate analytical
Capability	results of acceptable accuracy and precision.
Capability	DoD- A procedure to establish the ability of the analyst to generate analytical
	results by a specific method that meet measurement quality objectives (e.g.,
	for precision and bias).
Detection Limit (DL)	DoD- The smallest analyte concentration that can be demonstrated to be
	different than zero or a blank concentration at the 99% confidence. At the DL,
	the false positive rate (Type 1 error) is 1%. A DL may be used as the lowest
	concentration for reliably reporting a detection of a specific analyte in a
	specific matrix with a specific method with 99% confidence.
Diesel Range	A range of compounds that denote all the characteristic compounds that make
Organics (DRO)	up diesel fuel (range can be state or program specific).
Digestion	DoD- A process in which a sample is treated (usually in conjunction with heat
	and acid) to convert the sample to a more easily measured form.
Document Control	The act of ensuring that documents (and revisions thereto) are proposed,
	reviewed for accuracy, approved for release by authorized personnel,
	distributed properly and controlled to ensure use of the correct version at the
	location where the prescribed activity is performed.
Documents	DoD- Written components of the laboratory management system (e.g.,
	policies, procedures, and instructions).
Dry Weight	The weight after drying in an oven at a specified temperature.
Duplicate (also	The analyses or measurements of the variable of interest performed identically
known as Replicate or	on two subsamples of the same sample. The results of duplicate analyses are
Laboratory Duplicate)	used to evaluate analytical or measurement precision but not the precision of
Laboratory Duplicate)	
Electron Contant	sampling, preservation or storage internal to the laboratory.
Electron Capture	Device used in GC methods to detect compounds that absorb electrons (e.g.,
Detector (ECD)	PCB compounds).

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 64 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Electronic Data Deliverable (EDD)	A summary of environmental data (usually in spreadsheet form) which clients request for ease of data review and comparison to historical results.
Eluent	A solvent used to carry the components of a mixture through a stationary phase.
Elute	To extract, specifically, to remove (absorbed material) from an absorbent by means of a solvent.
Elution	A process in which solutes are washed through a stationary phase by movement of a mobile phase.
Environmental Data	DoD- Any measurements or information that describe environmental processes, locations, or conditions; ecological or health effects and consequences; or the performance of environmental technology.
Environmental Monitoring	The process of measuring or collecting environmental data.
Environmental Sample	 A representative sample of any material (aqueous, non-aqueous, or multimedia) collected from any source for which determination of composition or contamination is requested or required. Environmental samples can generally be classified as follows: Non Potable Water (Includes surface water, ground water, effluents, water treatment chemicals, and TCLP leachates or other extracts) Drinking Water - Delivered (treated or untreated) water designated as potable water Water/Wastewater - Raw source waters for public drinking water supplies, ground waters, municipal influents/effluents, and industrial influents/effluents Sludge - Municipal sludges and industrial sludges. Soil - Predominately inorganic matter ranging in classification from sands to clays.
Equipment Blank	A sample of analyte-free media used to rinse common sampling equipment to check effectiveness of decontamination procedures.
Facility	A distinct location within the company that has unique certifications, personnel and waste disposal identifications.
False Negative	DoD- A result that fails to identify (detect) an analyte or reporting an analyte to be present at or below a level of interest when the analyte is actually above the level of interest.
False Positive	DoD- A result that erroneously identifies (detects) an analyte or reporting an analyte to be present above a level of interest when the analyte is actually present at or below the level of interest.
Field Blank	A blank sample prepared in the field by filling a clean container with reagent water and appropriate preservative, if any, for the specific sampling activity being undertaken.
Field Measurement	Determination of physical, biological, or radiological properties, or chemical constituents that are measured on-site, close in time and space to the matrices being sampled/measured, following accepted test methods. This testing is performed in the field outside of a fixed-laboratory or outside of an enclosed structure that meets the requirements of a mobile laboratory.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 65 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Field of Accreditation	TNI- Those matrix, technology/method, and analyte combinations for which
Finding	the accreditation body offers accreditation. TNI- An assessment conclusion referenced to a laboratory accreditation standard and supported by objective evidence that identifies a deviation from a laboratory accreditation standard requirement. DoD- An assessment conclusion that identifies a condition having a significant effect on an item or activity. An assessment finding may be positive, negative, or neutral and is normally accompanied by specific examples of the observed condition. The finding must be linked to a specific requirement (e.g., this standard (DoD QSM), ISO requirements, analytical methods, contract specifications, or laboratory management systems requirements).
Flame Atomic Absorption Spectrometer (FAA)	Instrumentation used to measure the concentration of metals in an environmental sample based on the fact that ground state metals absorb light at different wavelengths. Metals in a solution are converted to the atomic state by use of a flame.
Flame Ionization Detector (FID)	A type of gas detector used in GC analysis where samples are passed through a flame which ionizes the sample so that various ions can be measured.
Gas Chromatography (GC)	Instrumentation which utilizes a mobile carrier gas to deliver an environmental sample across a stationary phase with the intent to separate compounds out and measure their retention times.
Gas Chromatograph/ Mass Spectrometry (GC/MS)	In conjunction with a GC, this instrumentation utilizes a mass spectrometer which measures fragments of compounds and determines their identity by their fragmentation patterns (mass spectra).
Gasoline Range Organics (GRO)	A range of compounds that denote all the characteristic compounds that make up gasoline (range can be state or program specific).
Graphite Furnace Atomic Absorption Spectrometry (GFAA)	Instrumentation used to measure the concentration of metals in an environmental sample based on the absorption of light at different wavelengths that are characteristic of different analytes.
High Pressure Liquid Chromatography (HPLC)	Instrumentation used to separate, identify and quantitate compounds based on retention times which are dependent on interactions between a mobile phase and a stationary phase.
Holding Time	 TNI- The maximum time that can elapse between two specified activities. 40 CFR Part 136- The maximum time that samples may be held prior to preparation and/or analysis as defined by the method and still be considered valid or not compromised. For sample prep purposes, hold times are calculated using the time of the start of the preparation procedure. DoD- The maximum time that may elapse from the time of sampling to the time of preparation or analysis, or from preparation to analysis, as appropriate.
Homogeneity	The degree to which a property or substance is uniformly distributed throughout a sample.
Homologue	One in a series of organic compounds in which each successive member has one more chemical group in its molecule than the next preceding member. For instance, methanol, ethanol, propanol, butanol, etc., form a homologous series.

Pace Analytical*	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 66 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Improper Actions	DoD- Intentional or unintentional deviations from contract-specified or method-specified analytical practices that have not been authorized by the customer (e.g., DoD or DOE).
Inductively Coupled Plasma Atomic Emission Spectrometry (ICP- AES)	Analytical technique used for the detection of trace metals which uses plasma to produce excited atoms that emit radiation of characteristic wavelengths.
Inductively Coupled Plasma- Mass Spectrometry (ICP/MS)	An ICP that is used in conjunction with a mass spectrometer so that the instrument is not only capable of detecting trace amounts of metals and non-metals but is also capable of monitoring isotopic speciation for the ions of choice.
Infrared Spectrometer (IR)	An instrument that uses infrared light to identify compounds of interest.
Initial Calibration (ICAL)	The process of analyzing standards, prepared at specified concentrations, to define the quantitative response relationship of the instrument to the analytes of interest. Initial calibration is performed whenever the results of a calibration verification standard do not conform to the requirements of the method in use or at a frequency specified in the method.
Initial Calibration Blank (ICB)	A blank sample used to monitor the cleanliness of an analytical system at a frequency determined by the analytical method. This blank is specifically run in conjunction with the Initial Calibration Verification (ICV) where applicable.
Initial Calibration Verification (ICV)	DoD- Verifies the initial calibration with a standard obtained or prepared from a source independent of the source of the initial calibration standards to avoid potential bias of the initial calibration.
Instrument Blank	A clean sample (e.g., distilled water) processed through the instrumental steps of the measurement process; used to determine instrument contamination.
Instrument Detection Limits (IDLs)	Limits determined by analyzing a series of reagent blank analyses to obtain a calculated concentration. IDLs are determined by calculating the average of the standard deviations of three runs on three non-consecutive days from the analysis of a reagent blank solution with seven consecutive measurements per day.
Interference, spectral	Occurs when particulate matter from the atomization scatters incident radiation from the source or when the absorption or emission from an interfering species either overlaps or is so close to the analyte wavelength that resolution becomes impossible.
Interference, chemical	Results from the various chemical processes that occur during atomization and later the absorption characteristics of the analyte.
Internal Standards	TNI- A known amount of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method.
Intermediate	Reference solutions prepared by dilution of the stock solutions with an
Standard Solution	appropriate solvent.
International System	The coherent system of units adopted and recommended by the General
of Units (SI)	Conference on Weights and Measures.
Ion Chromatography (IC)	Instrumentation or process that allows the separation of ions and molecules based on the charge properties of the molecules.

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 67 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Isomer	One of two or more compounds, radicals, or ions that contain the same number
	of atoms of the same element but differ in structural arrangement and
	properties. For example, hexane (C6H14) could be n-hexane, 2-
	methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2,2-dimethylbutane.
Laboratory	A body that calibrates and/or tests.
Laboratory Control	TNI- (however named, such as laboratory fortified blank (LFB), spiked blank,
Sample (LCS)	or QC check sample): A sample matrix, free from the analytes of interest,
	spiked with verified known amounts of analytes or a material containing
	known and verified amounts of analytes and taken through all sample
	preparation and analytical steps of the procedure unless otherwise noted in a
	reference method. It is generally used to establish intra-laboratory or analyst-
	specific precision and bias or to evaluate the performance of all or a portion
	of the measurement system.
Laboratory Duplicate	Aliquots of a sample taken from the same container under laboratory
	conditions and processed and analyzed independently.
Laboratory	DoD- The entirety of an electronic data system (including hardware and
Information	software) that collects, analyzes, stores, and archives electronic records and
Management System	documents.
(LIMS)	
LabTrack	Database used by Pace Analytical to store and track corrective actions and
	other laboratory issues.
Learning	A web-based database used by the laboratories to track and document training
Management System	activities. The system is administered by the corporate training department and
(LMS)	each laboratory's learn centers are maintained by a local administrator.
Legal Chain-of-	TNI- Procedures employed to record the possession of samples from the time
Custody Protocols	of sampling through the retention time specified by the client or program.
	These procedures are performed at the special request of the client and include
	the use of a Chain-of-Custody (COC) Form that documents the collection,
	transport, and receipt of compliance samples by the laboratory. In addition,
	these protocols document all handling of the samples within the laboratory.
Limit(s) of Detection	TNI- A laboratory's estimate of the minimum amount of an analyte in a given
(LOD)	matrix that an analytical process can reliably detect in their facility.
	DoD- The smallest concentration of a substance that must be present in a
	sample in order to be detected at the DL with 99% confidence. At the LOD,
	the false negative rate (Type II error) is 1%. A LOD may be used as the
	lowest concentration for reliably reporting a non-detect of a specific analyte in
Limit(a) of	a specific matrix with a specific method at 99% confidence.
Limit(s) of	TNI- The minimum levels, concentrations, or quantities of a target variable
Quantitation (LOQ)	(e.g., target analyte) that can be reported with a specified degree of confidence. DoD- The smallest concentration that produces a quantitative result with
	known and recorded precision and bias. For DoD/DOE projects, the LOQ
	shall be set at or above the concentration of the lowest initial calibration
	standard and within the calibration range.
Linear Dynamic	DoD- Concentration range where the instrument provides a linear response.
Range	Dob- concentration range where the instrument provides a linear response.
Ivalley	

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 68 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green Bay Quality Office

Liquid chromatography/ tandem mass spectrometry (LC/MS/MS)	Instrumentation that combines the physical separation techniques of liquid chromatography with the mass analysis capabilities of mass spectrometry.
Lot	A quantity of bulk material of similar composition processed or manufactured at the same time.
Management	Those individuals directly responsible and accountable for planning, implementing, and assessing work.
Management System Manager (however named)	System to establish policy and objectives and to achieve those objectives. The individual designated as being responsible for the overall operation, all personnel, and the physical plant of the environmental laboratory. A supervisor may report to the manager. In some cases, the supervisor and the manager may be the same individual.
Matrix Matrix Deptierts	TNI- The substrate of a test sample.
Matrix Duplicate	TNI- A replicate matrix prepared in the laboratory and analyzed to obtain a measure of precision.
Matrix Spike (MS) (spiked sample or fortified sample)	TNI- A sample prepared, taken through all sample preparation and analytical steps of the procedure unless otherwise noted in a referenced method, by adding a known amount of target analyte to a specified amount of sample for which an independent test result of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency.
Matrix Spike Duplicate (MSD) (spiked sample or fortified sample duplicate)	TNI- A replicate matrix spike prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte.
Measurement Performance Criteria (MPC)	DoD- Criteria that may be general (such as completion of all tests) or specific (such as QC method acceptance limits) that are used by a project to judge whether a laboratory can perform a specified activity to the defined criteria.
Measurement System	TNI and DoD- A test method, as implemented at a particular laboratory, and which includes the equipment used to perform the sample preparation, test and the operator(s).
Measurement Uncertainty	DoD- An estimate of the error in a measurement often stated as a range of values that contain the true value, within a certain confidence level. The uncertainty generally includes many components which may be evaluated from experimental standard deviations based on repeated observations or by standard deviations evaluated from assumed probability distributions based on experience or other information. For DoD/DOE, a laboratory's Analytical Uncertainty (such as use of LCS control limits) can be reported as the minimum uncertainty.
Method	TNI- A body of procedures and techniques for performing an activity (e.g., sampling, chemical analysis, quantification), systematically presented in the order in which they are to be executed.

Prace Analytical®		ocument Revised: May 12, 2015 Effective Date of Last Signature Page 69 of 132
	Document No.: Quality Assurance Manual rev.18.0 Pace Con	Issuing Authorities: rporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office
Method Blank	TNI- A sample of a matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses.	
Method Detection Limit (MDL)	One way to establish a Detection Limit; defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte.	
Method of Standard Additions	A set of procedures adding one or more increments of a standard solution to sample aliquots of the same size in order to overcome inherent matrix effects.	

Additions	The procedures encompass the extrapolation back to obtain the sample
	concentration.
MintMiner	Program used by Pace Analytical to review large amounts of chromatographic
	data to monitor for errors or data integrity issues.
Mobile Laboratory	TNI- A portable enclosed structure with necessary and appropriate
	accommodation and environmental conditions for a laboratory, within which
	testing is performed by analysts. Examples include but are not limited to
	trailers, vans, and skid-mounted structures configured to house testing
	equipment and personnel.
National Institute of	TNI- A federal agency of the US Department of Commerce's Technology
Standards and	Administration that is designed as the United States national metrology
Technology (NIST)	institute (or NMI).
National Pollutant	A permit program that controls water pollution by regulating point sources that
Discharge Elimination	discharge pollutants into U.S. waters.
System (NPDES)	
Negative Control	Measures taken to ensure that a test, its components, or the environment do not
	cause undesired effects, or produce incorrect test results.
Nitrogen Phosphorus	A detector used in GC analyses that utilizes thermal energy to ionize an
Detector (NPD)	analyte. With this detector, nitrogen and phosphorus can be selectively
	detected with a higher sensitivity than carbon.
Nonconformance	An indication or judgment that a product or service has not met the
	requirement of the relevant specifications, contract, or regulation; also the state
	of failing to meet the requirements.
Not Detected (ND)	The result reported for a compound when the detected amount of that
	compound is less than the method reporting limit.
Operator Aid	DoD- A technical posting (such as poster, operating manual, or notepad) that
	assists workers in performing routine tasks. All operator aids must be
	controlled documents (i.e., a part of the laboratory management system).
Performance Based	An analytical system wherein the data quality needs, mandates or limitations
Measurement System	of a program or project are specified and serve as criteria for selecting
(PBMS)	appropriate test methods to meet those needs in a cost-effective manner.
Photo-ionization	An ion detector which uses high-energy photons, typically in the ultraviolet
Detector (PID)	range, to break molecules into positively charged ions.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 70 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Polychlorinated	A class of organic compounds that were used as coolants and insulating fluids
Biphenyls (PCB)	for transformers and capacitors. The production of these compounds was
Diplicity is (1 CD)	banned in the 1970's due to their high toxicity.
Positive Control	Measures taken to ensure that a test and/or its components are working
I USHIVE CONICOL	properly and producing correct or expected results from positive test subjects.
Post-Digestion Spike	A sample prepared for metals analyses that has analytes spike added to
1 0st-Digestion Spike	determine if matrix effects may be a factor in the results.
Power of Hydrogen	The measure of acidity or alkalinity of a solution.
(pH)	The measure of actually of alkaninity of a solution.
Practical Quantitation	Another term for a method reporting limit. The lowest reportable
Limit (PQL)	concentration of a compound based on parameters set up in an analytical
Lillin (I QL)	method and the laboratory's ability to reproduce those conditions.
Precision	TNI- The degree to which a set of observations or measurements of the same
Precision	
	property, obtained under similar conditions, conform to themselves; a data
	quality indicator. Precision is usually expressed as standard deviation, variance
Duranting	or range, in either absolute or relative terms.
Preservation	TNI and DoD- Any conditions under which a sample must be kept in order to
D 1	maintain chemical, physical, and/or biological integrity prior to analysis.
Procedure	TNI- A specified way to carry out an activity or process. Procedures can be
	documented or not.
Proficiency Testing	TNI- A means of evaluating a laboratory's performance under controlled
	conditions relative to a given set of criteria through analysis of unknown
	samples provided by an external source.
Proficiency Testing	TNI- The aggregate of providing rigorously controlled and standardized
Program	environmental samples to a laboratory for analysis, reporting of results,
	statistical evaluation of the results and the collective demographics and results
	summary of all participating laboratories.
Proficiency Testing	TNI- A sample, the composition of which is unknown to the laboratory and is
Sample (PT)	provided to test whether the laboratory can produce analytical results within
	the specified acceptance criteria.
Protocol	TNI- A detailed written procedure for field and/or laboratory operation (e.g.,
	sampling, analysis) that must be strictly followed.
Qualitative Analysis	DoD- Analysis designed to identify the components of a substance or mixture.
Quality Assurance	TNI- An integrated system of management activities involving planning,
(QA)	implementation, assessment, reporting and quality improvement to ensure that
	a process, item, or service is of the type and quality needed and expected by
	the client.
Quality Assurance	A document stating the management policies, objectives, principles,
Manual (QAM)	organizational structure and authority, responsibilities, accountability, and
	implementation of an agency, organization, or laboratory, to ensure the quality
	of its product and the utility of its product to its users.
Quality Assurance	A formal document describing the detailed quality control procedures by
Project Plan (QAPP)	which the quality requirements defined for the data and decisions pertaining to
· · · · · · · · · · · · · · · · · · ·	
J	a specific project are to be achieved.

Prace Analytical"		Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 71 of 132
		Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Greek</i> <i>Bay</i> Quality Office
Quality Control (QC)	TNI- The overall system of technical activities that measures the attributes and performance of a process, item, or service against defined standards to verify that they meet the stated requirements established by the customer; operational techniques and activities that are used to fulfill requirements for quality; also the system of activities and checks used to ensure that measurement systems are maintained within prescribed limits, providing protection against "out of control" conditions and ensuring that the results are of acceptable quality.		
Quality Control Sample (QCS)	TNI- A sample used to assess the performance of all or a portion of the measurement system. One of any number of samples, such as Certified Reference Materials, a quality system matrix fortified by spiking, or actual samples fortified by spiking, intended to demonstrate that a measurement system or activity is in control.		
Quality Manual	TNI- A document stating the management policies, objectives, principles, organizational structure and authority, responsibilities, accountability, and implementation of an agency, organization, or laboratory, to ensure the quality of its product and the utility of its product to its users.		
Quality System	the p accor quali syste work	and DoD- A structured and documente olicies, objectives, principles, organiza intability, and implementation plan of ty in its work processes, products (item m provides the framework for planning performed by the organization and for ance and quality control activities.	tional authority, responsibilities, an organization for ensuring as), and services. The quality g, implementing, and assessing
Quality System Matrix	 assurance and quality control activities. TNI and DoD- These matrix definitions are to be used for purposes of batch and quality control requirements: Air and Emissions: Whole gas or vapor samples including those contained in flexible or rigid wall containers and the extracted concentrated analytes of interest from a gas or vapor that are collected with a sorbant tube, impinger solution, filter, or other device Aqueous: Any aqueous sample excluded from the definition of Drinking Water or Saline/Estuarine. Includes surface water, groundwater effluents, and TCLP or other extracts. Biological Tissue: Any sample of a biological origin such as fish tissue, shellfish or plant material. Such samples shall be grouped according to origin. Chemical Waste: A product or by-product of an industrial process that results in a matrix not previously defined. Drinking Water: Any aqueous sample that has been designated a potable or potentially potable water source. Non-aqueous liquid: Any organic liquid with <15% settleable solids Saline/Estuarine: Any aqueous sample from an ocean or estuary, or other salt water source such as the Great Salt Lake. 		
Quantitation Range	 >15% settleable solids. DoD- The range of values (concentrations) in a calibration curve between the LOQ and the highest successively analyzed initial calibration standard. The quantitation range lies within the calibration range. 		

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 72 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Quantitative Analysis	DoD- Analysis designed to determine the amounts or proportions of the
Random Error	components of a substance.The EPA has established that there is a 5% probability that the results obtainedfor any one analyte will exceed the control limits established for the test due torandom error. As the number of compounds measured increases in a givensample, the probability for statistical error also increases.
Raw Data	TNI- The documentation generated during sampling and analysis. This documentation includes, but is not limited to, field notes, electronic data, magnetic tapes, untabulated sample results, QC sample results, print outs of chromatograms, instrument outputs, and handwritten records.
Reagent Blank (method reagent blank)	A sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps.
Reagent Grade	Analytical reagent (AR) grade, ACS reagent grade, and reagent grade are synonymous terms for reagents that conform to the current specifications of the Committee on Analytical Reagents of the American Chemical Society.
Records	DoD- The output of implementing and following management system documents (e.g., test data in electronic or hand-written forms, files, and logbooks).
Reference Material	TNI- Material or substance one or more of whose property values are sufficiently homogenized and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.
Reference Standard	TNI- Standard used for the calibration of working measurement standards in a given organization or at a given location.
Relative Percent Difference (RPD)	A measure of precision defined as the difference between two measurements divided by the average concentration of the two measurements.
Reporting Limit (RL)	The level at which method, permit, regulatory and customer-specific objectives are met. The reporting limit may never be lower than the Limit of Detection (i.e., statistically determined MDL). Reporting limits are corrected for sample amounts, including the dry weight of solids, unless otherwise specified. There must be a sufficient buffer between the Reporting Limit and the MDL. DoD- A customer-specified lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.
Reporting Limit Verification Standard (or otherwise named)	A standard analyzed at the reporting limit for an analysis to verify the laboratory's ability to report to that level.
Representativeness	A quality element related to the ability to collect a sample reflecting the characteristics of the part of the environment to be assessed. Sample representativeness is dependent on the sampling techniques specified in the project work plan.
Requirement	Denotes a mandatory specification; often designated by the term "shall".
Retention Time	The time between sample injection and the appearance of a solute peak at the detector.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 73 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green
	Quality Assurance Manual Tev. 18.0	Bay Quality Office

Sample	Portion of material collected for analysis, identified by a single, unique alphanumeric code. A sample may consist of portions in multiple containers, if a single sample is submitted for multiple or repetitive analysis.
Sample Condition Upon Receipt Form (SCURF)	Form used by Pace Analytical sample receiving personnel to document the condition of sample containers upon receipt to the laboratory (used in conjunction with a COC).
Sample Delivery Group (SDG)	A unit within a single project that is used to identify a group of samples for delivery. An SDG is a group of 20 or fewer field samples within a project, received over a period of up to 14 calendar days. Data from all samples in an SDG are reported concurrently.
Sample Receipt Form (SRF)	Letter sent to the client upon login to show the tests requested and pricing.
Sample Tracking	Procedures employed to record the possession of the samples from the time of sampling until analysis, reporting and archiving. These procedures include the use of a Chain of custody Form that documents the collection, transport, and receipt of compliance samples to the laboratory. In addition, access to the laboratory is limited and controlled to protect the integrity of the samples.
Sampling	TNI- Activity related to obtaining a representative sample of the object of conformity assessment, according to a procedure.
Selected Ion Monitoring (SIM)	A mode of analysis in mass spectrometry where the detector is set to scan over a very small mass range, typically one mass unit. The narrower the range, the more sensitive the detector.
Selectivity	TNI- The ability to analyze, distinguish, and determine a specific analyte or parameter from another component that may be a potential interferent or that may behave similarly to the target analyte or parameter within the measurement system.
Sensitivity	TNI- The capability of a method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest.
Serial Dilution	The stepwise dilution of a substance in a solution.
Shall	Denotes a requirement that is mandatory whenever the criterion for conformance with the specification requires that there be no deviation. This does not prohibit the use of alternative approaches or methods for implementing the specification as long as the requirement is fulfilled.
Should	Denotes a guideline or recommendation whenever noncompliance with the specification is permissible.
Signal-to-Noise Ratio (S/N)	DoD- S/N is a measure of signal strength relative to background noise. The average strength of the noise of most measurements is constant and independent of the magnitude of the signal. Thus, as the quantity being measured (producing the signal) decreases in magnitude, S/N decreases and the effect of the noise on the relative error of a measurement increases.
Spike	A known mass of target analyte added to a blank sample or sub-sample; used to determine recovery efficiency or for other quality control purposes.
Standard (Document)	TNI- The document describing the elements of a laboratory accreditation that has been developed and established within the consensus principles of standard setting and meets the approval requirements of standard adoption organizations procedures and policies.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 74 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Standard (Chemical)	Standard samples are comprised of a known amount of standard reference material in the matrix undergoing analysis. A standard reference material is a certified reference material produced by US NIST and characterized for absolute content, independent of analytical test method.
Standard Blank (or Reagent Blank)	A calibration standard consisting of the same solvent/reagent matrix used to prepare the calibration standards without the analytes. It is used to construct the calibration curve by establishing instrument background.
Standard Method	A test method issued by an organization generally recognized as competent to do so.
Standard Operating Procedure (SOP)	TNI- A written document that details the method for an operation, analysis, or action with thoroughly prescribed techniques and steps. SOPs are officially approved as the methods for performing certain routine or repetitive tasks.
Standard Reference Material (SRM)	A certified reference material produced by the US NIST or other equivalent organization and characterized for absolute content, independent of analytical method.
Statement of Qualifications (SOQ)	A document that lists information about a company, typically the qualifications of that company to compete on a bid for services.
Stock Standard	A concentrated reference solution containing one or more analytes prepared in the laboratory using an assayed reference compound or purchased from a reputable commercial source.
Storage Blank	DoD- A sample of analyte-free media prepared by the laboratory and retained in the sample storage area of the laboratory. A storage blank is used to record contamination attributable to sample storage at the laboratory.
Supervisor	The individual(s) designated as being responsible for a particular area or category of scientific analysis. This responsibility includes direct day-to-day supervision of technical employees, supply and instrument adequacy and upkeep, quality assurance/quality control duties and ascertaining that technical employees have the required balance of education, training and experience to perform the required analyses.
Surrogate	DoD- A substance with properties that mimic the analyte of interest. It is unlikely to be found in environment samples and is added to them for quality control purposes.
Systems Audit	An on-site inspection or assessment of a laboratory's quality system.
Target Analytes	DoD- Analytes or chemicals of primary concern, identified by the customer on a project-specific basis.
Technical Director	Individual(s) who has overall responsibility for the technical operation of the environmental testing laboratory.
Technology	TNI- A specific arrangement of analytical instruments, detection systems, and/or preparation techniques.
Test	A technical operation that consists of the determination of one or more characteristics or performance of a given product, material, equipment, organism, physical phenomenon, process or service according to a specified procedure. The result of a test is normally recorded in a document sometimes called a test report or a test certificate.
Test Method	DoD- A definitive procedure that determines one or more characteristics of a given substance or product.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 75 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Test Methods for	EPA Waste's official compendium of analytical and sampling methods that
Evaluating Solid	have been evaluated and approved for use in complying with RCRA
Waste, Physical/	regulations.
Chemical (SW-846)	
Total Petroleum	A term used to denote a large family of several hundred chemical compounds
Hydrocarbons (TPH)	that originate from crude oil. Compounds may include gasoline components,
	jet fuel, volatile organics, etc.
Toxicity	A solid sample extraction method for chemical analysis employed as an
Characteristic	analytical method to simulate leaching of compounds through a landfill.
Leaching Procedure	
(TCLP)	
Traceability	TNI- The ability to trace the history, application, or location of an entity by
	means of recorded identifications. In a calibration sense, traceability relates
	measuring equipment to national or international standards, primary standards,
	basic physical conditions or properties, or reference materials. In a data
	collection sense, it relates calculations and data generated throughout the
	project back to the requirements for the quality of the project.
Training Document	A training resource that provides detailed instructions to execute a specific
	method or job function.
Trip Blank	This blank sample is used to detect sample contamination from the container
-	and preservative during transport and storage of the sample. A cleaned sample
	container is filled with laboratory reagent water and the blank is stored,
	shipped, and analyzed with its associated samples.
Tuning	A check and/or adjustment of instrument performance for mass spectrometry
	as required by the method.
Ultraviolet	Instrument routinely used in quantitative determination of solutions of
Spectrophotometer	transition metal ions and highly conjugated organic compounds.
(UV)	
Uncertainty	The parameter associated with the result of a measurement that characterized
Measurement	the dispersion of the values that could be reasonably attributed to the
	measurand (i.e. the concentration of an analyte).
Unethical actions	DoD- Deliberate falsification of analytical or quality control results, where
	failed method or contractual requirements are made to appear acceptable.
Unregulated	EPA program to monitor unregulated contaminates in drinking water.
Contaminate	
Monitoring Rule	
(UCMR)	
Validation	DoD- The confirmation by examination and provision of objective evidence

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 76 of 132		
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office		
Verification	TNI- Confirmation by examination and objerequirements have been met. Note: In commeasuring equipment, verification provides deviations between values indicated by a m corresponding known values of a measured than the maximum allowable error defined specification peculiar to the management of result of verification leads to a decision eith adjustment, to repair, to downgrade, or to derequired that a written trace of the verification measuring instrument's individual record.	nection with the management of a means for checking that the easuring instrument and quantity are consistently smaller in a standard, regulation or f the measuring equipment. The er to restore in service, to perform eclare obsolete. In all cases, it is		
Whole Effluent Toxicity (WET)	The aggregate toxic effect to aquatic organi in a facility's wastewater (effluent).	sms from all pollutants contained		

Document No.: Quality Assurance Manual rev.18.0

11.0. REFERENCES

11.1. "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act." Federal Register, 40 CFR Part 136.

11.2. "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846.

11.3. "Methods for Chemical Analysis of Water and Wastes", EPA 600-4-79-020, 1979 Revised 1983, U.S. EPA.

11.4. U.S. EPA Contract Laboratory Program Statement of Work for Organic Analysis.

11.5. U.S. EPA Contract Laboratory Program Statement of Work for Inorganic Analysis.

11.6. "Standard Methods for the Examination of Water and Wastewater." Current Edition APHA-AWWA-WPCF.

11.7. "Annual Book of ASTM Standards", Section 4: Construction, Volume 04.04: Soil and Rock; Building Stones, American Society of Testing and Materials.

11.8. "Annual Book of ASTM Standards", Section 11: Water and Environmental Technology, American Society of Testing and Materials.

11.9. "NIOSH Manual of Analytical Methods", Third Edition, 1984, U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health.

11.10. "Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water", U.S. EPA, Environmental Monitoring and Support Laboratory – Cincinnati (September 1986).

11.11. Quality Assurance of Chemical Measurements, Taylor, John K.; Lewis Publishers, Inc. 1987.

11.12. Methods for Non-conventional Pesticides Chemicals Analysis of Industrial and Municipal Wastewater, Test Methods, EPA-440/1-83/079C.

11.13. Environmental Measurements Laboratory (EML) Procedures Manual, HASL-300, US DOE, February, 1992.

11.14. Requirements for Quality Control of Analytical Data, HAZWRAP, DOE/HWP-65/R1, July, 1990.

11.15. Requirements for Quality Control of Analytical Data for the Environmental Restoration Program, Martin Marietta, ES/ER/TM-16, December, 1992.

11.16. Quality Assurance Manual for Industrial Hygiene Chemistry, AIHA, 1988.

11.17. National Environmental Laboratory Accreditation Conference, Constitution, Bylaws, and Standards. Most recent version.

11.18. ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

11.19. Department of Defense Quality Systems Manual (QSM), version 5.0, March 2013.

11.20. TNI (The NELAC Institute) Standards; most recent version.

11.21. UCMR3 Laboratory Approval Requirements and Information Document, version 2.0, January 2012.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 78 of 132
fi	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

12.0. REVISIONS

The PASI Corporate Quality Office files both a paper copy and electronic version of a Microsoft Word document with tracked changes detailing all revisions made to the previous version of the Quality Assurance Manual. This document is available upon request. All revisions are summarized in the table below.

Document Number	Reason for Change	Date
Quality Assurance	Header: Added wording "Effective date of last signature".	12May2015
Manual 18.0	Sections 1.3.1 and 1.3.3: reworded to match ISO/TNI standards.	2
	Section 1.7.7: Added section requiring deputies for key personnel. Included	
	specifics from DoD QSM.	
	Section 1.12.2: changed Sample Custodian to titles listed in section 1.8.	
	Section 2.5.3 note 3: clarified the temperature requirements for tissue	
	samples.	
	Removed old section 2.6.5 (LIMS codes): not needed; already appear in an	
	SOP.	
	Sections 4.2.6 and 4.2.7: added red letter text regarding state of SC.	
	Sections 6.2.3.4 and 6.2.7.5: changes "12 hour" to "method-specified".	
	Section 9.2.2.2: added new section referencing the PT SOT.	
	Attachment IIB: updated to April 2015 version.	
	Attachment VIII (Analyses/Preservatives/etc.): made several updates based	
	on QM input and method requirements.	

ATTACHMENT I- QUALITY CONTROL CALCULATIONS

PERCENT RECOVERY (%REC)

 $\% REC = \frac{(MSConc - SampleConc)}{TrueValue} * 100$

NOTE: The SampleConc is zero (0) for theLCS and Surrogate Calculations

PERCENT DIFFERENCE (%D)

 $D = \frac{MeasuredValue - TrueValue}{TrueValue} *100$

where:

TrueValue = Amount spiked (can also be the \overline{CF} or \overline{RF} of the ICAL Standards) Measured Value = Amount measured (can also be the CF or RF of the CCV)

PERCENT DRIFT

 $\% Drift = \frac{CalculatedConcentration - TheoreticalConcentration}{TheoreticalConcentration} *100$

RELATIVE PERCENT DIFFERENCE (RPD)

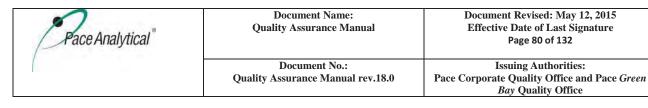
$$RPD = \frac{|(R1 - R2)|}{(R1 + R2)/2} *100$$

where: R1 = Result Sample 1

R2 = Result Sample 2

CORRELATION COEFFICIENT (R)

$$\frac{\sum_{i=1}^{N} W_i * (X_i - \overline{X}) * (Y_i - \overline{Y})}{\sqrt{\left(\sum_{i=1}^{N} W_i * (X_i - \overline{X})^2\right) * \left(\sum_{i=1}^{N} W_i * (Y_i - \overline{Y})^2\right)}}$$


With: Ν

i

CorrCoeff =

Number of standard samples involved in the calibration Index for standard samples Weight factor of the standard sample no. i Wi X-value of the standard sample no. i Xi

- X(bar) Average value of all x-values
- Y-value of the standard sample no. i Yi
- Y(bar) Average value of all y-values

ATTACHMENT I- QUALITY CONTROL CALCULATIONS (CONTINUED)

STANDARD DEVIATION (S)

$$S = \sqrt{\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{(n-1)^2}}$$

where:

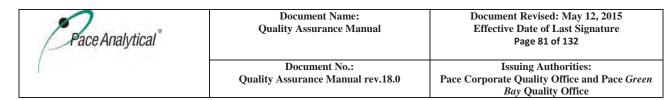
n = number of data points

 $\frac{X_i}{X}$ = individual data point

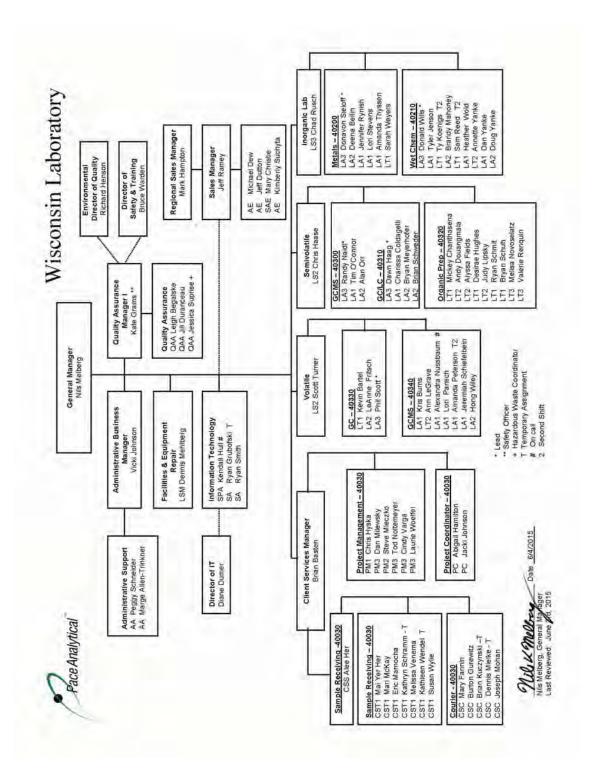
= average of all data points

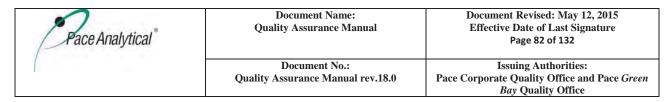
AVERAGE (\overline{X})

$$\overline{X} = \frac{\sum_{n=1}^{i} X_i}{n}$$

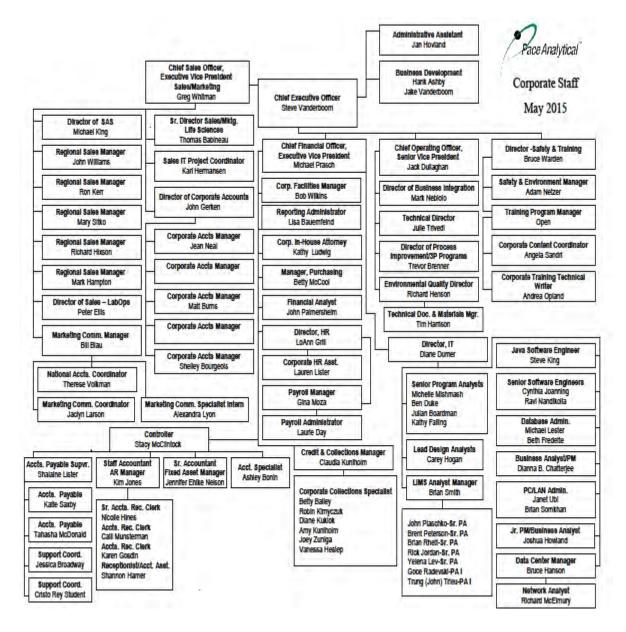

where: n = number of data points X_i = individual data point

RELATIVE STANDARD DEVIATION (RSD)


$$RSD = \frac{S}{\overline{X}} * 100$$


where:

= Standard Deviation of the data points S Χ = average of all data points



ATTACHMENT IIA- LABORATORY ORGANIZATIONAL CHART (CURRENT AS OF ISSUE DATE)

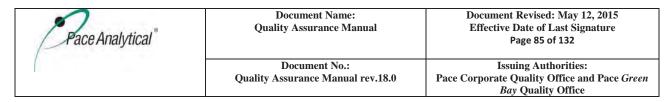
ATTACHMENT IIB- CORPORATE ORGANIZATIONAL CHART (CURRENT AS OF ISSUE DATE)

Document Revised: May 12, 2015 Effective Date of Last Signature Page 83 of 132

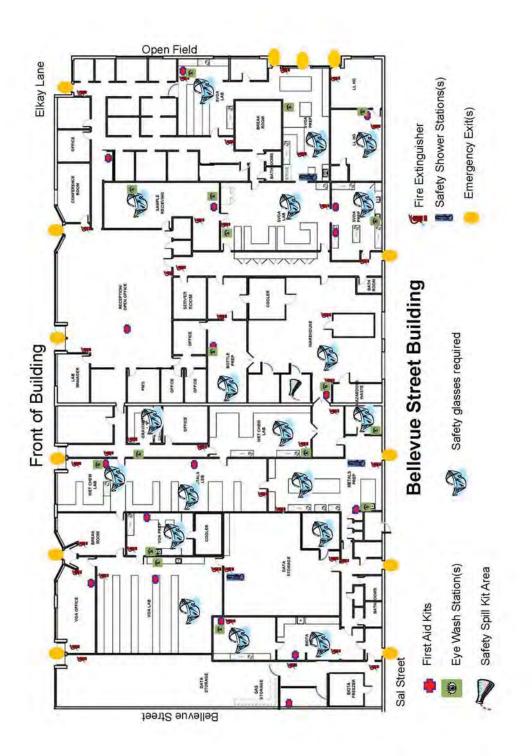
Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

ATTACHMENT III- EQUIPMENT LIST (CURRENT AS OF ISSUE DATE)

DEPT	INSTRUMENT	INSTRUMENT	MANUFACTURER	NUMBER	DETECTOR	SERVICE ANALYSIS
SVOA	GC	40GCS1	Hewlett-Packard	5890 Series II	FID	WI-DRO/8015
SVOA	GC	40GCS3	Hewlett-Packard	5890	FID	8015 Alcohol
SVOA	GC	40GCS6	Hewlett-Packard	5890	ECD/ECD	8081
SVOA	GC	40GCS7	Agilent	6890N	ECD/ECD	8082
SVOA	GC	-10GCS8	Hewlett-Packard	6890	ECD/ECD	808I
SVOA	. OC	40GCS9	Hewlett-Packard	6890	ECD/ECD	8082
SVOA	GC.	40GCSB	Agilent	6890	ECD/ECD	8082
SVOA	GC	40GCSC	Hewlett-Packard	6890	ECD/ECD	8082
SVOA	GC	40GCSE	Hewlett-Packard	5890	ECD/ECD	8082 Screener
SVOA	GC	40GCSF	Agilent	7890	FID	WI-DRO/8015
1.11					Dual	
SVÖA	OC.	40GCSG	Agilent	7890B	MicroECD	8081
SVOA	GC	40GCSI	Hewlett-Packard	6890N	ECD/ECD	8082 Screener
SVOA	GC	40GCSH	Hewlett-Packard	6890N	ECD/ECD	8082
SVOA	GC/MS	40MSS1	Hewlett-Packard	5890	HP 5972	8270C/625
SVOA	GC/MS	40MSS2	Hewlett-Packard	6890	HP 5973	8270C-SIM
SVOA	GC/MS	40MSS3	Hewlett-Packard	6890	HP 5973	8270C-SIM
SVOA	GC/MS	40MSS4	Hewlett-Packard	6890	HP 5973	8270C-SIM
SVOA	GC/MS	40MSS5	Hewlett-Packard	5890	HP 5972	8270 SCREEN
SVOA	GC/MS.	40MSS6	Hewlett-Packard	5890	HP 5972	8270C
SVOA	GC/MS	40MSS7	Agilent	7890A	HP 5975	8270C
SVOA	GCMS	40MSS8	Agilent	7890A	HP 5975C	8270C
SVOA	GC/MS	40MSS9	Agilent	6890N	HP 5975C	8270C/D
SVOA	Separatory Funnel Extractor	40SFE1	Lab Line	-148		SW846 3510C
SVOA	Separatory Funnel Extractor	40SFE2	Lab Line	4.000		SW846.3510C
SVOA	Separatory Funnel Extractor	40SFE3	Lab Line			SW846 3510C
SVOA	TurboVap II Concentration Workstation	40TVC1	Zymark			SW846 3510C
SVOA	TurboVap II Concentration Workstation	40TVC2	Zymark	1000	1.1	SW846 3510C
SVOA	TurboVap II Concentration Workstation	40TVC3	2 ymark			SW846.3510C
SVOA	TurboVap II Concentration Workstation	40TVC4	Zymark		1	SW846.3510C
SVOA	TurboVap II Concentration Workstation	40TVC5	Zymark	411.1	~	SW846 3510C
SVOA	Sonicator	40SON3	Lab Line	9334	· · · · · ·	
SVOA	Precision Water Balli	40WB01	Precision	6	~	
SVOA	Water Baths Tube Heaters	40WB02	Kontes	19		
SVOA SVOA	Accuprep MPS GPC Cleanup System (John)	40GPC2	J2 Scientific	-		SW846 3640A
SVOA	Accuprep MPS GPC Cleanup System (John) Accuprep MPS GPC Cleanup System (Jane)	40GPC1	J2 Scientific	-	8	SW846 3640A
SVOA	Mars Xtraction Microwave System	40MIC1	CEM	907501	1 2	SW846 3546
SVOA	Soxtherm Accelerated Soxhlet Extractor	40SOX3	Gerhardt Soxtherm	SE-30		SW846 3541
SVOA	Southern Accelerated Souther Extractor	40SOX4	Gerhardt Soxtherm	SE-30	-	SW846 3541
SVOA	Southern Accelerated Souther Extractor	4080X5	Gerhardt Soxtherm	SE-416		SW846 3541
SVOA	Soxthem Accelerated Soxhlet Extractor	40SOX6	Gerhardt Soxtherm	SE-416	4	SW846 3541
SVOA	Southern Accelerated Souther Extractor	40SOX7	Gerhardt Soxtherm	SE-416		SW846 3541
SVOA	Soxthem Accelerated Soxhlet Extractor	40SOX8	Gerhardt Soxtherm	SE-416		SW846 3541
SVOA	Soxtherm Accelerated Soxhilet Extractor	40SOX9	Gerhardt Soxtherm	SE-416		SW846.3541
SVOA	Southern Accelerated Southet Extractor	40SOXA	Gerhardt Soxtherm	SE-416	1	SW846 3541
SVOA	Sonifier Cell Disruptors with Horns	40SON1	Misonix	3000	-	SW846 3550B
SVOA	Sonifier Cell Disruptors with Homs	40SON2	Misonix	S-4000	-	SW846 3550B
SVOA	Environ Shaker	40SKR1	LabLuie	3527	1	911910 2020D
SVOA	Soxhiet heater mantles and Glassware	40SXT1	Laorait	SUCAT.	1.1	SW846 3540C
SVOA	Souther heater mantles and Glassware	40SXT2	2			SW846 3540C
SVOA	Soxhiet heater mantles and Glassware	405XT3			-	SW846 3540C
SVOA	Soxhlet heater mantles and Glassware	40SXT4		···· · ····	1	SW846 3540C
SVOA	Soxhlet heater mantles and Glassware	40SXT5				SW846 3540C
SVOA	Soxhlet heater mantles and Glassware	40SXT6	1.		1	SW846 3540C
SVOA	Soxhiet heater mantles and Glassware	40SXT7	N	-		SW846 3540C
SVOA	Soxhlet heater mantles and Glassware	40SXT8	1. A			SW846 3540C
SVOA	Extraction Mixer	40EXT1	VI G			
SVOA	Extraction Mixer	40EXT2	100 C	1		
SVOA	Extraction Mixer	40EXT3		-	1.	
SVOA	Extraction Mixer	40EXT4		-	1	
SVOA	Extraction Mixer	40EXT5		-	~ ~ -	
VOA	GC/MS	40MSV1	Hewlett-Packard	5890	HP 5972	SW846 8260B/5030
VOA	GC/MS	40MSV2	Hewlett-Packard	6890	HP 5973	SW846 8260B/624/5030
VQA	GC/MS	40MSV3	Agilent	6850	Agilent 5975	SW846 8260B/624/5030
VOA	GC/MS	40MSV5	Hewlett-Packard	6890	HP 5973	SW846 8260B/624/5030
VOA	GC/MS	-10MSV7	Hewlett-Packard	6890	HP 5973	SW846 8260B/624/5030
VOA	GC/MS	-10MSV8	Agilent	6850	Agilent 5975B	SW846 8260B/624/5030
VOA	GC/MS-	40MSVA	Hewlett-Packard	7890	Agilent 5975C	SW846 8260B/624/5030
VOA	GC/MS	40MSVB	Hewlett-Packard	7890A	Agilent 5975C	SW846 8260B/624/5030
	GC/MS	40MSVC	Hewlett-Packard	18908	Agilent 5977A	SW846 8260B/624/5030


Pace Analytical®

Assurance Manual


Document Revised: May 12, 2015 Effective Date of Last Signature Page 84 of 132

Document No.: Quality Assurance Manual rev.18.0

DEPT	INSTRUMENT	INSTRUMENT NAME	MANUFACTURER	MODEL NUMBER	DETECTOR	SERVICE ANALYSIS
VOA	GC	40GCV1	Hewlett-Packard	5890	Agilent 5975	SW846 8021/WI MOD GR
VOA	GC	40GCV2	Hewlett-Packard	5890	PID/FID	SW846 8021/WI MOD GR
VOA	GC	40GCV3	Hewlett-Packard	5890	PLD/FID	SW846 8021/WI MOD GR
VOA	GC	40GCV4	Hewlett-Packard	5890	PID/MD	SW846 8021/WI MOD GR
VOA	GC	40GCV5	Hewlett-Packard	5890	PID/FID	SW846 8021/WI MOD GR
VOA	GC	40GCV8	Hewlett-Packard	5890	FID	SW846 8015 - MEE
VOA	GC	40SCREEN1	Hewlett-Packard	5890	FID	Screener
VOA	GC	40SCREEN2	Hewlett-Packard	5890	FID	Screener
VOA	SNOOP	40SCREEN3	Research Engineers			Screener
VOA	Sonicator	40SON4	LabLine	9314	1	VOA Prep
VOA	Sonicator	40SON5	LabLine	9333		VOA Prep
WET	Apollo Fusion	40WTA5 40WTA7	Tekmar/Dohrmann	Apollo 9000 14-9600-100		EPA 9060
WET	Analytik Jena	40WTAA	Teledyne Analytik Jenna	Multi EA 4000		EPA 9060, SM 5310C EPA 9060, SM 5310C
WET	SmartChem	40WTA9	Westco Scientific	Smartchem 200		EPA 365.4, 350.1, 9012
WEI	Sinarchen	4011763	Wested Scientific	Similaricitem 200	-	SM 5210B01, SM 4500-
WET	Oxygen Meter	40WET2	YSI	5000		G
WET	BOD AUTOEZ	40WETE	Thermo/Orion	10060020		SM 5210B
WET	Flashpoint Instrument A	40WET4	Precision	Not Provided		EPA 1010A
			Fisher (Pensky-Martens Flash			
WET	Flashpoint Instrument B	40WET5	Tester)	Not Provided		EPA 1010A
WET	Turbidimeter	40WET6	Hach	2100P	3.	EPA 180.1, SM2130B
WET	Conductivity Meter	40WET7	Accument	30		EPA 120.1
WET	pH Meter	40WETS	Orion	720A		pH Meter
WET	EH Meter	40WET9	Accument	AB15	11 A	EH Meter
WET	Radiometer	40WET0	Titration	TIM840		Alkalinity - 2320B
WET	pH meter	40WETB	Symphony	SB20		1311, 1312, ASTM D398
WET	pH Meter	40WETC	Orion	720A		pH Meter
WET	pH Meter	40WETD	Coming	320	1 4	pH Meter
WET	MICRO DIST Rapid Distillation System	40MD1 40MD2	Lachat	<u> </u>	1 20-	350,1, 9012A
WET	MICRO DIST Rapid Distillation System MICRO DIST Rapid Distillation System	40MD3	Lachat	- X - 3	1 - M	350,1, 9012A 350,1, 9012A
WET	Block Digestion System	40MB01	Westco Scientific	40/20		365.4, 351.2
WET	Block Digestion System	40HB02	Tecator	2040		365.4.351.2
WET	Hot Block Digestion System	40HB03	Environmental Express	SC100		6010/6020
WET	COD Reactor	40COD1	Hach	45600	- 4	410.4
WET	COD Reactor	40COD2	Bioscience INC	100 003	-1	410.4
		1.2.2.1	1.5			EPA 410.4. SM3500Cr-E Hach 8146, Walkley Blac
WET	Direct Reading Spectrophotometer	40WTA1	Hach	DR 2000		TOC
WET	Ion Chromatograph	40WTA3	Dionex	DX-120		EPA 300.0, 9056A
WET	Ion Chromatograph	40WTAB	Thermo Scientific	ICS-110		EPA 300.0, 9056A
WET	Ion Chromatograph	40WTAD	Thermo Scientific (Dionex)	1CS-1100	1	EPA 300.0, 9056A
WET	Quik Chem 8500 Series 2	40WTAC	Lachat	8500 Series 2		EPA 353.2, 350.1
100		The second s	the second second	1000 T		350.1, 365.4, 9012A, 310.
WET	Quik Chem 8500 Series 2	40WTAE	Lachai	8500 Series 2	-	351,2, 353,2
WET	Hellige Colony Counter		Hellige	*		
WET	Steril-Qnick Autoclave		National	704-9000-D		
WET	Stereomaster Stereoscope Sonicator	40SON6	Fisher Branson	FW 99-20-1385 8210	1	
WET	TCLP Tumbler	40TBL1	Environmental Express	.8210	<u> </u>	1311, 1312, ASTM D398
WET	Reaction Vessel Tumbler	401BL3	Reaction Vessel		~	1311, 1312, ASTM D398
WET	TCLP Tumbler	40TBL4	Environmental Express	1		1311, 1312, ASTM D398
WET	Centrifudge	40CENTI	International Equipment Co	11260		
WET	Buret	40BUR1	KIMAX	253	i	
WET	Buret	40BUR2	Рутех	2103	~	
WET	Hot Water Bath	40WB06	LabLine	18010		1311, 1312, ASTM D398
MET	ICPMS	401CM2	Thermo	X Series 2		6020
MET	ICPMS	40ICM3	Themio	X Series 2		6020
MET	Quick Trace Mercury Analyzer	40HG2	Cetac	M-7500		7470/7471
MET	DMA-80 Direct Mercury Analyzer	40HG4	Milestone	DMA-80	1	7473
MET	Hot Block Metals Digestion System	40HB04	Environmental Express	SC100	A	6010/6020
MET	Hot Block Metals Digestion System Hot Block Metals Digestion System	40HB06 40HB07	Environmental Express Environmental Express	SC154 SC100		6010/6020
MET	Hot Block Metals Digestion System	40HB07 40HB08	Environmental Express	SC100 SC196		6010/6020
MET	Low-level Mercury Analyzer	40LHG1	Tekran	2500	2500	1631E
MET	Low Level Mercury Analyzer	40LHG4	Analytik Jena	Mercur	2300	1631E
			CHING STOL DUIN	avisi citi		1.00115

Document Revised: May 12, 2015 Effective Date of Last Signature Page 86 of 132

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

ATTACHMENT V- LABORATORY SOP LIST (CURRENT AS OF ISSUE DATE)

SOP Number	Rev.	SOP Name	Date of Pub.	Signature Date	Category
MANUALS	-			Are 10 1 10 2	2.7 10
Quality Manual		Quality Manual	1-Oct-04	23-Jun-14	Quality
CHP/Safety	9,0	Chemical Hygiene Plan/Safety Manual	18-Jul-11	23-Apr-13	Safety
SAMPLE					
S-ALL-C-002	04	Bottle Order Database	4-Oct-06	9-Apr-15	Sample Managemen
S-ALL-C-005	03	Operation of PacePort Customer Feedback Form	27-Nov-07	9-Apr-15	Sample Managemen
S-GB-C-001	05	Procedure to Preserve Samples for Volatile Organic Analysis of Solid Matrices by Method 5035	12-Apr-05	22-Dec-14	Sample Management
S-GB-C-005	06	Maintenance of Ice Chests and Shipping Containers	1-Jun-05	17-Nov-14	Sample Management
S-GB-C-007	04	Laboratory Tracking of Samples	6-Jun-05	4-Oct-13	Sample Managemen
S-GB-C-008	04	Measurement of Percent Moisture in Soils and Solids	19-Dec-06	22-Dec-14	Sample Managemen
S-GB-C-009	05	Subcontracting Samples	31-Mar-05	10-Apr-15	Sample Managemen
S-GB-C-010	06	Sample Management	12-Jul-04	17-Nov-14	Sample Management
S-GB-C-011	03	Bottle Preparation	4-Oct-06	17-Nov-14	Sample Management
S-GB-C-012	03	Review of Analytical Requests	23-Dec-08	10-Apr-15	Sample Management
METALS			()		
S-GB-M-005	06	Determination of Metals by Inductively Coupled Plasma (ICP) Spectroscopy by 60108-C 200.7	23-Sep-08	21-Nov-14	Metals
S-GB-M-006	06	Determination of Trace Metals in Waters and Wastes by Inductively Coupled Plasma Mass Spectroscopy - 6020A, 200.8		1-Det-14	Metals
S-GB-M-008	03	Cleaning Metals Glassware	5-May-05	21-Nov-14	Metals
S-GB-M-013	02	Soil Fraction Preparation for Lead Analysis	21-Mar-06	2-Dec-14	Metals
S-GB-M-015	03	Mercury Analysis by Cold-Vapor Atomic Fluorescence Spectrometry (1631E)- Analytik Jena	16-Aug-11	26-Aug-13	Metals
S-GB-M-016	01	Determination of Mercury in Solids by Thermal Decomposition, Amalgamation, and Atomic Absorption	21-Mar-12	24-Apr-15	Metals
		Spectrophotometry		and the second	
S-GB-M-017	.02	The Debermination of Mercury by Cold Vapor Atomic Absorption Spectroscopy - CETAC M-7500 (7470A/7471B_245.1)	3-Aug-11	1-Dec-14	Metals
S-GB-M-018	00	The Determination of Mercury in Biological Samples by Cold Vapor Atomic Absorption Spectroscopy - CETAC M-7500 (245.6)	9-Apr-13	9-Apr-13	Metals
S-GB-M-019	00	Mercury Analysis by Cold-Vapor Atomic Fluorescence Spectrometry CETAC M-8000 (1631E)	26-Aug-13	26-Aug-13	Metals
S-GB-M-020	01	Solids Digestion by EPA 3050B	17-Feb-14	1-Dec-14	Metals
S-GB-M-021	00	Acid Digestion of Aqueous Samples by EPA 3010A, EPA 200.7 and EPA 200.8	17-Feb-14	29-Apr-14	Metals
S-GB-M-022	01	Acid Digestion of Biological Tissue by EPA 3050B Modified	17-Feb-14	1-Dec-14	Metals
MICRO	-			-	
S-GB-MB-001	01	Fecal Coliform Determination Using the Membrane Filter Technique	13-Sep-05	3-Apr-14	Wetchem
5-GB-MB-002	01	Heterotropic Plate Count	17-Nov-05	10-Apr-15	Wetchem
S-GB-MB-003	01	Colisure Presence/Absence Test for Detection and Identification of Coliform Bacteria and <i>Escherichia coli</i> in Drinking Waters	28-Nov-05	22-Jan-15	Wetchem
WET CHEM	_				
S-GB-I-001	09	Total Sulfide, Iodometric Titration	26-Jan-05	22-Jan-14	Wetchern
S-GB-I-002	07	Flash Point (Pensky-Martens Closed Cup Method For Ignitability	27-Jan-05	28-Jun-13	Wetchem
S-GB-I-009	07	Ion Chromatography- Sulfate, Nitrate, Flouride (EPA 300.0)	7-Feb-05	8-Jan-15	Wetchem
S-GB-I-010	04	Wet Chemistry Glassware Cleaning	5-Feb-05	1-Dec-14	Wetchem
S-GB-I-013	04	Free Liquids (Paint Filter)	13-Jul-05	7-Nov-14	Wetchem
S-GB-I-015		Oxidation - Reduction Potential (Eh) Measurement	29-Jul-05	22-Jan-14	Wetchem
S-GB-I-016	-	Specific Gravity	25-Aug-05	22-Jan-14	Wetchem
S-GB-I-017	04	Ferrous Iron	30-Aug-05	7-Nov-14	Wetchern
5-GB-I-020	05	Color Determination in Aqueous Samples	15-Sep-05	7-Nov-14	Wetchem
S-GB-I-027	04	Dissolved Oxygen	1-Mar-06	27-Feb-14	Wetchem
	04	Turbidity (Nephelometric)	10-Apr-06	7-Nov-14	Wetchem
S-GB-I-030	1.1				
S-GB-I-030 S-GB-I-037 S-GB-I-044	05	The Determination of Total Organic Carbon Using the Walkley-Black Procedure Biochemical Oxygen Demand	8-Aug-05 15-Feb-07	2-Dec-14 24-Apr-15	Wetchem Wetchem

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 87 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

SOP Number	Rev.	SOP Name	Date of Pub.	Signature Date	Calegory
S-GB-I-047	05	Total Kjeldahl Nitrogen using Block Digestion and Analyzed by Lachat 8000 Flow Injection following EPA Method 351.2	17-Feb-07	20-Jan-14	Wetchem
5-GB-I-048	04	Ammonia using Micro-Distillation and Analyzed by Lachat 8000 Flow Injection following EPA Method 350.1	17-Feb-07	3-Apr-14	Wetchem
S-GB-I-051	05	Nitrate and Nitrite Analyzed by Lachat 8000 Flow Injection	20-Feb-07	22-Dec-14	Wetchem
S-GB-I-052	06	Chemical Oxygen Demand, Colorimetric, Manual (Chemetric Vials)	21-Feb-07	24-Apr-15	Wetchem
S-GB-I-053	03	Acid Volatile Sulfide / Simultaneously Extracted Metals	4-Apr-07	27-May-14	Wetchern
5-GB-I-059	05	The Determination of Total Organic Carbon Using the Apollo 9000 Instrument (EPA 9060/A)	21-May-09	8-Jan-15	Wetchem
S-GB-I-061	03	Total Phosphorus using Block Digestion and Analyzed by SmartChem	1-Jun-09	20-Jan-14	Wetchem
S-GB-I-063	04	The Determination of Total Organic Carbon Using the Teledyne Tekmar Fusion Instrument	28-Dec-09	27-Feb-14	Wetchem
5-GB-1-064	02	Cyanide by SmartChem	18-Jan-10	20-Jan-14	Wetchem
S-GB-I-066	02	Measurement of Specific Conductance in Water	12-Dec-06	7-Nov-14	Wetchem
S-GB-I-067	02	TCLP - Toxicity Characteristic Leaching Procedure, SPLP - Synthetic Precipitation Leaching Procedure and ASTM - ASTM	5-Jul-10	13-May-13	Wetchem
	1.1.1	D 3987-85	The State State	a ser a constant a	
S-GB-I-068	03	Measurement of Volatile Solids and Solids in Water	24-Aug-07	2-Dec-14	Wetchem
S-GB-I-069	02	Alkalinity by Titration using the Radiometer TIM840 - SM 2320B	17-Dec-10	19-Sep-13	Wetchem
S-GB-I-070	02	Alkalinity by SmartChem (EPA 310,2)	19-Apr-11	21-Nov-14	Wetchem
S-GB-I-071	02	Measurement of pH in Water, Soil, and Waste	12-Dec-06	1-Dec-14	Wetchem
S-GB-1-072	02	Acidity by Titration using the Radiometer TIM840 - SM 2310B_305.1	1-May-12	19-Sep-13	Wetchem
5-GB-I-073	01	The Determination of Total Organic Carbon Using the EA4000 Instrument (EPA 9060/A)	20-Sep-12	8-Jan-15	Wetchem
5-GB-1-074	01	Biochemical Oxygen Demand by Auto EZ Instrument	20-Jan-14	3-Apr-14	Wetchem
5-GB-I-076	01	The Determination of Total Organic Carbon Using the EA4000 Instrument (Lloyd Kahn)	18-Mar-14	10-Apr-15	Wetchem
S-GB-I-077	00	The Determination of Ortho Phospate using the Lachat 8000 by 365.1	22-Dec-14	22-Dec-14	Wetchem
GAS 5-GB-O-005	04	Soil/Semisolid Sample Preparation for the Analysis of Gasoline Range Organics and Petroleum Volatile Organics by	30 Ame 05	16 Nov 17	-
	04	Wisconsin Modified GRO	29-Apr-05	16-Nov-12	Gas
S-GB-O-006	04	Modified Method for Determination of Gasoline Range Organics	27-Apr-05	19-Nov-12	Gas
5-GB-O-008	05	Total Petroleum Hydrocarbons - Gasoline by Gas Chromatography Using Flame-ionization Detectors	15-Jun-05	10-Dec-12	Gas
S-GB-O-009	04	Aromatic Volatiles by Gas Chromatography Using Photo-Ionization Detectors	27-Apr-05	3-Dec-12	Gas
S-GB-O-010	04	Aqueous Sample Preparation for the Analysis of Gas Range Organics and Petroleum Volatile Organics	29-Apr-05	30-Oct-12	Gas
S-GB-O-017	04	Analysis of Dissolved Methane, Ethane, and Ethene in Ground Water by Static Headspace and Gas Chromatography	27-Apr-05	3-Dec-12	Gas
S-ALL-O-038	02	Processing Tentatively Identified Compounds (TICs) for GC/MS	9-Jun-11	20-Jun-14	QA
S-GB-O-015	02	Cleaning of Glassware Used in the Analysis of Semivolatile Range Organics	11-May-05	27-Jun-13	SVOA
S-GB-O-013	04	Determination of DRO Sample Weight and Methylene Chloride Addition	13-Apr-05	27-Jun-13	SVOA
S-GB-O-010	06	WI Modified Method for Determination of Diesel Range Organics	13-Apr-05	20-Jan-14	SVOA
S-GB-O-023	06	Total Petroleum Hydrocarbons - Diesel	25-May-05	9-Jan-14	SVOA
5-GB-O-026	07	Analysis of Polychlorinated Biphenyls (PCBs) by Gas Chromatography by 8082	23-May-06	20-Jan-14	SVOA
S-GB-O-027	07	Analysis of Porchiorniaded capitenyis (PCBS) by Gas Chromatography by 8081	23-May-06	20-Jan-14 22-Dec-14	SVOA
S-GB-O-027	05	Preparation of Anhydrous Sodium Sulfate and Sand for Extraction Purposes	24-May-06	27-Jun-14	SVOA
S-GB-O-028	05		20-Jan-05	27-Jun-14 22-Dec-14	SVOA
S-GB-O-031		Extraction of Biological Samples for Organochlorine Pesticides/PCBs	1. 1. 1. 1. 1.		
	04	Gel Permeation Chromatography	26-Jan-05	21-Nov-14	SVOA
S-GB-Q-033	03	Extraction of Biological Samples for Base Neutral/Acid and PAH-SIM Analysis	8-Feb-05	22-Dec-14	SVOA
S-GB-O-034	04	Sulfunc Acid Cleanup	3-Feb-05	27-Jun-13	SVOA
S-GB-O-036	05	Florisil Cleanup for PCB and Toxaphene Samples	26-Jan-05	27-Jun-14	SVOA
S-GB-O-037	06	Florisil Cartridge Cleanup for Organochlorine Pesticide Samples	26-Jan-05	22-Dec-14	SVOA
S-GB-O-038	05	Silica Gel Cleanup for Organic Analysis	3-Feb-05	27-Jun-14	SVOA
S-GB-O-039	04	Copper Cleanup for the Removal of Sulfur from FCB and Toxaphene Samples	23-Aug-05	27-Jun-13	SVOA
ACCOUNTS 1992 2 10	05	Extraction of Wipes and Oil for PCB Analysis	11-Jul-08	27-Jun-14	SVOA
S-GB-O-040		Extraction of PCBs Using the Automated Soxhlet 3541	23-Aug-07	22-Dec-14	SVOA
S-GB-O-040 S-GB-O-041 S-GB-O-044	06				

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 88 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

SOP Number	Rev.	SOP Name	Date of Pub.	Signature Date	Calegory
S-GB-O-045	07	Microwave Extraction for the Determination of Polynuclear Aromatic Hydrocarbons, Base/Neutral/Acids, and Total Petroleum Hydrocarbons in Solid Matrices by 3546	21-Sep-07	21-Nov-14	SVØA
S-GB-O-047	04	Analysis of Polychlorinated Biphenyls (PCBs) by Gas Chromatography following 8082A	22-Sep-08	27-Jun-14	SVOA
S-GB-O-048	03	Analysis of Fox River Polychlorinated Biphenyls (PCBs) by Gas Chromatography	4-Jun-09	29-Aug-13	SVOA
S-GB-O-049	05	Determination of Semi-Volatile Organics by GC/MS (8270)	28-Nov-06	27-Jun-13	SVOA
S-GB-O-050	03	Determination of Semi-Volatile Organics by GC/MS (Selective Ion Monitoring - 8270C SIM)	28-Nov-06	27-Jan-14	SVOA
S-GB-O-052	02	Extraction of PCBs In Tissue Using the Automated Soxhlet	11-Noy-09	22-Dec-14	SVOA
S-GB-O-053	04	Separatory Funnel Extraction by 3510C	16-Nov-06	28-May-15	SVOA
S-GB-O-054	02	Ultrasonic Extraction by 35508	16-Nov-06	27-Jun-14	SVOA
S-GB-O-055	02	WI Nodified Method for Determination of Extended Range Diesel Range Organics	12-Jul-11	21-Nov-14	SVDA
S-GB-O-057	01	Analysis of Toxaphene by Gas Chromotography Using St.John's River Waste Management Department (SJRWMD) Protocol	10-Jul-10	26-Sep-12	SVOA
S-GB-O-056	01	Analysis of Toxaphene by Gas Chromotography Using Hercules 97 and Total Area Under the Curve (TAUC)	7-Jul-10	26-Sep-12	SVOA
S-GB-O-061	00	Analysis ofTetrachlorobiphenyls (TCBs) by Gas Chromatography/Mass Spectroscopy	19-Feb-13	19-Feb-13	SVOA
S-GB-O-062	00	SVOA Sample Screening	6-Feb-13	6-Feb-13	SVOA
S-GB-O-065	00	Determination of Semi-Volatile Organics by GC/MS (6270D)	5-Dec-13	21-Nov-14	SVOA
S-GB-O-066	00	Determination of Semi-Volatile Organics by GC/MS (Selective Ion Monitoring - 8270D SIM)	27-Jan-14	22-Jan-15	SVOA
her -					2444
VOA S-GB-O-001	07	Sample Screening Volatile Organics Prior to Preparation	24-Aug-05	29-Aug-13	VOA
S-GB-O-001				31-Dec-14	VOA
S-GB-O-012 S-GB-O-056	-	Cleaning of Syringes Used in the Analysis of Volatile Organics Determination of Volatile Organics by CC/MS \$260	12-Apr-05		VOA
3-00-0-050	09	Determination of Volatile Organics by GC/MS 8260	14-Jul-06	2-Dec-14	VUA
QA SYSTEM					
S-ALL-Q-003	09	Document Numbering	12-Apr-04	15-May-14	QA
S-ALL-Q-009	06	Laboratory Documentation	22-Dec-04	13-Mar-14	QA
S-ALL-Q-014	05	Quarterly Quality Report	5-May-04	27-Oct-14	QA
S-ALL-Q-015	02	Review of Laboratory Management System	12-Sep-12	27-Oct-14	QA
S-ALL-Q-020	06	Orientation and Training Procedures	30-Jun-05	13-Mar-14	QA
S-ALL-Q-022	04	3P Program Continuous Process Improvement	19-May-05	23-Jun-14	QA
S-ALL-Q-028	04	Use and Operation of Lab Track System	22-May-07	23-Jun-14	QA
S-ALL-Q-029	03	MintMiner Data File Review	20-Noy-07	9-Apr-15	QA
5-ALL-Q-030	05	Operation of Data Checker for Epic Pro	5-Aug-10	23-Jun-14	QA
5-COR-Q-034	03	Anonymous Hotline Procedure	5-Aug-10	1-Sep-14	QA
S-ALL-Q-035	03	Data Recall	31-Jan-11	27-Oct-14	QA
S-GB-Q-001	04	Employee Master Signature Log	10-Jan-06	9-Dec-13	QA
5-GB-Q-002	04	Training Record Files Maintained by the QAO	10-Jan-06	9-Dec-13	QA
S-GB-Q-003	03	Data Reduction, Validation, and Reporting	5-Jan-09	7-Jan-14	QA
S-GB-Q-004	04	Laboratory Notebooks and Logbooks	17-Jan-06	9-Dec-13	QA
S-GB-Q-005	-	Precision and Accuracy Measurement and Evaluation	23-Mar-06	9-Dec-13	QA
S-GB-Q-006	04	Data Archiving	27-Apr-06	9-Dec-13	QÀ
S-GB-Q-007		Method of Syringe Technique	9-May-06	9-Dec-13	QA
5-GB-Q-008-		Preventative, routine, and non-routine maintenance	9-May-06	7-Jan-14	QA
S-GB-Q-009	-	Common Laboratory Calculations and Statistical Evaluation of Data	11-May-06	1-Dec-14	QA
S-GB-Q-010		Estimation of Measurement Uncertainty	15-Feb-07	10-Oct-14	QA.
5-GB-Q-011		Method Validation and Modification Studies	7-Jun-10	20-Jun-14	QA
S-GB-Q-012	-	Purchasing of Laboratory Supplies	3-Apr-06	13-Mar-14	QA
S-GB-Q-013	03	Receipt and Storage of Laboratory Supplies	21-Mar-06	7-Jan-14	QA.
5-GB-Q-015	02	Management of Change	11-May-11	20-Jun-14	QA
5-GB-Q-017		Preparation of SOPs	5-May-04	10-Oct-14	
			-		QA
S-GB-Q-018	02	Evaluation and Qualification of Vendors	10-Apr-08	8-Jan-14	QA.

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 89 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

SOP Number	Rev.	SOP Name	Date of Pub.	Signature Date	Calegory
5-GB-Q-019	03	Software Validation	9-Jun-09	10-Oct-14	QA
5-GB-Q-020	02	Determination of LOD and LOQ	21-Feb-05	7-Jan-14	QA
S-GB-Q-021	02	Proficiency Testing Program	15-Feb-07	7-Jan-14	QA
5-GB-Q-022	03	Internal and External Audits	30-Dec-04	1-Dec-14	QA
5-GB-Q-023	02	MCL Violation Reporting	11-May-09	13-Mar-14	QA
5-GB-Q-024	03	Manual Integration	15-Mar-05	1-May-15	QA
S-GB-Q-025	02	Sample Homogenization and Sub-Sampling	16-Nov-06	13-Mar-14	QA
S-GB-Q-026	-	Standard and Reagent Management and Traceability	9-Feb-11	1-Dec-14	QA
S-GB-Q-027	02	Corrective Action / Preventative Action Process	17-Aug-05	10-Oct-14	QA
S-GB-Q-028	03	Monitoring Storage Units	20-Apr-05	1-May-15	QA
5-GB-Q-029	01	Document Management	30-Dec-04	9-Apr-15	QA
S-GB-Q-030	-	Support Equipment	17-Jan-05	9-Apr-15	QA
S-GB-Q-031	-	Control Charting and Trend Analysis	9-Feb-11	9-Apr-15	QA
S-GB-Q-032	01	Data Review Process	9-Feb-11	10-Oct-14	QA
S-GB-Q-033		New Instrument Installation Procedure	10-Oct-14	10-Oct-14	QA
		Chever at the set of a mean independent of the second set		10 000 11	
Safety	-		-		
S-ALL-S-001		Hazard Assessment	1-Jan-05	9-Apr-15	Safety
5-GB-5-001		Regulated Soil Handling	5-Jan-06	23-Jun-14	Safety
S-GB-S-002		Control of Hazardous Energy Program - Lockout/Tagout	10-Jan-06	23-Jun-14	Safety
S-GB-S-004		Rescue Alert System Operation	16-Nov-05	23-Jun-14	Safety
S-GB-S-007		Label Destruction	3-Sep-10	4-Oct-13	Safety
5-GB-S-008	01	Air Quality Monitoring and Fume Hood Monitoring	4-Dec-12	1-Dec-14	Safety
Waste					
S-GB-W-001	02	Waste Handling and Management	29-Jul-05	20-Jan-14	Waste
S-GB-W-002	02	Waste Management Training Requirements	11-Feb-09	26-Sep-14	Waste
Equipment	-				
S-GB-E-001	03	Use and Maintenance of the NANOpure Infinity Water Purification System	28-Mar-06	1-May-15	Equipmen
S-GB-E-002	03	Operation of Waste Disposal Equipment	21-Sep-07	13-May-13	Equipmen
S-ALL-T-002	05	Laam Center	25-Apr-11	10-Oct-14	Training
5-MLL-1-002	05	Landrid Section	20-Mpi-11	10-010-14	training
Laboratory			-		
S-GB-L-001		Biological Tissue, Plant, and Synthetic Material Preparation	20-Jan-05	23-Apr-14	Laborator
S-GB-L-002	-	Small Rodent Handling and Homogenization	20-Jan-05	28-Sep-12	Laborator
S-GB-L-003	05	The Determination of Lipids in Tissues, Fats, and Plants	20-Jan-05	15-May-14	Laborator
S-GB-L-004	04	Determination of Percent Solids in Tissue Samples	3-Feb-05	15-May-14	Laborator
S-GB-L-005		Reagent Water Quality	10-Jan-08	28-Sep-11	Laborator
S-GB-L-007	01	Cleaning of Equipment Used in the Process of Homogenizing Biological Tissue, Plant, and Synthetic Materials.	19-Jul-11	15-May-14	Laborator
S-GB-L-008	01	Multiincrement Soil Sampling	26-Feb-15	12-Mar-15	Laboratory

Document Revised: May 12, 2015 Effective Date of Last Signature Page 90 of 132

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

ATTACHMENT VI- LABORATORY CERTIFICATION LIST (CURRENT AS OF ISSUE DATE) SCOPE AND APPLICATION CERTIFICATES ARE MAINTAINED AND FILED IN THE LOCAL QUALITY DEPARTMENT

100 100 100 100 100 100 100 100 100 100		GREEN BAY LABORATORY	and the second se	
Accrediting Authority	Program Category	Accrediting Agency	Certification #	Expiration Date
Florida (NELAP)	Biological Tissue	Dept of Health, Bureau of Laboratories	E87948	6/30/2016
Florida (NELAP)	Hazardous Waste - Solid	Dept of Health, Bureau of Laboratories	E87948	6/30/2016
Florida (NELAP)	Waste Water	Dept of Health, Bureau of Laboratories	E87948	6/30/2016
Georgia	Waste Water -NELAP stipulation	Environmental Protection Division	E87948	6/30/2016
Georgia	Waste Water - NELAP stipulation	Environmental Protection Division	E87948	6/30/2016
llinois (NELAP)	Hazardous Waste - Solid	Illinois EPA	200050	8/3/2015
llinois (NELAP)	Waste Water	Illinois EPA	200050	8/3/2015
(entucky	UST	Environmental and Public Protection Cabinet	82	6/30/2016
ouisiana (NELAP)	Hazardous Waste - Solid	Department of Environmental Quality	4168	6/30/2016
-ouisiana (NELAP)	Waste Water	Department of Environmental Quality	4168	6/30/2016
-ouisiana (NELAP)	Biological Tissue	Department of Environmental Quality	4168	6/30/2016
Minnesota	Hazardous Waste	Dept of Health	055-999-334	12/31/2015
Minnesota	Waste Water	Dept of Health	055-999-334	12/31/2015
Minnesota	ISI	Department of Health	055-999-334	12/31/2015
North Dakota	Hazardous Waste	Dept of Health Chemistry Division	R-150	6/30/2016
Vorth Dakota	Waste Water	Dept of Health Chemistry Division	R-150	6/30/2016
South Carolina	Hazardous Waste	Dept of Hith & Environmental Control	83006001	6/30/2016
South Carolina	Waste Water	Dept of Hith & Environmental Control	83006001	6/30/2016
Texes.	Waste Water	Texas Commission on Environmental Quality	T104704529-14-1	4/30/2016
JS Dept of Agriculture	Foreign Soil Permit	Dept of Agriculture	S-76505	6/4/2016
Virginia	Biological Tissue	Dept of General Services	5537	6/14/2016
Misconsin	Drinking Water	Dept of Natural Resources	405132750	8/31/2015
Misconsin	Drinking Water	Dept of Agriculture, Trade & Consumer Protection	105-444	12/31/2015
Misconsin	Hazardous Waste	Dept of Natural Resources	405132750	8/31/2015
Wisconsin	Waste Water	Dept of Natural Resources	405132750	8/31/2015

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 91 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

ATTACHMENT VII- PACE CHAIN-OF-CUSTODY (CURRENT AS OF ISSUE DATE)

						•	•											
Section A Required Client Information.	Section Required	Section B Required Project Information:	mation:			vi≦	Section C Invoice Information:	tion:							Page:		of	
Companys	Report To:					A	Attention:											
Address	Copy To:					Ŭ	Company Name:	1e:					EGULA	REGULATORY AGENCY	BNCY			
						¥	Address:								C:ROUND WATER		D NKING WATER	ATER
Email To:	Purchase Order No.	Order No.:				<u>ľď</u>	Pace Quote Reference:						E UST	∏ NA	∢	OTHE	Ļ	
Phone: Fax:	Project Name:	ame.				μăŽ	ce Project nager:						Site Location	tion				
Requested Due Date/TAT:	Project Nu	Number				đ	Pace Profile #:						STI	STATE:				
						1					Reque	ested Ar	alysis F	Requested Analysis Filtered (Y/N)	(N/)			
Section D Required Client Information	Matrix Codes MATRIX / CODE	1.00		COLLECTED				Preservatives	atives	† n /A						1		
	Drinking Water DW Water WT Waste Water WW Product P Sol/Solid SL		COMPOSITE START		COMPOSITE ENDIGRAB					t						(N/A)		
SAMPLE ID (A.Z. D9/ ;) Sample IDs MUST BE UNIQUE	Bil Wipe An Tissue Other OT	186) APTRIX CODE (380) CODE (380) (380)	l	L		TA 9M9LE TEMP AT CC	43C0¢ ∩ubiesei∧eq ‡ OE CONTRINEK3	HCI HCI HNØ	NaOH 122S203 Ionsritelv	Ther Analysis Test						seridual Chlorine	C	
- 0																		
10 13																		
la o																		
م				+							+							
-8- 10											+	+						
11																		
ADDITIONAL COMMENTS	S	RELINOU	RELINDUISHED BY AFFILIATION	-ILIATION	DATE	Е	TIME		ACCEP	ACCEPTED BY / AFFILIATION	AFFILIA	NOI	DATE		TIME	-	SAMPLE CONDITIONS	NDITIONS
			SAI	MPLER NAN	SAMPLER NAME AND SIGNATURE	TURE										eol u Oo	bele	(M)
				PRIN	PRINT Name of SAMPLER:	IPLER:										o pə		ر (۷) عد ار ۱۳
																		911

Document Revised: May 12, 2015 Effective Date of Last Signature Page 92 of 132

Document No.: Quality Assurance Manual rev.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace *Green Bay* Quality Office

ATTACHMENT VIII- METHOD HOLD TIME, CONTAINER AND PRESERVATION GUIDE (CURRENT AS OF ISSUE DATE)

THE HOLDING TIME INDICATED IN THE CHART BELOW IS THE MAXIMUM ALLOWABLE TIME FROM COLLECTION TO EXTRACTION AND/OR ANALYSIS PER THE ANALYTICAL METHOD. FOR METHODS THAT REQUIRE PROCESSING PRIOR TO ANALYSIS, THE HOLDING TIME IS DESIGNATED AS 'PREPARATION HOLDING TIME/ANALYSIS HOLDING TIME'.

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Acid Base					
Accounting	Sobek	Solid	Plastic/Glass	None	N/A
Acidity	SM2310B	Water	Plastic/Glass	$\leq 6^{\circ}C$	14 Days
Acid Volatile					
Sulfide	Draft EPA 1629	Solid	8oz Glass	$\leq 6^{\circ}C$	14 Days
Actinides	HASL-300	Water	Plastic/Glass	pH<2 HNO ₃	180 Days
Actinides	HASL-300	Solid	Plastic/Glass	None	180 Days
Alkalinity	SM2320B/310.2	Water	Plastic/Glass	$\leq 6^{\circ}C$	14 Days
Alkylated PAHs		Water	1L Amber Glass	≤ 6°C; pH<2 1:1 HCl (optional)	14/40 Days preserved; 7/40 Days unpreserved
Alkylated PAHs		Solid	8oz Glass	$\leq 10^{\circ}$ C	1 Year/40 Days
Anions (Br, Cl, F, NO ₂ , NO ₃ , o-Phos, SO ₄ , bromate, chlorite, chlorate)	300.0/300.1/SM411 0B	Water	Plastic/Glass	≤ 6°C; EDA if bromate or chlorite run	All analytes 28 days except: NO ₂ , NO ₃ , o- Phos (48 Hours); chlorite (immediately for 300.0; 14 Days for 300.1). NO ₂ /NO ₃ combo 28 days.
Anions (Br, Cl, F, NO ₂ , NO ₃ , o-Phos, SO ₄ , bromate, chlorite, chlorate)	300.0	Solid	Plastic/Glass	≤ 6°C	All analytes 28 days except: NO ₂ , NO ₃ , o- Phos (48 hours); chlorite (immediately). NO ₂ /NO ₃ combo 28 days.

~	Pace Analytical [®]
P	, abor mary troat

Document Revised: May 12, 2015 Effective Date of Last Signature Page 93 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Anions (Br, Cl, F,					
NO_2 , NO_3 , o-Phos,	0056	Water/	D1 (* /01	< (°C	20.1
SO_4 Aromatic and	9056	Solid	Plastic/Glass	$\leq 6^{\circ}C$	28 days
Halogenated					
Volatiles (see note					
1)	8021	Solid	5035 vial kit	See note 1	14 days
1)	0021	Solid	5055 vidi Kit		14 Days (7
Aromatic and				pH<2 HCl; $\leq 6^{\circ}$ C;	Days for
Halogenated				$Na_2S_2O_3$ if Cl	aromatics if
Volatiles	602/8021	Water	40mL vials	present	unpreserved)
			Plastic/Glass;	F	. F lat lay
			bulk- 2"		
			square;	None (handling	
			popcorn	must be done in	
			ceiling-	HEPA filtered	
			2tbsp; soil-	fume hood; drying	
Asbestos	EPA 600/R-93/116	Solid	4oz	may be required)	N/A
Bacteria, Total Plate					
Count	SM9221D	Water	Plastic/WK	\leq 6°C; Na ₂ S ₂ O ₃	24 Hours
Base/Neutrals and					
Acids	8270	Solid	8oz Glass	$\leq 6^{\circ}C$	14/40 Days
Base/Neutrals and			1L Amber	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	
Acids	625/8270	Water	Glass	Cl present	7/40 Days
			17 4 1	$pH < 2 HCl; \leq 6^{\circ}C;$	
Base/Neutrals,	525.2	XX 7 4	1L Amber	Na sulfite if Cl	14/20 D
Acids & Pesticides	525.2	Water	Glass	present	14/30 Days
			≤ 6°C; pH<2 1:1 HCl	14/40 Days	≤ 6°C; pH<2 1:1 HCl
Biomarkers		Water	(optional)	preserved; 7/40 Days unpreserved	(optional)
Biomarkers		Solid	$< 10^{\circ} C$	1 Year/40 Days	$< 10^{\circ} C$
BOD/cBOD	SM5210B	Water	Plastic/Glass	$\leq 6^{\circ}C$	48 hours
Boiling Range	514152100	water	1 105110/01055	<u> </u>	10 110013
Distribution of			10mL glass		
Petroleum Fractions	ASTM D2887-98	Product	vials	$< 6^{\circ}C$	N/A
BTEX/Total			Summa		
Hydrocarbons	TO-3	Air	Canister	None	14 Days
BTEX/Total		1	Tedlar Bag		
Hydrocarbons	TO-3	Air	or equivalent	None	48 Hours
				$Na_2S_2O_3$,	
				Monochloroacetic	
Carbamates	531.1	Water	Glass	acid pH <3; ≤ 6°C	28 Days
				Monochloroacetic	
Carbamates	8318	Water	Glass	acid pH 4-5; $\leq 6^{\circ}$ C	7/40 Days

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 94 of 132
1	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Carbamates	8318	Solid	Glass	$\leq 6^{\circ}C$	7/40 Days
Carbon Specific			40mL clear		
Isoptope Analysis			VOA vial	$\leq 6^{\circ}$ C, trisodium	
(CSIA)	AM24	Water	with TLS	phosphate or HCl	N/A
Cation/Anion Balance	SM1030E	Water	Plastic/Glass	None	None
Cation Exchange	9081	Solid	8 8 Glass	None	unknown
Cations (Ferrous	2001	Solid	40mL clear		
Iron, Ferric Iron,			VOA vials		
Divalent			with mylar		
Manganese)	7199 modified	Water	septum	$\leq 6^{\circ}C; HCl$	48 Hours
Chloride	SM4500C1-C,E	Water	Plastic/Glass	None	28 Days
Chlorinated			20cc vapor		
Hydrocarbons in			vial with flat		
Vapor	AM4.02	Vapor	septum	None	N/A
	SM4500C1-				
	D,E,G/330.5/Hach	***			1.5
Chlorine, Residual	8167	Water	Plastic/Glass	None	15 minutes
			Opaque bottle or		
			aluminum		48 Hours to
Chlorophyll	SM10200H	Water	foil	< 6°C	filtration
Chiorophyn	SM1020011 SM5220C,	water	1011	$pH < 2 H_2 SO_4; \leq$	
COD	D/410.4/Hach 8000	Water	Plastic/Glass	6°C	28 Days
002		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100mL		202030
Coliform, Fecal	SM9222D	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
			100mL		
Coliform, Fecal	SM9222D	Solid	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	24 Hours
			100mL		
Coliform, Fecal	SM9221E	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
			100mL		
Coliform, Fecal	SM9221E	Solid	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	24 Hours
	C) (00000)	XX 7 /	100mL	10 ⁰ C N. C O	0.11
Coliform, Total	SM9222B	Water	Plastic 100ml	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
Coliform, Total	SM9221B	Solid	100mL Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
Coliform, Total,	Colilert/ Quanti-	Soliu	100mL	\geq 10 C, 1Na ₂ S ₂ O ₃	0 110415
Fecal and E. coli	tray	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
Coliform, Total and	uuy	Drinkin	100mL		0 110010
E. coli	SM9223B	g Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	30 Hours
			Covered		
			Plastic/Acid		
			Washed		
Color	SM2120B,E	Water	Amber Glass	$\leq 6^{\circ}C$	24 Hours

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 95 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i>

le.

Bav Ouality Office	- r	x				
		Rav	Oualit	v Off	ice	

-1

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Condensable					
Particulate Emissions	EPA 202	Air	Solutions	None	180 Days
Cyanide, Reactive	SW846 chap.7	Water	Plastic/Glass	None	28 Days
Cyanide, Reactive	SW846 chap.7	Solid	Plastic/Glass	None	28 Days
Cyanide, Total and Amenable	SM4500CN- A,B,C,D,E,G,I,N/9 010/ 9012/335.4	Water	Plastic/Glass	pH≥12 NaOH; ≤ 6°C; ascorbic acid if Cl present	14 Days (24 Hours if sulfide present- applies to SM4500CN only)
Diesel Range Organics- Alaska DRO	AK102	Solid	8oz Glass	≤6°C	14/40 Days
Diesel Range Organics- Alaska DRO	AK102	Water	1L Glass	pH<2 HCl; ≤ 6°C	14/40 Days
Diesel Range Organics- TPH DRO Diesel Range	8015	Solid	8oz Glass Jar	<u>≤</u> 6°C	14/40 Days
Organics- TPH DRO	8015	Water	1L Amber Glass	\leq 6°C; Na ₂ S ₂ O ₃ if Cl present	7/40 Days
Diesel Range Organics- TPH DRO Diesel Range	TO-17	Air	Thermal desorption tubes via SKC Pocket Pumps or equivalent	≤ 6°C but above freezing	28 Days
Organics- NwTPH- Dx	Nw-TPH-Dx	Solid	8oz Glass Jar	<u>≤</u> 6°C	14/40 Days
Diesel Range Organics- NwTPH- Dx Diesel Range	Nw-TPH-Dx	Water	1L Amber Glass	pH <2 HCl; ≤ 6°C	14/40 Days; 7 Days from collection to extraction if unpreserved
Organics- Wisconsin DRO	WI MOD DRO	Solid	Tared 4oz Glass Jar	<u>≤</u> 6°C	10/47 Days
Diesel Range Organics- Wisconsin DRO Dioxins and Furans	WI MOD DRO	Water Solid	1L Amber Glass	<u>≤ 6°C; pH <2 HCl</u> < 6°C	14/40 Days
Dioxins and Furans	1613B 1613B	Water	8oz Glass 1L Amber	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	1 year 1 year

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 96 of 132	
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office	

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
			Glass	Cl present	
		Fish/	Aluminum		
Dioxins and Furans	1613B	Tissue	foil	$\leq 6^{\circ}C$	1 year
			1L Amber	\leq 6°C; Na ₂ S ₂ O ₃ if	
Dioxins and Furans	8290	Water	Glass	Cl present	30/45 Days
Dioxins and Furans	8290	Solid	8oz Glass	$\leq 6^{\circ}C$	30/45 Days
		Fish/			
Dioxins and Furans	8290	Tissue	Not specified	$< -10^{\circ}$ C	30/45 Days
Dioxins and Furans	ТО-9	Air	PUF	None	30/45 Days
			Amber		
Diquat/Paraquat	549.2	Water	Plastic	\leq 6°C; Na ₂ S ₂ O ₃	7/21 Days
EDB/DBCP (8011)					
EDB/DBCP/1,2,3-				\leq 6°C; Na ₂ S ₂ O ₃ if	
TCP (504.1)	504.1/8011	Water	40mL vials	\underline{C} l present	14 Days
Endothall	548.1	Water	Amber Glass	$\leq 6^{\circ}C; Na_2S_2O_3$	7/14 Days
Lindotinuit	5 10.1	water	100mL	<u>- 0 0, 1025203</u>	7711 Duys
Enterococci	EPA 1600	Water	Plastic	$\leq 10^{\circ}$ C	8 Hours
Lincibebeel		water	100mL	<u> </u>	0 110013
Enterococci	Enterolert	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
Enterococci	Enteroien	water	1L Amber	≤ 10 C, $Na_2S_2O_3$	0 110u15
Eveloping	0220/0222	Watan	Glass	$< C^0 C$	7/40 Dava
Explosives	8330/8332	Water	802 Glass Jar	$\frac{\leq 6^{\circ}C}{< 6^{\circ}C}$	7/40 Days
Explosives	8330/8332	Solid	802 Glass Jar	<u><</u> 00	14/40 Days
Extractable					
Petroleum					
Hydrocarbons			17 4 1		
(aliphatic and			1L Amber		
aromatic)	MA-EPH	Water	Glass	pH<2 HCl; ≤ 6°C	14/40 Days
Extractable					
Petroleum					
Hydrocarbons					
(aliphatic and					
aromatic)	MA-EPH	Solid	4oz Glass Jar	$\leq 6^{\circ}C$	7/40 Days
			100mL	-	
Fecal Streptococci	SM9230B	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
	SN3500Fe-D; Hach				
Ferrous Iron	8146	Water	Glass	None	Immediate
Flashpoint/					
Ignitability	1010	Liquid	Plastic/Glass	None	28 Days
	FL PRO DEP		Glass, PTFE	≤ 6°C; pH <2	
Florida PRO	(11/1/95)	Liquid	lined cap	H_2SO_4 or HCl	7/40 Days
Fluoride	SM4500F1-C,D	Water	Plastic	None	28 Days
Gamma Emitting					
Radionuclides	901.1	Water	Plastic/Glass	pH<2 HNO ₃	180 days
Gasoline Range	8015	Water	40mL vials	pH<2 HCl	14 Days

2	
Pace Analytical	

Document Revised: May 12, 2015 Effective Date of Last Signature Page 97 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Organics					
Gasoline Range					
Organics	8015	Solid	5035 vial kit	See note 1	14 days
Gasoline Range					
Organics (C3-C10)	8260B modified	Water	40mL vials	$\leq 6^{\circ}C; HCl$	14 Days
Gasoline Range					
Organics (C3-C10)	8260B modified	Solid	4oz Glass Jar	$\leq 6^{\circ}C$	14 Days
Constinue Donnes					28 Days if
Gasoline Range					GRO only (14
Organics- Alaska GRO	AK101	Solid	5035 vial kit	See 5035 note*	Days with BTEX)
Gasoline Range	AKIUI	Solid	JUSS VIALKIL	See 5055 note	DIEA)
Organics- Alaska					
GRO	AK101	Water	40mL vials	pH<2 HCl; ≤ 6°C	14 Days
		··· ater	Tomie viuis	pii 2 iici, <u>-</u> 0 C	7 Days
Gasoline Range					unpreserved;
Organics- NwTPH-					14 Days
Gx	Nw-TPH-Gx	Water	40mL vials	pH<2 HCl; $\leq 6^{\circ}$ C	preserved
Gasoline Range					
Organics- NwTPH-				\leq 6°C; packed jars	
Gx	Nw-TPH-Gx	Solid	40mL vials	with no headspace	14 Days
Gasoline Range					
Organics- Wisconsin					
GRO	WI MOD GRO	Water	40mL vials	pH<2 HCl; ≤ 6°C	14 Days
Gasoline Range					
Organics- Wisconsin		0.111	40mL MeOH		21 D
GRO	WI MOD GRO	Solid	vials	$\leq 6^{\circ}$ C in MeOH	21 Days 14 Days (18
Clyphosete	547	Water	Glass	$< 6^{\circ}C$ No S O	Months frozen)
Glyphosate Grain Size	ASTM D422	Solid	Not specified	\leq 6°C; Na ₂ S ₂ O ₃ Ambient	N/A
Gross Alpha (NJ		Solid	Not specified	Amorent	11/7
48Hr Method)	NJAC 7:18-6	Water	Plastic/Glass	pH<2 HNO ₃	48 Hrs
Gross Alpha and		W ator		pir 2 m(0y	10 1115
Gross Beta	9310/900.0	Water	Plastic/Glass	pH<2 HNO ₃	180 Days
Gross Alpha and					· · · · · · · · · · · · · · · · · · ·
Gross Beta	9310	Solid	Glass	None	180 Days
					14/7 Days if
					extracts stored
					\leq 6°C or 14/14
					Days if
			40mL Amber		extracts stored
Haloacetic Acids	552.1/552.2	Water	vials	$NH_4Cl; \leq 6^{\circ}C$	at \leq -10°C
Hardness, Total		***			
(CaCO ₃)	SM2340B,C/130.1	Water	Plastic/Glass	pH<2 HNO ₃	6 Months
Heterotrophic Plate	SM9215B	Water	100mL	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours

2	0
Pace Analytical	

Document Revised: May 12, 2015 Effective Date of Last Signature Page 98 of 132

Document No.: Quality Assurance Manual rev.18.0

					Max Hold
Parameter	Method	Matrix	Container	Preservative	Time
Count (SPC/HPC)			Plastic		
Heterotrophic Plate			100mL		
Count (SPC/HPC)	SimPlate	Water	Plastic	$\leq 10^{\circ}$ C; Na ₂ S ₂ O ₃	8 Hours
Herbicides,					
Chlorinated	8151	Solid	8oz Glass Jar	$\leq 6^{\circ}C$	14/40 Days
Herbicides,			1L Amber	\leq 6°C; Na ₂ S ₂ O ₃ if	
Chlorinated	8151	Water	Glass	Cl present	7/40 Days
Herbicides,			1L Amber	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	
Chlorinated	515.1/515.3	Water	Glass	Cl present	14/28 Days
Hexavalent	7196/218.6/SM350			-0	24 Hours (see
Chromium	0Cr-B, C, D	Water	Plastic/Glass	$\leq 6^{\circ}C$	note 4)
Hexavalent	218.6/SM3500Cr-			Ammonium	28 Days (see
Chromium	B, C, D	Water	Plastic/Glass	Buffer pH 9.3-9.7	note 4)
Hexavalent		Drinkin		Ammonium	14 Days (see
Chromium	218.6/218.7	g Water	Plastic/Glass	Buffer pH >8	note 4)
					30 Days from
					collection to
					extraction and
TT 1					7 days from
Hexavalent	510 (()) 10 (0))	G 111			extraction to
Chromium	7196 (with 3060A)	Solid		$\leq 6^{\circ}C$	analysis
TT 1 1 '			20cc vapor		
Hydrocarbons in	124.02	* 7	vial with flat	N	
Vapor	AM4.02	Vapor	septum	None	N/A
			20cc vapor		
II 1 1 D 111			vial with		
Hydrogen by Bubble	CMO/AM20CA-	Weter	stopper	Num	14 D
Strip	SM9/AM20GAx	Water	septum	None	14 Days
Hydrogen Halide					
and Halogen	EDA 26	A in	Solutions	Nono	6 Months
Emissions	EPA 26	Air	Solutions	None	6 Months
		Non- liquid			
Ignitability of Solida	1030	Waste	Plastic/Glass	None	28 Dave
Ignitability of Solids	1030	waste	Filter/Solutio	INDIRE	28 Days
Lead Emissions	EPA 12	Air		None	6 Months
Leau Lillissiolis			ns 20cc vapor		0 101011115
			vial with		
Light Hydrocarbons			stopper		
by Bubble Strip	SM9/AM20GAx	Water	septum	None	14 Days
by Bubble Sulp	SIVI7/AIVI20UAX	vv alci	20cc vapor		14 Days
Light Hydrocarbons			vial with flat		
in Vapor	AM20GAx	Vapor		None	14 Days
		v apoi	septum		14 Days 1 Year if
Linide	Pace Linida	Tissue	Plastic/Glass	$< 6^{\circ}C / < 10^{\circ}C$	
Lipids	Pace Lipids	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen

Pace Analytical®

Document Revised: May 12, 2015 Effective Date of Last Signature Page 99 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold
1 al allicici					Time
Mercury, Low-Level	1631E	Solid	Glass	None	28 Days
					48 Hours for
					preservation or
					analysis; 28
					Days to
			Fluoropolym		preservation if
			er bottles		sample
			(Glass if Hg		oxidized in
			is only		bottle; 90 Days
			analyte being		for analysis if
Mercury, Low-Level	1631E	Water	tested)	12N HCl or BrCl	preserved
					28 Days if
Mercury, Low-Level	1631E	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen
Mercury	7471	Solid	8oz Glass Jar	$\leq 6^{\circ}C$	28 Days
Mercury	7470/245.1/245.2	Water	Plastic/Glass	pH<2 HNO ₃	28 Days
					28 Days if
Mercury	7471/245.6	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen
Metals (GFAA)	7000/200.9	Water	Plastic/Glass	pH<2 HNO ₃	180 Days
	NIOSH				
Metals (ICP)	7300A/7303	Air	Filters	None	180 Days
Metals					
(ICP/ICPMS)	6010/6020	Solid	8oz Glass Jar	None	180 Days
Metals	6010/6020/200.7/				
(ICP/ICPMS)	200.8	Water	Plastic/Glass	pH<2 HNO ₃	180 Days
					180 Days if
Metals (ICPMS)	6020	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen
Methane, Ethane,					
Ethene	8015 modified	Water	40mL vials	HCl	14 Days
				HCl; or trisodium	
				phosphate or	14 Days; 7
Methane, Ethane,	RSK-175;			benzalkonium	Days
Ethene	PM01/AM20GAx	Water	40mL vials	chloride and $\leq 6^{\circ}C$	unpreserved
Methane, Ethane,			Summa		
Ethene	EPA 3C	Air	Canister	None	14 Days
Methane, Ethane,			Tedlar Bag		10.77
Ethene	EPA 3C	Air	or equivalent	None	48 Hours
Methanol, Ethanol	8015 modified	Water	40mL vials	$\leq 6^{\circ}C$	14 Days
Methanol, Ethanol	8015 modified	Solid	2oz Glass	$\leq 6^{\circ}C$	14 Days
				Fresh water-	
				4mL/L HCl;	
				Saline water-	
				2mL/L H2SO4	
				(must be preserved	
NC 4 1 1 1	1(20)	337	Teflon/	within 48 hours of	
Methyl Mercury	1630	Water	fluoropolymer	collection)	6 months

Prace Analytical"

Document Revised: May 12, 2015 Effective Date of Last Signature Page 100 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
					28 Days;
			2 4 1		ethylated
Methyl Mercury	1630	Tissue	2-4oz glass jar	$< 0^{\circ}$ C	distillate 48 hours
	1050	115500	Jai	$pH < 2 H_2 SO_4; \leq$	nouis
Nitrogen, Ammonia	SM4500NH3/350.1	Water	Plastic/Glass	6°C	28 Days
Nitrogen, Kjeldahl	5101150010115/550.1	vv ater	1 lustic/ Gluss	0.0	20 Days
(TKN)	351.2	Solid	Plastic/Glass	< 6°C	28 Days
Nitrogen, Kjeldahl	SM4500-	Sona		$pH < 2 H_2SO_4; \leq$	20 Duj5
(TKN)	Norg/351.2	Water	Plastic/Glass	6°C	28 Days
	SM4500-				24 Hours
Nitrogen, Nitrate	NO3/352.1	Water	Plastic/Glass	$< 6^{\circ}C$	preferred
Nitrogen, Nitrate &				_ • •	p
Nitrite combination	353.2	Solid	Plastic/Glass	$< 6^{\circ}C$	28 Days
Nitrogen, Nitrate &	SM4500-			$pH \le 2 H_2 SO_4; \le$	
Nitrite combination	NO3/353.2	Water	Plastic/Glass	6°C	28 Days
Nitrogen, Nitrite or	SM4500-				
Nitrate separately	NO2/353.2	Water	Plastic/Glass	< 6°C	48 Hours
	SM4500-			$pH \leq 2 H_2 SO_4; \leq$	
Nitrogen, Organic	Norg/351.2	Water	Plastic/Glass	$6^{\circ}C$	28 Days
Non-Methane			Summa		2
Organics	EPA 25C	Air	Canister	None	14 Days
Non-Methane			Tedlar Bag		
Organics	EPA 25C	Air	or equivalent	None	48 Hours
Odor	SM2150B	Water	Glass	$\leq 6^{\circ}C$	24 Hours
Oil and	1664A/SM5520B/9			pH<2 H ₂ SO ₄ or	
Grease/HEM	070	Water	Glass	HCl; $\leq 6^{\circ}$ C	28 Days
Oil and					
Grease/HEM	9071	Solid	Glass	$\leq 6^{\circ}C$	28 Days
Oil Range Organics	8015	Solid	Glass	$\leq 6^{\circ}C$	14/40 Days
Oil Range Organics	8015	Water	Glass	$\leq 6^{\circ}C$	7/40 Days
				None; samples air-	
				dried and	
				processed prior to	
Organic Matter	ASA 29-3.5.2	Solid	Plastic/Glass	analysis	N/A
Oxygen, Dissolved					
(Probe)	SM4500-O	Water	Glass	None	15 minutes
Oxygenates on					14 Days (7
Product (GCMS			10mL glass	-0	Days from
SIM)	1625 modified	Product	vial	$\leq 6^{\circ}C$	extraction)
			1L Amber	<0 m	
PBDEs	1614	Water	Glass	$\leq 6^{\circ}C$	1 Year/1 Year
		~	Wide Mouth	(0.0	
PBDEs	1614	Solid	Jar	$\leq 6^{\circ}C$	1 Year/1 Year

Prace Analytical"	

Document Revised: May 12, 2015 Effective Date of Last Signature Page 101 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
			Aluminum		
PBDEs	1614	Tissue	Foil	\leq -10°C	1 Year/1 Year
PCBs and					
Pesticides,					
Organochlorine					
(OC)	TO-4/TO-10	Air	PUF	None	7/40 Days
PCBs and					D . 5/40
Pesticides,					Pest: 7/40
Organochlorine	(00)		1L Amber	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	Days; PCB: 1
(OC)	608	Water	Glass	Cl present	Year/1 Year
PCBs, Pesticides	F 00.4		~1	Na2SO3; pH<2	11/20 5
(OC), Herbicides	508.1	Water	Glass	$\underline{\text{HCl}}; \leq 6^{\circ}\text{C}$	14/30 Days
				$\geq 0.6^{\circ}$ C, field	
D 11	221	XX 7 ·		filtered with	20 D
Perchlorate	331	Water	Plastic/Glass	headspace	28 Days
Permanent Gases	RSK-175;			benzalkonium	115
(O2, N2, CO2)	PM01/AM20GAx	Water	40mL vials	chloride and $\leq 6^{\circ}C$	14 Days
			20cc vapor		
			vial with		
Permanent Gases by			stopper		115
Bubble Strip	SM9/AM20GAx	Water	septum	None	14 Days
			20cc vapor		
Permanent Gases in		* 7	vial with flat	N	14.0
Vapor	AM20GAx	Vapor	septum	None	14 Days
Pesticides,			17 4	$\langle (^{0}\mathbf{C}) \mathbf{N} \mathbf{C} \mathbf{O} \rangle$	
Organochlorine	0001	TT	1L Amber	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	7/40 Dame
(OC)	8081	Water	Glass	Cl present	7/40 Days
Pesticides,					
Organochlorine	8081	0.11.1	$0 = C_1 = 1 = 1$	< (°C	14/40 Dama
(OC)	8081	Solid	80z Glass Jar	$\leq 6^{\circ}C$	14/40 Days
Pesticides,					1
Organochlorine	0001	Tianua	$Q_{a=} C_{a=a}$ Ian	$< (^{0}C) < 10^{0}C$	1 Year if
(OC)	8081	Tissue	80z Glass Jar	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen/40 Days
Pesticides,					
Organophosphorous	01/1	S ali d	Por Class Is	< 6°C	14/40 Darra
(OP)	8141	Solid	8oz Glass Jar	$\leq 6^{\circ}$ C	14/40 Days
Destinidas				pH 5-8 with	
Pesticides,			1L Amber	NaOH or H_2SO_4 ;	
Organophosphorous	<u>8141</u>	Watar	Glass	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	7/40 Dave
(OP)	8141	Water	-	Cl present $< 6^{\circ}$ C: No S O if	7/40 Days
DCBs (Arcolors)	8082	Water	1L Amber Glass	$\leq 6^{\circ}$ C; Na ₂ S ₂ O ₃ if	1 Voor/1 Voor
PCBs (Aroclors)				Cl present < 6°C	1 Year/1 Year
PCBs (Aroclors)	8082	Solid	8oz Glass Jar		1 Year/1 Year
DCDa (Americana)	0000	Tigerra	Dlastic /Class	$< 6^{\circ}C / < 10^{\circ}C$	1 Year if
PCBs (Aroclors)	8082	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen/1 Year

Page Applytic	al®
Pace Analytic	al

Document No.: Quality Assurance Manual rev.18.0 Document Revised: May 12, 2015 Effective Date of Last Signature Page 102 of 132

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
			1L Amber	\leq 6°C but above	
PCB Congeners	1668A	Water	Glass	freezing	1 Year/1 Year
			4-8oz Glass	$\leq 6^{\circ}$ C but above	//
PCB Congeners	1668A	Solid	Jar	freezing	1 Year/1 Year
		— ·	4-8oz Glass	1000	
PCB Congeners	1668A	Tissue	Jar	$\leq -10^{\circ} C$	1 Year/1 Year
Paint Filter Liquid	0005	Watan	Dlastic/Class	Nama	
Test	9095	Water	Plastic/Glass Plastic/Glass	None	N/A
Particle Size	ASA 15-5 modified	Solid	(100g	None	N/A
Particulates	PM-10	Air	sample) Filters	None	180 Days
Faiticulates	F IVI-10	All	Summa	INOILE	160 Days
Permanent Gases	EPA 3C	Air	Canister	None	14 Days
		АП	Tedlar Bag	None	14 Days
Permanent Gases	EPA 3C	Air	or equivalent	None	48 Hours
pH	SM4500H+B/9040	Water	Plastic/Glass	None	15 minutes
pH	9045	Solid	Plastic/Glass	None	7 Days
	420.1/420.4/9065/9	Solid	Thusher Gluss	$pH < 2 H_2 SO_4; \leq$	7 Duys
Phenol, Total	066	Water	Glass	6°C	28 Days
Phosphorus,	SM4500P/365.1/36				Filter within 15 minutes, Analyze within
Orthophosphate	5.3	Water	Plastic	Filter; $\leq 6^{\circ}C$	48 Hours
	SM4500P/			$pH \leq 2 H_2 SO_4; \leq$	
Phosphorus, Total	365.1/365.3/365.4	Water	Plastic/Glass	6°C	28 Days
Phosphorus, Total	365.4	Solid	Plastic/Glass	$\leq 6^{\circ}C$	28 Days
Polynuclear Aromatic Hydrocarbons					
(PAH)	TO-13	Air	PUF	None	7/40 Days
Polynuclear Aromatic Hydrocarbons			Thermal desorption tubes via SKC Pocket Pumps or	\leq 6°C but above	
(PAH)	TO-17	Air	equivalent	freezing	28 Days
Polynuclear Aromatic Hydrocarbons					
(PAH)	8270 SIM	Solid	8oz Glass Jar	$\leq 6^{\circ}C$	14/40 Days
Polynuclear Aromatic Hydrocarbons (PAH)	8270 SIM	Water	1L Amber Glass	≤ 6°C; Na ₂ S ₂ O ₃ if Cl present	7/40 Days

Pace Analytical®

Document Revised: May 12, 2015 Effective Date of Last Signature Page 103 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
Polynuclear					
Aromatic					
Hydrocarbons					1 Year if
(PAH)	8270 SIM	Tissue	Plastic/Glass	$\leq 6^{\circ}C / \leq -10^{\circ}C$	frozen/40 Days
Purgeable Organic			Glass; no		
Halides (POX)	9021	Water	headspace	$\leq 6^{\circ}C$	14 Days
Radioactive					
Strontium	905.0	Water	Plastic/Glass	pH<2 HNO ₃	180 days
Radium-226	903.0/903.1	Water	Plastic/Glass	pH<2 HNO ₃	180 days
Radium-228 (see					
note 3)	9320/904.0	Water	Plastic/Glass	pH<2 HNO ₃	180 days
Radium-228 (see					
note 3)	9320	Solid	Plastic/Glass		
Residual Range					
Organics- Alaska					
RRO	AK103	Solid	8oz Glass	< 6°C	14/40 Days
			\leq 6°C; pH<2	14/40 Days	$\leq 6^{\circ}C; pH \leq 2$
Saturated			1:1 HCl	preserved; 7/40	1:1 HCl
Hydrocarbons		Water	(optional)	Days unpreserved	(optional)
Saturated					
Hydrocarbons		Solid	< 10°C	1 Year/40 Days	< 10°C
Silica, Dissolved	SM4500Si-D	Water	Plastic	< 6°C	28 Days
Solids, Settleable	SM2540F	Water	Glass	< 6°C	48 Hours
Solids, Total	SM2540B	Water	Plastic/Glass	< 6°C	7 Days
Solids, Total	SM2540G	Solid	Plastic/Glass	< 6°C	7 Days
Solids, Total (FOC,					
OM, Ash)	ASTM D2974	Solid	Plastic/Glass	$\leq 6^{\circ}C$	7 Days
Solids, Total					,, .
Dissolved	SM2540C	Water	Plastic/Glass	< 6°C	7 Days
Solids, Total	SM2540D/USGS I-				,
Suspended	3765-85	Water	Plastic/Glass	$\leq 6^{\circ}C$	7 Days
Solids, Total					, <u>2</u> uj s
Volatile	160.4/SM2540E	Water	Plastic/Glass	< 6°C	7 Days
Solids, Total		() ater	Thustie, Gluss		7 Duj5
Volatile	160.4	Solid	Plastic/Glass	< 6°C	7 Days
Specific	SM2510B/9050/12		1 10010/ 01000		, 24,0
Conductance	0.1	Water	Plastic/Glass	$\leq 6^{\circ}C$	28 Days
Stationary Source	V+1		1 105010/ 01055		20 Duj 5
Dioxins and Furans	EPA 23	Air	XAD Trap	None	30/45 Days
Stationary Source			The map	1,0110	180 Days, 28
Mercury	EPA 101	Air	Filters	None	Days for Hg
Stationary Source		1111	1 11015		180 Days, 28
Metals	EPA 29	Air	Filters	None	Days for Hg
Stationary Source	EPA 201A	Air	Filters	None	180 Days
Stationary Source	LFA 201A	AII	rmers	INDIE	100 Days

2 Augusta	10
Pace Analytic	al

Document Revised: May 12, 2015 Effective Date of Last Signature Page 104 of 132

Document No.: Quality Assurance Manual rev.18.0

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
PM10					
Stationary Source			Filter/Solutio		
Particulates	EPA 5	Air	ns	None	180 Days
	SM4500SO4/9036/				
	9038/375.2/ASTM				
Sulfate	D516	Water	Plastic/Glass	$\leq 6^{\circ}C$	28 Days
Sulfide, Reactive	SW-846 Chap.7	Water	Plastic/Glass	None	28 Days
Sulfide, Reactive	SW-846 Chap.7	Solid	Plastic/Glass	None	28 Days
				pH>9 NaOH;	
Sulfide, Total	SM4500S/9030	Water	Plastic/Glass	$ZnOAc; \leq 6^{\circ}C$	7 Days
Sulfite	SM4500SO3	Water	Plastic/Glass	None	15 minutes
Surfactants (MBAS)	SM5540C	Water	Plastic/Glass	$\leq 6^{\circ}C$	48 Hours
Total Alpha Radium					
(see note 3)	9315/903.0	Water	Plastic/Glass	pH<2 HNO ₃	180 days
Total Alpha Radium					
(see note 3)	9315	Solid	Plastic/Glass	None	180 days
			40mL VOA		
Total Inorganic			vial with	(0.0	115
Carbon (TIC)	PM01/AM20GAx	Water	mylar septum	$\leq 6^{\circ}C$	14 Days
Total Organic	SM5310B,C,D/906		~ 1	pH<2 H ₂ SO ₄ or	
Carbon (TOC)	0	Water	Glass	HCl; $\leq 6^{\circ}$ C	28 Days
Total Organic	9060/Walkley	G 111			14.5
Carbon (TOC)	Black/Lloyd Kahn	Solid	Glass	$\leq 6^{\circ}C$	14 Days
Total Organic			Glass; no	(0.0	115
Halogen (TOX)	SM5320/9020	Water	headspace	$\leq 6^{\circ}C$	14 Days
Total Petroleum					
Hydrocarbons					
(aliphatic and	TRUCING	337	40 T · 1	pH<2 HCl, no	7 D
aromatic)	TPHCWG	Water	40mL vials	headspace, $\leq 6^{\circ}C$	7 Days
Total Petroleum					
Hydrocarbons					
(aliphatic and	TRUCING	0.111	01	< (°C	14.1
aromatic)	TPHCWG	Solid	Glass	$\leq 6^{\circ}C$	14 days
Tritium	906.0	Water	Glass	None	180 days
Turbidity	SM2130B/180.1	Water	Plastic/Glass	$\leq 6^{\circ}C$	48 Hours
Total Lines in m	908.0/ASTM	Water	Dlastic/Class		190 days
Total Uranium	D5174-97	Water	Plastic/Glass	pH<2 HNO ₃	180 days
UCMR3 Metals	200.8	Water	Plastic or glass	pH<2 HNO ₃	28 Days
UCMR3 Hexavalent			HDPE or	Na ₂ CO ₃ /NaHCO ₃ /	, , , , , , , , , , , , , , , , , , ,
Chromium	218.7	Water	propylene	$(NH_4)_2SO_4; pH>8$	14 Days
			Plastic or	172	·· , ·-
UCMR3 Chlorate	300.1	Water	glass	EDA	28 Days
UCMR3 Hormones	539	Water	Amber glass	$Na_2S_2O_3, 2-$	28 Days

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 105 of 132
<u> </u>	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
				mercaptopyridine- 1-oxide, sodium	
				salt	
UCMR3					
Perfluorinated			Polypropylen		
Compounds	537	Water	e	Trizma	14 Days
			40 mL amber	Ascorbic acid.	
UCMR3 Volatiles	524.3	Water	glass vials	Maleic acid pH~2	14 Days
UCMR3 1, 4		Water	8	Na ₂ SO ₃ NaHSO ₄ ;	
Dioxane	522		Glass	pH<4	28 Days
UV254	SM5910B	Water	Glass	$\leq 6^{\circ}C$	48 Hours
		1	1	None (handling	1
				must be done in	
				HEPA filtered	
				fume hood; drying	
Vermiculite	EPA 600/R-93/116	Solid	Plastic/Glass	may be required)	N/A
			40mL clear		
Volatile Fatty Acids	AM21G	Water	VOA vials	$\leq 6^{\circ}C$	21 Days
				\leq 6°C with	
Volatile Fatty Acids			40mL clear	benzalkonium	
(low level)	AM23G	Water	VOA vials	chloride	14 Days
Volatile Petroleum					
Hydrocarbons					
(aliphatic and					14 Days
aromatic)	MA-VPH	Water	40mL vials	$pH < 2 HCl; \le 6^{\circ}C$	preserved
Volatile Petroleum					
Hydrocarbons					
(aliphatic and			4-8oz Glass	\leq 6°C; packed jars	
aromatic)	MA-VPH	Solid	Jar	with no headspace	7/28 Days
			Summa		
Volatiles	TO-14	Air	Canister	None	30 Days
			Tedlar Bag		10.7-
Volatiles	TO-14	Air	or equivalent	None	48 Hours
			Summa		
Volatiles	TO-15	Air	Canister	None	30 Days
			Thermal		
			desorption		
			tubes via		
			SKC Pocket		
X 7 - 1 - 4 ¹ 1 -	TO 17	A :	Pumps or	$\leq 6^{\circ}$ C but above	20 D
Volatiles	TO-17	Air	equivalent	freezing	28 Days
Valatilar	TO 19/9260	A :	Tedlar Bag	None	72 H.
Volatiles	TO-18/8260	Air	or equivalent	None	72 Hours
Volatiles	8260	Solid	5035 vial kit	See note 1	14 days

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 106 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

Parameter	Method	Matrix	Container	Preservative	Max Hold Time
				(analyze for	
				acrolein and	
				acrylonitrile per	
				local	
				requirements)	
				$pH<2$ HCl; $\leq 6^{\circ}$ C;	
				Na ₂ S ₂ O ₃ if Cl	
				present (preserve	
				and analyze for	
				acrolein and	
				acrylonitrile per	
				local	
Volatiles	8260	Water	40mL vials	requirements)	14 Days
		~	5035 vial kit		
** 1 .11	0.0.0	Conc.	or 40mL	(0.0	
Volatiles	8260	Waste	vials	$\leq 6^{\circ}C$	14 Days
				pH<2 HCl; $\leq 6^{\circ}$ C;	
				$Na_2S_2O_3$ if Cl	
				present (or	
				unpreserved if run	
				within 7 days of	
				collection)	
				(preserve and	
				analyze for	14 D (7
				acrolein and	14 Days (7
				acrylonitrile per	Days for aromatics if
37-1-41	(0)	W Z = 4 = 1	40	local	
Volatiles	624	Water	40mL vials	requirements)	unpreserved)
				pH<2 HCl; \leq 6°C; Ascorbic acid or	
Valatilas (saa nota			40mL vials		
Volatiles (see note	524.2	Water		$Na_2S_2O_3$ if Cl present ²	14 Dave
2)	ASTM D3328	water	(in duplicate)	present	14 Days
			10mL alors		
Whole Oil	(prep); ASTM D5739	Product	10mL glass vials	< 6°C	N/A
Whole Oil	D3/39	Product	viais	$\leq 0 C$	1N/A

¹ **5035/5035A** Note: 5035 vial kit typically contains 2 vials water, preserved by freezing or, 2 vials aqueous sodium bisulfate preserved at 4°C, and one vial methanol preserved at $\leq 6^{\circ}$ C and one container of unpreserved sample stored at $\leq 6^{\circ}$ C.

 2 Method 524.2 lists ascorbic acid as the preservative when residual chlorine is suspected, unless gases or Table 7 compounds are NOT compounds of interest and then sodium thiosulfate is the preservative recommended.

³ Methods 9315 and 9320 both state that if samples are unpreserved, the samples should be brought to the lab within 5 days of collection, preserved in the lab, and then allowed to sit for a minimum of 16 hours before sample preparation/analysis.

Prace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 107 of 132
	Document No.:	Issuing Authorities:
	Quality Assurance Manual rev.18.0	Pace Corporate Quality Office and Pace Green
		Bay Quality Office

⁴ The holding time for hexavalent chromium may be extended by the addition of the ammonium buffer listed in EPA 218.6 per the 2012 EPA Method Update Rule. Although Method 218.6 stipulates a different pH range (9.0 to 9.5) for buffering, this method requirement was modified in the Method Update Rule to a pH range of 9.3 to 9.7.For non-potable waters, adjust the pH of the sample to 9.3 to 9.7 during collection with the method required ammonium sulfate buffer to extend the holding time to 28 days. For potable waters, addition of the buffer during collection will extend the holding time for 14 days per EPA 218.7 and the EPA UCMR3 program.

regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS -EXTRACTABLE ORGANICS, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS - PESTICIDES-HERBICIDES-PCB'S, SOLID AND CHEMICAL MATERIALS - VOLATILE ORGANICS, BIOLOGICAL TISSUE -EXTRACTABLE ORGANICS, BIOLOGICAL TISSUE - METALS, BIOLOGICAL TISSUE - PESTICIDES-HERBICIDES-PCB'S are on file at the Bureau of Public Health Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes. Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS Expiration Date: June 30, 2016 Carina Blackmore, DVM, PhD, Dipl. ACVPM, CPN DH Form 1697, 7/04 NON-TRANSFERABLE E87948-24-07/01/2015 Supersedes all previously issued certificates Chief, Bureau of Public Health Laboratories for the examination of environmental samples in the following categories Department of Health, Bureau of Public Health Laboratories This is to certify that has complied with Florida Administrative Code 64E-1, PACE ANALYTICAL SERVICES, INC - GREEN BAY #1 **1241 BELLEVUE STREE** GREEN BAY, WI 54302 State of Florida E87948 Date Issued: July 01, 2015 SUP RECOGN RID

ATTACHMENT IX- NELAC CERTIFICATION

Document No.: Quality Assurance Manual rev.18.0

Issuing Authorities: Pace Corporate Quality Office and Pace Green **Bay** Quality Office

Document Revised: May 12, 2015

Effective Date of Last Signature

ace Analytical

Document Name: Quality Assurance Manual

Page 108 of 132

nce Analytical"	Document Nam Quality Assurance M		Document Revise Effective Date of Page 109	Last Signature
Qu	Document No. ality Assurance Manu		Issuing Au Pace Corporate Quality <i>Bay</i> Quality	Office and Pace Gre
Rick Scatt Governor		Scope of Accrea	State Surgeon C	mstrong, MD, FACS Seneral & Secretary Page 1 of 24 edited
analyte	s should be used only w	hen associated with	a valid certificate.	
State Laboratory ID: E87948	EPA Lab C	ode: W10110	3 (920) 4	69-2436
1241 Bellevue Street Green Bay, W1 54302 Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
1,1,1,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,1-Trichloroethane	EPA 624	Volatile Organics	NELAP	5/15/2009
1,1,1-Trichloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,2,2-Tetrachloroethane	EPA 624	Volatile Organics	NELAP	5/15/2009
1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,2-Trichloro+1,2,2-trifluoroethane (Freon 11)	3) EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,2-Trichloroethane	EPA 624	Volatile Organics	NELAP	5/15/2009
1,1,2-Trichloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1_1-Dichloroethane	EPA 624	Volatile Organics	NELAP	5/15/2009
1.1-Dichloroethane 1.1-Dichloroethylene	EPA 8260 EPA 624	Volatile Organics Volatile Organics	NELAP NELAP	5/15/2009 5/15/2009
1.1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1-Dichloropropene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,3-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1.2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organic	NELAP	3/19/2012
1.2.4-Trichlorobenzene	EPA 625	Extractable Organic	NELAP	4/1/2005
1,2,4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,4-Trichlorobenzene	EPA 8270	Extractable Organic:	s NELAP	4/1/2005
1,2,4-Trimethylbenzene	EPA 8021	Volatile Organics	NELAP	5/15/2009
1.2.4-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1.2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Dibromoethane (EDB, Ethylene dibromide)		Volatile Organics	NELAP	5/15/2009
	127XA (23A)	Maladia Champanian	NELAP	5/15/2009
1,2-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	3/13/2009

EPA 625

EPA 8260

EPA 8270

EPA 624

EPA 8260

EPA 624

EPA 8260

EPA 8270

EPA 8021

EPA 8260

EPA 624

EPA 625

Extractable Organics

Extractable Organics

Volatile Organics

Extractable Organics.

Extractable Organics

1,2-Dichlorobenzene

1,2-Dichlorobenzene

1.2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloroethane

1,2-Dichloropropane

1,2-Dichloropropane

1,2-Diphenylhydrazine

1,3.5-Trimethylbenzene

1,3,5-Trimethylbenzene

1,3-Dichlorobenzene

1,3-Dichlorobenzene

Expiration Date: 6/30/2016

4/1/2005

5/15/2009

4/1/2005

5/15/2009

5/15/2009

5/15/2009

5/15/2009

4/1/2005

5/15/2009

5/15/2009

5/15/2009

4/1/2005

NELAP

ce Analytical [®]	Document Na Quality Assurance	e Manual	Effective Date o Page 11	ed: May 12, 2015 of Last Signature .0 of 132		
		Document No.: Quality Assurance Manual rev.18.0		Issuing Authorities: Pace Corporate Quality Office and Pace Gree Bay Quality Office		
Rick Scott Governor	HEAL	TH ry Scope of Accre	State Surgeon	rmstrong, MD, FACS General & Secretary Page 2 of 24		
	Certificate #: E87948-24, e nalytes should be used only		30, 2016. This listing of acc th a valid certificate.	redited		
State Laboratory ID: E87948	EPA La			469-2436		
E87948 Pace Analytical Services, Inc 1241 Bellevue Street Green Bay, W1 54302 Matrix: Non-Potable Wate						
Analyte	Method/Tech	Category	Certification	Effective Date		
1,3-Dichlorobenzene	EPA 8260	Volatile Organics	Type NELAP	5/15/2009		
1,3-Dichlorobenzene	EPA 8270	Extractable Organ		4/1/2005		
1,3-Dichloropropane	EPA 3260	Volatile Organics	NELAP	5/15/2009		
1.4-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	5/15/2009		
1,4-Dichlorobenzene	EPA 625	Extractable Organ		4/1/2005		
1.4-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009		
1.4-Dichlorobenzene	EPA 8270	Extractable Organ		4/1/2005		
1,4-Dioxane (1,4-Diethyleneoxide)	EPA 8260	Volatile Organics	NELAP	5/15/2009		
2,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009 4/1/2005		
 2,2'-Oxybis(1-chloropropane).bis(2-Ch ylethyl)ether (fka bis(2-Chloroisoprop 2,2'-Oxybis(1-chloropropane),bis(2-Ch 	vl) ether loro-1-meth EPA 8270	Extractable Organi Extractable Organi		4/1/2005		
ylethyl)ether (fka/bis(2-Chloroisoprop 2,3,4,6-Tetrachlorophenol	EPA 8270	Extractable Organ	NELAP	5/30/2007		
2.4.5-Trichlorophenol	EPA 8270	Extractable Organ		4/1/2005		
2,4,6-Trichlorophenol	EPA 625	Extractable Organi		4/1/2005		
2,4,6-Trichlorophenol	EPA 8270	Extractable Organi		4/1/2005		
2,4-Dichlorophenol	EPA 625	Extractable Organi		4/1/2005		
2,4-Dichlorophenol	EPA 8270	Extractable Organi		4/1/2005		
2,4-Dimethylphenol	EPA 625	Extractable Organi		4/1/2005		
2,4-Dimethylphenol	EPA 8270	Extractable Organi		4/1/2005		
2,4-Dinitrophenol	EPA 625	Extractable Organi		4/1/2005		
2,4-Dinitrophenol	EPA 8270	Extractable Organi		4/1/2005		
2,4-Dinitrotoluene (2,4-DNT)	EPA 625	Extractable Organi		4/1/2005		
2,4-Dinitrotoluene (2,4-DNT)	EPA 8270	Extractable Organi		4/1/2005		
2,6-Dinitrotoluene (2,6-DNT)	EPA 625	Extractable Organi	és NELAP	4/1/2005		
2,6-Dinitrotoluene (2.6-DNT)	EPA 8270	Extractable Organi	es NELAP	4/1/2005		
2-Butanone (Methyl ethyl ketone, MEH	() EPA 8260	Volatile Organies	NELAP	5/15/2009		
2-Chloroethyl vinyl ether	EPA 624	Volatile Organics	NELAP	5/15/2009		
2-Chloroethy) viny) ether	EPA 8260	Volatile Organics	NELAP	5/15/2009		
2-Chloronaphthalene	EPA 625	Extractable Organi	cs NELAP	4/1/2005		
2-Chloronaphthalene	EPA 8270	Extractable Organi	cs NELAP	4/1/2005		
2-Chlorophenol	EPA 625	Extractable Organi	es NELAP	4/1/2005		
2-Chlorophenol	EPA 8270	Extractable Organi	es NELAP	4/1/2005		
2-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	5/15/2009		
2-Hexanone	EPA 8260	Volatile Organics	NELAP	5/15/2009		

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 111 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Rick Scott Governor	HEAL	H		nstrong, MD, FAC Seneral & Secretar
	Laborato	ry Scope of Accreditation		Page 3 of 24
		xpiration date June 30, 2016. T when associated with a valid c		edited
State Laboratory ID: E87948	EPA Lat	Code: W101103	(920) 4	69-2436
E87948 Pace Analytical Services, Inc - C 1241 Bellevue Street Green Bay, W1 54302	Green Bay #1			
Matrix: Non-Potable Water			A supervised	
Analyte	Method/Tech	Category	Certification Type	Effective Date
2-Methyl-4,6-dinitrophenol	EPA 8270	Extractable Organics	NELAP	4/1/2005
2-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	4/1/2005
2-Methylphenol (o-Cresol)	EPA 8270	Extractable Organics	NELAP	4/1/2005
2-Nitroaniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
2-Nitrophenol	EPA 625	Extractable Organics	NELAP	4/1/2005
2-Nitrophenol	EPA 8270	Extractable Organics	NELAP	4/1/2005
3,3'+Dichlorobenzidine	EPA 625	Extractable Organics	NELAP	4/1/2005
3,3'-Dichlorobenzidine	EPA 8270	Extractable Organics	NELAP	4/1/2005
3/4-Methylphenols (m/p-Cresols)	EPA 8270	Extractable Organics	NELAP	4/1/2005
3-Nitroaniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
4,4'-DDD	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
4,4'-DDE	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
4,4'-DDT	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
4-Bromophenyl phenyl ether	EPA 625	Extractable Organics	NELAP	4/1/2005
4-Bromophenyl phenyl ether	EPA 8270	Extractable Organics	NELAP	4/1/2005
4-Chloro-3-methylphenol	EPA 625	Extractable Organics	NELAP	4/1/2005
4-Chloro-3-methylphenol	EPA 8270	Extractable Organics	NELAP	4/1/2005
4-Chloroaniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
4-Chlorophenyl phenylether	EPA 625	Extractable Organics	NELAP	4/1/2005
4-Chlorophenyl phenylether	EPA 8270	Extractable Organics	NELAP	4/1/2005
4-Chlorotoluene	ÉPA 8260	Volatile Organics	NELAP	5/15/2009
4-Methyl-2-pentanone (MIBK)	EPA 8260	Volatile Organics	NELAP	5/15/2009
4-Nitroaniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
4-Nitrophenol	EPA 625	Extractable Organics	NELAP	4/1/2005
4-Nitrophenol	EPA 8270	Extractable Organics	NELAP	4/1/2005
Acenaphthene	EPA 625	Extractable Organics	NELAP	4/1/2005
Acenaphthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Acenaphthylene	EPA 625	Extractable Organics	NELAP	4/1/2005
Acenaphthylene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Acetone	EPA 8260	Volatile Organics	NELAP	5/15/2009
Acetonitrile	EPA 8260	Volatile Organics	NELAP	5/15/2009
Acetophenone	EPA 625	Extractable Organics	NELAP	4/1/2005
Acetophenone	EPA 8270	Extractable Organics	NELAP	4/1/2005
Acidity, as CaCO3	EPA 305.1	General Chemistry	NELAP	4/1/2005
Acidity, as CaCO3	SM 2310 B	General Chemistry	NELAP	5/22/2007

Pace Analytical"		Document Name: Quality Assurance Manual		l: May 12, 2015 Last Signature of 132
	Document Quality Assurance M		Issuing Aut Pace Corporate Quality Bay Qualit	Office and Pace Gree
Rick Scott Governor	HEAL	TH ory Scope of Accrea	State Surgeon G	nstrong, MD, FACS eneral & Secretary Page 4 of 24
Attacl	ment to Certificate #: E87948-24, analytes should be used on	expiration date June 3	0, 2016. This listing of accre	dited
State Laboratory ID:	E87948 EPA L	ab Code: W10110	3 (920) 4	69-2436
E87948				
Pace Analytical Serv 1241 Bellevue Street)2			-
Pace Analytical Serv 1241 Bellevue Street Green Bay, WI 543)2	Category	Certification Type	Effective Date
Pace Analytical Serv 1241 Bellevue Street Green Bay, W1 543 Matrix: Non-Pota)2 ble Water	Category Volatile Organics	Certification Type NELAP	Effective Date 5/15/2009

Acrolein (Propenal)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Acrylonitrile	EPA 624	Volatile Organics	NELAP	5/15/2009
Acrylonitrile	EPA 8260	Volatile Organics	NELAP	5/15/2009
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Alkalinity as CaCO3	EPA 310.2	General Chemistry	NELAP	4/1/2005
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	5/15/2009
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
alpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Alaminom	EPA 6010	Metals	NELAP	4/1/2005
Aluminum	EPA 6020	Metals	NELAP	4/1/2005
Ammonia as N	EPA 350.1	General Chemistry	NELAP	4/1/2005
Aniline	EPA 625	Extractable Organics	NELAP	4/1/2005
Aniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
Anthracene	EPA 625	Extractable Organics	NELAP	4/1/2005
Anthracene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Antimony	EPA 6010	Metals	NELAP	4/1/2005
Antimony	EPA 6020	Metals	NELAP	4/1/2005
Aroclor-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroelor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroelor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Arsenic	EPA 6010	Metals	NELAP	4/1/2005
Arsenic	EPA 6020	Metals	NELAP	4/1/2005
Barium	EPA 6010	Metals	NELAP	4/1/2005
Barium	EPA 6020	Metals	NELAP	4/1/2005
Benzene	EPA 602	Volatile Organics	NELAP	5/15/2009
Benzene	EPA 624	Volatile Organics	NELAP	5/15/2009
Benzene	EPA 802)	Volatile Organics	NELAP	5/15/2009
Benzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Benzidine	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzidme	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(a)anthracene	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	4/1/2005

ce Analytical [®]	Document Na Quality Assurance		Document Revise Effective Date of Page 113	Last Signature
	Document N Quality Assurance Ma		Issuing Au Pace Corporate Quality Bay Quality	Office and Pace Gre
Rick Scott Governor Attachment t	o Certificate #: E87948-24, e	ry Scope of Accredita xpiration date June 30, 2	State Surgeon C Ition 1016. This listing of accr	mstrong, MD, FACS Seneral & Secretary Page 5 of 24 cdited
State Laboratory ID: E8794	analytes should be used only 8 EPA La			69-2436
E87948 Pace Analytical Services, In 1241 Bellevue Street Green Bay, WI 54302	c - Green Bay #I			
Matrix: Non-Potable Wa	ler		and the second second	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Benzo(a)pyrene	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(b)fluoranthene	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(g,h,i)perylene	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzo(g,h,i)perylene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(k)fluoranthene	EPA 625	Extractable Organics	NELAP	4/1/2005
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzoic actd	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	4/1/2005
Berylliani	EPA 6010	Metals	NELAP	4/1/2005
Beryllium	EPA 6020	Metals	NELAP	4/1/2005
beta-BHC (beta-Hexachlorocyclohes	and the second se	Pesticides-Herbicides-P		5/30/2007
Biochemical oxygen demand	SM 5210 B	General Chemistry	NELAP	4/1/2005
his(2-Chloroethoxy)methane	EPA 625	Extractable Organics	NELAP	4/1/2005
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	4/1/2005
bis(2-Chloroethyl) ether	EPA 625	Extractable Organics	NELAP	4/1/2005
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	4/1/2005
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 625	Extractable Organics	NELAP	4/1/2005
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	4/1/2005
Boron	EPA 6010	Metals	NELAP	4/1/2005
Boron	EPA 6020	Metals	NELAP	4/1/2005
			and the second sec	112 (2) (2)
Bromide	EPA 300.0	General Chemistry	NELAP	4/1/2005
	EPA 300.0 EPA 9056	General Chemistry General Chemistry	NELAP NELAP	4/1/2005 4/1/2005

EPA 8260

EPA 8260

EPA 624

EPA 8260

EPA 624

EPA 8260

EPA 625

EPA 8270

EPA 6010

EPA 6020

EPA 6010

EPA 6020

Bromobenzene

Bromoform

Bromotorm

Cadmium

Cadmium

Calcium

Calcium

Bromochloromethane

Bromodichloromethane

Bromodichloromethane

Butyl benzyl phthalate Butyl benzyl phthalate Volatile Organics

Volatile Organics

Volatile Organics

Volatile Organics

Volatile Organics

Volatile Organics

Extractable Organics

Extractable Organics

Metals

Metals

Metals

Metals

Expiration Date: 6/30/2016

5/15/2009

5/15/2009

5/15/2009

5/15/2009

5/15/2009

5/15/2009

4/1/2005

4/1/2005

4/1/2005 4/1/2005

4/1/2005

4/1/2005

NELAP

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 114 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office
Rick Scott Governor	HEALTH	John H Armstrong, MD, FACS Btate Surgeon General & Secretary

Laboratory Scope of Accreditation Attachment to Certificate #: E87948-24, expiration date June 30, 2016. This listing of accredited analytes should be used only when associated with a valid certificate.

Page 6

of 24

E87948 Pace Analytical Services, Inc - Green Bay #1 1241 Bellevue Street Green Bay, WI 54302						
Matrix: Non-Potable Water			Certification			
Analyte	Method/Tech	Category	Type	Effective Date		
Carbazole	EPA 8270	Extractable Organics	NELAP	4/1/2005		
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	5/15/2009		
Carbon tetrachloride	EPA 624	Volatile Organics	NELAP	5/15/2009		
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	5/15/2009		
Carbonaceous BOD (CBOD)	SM 5210 B	General Chemistry	NELAP	4/1/2005		
Chemical oxygen demand	EPA 410.4	General Chemistry	NELAP	4/1/2005		
Chlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007		
Chloride	EPA 300.0	General Chemistry	NELAP	4/1/2005		
Chloride	EPA 9056	General Chemistry	NELAP	4/1/2005		
Chlorobenzene	EPA 624	Volatile Organics	NELAP	5/15/2009		
Chlorobenzene	EPA 8260	Volatile Organics.	NELAP	5/15/2009		
Chloroethane	EPA 624	Volatile Organics	NELAP	5/15/2009		
Chloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009		
Chloroform	EPA 624	Volatile Organics	NELAP	5/15/2009		
Chloroform	EPA 8260	Volatile Organics	NELAP	5/15/2009		
Chloroprene	EPA 8260	Volatile Organics.	NELAP	5/15/2009		
Chromaum	EPA 6010	Metals	NELAP	4/1/2005		
Chromium	EPA 6020	Metals	NELAP	4/1/2005		
Chromium VI	SM 3500-Cr B (20th/21st/22nd Ed.)/UV-V1S	General Chemistry	NELAP	5/30/2007		
Chrysene	EPA 625	Extractable Organies	NELAP	4/1/2005		
Thrysene	EPA 8270	Extractable Organics	NELAP	4/1/2005		
cis-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009		
cis-1,3-Dichloropropene	EPA 624	Volatile Organics	NELAP	5/15/2009		
cis-1,3-Dichtoropropene	EPA 8260	Volatile Organics	NELAP	5/15/2009		
cis-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	5/15/2009		
Cobalt	EPA 6010	Metals	NELAP	4/1/2005		
Cobalt	EPA 6020	Metals	NELAP	4/1/2005		
Conductivity	EPA 120.1	General Chemistry	NELAP	4/1/2005		
L'opper	EPA 6010	Metals	NELAP	4/1/2005		
Copper	EPA 6020	Metals	NELAP	4/1/2005		
Jelta-BHC	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007		
Dibenz(a,h)anthracene	EPA 625	Extractable Organics	NELAP	4/1/2005		
Dibenz(a,h)anthracene	EPA 8270	Extractable Organics	NELAP	4/1/2005		
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	4/1/2005		
Dibromochloromethanc	EPA 624	Volatile Organics	NELAP	5/15/2009		

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

Pace Analytical"	Quality Assurance Manual	Effective Date of Last Signature Page 115 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace <i>Green</i> <i>Bay</i> Quality Office

Rick Scott Governor	HEALT			mstrong, MD, FAC(Seneral & Secretar
	Laborato	ry Scope of Accreditation	Paralle and	Page 7 of 24
		xpiration date June 30, 2016. T when associated with a valid c		edited
State Laboratory ID: E87948	EPA Lal	Code: W101103	(920) 4	69-2436
E87948 Pace Analytical Services, Inc - 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potable Water	Green Bay #1			
	20 20 120 2	Sec. 1	Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
Dibromochloromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Dibromomethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Dichlorodifluoromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Dieldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Diesel range organics (DRO)	EPA 8015	Extractable Organics	NELAP	4/1/2005
Diethyl ether	EPA 8260	Volatile Organics.	NELAP	5/15/2009
Diethyl phthalate	EPA 625	Extractable Organics	NELAP	4/1/2005
Diethyl phthalate	EPA 8270	Extractable Organics	NELAP	4/1/2005
Dunethyl phthalate	EPA 625	Extractable Organics	NELAP	4/1/2005
Dimethyl phthalate	EPA 8270	Extractable Organics	NELAP	4/1/2005
Di-n-butyl phthalate	EPA 625	Extractable Organics	NELAP	4/1/2005
Di-n-butyl phthalate	EPA 8270	Extractable Organics	NELAP	4/1/2005
Di-n-octyl phthalate	EPA 625	Extractable Organics	NELAP	4/1/2005
Di-n-octyl phthalate	EPA 8270	Extractable Organics	NELAP	4/1/2005
Endosulfan I	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endosulfan II	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endosulfan sulfate	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin aldehyde	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin ketone	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Ethanol	EPA 8015	Volatile Organics	NELAP	\$/15/2009
Ethanol	EPA 8260	Volatile Organics	NELAP	5/15/2009
Ethyl acetate	EPA 8260	Volatile Organics	NELAP	5/15/2009
Ethyl methacrylate	EPA 8260	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	EPA 602	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	EPA 624	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	EPA 8021	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Ethyl-t-butylether (ETBE)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Fluoranthène	EPA 625	Extractable Organics	NELAP	4/1/2005
Fluoranthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
luorene	EPA 625	Extractable Organics	NELAP	4/1/2005
Tuorene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Fluoride	EPA 300.0	General Chemistry	NELAP	4/1/2005
Fluoride	EPA 9056	General Chemistry	NELAP	4/1/2005
C TRUT KING	Dill'shao	contrain constitution y	(the first st	1. 1. 1. 1. 1. 1. 1.

? ce Analytical [®]	Document Na Quality Assurance		Effective Date of	ed: May 12, 2015 f Last Signature 6 of 132
	Document N Quality Assurance Ma		ace Corporate Quality	uthorities: y Office and Pace <i>Gree</i> lity Office
Rick Scott Governor Attachment t	HEALT HEALT Laborator o Certificate #: E87948-24, es analytes should be used only	ry Scope of Accredita spiration date June 30, 2	State Surgeon <i>tion</i> 016. This listing of acc	rmstrong, MD, FACS General & Secretary Page 8 of 24 redited
State Laboratory ID: E8794				469-2436
E87948 Pace Analytical Services, In 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potable Wal				
Analyte	Method/Tech	Category	Certification	Effective Date
gamma-Chlordane	EPA 8081	Pesticides-Herbicides-Pe	Type CB's NELAP	5/30/2007
Gasoline range organics (GRO)	EPA 8015	Volatile Organics	NELAP	5/15/2009
Gasoline range organics (GRO)	WI-GRO	Volatile Organics	NELAP	5/15/2009
Hardness	SM 2340 B	General Chemistry	NELAP	4/1/2005
Heptachlor	EPA 8081	Pesticides-Herbicides-Po		5/30/2007
Heptachlor epoxide	EPA 8081	Pesticides-Herbicides-PO		5/30/2007
Hexachlorobenzene	EPA 625	Extractable Organics	NELAP	4/1/2005
Hexachlorobenzene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Hexachlorobutadiene	EPA 625	Extractable Organics	NELAP	4/1/2005
Hexachlorobutadiene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Hexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Hexachlorocyclopentadiene	EPA 625	Extractable Organics	NELAP	4/1/2005
Hexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Hexachloroethane	EPA 625	Extractable Organics	NELAP	4/1/2005
Hexachloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Hexachloroethane	EPA 8270	Extractable Organics	NELAP	4/1/2005
Ignitability	EPA 1010	General Chemistry	NELAP	4/1/2005
Indeno(1,2,3-ed)pyrene	EPA 625	Extractable Organics	NELAP	4/1/2005
Indeno(1,2,3-cd)pyrene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Iodomethane (Methyl iodide)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Iron	EPA 6010	Metals	NELAP	4/1/2005 4/1/2005
Iron Instantial administrative Analysis I amount	EPA 6020	Metals Volatila Ornagias	NELAP	4/1/2005 5/15/2009
Isobutyl alcohol (2-Methyl-1-propan	and a local second s	Volatile Organics Extractable Organics	NELAP NELAP	4/1/2005
Isophorone	EPA 625 EPA 8270	Extractable Organics	NELAP	4/1/2005
Isophorone Isopropyl alcohol (2-Propanol)	EPA 82/0 EPA 8260	Volatile Organics	NELAP	5/15/2009
isopropyr arconor (2-rropanor)	LF/ 0200	volatic organics	NIL-AD	2112160192

EPA 8260

EPA 351.2

EPA 6010

EPA 6020

EPA 6020

EPA 8021

EPA 8260

EPA 6010

EPA 6020

EPA 6010

Isopropylbenzene

Lead

1.ead

Lithium

m/p-Xylenes

m/p-Xylenes

Magnesium

Magnesium

Manganese

Kjeldahl nitrogen - total

Volatile Organics

General Chemistry

Volatile Organics

Volatile Organics

Metals

Metals

Metals

Metals

Metals

Metals

Expiration Date: 6/30/2016

5/15/2009

4/1/2005

4/1/2005

4/1/2005

5/15/2009

5/15/2009

5/15/2009 4/1/2005

4/1/2005

4/1/2005

NELAP

NELAP

NELAP

NEL AP

NELAP

NELAP

NELAP

NELAP NELAP

Pace Analytical [®]	(Document Na Quality Assurance			ocument Revise Effective Date of Page 117	Last Signature
	Qual	Document N ity Assurance Ma		Pace Co	Issuing Au rporate Quality <i>Bay</i> Qualit	Office and Pace Gre
Rick Scott Governor		Heal	a H			nstrong, MD, FACS Seneral & Secretary
		Laborato	y Scope of Acci	reditation		Page 9 of 24
Attact State Laboratory ID:		te #: E87948-24, er hould be used only EPA Lat	when associated v	with a valid co	rtificate.	69-2436
E87948 Pace Analytical Serv 1241 Bellevue Street Green Bay, WI 543(Bay #I				
Matrix: Non-Pota	ble Water				Certification	
Analyte		Method/Tech	Category		Туре	Effective Date
Manganese		EPA 6020	Metals		NELAP	4/1/2005
Mercury		EPA 1631	Metals		NELAP	5/30/2007
			26.06		NELAP	
Mercury		EPA 6020	Metals			3/19/2012
Mercury		EPA 6020 EPA 7470	Metals		NELAP	3/19/2012 4/1/2005
				s		
Mercury		EPA 7470	Metals		NELAP	4/1/2005
Mercury Methacrylonitrile		EPA 7470 EPA 8260	Metals Volatile Organic	IS	NELAP NELAP	4/1/2005 5/15/2009
Mercury Methacrytonitrile Methanol	thane)	EPA 7470 EPA 8260 EPA 8015	Metals Volatile Organic Volatile Organic	is icides-PCB's	NELAP NELAP NELAP	4/1/2005 5/15/2009 5/15/2009

Methanol	EPA 8015	Volatile Organics	NELAP	5/15/2009
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Methyl bromide (Bromomethane)	EPA 624	Volatile Organics	NELAP	5/15/2009
Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl chloride (Chloromethane)	EPA 624	Volatile Organics	NELAP	5/15/2009
Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl tert-butyl ether (MTBE)	EPA 8021	Volatile Organics	NELAP	5/15/2009
Methyl tert-bulyl ether (MTBE)	EPA 8260	Volatile Organies	NELAP	5/15/2009
Methylene chloride	EPA 624	Volatile Organics	NELAP	5/15/2009
Methylene chloride	EPA 8260	Volatile Organics	NELAP	5/15/2009
Mirex	EPA 8081	Pesticides-Herbicides-PCB's-	NELAP	5/30/2007
Molybdenum	EPA 6010	Metals	NELAP	4/1/2005
Molybdenum	EPA 6020	Metals	NELAP	4/1/2005
Naphthalene	EPA 625	Extractable Organics	NELAP	4/1/2005
Naphthalene	EPA 8021	Volatile Organics	NELAP	5/15/2009
Naphthalene	EPA 8260	Volatile Organies	NELAP	5/15/2009
Naphthalene	EPA 8270	Extractable Organics	NELAP	4/1/2005
n-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	5/15/2009
n-Butylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Nicket	EPA 6010	Metals	NELAP	4/1/2005
Nickel	EPA 6020	Metals	NELAP	4/1/2005
Nitrate	EPA 9056	General Chemistry	NELAP	4/1/2005
Nitrate as N	EPA 300.0	General Chemistry	NELAP	4/1/2005
Nitrite	EPA 9056	General Chemistry	NELAP	4/1/2005
Nitrite as N	EPA 300.0	General Chemistry	NELAP	4/1/2005
Nitrobenzene	EPA 625	Extractable Organics	NELAP	4/1/2005
Nitrobenzene	EPA 8270	Extractable Organics	NELAP	4/1/2005
n-Nitrosodimethylamine	EPA 625	Extractable Organics	NELAP	4/1/2005
n-Nitrosodunethylamine	EPA 8270	Extractable Organics	NELAP	4/1/2005
n-Nitrosodi-n-propylamine	EPA 625	Extractable Organics	NELAP	4/1/2005

Pace Analytical [®]	Document Name Quality Assurance M		Document Revise Effective Date of Page 118	Last Signature
	Document No.: Quality Assurance Manua		Issuing Au Pace Corporate Quality <i>Bay</i> Quali	Office and Pace Gree
Rick Scott Governor	REACTA	Soons of Assess	State Surgeon (mstrong, MD, FACS General & Secretary Page 10. of 24
100.00		Scope of Accred		
Attachi	nent to Certificate #: E87948-24, expin analytes should be used only wh			edited
State Laboratory ID:				
E87948		ode: W10110	3 (920) -	469-2436
E87948	ees, Inc - Green Bay #I	ode: W10110		469-2436
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302	ees, Inc - Green Bay #I	ode: W10110 Category	3 (920) - Certification Type	Effective Date
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl	ces, Inc - Green Bay #I e Water		Certification Type	
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte	ces, Inc - Green Bay #1 e Water Method/Tech	Category	Certification Type NELAP	Effective Date
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamme	ces, Inc - Green Bay #1 e Water <u>Method/Tech</u> EPA 8270	Calegory Extractable Organics	Certification Type NELAP NELAP	Effective Date 4/1/2005
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine	e Water Method/Tech EPA 8270 EPA 625	Category Extractable Organics Extractable Organics	Certification Type NELAP NELAP	Effective Date 4/1/2005 4/1/2005
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine	e Water Method/Tech EPA 8270 EPA 625 EPA 8270	Category Extractable Organics Extractable Organics Extractable Organics	Certification Type NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol	e Water Method/Tech EPA 8270 EPA 625 EPA 8270 EPA 8270 EPA 8270 EPA 8260	Category Extractable Organics Extractable Organics Extractable Organics	Certification Type NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol n-Propylbenzene	e Water EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8260 EPA 8260 EPA 8260	Category Extractable Organics Extractable Organics Extractable Organics Volatile Organics Volatile Organics	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009 5/15/2009
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol n-Propanol n-Propylbenzene Organic nitrogen	e Water Method/Tech EPA 8270 EPA 625 EPA 8270 EPA 8270 EPA 8260 EPA 8260 EPA 8260 TKN minus AMMONIA	Category Extractable Organics Extractable Organics Extractable Organics Volatile Organics Volatile Organics General Chemistry	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009 5/15/2009 4/1/2005
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol n-Propylbenzene Organic nitrogen o-Xylene	e Water E Water EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8260 EPA 8260 EPA 8260 TKN minus AMMONIA EPA 8021	Category Extractable Organics Extractable Organics Extractable Organics Volatile Organics Volatile Organics General Chemistry Volatile Organics	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009 5/15/2009 4/1/2005 5/15/2009
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol n-Propylbenzene Organic nitrogen o-Xylene o-Xylene	e Water E Water EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8260 EPA 8260 EPA 8260 TKN minus AMMONIA EPA 8021 EPA 8260	Category Extractable Organics Extractable Organics Extractable Organics Volatile Organics Volatile Organics General Chemistry Volatile Organics Volatile Organics Volatile Organics	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 5/15/2009 5/15/2009 4/1/2005 5/15/2009 5/15/2009 5/15/2009
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propanol n-Propylbenzene Organic nitrogen o-Xylene o-Xylene Pentachlorophenol	e Water E Water EPA 8270 EPA 8270 EPA 625 EPA 8260 EPA 8260 EPA 8260 TKN minus AMMONIA EPA 8021 EPA 8260 EPA 8260 EPA 825	Category Extractable Organics Extractable Organics Extractable Organics Volatile Organics Volatile Organics General Chemistry Volatile Organics Volatile Organics Extractable Organics	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009 5/15/2009 4/1/2005 5/15/2009 5/15/2009 4/1/2005
E87948 Pace Analytical Servic 1241 Bellevue Street Green Bay, WI 54302 Matrix: Non-Potabl Analyte n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine n-Nitrosodiphenylamine n-Propylbenzene Organic nitrogen o-Xylene o-Xylene Pentachlorophenol Pentachlorophenol	e Water E Water E Water EPA 8270 EPA 8270 EPA 8270 EPA 8270 EPA 8260 EPA 8260 TKN minus AMMONIA EPA 8021 EPA 8260 EPA 8260 EPA 825 EPA 8270	Category Extractable Organics Extractable Organics Volatile Organics Volatile Organics General Chemistry Volatile Organics Volatile Organics Extractable Organics Extractable Organics	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 4/1/2005 4/1/2005 4/1/2005 5/15/2009 5/15/2009 4/1/2005 5/15/2009 5/15/2009 4/1/2005 4/1/2005

Extractable Organics

Extractable Organics

Extractable Organics

General Chemistry

Volatile Organics

Volatile Organics

Extractable Organics

Extractable Organics

Extractable Organics.

Extractable Organics

Metals

Metals

Residue-filterable (TDS)	SM 2540 C	General Chemistry	NELAP
Residue-nonfilterable (TSS)	SM 2540 D	General Chemistry	NELAP
Residue-total	SM 2540 B	General Chemistry	NELAP
Residue-volatile	EPA 160.4	General Chemistry	NELAP
Residue-volatile	SM 2540 E	General Chemistry	NELAP
sec-Butylbenzene	EPA 8260	Volatile Organics	NELAP
Selenium	EPA 6010	Metals	NELAP
Selenium	EPA 6020	Metals	NELAP
Silicon	EPA 6020	Metals	NELAP
Silver	EPA 6010	Metals	NELAP
Silver	EPA 6020	Metals	NELAP

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

EPA 8270

EPA 625

EPA 8270

EPA 365.4

EPA 8260

EPA 6010

EPA 6020

EPA 8260

EPA 625

EPA 8270

EPA 625

EPA 8270

Phenanthrene

Phosphorus, total

p-lsopropyltoluene

Propionitrile (Ethyl cyanide)

Phenol

Phenol

Potassium

Potassium

Pyrene

Pyrene

Pyridine

Pyridine

Expiration Date: 6/30/2016

4/1/2005

4/1/2005

4/1/2005

4/1/2005

5/15/2009

4/1/2005

4/1/2005

5/15/2009

4/1/2005

4/3/2005

4/1/2005

4/1/2005

5/30/2007

5/30/2007

5/30/2007 4/1/2005

5/30/2007

5/15/2009

4/1/2005

4/1/2005

3/19/2012 4/1/2005

4/1/2005

NELAP NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

2 ace Analytical [®]	Document Name Quality Assurance M		Document Revise Effective Date of Page 119	Last Signature
	Document No.: Quality Assurance Manua	al rev.18.0 P	Issuing Au ace Corporate Quality <i>Bay</i> Quali	Office and Pace Gree
Rick Scott Governor	HEALTH		State Surgeon (mstrong, MD, FACS Seneral & Secretary Page 11 of 24
	Laboratory S	Scope of Accredita	tion	Fage 11 Or 24
	o Certificate #: E87948-24, expir			edited
	analytes should be used only wh			
State Laboratory ID: E8794	8 EPA Lab Co	ode: W101103	(920) -	469-2436
E87948				
Pace Analytical Services, In	ic - Green Bay #1			
1241 Bellevue Street Green Bay, WI 54302				
Matrix: Non-Potable Wat	ter		100.000	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Sodium	EPA 6010	Metals	NELAP	4/1/2005
Sodium	EPA 6020	Metals	NELAP	4/1/2005
Strontium	EPA 6020	Metals	NELAP	5/30/2007
Styrene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Sulfate	EPA 300.0	General Chemistry	NELAP	4/1/2005
Sulfate	EPA 9056	General Chemistry	NELAP	4/1/2005
Sulfide	SM 4500-S F	General Chemistry	NELAP	1/30/2008
	(19th/20th/21st Ed.)/TITR			
T-amylmethylether (TAME)	EPA 8260	Volatile Organics	NELAP	5/15/2009
tert-Butyl alcohol (2-Methyl-2-propa		Volatile Organics	NELAP	5/15/2009
tert-Butylbenzene	EPA 8260	Volatile Organies	NELAP	5/15/2009
Tetrachloroethylene (Perchloroethyle		Volațile Organics	NELAP	5/15/2009
Tetrachloroethylene (Perchloroethyle		Volatile Organics	NELAP	5/15/2009
Thallium	EPA 6010	Metals	NELAP	4/1/2005
Thalliam	EPA 6020	Metals	NELAP	4/1/2005
Tin	EPA 6010	Metals	NELAP	4/1/2005
Titanium	EPA 6010	Metals	NELAP	4/1/2005
Titanium	EPA 6020	Metals	NELAP	5/30/2007
Toluene	EPA 602	Volatile Organics	NELAP	5/15/2009
Toluene	EPA 624	Volatile Organics	NELAP	5/15/2009
Toluene	EPA 8021	Volatile Organics	NELAP	5/15/2009
Toluene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Total cyanide	EPA 335.4	General Chemistry	NELAP	4/1/2005
Total cyanide	EPA 9012	General Chemistry	NELAP	4/1/2005
Total nitrate-nitrite	EPA 300.0	General Chemistry	NELAP	4/1/2005
Total nitrate-nitrite	EPA 353.2	General Chemistry	NELAP	4/1/2005
Total nitrate-nitrite	EPA 9056	General Chemistry	NELAP	4/1/2005
Total organic carbon	EPA 9060	General Chemistry	NELAP	6/24/2011
Total organic carbon	SM 5310 C	General Chemistry	NELAP NELAP	6/24/2011
Toxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PC		5/30/2007
trans-1,2-Dichloroethylene	EPA 624	Volatile Organics	NELAP	5/15/2009
trans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009
trans-1,3-Dichloropropene	EPA 624	Volatile Organics	NELAP	5/15/2009
trans-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	5/15/2009
trans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	5/15/2009
And the second law	CBA 9001	Dentisides Hushinder D/	ATTLAD.	5/20/2002

EPA 8081

Pesticides-Herbicides-PCB's

Volatile Organics

trans-Nonachlor

Trichloroethene (Trichloroethylene)

Expiration Date: 6/30/2016

5/30/2007

5/15/2009

NELAP

Page 120 of 132
Imment No.: Issuing Authorities: Ince Manual rev.18.0 Pace Corporate Quality Office and Pace Green Bay Quality Office
7

Rick Scott Governor	HEALT	Columna com a com	State Surgeon C	nstrong, MD, FAC Jeneral & Secreta
	Laborator	ry Scope of Accreditation	1	Page 12 of 2
		piration date June 30, 2016. when associated with a vali		edited
State Laboratory ID: E87948	EPA Lat	Code: W101103	(920) 4	69-2436
E87948 Pace Analytical Services, Inc - Gr 1241 Bellevue Street Green Bay, WI 54302	een Bay #1			
Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Trichloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Trichlorofluoromethane	EPA 624	Volatile Organics	NELAP	5/15/2009
Trichlorofluoromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Turbidity	SM 2130 B	General Chemistry	NELAP	4/1/2005
Uranium	EPA 6020	Metals.	NELAP	3/19/2012
Vanadrum	EPA 6010	Metals	NELAP	4/1/2005
Vanadium	EPA 6020	Metals	NELAP	4/1/2005
Vinyl acetate	EPA 8260	Volatile Organics	NELAP	5/15/2009
	EPA 624	Volatile Organics	NELAP	5/15/2009
Vinyl chloride	1.1.75 1667	Containe of Sames		
	EPA 8260	Volatile Organics	NELAP	5/15/2009
Vinyl chloride Vinyl chloride Xylene (total)			NELAP NELAP	5/15/2009 5/15/2009
Vinyl chloride	EPA 8260	Volatile Organics	1000000	
Viny) chloride Xylene (total)	EPA 8260 EPA 602	Volatile Organics Volatile Organics	NELAP	5/15/2009
Viny) chloride Xylene (total) Xylene (total)	EPA 8260 EPA 602 EPA 624	Volatile Organics Volatile Organics Volatile Organics	NELAP NELAP	5/15/2009 5/15/2009
Viny) chloride Xylene (total) Xylene (total) Xylene (total)	EPA 8260 EPA 602 EPA 624 EPA 8021	Volatile Organics Volatile Organics Volatile Organics Volatile Organics	NELAP NELAP NELAP	5/15/2009 5/15/2009 5/15/2009
Vinyl chloride Xylene (total) Xylene (total) Xylene (total) Xylene (total)	EPA 8260 EPA 602 EPA 624 EPA 8021 EPA 8260	Volatile Organics Volatile Organics Volatile Organics Volatile Organics Volatile Organics	NELAP NELAP NELAP NELAP	5/15/2009 5/15/2009 5/15/2009 5/15/2009

2 ace Analytical [®]	Document Na Quality Assurance		Document Revise Effective Date of Page 121	Last Signature
	Document N Quality Assurance Ma		Issuing Au Pace Corporate Quality <i>Bay</i> Quali	Office and Pace Gree
Rick Scott Governor	HEALT Laborato	TH TH ry Scope of Accred	State Surgeon C	nstrong, MD, FACS Seneral & Secretary Page 13 of 24
), 2016. This listing of accr	edited
ana State Laboratory ID: E87948	lytes should be used only EPA Lai			10 2126
E87948 Pace Analytical Services, Inc - C 1241 Bellevue Street Green Bay, W1 54302 Matrix: Solid and Chemical N	Green Bay #1	i cout. Withito	. (20)3	169-2436
Analyte	Method/Tech	Category	Certification	Effective Date
1,1,1,2-Tetrachloroethane	EPA 8260	Volatile Organics	Type NELAP	5/15/2009
1,1,1-Trichtoroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1,2-Trichloro-1,2,2-trifluoroethane (Free		Volatile Organics	NELAP	5/15/2009
1,1,2-Trichloroethane	EPA 8260		NELAP	5/15/2009
		Volatile Organics		
1,1-Dichloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1, J-Dichloropropene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,3-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organics		3/19/2012
1.2.4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2,4-Trichlorobenzene	EPA 8270	Extractable Organics		4/1/2005
1,2,4-Trimethylbenzene	EPA 8021	Volatile Organics	NELAP	5/15/2009
1,2,4-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Dibromoethane (EDB, Ethylene dibror		Volatile Organics	NELAP	5/15/2009
1,2-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Dichlorobenzene	EPA 8270	Extractable Organics		4/1/2005
1.2-Dichloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,2-Diphenythydrazine	EPA 8270	Extractable Organics		4/1/2005
1,3,5-Trimethylbenzene	EPA 8021	Volatile Organics	NELAP	5/15/2009
1,3,5-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,3-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP SUELAD	5/15/2009 4/1/2005
1,3-Dichlorobenzene	EPA 8270	Extractable Organics		
1,3-Dichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009
1,4-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
1.4-Dichlorobenzene	EPA 8270	Extractable Organics		4/1/2005 5/15/2009
1,4-Dioxane (1,4-Diethyleneoxide)	EPA 8260	Volatile Organics	NELAP	
2,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	5/15/2009
2,2'-Oxybis(1-chloropropane),bis(2-Chloro ylethyl)ether (fka bis(2-Chloroisopropyl) 2,3,4,6-Tetrachlorophenol		Extractable Organics Extractable Organics		4/1/2005 5/30/2007
2,4,5-Trichlorophenol	EPA 8270	Extractable Organics		4/1/2005
2,4,6-Trichtorophenol	EPA 8270 EPA 8270	Extractable Organics		4/1/2005
2,4,6-1 richtorophenol	EPA 8270	Extractable Organics	NELAP	4/1/2005

EPA 8270

2,4-Dichlorophenol

Extractable Organics

Expiration Date: 6/30/2016

4/1/2005

Pace Analytical"	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 122 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace C Bay Quality Office
Rick Scott Governor	HEALTH	John H. Armstrong, MD, FACS State Surgeon General & Secretary
	HEALTH Laboratory Scope of A	State Surgeon General & Secretary
Governor		State Surgeon General & Secretary Accreditation Page 14 of 24 June 30, 2016. This listing of accredited
<u>Governor</u> Attachm	Laboratory Scope of A ent to Certificate #: E87948-24, expiration date . analytes should be used only when associate	State Surgeon General & Secretary Accreditation Page 14 of 24 June 30, 2016. This listing of accredited

Category

Extractable Organics

Extractable Organics

Extractable Organies

Extractable Organics

Extractable Organics

Extractable Organics

Volatile Organics

Volatile Organics

Extractable Organics

Volatile Organics

Volatile Organics

Extractable Organics

Extractable Organics

Extractable Organics

Extractable Organics

Volatile Organics

Volatile Organics

Volatile Organics

Volatile Organics

Extractable Organics

Pesticides-Herbicides-PCB's

Pesticides-Herbicides-PCB's

Pesticides-Herbicides-PCB's

Volatile Organics

Volatile Organics

Method/Tech

EPA 8270

EPA 8270

EPA 8270

EPA 8270

EPA 8260

EPA 8260

EPA 8270

EPA 8270

EPA 8260

EPA 8260

EPA 8270

EPA 8081

EPA 8081

EPA 8081

EPA 8270

EPA 8270

EPA 8270

EPA 8270

EPA 8260

EPA 8260

EPA 8270

EPA 8270

EPA 8270

EPA 8270

EPA 8260

EPA 8260

EPA 8270

EPA 8260

EPA 8260

1241 Bellevue Street Green Bay, W1 54302

2,4-Dinitrotoluene (2,4-DNT)

2,6-Dinitrotoluene (2,6-DNT)

2-Chloroethyl vinyl ether

2-Methyl-4,6-dinitrophenol

2-Methylphenol (o-Cresol)

2-Methylnaphthalene

3,3'-Dichlorobenzidine

3/4-Methylphenols (m/p-Cresols)

4-Bromophenyl phenyl ether

4-Chlorophenyl phenylether

4-Methyl-2-pentanone (MIBK)

4-Chloro-3-methylphenol

2-Chloronaphthalene

2-Chlorophenol

2-Chlorotoluene

2-Hexanone

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

4.4'-DDD

4,4"-DDE

4,4'-DDT

4-Chloroaniline

4-Chlorotoluene

4-Nitroaniline

4-Nitrophenol

Acenaphthene

Acetophenone

Acrylonitrile

Acrolein (Propenal)

Acetonitrile

Acenaphthylene

2-Butanone (Methyl ethyl ketone, MEK)

Solid and Chemical Materials

Matrix:

Analyte

2,4-Dimethylphenol

2.4-Dinitrophenol

Clients and Customers are urged to verify the laboratory's current	it certification status with
the Environmental Laboratory Certification Program.	Issue Date: 7/1/2015

Expiration Date: 6/30/2016

Certification

Турс

NELAP

NEL AP

NELAP

Effective Date

4/1/2005

4/1/2005 4/1/2005

4/1/2005

5/15/2009

5/15/2009 4/1/2005

4/1/2005

5/15/2009

5/15/2009

4/1/2005

4/1/2005

4/1/2005

4/1/2005

4/1/2005

4/1/2005

4/1/2005

4/1/2005

5/30/2007

\$/30/2007

5/30/2007

4/1/2005

4/1/2005

4/1/2005

4/1/2005

5/15/2009

5/15/2009

4/1/2005

4/1/2005

4/1/2005

4/1/2005

5/15/2009

5/15/2009

4/1/2005

5/15/2009

5/15/2009

Document No.: Issuing Autho	Last Signature	Document Revised: May 12, 2 Effective Date of Last Signat Page 123 of 132	Document Name: Quality Assurance Manual	Prace Analytical"
	Office and Pace Green	Issuing Authorities: Pace Corporate Quality Office and I Bay Quality Office		

	The second second		
Rick Scott Governor	The marked	HEALTH	John H. Armstrong, MD, FACS State Surgeon General & Secretary
	Carlos and the second of	Laboratory Scope of Accreditation	Page 15 of 24
		e #: E87948-24, expiration date June 30, 2016. T ould be used only when associated with a valid o	

WI01103

State Laboratory ID: E87948

EPA Lab Code:

(920) 469-2436

E87948		
Pace An	alytical Services, Inc - Green Bay #1	
	levue Street	
Green B	ay, W1 54302	
Matrix:	Solid and Chemical Materials	

Matrix: Solid and Chemical Mat Analyte	Method/Tech	Category	Certification Type	Effective Dat
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	5/15/2009
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
alpha-Chlordanc	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aluminum	EPA 6010	Metals	NELAP	4/1/2005
Alaminum	EPA 6020	Metals	NELAP	4/1/2005
Ammonia as N	EPA 350.1	General Chemistry	NELAP	4/1/2005
Aniline	EPA 8270	Extractable Organics	NELAP	4/1/2005
Anthracene	EPA 8270	Extractable Organics.	NELAP	4/1/2005
Antimony	EPA 6010	Metals	NELAP	4/1/2005
Antimony	EPA 6020	Metals	NELAP	4/1/2005
Aroclor-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroelor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroelor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Aroclor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Arsenic	EPA 6010	Metals	NELAP	4/1/2005
Arsenic	EPA 6020	Metals	NELAP	4/1/2005
Barium	EPA 6010	Metals	NELAP	4/1/2005
Barium	EPA 6020	Metals	NELAP	4/1/2005
Benzene	EPA 8021	Votatile Organics	NELAP	5/15/2009
Benzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Benzidine	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(g,h,i)perylenc	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzoiç acid	EPA 8270	Extractable Organics	NELAP	4/1/2005
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	4/1/2005
Beryllium	EPA 6010	Metals	NELAP	4/1/2005
Beryllium	EPA 6020	Metals	NELAP	4/1/2005
beta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	4/1/2005

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

ace Analytical [®]	Document Na Quality Assurance	e Manual	Document Revised Effective Date of Page 124	Last Signature of 132
	Document N Quality Assurance Ma		Issuing Au e Corporate Quality Bay Qualit	Office and Pace Gree
Rick Scott Governor	Roma Health	TH ry Scope of Accreditation	State Surgeon G	nstrong, MD, FACS eneral & Secretary Page 16 of 24
Attachmer	nt to Certificate #: E87948-24, es	2		edited
Attacumen	analytes should be used only	CARCENT FOR PLANE OF MEDICAL CONTRACTOR STOCKED		canco
State Laboratory ID: E87	948 EPA Lai	b Code: W101103	(920) 4	69-2436
E87948 Pace Analytical Services 1241 Bellevue Street Green Bay, W1 54302	, Inc - Green Bay #1			
	mical Materials			100 C 100 C 100 C
Analyte	Method/Tech	Category	Certification Type	Effective Date
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	4/1/2005
bis(2-Ethylhexyl) phthalate (DE)	(P) EPA 8270	Extractable Organics	NELAP	4/1/2005
Boron	EPA 6010	Metals	NELAP	4/1/2005
Boron	EPA 6020	Metals	NELAP	4/1/2005
Bromohenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Bromochloromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Bromodichloromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Bromoform	EPA 8260	Volatile Organies	NELAP	5/15/2009
Butyl benzyl phthaiate	EPA 8270	Extractable Organics	NELAP	4/1/2005
Cadmium	EPA 6010	Metals	NELAP	4/1/2005
Cadmium	EPA 6020	Metals	NELAP	4/1/2005
Calcium	EPA 6010	Metals	NELAP	4/1/2005
Calcium	EPA 6020	Metals	NELAP	4/1/2005
Carbazole	EPA 8270	Extractable Organics	NELAP	4/1/2005
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	5/15/2009
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	5/15/2009
Chlordane (lech.)	EPA 8081	Pesticides-Herbicides-PCB	s NELAP	5/30/2007
Chlorobenzene	EPA 8260	Volatile Organics.	NELAP	5/15/2009
Chloroethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Chloroform	EPA 8260	Volatile Organics	NELAP	5/15/2009
Chloroprene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Chromium	EPA 6010	Metals	NELAP	4/1/2005
Chromium	EPA 6020	Metals	NELAP	4/1/2005
Chrysene	EPA 8270	Extractable Organics	NELAP	4/1/2005
cis-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009
cis-1,3-Dichloropropene	EPA 8260	Volatile Organics	NEL AP	5/15/2009
cis-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Cobalt	EPA 6010	Metals	NELAP	4/1/2005
Cobalt	EPA 6020	Metals	NELAP	4/1/2005
Copper	EPA 6010	Metals	NELAP	4/1/2005
Copper	EPA 6020	Metals	NELAP	4/1/2005
delta-BHC	EPA 8081	Pesticides-Herbicides-PCB		5/30/2007
Dibenz(a,b)anthracene	EPA 8270	Extractable Organics	NELAP	4/1/2005
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	4/1/2005
Dibromochloromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
D.1	EBA \$260	Volatile Organics	NEL AP	5/15/2009

Volatile Organics

EPA 8260

Dibromomethane

Expiration Date: 6/30/2016

NELAP

5/15/2009

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 125 of 132
(Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office

Governor	- Carlos - C	HEALTH	and of Annuality	State Surgeon G	Page 17 of 2
		Laboratory S	cope of Accreditation		
Attacl			ation date June 30, 2016. T en associated with a valid c		edited
State Laboratory 1D:	E87948	EPA Lab Con	le: W101103	(920) 4	69-2436
E87948					
Pace Analytical Serv 1241 Bellevue Street Green Bay, WI 5430		iy #1			
	Chemical Materials			100 A 100	
	and the state of the state of the			Certification	Effective Date
Analyte		lethod/Tech	Category	Type	5/15/2009
Dichlorodifluoromethane		PA 8260	Volatile Organics	NELAP	
Dieldrin		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007 4/1/2005
Diesel range organics (DR)	7.6	PA 8015	Extractable Organics	NELAP	4/1/2005
Diethyl ether		PA 8260	Volatile Organics		
Diethyl phthalate		PA 8270	Extractable Organics	NELAP	4/1/2005 4/1/2005
Dimethyl phthalate		PA 8270	Extractable Organics	NELAP	
Di-n-butyl phthalate		PA 8270	Extractable Organies	NELAP	4/1/2005
Di-n-octyl phthalate		PA 8270	Extractable Organics	NELAP	4/1/2005
Endosulfan I		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endosulfan II		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endosulfan sulfate		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin	E	PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin aldehyde	E	PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin ketone	E	PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Ethanol	E	PA 8260	Volatile Organics	NELAP	5/15/2009
Ethyl acetate	E	PA 8260	Volatile Organics	NELAP	5/15/2009
Ethyl methacrylate	E	PA 8260	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	E	PA 8021	Volatile Organics	NELAP	5/15/2009
Ethylbenzene	1	PA 8260	Volatile Organics	NELAP	\$/15/2009
Ethyl-t-butylether (ETBE)	E	PA 8260	Volatile Organics	NELAP	5/15/2009
Fluoranthene	E	EPA 8270	Extractable Organics	NELAP	4/1/2005
Fluorene	E	PA 8270	Extractable Organics	NELAP	4/1/2005
gamma-BHC (Lindane, gamma-Hexachlorocycloh		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
gamma-Chlordanc		PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Gasoline range organics (C	iro) E	EPA 8015	Extractable Organics	NELAP	5/15/2009
Gasoline range organics (C	IRO) V	VI-GRÖ	Extractable Organics	NELAP	5/15/2009
Heptachlor	E	PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Heptachlor epoxide	f	PA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Hexachlorobenzene	E	PA 8270	Extractable Organics	NELAP	4/1/2005
riexachiorobenzene				AUCH AD	2115/2000
		PA 8260	Volatile Organics	NELAP	5/15/2009
Hexachlorobutadiene	I	PA 8260 PA 8270	Volatile Organics Extractable Organics	NELAP	4/1/2005
Hexachtorobutadiene Hexachtorobutadiene	I I				
Hexachtorobutadiene Hexachtorobutadiene Hexachtorocyclopentadien Hexachtorocyclopentadien	1 1 c 1	PA 8270	Extractable Organics	NELAP	4/1/2005

General Chemistry

Extractable Organics

EPA 8270 Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

EPA 1010

Ignitability

Indeno(1,2,3-cd)pyrene

Expiration Date: 6/30/2016

4/1/2005

4/1/2005

NELAP

Prace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 126 of 132
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office

Nitrobenzene

Governor		ALTH CALL IN CALL	State Surgeon C	Page 18 of 2
	Labora	tory Scope of Accreditation		Fage to bi 2
		, expiration date June 30, 2016. T nly when associated with a valid o		edited
State Laboratory ID: E87948	EPA	Lab Code: W101103	(920) 4	69-2436
E87948				
Pace Analytical Services, Inc - Gr 1241 Bellevue Street Green Bay, WI 54302	een Bay #1			
Matrix: Solid and Chemical Ma	terials			
	Method/Tech	Cataona	Certification	Effective Date
Analyte	EPA \$260	Category	Type NELAP	5/15/2009
lodomethane (Methyl iodide) Iron	EPA 6010	Volatile Organics Metals	NELAP	4/1/2005
leon	EPA 6020	Metals	NELAP	4/1/2005
and the second s	EPA 8260	Volatile Organics	NELAP	5/15/2009
Isobutyl alcohol (2-Methyl-1-propanol)	EPA 8260	Extractable Organics	NELAP	4/1/2005
Isophorone Isopropyl alcohol (2-Propanol)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Isopropylacianis (2-riopanis)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Kjeldahl nitrogen - total	EPA 351.2	General Chemistry	NELAP	4/1/2005
Lead	EPA 6010	Metals	NELAP	4/1/2005
Lead	EPA 6020	Metals	NELAP	4/1/2005
Lithium	EPA 6020	Metals	NELAP	5/15/2009
Magnesium	EPA 6010	Metals	NELAP	4/1/2005
Magnesium	EPA 6020	Metals	NELAP	4/1/2005
Manganese	EPA 6010	Metals	NELAP	4/1/2005
Manganese	EPA 6020	Metals	NELAP	4/1/2005
Mercury	EPA 6020	Metals	NELAP	3/19/2012
Mercury	EPA 7471	Metals	NELAP	4/1/2005
Methaerylonütrile	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methyl tert-butyl ether (MTBE)	EPA 8021	Volatile Organics	NELAP	5/15/2009
Methyl tert-buryl ether (MTBE)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Methylene chloride	EPA 8260	Volatile Organics	NELAP	5/15/2009
Mirex	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Molybdenum	EPA 6010	Metals	NELAP	4/1/2005
Molybdenum	EPA 6020	Metals	NELAP	4/1/2005
Naphthalene	EPA 8021	Volatile Organics	NELAP	5/15/2009
Naphthalene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Naphthalene	EPA 8270	Extractable Organics	NELAP	4/1/2005
n-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	5/15/2009
n-Butylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Nickel	EPA 6010	Metals	NELAP	4/1/2005
Nickel	EPA 6020	Metals	NELAP	4/1/2005
Nilter the outprised	EDA 9220	Extension a Orange	NEL AD	40,0005

Extractable Organics

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015 Issue Date: 7/1/2015

EPA 8270

Expiration Date: 6/30/2016

NELAP

4/1/2005

2 ace Analytical [®]	Document Nam Quality Assurance M		Document Revise Effective Date of Page 127	Last Signature
	Document No. Quality Assurance Manu	-	Issuing Au Pace Corporate Quality <i>Bay</i> Quali	Office and Pace Gree
Rick Scott Governor	REALTH		State Surgeon C	mstrong, MD, FACS Seneral & Secretary
	Laboratory	Scope of Accred	itation	Page 19 of 24
Attachmo	ent to Certificate #: E87948-24, expi		The second se	edited
State Laboratory 1D: ES	analytes should be used only w 87948 EPA Lab C			469-2436
	1/240 EFA Dab C	with w10110	(920) •	107-2400
E87948 Pace Analytical Service I241 Bellevue Street Green Bay, WI 54302				_
Matrix: Solid and Ch Analyte	emical Materials Method/Tech	Category	Certification Type	Effective Date
n-Nitrosodimethylamine	EPA 8270	Extractable Organic		4/1/2005
n-Nitrosodi-n-propylamine	EPA 8270	Extractable Organic	s NELAP	4/1/2005
n-Nitrosodiphenylamine	EPA 8270	Extractable Organic:	NELAP	4/1/2005
n-Propanol	EPA 8260	Volatile Organics	NELAP	5/15/2009
n-Propylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009
Organic nitrogen	TKN minus AMMONIA	General Chemistry	NELAP	4/1/2005
Paint Filter Liquids Test	EPA 9095	General Chemistry	NELAP	4/1/2005
Pentachlorophenol	EPA 8270	Extractable Organics		4/1/2005
Percent (%) moisture	ASTM D2974-87	General Chemistry	NELAP	5/15/2009
pН	EPA 9040	General Chemistry	NELAP	4/1/2005
pH	EPA 9045	General Chemistry	NELAP	4/1/2005
Phenanthrene	EPA 8270	Extractable Organic		4/1/2005
Phenol	EPA 8270	Extractable Organic		4/1/2005
Phosphorus	EPA 6020	Metals	NELAP	3/19/2012
Phosphorus, total	EPA 365.4	General Chemistry	NELAP	4/1/2005
p-lsopropyltolucne	EPA 8260	Volatile Organics	NELAP	5/15/2009 4/1/2005
Potassium	EPA 6010	Metals	NELAP	4/1/2005 4/1/2005
Potassium Democraticale (Cated consider)	EPA 6020	Metals Volatile Organice	NELAP	5/15/2009
Propionitrile (Ethyl cyanide)	EPA 8260 EPA 8270	Volatile Organics Extractable Organic:		4/1/2005
Pyrene Pyridine	EPA 8270	Extractable Organic:		4/1/2005
- yridine		and the second se		
sec-Burylbenzene	EPA 8260	Volatile Organics	NELAP	5/15/2009

EPA 6010

EPA 6020

EPA 6010

EPA 6020

EPA 6010

EPA 6020 EPA 6020

EPA 8260

EPA 1312

EPA 8260

EPA 8260

EPA 8260

EPA 8260

EPA 6010

Metals

Metals

Metals

Metals

Metals

Metals

Metals

Metals

Volatile Organics

General Chemistry

Volatile Organics

Volatile Organics

Volatile Organics

Volatile Organics

Selemum

Selenum

Silver

Silver

Sodium

Sodium

Stronuum Styrene

Synthetic Precipitation Leaching Procedure

tert-Butyl alcohol (2-Methyl-2-propanol)

Tetrachloroethylene (Perchloroethylene)

T-amylmethylether (TAME)

tert-Butylbenzene

Thallium

Expiration Date: 6/30/2016

4/1/2005 4/1/2005

4/1/2005

4/1/2005

4/1/2005

4/1/2005

5/30/2007

5/15/2009

4/1/2005

5/15/2009

5/15/2009

5/15/2009

5/15/2009

4/1/2005

NELAP

Prace Analytical"	Qua	Document Name: ality Assurance Manual		Document Revised: May 12, 2015 Effective Date of Last Signature Page 128 of 132
	Quality	Document No.: Assurance Manual rev.18	3.0 Pace Co	Issuing Authorities: prporate Quality Office and Pace <i>Gra Bay</i> Quality Office
	and a start			
Rick Scott Governor	and the second s	Henda		John H. Armstrong, MD, FACS State Surgeon General & Secretary
	8	HEALTH Laboratory Scope of	f Accreditation	
Governor			te June 30, 2016. T	State Surgeon General & Secretary Page 20 of 24 his listing of accredited
Governor	analytes shot	Laboratory Scope of #: E87948-24, expiration da	te June 30, 2016. T	State Surgeon General & Secretary Page 20 of 24 his listing of accredited
<u>Governor</u>	analytes shot	Laboratory Scope of #: E87948-24, expiration da ald be used only when assoc	te June 30, 2016. T ciated with a valid co	State Surgeon General & Secretary Page 20 of 24 his listing of accredited ertificate.

Matrix: Solid and Chemical Mate	erials		Certification	
Analyte	Method/Tech	Category	Туре	Effective Dat
Thallium	EPA 6020	Metals	NELAP	4/1/2005
Tin	EPA 6010	Metals	NELAP	4/1/2005
Titanium	EPA 6010	Metals	NELAP	4/1/2005
Thanium	EPA 6020	Metals	NELAP	5/30/2007
Toluene	EPA 8021	Volatile Organics	NELAP	5/15/2009
Toluene	EPA 8260	Volatile Organies	NELAP	\$/15/2009
Total cyanide	EPA 9012	General Chemistry	NELAP	4/1/2005
Total nitrate-nitrite	EPA 353.2	General Chemistry	NELAP	4/1/2005
Total nitrogen	TKN + Total nitrate-nitrite	General Chemistry	NELAP	4/1/2005
Total organic carbon	EPA 9060	General Chemistry	NELAP	5/30/2007
Toxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Toxicity Characteristic Leaching Procedure	EPA 1311	General Chemistry	NELAP	4/1/2005
trans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	5/15/2009
trans-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	5/15/2009
trans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	5/15/2009
trans-Nonachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Trichloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Trichlorofluoromethane	EPA 8260	Volatile Organics	NELAP	5/15/2009
Uranium	EPA 6020	Metals	NELAP	3/19/2012
Vanadium	EPA 6010	Metals	NELAP	4/1/2005
Vanadium	EPA 6020	Metals	NELAP	4/1/2005
Vinyl acetate	EPA 8260	Volatile Organics	NELAP	5/15/2009
Vinyl chloride	EPA 8260	Volatile Organics	NELAP	5/15/2009
Xylene (total)	EPA 8021	Volatile Organics	NELAP	5/15/2009
Xylene (total)	EPA 8260	Volatile Organics	NELAP	5/15/2009
Zinc	EPA 6010	Metals	NELAP	4/1/2005
Zine	EPA 6020	Metals	NELAP	4/1/2005

Prace Analytical"	Document Name: Quality Assurance Manua	Document Revised: May 12, 2015 Effective Date of Last Signature Page 129 of 132
	Document No.: Quality Assurance Manual rev	v.18.0 Issuing Authorities: Pace Corporate Quality Office and Pace Gree Bay Quality Office
Rick Scott	HEALTH	John H. Armstrong, MD, FACS State Surgeon General & Secretary
Governor		
Gavernar	Laboratory Scop	e of Accreditation Page 21 of 24
		a date June 30, 2016. This listing of accredited
Attachm	ent to Certificate #: E87948-24, expiration	a date June 30, 2016. This listing of accredited

Green Bay, WI 54302					
Matrix: Biological Tissue	and the second se		Certification	New yorks	
Analyte	Method/Tech	Category	Туре	Effective Dal	
1.2.4-Trichlorobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
1,2-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
1,3-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
1.4-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2,2'-Oxybis(1-chloropropane),bis(2-Chloro-1-m ylethyl)ether (fka bis(2-Chloroisopropyl) ether		Extractable Organics	NELAP	5/30/2007	
2,4,5-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2,4,6-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2,4-Dichlorophenol	EPA 8270	Extractable Organics.	NELAP	5/30/2007	
2,4-Dimethylphenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2,4-Dinitrophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2,4-Dinitrotoluene (2,4-DNT)	EPA 8270	Extractable Organics	NELAP	\$/30/2007	
2,6-Dinitrotoluene (2,6-DNT)	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Chloronaphihalene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Chlorophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Methyl-4,6-dinitrophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Methylphenol (o-Cresol)	EPA 8270	Extractable Organics	NELAP	\$/30/2007	
2-Nitroaniline	EPA 8270	Extractable Organics	NELAP	5/30/2007	
2-Nitrophenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
3,3'-Dichlorobenzidine	EPA 8270	Extractable Organics	NELAP	5/30/2007	
3/4-Methylphenols (m/p-Cresols)	EPA 8270	Extractable Organics	NELAP	5/30/2007	
3-Nitroaniline	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4,4'-DDD	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	
4,4*•DDE	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	
4,4'-DDT	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	
4-Bromophenyl phenyl ether	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4-Chloro-3-methylphenol	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4-Chloroaniline	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4-Chlorophenyl phenylether	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4-Nitroaniline	EPA 8270	Extractable Organics	NELAP	5/30/2007	
4-Nitropheno)	EPA 8270	Extractable Organics	NELAP	5/30/2007	
Acenaphthene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
Acenaphthylene	EPA 8270	Extractable Organics	NELAP	5/30/2007	
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	
alpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007	

2 ace Analytical [®]	Document Na Quality Assurance		Document Revise Effective Date of Page 130	Last Signature
	Document M Quality Assurance Ma		Issuing Au Corporate Quality Bay Quali	Office and Pace Gre
Rick Scott. Governor	Heals			mstrong, MD, FACS Seneral & Secretary
	Laborato	ry Scope of Accreditation		Page 22 of 24
Attachmer	at to Certificate #: E87948-24, e			edited
and a second second second		when associated with a valid		
State Laboratory ID: E87	7948 EPA Lai	b Code: W101103	(020)	160 7176
E87948		violatos	(220)-	169-2436
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302	, Inc - Green Bay #1	v cout. W101105	(920) -	409-2430
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, WI 54302 Matrix: Biological Tiss	, Inc - Green Bay #1 sue		Certification	
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, WI 54302 Matrix: Biological Tiss Analyte	, Inc - Green Bay #1 sue Method/Tech	Category	Certification Type	Effective Date
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum	, Inc - Green Bay #1 sue Method/Tech EPA 6020	Category Metals	Certification Type NELAP	Effective Date 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene	, Inc - Green Bay #1 sue Method/Tech EPA 6020 EPA 8270	Category Metals Extractable Organics	Certification Type NELAP NELAP	Effective Date 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony	, Inc - Green Bay #1 sue Method/Tech EPA 6020 EPA 8270 EPA 6020	Category Metals Extractable Organics Metals	Certification Type NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016)	, Inc - Green Bay #1 sue Method/Tech EPA 6020 EPA 8270 EPA 6020 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)	, Inc - Green Bay #1 sue <u>Method/Tech</u> EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, WI 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242)	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, WI 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248)	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-121 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260)	, Inc - Green Bay #1 sue <u>Method/Tech</u> EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) Arsenic	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Metals	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, W1 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) Arsenic Barium	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 802 EPA 8082 EPA 8020 EPA 8020	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Metals Metals	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007
E87948 Pace Analytical Services. 1241 Bellevue Street Green Bay, WI 54302 Matrix: Biological Tiss Analyte Aluminum Anthracene Antimony Aroclor-1016 (PCB-1016) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1248) Aroclor-1260 (PCB-1260) Arsenic	, Inc - Green Bay #1 sue EPA 6020 EPA 8270 EPA 6020 EPA 8082 EPA 8082	Category Metals Extractable Organics Metals Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Pesticides-Herbicides-PCB's Metals	Certification Type NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	Effective Date 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007 5/30/2007

heta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	
Boron	EPA 6020	Metals	NELAP	
Butyl benzyl phthalate	EPA 8270	Extractable Organics	NELAP	
Cadmum	EPA 6020	Metals	NELAP	
Calcium	EPA 6020	Metals	NELAP	
Carbazole	EPA 8270	Extractable Organics	NELAP	
Chlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	
Chromium	EPA 6020	Metals	NELAP	
Chrysene	EPA 8270	Extractable Organics	NELAP	
Cobalt	EPA 6020	Metals	NELAP	
Copper	EPA 6020	Metals	NELAP	
delta-BHC	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	
Dibenz(a,h)anthracene	EPA 8270	Extractable Organics	NELAP	
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	

Extractable Organics

Extractable Organics

Extractable Organics

Pesticides-Herbicides-PCB's

Metals

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

EPA 8081

EPA 8270

EPA 8270

EPA 8270

EPA 6020

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Beryllium

Dieldrin

Expiration Date: 6/30/2016

NELAP

NELAP

NELAP

NELAP

NELAP

5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007 5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007 5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007

5/30/2007 5/30/2007

5/30/2007

5/30/2007

	Document Revised: May 12, 2015 Effective Date of Last Signature Page 131 of 132	
Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Gree Bay Quality Office	
	Duy Quany Office	
•		
HEALTH	John H. Armstrong, MD, FACS State Surgeon General & Secretary	
THE REPORT OF TH	HEALTH Luboratory Scope of Act	

Attachment to Certificate #: E87948-24, expiration date June 30, 2016. This listing of accredited analytes should be used only when associated with a valid certificate.

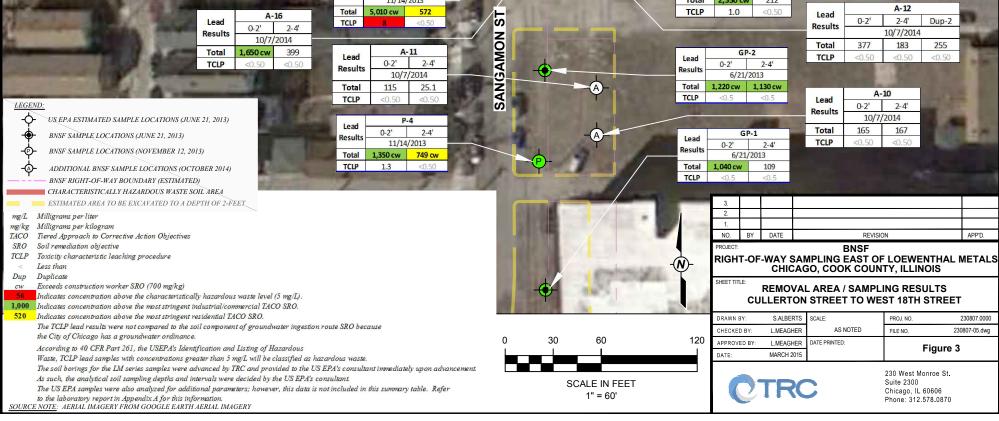
W101103

State Laboratory ID: E87948

EPA Lab Code:

(920) 469-2436

E87948	
Pace An	alytical Services, Inc - Green Bay #1
1241 Bel	levue Street
Green B	ay, WI 54302
Matrix:	Biological Tissue


Matrix: Biological Tissue Analyte	Method/Tech	Category	Certification Type	Effective Date
Diethyl phthalate	EPA 8270	Extractable Organics	NELAP	5/30/2007
Dimethyl phthalate	EPA 8270	Extractable Organics	NELAP	5/30/2007
Di-n-butyl phthalate	EPA 8270	Extractable Organics	NELAP	\$/30/2007
Di-n-octyl phthalate	EPA 8270	Extractable Organics	NELAP	\$/30/2007
Endosulfan I	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endosulfan II	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	\$/30/2007
Endosulfan sulfate	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin aldehyde	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Endrin ketone	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Fluoranthene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Fluorene	EPA 8270	Extractable Organics	NELAP	5/30/2007
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
gamma-Chlordane	EPA 8081	Pesticides-Herhicides-PCB's	NELAP	5/30/2007
Heptachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Heptachlor cpoxide	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
lexachlorobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007
lexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	5/30/2007
lexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Hexachloroethane	EPA 8270	Extractable Organics	NELAP	5/30/2007
ndeno(1,2,3-ed)pyrene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Iron	EPA 6020	Metals	NELAP	5/30/2007
Isophorone	EPA 8270	Extractable Organics	NELAP	5/30/2007
Lead	EPA 6020	Metals	NELAP	5/30/2007
	EPA 6020	Metals	NELAP	5/15/2009
Vlagnesium	EPA 6020	Metals	NELAP	5/30/2007
Manganese	EPA 6020	Metals	NELAP	5/30/2007
Mercury	EPA 245.6	Metals	NELAP	5/30/2007
Mercury	EPA 6020	Metals	NELAP	3/19/2012
Mercuny	EPA 7471	Metals	NELAP	5/30/2007
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Mirex	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	\$/30/2007
Molyhdenum	EPA 6020	Metals	NELAP	5/30/2007
Naphthalene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Nickel	EPA 6020	Metals	NELAP	5/30/2007
Nirobenzene	EPA 8270	Extractable Organics	NELAP	5/30/2007

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2015

Pace Analytical®	Document Name: Quality Assurance Manual	Document Revised: May 12, 2015 Effective Date of Last Signature Page 132 of 132	
	Document No.: Quality Assurance Manual rev.18.0	Issuing Authorities: Pace Corporate Quality Office and Pace Green Bay Quality Office	

Governor	HEALT	H ry Scope of Accreditation	State Surgeon C	Page 24 of 24
	Laborator	y scope of Accreanation		
		piration date June 30, 2016. T when associated with a valid c		edited
State Laboratory ID: E87948	EPA Lat	Code: W101103	(920) 4	69-2436
E87948				
Pace Analytical Services, Inc - G	reen Bay #1			
1241 Bellevue Street				
Green Bay, W1 54302 Matrix: Biological Tissue				
Analyte	Method/Tech	Category	Certification Type	Effective Date
n-Nitrosodi-n-propylamine	EPA 8270	Extractable Organics	NELAP	5/30/2007
n-Nitrosodiphenylamine	EPA 8270	Extractable Organics	NELAP	5/30/2007
Pentachlorophenol	EPA 8270	Extractable Organics	NELAP	\$/30/2007
Phenanthrene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Phenol	EPA 8270	Extractable Organics	NELAP	5/30/2007
Potassium	EPA 6020	Metals	NELAP	5/30/2007
Pyrene	EPA 8270	Extractable Organics	NELAP	5/30/2007
Selenium	EPA 6020	Metals	NELAP	5/30/2007
Silver	EPA 6020	Metals	NELAP	5/30/2007
Sodium	EPA 6020	Metals	NELAP	5/30/2007
Strontium	EPA 6020	Metals	NELAP	5/30/2007
Thallium	EPA 6020	Metals	NELAP	5/30/2007
Titanium	EPA 6020	Metals	NELAP	5/30/2007
Toxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
trans-Nonachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/30/2007
Vanaduum	EPA 6020	Metals	NELAP	5/30/2007
Zinc	EPA 6020	Metals	NELAP	5/30/2007

File Location:S-IPROJECTS/BNSFISengemon ROW Loewental Metals Bite:http://doi.org/20060200007 Piot Information: DWS TO PDF PC3 ALBERTS, SCOTT — ANSI EXPAND 8 (11:00 X 17:00 INCHES) December 7, 20	Layout Name: FIGURE 3 15 I TRC COLOR CTB		
Total 3,180 TCLP 13	11/14/2013	P-20 Results 0-2' 2-4' 11/14/2013 Total 163 214 TCLP <0.5 <0.5 <0.5 A A A A A A A A A A	Lead Results A-26 0-2' Dup-4 2-4' 10/8/2014 10/8/2014 Total 639 505 101 TCLP <0.50 <0.50 <0.50
	17.4 305 30,50 <0,50 Lead 0-2' Question 11/14/2013 Total 1,370 cw 143 TCLP Co.5 <0.5 Lead 0-2' Question 143 TCLP <0.5 Question <0.5 Image: Construct of the state o	Lead Results P-18 0-2' 2-4' 11/14/2013 11/14/2013 Total 417 201 TCLP <0.5 <0.5	10/8/2014 Total 1,320 cw 790 cw TCLP <0.50 <0.50 Lead A-23 0.2' 2.4' 10/8/2014 10/8/2014 10/8/2014 Total 699 212 TCLP <0.50 <0.50 Lead A-22 0-2' 2-4' 10/7/2014 10/7/2014
	Lead P-15 Results 0-2' 2-4' 11/14/2013 11/14/2013 Total 834 cw 288 TCLP 0.53 0.5	System Lead Results 0-2' Du 10/7/ Total 631 55 TCLP <0.50 <0 Lead P 0-2' 0-2' Besults 0-2' 0-2' 0-2'	Total 715 cw 139 TCLP <0.50 <0.50 P-3 2-4' 2014 335 <0.50 14 20p.3 2-4' /2013
	P-13 Lead 0-2' 2-4' Results 11/14/2013 Total 343 86.9 TCLP 1.8<<<0.5	TCLP <0.5	0 cw 309 6 <0.5
	Lead Results P-11 0-2' 2-4' 11/14/2013 Total 661 115 TCLP 0.5 TCLP <0.5 <0.5	Lead Results Total 1,4	A-18 0-2' 2-4' 10/7/2014 100 cw 37.9
	Lead 0-2' 2-4' Results 11/14/2013 Total 2,460 cw 1,040 cw TCLP 1.1 0.74 Lead 0-2' 2-4' Markowski 1.1 0.74 Lead 0-2' 2-4' Introduction 1.1 0.74	C P P A A A A A A A A A A A A A A A A A	2013 6/21/2013 Dew 169 P-8
Total 8	Lead P-6 Results 0-2' 2-4' 11/14/2013 11/14/2013 Total 120 4,960 cw 0-2' 2-4' 11/14/2013 10/7/2014 1.9 <0.50	A A A Total 2,620 TCLP 4.4 A A A A A A A A A A A A A A A A A A A	2-4' TCLP 1.3 2.2 1/14/2013

