
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Working Paper Series 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
U.S. Environmental Protection Agency 
National Center for Environmental Economics 
1200 Pennsylvania Avenue, NW (MC 1809) 
Washington, DC 20460 
http://www.epa.gov/economics 
 

 

 

  
Modeling the Impact of Climate Change on Extreme 

Weather Losses 
 

Matthew Ranson, Lisa Tarquinio, and Audrey Lew 

 
Working Paper # 16-02 

May, 2016 

 



 
 

 
 
 
 

Modeling the Impact of Climate Change on Extreme Weather Losses 
 
 
 
 

Matthew Ranson*1, Lisa Tarquinio1, and Audrey Lew1 
 
 
 
 

NCEE Working Paper Series 
Working Paper #16-02 

May 2016 
 
 
 
 

 
 

 
1 Environment and Natural Resources Division, Abt Associates Inc. 
 
*Corresponding Author: 
Matthew Ranson 
Environment and Natural Resources Division 
Abt Associates Inc. 
55 Wheeler Street 
Cambridge, MA 02138 
617-520-2484 
matthew_ranson@abtassoc.com 

 
 

DISCLAIMER 
The views expressed in this paper are those of the author(s) and do not necessarily represent those of the 
National Center for Environmental Economics, the U.S. Environmental Protection Agency, or Abt 
Associates. In addition, although the research described in this paper may have been funded entirely or in 
part by the U.S. Environmental Protection Agency, it has not been subjected to the Agency's required peer 
and policy review. No official Agency endorsement should be inferred.  The authors gratefully 
acknowledge helpful comments from Charles Griffiths, Brian Heninger, Elizabeth Kopits, and Alex 
Marten.  Any errors are our own responsibility.  



 
 

 
 
 
 
 
 

ABSTRACT 
 
This report summarizes current research on how climate change is likely to influence future losses from 
extreme weather events.  We consider six types of weather-related extreme events:  tropical cyclones, 
extratropical cyclones, inland floods, landslides and avalanches, wildfires, and small-scale storms.  For 
each type of event, we synthesize existing research related to three topics.  First, we examine research that 
estimates historical average losses from each type of extreme weather.  We find that while there are 
relatively good data on costs of destroyed infrastructure, there is considerable disagreement in the 
literature about the longer-term macroeconomic effects of disasters.  Second, we summarize evidence on 
the relationship between socioeconomic growth and storm losses.  Our review suggests that increases in 
GDP and population lead to higher losses from disasters, but that disaster mortality is lower in more 
developed countries.  Finally, we review studies of how climate change will affect future losses from 
extreme weather.  Many studies predict increases in losses under climate change, but the science remains 
uncertain and some projections suggest that certain types of extreme weather losses may decrease.  
Overall, based on a reduced-form model that draws together parameter estimates from each of these three 
strands of literature, we estimate that moderate climate change will cause average extreme weather 
damages to increase by tens of billions of dollars per year.  However, the confidence intervals 
surrounding our estimates are very wide, reflecting substantial underlying uncertainties. 
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1 Introduction 

Events related to extreme weather cause substantial economic damages worldwide.  Over the last thirty 
years, worldwide direct reported losses have averaged $28 billion from tropical cyclones, $2 billion from 
extratropical cyclones, $10 billion from inland floods, $0.3 billion from landslides and avalanches, $2 
billion from wildfires, and $7 billion from small-scale storm-related phenomena (Guha-Sapir, Below, and 
Hoyois, 2015).  Recent research suggests that climate change will influence the frequency, intensity, and 
geographic distribution of these types of extreme events (Bender et al 2010; Knutson et al 2010; IPCC, 
2012; Cai et al, 2015)—leading to corresponding changes in future economic impacts (Karremann et al, 
2014; Susnik, 2014; Neumann et al, 2014). 

However, despite a recent surge in scientific and economic literature on this topic, the representation of 
extreme weather damages in integrated assessment models (IAMs) of climate change remains relatively 
basic.  Two of the leading IAMs—the DICE model (Nordhaus, 2013) and the PAGE model (Hope, 
2006)—assert that their aggregate damage functions include extreme weather losses, but do not attempt to 
model losses separately for this category.  The FUND model does have separate modules that cover 
tropical and extratropical cyclone losses (Narita, Tol, and Anthoff, 2009; Narita, Tol, and Anthoff, 2010), 
but the parameters are based on older research, and the model excludes other important categories of 
extreme events, such as inland flooding. 

As a step towards improving the way that IAMs represent extreme weather, this report reviews the 
growing literature on climate change and extreme weather losses.  Because there are many different ways 
to define extreme events, we limit our focus to categories of weather-related events that cause direct 
damage to physical infrastructure over a short time-frame.  This criterion includes the following 
categories of events:  tropical cyclones, extratropical cyclones, heavy precipitation, inland flooding, 
landslides and avalanches, wildfires, and small-scale storm-related phenomena (hail, tornadoes, 
thunderstorms).  It excludes climate-related events that take place over longer time scales, such as 
droughts, monsoons, El Nino and other oscillations, and extreme sea levels.  For each type of disaster, we 
consider three topics. 

First, we review research that estimates historical average losses from each type of extreme weather 
event.  Most previous modelling efforts have used data on reported losses taken from global disaster 
databases maintained by reinsurers or by academic organizations.  Although these databases are the only 
reasonably comprehensive source of information about the costs of destroyed infrastructure, they omit 
many important categories of costs, particularly longer term impacts.  Thus, to supplement this data, we 
also review recent empirical research on the macroeconomic costs of extreme weather events.  We find 
that there is considerable disagreement in the literature about the effects of disasters on GDP, with a few 
studies suggesting positive growth effects from rebuilding outdated infrastructure, but other studies 
finding very large negative long-term growth effects. 

Second, we summarize recent research on the relationship between socioeconomic growth and storm 
losses.  A large number of studies have measured long-term trends in losses per capita or per unit of GDP.  
However, these studies reveal little about the causal effect of socioeconomic change on losses.  In our 
review of studies that use a regression-based approach, we find support for the hypothesis that increases 
in GDP and population lead to higher losses from disasters.  However, the literature also suggests that 
disaster mortality declines as countries become more developed.   
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Third, we review studies of how climate change will affect future losses from extreme weather.  Many 
studies predict increases in losses under climate change, but the science remains uncertain and some 
projections suggest that certain types of extreme weather losses may decrease.   

Based on our review of these three topics, we develop reduced-form damage functions for each of the six 
categories of extreme weather events.  The models use simple, IAM-compatible functional forms.  We 
parameterize the models by developing probability distributions that incorporate the range of parameter 
values found in the existing scientific and economic literature.  Overall, we estimate that moderate 
climate change will cause average extreme weather damages to increase by tens of billions of dollars per 
year.  However, the confidence intervals surrounding our estimates are very wide, reflecting substantial 
underlying uncertainties. 

This report builds on several previous syntheses of relevant literature.  For example, Bouwer (2013) 
reviews projections of extreme weather losses under climate change in 2040; Kousky (2014) reviews 
estimates of the costs of extreme weather; Ranson et al (2014) conducts a meta-analysis of the impact of 
climate change on tropical and extratropical cyclone damages; and Lazzaroni and van Bergeijk (2014) 
presents a meta-analysis of t-statistics drawn from 64 studies of the macroeconomic impacts of natural 
disasters.  However, to the best of our knowledge, no study has combined the three strands of literature 
summarized above and used them to parameterize an IAM-compatible damage function.   

The remainder of the report is organized as follows.  First, in Section 2, we present a simple modeling 
framework for representing how socioeconomic development and climate change will affect damages 
from extreme weather.  Next, in Section 3, we review evidence on the magnitude of historical losses from 
extreme weather.  In Section 4, we then summarize studies of how losses are affected by socioeconomic 
development.  In Section 5, we discuss the potential effects of climate change on six major categories of 
extreme weather events.  Finally, in Section 6, we parameterize an IAM-compatible damage function 
based on the results from the previous sections, and use it to project average annual damages from 
extreme weather under a 2.5°C increase in global surface atmospheric temperature.  Section 7 concludes. 
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2 A Reduced-Form Model of Extreme Weather Losses 

In this section, we present a simple model of future damages from extreme weather.  The model includes 
three components that describe how baseline damages vary across geographic areas, how socioeconomic 
growth affects damages, and how climate change affects damages.   

The purpose of the model is to provide a framework for standardizing and combining empirical estimates 
from the research literature.  While our efforts do not rise to the level of a formal meta-analysis, the 
model does provide a useful organizing framework for the rest of this paper.  Sections 3, 4, and 5 are 
dedicated to reviewing empirical evidence on the three main model components, respectively. 

Note that we do not attempt to capture specific causal mechanisms within the model.  Instead, we abstract 
away from particular mediators of the climate change-damage relationship, and focus on the reduced-
form relationship between characteristics of the scenario (i.e., location, socioeconomic change, and 
temperature change) and final projected damages.  Overall, our approach draws heavily on the 
temperature-loss functional forms specified in Narita, Tol, and Anthoff (2009).  However, unlike their 
model, we treat the temperature-damage relationship as a “black box”, without attempting to break apart 
the science and economics.   

The model is as follows.  Suppose that 𝐷𝐷𝑖𝑖(⋅) is a damage function that represents the monetary cost of 
extreme weather damages in region 𝑖𝑖 of the world.  We model damages in year 𝑡𝑡 as a function of three 
variables:  income 𝑌𝑌𝑖𝑖𝑖𝑖, population 𝑃𝑃𝑖𝑖𝑖𝑖, and surface air temperature change Δ𝑇𝑇𝑡𝑡: 

𝐷𝐷𝑖𝑖(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖 ,Δ𝑇𝑇𝑡𝑡) = 𝛼𝛼𝑖𝑖 ⋅ 𝐵𝐵(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑡𝑡) ⋅ 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡)  

We decompose this damage function into three multiplicative terms.  The first term, 𝛼𝛼𝑖𝑖, is a coefficient 
which represents average annual monetary losses in region 𝑖𝑖, under baseline conditions.  The second term, 
𝐵𝐵(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖), captures the effects of income and population growth on damages.  The final term, 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡), 
represents the change in damages in region 𝑖𝑖 due to changes in temperature.   

Note that this functional form makes several simplifying assumptions.  It assumes that the effects of 
socioeconomic growth and climate change are multiplicatively separable.  While reasonable, we 
acknowledge that this is an empirical question.  Additionally, the model assumes that the effects of 
socioeconomic growth on losses are the same across regions.  We model the effects of socioeconomic 
growth on losses as: 

𝐵𝐵(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖) = �
𝑌𝑌𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖0
�
𝜆𝜆
⋅ �
𝑃𝑃𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖0
�
𝜋𝜋

 

In this equation, 𝑌𝑌𝑖𝑖0 represents income (or GDP) in the baseline year, and 𝑃𝑃𝑖𝑖0 represents population in the 
baseline year.  This functional form assumes that changes in damages are proportional to some power of 
the ratio of baseline and future income (or population).  In other words, the elasticities of losses with 
respect to income and population are 𝜆𝜆 and 𝜋𝜋, respectively.  The specification differs from the functional 
form used in Narita, Tol, and Anthoff (2009, 2010), in that it places no constraint on the relationship 
between the elasticities with respect to income and population .1  

The model also makes some simplifying assumptions about the effects of climate change.  In particular, 
we assume that the change in surface air temperature Δ𝑇𝑇𝑡𝑡 is a sufficient statistic that captures all relevant 
dimensions of the relationship between climate change and extreme weather.  This is a strong assumption, 
                                                      
1 The functional form used by Narita, Tol, and Anthoff (2009, 2010) implies that 𝜆𝜆 = 1 − 𝜋𝜋.  Section 4.3 discusses 
this issue in more detail. 
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given that extreme weather patterns are likely to be influenced by many aspects of climate change, 
including increasing sea levels and changing sea surface temperature differentials.  However, in our view, 
the limitations imposed by this assumption are more than justified by the analytical simplicity that it 
creates.  In particular, because most IAMs include only very simplistic representations of climate, 
including extra parameters would provide little practical value.  We model 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) using an exponential 
functional form: 

𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) = (1 + τi)Δ𝑇𝑇𝑡𝑡 

Again, we do not claim that this functional form is exactly correct—in fact, the true relationship is 
probably highly complex and nonlinear.  However, an exponential model is tractable and consistent with 
recent meta-analysis work (e.g., Ranson et al, 2014).  A rough interpretation of this functional form is that 
a one degree increase in temperature produces a τi percent increase in climate damages. 

The remainder of this paper is dedicated to reviewing empirical evidence on the parameter values for the 
three components of the model.  In Section 3, we discuss estimates of baseline damages from extreme 
weather in different regions of the world.  In Section 4, we review estimates of the relationship between 
socioeconomic growth and extreme weather damages.  Finally, in Section 5, we present estimates of the 
relationship between temperature change and extreme weather damages. 
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3 Historical Extreme Weather Losses 

This section of the paper reviews empirical evidence on historical losses from extreme weather events.  
As discussed in Kousky (2014), extreme weather can cause a wide range of economic impacts.  Official 
tallies are often based on the cost of repairing damaged infrastructure, such as buildings and roads (Guha-
Sapir et al, 2015).  However, there are many other categories of economic impacts, including mortality 
(Kahn, 2005), morbidity and psychological costs (Stephens, 2007), economic growth shocks (Felbermayr 
and Gröschl, 2014), displacement and migration costs (Sacerdote, 2014), deadweight loss from transfer 
payments (Deryugina, 2013), and defensive expenditures (Crompton and McAneney, 2008; Hsaing and 
Narita, 2012).  

Broadly speaking, the academic literature takes two approaches to quantifying these impacts.  First, many 
studies rely on loss estimates reported by insurance companies, government agencies, and other official 
sources.  These estimates are typically based on summing up reports about individual homeowner and 
business losses (such as insurance claims).  The advantage of this approach is that data on reported losses 
is readily available for a wide variety of types of natural disasters.  However, reported data may be 
incomplete or inaccurate, and may only focus on certain types of damage (e.g., infrastructure damage).   

Second, some papers estimate damages by using panel data to measure how disaster incidence affects 
important economic outcomes.  In these studies, the dependent variable is a measure of economic status, 
such as GDP, income, employment, or disaster aid.  These studies then look for a change in the outcome 
variable in the years following the occurrence of an extreme event.  This change is interpreted as the 
causal effect of the event.  This approach also faces data limitations, but has the key advantages of 
allowing for a flexible relationship between events and losses, and of being able to measure effects on a 
wide range of endpoints.   

The remainder of this section reviews these two sources of evidence on historical losses.  First, in Section 
3.1, we review empirical estimates that use reporting data to estimate the economic impacts caused by 
extreme weather events.  Then, in Section 3.2, we discuss economic impact estimates based on panel data.  
Finally, in Section 3.3, we compare the results from the two approaches and present a summary of 
baseline losses by geographic region and type of disaster.  Our discussion throughout this part of the 
paper builds on Kousky (2014), which provides an overview of the literature on losses from natural 
disasters, and on Lazzaroni and van Bergeijk (2014), which presents a meta-analysis of t-statistics drawn 
from 64 studies of the macro-economic impacts of natural disasters. 

3.1 Loss Estimates based on Reporting Data 

We begin by describing the results of studies that estimate disaster damages using estimates based on 
insurance claims and other official sources.  Typically, the raw data for these studies is drawn from one of 
several disaster databases, such as the Centre for Research on the Epidemiology of Disasters (CRED)’s 
International Disaster Database (EM-DAT), the University of South Carolina’s Spatial Hazard Events and 
Losses Database for the United States (SHELDUS), Swiss Re’s NetCat, Munich Re’s NatCatSERVICE, 
Aon Benfield’s disaster database, or NOAA’s Storm Events database.  These databases use loss estimates 
from a variety of sources, including government agencies, press agencies, research institutes, non-
governmental organizations, UN agencies, and insurance companies (Guha-Sapir et al, 2015).   

The coverage of these databases is limited based on certain criteria, and may be incomplete.  For example, 
EM-DAT includes information for reported disasters that caused 10 or more mortalities, affected 100 or 
more people, led to a declaration of a state of emergency, or led to a call for international assistance.  The 
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loss estimates in EM-DAT represent direct damages to property, crops, and livestock, but exclude indirect 
or long-term consequences.  In 2003, the recording method for disasters in EM-DAT changed, leading to 
more disasters being reported in more recent years (Guha-Sapir et al, 2015).  Furthermore, in some cases 
the database may report losses of $0, even though actual damages were not assessed or recorded (Toba, 
2009).  However, Kousky (2014) shows that at the aggregate level, summing across many different 
disasters, the four main international databases (Swiss Re, Munich Re, Aon Benfield, and EM-DAT) 
produce generally similar patterns. 

Despite these limitations, disaster databases provide the only practical source of source of relatively 
comprehensive event-level damages estimates.  To illustrate the overall patterns in this reporting data, 
Table 1 summarizes damage estimates from EM-DAT for the period from 1985 through 2014.  The figure 
presents the number of events, average annual damages, and average annual mortality, by type of disaster 
and region.  The figure shows over the last thirty years, tropical cyclones have been responsible for the 
greatest component of total losses:  approximately $27 billion per year.  Of this, $19 billion per year 
occurred in the United States.  Losses from inland floods have also been large, at $23 billion per year.  
Losses from other types of disasters are smaller:  $7 billion per year from small storms, $2 billion per year 
from both extratropical cyclones and wildfires, and $0.3 billion per year from landslides/avalanches.  On 
the basis of mortality, losses are also higher for tropical cyclones (14,000 deaths per year), followed by 
inland floods (6,000 deaths per year).  Most of these deaths occur in Asia. 

 

Table 1: Average Annual Impacts from Extreme Events, By Region 

Continent 
Tropical 
Cyclones 

Extratropical 
Cyclones 

Inland 
Floods Wildfires 

Small 
Storms 

Landslides / 
Avalanches 

 Number of Events, 1985-2014 
North America 417 1 347 97 290 28 
South America 9 1 271 30 32 83 
Europe 17 101 393 85 104 33 
Africa 84 0 649 25 58 29 
Asia 686 0 1,207 50 202 291 
Australia 121 0 72 24 28 15 
World, Total 1,334 103 2,939 311 714 479 
 Average Annual Reported Damages (millions, $2013) 
North America $18,671 $37 $2,549 $1,097 $5,750 $19 
South America $18 $0 $919 $46 $9 $62 
Europe $36 $2,011 $4,388 $528 $563 $97 
Africa $61 $0 $274 $16 $42 $0 
Asia $8,115 $0 $14,572 $552 $678 $141 
Australia $368 $0 $508 $96 $285 $0 
World, Total $27,269 $2,047 $23,209 $2,336 $7,328 $319 
 Average Annual Reported Mortality 
North America 1,023 0 221 6 115 24 
South America 22 0 1,270 4 9 156 
Europe 3 15 94 15 13 34 
Africa 87 0 619 9 21 30 
Asia 12,467 0 3,514 25 197 560 
Australia 25 0 8 8 1 14 
World, Total 13,627 15 5,725 67 357 818 
Notes:  This table is based on data for the 30-year period from 1985 to 2014. Data for damages are converted to 
2014 dollars using the U.S. GDP deflator (BEA, 2015).  Source for damages: Guha-Sapir et al, 2015 
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Using data drawn from EM-DAT and other similar sources, a number of authors have developed 
estimates of annual average losses from extreme weather in different geographies (Collins and Lowe, 
2001).  For example, Kunkel, Pielke, and Changnon (1999) presents average annual U.S. losses and 
mortality from eight different categories of extreme weather events.  Similarly, Blake, Landsea, and 
Gibney (2011) presents estimated damages from U.S. hurricanes, based on insurance loss data, and BTE 
(2001) uses insurance loss records to estimate the cost of cyclones in Australia.  Because losses depend on 
the population and infrastructure at risk, these studies typically use normalization approaches that control 
for long-term changes in socioeconomic variables, such as population density or housing value.  Because 
of the importance of these variables in predicting future losses, we discuss these studies separately in 
greater detail in Section 4. 

Other studies have used reported loss data to try to understand the relationship between the characteristics 
of an extreme weather event and the damage that it causes (Pielke and Downton, 2000; Choi and Fisher, 
2003; Schmidt et al, 2009a,b; Nordhaus, 2010; Bouwer and Botzen, 2011; Czajkowski, Simmons, and 
Sutter, 2011; Mendelsohn et al, 2011; Zia, 2012; Deryugina, 2013).  This information is useful for 
planning and insurance purposes.  It is also important for predicting future damages from extreme 
weather, e.g., if climate change results in a shift in the intensity, frequency, or geographic range of 
extreme weather events.  To provide a sense of this strand of literature, we focus here on one issue that 
has been particularly controversial:   the relationship between wind speed and hurricane losses.  As 
Nordhaus (2010) argues, “given the number and complexity of relationships entering the wind speed–
damage relationship, it is unlikely that the actual functional parameters can be derived from first 
principles.”  Thus, most studies have taken an empirical approach in which they regress reported storm 
losses (often based on EM-DAT, but sometimes on other databases) on a measure of wind speed.  

Table 2 summarizes results from selected studies on this topic.  The top panel of the table shows results 
from studies that estimate damages broken down by Saffir-Simpson hurricane intensity category.  This 
scale is based on the highest sustained wind speed achieved by a storm, and ranges from 74-95 miles per 
hour for a Category 1 storm, to above 157 miles per hour for a Category 5 storm.  For example, Pielke et 
al (2008) estimate that average normalized damages per storm are $0.1 billion for tropical and subtropical 
storms, $1.2 billion for a Category 1 hurricane, $2.2 for a Category 2 hurricane, $7 billion for a Category 
3 hurricane, $30 billion for a Category 4 hurricane, and $26 billion for a Category 5 hurricane.2 

Other studies, shown in the bottom panel of Table 2, estimate results as parametric functions of wind 
speed.  The estimated relationship between wind speed and damages varies considerably across these 
studies.  For example, estimates of the percentage change in damage that results from a one knot increase 
in wind speed include +2.8% (Schmidt et al, 2008b), +3.1% (Felbermayr and Gröschl, 2014), +4.0% 
(Czajkowski et al, 2011), +6.3% to +8.2% (Bouwer and Botzen, 2011), and +9.4% (Nordhaus, 2010).  
These semi-elasticities imply considerably different impacts, particularly for the strongest storms. 

Although most of the studies in Table 2 use reported losses as their dependent variable, a few calculate 
losses based on observable economic indicators (such as GDP).  We describe these studies in more detail 
in the next section. 

                                                      
2 Note that the Pielke et al (2008) dataset includes only three Category 5 storms, and so their damage estimate for 
this category is very imprecisely estimated. 
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Table 2: The Impact of Wind Speed on Tropical Cyclone Damages 

Study 
Outcome 
Variable 

Geography 
and Time 
Period 

Relationship to 
Wind Speed 

Saffir-Simpson Storm Category 
TS/ 
STS  1 2  3  4 5* 

Results by Saffir-Simpson Category 
Collins and 
Lowe, 2001 

Damage 
(normalized, 
billions) 

U.S., 1900-
1999 

 - 0.12 0.64 1.99 10.53 2.07 

Pielke et al, 
2008 

Damage (pop. 
norm., 
billions) 

U.S., 1900-
2005 

 0.14 1.12 2.24 7.00 29.96 26.42 

Pielke et al, 
2008 

Damage 
(prop. norm., 
billions) 

U.S., 1900-
2005 

 0.14 1.25 2.24 7.02 28.45 26.47 

Zylberberg, 
2012  

GDP growth 
per 1% of 
pop. exposed 

180 countries, 
1980-2006 

 - -0.001 -0.013 -0.038 -0.060 -0.128 

Deryugina, 
2013 

Log damages Gulf / 
Atlantic U.S., 
1970-2006 

 - 2.75 3.58 5.02 5.47 

Deryugina, 
2013 

Per capita 
damages 

Gulf / 
Atlantic U.S., 
1970-2006 

 - 73 53 732 629 

Deryugina, 
2013 

Log flood 
insurance 
payments 

Gulf / 
Atlantic U.S., 
1970-2006 

 - 1.74 2.60 3.94 3.11 

Results as a Function of Wind Speed 
Schmidt et al, 
2008b 

Damages U.S., 1950-
2005 

+2.8% per knot       

Nordhaus, 
2010 

Damages U.S., 1900-
2008 

+9.4% per knot       

Bouwer and 
Botzen, 2011 

Damages U.S. , 1900-
2005 

+6.3% to +8.2% 
per knot 

      

Anttila-
Hughes and 
Hsaing, 2011 

Household 
income 

Philippines -22% per m/s of 
WS exposure 

      

Czajkowski et 
al, 2011 

Fatalities U.S., 1970-
2007 

+4% per knot       

Mendelsohn 
et al, 2011 

Damages U.S., 1960-
2008 

+5.0% per +1% 
increase in WS 

      

Strobl, 2011 Damages U.S., 1970-
2005 

+3.2% per +1% 
increase in WS 

      

Zia, 2012 Damages U.S., 1900-
2005 

+267% to 
+395% per 
storm category 

      

Felbermayr 
and Gröschl, 
2014 

Damages, 
Fatalities 

World, 1979-
2010 

+3.1% damage 
and +1.5% 
killed per knot 

      

Hsaing and 
Jina, 2014 

GDP 15 years 
after event 

World -0.38% per m/s 
of WS exposure 

      

Notes: Categories on the x-axis represent the Saffir-Simpson wind scale, with wind speeds of 74-95 mph (Category 
1), 96-110 mph (Category 2), 111-129 mph (Category 3), 130-156 mph (Category 4), and 157 mph or higher 
(Category 5).  The TS/STS category includes tropical and subtropical storms that never reached hurricane intensity. 
*Note that only three Category 5 hurricanes made landfall in the United States between 1900 and 2005. 
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3.2 Loss Estimates based on Event Studies 

Disaster databases such as EM-DAT provide a practical, easily-accessible source of information about 
direct damage from extreme weather events.  However, these databases suffer from a number of known 
coverage and accuracy issues, and omit many potentially important categories of costs.  In this subsection, 
we review an alternative source of empirical evidence:  econometric studies of how disasters affect 
observable macroeconomic economic indicators.  We begin in Section 3.2.1 by summarizing several 
competing theories about how extreme weather events could affect economies.  Next, in Section 3.2.2, we 
discuss the range of empirical approaches that studies have used to test those theories.  Then, in Section 
3.2.3, we review main empirical macroeconomic findings from the literature.  Finally, in Section 3.2.4, 
we discuss some relevant evidence from microeconomic studies of extreme weather impacts. 

3.2.1 Hypotheses about the Macroeconomic Effects of Disasters 

Generally speaking, the literature contains three main competing hypotheses about the macroeconomic 
impacts of disasters:  “transitory impact”, “permanent loss”, and “creative destruction” (Hsaing and Jina, 
2014).  All of these hypotheses can be motivated by a simple neoclassical growth model, in which there 
are two factors of production (labor and capital) that evolve over time following an optimal path.  The key 
question is how this model responds to an external capital shock caused by a disaster. 

Under the “transitory impact” hypothesis, a disaster causes a short-term loss of consumption, but in the 
long term the economy will recover to its pre-disaster growth path.  One way to model this hypothesis is 
to assume that capital has declining returns to scale.  Under this assumption, the negative capital shock 
caused by a disaster will temporarily move an economy away from its equilibrium growth path.  
However, if labor supply remains constant after the disaster, then the loss of capital will lead to an 
increase in the marginal product of capital.  As a result, in the years following the shock the economy will 
invest more and grow faster than it otherwise would have, eventually catching up to its long-term output 
path.  Overall, the disaster will be costly for the economy, since it will experience a temporary loss of 
output, but the impact will be transitory. 

Under the “permanent loss” hypothesis, the economy never recovers to its pre-disaster output path, but 
instead grows on a parallel but lower trajectory.  This hypothesis can be justified in several ways, for 
example, if the economy exhibits constant (or near-constant) returns to scale.  Under this assumption, the 
loss of capital caused by a disaster does not affect the marginal product of capital, and so the economy has 
no incentive to sacrifice short-term consumption in order to make compensating investments that would 
bring it back to its pre-disaster growth path. 

Finally, under the “creative destruction” hypothesis, the economy experiences a temporary loss of output 
but then rebounds back to an even higher growth curve.  This Schumpeterian hypothesis is motivated by a 
model in which technology (i.e., the marginal product of capital) improves over time.  As a result, capital 
investments become outdated, and so the opportunity to rebuild following a disaster can actually provide 
a net long-term benefit to the economy.  There is some empirical evidence that supports this theory in 
other contexts.  For example, Hornbeck and Keniston (2014) find that immediately after the Great Boston 
Fire of 1872, land values in the area that was destroyed increased substantially relative to similar 
surrounding areas.  They argue that substantial positive externalities were created when property owners 
had the opportunity to rebuild simultaneously.  However, the creative destruction hypothesis also implies 
that communities would benefit from choosing to destroy and rebuild their own infrastructure, a 
controversial proposition that has met with mixed empirical support (Collins and Shester, 2013; Chen and 
Yeh, 2013). 
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3.2.2 Empirical Strategies for Estimating Losses 

To test the macroeconomic theories described in the previous section, researchers have used several 
different empirical strategies to estimate how disasters affect observable economic indicators.  One 
category of studies examines the cross-sectional relationship between disaster frequency and economic 
growth (Skidmore and Toya, 2002; Kim, 2010).   In these studies, the dependent variable is a measure of 
long-term economic growth, and the independent variable is some measure of exposure to extreme 
weather events.  For example, Skidmore and Toya (2002) calculate long-term average GDP growth rates 
over the period from 1960 to 1990, for each of 89 different countries.  They then regress average growth 
rates on the total number of climatological and geological disasters experienced by each country over that 
time period.  Their results suggest that climatological disasters are associated with positive growth, while 
geological disasters are associated with negative growth. 

A primary limitation of these cross-sectional studies is that it is difficult to assess the direction of 
causality.  In particular, it is possible that some omitted variable—such as latitude—may have a causal 
influence on both the frequency of disasters and economic growth experienced by a country.  Because of 
this concern, a second category of studies uses event study or differences-in-differences approaches to 
measure how important economic variables—such as GDP, taxable sales, income, and employment—
change in the years following an extreme weather event (e.g., Murlidharan and Shaw, 2003).  Since the 
timing and location of major weather events is presumably random, a before-after comparison can 
plausibly reveal the causal effect of the disaster on the outcome variable of interest.  Section 3.2.3, below, 
summarizes empirical results from this literature. 

One important methodological question for studies of disaster impacts is how to project counterfactual 
growth in the absence of a disaster.  Studies use a variety of approaches.  For example, Hochrainer (2009) 
uses an autoregressive integrated moving average (ARIMA) model to project how GDP would have 
evolved in the countries affected by 225 major disasters that occurred between 1960 and 2005, had those 
disasters not occurred.  By comparing this predicted change in GDP versus actual observed GDP, the 
study estimates that five years after a disaster, a country’s GDP will have declined by 2.0% on average 
(with a median decline of 4.0%), relative to what it would have been without the disaster.  A number of 
other studies have also used autoregressive time series approaches (e.g., Fomby, 2013; Raddatz, 2006).  
For example, using vector auto-regression techniques, Cuñado and Ferreira (2011) find that major floods 
cause an increase in GDP growth in developing countries, but have no effect in developed countries.  
Another common approach to projecting counterfactual growth is to use panel techniques that allow for 
common shocks across countries.  For example, Hsaing and Jina (2014) use a differences-in-differences 
approach, in which they model GDP levels as a function of country fixed effects, year fixed effects, and 
hurricane wind speed variables.  Strobl (2011) uses a panel regression with time fixed effects and a 
spatially autoregressive error term to estimate how hurricane landfalls affect local GDP growth in a 
dataset consisting of 409 U.S. counties between 1970 and 2005. 

Another important consideration for this literature is how to represent the intensity of extreme weather 
events.  Many older studies use simple binary or count variables that indicate whether a particular country 
experienced an extreme event in a particular year.  However, as shown in the previous section, the 
characteristics of an extreme event are important determinants of the damage it causes.  Furthermore, 
even a large hurricane or flood could cause relatively little damage if it were to strike an unpopulated 
area.  To address this issue, some studies have used reported damages as a measure of event intensity 
(e.g., Bluedorn, 2005).  However, one drawback of this approach is that reported damages are imperfectly 
measured, which could result in downward biased impact estimates if they are used as an independent 
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variable.  To illustrate this problem, Zylberberg (2012) estimates the impacts of EM-DAT hurricane 
damages on GDP growth using two-stage least squares, in which the first stage involves using hurricane 
category dummy variables as instruments for reported EM-DAT damages.  The TSLS results show that 
reported hurricane damages of one percent of GDP result in a 0.4 percentage point loss of GDP growth, 
which is an order of magnitude larger than the corresponding OLS estimate (without instrumenting for 
damages).  In part due to this concern, recent studies have begun to represent extreme weather intensity 
using spatially-weighted physical measures based on storm models.  For example, to represent hurricane 
intensity, Strobl (2012) uses a population-weighted wind field model.  Similarly, Anttila-Hughes and 
Hsaing (2011) and Hsaing and Jina (2014) represent hurricane intensity using the average of the 
maximum modeled wind speed experienced per year per pixel, across all geographic pixels in a country.   

3.2.3 Summary of Impact Estimates from Macroeconomic Studies 

Table 3 summarizes the results from a selected set of studies that use panel econometric techniques to 
estimate the effects of extreme weather events on macroeconomic indicators.  The table presents results 
for three main categories of events:  tropical cyclones, inland floods, and the broader category of 
“multiple disasters” (since many studies pool together different types of weather-related and non-climatic 
disasters).  We consider what this literature implies about how each of these types of disasters affects 
short-term economic outcomes, long-term economic outcomes, and transfer payments. 

Short-term Effects 

We begin by reviewing the short-term effects of tropical cyclones, floods, and disasters.   

Many of the studies in the top panel of Table 3 find that GDP levels decrease or GDP growth slows in the 
year or two following a major hurricane (Bluedorn, 2005; Strobl, 2011; Strobl, 2012; Zylberberg, 2012; 
Felbermayr and Gröschl, 2014; Hsaing and Jina, 2014).  However, several studies find that hurricanes 
have no statistically-significant impact on GDP (Benson, 1997; Hsaing, 2010; Loayza et al, 2012; Fomby, 
Ikeda, and Loayza, 2013).  One study (Ramcharan, 2007) estimates that hurricanes have a small positive 
effect on GDP. 

For flooding, the evidence is even more mixed.  Of the six studies included in the second panel of the 
table, two find that flooding has a negative effect on GDP growth (Pauw et al, 2011; Ghimire and 
Ferreira, 2013), one finds no effect (Felbermayr and Gröschl, 2014), and three find a positive effect 
(Cuñado and Ferreira, 2011; Loayza et al, 2012; Fomby, Ikeda, and Loayza, 2013).  In both Cuñado and 
Ferreira (2011) and Fomby, Ikeda, and Loayza (2013), the positive effects are only present in developing 
countries. 

Finally, in studies that look at the effects of multiple disaster types combined, the same mixed pattern 
appears.  Some studies find significant negative results, but many cannot reject the null hypothesis of no 
effect, and a few find positive effects. 

Overall, these short-term results are consistent with a recent meta-analysis by Lazzaroni and van Bergeijk 
(2014), in which the authors analyze 64 studies of the macro-economic impacts of natural disasters.  In 
their sample, 36 studies examined determinants of reported losses from disasters, and 33 used 
econometric techniques to estimate the impacts of disasters on GDP.  The dependent variable for the 
meta-analysis is the t-statistic associated with the effect of the disaster on losses, as reported in each 
study.  The authors find that studies of reported losses tend to find that disasters have significant negative 
effects, but that studies of GDP find an effect that is not statistically different from zero. 
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One additional pattern that does seem to emerge across a variety of contexts is that extreme weather 
events have effects that vary across sectors (Fomby, Ikeda, and Loayza, 2013).  The agricultural sector 
often shows strong negative effects, while the construction sector can actually benefit from hurricane 
exposure (Hsaing, 2010).  For example, Baade, Baumann, and Matheson (2007) found that taxable sales 
in Miami increased substantially in the months following Hurricane Andrew, presumably reflecting 
reconstruction efforts. 

Long-term Effects 

While there is still some uncertainty in the literature about the short-term macroeconomic effects of 
extreme weather events, even more unclear is what happens in the longer-term.  Many studies use 
empirical strategies that are not well-suited for measuring long-term effects.  For example, authors often 
focus on only a short time horizon, or use autoregressive functional forms that assume conditional 
convergence over time (e.g., Strobl, 2012). 

A few studies have tried to measure longer-term effects.  For example, Loayza et al (2012) concludes that 
hurricanes have no effect on average five-year growth rates following a storm.  However, Zylerberg 
(2012) finds that hurricanes cause an immediate loss of GDP growth, with no evidence of recovery to 
trend within five years.  Using a differences-in-differences approach with a panel that includes every 
world country from 1950 to 2008, Hsaing and Jina (2014) find that hurricanes have very large negative 
long-term impacts.  Their estimates imply that twenty years after a 90th percentile storm, a country’s per 
capita income is lower by 7.4% than it otherwise would have been. 

Transfer Payments 

One challenge related to measuring the impacts of major extreme weather events is that the costs of these 
disasters are not borne entirely by people who live in the affected area.  Instead, there are a variety of 
formal and informal mechanisms—including insurance payments and disaster aid—for distributing the 
costs across a wider economic area.   

One very robust finding from the literature is that areas that are hit by extreme events receive additional 
aid.   While this sometimes takes the form of aid explicitly labeled as disaster aid, transfer payments also 
include a broader variety of social safety nets.  For example, Deryugina (2013) estimates that over the ten 
years following a hurricane landfall in the United States, total non-disaster transfer payments (such as 
unemployment benefits) are twice as large as official disaster transfer payments.  In the international 
context, Stromberg (2007) finds that countries that experience more severe disasters receive more 
international aid.  However, aid is influenced both other factors as well, including proximity, media 
coverage, and common language (Stromberg, 2007).  Similarly, in an analysis of Vietnamese natural 
disasters, Noy and Vu (2011) find that some regions of the country are more likely to receive disaster aid 
than others. 

Transfer payments may also play a role in post-disaster recovery (Stromberg, 2007).  For example, Von 
Peter et al (2012) find that by ten years after an uninsured major natural disaster, GDP is 2.3 percent 
lower than it otherwise would have been.  However, if that disaster occurred in a country with high 
insurance penetration rates, there is no effect on GDP.   Similarly, Melecky and Raddatz (2011) find that 
the impacts of disasters are lower in countries with high rates of insurance penetration.  These results 
suggest that the endogeneity of insurance and post-disaster aid may explain part of the disagreement in 
the literature over the sign of the impacts of large-scale extreme weather events. 
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Table 3:  Panel Studies of Macroeconomic Losses from Extreme Weather 

Study 
Geography and 
Time Period Average Disaster Impacts 

Tropical Cyclones   
Benson, 1997 Fiji, 1970-1995 Typhoons and droughts cause an immediate 1.9% decrease in 

GDP growth rate (although not significantly different from zero) 
Bluedorn, 2005 26 Central American 

countries, 1960-2002 
GDP growth decreases 5.4% following a year with hurricane 
losses of 100% of GDP, and then returns to steady-state rate 

Baade, Baumann, and 
Matheson, 2007 

Miami MSA, 1980-
2005 

Taxable sales fell 3.3% below baseline in the month Andrew hit, 
increased 5.5% above baseline the following month, and 
declined back to baseline over next 18 months. 

Ramcharan, 2007 55 developing 
countries, 1961-2000 

Per capita GDP growth is 1.0% higher the year after a storm in 
countries with flexible exchange rates, but is unaffected in 
countries with fixed exchange rates 

Hsaing, 2010 28 Caribbean 
countries, 1970-2006 

Hurricanes have no statistically significant effect on GDP, but 
they do affect the wholesale/retail/restaurant sector (-0.9%), 
agricultural sector (-1.8%), and construction sector (+1.4%). 

Anttila-Hughes and 
Hsaing, 2011 

82 Philippines 
provinces, 1978-2008 

Typhoons depress average annual Filipino household income by 
6.7%, household expenditures by 7.1%, and cause 1.1 female 
infant deaths per 1,000 households. 

Strobl, 2011 409 U.S. counties, 
1970-2005 

GDP growth is 4.5 percentage points lower the year of a 
hurricane, and then recovers to normal growth rates. 

Coffman and Noy, 
2012 
 

Hawaiian islands, 
1975-2011 

Hurricane Iniki caused a permanent 15% decrease in private-
sector jobs and hotel rooms; a spike in transfer payments in year 
after the hurricane; and possibly a slow decline in population 
and per capita income 

Zylberberg, 2012 180 countries, 1980-
2006 

Hurricanes causes decreases in GDP growth, e.g., -0.13 
percentage points for every 1% of population exposed to a 
category 5 hurricane.  No evidence of catch-up growth. 

Loayza et al, 2012 94 countries, 1961-
2005 

The five-year average annual GDP growth rate decreases by a 
statistically insignificant 0.1 percentage points after a storm. 

Strobl, 2012 32 Caribbean and 
Central American 
nations, 1950-2006 

The average hurricane strike reduces GDP by 0.83 percentage 
points. 

Fomby, Ikeda, and 
Loayza, 2013 

84 countries; 1960-
2007 

Severe storms (including hurricanes) have no statistically 
significant effect on GDP growth in either developed or 
developing countries. 

Deryugina, 2013 Eastern and Gulf 
coasts of U.S., 1970-
2006 

Over ten years following a hurricane, non-disaster transfer 
payments are 2-3% higher ($750 per capita), almost double 
disaster transfer payments ($356 per capita). 

Felbermayr and 
Gröschl, 2014 

108 countries, 1979-
2010 

GDP decreases by 0.16% in the year that a storm makes landfall 

Hsaing and Jina, 2014 All world countries, 
1950-2008 

Twenty years after a storm, per capita economic output is 0.37% 
lower for every meter/second (2.2 miles/hour) increase in 
nationally-averaged maximum wind speed per year. 

Inland Floods   
Cuñado and Ferreira, 
2011 

118 countries; 1985-
2008 

Flooding causes 1.5% increase in GDP growth two years after 
event.  This effect is driven by developing countries. 

Fomby, Ikeda, and 
Loayza, 2013 

84 countries; 1960-
2007 

Flooding has a small, marginally significant positive effect on 
GDP growth in developing countries, totaling 0.6 percentage 
points after four years.  It has no effect in developed countries. 

Pauw et al, 2011 Malawi, 1982-2004 Using a hybrid empirical/simulation methodology, predicts 
average annual GDP losses of 0.70% from flooding 

Loayza et al, 2012 94 countries, 1961- The five-year average annual GDP growth rate increases 1.0 
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Table 3:  Panel Studies of Macroeconomic Losses from Extreme Weather 

Study 
Geography and 
Time Period Average Disaster Impacts 
2005 percentage points after a typical flood 

Ghimire and Ferreira, 
2013 

125 countries, 1985-
2009 

A major flood reduces GDP growth by 2.3% and increases the 
probability of conflict incidence by 8.5%. 

Felbermayr and 
Gröschl, 2014 

108 countries, 1979-
2010 

Unusually high rainfall reduces GDP by a statistically 
insignificant 2.4%. 

Multiple Disasters   
Albala-Bertrand, 
1993 

26 countries; 1960-
1979 

Disasters have a slight positive impact on GDP growth 

Charveriat, 2000 20 Latin American/ 
countries, 1980-1996 

Real median GDP falls 2% in year after disaster, but then 
increases +3% in two following years 

Choi and Fisher, 2003 U.S., 1929-1998 N/A (dependent variable is reported losses) 
Tvares, 2004 World countries; 

1987-2001 
One year after a disaster, growth of real GDP per capita 
decreases by 0.6% to 5.7%. 

Caselli and Malhotra, 
2004 

World; 1975-1996 Disasters have no effect on GDP growth, except for those that 
involve high mortality 

Raddatz, 2006 World (developing); 
1965-1997 

2% decline in real output one year after event; no effect after 
five years  (includes droughts, extreme temperature, wind 
storms, inland floods) 

Noy, 2009 109 countries; 1970-
2003 

+1 SD in direct damages reduces GDP growth by 9% in 
developing countries and by 1% in developed countries. 

Hochrainer, 2009 225 major disasters; 
1960-2005 

Five years after a major storm that causes reported damages of 
>1% of GDP, GDP is 2% lower on average. 

Noy and Vu, 2010 61 provinces in 
Vietnam, 1995-2006 

+1% increase in damage/output increases output growth by 
+0.03% 

Vu and Hammes, 
2010 

China +1% increase in mortality decreases output by 47 billion Yuan 
($7.4 billion), but with no effect on growth. +1% increase in 
damage reduces output growth by 0.24%. 

Von Peter et al, 2012 203 countries, 1960-
2011 

Uninsured natural disasters reduce GDP by 2.3% after ten years.  
Insured natural disasters have no effect on GDP. 

Cavallo et al, 2013 196 countries; 1970-
2008 

Natural disasters have no significant effect on short-term or 
long-term economic growth 

Baker and Bloom, 
2013 

60 countries, 1970-
2013 

Natural disasters have no significant effect on stock market 
levels or volatility  

Notes:  The table excludes a number of other studies of the effects of multiple disaster types combined, including 
Stephens (2007), Heger et al (2008), Raddatz (2009), Hallegate, 2009, Jaramillo (2009), Vogel (2011), Sawada et 
al (2011), Noy and Nualsri (2011), Shimada (2012), Bergholt and Lujala (2012), Ahlerup (2013), Felbermayr and 
Gröschl (2013), and McDermott, Barry, and Tol (2014) .  It also excludes Jackson (2013), which focuses on 
droughts. 

 

3.2.4 Summary of Impact Estimates from Microeconomic Studies 

In addition to the large literature on macroeconomic outcomes, a few studies have estimated the impacts 
of extreme weather events using panels of individual-level data.  For example, Deryugina, Kawano, and 
Levitt (2014) use a panel of U.S. tax return data to track taxpayers who were affected by Hurricane 
Katrina.  They find that although Katrina caused an immediate decrease in wages and employment, 
victims of the storm used withdrawals from retirement accounts to offset short-term loss of income.  
Furthermore, within a few years, affected individuals had higher incomes than similar individuals in cities 
that were not affected by the storm.   
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In a different study, Sacerdote (2014) finds that Hurricanes Katrina and Rita caused a substantial short-
term drop in the test scores of affected public school students.  However, evacuees from the lowest-
performing New Orleans schools actually experienced a subsequent net increase in their test scores, 
presumably due to their forced move to a better educational environment. 

Finally, Leiter, Oberhofer, and Raschky (2009) use data on European firms affected by flooding to 
estimate how floods affect firm-level assets, employment, and productivity.  They find that floods cause a 
short-run increase in assets and employment, but cause a decrease in productivity. 

These studies provide valuable insights into the mechanisms that may drive the macroeconomic effects of 
extreme weather.  However, due to space limitations, we do not review this part of the literature in detail. 

3.3 Summary of Parameter Estimates 

The previous subsections have presented a variety of estimates of how extreme weather damages vary by 
geography.  In this subsection, we draw on that data to develop parameter values that can be used in the 
modeling framework from Section 2.   

Our judgment is that there is not yet sufficient agreement in the literature to draw strong conclusions from 
macroeconomic studies of the impacts of extreme weather.  Some studies estimate that disasters have very 
large negative effects on GDP, but others find no effect or even positive effects.  Furthermore, the time 
pattern of estimated losses varies substantially across studies.  For these reasons, we develop estimates of 
baseline losses by drawing on disaster reporting data from the EM-DAT database. 

Table 4 presents the results of this analysis.  For each of the twenty-three regions specified in the EM-
DAT database, we calculate average annual losses for each type of extreme weather event.  We base these 
calculations on the thirty-year time period from 1985 to 2014.  The patterns in Table 4 are quite similar to 
the patterns from Table 1.  Losses are largest for tropical cyclones and inland floods.  The regions with 
the highest losses are Northern America and Eastern Asia. 

Note that the left-hand column of Table 4 assigns a coefficient name to each estimate.  For example, 𝛼𝛼𝑁𝑁𝑁𝑁1 
represents baseline losses in Northern America.  These coefficients can be used to parameterize the loss 
equation described in Section 2. 
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Table 4: Parameters Representing Average Annual Extreme Weather Damage 

 Region 
Tropical 
Cyclones 

Extra-
tropical 
Cyclones 

Inland 
Floods  Wildfires 

Small 
Storms 

Landslides 
and 

Avalanches 
 North America       
𝛼𝛼𝑁𝑁𝑁𝑁1 Northern America $15,668  $37  $2,325  $1,088  $5,699  $1  
𝛼𝛼𝑁𝑁𝑁𝑁2 Central America $1,609  $0  $188  $9  $1  $18  
𝛼𝛼𝑁𝑁𝑁𝑁3 Caribbean $1,394  $0  $35  $0  $50  $0  
 South America       
𝛼𝛼𝑆𝑆𝑆𝑆1 South America $18  $0  $919  $46  $9  $62  
 Europe       
𝛼𝛼𝐸𝐸𝐸𝐸1 Western Europe $0  $1,456  $1,157  $0  $396  $56  
𝛼𝛼𝐸𝐸𝐸𝐸2 Northern Europe $14  $437  $847  $5  $98  $0  
𝛼𝛼𝐸𝐸𝐸𝐸3 Southern Europe $15  $99  $1,372  $440  $48  $41  
𝛼𝛼𝐸𝐸𝐸𝐸4 Eastern Europe $6  $18  $1,012  $83  $22  $0  
 Africa       
𝛼𝛼𝐴𝐴𝐴𝐴1 Northern Africa $0  $0  $109  $0  $10  $0  
𝛼𝛼𝐴𝐴𝐴𝐴2 Western Africa $0  $0  $35  $0  $0  $0  
𝛼𝛼𝐴𝐴𝐴𝐴3 Eastern Africa $61  $0  $49  $0  $0  $0  
𝛼𝛼𝐴𝐴𝐴𝐴4 Middle Africa $0  $0  $1  $0  $0  $0  
𝛼𝛼𝐴𝐴𝐴𝐴5 Southern Africa $0  $0  $81  $16  $32  $0  
 Asia       
𝛼𝛼𝐴𝐴𝐴𝐴1 Russian Fed. $0  $0  $47  $0  $1  $24  
𝛼𝛼𝐴𝐴𝐴𝐴2 Central Asia $0  $0  $30  $0  $0  $12  
𝛼𝛼𝐴𝐴𝐴𝐴3 Western Asia $183  $0  $213  $12  $14  $1  
𝛼𝛼𝐴𝐴𝐴𝐴4 Eastern Asia $5,999  $0  $9,052  $94  $539  $93  
𝛼𝛼𝐴𝐴𝐴𝐴5 Southern Asia $844  $0  $3,092  $0  $124  $3  
𝛼𝛼𝐴𝐴𝐴𝐴6 South-Eastern Asia $1,089  $0  $2,139  $447  $1  $7  
 Australia       
𝛼𝛼𝐴𝐴𝐴𝐴1 Australia and NZ $261  $0  $496  $96  $285  $0  
𝛼𝛼𝐴𝐴𝐴𝐴2 Melanesia $32  $0  $10  $0  $0  $0  
𝛼𝛼𝐴𝐴𝐴𝐴3 Micronesia $31  $0  $0  $0  $0  $0  
𝛼𝛼𝐴𝐴𝐴𝐴4 Polynesia $44  $0  $2  $0  $0  $0  
Notes: This table is based on data for the 30-year period from 1985 to 2014. Data for damages are converted to 
2014 dollars using the U.S. GDP deflator (BEA, 2015).  Source for damages: Guha-Sapir et al, 2015 
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4 The Effects of Socioeconomic Growth on Extreme Weather Losses 

As shown in the previous section, average damages from extreme weather vary considerably across 
regions.  Much of this variation is due to differences in exposure, e.g., because tropical cyclones or inland 
flooding occur only in certain geographic areas.   However, an equally important determinant of losses is 
socioeconomic development.  There is broad academic agreement that the steep upward trend in disaster 
losses over the last century has been driven primarily by increases in the population and infrastructure 
located in exposed locations (Pielke et al, 2008; Kousky, 2014).  Furthermore, at least in the cross-
section, nations with higher levels of development experience reduced mortality from disasters (Kahn, 
2005).  Accounting for these effects in IAMs is important, due both to the long time periods considered 
by these models and to the fact that any additional damages from climate change may have a proportional 
effect on future baseline losses. 

To gather data that can be used to improve the representation of future baseline extreme weather losses, 
this section of the paper reviews evidence on how changes in population and economic growth affect 
losses from extreme events.  We begin in Section 4.1 by presenting data on trends in extreme weather 
losses over time.  Then, in Section 4.2, we review empirical studies of the historical relationship between 
losses and socioeconomic variables.  Finally, in Section 4.3, we draw on that literature to develop simple 
parametric models of the effect of population and economic growth on extreme weather damages.  

4.1 Historical Trends in Losses 

Over the last hundred years, losses from extreme weather have moved steadily upward.  To illustrate this 
trend, Figure 1 presents total losses and mortality over time, by world region and type of event.  Panel (a) 
of the figure shows that between 1920 and 2014, extreme weather losses increased by orders of 
magnitude in every region of the globe.  Panel (b) shows a similar pattern across different types of 
extreme weather events, with all categories of weather showing large increases.   

Panels (c) and (d) of the figure presents trends in mortality from extreme events, by geography and type 
of event, respectively.  The panels demonstrate that over the last century, mortality has increased 
moderately in many regions, and for most types of disasters.  However, the rate of the observed increases 
is substantially lower than the rate at which extreme weather damages have been increasing.  Many 
potential hypotheses could explain this pattern, including better weather forecasting, improved 
preparedness and emergency response systems, and general advances in health care. 

In interpreting the trends in Figure 1, it is important to recognize that the quality of the EM-DAT data 
have improved over time, and so much of the apparent increase in losses in the figure is likely due to 
more comprehensive reporting.  Furthermore, extreme weather is highly stochastic, with losses and 
mortality varying considerably from year to year.  Nonetheless, the broader research literature 
consistently finds compelling evidence that absolute losses from most types of disasters have followed an 
upward trend (Pielke et al, 2008; Crompton and McAneney, 2008; Barredo, 2009). 
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Figure 1:  Trends in Losses and Mortality from Extreme Weather, 1920-2014 
(a) Losses by Region, for All Events (b) World Losses, by Type of Event 

(c) Mortality by Region, for All Events (d) World Mortality, by Type of Event 

Source:  EM-DAT (Guha-Sapir et al, 2015).  These graphs should be interpreted with caution, since the 
completeness of disaster reporting has improved substantially over time. 

The sharp increase in losses in recent years has encouraged a number of authors to investigate potential 
causes.  One prominent strand of this literature uses an informal approach that involves examining 
whether trends in normalized extreme weather losses increase over time (Pielke and Landsea, 1998; 
Pielke et al, 2008; Crompton and McAneney, 2008; Barredo, 2009; Barredo, 2010; Gall et al, 2011; 
Barredo et al, 2012; Sander et al, 2014).  These studies typically normalize a time series of historical 
damages by dividing by some combination of socioeconomic variables, e.g., population, GDP, and/or 
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housing values.  They then plot the normalized damages over time relative to a base year, with the goal of 
testing for the presence of a statistically-significant residual trend.  In these studies, the authors argue that 
the absence of any trend is evidence that the normalization variables explain all of the recent increase in 
losses—and that other factors such as global warming have not affected losses (Pielke et al, 2008). 

Table 5 summarizes results from some of these normalization studies.  The table shows that after 
normalization, most of this selected sample of studies find no clear trend in losses over time.  This pattern 
appears to be consistent over a range of disaster types and geographic areas.  However, although a 
normalization approach may be a useful way of illustrating trends in losses over time, studies that use this 
approach suffer from some econometric drawbacks.  One issue is how well the outcome variable chosen 
approximates actual damages from the extreme event.  For example, Barredo et al (2012) relies on 
insurance surcharges as a proxy for changes in exposure of assets to floods, but notes that changes in 
surcharges over time depend on insurance penetration, which could change over time independently of 
other variables.   

Another major limitation is these studies implicitly assume that damages have unit elasticity with respect 
to the socioeconomic variables used for normalization.  To see this, consider the simple model of 
damages presented in Section 2: 

𝐷𝐷(𝑌𝑌,𝑃𝑃,Δ𝑇𝑇) = 𝛼𝛼 ⋅ �
𝑌𝑌
𝑌𝑌0
�
𝜆𝜆
⋅ �
𝑃𝑃
𝑃𝑃0
�
𝜋𝜋
⋅ 𝐶𝐶(Δ𝑇𝑇)  

In this model, damages 𝐷𝐷 depend on economic output 𝑌𝑌, population 𝑃𝑃, and some function of the global 
change in temperature 𝐶𝐶(Δ𝑇𝑇).  Normalizing damages by output and population gives the following 
equation: 

𝐷𝐷(𝑌𝑌,𝑃𝑃,Δ𝑇𝑇)
𝑌𝑌 ⋅ 𝑃𝑃

= 𝛼𝛼 ⋅ 𝑌𝑌0−𝜆𝜆 ⋅ 𝑃𝑃0−𝜋𝜋 ⋅ 𝑌𝑌𝜆𝜆−1 ⋅ 𝑃𝑃𝜋𝜋−1 ⋅ 𝐶𝐶(Δ𝑇𝑇)  

Clearly, economic output and population drop out of the right-hand side of the equation only if the 
elasticities 𝜆𝜆 and 𝜋𝜋 both equal 1.  Thus, even if normalized damages show no trend over time, it is 
difficult to conclude that the absence of a trend indicates that climate change has had no effect on losses.  
For example, if the elasticities 𝜆𝜆 and 𝜋𝜋 are both less than one, then any effect of climate change via 𝐶𝐶(Δ𝑇𝑇) 
would be confused with the remaining effects from economic and population growth.  Furthermore, if 
either economic growth or population were omitted from the normalization, then the equation would 
suffer from omitted variable bias. 

Because of the limitations of the normalization approach, the next subsection reviews studies that use 
formal regression models to estimate the impacts of socioeconomic variables on losses from extreme 
weather. 
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Table 5:  Studies of Trends in Normalized Extreme Weather Losses 

Study Disaster Type Geography & 
Time Period 

Variables Results 

Pielke and 
Landsea, 
1998 

Tropical cyclones U.S., 1925-
1995 

Inflation, wealth (fixed 
reproducible tangible wealth), 
and coastal population 

Do not find an 
increasing trend  

Pielke et al, 
2008 

Tropical cyclones U.S., 1900-
2005 

Inflation, wealth (current-cost 
net stock of fixed assets and 
consumer durable goods), and 
coastal population or coastal 
housing units 

Do not find an 
increasing trend 

Barredo, 
2010 

Extratropical cyclones Europe, 1970-
2008 

Inflation, population, wealth 
(GDP), and purchasing power 
parity (PPP) 

Do not find an 
increasing trend  

Barredo, 
2009 

Floods Europe, 1970-
2006 

Inflation, population, wealth 
(GDP), and purchasing power 
parity (PPP) 

Do not find an 
increasing trend 

Barredo et al, 
2012 

Floods Spain, 1971-
2008 

Exposed assets (measured 
separately by insurance 
surcharges and dwelling values) 

Do not find 
statistically 
significant trend  

Sander et al, 
2014 

Thunderstorms Eastern U.S., 
1970-2009 

Inflation, wealth, population Pattern consistent 
with climate 
forcing 

Crompton 
and 
McAneney, 
2008 

Multiple disasters 
(tropical cyclones, 
floods, thunderstorms, 
hailstorms, & bushfires) 

Australia, 
1967-2006 

Occupied dwellings in urban 
center/locality, dwelling value 
in state/territory, and tropical 
cyclone Wind Code adjustment  

Do not find an 
increasing trend 

Gall et al, 
2011 

Natural hazards U.S., 1960-
2009 

Inflation, population, and 
wealth 

Find an increasing 
trend 

Notes: This table presents results from selected studies.  Other relevant studies include Pielke and Downton (2000), 
Schmidt et al (2009c), Pielke et al (2002), Pielke et al (2003), and others listed in Bouwer (2010). 

4.2 Determinants of Historical Losses 

This section reviews evidence on how the socioeconomic characteristics of a particular geographic area 
affect the damages that it experiences from extreme weather.  We consider two measures of damages.  
First, in Section 4.2.1, we review recent studies of the determinants of weather-related economic losses.   
Then, in Section 4.2.2, we review studies of the determinants of weather-related mortality. 

4.2.1 Determinants of Economic Losses 

A number of studies utilize historical data to conduct regression analyses that estimate the impact of 
socioeconomic growth on damage from extreme weather events. These studies combine data on historical 
extreme weather events (e.g. hurricane category) with socioeconomic data (e.g. population) to determine 
the extent to which each variable contributes to the variability of damages across events or years.   

Table 6 summarizes selected studies that use regression-based approaches to estimate the contribution of 
socioeconomic variables to changes in extreme weather losses.  Overall, there is consensus in this 
literature that damages from extreme weather events are influenced by a variety of socioeconomic and 
regulatory factors, ranging development of coastal areas to changes in building codes/construction 
techniques (Burton and Hicks, 2005; Emanuel, 2011; Pielke et al, 2008; Ranger and Niehörster, 2011).  
However, there remains consider disagreement about the magnitude of the effects of specific 
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socioeconomic factors on damages.  For example, Cole, Macpherson, and McCullough (2010) compares 
four different hurricane wind insurance loss models for Florida, and finds that predicted average annual 
losses have different relationships with housing, insurance, and mitigation in the different models. 

 

Table 6:  Studies of Socioeconomic Growth and Extreme Weather Losses 

Study Disaster Type Geography and 
Time Period 

Variables Results 

Choi and 
Fisher 
(2003) 

Tropical 
Cyclones 

United States, 
1928-1998 

Product of per capita real 
wealth index and 
population index 

1% increase in either wealth or 
population causes a 0.38% 
increase in annual real losses 

Schmidt et 
al (2009b) 

Tropical 
Cyclones 

United States, 
1950-2005 

Wind speed and capital 
stock 

1% increase in capital stock 
causes a 0.441% or 0.515% 
increase in losses per storm 
[based on two different models] 

Mendelsohn 
et al (2011) 

Tropical 
Cyclones 

United States, 
1960-2008 

Intensity (measured using 
minimum pressure), 
income, population 
density 

1% increase in income causes a 
0.370% or 0.903% increase in 
damages; 1% increase in 
population density causes a 
0.488% or 0.458% increase in 
damages [based on two different 
models; coefficients are not 
statistically significant] 

Zia (2012) Tropical 
Cyclones 

United States, 
1900-2005 

Housing density, 
hurricane intensity, 
wealth, agricultural land 

1 additional house/square mile 
causes a 2.8% increase in losses; 
+1 billion in wealth causes a 
0.02% increase in losses  

Choi and 
Fisher 
(2003) 

Floods United States, 
1928-1998 

Product of per capita real 
wealth index and 
population index 

1% increase in either wealth or 
population causes a 0.78% 
increase in annual real losses 

Choi and 
Fisher 
(2003) 

Severe 
Weather 

Mid-Atlantic, 
1951-1997 

Product of per capita real 
wealth index and 
population index 

1% increase in either wealth or 
population causes a 1.43% 
increase in annual real storm 
losses 

Toya and 
Skidmore 
(2007) 

Earthquake, 
Flood, 
Volcano, 
Wind, & Wave 

World, time 
period unclear 

Real per capita GDP 1% increase in wealth causes a 
0.499% increase in damages; 1% 
increase in population causes a 
0.501% increase in damages  

 

4.2.2 Determinants of Mortality 

In addition to analyzing the determinants of economic losses from natural disasters, a number of studies 
have also studied determinants of mortality.  These studies tend to find a strong cross-sectional 
relationship in which higher levels of development lead to lower mortality from extreme weather (and 
disasters more broadly). 

For example, Kahn (2005) uses a balanced panel of 73 countries from 1980 to 2002 to study the cross-
sectional relationship between development and mortality from disasters.  Figure 2 shows raw data from 
the study.  In the figure, the x-axis represents the log of per-capita GDP, and the y-axis represents average 
deaths per disaster.  The figure shows that even in the raw data, there is a clear negative relationship 
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between a country’s wealth and its mortality from disasters.  Furthermore, using zero-inflated binomial 
regressions, the study finds that per capita GDP has a strong, statistically significant negative effect on 
disaster mortality.  The coefficients imply that for every $1,000 of additional per capita income, a nation’s 
average annual disaster deaths decrease by 17.6% for windstorms, 10.6% for floods, and 6.1% for 
landslides.   

Figure 2:  Natural Disaster Deaths Versus Per Capita GDP, by Country 

Source:  Reproduced from Figure 2 of Kahn (2005). 

4.3 Parameter Estimates 

This section summarizes estimated values of the elasticity of damages with respect to income and 
population.  We generate these results by combining relevant estimates drawn from the regression-based 
studies listed in Table 6.  This requires converting all regression coefficients into elasticities.   

To illustrate this standardization procedure, consider the regression results from Toya and Skidmore 
(2007), which imply that the elasticity of damages per GDP with respect to GDP per capita is -0.501.  The 
regression specification which the authors use to estimate this parameter can be summarized as: 

ln �
𝐷𝐷𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖𝑖𝑖
� = 𝛼𝛼𝑖𝑖 + 𝜙𝜙 ⋅ ln �

𝑌𝑌𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖
� 

Solving for total damages 𝐷𝐷𝑖𝑖𝑖𝑖 as a function of GDP 𝑌𝑌𝑖𝑖𝑖𝑖 and population 𝑃𝑃𝑖𝑖𝑖𝑖 gives the following equation: 

𝐷𝐷𝑖𝑖𝑖𝑖 = exp(𝛼𝛼𝑖𝑖) ⋅ 𝑌𝑌𝑖𝑖𝑖𝑖
𝜙𝜙+1 ⋅ 𝑃𝑃𝑖𝑖𝑖𝑖

−𝜙𝜙

This equation shows that the elasticity of damages with respect to GDP is 𝜙𝜙 + 1, and the elasticity of 
damages with respect to population is –𝜙𝜙.  For a value of 𝜙𝜙 of -0.501, the results are reasonable, with 
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damage elasticities of about 0.5 for both GDP and population.   More generally, however, it is not clear 
why the functional form should impose a tradeoff between the elasticities with respect to GDP and 
population.  Similar issues arise in a number of other studies.  For example, Choi and Fisher (2003) use a 
specification that implies that damage elasticities with respect to GDP and population are equal.  These 
issues with specification are important, because previous IAM work has essentially adopted the 
specifications present in the literature.  For example, Narita, Tol, and Anthoff (2009) and Narita, Tol, and 
Anthoff (2010) both use specifications based on the Toya and Skidmore (2007) framework. 

Our analysis draws on results from three studies:  Choi and Fisher (2003), Toya and Skidmore (2007), 
and Mendelsohn et al (2011).  Each of these studies provides one or more regression parameters that can 
be used to derive the elasticity of damages with respect to population or GDP.  To combine multiple 
results from different studies, we model each elasticity using a t-distribution.  For simplicity, we do not 
weight values based on statistical precision, but instead treat all observations equally.  

Table 7 reports the results of this analysis.  The table shows that across the estimates in our sample, the 
mean elasticity of damages with respect to GDP (or income) is 0.73, and the mean elasticity with respect 
to population is 0.67.  We note that these estimates are subject to several limitations.  First, these 
estimates are based on only a few studies.  Second, the confidence intervals on these estimates are large.  
Third, the t-distribution may not provide the best fit for this data.  

 

Table 7: Parameters Representing the Effect of Socioeconomic Growth on 
Extreme Weather Losses 

 
Parameter 
Description 

Mean 
Value 

Standard 
Deviation 

Range Parametric 95% 
Confidence  Interval 

N 
Minimum Maximum Lower 

Bound 
Upper 
Bound 

𝜆𝜆 
Exponent for 
income growth 
ratio 

0.73 0.41 0.37 1.43 -0.316 1.78 6 

𝜋𝜋 
Exponent for 
population 
growth ratio 

0.67 0.40 0.38 1.43 -0.34 1.69 6 

Notes: Some studies included in the analysis consider the elasticity of annual damages due to tropical 
cyclones with respect to income and population growth while others estimate the elasticity of damages per 
storm. 
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5 The Effects of Climate Change on Extreme Weather Losses 

The previous two sections of this document review recent research on the magnitude and socioeconomic 
determinants of historical extreme weather losses.  In this section, we review evidence on how climate 
change is likely to influence future extreme weather losses. 

This literature on this subject has grown rapidly in recent years, particularly for tropical cyclones, 
extratropical cyclones, and floods.  However, the core objective of predicting the impacts of climate 
change remains highly challenging.  The physical science chain that connects climate change to extreme 
weather losses is complicated and poorly understood.  Additionally, modeling the effects of climate 
change is made more difficult by the fact that most general circulation models (GCMs) of the earth’s 
atmosphere lack the spatial resolution necessary to model the formation of even very large storm systems.  
To compound these modeling challenges, there is not yet a sufficiently long historical record to test the 
predictions that emerge from current models.  For example, although some studies have found trends in 
hurricane intensity and power dissipation over the last several decades (IPCC, 2012), other studies are 
skeptical that it will ever be possible to use empirical data to measure the effects of climate change on 
tropical cyclone damages.  To illustrate, based on an ensemble of 18 climate change hurricane damage 
models, Crompton, Pielke, and McAneney (2011) estimate that it will take between 120 and 550 years for 
a detectable signal to emerge from the noise. 

Because of these and other limitations, our review of this literature requires two important qualifications.  
First, we acknowledge that there is considerable uncertainty about how climate change is likely to 
influence future damages.  For some types of events, such as tropical cyclones and inland flooding, this 
uncertainty is highlighted by disagreement between the predictions from different studies.  For other types 
of extreme weather, such as wildfires and landslides/avalanches, the uncertainty is evident in the scarcity 
of relevant studies. 

Second, we acknowledge that our review makes important simplifying assumptions about the relationship 
between climate change and extreme weather.  Much of the literature on climate change and extreme 
weather is not well-suited for incorporation into an integrated assessment model framework.  For 
example, many of the best studies of tropical cyclones use complex methodologies that rely on 
information such as sea-surface temperature differentials.  Our goal is to develop a set of parameters that 
can be used in integrated assessment models, which require simple functional forms and typically are not 
capable of detailed atmospheric modelling.  Thus, we focus on describing high-level predictions of the 
climate change-damage relationship for large geographic areas, in which we represent the change in 
future damages as simple function of the change in surface atmospheric temperature.  This is certainly a 
simplification, but the alterative—attempting to build a meta-model that incorporates detailed geographic 
and climate scenario information—is not yet practical, given the current state of the literature. 

The remainder of this section is organized by type of extreme weather event, with separate subsections for 
tropical cyclones, extratropical cyclones, inland floods, wildfires, small-scale storm-related phenomena, 
and landslides and avalanches.  In each subsection, we begin by providing a short overview of the causal 
pathway that connects greenhouse gas emissions to changes in future extreme weather damages, via 
changes in climate (air temperature, sea surface temperature) and their effects on changes in extreme 
weather patterns (frequency, intensity, geographic distribution).  Next, we review the modeling 
techniques that are used to make projections about future losses.  Finally, each subsection ends with a 
summary of existing empirical predictions about future extreme weather losses under climate change. 
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As a supplement to the material covered here, we have also assembled an appendix for each type of 
disaster.  In each appendix, we present EM-DAT data on the historical damages by detailed region, 
summarize key results from the IPCC’s report on climate change and extreme weather, and provide a 
table that summarizes the methodologies and results from studies that project future damages.  The 
appendices are located at the end of this document. 

5.1 Tropical Cyclones 

This section reviews recent evidence on the impacts of climate change on tropical cyclone damages.  In 
Section 5.1.1, we discuss the physical mechanisms through which changes in the climate could affect 
tropical cyclones.  Next, in Section 5.1.2, we explain the methodologies that have been used in studies 
that project damages due tropical cyclones.  Finally, in Section 5.1.3, we summarize empirical projections 
of future tropical cyclone losses. 

5.1.1 Climate Change and Tropical Cyclones 

Tropical cyclones cause damage through a number of mechanisms, including strong winds, heavy rain, 
flooding, and storm surges (Burton and Hicks, 2005; Emanuel, 2011; Pielke et al, 2008; Ranger and 
Niehörster, 2011).  Furthermore, the formation and evolution of tropical cyclones depends on a number of 
variables, including absolute sea surface temperatures (SST), sea surface temperature gradients, 
atmospheric instability, and vertical wind shear (Dare and McBride 2011; Bender et al 2010; Knutson et 
al 2010).  Climate change could affect tropical cyclones via a number of these pathways.   

For example, one mechanism through which climate change could influence tropical cyclone formation is 
via an increase in sea surface temperatures.  Some research has suggested that SST and the potential 
intensity of storms are strongly correlated, implying that climate change would increase the relative 
frequency with which intense cyclones occur.  However, recent research shows that potential intensity 
may in fact be more related to SST gradients between tropical and non-tropical areas.  Since SST 
gradients are not predicted to be affected by climate change, this research implies that climate change will 
have little effect on tropical cyclone potential intensity (IPCC, 2012, p. 119, 158-163). 

Another mechanism through which climate change could affect tropical cyclones is via an increase in 
atmospheric water vapor.  Since water vapor is strongly related to heavy precipitation, it is possible that 
climate change will cause an increase in heavy precipitation associated with tropical cyclones (IPCC, 
2012, p. 162). 

Climate change may also indirectly influence the destructiveness of tropical cyclones through an increase 
in sea levels.  With higher average sea levels, the impacts of storm surges will increase, even if there is no 
change in storm frequency, wind speed, or other characteristics (IPCC, 2012, p. 158). 

Finally, some aspects of climate change may lead to a decrease in tropical cyclone frequency.  Potential 
mechanisms for negative effects include an increase in vertical wind shear, a reduction in the upward 
movement of air masses associated with atmospheric circulation in the tropics, and an increase in the 
amount of water vapor needed to saturate air in the middle troposphere (IPCC, 2012, p. 162).  All of these 
changes would reduce the potential energy available to storms, by siphoning away heat and moisture, or 
by making it more difficult for water vapor to condense and release heat energy. 

Overall, the IPCC projects that worldwide, the frequency of tropical cyclones will decrease or remain 
constant, while near-storm precipitation will rise.  However, changes will vary across basins, with some 
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basins seeing a rise in the mean maximum wind speed for storms and some basins experiencing a rise in 
frequency of the most intense storms (IPCC, 2012). 

5.1.2 Methodologies for Modeling Tropical Cyclone Losses under Climate Change 

This section discusses the scientific and economic methodologies used to forecast damages from tropical 
cyclones under future climate change.  Typically, models that predict future damages include two 
components:  one module that predicts how climate change will affect the frequency and intensity of 
future tropical cyclones, and a second module that estimates how those predicted changes will translate 
into economic damages.  We discuss these issues separately in the subsections below.  

Modeling Changes in Future Weather 

Projecting how climate change will affect the incidence of tropical cyclones is a difficult modeling 
process.  Most studies start by forecasting how changes in greenhouse gas emissions will affect future 
climate.  These predictions are usually based on general circulation models (GCMs) that predict how 
changes in forcing under different emissions scenarios will affect atmospheric and sea surface 
temperatures.   

The next step is then to model how changes in future climate will affect tropical cyclones.  Since tropical 
cyclones are complex events whose formation is influenced by a number of mechanisms (Bender et al 
2010; Dare and McBride 2011; IPCC, 2012; Knutson et al 2010), making credible forecasts requires 
fairly complicated modeling approaches (Bender et al, 2010; Emanuel, 2011; Neumann et al, 2014).  
Several main methodologies have emerged from the literature.   

First, some studies explicitly model tropical cyclones within a GCM framework (Emanuel, 2011).  These 
models forecast changes over the globe, with relatively low resolution.  These models have the strength of 
allowing for feedbacks between tropical cyclone formation and global atmospheric conditions—e.g., 
through dissipation of heat energy from the tropics to more temperate latitudes.  However, because 
tropical cyclones tend to be regional or local phenomena, some authors have questioned whether current 
models have the spatial granularity necessary to predict cyclone formation and evolution.   

A second common approach is to generate forecasts using dynamical downscaling.  This process involves 
taking low-resolution predicted changes in atmospheric conditions from a GCM and using them as inputs 
for a higher-resolution regional or local atmospheric model (Emanuel, 2011).  For example, Bender et al 
(2010) uses a dynamic downscaling approach to predict future U.S. hurricane patterns under the IPCC’s 
A1b emissions scenario.  The study begins with a set of GCM predictions taken from the Coupled Model 
Intercomparison Project 3 (CMIP3).  The authors then use the ZETAC model, which has 18-km 
resolution, to downscale the GCM climate predictions to finer resolution.  This downscaling process 
allows the authors to simulate important atmospheric conditions that affect tropical cyclone formation, 
including changes in SST, potential intensity, and wind shear.  Finally, the authors use these downscaled 
atmospheric variables as inputs to the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model, 
when then generates a series of simulated storm tracks.  The outputs from the model can be used to 
characterize the frequency, intensity, and geographic distribution of hurricanes under future climatic 
conditions.   

A third approach is statistical downscaling.  This process involves using the observed historical 
relationships between the large-scale variables that are outputs of the GCMs and local parameters to 
project changes in tropical cyclones (Emanuel, 2011). Finally, some studies use simplified approaches 
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that avoid explicit atmospheric modeling.  In some cases, authors use predictions from previous modeling 
work as inputs for their own economic calculations (ABI, 2009; Neumann et al, 2014; Ranger and 
Niehorster, 2011; Schmidt et al, 2009).  For example, Neumann et al (2014) uses simulated storm tracks 
from Emanuel et al (2008), and ABI (2009) uses the mean estimate (over seven models) of changes in 
North Indian Ocean wind speed from Emanuel et al (2008).  In other cases, studies use non-model-based 
techniques such as expert elicitation (ECAWG, 2009; Pielke, 2007) or estimation of a multiplier (e.g. an 
increase in intensity of 50%) (Fankhauser, 1995).  These studies often seek to understand how damages 
would respond to a specific change in the frequency or intensity of tropical cyclones, not necessarily 
connected to particular climate change scenario. 

In addition to modeling the effects of climate change on tropical cyclone formation, some authors have 
considered the impact of tropical cyclones on storm surges.  For example, Neumann et al (2014) draws on 
sea level rise outputs from a GCM and wind field output from a simulation of tropical cyclone storm 
tracks based on Emanuel et al (2008).  By combining these results using NOAA's Sea, Lake, and 
Overland Surge from Hurricanes (SLOSH) model, the authors are able to estimate location-specific 
cumulative distribution functions for future storm surge height due to tropical cyclones. 

One issue that frequently emerges the literature on tropical cyclones—and on extreme weather more 
broadly—is how to test and validate model predictions.  One approach that is common is to test whether 
the model is able to simulate tropical cyclone patterns correctly under known historical conditions.  For 
example, Bender et al (2010) test the GFDL hurricane models using historical data and find that while the 
preferred model correctly predicts increased intensity during a more active cyclone period, it does not 
accurately predict the magnitude of this change.  The authors speculate that future models, with increased 
horizontal resolution and explicit consideration of convection, may be better able to reproduce historical 
conditions.  This iterative approach to model development is common, but raises the possibility that 
future models will be guided by previous validation exercises—implying that future tests would need to 
be based on historical data from different locations or time periods.  

Modeling Economic Losses 

After projecting how tropical cyclone patterns will be affected by climate change, studies then must 
translate these changes in weather patterns into predicted changes in economic losses.  To model future 
economic losses from simulated storms, studies typically rely on a damage function derived from the 
historical relationship between storm characteristics to losses.  As discussed in Section 3, there are several 
different approaches and potential sources of data that could be used to estimate this relationship.   

The most common approach in the literature is model damages from simulated storms based on the 
historical relationship between losses and maximum wind speed (Hallegate, 2007; Narita, Tol, and 
Anthoff, 2009; Nordhaus, 2010).  Although many studies use this approach, there is considerable 
disagreement about the exact functional form of the relationship, with studies using semi-elasticities that 
range from a 2.8% increase in losses per knot (Schmidt et al, 2008b) to a 9.4% increase in losses per knot 
(Nordhaus, 2010).  One variation on this approach is to model damages as a function of Saffir-Simpson 
hurricane category, and then to estimate future damages by applying these values to the estimated change 
in number of storms of each category (Bender et al, 2010) 

Some studies also use more complex damage functions that take into account factors other than wind 
speed.  For example, Emanuel (2011) models damages as a function of both wind speed and explicit 
storm tracks. The study uses historical data on insured damages in 100 zones across the U.S. East and 
Gulf Coasts to develop a model of how losses depend on the locations hit by a storm.  The author then 
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uses this historical relationship to predict damages from simulated future storm tracks.  Similarly, 
Mendelsohn, Emanuel, and Chonabayashi (2011) use a regression-based damage function that models 
damages as a function of minimum barometric pressure, maximum wind speed, and location at landfall.  
Finally, several studies measure the broader economic consequences of tropical cyclones by embedding 
storm loss models within integrated assessment model frameworks (e.g., Narita, Tol, and Anthoff, 2009; 
Roson et al, 2006).  

In addition to projecting how climate-driven changes in storm characteristics will affect losses, some 
studies also account for the fact that future storm losses will be higher due to socioeconomic growth.  In 
these studies, authors typically project future losses under both climate change and socioeconomic 
growth, and then compare that to losses with socioeconomic growth but without climate change.  To 
account for socioeconomic growth, studies typically use simple adjustments based on predicted changes 
in population or GDP, combined with estimates of the elasticity of storm damages with respect to those 
parameters (Mendelsohn, Emanuel, and Chonabayashi, 2011; Narita, Tol, and Anthoff, 2009; Stanton & 
Ackerman, 2007).  A few studies consider the possibility of adaptation (e.g., Neumann et al, 2014)—we 
discuss these studies in greater detail in Section 6.2. 

One other methodological choice that is important is the type of damages considered by each study, e.g., 
insured losses, direct losses, or value of lives lost.  For example, Emanuel (2011) relies on a dataset of 
insured values from Risk Management Solutions, and therefore is only projecting changes in insured 
losses.  In contrast, ABI (2005) projects total direct damages from future cyclones by inflating AIR 
Worldwide insurance estimates based the historical percentage of total damages that are insured.   

Although most tropical cyclone studies focus on predicting future economic losses, a few consider other 
types of endpoints, such as power generation.  For example, Esteban et al (2012) consider the 
implications of future tropical cyclones in Japan for the cost-effectiveness of installing green energy 
generation.  Similarly, Hong and Möller (2012) evaluate the effects (both negative and positive) of future 
tropical cyclones on offshore wind farms in China.  Finally, Bjarnadottir et al (2013) analyzes the impact 
of tropical cyclones on the failure probability for electricity distribution poles.  These papers use context-
specific methodologies that are quite different from the general approaches described above.   

5.1.3 Projections of Tropical Cyclone Losses under Climate Change 

This section provides a review of recent empirical estimates of how tropical cyclone damages are likely to 
change under future climatic conditions.  Table 8 lists all studies that we have been able to identify on this 
topic.  Each of these studies projects damages under future climatic conditions.  As the table shows, these 
studies consider a diverse set of climate change scenarios, and focus on a wide range of geographies. 

Because of the variation in these studies, including in the methodological approaches they take and the 
format in which they report results, combining projections from different studies requires standardizing 
estimates and converting to consistent units.  To address this issue, we summarize the results from a 
recent meta-analysis of this literature, Ranson et al (2014).  In that study, the authors normalized each loss 
prediction from each study as a percent change in damages per degree Celsius of warming.  The authors 
then calculated a probability distribution that captures the range of estimates across different studies.  
Note that Ranson et al (2014) excludes some studies from Table 8, either because the studies were 
published after the meta-analysis was completed, or because they do not estimate the change in mean 
annual losses (e.g., several studies report results in terms of changes in return periods). 
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Figure 3 summarizes the normalized predictions from each study included in the meta-analysis. The 
figure shows that there is considerable variation across estimates, with the predicted change in losses 
ranging from -20% to +70% per degree Celsius.   The average study predicts approximately a 15% 
increase in damages in the North Atlantic, a 6% increase in damages in the Western North Pacific, and a 
14% increase in other/multiple ocean basins. 

In the parametric model presented in Section 2, we assume that the effect of climate change on tropical 
cyclone costs 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) can be expressed using an exponential functional form: 

𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) = (1 + τi)Δ𝑇𝑇𝑡𝑡 

The regression results from Ranson et al (2014) assume that 1 + τi has a lognormal distribution: 

ln(1 + 𝜏𝜏𝑖𝑖) ~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) 

The study estimates that 𝜇𝜇𝑖𝑖 = 0.154 and 𝜎𝜎𝑖𝑖 = 0.182 in the North Atlantic, 𝜇𝜇𝑖𝑖 = 0.063 and 𝜎𝜎𝑖𝑖 = 0.168 in 
in the Western North Pacific, and  𝜇𝜇𝑖𝑖 = 0.144 and 𝜎𝜎𝑖𝑖 = 0.167 in other/multiple ocean basins. 
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Table 8:  Studies of Tropical Cyclone Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
ABI (2009) China “time independent” +2°C, +4°C, +6°C; wind: -.5%, +3.7, +8% 
Bender et al (2010) U.S. 1980-2006  A1B 
Emanuel (2011) U.S. East/Gulf 2000-2100 A1B 
Esteban et al (2010) Japan 2085 +1% annual CO2 (SST: +0.8°C to 2.4°C) 
Webersik et al (2010) Japan 2085 +1% annual CO2 
Esteban et al (2010) Japan 2085 +1% annual CO2 
Raible et al (2012) U.S. 2069-2100; 2080-99 A2; A1B 
Hallegate (2007) 11 U.S. regions Not specified 10% increase in potential intensity 
Mendelsohn et al (2011) U.S. 2100 A1B 
Mendelsohn et al (2012) World regions 2100 A1B 
ABI (2005) U.S., Japan 2020-2099 A1T, A1F1, A2, B1, B2, 550, IS92a 
Ackerman et al, 2008 U.S. 2025-2100 A2 
Bouwer et al (2011)  U.S. Not specified 2.5°C rise in SST 
Choi and Fisher (2003)     U.S. Not specified +13.5% and +21.5% precipitation (2x CO2) 
ECAWG (2009) South Florida 2030 +3%WS/+.08m SLR; +5%WS/+.24m SLR 
ECLAC (2011) Bahamas 2011-2051 SLR only? 
Fankhauser (1995) World Not specified Doubling of CO2 
Moore et al (2010) Barbados 2071-2100 Five hurricane probability scenarios 
Nordhaus (2010) U.S. Not specified Equilibrium doubling of CO2-e levels 
Pielke (2007) U.S. 2050 CO2 concentration 550ppm in 2050 
Pielke et al (2000) World 2050 A1, A2, B1, B2 
Ranger et al (2011) Florida 2020 and 2090 A1B 
Schmidt et al (2009a) U.S. 2015, 2050 A1 
Stanton et al (2007) Florida 2025-2100 A2, Rapid Stabilization 
Narita et al (2009) World regions 2100 EMF 14 standardized scenario 
Neumann et al (2014) U.S. 2100 3 emissions scenarios  
Esteban et al (2009) Taiwan 2085 Linear 1% annual CO2 increase 
Hsiang and Jina (2014) World countries 2090 A1B 
Peduzzi et al (2012) World 2030 Based on Knutson et al (2010) 
Emanuel et al (2012)  U.S. East/Gulf Not specified Not specified 
Seo (2014)  S. Hemisphere 2100 A1B 
Bjarnadottir et al (2014)  3 U.S. counties Not specified 9 wind speed change scenarios 
Bjarnadottir et al (2011)  Florida Not specified 0-10% wind speed change 
Chavas et al (2013)  U.S. 2081-2100 A1B 
Irish et al (2010)  U.S. Gulf 2030s, 2080s B1, A1B, A1F1 
Esteban et al (2014)  Vietnam 2050-2100 SLR 0.15-1.35m 
Toba ( 2009) CARICOM 2080 A1B 
Roson et al (2006) World, by region 2050 1 to 1.75 deg C warming by 2050 
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Figure 3:  Projected Changes in Tropical Cyclone Damages Due to Climate Change 

Notes:  Each point in the scatterplot in top part of the figure represents a unique estimate of the treatment effect of 
surface air temperature on losses, based on a particular study, methodology, geography, and temperature change. 
The marker size represents the weight assigned to the treatment effect, and reflects both the baseline damages in 
that geography as well as the inverse of the number of estimates provided by the study. Weights are calculated 
separately for each of the three basins. The histograms in the bottom part of the figure show the distribution of 
estimates in each basin, along with a dotted line that represents a fitted log-normal distribution.  Source:  Ranson et 
al, 2014 
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5.2 Extratropical Cyclones 

This section reviews recent evidence on the impacts of climate change on extratropical cyclone damages.  
In Section 5.2.1, we discuss the physical mechanisms through which changes in the climate could affect 
extratropical cyclones.  Next, in Section 5.2.2, we explain the methodologies that have been used in 
studies that project damages due extratropical cyclones.  Finally, in Section 5.2.3, we summarize 
empirical projections of future extratropical cyclone losses. 

5.2.1 Climate Change and Extratropical Cyclones 

Extratropical cyclones tend to occur over mid-latitude ocean basins located near the upper-tropospheric 
jet streams.  These storms typically form in areas where the atmosphere is unstable, due, for example, to 
temperature gradients between large air masses.  They can gain energy via a number of mechanisms, 
including latent heat release (heat energy released when atmospheric water vapor condenses and falls as 
rain) (IPCC, 2012, p. 163).  Extratropical cyclones can also cause damages through several different 
mechanisms, including strong winds and storm surges.  In some cases, extratropical cyclones may also be 
associated with heavy rain or snow, which in turn may lead to further economic impacts (Donat et al, 
2011; ECAWG, 2009; Mass & Dotson, 2010). 

There are a number of pathways through which climate change could affect extratropical cyclones. For 
example, if climate change were to impact the pole-to-equator temperature gradients—at low or high 
altitudes—this could lead to a poleward shift in the atmospheric instabilities that generate extratropical 
cyclones.  In addition, if climate change were to affect atmospheric moisture content, the precipitation 
intensity within extratropical cyclones could change, which in turn could affect latent heat release and 
cyclone intensity (IPCC, 2012, p. 163). 

Overall, the IPCC projects that anthropogenic influences will result in a poleward shift in tracks from 
these storms.  This conclusion is based on indirect evidence, as well as on recent empirical observations 
of an ongoing poleward shift in extratropical storm tracks (IPCC, 2012, p. 119).  Although regional storm 
activity will likely be affected by climate change, the specific details of regional predictions should be 
interpreted with caution, due current models’ inability to capture all aspects of the way that extratropical 
cyclones form and change (IPCC, 2012, p. 119, 164-165).  Based on the IPCC’s review, it is not clear 
whether climate change will actually affect the global intensity and frequency of extratropical cyclones, 
or is likely only to shift storm activity northward. 

5.2.2 Methodologies for Modeling Extratropical Cyclone Losses under Climate Change 

This section discusses the scientific and economic methodologies used to forecast damages from 
extratropical cyclones under future climate change.  As with tropical cyclones, these models include two 
components:  one module that predicts how climate change will affect the frequency and intensity of 
future extratropical cyclones, and a second module that estimates how those predicted changes will 
translate into economic damages.    

Modeling Changes in Future Weather 

The general methods used for modeling changes in extratropical cyclones are similar to those described 
for tropical cyclones (see Section 5.1.2).  Studies first project the effects of greenhouse gas emissions on 
global and regional future climate, and then translate the resulting climatic changes into changes in 
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extratropical cyclone activity.  Many studies only model extratropical cyclones in the winter season, as 
the majority of storms occur during this period (Donate et al, 2011; Pinto et al 2012; Pinto et al, 2007).   

As with tropical cyclones, some studies estimate changes in extratropical cyclone activity directly from 
GCM predictions for daily maximum wind speeds.  For example, Leckebusch et al (2007) argue that 
while using a RCM could provide more geographic detail, the results of the GCMs are sufficient for 
determining a climate signal.  Pinto et al (2007) also explicitly model changes in extratropical cyclones 
using GCM outputs, but rely on an ensemble of simulations.   

Other studies rely on dynamical or statistical downscaling of GCM results (Donat et al, 2011; Schwierz et 
al 2010).  For example, Held et al (2013) downscales three ways:  using dynamical downscaling, 
statistical downscaling, and using a hybrid model (similar to Pinto et al, 2010).  For the hybrid method, 
Held et al (2013) dynamically downscales GCM predictions to generate changes in regional frequencies 
of weather types, and then uses statistical distributions of climate variables.   

Again, as with tropical cyclones, a number of studies also use simplifying approaches for predicting 
changes in extratropical cyclones.  For example, ABI (2005) relies on the results of Leckebusch and 
Ulbrich (2004), and assumes that climate change results in a 20 percent increase in intensity of the 20-
year storm.   

Modeling Economic Losses 

Once a study generates predictions about future extratropical cyclones patterns, these changes must be 
converted into economic damages.  Unlike the literature on tropical cyclones, which exhibits a range of 
economic loss modeling approaches, the nearly all studies of extratropical cyclones rely on a linear 
regression model that predicts damages based on the cube of normalized wind speeds above a 98th 

percentile threshold value.  A subset of these studies run the damage model twice: once calculating the 
98th percentile threshold given future climate to account for local adaptation, and once holding the 
threshold value constant at present day values, assuming no adaptation.  Some of these models also take 
into consideration a variable for population density, which acts as a proxy for insured values (assuming 
implicitly that insured values are proportional to population density) (Donat et al, 2011; Leckebusch et al, 
2007; Pinto et al, 2007; Pinto et al, 2010; Pinto et al, 2012; Held et al, 2013).  A few studies also use other 
functional forms to represent the relationship between damages and wind speed (Held et al, 2013; 
Schwierz et al, 2010).  Narita et al (2010) is an outlier in that it models damages directly the frequency of 
storm occurrence.  Finally, ABI (2009) and ABI (2005) estimate damages using a proprietary AIRS 
Worldwide insurance damage model. 

5.2.3 Projections of Extratropical Cyclone Losses under Climate Change 

This section reviews recent empirical estimates of how extratropical cyclone damages are likely to change 
under future climatic conditions.  Table 9 lists all studies that we have been able to identify on this topic.  
As the table illustrates, most research on extratropical cyclones has focused on Europe, with only a few 
studies that have considered other geographic locations. 

To summarize the empirical results from this literature, we draw on a recent meta-analysis by Ranson et 
al (2014).  In that study, the authors normalized each projection from each study in terms of a predicted 
change in losses per degree Celsius of atmospheric warming. Note that Ranson et al (2014) excludes 
some studies from Table 9, either because the studies were published after the meta-analysis was 



34 
 

completed, or because they do not estimate the change in mean annual losses (e.g., several studies report 
results in terms of changes in return periods). 

Figure 4 summarizes the key results from the meta-analysis.  The figure shows that across the eight 
studies included in the meta-analysis, the average predicted increase in wind storm losses in Europe is 
+8% per degree Celsius of warming.  To incorporate these results into our report, we assume that the 
effect of climate change on extratropical cyclone costs 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) can be modeled as: 

𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) = (1 + τi)Δ𝑇𝑇𝑡𝑡 

The regression results from Ranson et al (2014) assume that 1 + τi has a lognormal distribution: 

ln(1 + 𝜏𝜏𝑖𝑖) ~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) 

The study estimates that 𝜇𝜇𝑖𝑖 = 0.078 and 𝜎𝜎𝑖𝑖 = 0.063 for extratropical cyclones in Europe. 

 

Table 9:  Studies of Extratropical Cyclone Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
ABI (2009) UK “time independent” storm track shift of -1.45°, -4.4°, -7.3°  
Narita et al (2010) 16 world regions 2100 EMF 14 standardized scenario 
Leckebusch et al (2007) UK & Germany 2070-99, 2060-2100 A2 and IS92a 
Pinto et al (2007) Europe 2060-2100 A1B and A2 
Pinto et al (2010)  Germany 2060-2100 A1B and A2 
Pinto et al (2012) Europe 2060-2100 B1,A1B, and A2 
Held et al (2013) Germany 2070, 2100 A1B 
Donat et al (2011) Europe 2021-50, 2071-2100 A1B 
Schwierz et al (2010) Europe 2071-2100  A2 
ABI (2005) Europe Not specified A2 
Roson et al (2006 ) World, by region 2050 1 to 1.75 deg C warming by 2050 
Della-Marta et al (2010) Europe Not specified ECMWF climate forecasts 
Heck et al (2006) Europe 2071-2100 A2 
Karremann et al (2014) Europe 2060-2100 A1B 
Karremann (2015) Europe 2060-2100 B1, A1B, A2 
Hanson et al (2004)  UK 2070-2099 A2, B2 
Dorland et  al (1999) Netherlands 2015 0-10% wind intensity increase 
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Figure 4:  Projected Changes in Extratropical Cyclone Losses Due to Climate Change 

Notes:  Each point in the scatterplot in top part of the figure represents a unique estimate of the treatment effect of 
surface air temperature on losses, based on a particular study, methodology, geography, and temperature change. 
The marker size represents the weight assigned to the treatment effect, and reflects both the baseline damages in 
that geography as well as the inverse of the number of estimates provided by the study. Weights are calculated 
separately for each of the three basins. The histograms in the bottom part of the figure show the distribution of 
estimates in each basin, along with a dotted line that represents a fitted log-normal distribution.  Source:  Ranson et 
al, 2014 
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5.3 Inland Flooding 

This section reviews recent evidence on the impacts of climate change on damages from inland flooding.  
In Section 5.3.1, we discuss the physical mechanisms through which changes in the climate could affect 
inland flooding.  Next, in Section 5.3.2, we explain the methodologies that have been used in studies that 
project damages due inland flooding.  Finally, in Section 5.3.3, we summarize empirical projections of 
future inland flooding losses. 

5.3.1 Climate Change and Inland Flooding 

Inland floods can be divided into several categories, including floods along rivers (“fluvial” floods), 
floods that occur when heavy precipitation completely saturates the topsoil (“pluvial” floods – most 
common in urban areas), and floods related to glacial lakes.  The primary natural causes of flooding are 
extreme precipitation, melting snow or ice melt, and blockages to water flow, such as those caused by 
landslides (IPCC, 2012, p. 175).  Climate change could affect inland flooding via changes in either 
precipitation or surface air temperature.  For example, increased flooding could result from an increase in 
long-lasting precipitation, from an increase in temperatures that leads to a rise in snow melt, or from 
changes in soil moisture content.  

In selected regions where climate change is expected to cause increases in heavy precipitation, it is logical 
to expect that flooding may also increase.  However, although there is good evidence that climate change 
will affect precipitation and snowmelt worldwide, the many factors that affect flooding make it difficult to 
make global projections about future impacts of climate change on flooding.  Overall, IPCC does not 
draw strong conclusions about whether anthropogenic influences will affect inland flooding via changes 
in heavy precipitation. Similarly, although the IPCC indicates that snowmelt-fed and glacier-fed rivers 
will probably experience earlier spring peak flows, there is little evidence that this will impact the 
frequency or intensity of flooding (IPCC, 2012, p. 175-178).  Finally, due to a lack of existing literature, 
the IPCC draws no conclusions about pluvial floods. 

5.3.2 Methodologies for Modeling Inland Flooding Losses under Climate Change 

This section discusses the scientific and economic methodologies used to forecast damages from inland 
flooding under future climate change.   These models typically include two components:  one for 
predicting changes in future flooding probabilities, and one for estimating the economic damages 
resulting from the predicted changes in flooding.  

Modeling Changes in Future Inland Floods 

To estimate the effects of climate change on future flood probabilities, most studies use a two-step 
modeling approach.  The first step in these models is to use downscaled GCM predictions to generate 
estimates of future precipitation patterns in the study region.  For estimating flood probabilities, this 
requires estimating the probability of extreme or long-lasting precipitation events.  Studies use different 
methods to describe extreme precipitation, including 24-hour precipitation events (CLIMB, 2013; 
Preston, 2013), 10-day precipitation sums (Bouwer et al, 2010), and monthly rainfall sums (Campbell-
Lendrum et al, 2003).  Because extreme precipitation probabilities are difficult to estimate, different 
GCMs often make significantly different predictions about the probability of heavy precipitation events 
under a particular climate scenario (Campbell-Lendrum et al, 2003).   
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The second step in these models is to use predicted changes in precipitation to estimate how future flood 
frequency will change.  Inland floods are typically described using “return periods”, which represent the 
average number of years between events of a particular magnitude.  For example, a 100-year flood is the 
inundation depth that has a 1% chance of occurring in given year.  A 200-year flood has a 0.5% change of 
occurring each year, and is more damaging than a 100-year flood.  Predicting the effect of climate on 
flooding requires using predicted changes in precipitation to adjust current topography-based probabilities 
of flooding, to estimate how the return period of a flood of a given severity (inundation depth and extent) 
will change.   

To make these predictions, some studies rely simply on the historical relationship between precipitation 
and flooding in a particular area (Bouwer et al, 2010; Choi et al, 2003; Hall et al, 2005; Mokrech et al, 
2008; Wobus, 2014).   Others use more sophisticated hydrological models that account for rainfall runoff, 
local geology, or river flows (CLIMB, 2004; ABI, 2009; Dasgupta et al, 2010; Aerts et al, 2011; 
Hallegatte et al, 2010; Schreider et al, 2000).  For example, ABI (2009) predicts future flooding in Great 
Britain by using a model that considers how topography, climate-induced precipitation, and soil type all 
affect total drainage from rainfall to the rivers.  The study then applies a large-scale stochastic 
hydrological model to convert drainage to runoff across the entire river network.   

Modeling Economic Losses 

After developing estimates of how the spatial extent and depth of flooding are likely to change under 
future climatic conditions, studies must then estimate the damages that are likely to result from those 
changes.  This process requires developing a damage function that relates flood severity to flood 
damages, and then applying this relationship to the predicted changes in flood patterns. 

One way in which this process differs across studies is in the level of geographic resolution included in 
the model.  Some studies estimate damages for relatively large geographic areas, while others use GIS 
techniques to estimate damages for very fine geographic pixels (Susnik 2014; CLIMB, 2004; Dasgupta, 
2010; Campbell-Lendrum et al, 2003).  In these studies, the flooding model estimates inundation depth 
and area, and the resulting 3D output is overlain with geospatial land-use data to calculate the total 
number of pixels or properties that fall into a particular depth category.  Each pixel or property is then 
assigned a unit flood cost, based on factors such as the type of structure (residential buildings, office 
buildings, parking lots, infrastructure) or the number of residents who would be affected (Tezuka et al, 
2014). 

For example, several studies of flooding in the Netherlands use a region-specific “damage scanner” 
approach that uses the HIS-SSM model to estimate losses based on inundation depth and land use (Aerts 
et al, 2011; Bouwer et al, 2010; Te Linde et al, 2011).  The model distinguishes between several different 
land use types and direct damage categories, including losses of buildings, infrastructure, agriculture, and 
building content.  It also includes an adjustment for indirect losses, equal to five percent of total damages.  
This model illustrates the accuracy gains from using higher resolution geospatial data.  In particular, when 
the model is used to simulate flooding scenarios at both 25m and 100m resolutions, the 100m resolution 
simulation tends to overestimate losses in urban areas, due to overestimating the area of high-density 
urban areas that are actually flooded (Bouwer 2009) 

One important input into flooding models is the damage function that relates losses to inundation depth 
and property characteristics.  To develop damage functions, most studies rely on the historical 
relationship between insurance claims and flood depth.   Some studies also attempt to account for 
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potential adaptation measures, such as levees, dykes, and flood-proofing of buildings (e.g., CLIMB, 
2004) 

5.3.3 Projections of Inland Flooding Losses under Climate Change 

This section reviews recent empirical estimates of how inland flooding damages are likely to change 
under future climatic conditions.  Table 10 summarizes key information about all studies we have 
identified on this topic.  The majority of these studies focus on fluvial floods that are caused by long-
lasting precipitation, which increases the river discharge, overflowing the banks.  One study, however, 
projects future impacts from pluvial floods in Mumbai, where extreme precipitation events cause flooding 
because of poor urban drainage systems (Hallegatte, 2010). 

 

Table 10:  Studies of Inland Flooding Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
ABI, 2009 Great Britain 2035-2100 2°C global temperature rise 
Aerts et al, 2011 Netherlands 2015-2100 1°C, 2°C, 4°C temperature rise 
Bouwer et al, 2010 Netherlands 2040 G, W+ (KMNI) 
Cambell-Lendrum, 2003 World 2030 IS92a, s750, s550 
Cheng et al, 2012 Canada 2046-2100 IS92a, A2, B2 
CLIMB, 2004 Boston, MA 2001-2100 1% increase annual CO2 
Choi et al, 2002 U.S. not specified Doubling of CO2 
Dasgupta et al, 2010 Bangladesh 2050 A2 
Feyen et al, 2009 Europe 2071-2100 A2 
Hall et al, 2005 UK 2080s B1, B2, A2, A1F1 
Hallegatte et al, 2010 Mumbai 2080s A2 
Mirza, 2002 Bangladesh unclear 2°C, 4°C, 6°C temperature rise 
Mokrech et al, 2008 England 2020-2050 A1, A2, B1, B2 
Nakajima et al, 2014 Japan 2000-2050 CSIRO, GFDL, MIROC, MRI 
Perrels et al, 2010 Finland 2005-2050 A1F1, A1T, A1B, A2, B1, B2 
Schreider et al, 2000 Australia 2030, 2070 CO2 doubled  
Schuurman, 1995 Netherlands 2050 2°C global temperature rise 
Te Linde et al, 2011 Europe 2030 A1B, 2°C temperature rise 
You et al, 2001 China 1995-2100 2.5°C global temperature rise 
Wobus et al, 2014 US 2100 CO2 doubled 
Ciscar et al, 2011 Europe 2071-2100 A2, B2 
Zhou et al, 2012 Denmark 2100 A2 
Tezuka et al, 2014 Japan 2050 A1B, B2, B1 

 

To summarize the results from this varied collection of studies, we have standardized the results from 
selected studies following the methodology used in Ranson et al (2014).  Figure 5 presents the results of 
this analysis.  The figure shows that the predicted change in flood losses per degree of warming varies 
considerably across studies and geographies, including both large increases as well as moderate 
decreases. 

Although Figure 5 does show results by continent, in our judgment the number of studies available for 
North America and Australia is not sufficient to develop region-specific estimates of the impacts of 
climate change on inland flooding.  Instead, we estimate a single pooled model that includes studies 
covering all three regions.   Following the general framework from Section 2, we assume that the effect of 
climate change on inland flooding costs 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) can be modeled as: 
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𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) = (1 + τi)Δ𝑇𝑇𝑡𝑡 

where 1 + τi has a lognormal distribution: 

ln(1 + 𝜏𝜏𝑖𝑖) ~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) 

Based on the sample of studies included in Figure 5, we estimate that 𝜇𝜇𝑖𝑖 = 0.274 and 𝜎𝜎𝑖𝑖 = 0.266 for 
inland flooding in these three regions (Europe, North America, and Australia). 

It is important to exercise caution in interpreting this pooled model and the other results shown in Figure 
5.  First, these results represent only part of the literature on inland flooding.  Second, many of these 
studies focus on particular geographic areas or hydrological basins, and thus may not be representative of 
continental-level changes.  This could be a concern if authors are more likely to simulate future losses for 
areas that are likely to have large impacts from climate change.  Since the effects of climate change on 
inland floods are likely to be heterogeneous, making generalizations based on these studies requires fairly 
strong assumptions.  We present these results here as an initial step towards developing a consensus 
damage function, but we have low overall confidence in the accuracy of our model parameters. 
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Figure 5:  Projected Changes in Inland Flooding Damages Due to Climate Change 

 
Notes:  Each point in the scatterplot in top part of the figure represents a unique estimate of the treatment effect of 
surface air temperature on losses, based on a particular study, methodology, geography, and temperature change. 
The marker size represents the weight assigned to the treatment effect, and reflects the inverse of the number of 
estimates provided by the study. Weights are calculated separately for each of the three areas. The histograms in the 
bottom part of the figure show the distribution of estimates in each area, along with a dotted line that represents a 
fitted log-normal distribution. 
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5.4 Wildfires 

This section reviews recent evidence on the impacts of climate change on wildfire damages.  In Section 
5.4.1, we discuss the physical mechanisms through which changes in the climate could affect wildfires.  
Next, in Section 5.4.2, we explain the methodologies that have been used in studies that project damages 
due wildfires.  Finally, in Section 5.4.3, we summarize empirical projections of future wildfire losses. 

5.4.1 Climate Change and Wildfires 

There are a number of mechanisms through which climate change could influence wildfire risk.  The 
occurrence of wildfires is driven by fuel availability (e.g., grass, brush), by weather conditions, and by 
ignition rates (e.g., due to lightning or human causes).  Each of these individual mechanisms could be 
affected by a changing climate.  Higher temperatures, for example, could increase the likelihood of 
ignition, and therefore lead to an increase in the frequency and geographic extent of wildfires.  Changes in 
temperature and precipitation could affect plant growth, which in turn could affect fuel availability (Cary 
et al, 2012). 

Based on these mechanisms, the IPCC states that there is some evidence to support predictions of an 
increase in wildfire risk in Southern Europe and parts of Australia and New Zealand (IPCC, 2014).  Other 
studies have also projected increases in wildfire risk in areas of Australia, South America, the western 
United States, and Canada (IPCC, 2012, p. 252-261).   

These predictions are supported by more general evidence that droughts will rise in duration and 
frequency in certain regions of the world (southern Europe, central North America, Central America, 
Mexico, northeast Brazil, and southern Africa) under climate change (IPCC, 2012, p. 119).  Furthermore, 
some studies have found evidence that climate change may already be affecting wildfire patterns in the 
Western United States and Canada (Gillett et al, 2004; IPCC, 2012; Westerling et al, 2006; Westerling 
and Bryant, 2008).  These studies argue that observed increases in wildfires over the last several decades 
are related to rises in temperature and earlier snowmelt, each of which has been identified as a potential 
result of anthropogenic climate change. 

5.4.2 Methodologies for Modeling Wildfire Losses under Climate Change 

This section discusses the scientific and economic methodologies used to forecast damages from wildfires 
under future climate change.   While a number of studies have attempted to project future fire risk, we are 
only aware of a single study that projects future economic losses.  As a result, our discussion primarily 
focuses on estimating the potential impacts of climate change on fire risk. 

The goal of these studies is to use the outputs of global and regional climate models to predict changes in 
wildfire risk.  In some cases, studies project whether future weather conditions will be more conducive to 
wildfires, but stop short of estimating actual changes in fire incidence.  For example, Hennessy et al 
(2005) estimates changes in future “fire weather”, based on calculating how the Forest Fire Danger Index 
and Grassland Fire Danger Index will change under future weather conditions.  These indices are based 
on variables such as temperature, precipitation, relative humidity, and wind speed. 

Other studies actually calculate probability distributions for wildfires under future conditions.  For 
example, Fried et al (2004) generates future wildfire size distributions based on fire danger indices.  Their 
model incorporates fire suppression protocols and is geographically explicit, modeling behavior for 
individual events based on fuel type, slope and weather.  The authors point out that studies that predict 
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only weather indices do not account for the skewed probability distribution of fire severity or the 
interaction between wildfires and suppression.   

5.4.3 Projections of Wildfire Losses under Climate Change 

As discussed above, a number of studies have estimated how climate change will affect future fire risks 
(e.g., Williams, Karoly, and Tapper, 2001).  For instance, Cary (2002) and Hennessy et al (2005a) predict 
increased fire-weather risk and increases in frequency and area burned for regions of Australia.  Fried et 
al (2004) finds mixed results in future projections for California.  The study estimates an increase in fire 
spread rates in Amador and Santa Clara, but no change or a decline in Humboldt. 

Despite this research on climate change and wildfire risk, we are aware of only a single study on the 
potential effects of climate change on damages from wildfires:  Howard (2014).  Table 12 summarizes 
key information about the scenario and geographic coverage this study.  The study begins by using the 
average historical ratio between suppression costs and total costs to argue that total current costs of 
wildfires in the United States are likely to be $20 to $125 billion (based on federal, state, and local fire 
suppression costs of $2 to $2.5 billion per year).  They argue that climate change will increase these costs 
by 50% by the year 2050, based on estimates of changes in burned area from studies in the literature.  
They then estimate global wildfire losses under climate change based on the assumption that the ratio 
between world GDP and world fire costs is equal to the ratio between U.S. GDP and U.S. fire costs.  
Overall, they predict that by the year 2050, climate change will cause additional wildfire damages of $10 
to $62.5 billion in the United States, and $50 to $300 billion worldwide.   

Howard (2014) relies on a number of strong assumptions, and the results should be interpreted with 
caution.  However, the study does represent a first effort to quantify the potential economic effects of 
climate change on wildfire risk.  Future studies will likely use refined models with better representation of 
geographic and distributional aspects of wildfire activity and damages. 

 

Table 11:  Studies of Wildfire Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
Howard, 2014 U.S., world 2050 A2 
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5.5 Small-Scale Storm-related Phenomena 

This section reviews recent evidence on the impacts of climate change on small-scale storm-related 
phenomena.  In Section 5.5.1, we discuss the physical mechanisms through which changes in the climate 
could affect small storms and their associated phenomena.  Next, in Section 5.5.2, we explain the 
methodologies that have been used in studies that project damages due to these events.  Finally, in Section 
5.5.3, we summarize empirical projections of future storm-related losses. 

5.5.1 Climate Change and Small-Scale Storms 

Small-scale storm-related phenomena—such as hail, tornadoes, and thunderstorms—are capable of 
causing substantial amounts of damage in localized areas.  However, predicting how climate change could 
influence these categories of extreme weather is difficult.  Climate change will have both positive and 
negative effects on the physical processes that produce these events, and current climate models do not 
simulate these phenomena well (IPCC, 2012, p.13).  Furthermore, due to improvements in reporting 
practices and monitoring technology, the historical record for these events is relatively poor (IPCC, 2012, 
p.141).  As a result, the IPCC does not consider there to be enough evidence to make any consensus 
projections about the impact of climate change on these events. 

There are also a limited number of region-specific studies that predict the effect of climate change on 
these small storm phenomena, primarily for hailstorms and thunderstorms.  Hailstorms have been studied 
because they can cause significant damages to crops (Niall et al, 2005).  Hail often occurs in 
thunderstorms, and hail formation is linked to strong vertical wind shear, strong upper-tropospheric 
winds, and low upper-air temperatures (McMaster, 1999).  If climate change affects these variables 
(particularly upper-air temperature), hailstorm frequency and intensity could change. 

One caveat for looking at the effect of climate change on thunderstorms and hailstorms is that while 
convective environments are relatively well-understood, the “triggering” of these storms is not (Marsh et 
al, 2008).  For both thunderstorms and hailstorms, researchers have begun to look at the impacts on 
Convective Available Potential Energy (CAPE) under climate change (Marsh et al, 2008; Niall et al, 
2005; Trapp et al, 2007).  For example, Marsh (2008) predicts increased CAPE due to climate change in 
the Mediterranean, implying increased thunderstorms in that area, while Trapp (2007) predicts increased 
days with severe thunderstorm conditions (based on a CAPE calculation) in the Gulf of Mexico and 
Atlantic coast of the United States. 

5.5.2 Methodologies for Modeling Small-Scale Storm Losses under Climate Change 

This section discusses the scientific and economic methodologies used to forecast damages from small-
scale storm-related phenomena under future climate change.  At this time, we are only aware of papers 
that model losses as a result of hailstorms (Botzen et al, 2010; McMaster, 1999, Niall et al, 2005), and 
none that model losses for tornados or thunderstorms. 

In order to predict future hailstorm losses, most studies look at projected upper-air temperatures and their 
relationship with historical reported losses from hail.  Both McMaster (1999) and Niall (2005) apply the 
“TT Index,” which calculates the probability of storms based on temperatures and pressures implied by 
downscaled data from GCMs.  Niall (2005) also calculates CAPE under the changing climate.  Niall notes 
a caveat for using the TT Index:  while it is effective at predicting storms, it does not incorporate a 
moisture variable.  Finally, using a slightly different methodology, Botzen et al (2010) extrapolates 
hailstorm damage from historical data based on a climate prediction of minimum and maximum 
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temperature as well as precipitation.  He also adds an additional variable for seasonality, as hailstorm 
damages are higher when they occur in spring and summer, due to increased crop losses.  

5.5.3 Projections of Small-Scale Storm Losses under Climate Change 

As described above, there is a lack of understanding of how thunderstorms, tornados, and to some extent, 
hailstorms, are impacted by climate change.  As a result, there are limited studies predicting losses due to 
these types of storms.   

Table 12 describes the three studies that we have identified that project future losses from hailstorms.  
Botzen (2010) predicts that damages to agriculture will increase 25-49% by 2050.  McMaster (1999) 
predicts a 0.0 to 3.3% increase in crop losses, under a doubling of CO2 levels.  Finally, Niall (2005) 
predicts no significant change in convective energy in the study area, suggesting no change in crop losses.  
None of these studies report losses in currency. 

There are many caveats associated with using these studies to look at future losses from hailstorms.  The 
link between climate change, convective energy, and storms is not well-understood.  Generating robust 
predictions about hailstorms and other storm-related phenomena will require additional research. 

 

Table 12:  Studies of Small-Scale Storm-Related Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
Hailstorms    
Botzen et al, 2010 Netherlands 2050 1°C, 2°C temperature rise 
McMaster, 1999 Australia n/a CO2 doubled 
Niall et al, 2005 Australia 2040-2060 CO2 doubled from pre-industrial levels 
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5.6 Landslides and Avalanches 

This section reviews recent evidence on the impacts of climate change on economic losses from 
landslides and avalanches.  In Section 5.6.1, we discuss the physical mechanisms through which changes 
in the climate could affect landslides and avalanches.  Next, in Section 5.6.2, we explain the 
methodologies that have been used in studies that project damages due to these events.  Finally, in Section 
5.6.3, we summarize empirical projections of future landslides and avalanche losses. 

5.6.1 Climate Change and Landslides/Avalanches 

The movement of rocks, debris and snow in landslides and avalanches can cause damage to properties 
and infrastructure, and can result in loss of human life.  Tourism and recreation in mountain regions 
increases exposure to the impacts of these events (IPCC, 2012, p. 258).  Historically, these losses have 
been difficult to quantify, since smaller incidents often go unreported and affect less populous regions.  In 
addition, the potential effects of climate change on landslides and avalanches are not fully understood, 
especially on a global level.   

The main variables that predict land stability are cohesion, material density, slope angle, pore water 
pressure, and internal friction.  There are several mechanisms through which climate change could affect 
these variables.  For example, because the presence of water affects most of these variables, changes in 
rainfall or increased glacial melt could increase landslide frequency.  In addition, higher temperatures 
may affect the permafrost and glacial ice that provide lateral support on slopes (IPCC, 2012, p. 186-189).  
However, climate change may cause increased evapotranspiration, resulting reduced water in soils, and 
thus requiring more rainfall to trigger landslides (Crozier, 2010 pg. 261). 

The IPCC predicts that climate change is most likely to have impacts on avalanches and landslides in high 
mountainous regions.  However, the net direction of the impact is still unclear (IPCC, 2012).  
Furthermore, because other human activities (such as development of unsafe locations) play a greater role 
in determining risks in lower altitude areas, there is little evidence on whether climate change could 
influence the shallow landslides that cause damage in the places where people typically live. 

5.6.2 Methodologies for Modeling Landslide/Avalanche Losses under Climate Change 

Modeling future landslide and avalanche risk under climate change involves two steps.  The first step is to 
downscale a GCM, possibly using a regional climate model, to predict precipitation and 
evapotranspiration rates in the mountainous areas where these disasters occur.  The second step is to 
predict future landslide risk by feeding the predicted change in local weather patterns into a model of the 
regional relationship between weather and landslide return periods (Crozier, 2010 pg. 262-263).  

An important challenge to modeling losses from landslides and avalanches is that these disasters occur in 
less populous regions, and thus are difficult to observe (IPCC, 2012).  Furthermore, human influence, 
especially increased deforestation and urbanization, increases risk of landslides due to greater slope 
instability and runoff (Crozier, 2010).  Thus, predicting future losses requires accounting for both poor 
historical data and for the potential effects of migration and development in mountainous regions that are 
more at risk from landslides or avalanches. 
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5.6.3 Projections of Landslide/Avalanche Losses under Climate Change 

We have identified only one study that estimates losses from landslides or avalanches as a result of 
climate change:  Roson (2006).  The study uses a multi-country CGE model based on historical damages.  
It predicts an increase of $7 million in annual damages from landslides in 2050 in Eastern Europe and the 
former Soviet Union, but finds statistically insignificant changes in losses in all other regions.  Table 13 
summarizes some key characteristics of this study. 

 

Table 13:  Studies of Landslide and Avalanche Losses under Climate Change 

Study Geography Time Period Climate Change Scenario 
Roson et al, 2006 World, by region 2050 1.04-1.75°C increase, by region 

 

  



47 
 

5.7 Summary of Parameter Estimates 

This section summarizes model parameters that describe the effect of climate change on damages from 
extreme events.  In the notation of Section 2, this section focuses on the function 𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡), which is 
defined as: 

𝐶𝐶𝑖𝑖(Δ𝑇𝑇𝑡𝑡) = (1 + τi)Δ𝑇𝑇𝑡𝑡 

where 𝑖𝑖 denotes region and  1 + τi is assumed to have a lognormal distribution: 

ln(1 + 𝜏𝜏𝑖𝑖) ~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) 

Table 14 summarizes estimates of the parameters 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 that define the distribution of effects for each 
type of disaster and region.  These estimates are drawn from the meta-analysis results presented earlier in 
this section.  As noted previously, these estimates should be interpreted cautiously.  For many regions and 
types of disasters, there is insufficient evidence in the research literature to develop estimates of 
appropriate parameter values.  In these cases, the table shows a “na” value.   

 

Table 14: Parameters Describing the Effect of Climate Change on Disaster Losses,                  
by Disaster and Geography 

 Region 
Tropical 
Cyclones 

Extra-
tropical 
Cyclones 

Inland 
Floods Wildfires 

Small 
Storms 

Landslides 
and 

Avalanches 
𝜏𝜏𝑁𝑁𝑁𝑁 North America 0.154 

(0.182) 
na 0.274 

(0.266) 
na na na 

𝜏𝜏𝑆𝑆𝑆𝑆 South America 0.154 
(0.182) 

na na na na na 

𝜏𝜏𝐸𝐸𝐸𝐸 Europe 0.154 
(0.182) 

0.078 
(0.063) 

0.274 
(0.266) 

na na na 

𝜏𝜏𝐴𝐴𝐴𝐴  Africa 0.144 
(0.167) 

na na na na na 

𝜏𝜏𝐴𝐴𝐴𝐴 Asia 0.063 
(0.168) 

na na na na na 

𝜏𝜏𝐴𝐴𝐴𝐴 Australia 0.144 
(0.167) 

na 0.274 
(0.266) 

na na na 

Notes: Each cell in the table presents the mean 𝜇𝜇𝑖𝑖 for a particular region and type of disaster. The corresponding 
standard deviation 𝜎𝜎𝑖𝑖 is shown in in parentheses. Refer to the text above for detailed descriptions of what these 
parameters represent. 
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6 Empirical Application 

The previous sections of this document review evidence on three topics:  the magnitude of baseline 
damages from extreme weather, how damages are likely to change with socioeconomic growth, and how 
damages are likely to change due to climate change.  In this section, we present a simple empirical 
application that combines these three strands of literature and uses them to project future costs from 
extreme weather under climate change.   

Section 6.1 describes our general methodology, and then presents the predicted change in losses, by type 
of event and region.  Section 6.2 then discusses limitations and uncertainties, with a focus on interpreting 
the results in light of adaptation possibilities. 

6.1 Methodology and Results 

To estimate future damages from extreme weather under climate change, we simply substitute the 
parameters from Table 4, Table 7, and Table 14 into the damage function presented in Section 2.  We then 
evaluate the model predictions for a scenario that involves a +2.5°C change in temperature.  For 
simplicity, this initial application assumes that population and GDP remain constant at their current levels 
in all regions of the globe.  Additionally, we run the model only for regions and types of extreme weather 
for which reasonable parameter estimates are available. 

To capture uncertainty related to the model parameters, we develop estimates by running a Monte Carlo 
simulation in which we draw 500 different realizations from the distribution of potential parameter 
values.  For each draw, we calculate current and future losses.  We then calculate the average loss across 
these different draws, as well as a 95 percent confidence interval. 

Table 15 presents the results of this empirical exercise, for tropical cyclones, extratropical cyclones, and 
inland floods.  Baseline losses for tropical cyclones are largest in North America and Asia.  Under a 
+2.5°C increase in temperature, mean losses in these two regions are predicted to increase by $12 billion 
(63%) and $2.2 billion (28%), respectively.  However, the confidence intervals on these estimates are 
very wide.  For example, in North America, a 95% confidence interval ranges from a $8 billion decrease 
to a $49 billion increase. 

Table 15 also estimates the effects of climate change on extratropical cyclone damages in Europe.  
Baseline damages are about $2.0 billion per year, and climate change will increase those damages by 
23%, equivalent to $460 million.  This confidence interval is also wide, ranging from a 12% decrease to a 
66% increase in damages. 

Finally, Table 15 presents estimates of how inland flooding losses will be affected by climate change, for 
North America, Europe, and Australia.  If global surface air temperatures increase by +2.5°C, inland 
flooding losses in these three regions are expected to increase by $3.7 billion, $6.4 billion, and $0.7 
billion.  Since this report does not review any research directed at assessing climate change impacts on 
inland flooding in Asia, Table 15 does not present predictions for Asia (which according to EM-DAT, has 
very high baseline losses). 

Overall, Table 15 suggests two key messages.  First, extreme weather losses could increase substantially 
as the climate change, with expected costs that range in the tens of billions of dollars.  Second, the 
uncertainties surrounding these predictions are very large, with large decreases and increases in damages 
both possible. 
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Table 15: Predicted Change in Extreme Weather Losses under +2.5°C 

Region Tropical Cyclones Extratropical Cyclones Inland Floods 
 Baseline Losses (millions, 2014$) 
North America $18,671 $37 $2,548 
South America $0 $0 $0 
Europe $35 $2,010 $4,388 
Africa $61 $0 $275 
Asia $8,115 $0 $14,573 
Australia $368 $0 $508 
 Change in Losses (millions, 2014$) 
North America $11,740 [-$7,846, $48,548] na $3,744 [-$1,250, $16,177] 
South America $0 [$0, $0] na na 
Europe $22 [-$15, $91] $463 [-$240, $1,321] $6,447 [-$2,152, $27,858] 
Africa $34 [-$24, $138] na na 
Asia $2,255 [-$4,089, $13,606] na na 
Australia $207 [-$143, $832] na $746 [-$249, $3,225] 
 Percent Change in Losses 
North America 63% [-42%, 260%] na 147% [-49%, 635%] 
South America 63% [-42%, 260%] na na 
Europe 63% [-42%, 260%] 23% [-12%, 66%] 147% [-49%, 635%] 
Africa 56% [-39%, 226%] na na 
Asia 28% [-50%, 168%] na na 
Australia 56% [-39%, 226%] na 147% [-49%, 635%] 
Notes: Each cell shows the baseline or mean predicted change in extreme weather losses, in either USD or in 
percentage terms.  Numbers in brackets represent a 95% confidence interval, calculating using a Monte Carlo 
simulation.  Changes in losses due to climate change are calculated relative to a present-day baseline that assumes 
no economic growth or population growth.  The climate change scenario assumes a 2.5°C increase in global 
surface air temperature. 

 

6.2 Accounting for Adaptation 

Making predictions about the impacts of climate change on future extreme weather losses involves many 
uncertainties.  Some of these are related to uncertainty about the appropriate values of the input 
parameters—e.g., uncertainty about the true baseline damages caused by tropical cyclones.  These 
limitations are discussed in detail in the previous sections of this document.  However, one key issue that 
is not discussed above is adaptation.  If extreme weather events increase in magnitude or frequency in the 
future, then residents of affected areas are likely to invest in adaptation measures to prevent losses.  These 
measures could take a variety of forms, including passing stricter building codes, investing in coastal 
armoring, building stronger levees, improving early warning and evacuation systems, using ecosystem-
based features (such as mangroves or wetlands) to create coastal buffers, etc. 

In principle, accounting for these adaptation possibilities requires estimating both investment costs and 
avoided damages from the adaptation effort.  Doing so is a challenging exercise.  For example, consider 
one likely avenue for adaptation to extreme weather:  more stringent building codes.  These codes are 
likely to increase building construction costs, due to the extra materials and labor required.  They may 
also impose welfare costs on homeowners by limiting buildings’ features or location (e.g., coastal 
residents may prefer to live in high-rise that located right on the beach, rather than at a safe buffer 
distance).  Their benefits are also likely to be difficult to estimate.  They require understanding how 
changes in building practices affect likelihood of damage during future extreme events, and how 
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developers will respond to the new constraints.  While there are engineering and economic approaches to 
estimating these types of costs and benefits, performing these calculations for each potential adaptation 
measure in each geographic area for each type of disaster would be a daunting exercise. 

Nonetheless, in recent years, a small literature has begun to study adaptation to extreme weather.  Three 
main themes emerge from this literature.  First, there is strong evidence that regions that are more 
vulnerable to natural disasters make greater defensive investments.  For example, Neumayer, Plumper, 
and Barthel (2014) find that nations that experience more frequent natural disasters are more likely to 
make defensive investments. 

Second, there is also evidence that current defensive investments have prevented damage from extreme 
weather (Hsiang and Narita, 2012).  For example, IFRC (2001) estimates that during the 1990s, 
worldwide investments of $40 billion in disaster preparedness, prevention, and adaptation reduced global 
economic losses by $280 billion.  In a more specific context, Crompton and McAneney (2008) find that 
Australia’s Wind Code—which sets building construction standards in regions frequently impacted by 
tropical cyclones—may have reduced storm losses.  Similarly, Hsaing and Jina (2014) find that hurricanes 
cause less damage per knot of maximum wind speed in the countries in the highest quintile of average 
exposure.  The authors attribute this declining marginal relationship to the higher defensive investments 
by these exposed countries. 

Finally, a number of studies project that future adaptation efforts could at least partially mitigate the 
increased damages from extreme weather events caused by climate change (e.g., Neumann et al, 2014).  
For example, Ou-Yang et al (2013) project that in St. Lucia, investing in roof upgrades and strengthening 
windows and doors could reduce hurricane losses to wood-frame buildings by 24% under the worst 
climate change scenario (and 8% under the median scenario).  The authors estimate that the benefit-cost 
ratio from these investments ranges from 2.1 to 3.5, based on a 20 year time horizon and a 5% discount 
rate. 

Overall, failing to account for adaptation will result in overestimating net losses due to future extreme 
weather.  Because this paper does not account for adaptation, we recognize that our estimates may be 
overestimates. However, incorporating adaptation into models of climate change impacts is currently a 
challenging exercise, and remains a subject for future research.   
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7 Conclusions 

This report summarizes current research on how climate change is likely to influence future losses from 
extreme weather events.  We consider three topics.   

First, we examine research that estimates historical average losses from each type of extreme weather.  
We find that while there are relatively good data on reported costs of destroyed infrastructure, there is 
considerable disagreement in the literature about the longer-term macroeconomic effects of disasters.   

Second, we summarize evidence on the relationship between socioeconomic growth and storm losses.  
Our review suggests that increases in GDP and population lead to higher losses from disasters, but that 
disaster mortality is lower in more developed countries.   

Third, we review studies of how climate change will affect future losses from extreme weather.  Many 
studies predict increases in losses under climate change, but the science remains uncertain and some 
projections suggest that certain types of extreme weather losses may decrease.   

Overall, based on a reduced-form model that draws together parameter estimates from each of these three 
strands of literature, we estimate that moderate climate change will cause average extreme weather 
damages to increase by tens of billions of dollars per year.  The uncertainties surrounding these 
predictions are substantial, with large decreases and increases in damages both possible.  Furthermore, 
there is insufficient research currently available to make any predictions at all about some types of 
extreme weather events.  Nonetheless, the synthesis parameters compiled in this paper represent a useful 
step towards developing improved IAMs that reflect the emerging scientific and economic literature on 
climate change and extreme weather.  
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Appendix A    Tropical Cyclones 

In the following subsections, we review background information on historical losses from tropical 
cyclones, discuss scientific evidence on how climate change could influence future tropical cyclone 
patterns, and then summarize existing projections of the potential impact of climate change on economic 
damages from these storms. 

Appendix A.1 Historical Damages from EM-DAT 

To characterize the magnitude and geographic distribution of damages from tropical cyclones, Table 16 
summarizes information from the EM-DAT disaster database, broken down both by geographic region 
and by type of impact.  The table shows that between 1985 and 2014, 298 storms struck Eastern Asia, 279 
struck South-Eastern Asia, 204 struck the Caribbean, 134 struck Central America, 104 struck Southern 
Asia, 79 struck Eastern Africa, and 74 struck Northern America.  These counts include only tropical 
cyclones that caused impacts that exceeded one of EM-DAT’s disaster thresholds.   

As the table demonstrates, the pattern of tropical cyclone losses depends on both geography and on levels 
of economic development.  Although tropical cyclones occur in a number of regions, economic damages 
are concentrated in only a few locations.  Average annual economic damages are $16 billion per year in 
Northern America, and $6 billion per year Eastern Asia.  Average annual damages in Central America, 
the Caribbean, and South-eastern Asia are all between $1 and $1.6 billion, and damages in all other 
regions are less than $1 billion. 

Economic losses from tropical cyclones are by far greatest in the wealthy countries of Northern America 
and Eastern Asia.  However, these storms cause much greater loss of life, injury, and displacement in 
poor countries.  For example, cyclones result in 6,000 deaths per year in both Southern Asia and South-
eastern Asia.  In contrast, annual storm-related mortality is 90 deaths per year in Northern America, and 
421 deaths per year in Eastern Asia. 

Although the figure does not present information about the range of annual losses in each region, there is 
considerable year-to-year variation in losses within particular geographies.  For example, the EM-DAT 
database reports that Northern America damages in 2005 were $190 billion (largely due to Hurricanes 
Katrina, Wilma, and Rita), and damages in 2012 were $54 billion (largely due to Hurricane Sandy).  In 
most other years, however, damages in this region have been substantially below the long-term average of 
$16 billion per year. 
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Table 16: Average Annual Tropical Cyclone Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 

2014$) 
North America 

Northern America 74 438,858 7 11,517 90 $15,668 
Central America 139 427,779 727 20,588 765 $1,609 
Caribbean 204 531,362 136 17,120 168 $1,394 

South America 
South America 9 27,824 40 186 22 $18 

Europe 
Western Europe 2 0 0 0 0 $0 
Northern Europe 4 400 0 0 1 $14 
Southern Europe 1 0 0 0 1 $15 
Eastern Europe 10 735 4 10 2 $6 

Africa 
Northern Africa 1 0 0 0 0 $0 
Western Africa 2 57 0 123 0 $0 
Eastern Africa 79 270,935 271 47,619 86 $61 
Middle Africa 1 0 83 667 1 $0 
Southern Africa 1 45 0 0 0 $0 

Asia 
Russian Fed. 0 0 0 0 0 $0 
Central Asia 1 0 0 50 0 $0 
Western Asia 4 668 8 0 4 $183 
Eastern Asia 298 8,923,088 1,847 79,372 421 $5,999 
Southern Asia 104 3,611,957 8,990 213,191 6,045 $844 
South-Eastern Asia 279 5,305,205 2,981 229,340 5,998 $1,089 

Australia 
Australia and NZ 23 1,069 2 301 2 $261 
Melanesia 49 34,422 6 3,700 18 $32 
Micronesia 16 641 24 776 2 $31 
Polynesia 33 11,015 10 1,189 2 $44 
* This table is based on data for the 30-year period from 1985 to 2014. 
** “People Affected” refers to the number of people requiring immediate assistance (e.g. food, water, shelter, 
medical assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix A.2 Summary of Recent IPCC Findings 

Table 17 summarizes the IPCC’s key conclusions about the potential future impacts of climate change on 
tropical cyclones. The IPCC projects that worldwide, the frequency of tropical cyclones will remain 
constant or decline, but that heavy rainfall and mean maximum wind speed associated with these storms 
will increase. In some basins, it is “more likely than not” that the frequency of the most intense storms 
will increase (IPCC, 2013, p. 1220). 

 

Table 17:  Projected Impacts of Climate Change on Tropical Cyclones, from IPCC 

Characteristic Geography 
Impact of 
Climate 
Change 

Likelihood Quality of 
Evidence Citation  

Frequency of storms World Decrease or 
Constant ≥66% High (IPCC, 2013, 

p. 1220) 

Near-storm precipitation World Increase ≥66% High  (IPCC, 2013, 
p. 1220) 

Frequency of most intense 
storms 

Some ocean 
basins* Increase ≥50% Medium  (IPCC, 2013, 

p. 1220) 
Mean maximum wind 
speed World Increase ≥66% High  (IPCC, 2013, 

p. 1220) 
* The IPCC does not provide information about the specific ocean basins that will be impacted. 

 

Appendix A.3 Studies of Economic Impacts under Climate Change 

Table 18 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future tropical cyclone losses.  
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

ABI (2009) China 2°C global 
temperature rise and 
associated 13% rise in 
mean precipitation 
(4°C/26% and 
6°C/39% sensitivity) 
and 3.7% increase in 
wind intensity (-0.5% 
and 7.9% sensitivity); 
“time independent” 

Held constant No correlation found between climate 
change models and the Royer cyclogenesis 
parameter: use mean and +/- 2 SD 
estimates of possible future tropical 
cyclone intensities using methodology and 
results adapted from Emanuel et al (2008); 
use Clausius-Clapeyron relation to relate 
precipitation increases to global mean 
temperature rise 

Estimate expected annual insured 
loss, 100-year loss, and 200-year loss 
by applying climate scenarios to AIR 
Worldwide catastrophe model for 
China typhoons 

Based on a 3.7% increase 
in intensity and a 2°C 
temperature rise (13% 
increase in mean 
precipitation), expected 
annual loss rises by 
20.4%, 100-year loss rises 
by 6.7%, and 200-year 
loss rises by 13.8% 

Bender et al 
(2010) 

U.S. A1B; 1980-2006 Held constant Downscale GCM to RCM based on mean 
SST and seasonal mean climate to predict 
changes in hurricane frequency by 
intensity 

Combines historical percentage of 
total damages attributable to each 
hurricane category and change in 
frequency of that category of 
hurricanes to estimate damage 
potential 

28% increase in damage 
potential 

Emanuel 
(2011) 

100 Zones 
along the 
U.S. East 
and Gulf 
Coast 

A1B; 2000-2100 Held constant Downscales GCMs, based on using wind 
shear and thermodynamic state, to 
simulate landfalling hurricanes and uses a 
Poisson Distribution to create 100-year 
time series of events 

Estimate total insured losses using a 
damage function, based on the cube 
of wind speed, and the estimated wind 
speed at the population-weighted 
center of the zone 

Shift in the probability 
densities towards higher 
damage amounts for 3 of 
4 GCMs 

Esteban et 
al (2010) 

Japan Linear 1% annual 
CO2 increase (SST 
rise between 0.8°C 
and 2.4°C); 2085 

Topography and 
population distribution 
are held constant but 
GDP annual growth rates 
of 1% and 2% were 
considered 

Monte Carlo simulation with 4,000 runs: 
randomly generate tropical cyclone 
frequency based on a probability 
distribution and randomly selects a 
historical storm for each generated storm; 
then multiplies maximum wind speed 
throughout life of storm based on a 
randomly generated intensity multiplier 
from a probability distribution  (also 
adjust radius of 30- and 50-knot areas 
based on max wind speed given regression 
results) 

Estimate expected time loss for ports, 
assuming downtime for areas 
experiencing winds greater than 30 
knots during a storm; also calculates 
needed increase in real port capital 
stock based on the relationship 
between RPCS and GDP and assumed 
GDP growth 

An average increase of 
18% to 43% in downtime 
for Japanese ports; 30.6 to 
127.9 billion Yen 
potentially needed to 
expand ports to deal with 
increased downtime 

Webersik et 
al (2010) 

Japan Linear 1% annual 
CO2 increase; 2085 

Topography and 
population distribution 
are held constant and 
assume no change in 
GDP growth 

Based on Esteban et al (2010) Estimate expected time loss for 1,472 
grids in Japan (same as Esteban et al 
(2010)) and then uses demographic 
factors and regional income values to 
estimate gross income for 119 grid 
cells to estimate GDP loss; areas with 
sustained wind speeds greater than 30 
knots experience stop in economic 
activities 

Lost man-hours leads to a 
0.15% loss in annual GDP 
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

Esteban and 
Longarte-
Galnares 
(2010) 

Japan Linear 1% annual 
CO2 increase; 2085 

Constant and decreasing 
population (128 million 
in 2009 to 72 million) 
and subsequent working 
population per capita 
with 1% and 2% GDP 
growth rate 

Same as Esteban et al (2010) but uses 
5,000 simulations 

Estimate expected time loss for ports, 
assuming downtime for areas 
experiencing winds greater than 30 
knots during a storm; economic loss is 
measured as regional GDP times the 
additional number of hours lost in a 
year as a percentage of the total 
number of hours in that year 

Decrease in Japanese 
economy of 6% to 13% 

Raible et al 
(2012) 

U.S. A2, 2069-2100 
(ECHAM5); and A1b, 
2080-2099 
(MRI/JMA) 

Appears to be based on 
current conditions 

Combines two AGCMs (ECHAM5 and 
MRI/JMA) with HURDAT best track data 
for cyclone tracking and detection  to 
simulate a control and conditions under a 
changed climate and then scales simulated 
TC based on cumulative density functions 
of central pressures 

Uses scaled simulated tropical 
cyclones, along with probabilistic 
events, and their characteristics(track, 
wind speed, etc.) to drive the hazard 
module of the Swiss Re loss model to 
determine loss frequency curves 

20 year return period in 
control becomes 32 year 
return period in simulation 
and 80-year event 
becomes 110-year 
event(ECHAM5); 5 year 
return period in control 
becomes 3 year return 
period in simulation and 
10-year event becomes 8-
year event (MRI/JMA) 

Hallegate 
(2007) 

U.S. (11 
regions) 

10% increase in 
potential intensity; 
Not specified 

Uses normalized 
damages to remove 
effect of population and 
economic growth 

Develops a set of 3,000 synthetic 
hurricane tracks for current climate using 
a HURDAT and combines probability of a 
hurricane being a certain category (1-5) at 
landfall with probability of occurrence; 
then assumes 10% increase in potential 
intensity to generate tracks under modified 
climate 

Relies on a damage function, based 
on the cube of wind speed, with a 
parameter for  local vulnerability in 
each county 

Rise in average 
normalized direct 
economic losses of 54% 
(rise in mean economic 
losses of $797 million per 
landfall and $534 million 
per track) 

Mendelsoh
n et al 
(2011) 

U.S. A1B; 2100 Accounts for projected 
increase in local income 
and population 

Uses climate models (CNRM,ECHAM, 
GFDL, MIROC) and a hurricane generator 
to create 5,000 storms per model and 
scenario and estimates the change in the 
distribution of hurricanes 

Estimates two damage functions 
based on intensity(modeled on wind 
speed or barometric pressure) and 
income and population of 5 nearby 
coastal counties to evaluate property 
and infrastructure damage 

Income and population 
growth expected to 
increase damages by $9 to 
$27 billion per year and 
climate change expected 
to increase damages by an 
additional $40 billion 

Mendelsoh
n et al 
(2012) 

World (by 
region) 

A1B; 2100 Considers population 
increase and long-term 
growth rates of 2.7% for 
developing countries, 
3.3% for emerging 
countries and 2% for 
developed countries 

Uses climate models (CNRM,ECHAM, 
GFDL, MIROC) with a tropical cyclone 
model to generate 17,000 synthetic storms 
per model and estimate changes in 
frequency, intensity (based on pressure), 
and location 

Estimate damage functions with wind 
speed, minimum pressure, income, 
and population density variables  (for 
U.S. based on county data and for 
other countries based on country-level 
data) and project changes in expected 
damages and the probability 
distribution of damage 

Increase in global cyclone 
damage of $53 billion per 
year due only to climate 
change (greatest damages 
in North America) 
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

ABI (2005) U.S., Japan Assumed wind speed 
values for A1T, 
A1F1, A2, B1, B2, 
550, and IS92a; 2020-
2099 

Socioeconomic variables 
held constant; analyze 
scenarios for reducing 
emissions by 2080 

Use the assumption of 6% rise in wind 
speed associated with a 2.2 times increase 
in CO2 over 80 years (and 4% and 9% 
sensitivities); for IPCC scenarios, assume 
linear relationship between radiative 
forcing and wind speed 

Apply assumed increases in wind 
speed to AIRS Worldwide model; use 
model outputs to estimate a loss curve 
and apply it to projected changes in 
wind speed under IPCC scenarios; 
adjust insured loss to total financial 
loss based on historical relationship 
between values 

Increase in annual average 
financial losses in the U.S 
of $6.8 billion and $2.5 
billion in Japan  

Ackerman 
and Stanton 
(2008) 

U.S. A2; 2025-2100 Account for coastal 
development and higher 
population levels 

Hold number of storms constant but 
assume storm intensity rises with surface 
temperature and sea-level will rise 

Assume a doubling of economic 
damages and deaths for every meter 
of SLR and every doubling of 
atmospheric CO2  

Increase of $422 billion in 
damages and 756 deaths 
for 2100 (including all 
factors) 

Bouwer and 
Botzen 
(2011) 

U.S. 2.5°C rise in SST; Not 
specified 

Uses normalized 
damages 

Assume elasticity of maximum wind 
speed to temperature of .035 

Estimate a damage function based on 
historical data that relates damage 
elasticity to the 8th power of wind 
speed 

96% rise in damages 

Choi and 
Fisher 
(2003)     

U.S. 13.5% and 21.5% rise 
in precipitation (mean 
and SD) based on 
meteorological 
models for a doubling 
of CO2; not specified 

No change Use climate change scenarios that predict 
increases in mean value and standard 
deviation of annual precipitation 

Estimate a damage function for 
hurricanes based on changes in 
hurricane category, precipitation, and 
socioeconomic variables 

13.5% increase in 
precipitation leads to 
greater than 100% rise in 
losses; 21.5% increase 
leads to greater than 200% 
rise in losses 

ECAWG 
(2009) 

South 
Florida (3 
counties) 

Baseline; 3% increase 
in wind speed and 
.08m SLR; and 5% 
increase in wind 
speed and .24m SLR; 
2030 

Estimate GDP in 2030 
for region based on 
based on each counties’ 
historical GDP ($316 
billion) 

Scenarios based on expert input: changes 
in wind speed based on relationship with 
SST and SLR based on projections across 
two ice flow outcomes 

Rely on Swiss Re historical data and 
probabilistic loss models to develop 
baseline and 2030 baseline potential 
damage and then model impact of 
changes in wind speed and storm 
surge on damages 

Rise in damages from 
8.4% of GDP assuming 
no CC to 9.4% to 10.1% 

ECLAC 
(2011) 

Bahamas Hurricane occurrence 
scenario based on 
historical data 
combined with SLR; 
2011-2051 

Do not appear to account 
for different 
socioeconomic scenarios 

Consider the historical pattern in 
hurricanes and create a scenario with 11 
hurricanes (5 major) affecting Nassau and 
surrounding area before 2051 (between 
2011 and 2050 indicate 8 storms occurring 
with alternating between Category 1 and 
Category 4/5 every 5 years) and assume 
increased hurricane intensity and SLR 

Rely on estimates from other papers 
for the percent of damage based on 
hurricane storm surges; determine 
potential damage to hotels, roads, and 
airports and then rely on findings 
from another paper for associated 
damages 

$2.4 billion in damages by 
2050 due to hurricane 
activity and gradual SLR 

Fankhauser 
(1995) 

World Doubling of CO2; Not 
specified 

No change from baseline Assume 40-50% increase in hurricane 
intensity 

Base the number of future deaths and 
damages on historical values 

Additional $3,229 million 
in loss (based on damages 
and value of statistical life 
for deaths) 

Moore et al 
(2010) 

Barbados Five hurricane 
probability scenarios; 
2071-2100 

Appears to not account 
for change 

Create five scenarios with varying 
probabilities for Category 3, 4, and 5 
storms 

Estimate damages per hurricane 
category to determine the number of 
rooms affected and then calculate lost 
tourism revenue and lost value added 

Tourism revenue loss of 
$355.7 to 1,969.3 million, 
depending upon scenario 
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

Nordhaus 
(2010) 

U.S. Equilibrium doubling 
of CO2-equivalent 
levels; Not specified 

Assume storm damage, 
conditional on wind 
speed, is proportional to 
GDP to remove the 
effects of economic 
agrowth 

Assume a semi-elasticity of maximum 
wind speed to SST of .035, based on 
previous studies, and assume that a 
doubling of CO2 will lead to a 2.5°C rise 
in SST and assume no increase in 
frequency, based on GCM modeling 
results (conduct sensitivities with other 
semi-elasticities) 

Estimate a damage model based on 
GDP, hurricane frequency and wind 
speed; assumes damages are linear 
with frequency and related to the 9th 
power of wind speed (conduct 
sensitivities with other powers) 

Increase in mean damages 
of 113%  

Pielke 
(2007) 

U.S. 550ppm in 2050; 
2050 

Two scenarios for 
change in global 
population and wealth in 
areas affected by 
hurricanes between 2006 
and 2050 (2.8 times 
greater and 7 times 
greater) 

Relied on an expert solicitation for 
changes in frequency and intensity; 
assumes no change in frequency based on 
midpoint of range and maximum increase 
in intensity (18% for 2050 and 36% for 
2100) 

Estimate damages assuming that 
damages are proportional to the 3rd, 
6th, and 9th power of wind speed 

480% rise in damages 
(assuming 180% rise in 
population/wealth, 18 rise 
in intensity, and 3rd power 
of wind speed) 

Pielke et al 
(2000) 

World A1, A2, B1, B2; 2050 Estimates the effect of 
population growth and 
GNP growth by finding 
change in each between 
2000 and 2050 and 
multiplying by the 
estimated baseline 
damages (for each SRES 
scenario) 

NA Assumes baseline damages for the 
world are twice U.S. damages and 
multiplies by the percentage increases 
in damage estimated by Cline (1992), 
Fankhauser (1995), and Tol (1995) 

The 2050 annual damages 
from population and GNP 
growth only varies 
between $32 billion and 
$58 billion while the 
climate change only 
annual impacts are $14.2 
billion to $15.3 billion 

Ranger and 
Niehorster 
(2011) 

Florida A1B; 2020 and 2090 Exposure and 
vulnerability yare held 
constant over time 

Rely on others’ dynamically downscaled 
models (Bender et al (2010) and Emanuel 
et al 2008)) with adjustments for 
consistent baseline, emissions scenario, 
etc. (e.g. linear interpolation of reported 
values to determine impacts in desired 
years)and statistically downscaled models 
based on variables for SST and windshear; 
use 5-year averages to remove annual 
natural variability but doesn’t account for 
decadal variability 

Use probability-loss data from Risk 
Management Solutions to estimate 
wind-related residential property 
damage in Florida based on changes 
in frequency of all storms and 
frequency of Category 4 and 5 storms 
(to account for changes in intensity) 

Some models show an 
increase in damages 
relative to the baseline 
while others show a 
decline (with a range 
roughly of -50% to 210% 
for 2020) 

Schmidt et 
al (2009a) 

U.S. A1; 2015, 2050 Account for increases in 
wealth based on changes 
in capital stock (297% 
rise between 2005 and 
2050 in capital stock in 
affected regions), which 
lead to a shift in the 
frequency distribution 

Assume no change in frequency and base 
change in wind speed on a linear 
interpolation of the results of  another 
study, which was based on A1 (3% rise in 
wind speed by 2050); use change in wind 
speed to shift a Poisson distribution 
describing storm frequency  

Assume losses are related to the cube 
of wind speed and use a Monte Carlo 
simulation 

Climate change alone will 
account for a 4% and 11 
% rise in damages in 2015 
and 2050, respectively 
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

Stanton and 
Ackerman 
(2007) 

Florida A2 (Business as 
Usual) and Rapid 
Stabilization; 2025-
2100 

Project future population 
and GSP and assume 
deaths are proportional 
to population while 
damages are proportional 
to GSP 

Assume SLR of 7” and  45” by 2100 for 
Rapid Stabilization and Business as Usual 
cases, respectively 

Assume damages double for every 
meter SLR and that damages double 
from a doubling of CO2 concentration 
(based on change in intensity of 
storms) 

Increase in hurricane 
damages of $6 billion by 
2025 and $104 billion by 
2100 for Business as 
Usual case over the Rapid 
Stabilization case 

Narita et al 
(2009) 

World (16 
regions) 

EMF 14 standardized 
scenario; 2100 

Model includes 
exogenous scenarios of 
population growth and 
economic growth 

Estimates changes in max wind speed 
using a parameter value of .04 for change 
in wind speed relative to a 1 degree 
change in regional SST, where regional 
SST is estimated based on its relationship 
with global avg. SST 

Estimate a damage function based on 
changes in GDP and relative to the 
cube of max wind speed (the 
parameters for each variable are 
varied in sensitivities) – parallel 
analysis done for mortality (use 
version 3.4 of FUND) 

Increase in total economic 
damages (damage and 
value of lost lives) of $25 
billion 

Neumann et 
al (2014) 

U.S. (17 
mulit-
county 
areas) 

3 emissions scenarios 
2100 

Use contour analysis to 
determine if property in 
each grid cell is at risk 
from all storms, or 
storms that overcome 
adaptation measures; 
estimate adaptation 
measures for at-risk cells 
in each time period 
based on the comparison 
of storm surge damage to 
property value and 
adaptation costs 

Make adjustments to U.S. EPA's  National 
Coastal Property Model using a location-
specific cumulative distribution function 
for storm surge estimated using GCM 
outputs for SLR (for each emission 
scenario) and inputting wind field output 
from a tropical cyclone simulation based 
on Emanuel et al (2008) into NOAA's Sea, 
Lake, and Overland Surge from 
Hurricanes model to determine surge 
depths for simulated future storms; for the 
West coast, not affected by tropical 
cyclones, historic extreme events are used 
to estimate future high water events under 
SLR 

Further adjust the NCPM with a 
cumulative distribution function for 
surge damage found by combining 
damage for historical periods with 
estimated future damages, found by 
estimating the annual expected value 
of damages (based on damages for 
eight specified return periods on the 
storm surge exceedance curve); then 
estimate damages for all property 
below the elevation specified for a 
future 500-year storm surge; 
extrapolate damages to unmodeled 
coastal counties by estimating SLR-
only damages and using a multiplier 
from a modeled county (SLR-only 
costs to SLR and storm surge costs) 

Cost of adaptation 
between $470 and $610 
through 2100 for the 
reference emission 
scenario (also estimate 
results for two scenarios 
that lead to stabilized 
radiative forcing levels of 
4.5 W/m2 and 3.7 W/m2, 
respectively) 

Hsiang and 
Jina (2014) 

World (by 
country) 

A1B; 2090 Appear to estimate 
changes to baseline GDP 
(therefore excluding 
effects of socioeconomic 
growth) 

Use results from Emanuel et al (2008) 
describing changes in cyclone power 
dissipation by basin 

Estimate the present discounted value 
of tropical cyclone climate by 
estimating the impact of a tropical 
cyclone on income in the 20 years 
following a tropical cyclone and 
assuming  in years 21+ a permanent, 
steady state loss equal to the loss in 
year 20 

Loss of 5.9% of GDP for 
the United states (present 
discounted value with 5% 
discount rate)  
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Table 18: Projected Impacts of Climate Change on Tropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

Peduzzi et 
al (2012) 

World Based on Knutson et 
al (2010); 2030 

Project changes in 
exposed population and 
GDP for the year 2030 

Interpolated estimated changes for 2030, 
using results of Knutson et al (2010), in 
frequency and max wind speed 
(percentage changes) and assumed that 
change in exposure relative to frequency 
was linear and that the distribution of 
storms by category shifted based on the 
percentage change in max wind speed; 
then found the average impact of intensity 
on land to create a ratio to determine 
change in exposure 

Used a population model from 
Landscan 2008 and a GDP model 
from the World Bank to estimate 
exposure to storm events 

Decreased storm 
frequency reduces 
exposed population in 
2030 from 149.3 million 
to between 135.5 and 
144.6 million 

Toba 
(2009) 

CARICOM A1B; 2080 Based on 2007 economy Rely on an estimate from Suzuki et al 
(2007) that hurricane landfalls per year 
will rise by 27% 

Estimate direct damages and value 
lives lost as lost workforce labor 
effect on GDP; assume tourism 
expenditure decreases by an 
additional 4.6% (plus 17% baseline) 
due to hurricanes 

Flood damage will rise by 
$363.1 million and 
windstorm damage will 
rise by $2,612 million; 
$446.9 decrease in 
tourism 

Roson et al 
(2006) 

World, by 
region 

1 to 1.75 deg C 
warming by 2050; 
2050 

 Estimate change in frequency of storms by 
estimating the relationship between 
frequency and 3 ENSO states and 2 NAO 
states; then estimate the probability of 
occurrence for each state based on 
changes in global temperature 

Use a general equilibrium model for 
global economy and a regional 
growth model; run the models by 
translating changes in tropical cyclone 
damage to changes in saving 

  
  

Notes:  In addition to the studies described in this table, several other research efforts have investigated the effects of climate change on tropical cyclone damages, including Seo (2014), Bjarnadottir 
et al (2014),  Bjarnadottir et al (2011), Chavas et al (2013), Irish et al (2010), Esteban et al (2009), Emanuel et al (2012), and Esteban et al (2014). 
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Appendix B    Extratropical Cyclones 

The following subsections present data on historical losses from extratropical cyclones, discuss scientific 
evidence on how climate change could influence future extratropical cyclone patterns, and then 
summarize existing projections of the potential impact of climate change on economic damages from 
these storms. 

Appendix B.1 Historical Damages from EM-DAT 

Extratropical cyclones can cause damages through several different mechanisms, including strong winds 
and storm surges.  In some cases, extratropical cyclones may also be associated with heavy rain or snow, 
which in turn may lead to further economic impacts (Donat et al, 2011; ECAWG, 2009; Mass & Dotson, 
2010).  

To characterize the magnitude and geographic distribution of losses from these storms, Table 19 displays 
average baseline damages from extratropical cyclones for the world regions contained in the EM-DAT 
database.  The figure shows that extratropical cyclones have the greatest economic impact in Western 
Europe, where average losses are approximately $1.5 billion per year.  Damages are about $0.4 billion per 
year in Northern Europe, $0.1 billion per year in Southern Europe, and less than $0.1 billion per year in 
Northern America and Eastern Europe.  Substantial damages are not reported in other regions. 

As with tropical cyclones, there is considerable variation in losses across years.  For example, in Western 
Europe, the 20-year average losses are substantially higher than the 30-year year average losses, due 
damages in 1999 being more than twice as great as damages in any other year. 

Note that this figure includes only damages from storms designated as “extratropical cyclones” in EM-
DAT.  To the extent that some storms classified in EM-DAT as “winter storms” may in fact be 
extratropical cyclones, the historical damages here may be understated. 
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Table 19: Average Annual Extratropical Cyclone Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 

2014$) 
North America 

Northern America 1 0 0 0 0 $37 
Central America 0 0 0 0 0 $0 
Caribbean 0 0 0 0 0 $0 

South America 
South America 62 40,703 103 2,873 36 $0 

Europe 
Western Europe 50 130,023 8 0 9 $1,456 
Northern Europe 28 950 0 0 4 $437 
Southern Europe 10 0 0 0 1 $99 
Eastern Europe 13 38 2 0 1 $18 

Africa 
Northern Africa 0 0 0 0 0 $0 
Western Africa 0 0 0 0 0 $0 
Eastern Africa 0 0 0 0 0 $0 
Middle Africa 0 0 0 0 0 $0 
Southern Africa 0 0 0 0 0 $0 

Asia 
Russian Federation 0 0 0 0 0 $0 
Central Asia 0 0 0 0 0 $0 
Western Asia 0 0 0 0 0 $0 
Eastern Asia 0 0 0 0 0 $0 
Southern Asia 0 0 0 0 0 $0 
South-Eastern Asia 0 0 0 0 0 $0 

Australia 
Australia and NZ 0 0 0 0 0 $0 
Melanesia 0 0 0 0 0 $0 
Micronesia 0 0 0 0 0 $0 
Polynesia 0 0 0 0 0 $0 
*This table is based on data for the 30-year period from 1985 to 2014. 
**People Affected refers to the number of people requiring immediate assistance (e.g. food, water, shelter, medical 
assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix B.2 Summary of Recent IPCC Findings 

Table 20 summarizes the IPCC’s projections about the impact of climate change on extratropical 
cyclones.  As the table indicates, the IPCC projects that anthropogenic influences will result in a poleward 
shift in tracks from these storms, although the magnitude will vary by hemisphere (IPCC, 2013, p.1220).  
This conclusion is based on indirect evidence, as well as on recent empirical observations of an ongoing 
poleward shift in extratropical storm tracks (IPCC, 2012, p. 119).  Although regional storm activity will 
likely be affected by climate change, the specific details of regional predictions should be interpreted with 
caution, due current models’ inability to capture all aspects of the way that extratropical cyclones form 
and change (IPCC, 2012, p. 119, 164-165; IPCC, 2013, p.1220).  Overall, based on the IPCC’s review, it 
is not clear whether climate change will actually affect the global intensity of extratropical cyclones, or is 
likely only to shift storm activity poleward. 

 

Table 20: Projected Impacts of Climate Change on Extratropical Cyclones, from IPCC 

Characteristic Geography 
Impact of 
Climate 
Change 

Likelihood Quality of 
Evidence Citation  

Global number of 
extratropical cyclones World 

Decrease by 
only a few 
percentage 
points 

≥66% High  (IPCC, 2013, 
p.1220)  

Storm track latitude Northern 
Hemisphere 

Poleward shift, 
but with 
complicated 
dynamics 

≥50% Medium (IPCC, 2013, 
p.1220) 

Storm track latitude Southern 
Hemisphere 

Small poleward 
shift ≥66% Medium (IPCC, 2013, 

p.1220) 

Winter precipitation 
associated with 
extratropical cyclones 

Arctic, Northern 
Europe, North 
America, and 
Southern 
Hemisphere 

Increase ≥90% High (IPCC, 2013, 
p.1220) 

 

Appendix B.3 Studies of Economic Impacts under Climate Change 

Table 21 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future extratropical cyclone losses.
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Table 21: Projected Impacts of Climate Change on Extratropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

ABI (2009) UK -1.45° storm track 
shift (4.40°C and --
7.28°C sensitivity);  
changes reported 
are meant to be 
time independent  

Held constant No correlation found between global 
temperature/climate sensitivities and 
storm track: Scenarios based on 
estimated changes in storm track  

Estimate expected annual insured loss, 100-
year loss, and 200-year loss by applying 
climate scenarios to AIR Worldwide 
catastrophe model for United Kingdom wind 
storms 

Based on a -1.45° shift in 
storm track, expected 
annual loss rises by 25.3%, 
100-year loss rises by 
13.9%, and 200-year loss 
rises by 11.9% 

Narita et al 
(2010) 

World (16 
regions) 

EMF 14 
standardized 
scenario; 2100 

Estimates of 
damage are based 
on GDP in a given 
future year 

Set the damage parameter for each 
hemisphere based on the results from 15 
GCM runs which showed an 8% and 
42% rise in intense storms in the 
Northern and Southern Hemispheres, 
respectively, from a doubling of CO2 

Estimate increase in damage based on the 
estimated level of damage in a given region 
and the current GDP and assume linear 
increase in damage relative to CO2 
concentrations (sensitivity analyses of this 
assumption); similar methodology for 
mortality estimates 

Increase in damages of $3.3 
billion (includes value of 
lost life) due to climate 
change and economic 
growth 

Leckebusch 
et al (2007) 

United 
Kingdom 
and 
Germany 

A2 and IS92a; 
2070-2099 or 
2060-2100 
(dependent on 
GCM) 

98th percentile 
wind speed is 
based on baseline 
(no adaptation) 
and scenarios 
(adaptation)  

Rely on outputs from an ensemble of 4 
GCMs 

Rely on a regression analysis and damage 
model that is based on the cube of 
normalized wind speed above the local 98th 
percentile threshold times population density 

Increase in loss potentials of 
37% and 21% for the UK 
and Germany, respectively, 
without adaptation 

Pinto et al 
(2007) 

Europe (by 
country(ies)) 

A1b and A2; 2060-
2100 

98th percentile 
wind speed is 
based on baseline 
(no adaptation) 
and scenarios 
(adaptation) 

Use an ensemble of simulations of a 
coupled atmosphere-ocean GCM to 
estimate the daily maximum wind speed 
for each grid point 

Calibrate a storm loss model, using data for 
Germany, based on the cube of normalized 
wind speed above the local 98th percentile 
threshold times population density 

Average increase in insured 
loss potential of 6.3% for 
A1B and 13.3% for A2, 
with adaptation 

Pinto et al 
(2010) 

North 
Rhine-
Westphalia, 
Western 
Germany 

A1B and A2; 
2060-2100 

Consider scenarios 
both with and 
without adaptation 

Dynamically/Statistically downscales 
GCM data with a mesoscale model to 
estimate occurrence of storms and 
develop parameters to model wind gusts  

Estimate an exponential loss function based 
on normalized wind gust values above a 98th 
percentile threshold and a power slightly 
lower than 5 

Rise in average annual loss 
of 8% and 19% for A1B and 
A2, respectively 

Pinto et al 
(2012) 

Core Europe B1,A1B, and A2; 
2060 to 2100 

98th percentile 
wind speed is 
based on baseline 
(no adaptation) 

Rely on multi-scenario ensemble 
experiments using an atmosphere-ocean 
coupled GCM to estimate wind maxima  

Calibrate a storm loss model, using data for 
Germany, based on the cube of normalized 
wind speed above the local 98th percentile 
threshold times population density, with 
wind maxima estimated for a 24 hour period 
to calculate a moving loss index; also 
calculate a meteorological index that is not 
weighted by population density; estimate 
return periods using a generalized Pareto 
distribution based on identified event values 
over a specified threshold 

For long return periods, loss 
frequency estimated to 
increase by a factor of 1.8 to 
3.9 (depending on scenario) 
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Table 21: Projected Impacts of Climate Change on Extratropical Cyclone Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario Climate Methodology Economic Methodology 

Predicted Change in 
Losses 

Held et al 
(2013) 

Germany A1B; 2070 and 
2100 

Assume constant 
relationship 
between storms 
and losses (no 
adaptation) 

Use an atmospheric-ocean coupled GCM 
and (1) dynamically downscales 
synthetic storms using temperature 
estimates and an RCM and implements a 
model with a wind gust parameterization 
(varying storm nesting region); (2) 
statistically downscale using RCM and 
matching observed days with days in 
simulation (analogy method); and (3) 
group large-scale atmospheric patters 
into weather classes (WC), simulate WC 
with an RCM to estimate wind speed and 
maximum gust by grids, and then 
downscale combined WC to small-scale 
wind speed/gust climatologies, weighting 
by WC frequency (statistical-dynamical 
downscales) 

(1) use a storm damage model based on the 
third power of normalized wind speed above 
the 98th percentile threshold; (2) use RCM 
output and regression analysis to develop 
future loss ratio (also third power of wind 
speed); and (3) develop, through regression 
analysis and Weibull distribution, 
probabilistic loss-transfer-function based on 
modelled wind speed 

Increase in loss ratios for a 
10-year return period of 6-
35% for 2011-2040, 20-
30% for 2041-2070, and 40-
55% for 2071-2100 

Donat et al 
(2011) 

Europe A1B; 2021-2050 
and 2071-2100 

98th percentile 
wind speed is 
based on baseline 
(no adaptation) 
and scenarios 
(adaptation) 

Undertake 9 GCM runs  and also 
downscale using 14 RCM simulations to 
create an ensemble; then, depending 
upon the RCM, use a gust 
parameterization or other method to 
estimate wind speeds 

Use a storm damage model based on the 
third power of normalized wind speed above 
the 98th percentile threshold and population 
density, as a proxy for insured values; 
calibrate the model using historical data for 
Germany 

With no adaptation, loss 
potentials in Germany 
estimated to rise by 37.7% 
(GCMs) or 15.1% (RCMs) 
by the end of the 21st 
century 

Schwierz et 
al (2010) 

Europe A2; 2071-2100  Use output from a coupled atmosphere-
ocean GCM to run two atmospheric 
GCMs, whose outputs are dynamically 
downscaled to two high resolution 
RCMs; use RCM output to determine 
changes in surface wind speed and 
frequency of heavy windstorm events 

Use Swiss Re insurance model by selecting 
criteria for identifying significant storms, 
generating an event set using a Monte-Carlo 
approach, and calibrating losses based on 
historical data (based on selection of days 
with wind speeds 30% higher than 98th 
percentile threshold) 

44% increase in annual 
expected loss 

ABI (2005) Europe A2; time period 
not provided 

Socioeconomic 
change was 
excluded 

Increase of 20% in 20-year storm based 
on Leckebusch and Ulbrich (2004) 

Apply assumed changes in storms to AIRS 
Worldwide model; adjust insured loss to 
total financial loss based on historical 
relationship between values 

Increase in average annual 
average financial losses of 
$800 million 

Notes:  In addition to the studies described in this table, several other research efforts have investigated the effects of climate change on extratropical cyclone damages, including Hanson et al (2004), 
Dorland et al (1999), Roson et al (2006), Della-Marta et al (2010), Donat (2010), Heck et al (2006), Donat et al  (2011b), Karremann et al (2014), Karremann (2015), and Held et al (2013). 
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Appendix C    Inland Flooding 

The following subsections present data on historical losses from inland floods, discuss scientific evidence 
on how climate change could influence future flood events, and then summarize existing projections of 
the potential impact of climate change on economic damages from inland floods. 

Appendix C.1 Historical Damages from EM-DAT 

Flooding can cause major damage to buildings and infrastructure, as well as agricultural damages (IPCC, 
2012, pg. 259).  To show how inland floods vary across regions, Table 22 shows number events and 
average annual impacts for all non-coastal flood events included in EM-DAT from 1985-20143.  Southern 
Asia has experienced the most inland flooding events, 441.  In addition, there were 383 in South-Eastern 
Asia, 249 in Eastern Africa, and 246 in Eastern Asia, and many other regions also have substantial 
flooding events and associated losses.  

As seen in the table, regions with greater average annual impacts are regions that experience frequent 
inland flooding events.  However, regions that are more densely populated with more built-up 
infrastructure experience greater damages and number of people affected on average.  Eastern Asia, 
which has the third highest number of flood events, has the highest damages, $9 billion, compared to $3 
billion average damages in Southern Asia.  Eastern Asia also has the highest number of people affected 
by a large margin, although Southern Asia experiences a higher average mortality rate of 1,969 compared 
to Eastern Asia’s 971.  In addition, Eastern Africa, whose total number of flooding events exceeds 
Eastern Asia by 4, only reports $49 million in damages and 292 mortalities, while North America, who 
has had 164 flooding events, faces $2 billion average annual damages and 24 mortalities. 

                                                      
3 Coastal floods, as defined in the EM-DAT, are caused by changes in water level along the coast (Guha-Sapir et al, 
2015) and therefore are quite different than the floods considered in this section of the report. 
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Table 22: Average Annual Inland Flood Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 

2014$) 
North America 

Northern America 141 404,491 12 1,360 24 $2,325 
Central America 133 214,546 29 4,468 62 $188 
Caribbean 73 68,328 13 4,170 135 $35 

South America 
South America 271 1,223,236 317 44,736 1,270 $919 

Europe 
Western Europe 66 12,122 0 0 8 $1,157 
Northern Europe 34 12,178 0 1,000 2 $847 
Southern Europe 123 114,856 11 1,188 27 $1,372 
Eastern Europe 170 235,556 346 9,887 56 $1,012 

Africa 
Northern Africa 90 224,866 677 49,298 143 $109 
Western Africa 170 605,682 149 54,749 95 $35 
Eastern Africa 249 628,919 50 38,507 292 $49 
Middle Africa 89 98,821 65 11,825 42 $1 
Southern Africa 51 69,240 12 2,157 47 $81 

Asia 
Russian Federation 5 833 0 0 1 $47 
Central Asia 34 27,653 37 908 10 $30 
Western Asia 98 122,443 12 21,525 60 $213 
Eastern Asia 246 59,844,154 25,095 1,228,497 971 $9,052 
Southern Asia 441 18,383,605 729 434,789 1,969 $3,092 
South-Eastern Asia 383 3,667,578 335 25,421 503 $2,139 

Australia 
Australia and NZ 47 9,748 2 213 4 $496 
Melanesia 23 13,358 0 1,667 4 $10 
Micronesia 0 0 0 0 0 $0 
Polynesia 2 0 0 0 0 $2 

*This table is based on data for the 30-year period from 1985 to 2014. 
**People Affected refers to the number of people requiring immediate assistance (e.g. food, water, shelter, medical 
assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix C.2 Summary of Recent IPCC Findings 

Table 23 summarizes the IPCC’s main conclusions about climate change and inland flooding.  In selected 
regions where climate change is expected to cause increases in heavy precipitation, it is logical to expect 
that flooding may also increase.  The IPCC’s Fifth Assessment report notes that a number of case studies 
predict increased flooding in particular urban areas under climate change (IPCC, 2014, p.555).  However, 
although there is good evidence that climate change will affect precipitation and snowmelt worldwide, the 
large number of factors that affect flooding makes it difficult to make global projections about future 
impacts of climate change on flooding (IPCC, 2012, p. 119).  Overall, the literature on this topic is scarce, 
and so IPCC is unable to draw strong conclusions about whether anthropogenic influences will affect 
inland flooding via changes in heavy precipitation.  Similarly, although the IPCC indicates that snowmelt-
fed and glacier-fed rivers will probably experience earlier spring peak flows, there is little evidence that 
this will impact the frequency or intensity of flooding (IPCC, 2012, p. 175-178).  Finally, due to a lack of 
existing literature, the IPCC draws no conclusions about pluvial floods. 

 

Table 23: Projected Impacts of Climate Change on Inland Floods, from IPCC 

Characteristic Geography 
Impact of 
Climate 
Change 

Likelihood 
Quality 

of 
Evidence 

Citation  

Frequency World Unspecified Not quantified Low (IPCC, 2012, 
p. 119) 

Flooding due to heavy rain Some regions Increase Not quantified Medium (IPCC, 2012, 
p. 119) 

Peak spring flows in 
snowmelt- and glacier-fed 
rivers 

World Occur earlier ≥90% High (IPCC, 2012, 
p. 119) 

Floods from glacial lakes High mountain 
areas Not specified Not quantified High (IPCC, 2012, 

p. 189). 

 

Appendix C.3 Studies of Economic Impacts under Climate Change 

Table 24 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future inland flooding losses.
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Table 24: Projected Impacts of Climate Change on Inland Flooding Losses 
Study Geography Climate Scenarios and 

Time Periods 
Socioeconomic 
Scenario 

Climate Methodology Economic Methodology Predicted Change in 
Losses 

ABI (2009) UK 2°C global temperature 
rise (4°C and 6°C 
sensitivity); changes 
reported are meant to 
be time independent  

Held Constant Met Office climate scenarios 
estimating correlation between global 
surface temperature change and 
precipitation: statistical downscaling 
of Hadley Centre GCM ensemble to 
RCM  

Estimate expected annual insured loss, 
100-year loss, and 200-year loss by 
applying climate scenarios to AIR 
Worldwide catastrophe model for Great 
Britain inland floods 

Based on a 2°C rise in 
temperature, expected 
annual loss rises by 8%, 
100-year loss rises by 18%, 
and 200-year loss rises by 
14% 

Aerts et al 
(2011) 

Netherlands 0-150cm SLR (KMNI); 
2015-2100 

GE and RC Model future maximum river water 
levels across dike-rings in 
Netherlands.  Then adjust current 
flood probabilities by “Decimal 
Height”, a water level increase factor. 

“Damage scanner” incorporates 
maximum flood depth across flood 
scenarios, projected land use, and stage 
damage functions.  Simulates direct and 
indirect damages. 

Varies widely across 
individual dike-rings in the 
Netherlands; overall 
increase in flood 
probability. 

Bouwer et al 
(2010) 

Netherlands G, W+ (Kors et al); 
2050 

GE and RC Increase 10-day precipitation sums 
result in increased discharge and 
higher flood probability.  Assumes 
adaptations. 

“Damage scanner” applies losses by 
land-use type and inundation depth; 5% 
accounts for indirect damages 

Flood losses increase by 
170% 

Cheng et al 
(2012) 

Canada IPCC IS92a, SRES A2 
and B2; 2046-2065 and 
2081-2100 

Held constant Historical weather data downscaled to 
daily/hourly scale, which is input into 
simulation model based on weather-
type and climate change to project 
frequency and intensity of flooding 

Estimates losses using historical 
insurance data for rainfall-related water 
damage claims 

Losses increase by 20-30% 

Choi et al 
(2003) 

US Multiple changes in 
mean and standard 
deviation annual 
precipitation; no 
specified time 

Held constant Uses historical relationship between 
precipitation and flooding events 

Regression analysis with OLS 
estimating method examines weather 
variability factors that affect flood 
losses by simulating mean and standard 
deviations of annual precipitation 
changes to model losses.  Effects of 
inflation, population growth and growth 
per capita are eliminated. 

1% increase in annual 
precipitation would lead to 
a 6.5% increase in flood 
losses 

CLIMB 
(2004) 

Boston 1% annual CO2 
increase and 2 GCM 
scenarios (CGCM1 and 
Hadley HadCM2); 
2001-2100 

Population and 
economic forecasts; 
3 scenarios that 
account for society 
response to climate 
change 

24-hour precipitation event likelihood 
(derived from climate scenarios) and 
imperviousness of basin (land use 
data) used to calculate projected 
probability of runoff-related river 
flooding 

Direct damages – GIS land use data 
determines flood areas.  Total damages 
determined by number of properties 
affected and costs based on historical 
values.  Society response scenarios 
determine how many properties have 
been flood-proofed. 

9118-3173 million USD 
increase over 100 year 
timeframe 

Feyen et al 
(2009) 

Europe, 
Madrid 

SRES A2; 2071-2100 For Madrid only – 
A2 related 
socioeconomic 
changes – urban 
growth, population 
increase, etc 

Modeled flooding probability with 
LISFLOOD model, climate change 
driven by HIRHAM RCM 

Direct damages estimated by water 
depths projected on different land uses.  
Adaptations accounted for based on 
country GDP. 

Most countries see increase 
in damages from 40-800% 
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Table 24: Projected Impacts of Climate Change on Inland Flooding Losses 
Study Geography Climate Scenarios and 

Time Periods 
Socioeconomic 
Scenario 

Climate Methodology Economic Methodology Predicted Change in 
Losses 

Hall et al 
(2005) 

England, 
Wales 

UK scenarios based on 
SRES B1, B2, A2, 
A1F1 – precipitation 
decrease by 0-15% with 
higher intensity of 
winter precipitation 

Foresight Futures 
scenarios – 
government 
autonomy vs. social 
value scale accounts 
for GDP, population, 
etc 

Climate change scenarios increase 
water levels and lower “Standard of 
Protection” value for flood defenses 

Risk model for each socioeconomic and 
climate scenario combination – 
incorporates land use, urbanization, 
flood-depth damage relationship.  
Damages are direct and include 
property and agricultural. 

For high economic growth 
scenario, 20% increase in 
flood damages 

Hallegatte et 
al (2010) 

Mumbai SRES A2 – 3.6 deg C 
increase, 6.5% increase 
in seasonal mean 
rainfall; 2080s 

Held constant Pluvial flooding model.  Downscaled 
RCM used to create 200-year rain 
series.  Use Storm Water Management 
Model to generate flood projections 
from simulated rain events for 50, 100, 
200 year returns. 

Historical insurance losses (direct), use 
Adaptive Regional Input-Output model 
to account for production losses and 
adaptations (indirect). 

Total losses triple 

Mokrech et 
al (2008) 

East Anglia 
and NW 
England 

UKCIP02, SLR 6-18cm 
default values; 2020s 
and 2050s 

RS, GM, RE, GS 
based on A1, A2, 
B1, B2 for UKCIP02 

Use a catchment descriptors method – 
increase in peak flow due to standard 
average annual rainfall (based on 
climate scenarios) and seasonal 
precipitation changes increases flood 
probability.  Regional validation at 
baseline. 

Uses RegIS with parameters for 
topography (flood duration), number of 
residential properties in flooding zone, 
number of people impacted based on 
socio-economic scenario, impact on 
agriculture (dependent on flood 
severity).  Accounts for adaptations. 

Increased flood risk, varies 
by region 

Perrels et al 
(2010) 

Finland 1-3 dec C increase, 2-
12% precipitation 
increase, A1FI, A1T, 
A1B, A2, B1, B2; 
2005-2050 

Economic growth, 
building stock 

Watershed model simulates daily 
discharge using Gumbel distribution 
based on flood magnitudes for return 
period of 100 and 250 years with 
inputs from climate change.  Hydraulic 
modeling using HEC-RAS 4.0b. 

GIS mapping of flood area to measure 
direct damages from repair/replacement 
costs based on water depth.  Indirect 
tangible damages also considered – lost 
production days, lost revenue, cost of 
needed temporary housing. 

Before adaptations: direct 
costs increase by 15%, 
impact on economic growth 
by 50% 

Preston 
(2013) 

US n/a; 2025 and 2050   Project increase in per capita 
income/earnings and population growth 
to determine future exposure to extreme 
weather.  Calculates losses due to 
changes in exposure 

2025 – 1-1.4 billion USD 
increase; 2050 – 1.9-2.3 
billion USD increase 

Schreider et 
al (2000) 

Australia Doubled CO2 and 
stochastic weather 
generator; 2030 and 
2070 

 IHACRES model based on IUH 
technique predicts rainfall-runoff with 
climate scenario inputs; calibrated 
with historical data 

SWG technique uses number of 
buildings affected and urban damage.  
Change in AGI estimated for probable 
maximum flood for 10-1000 year floods 

Increase by factor of 2.5-
9.8, varying by region 

Te Linde et 
al (2011) 

Europe, 
Rhine Basin 

2 deg C increase with 
wetter winter/drier 
summer, SRES A1B 
(RCM is RACMO2.1); 
2030 

GE, RC Land-Use Scanner downscales land-
use projections from Eururalis model, 
with inundation map showing flood 
probabilities.  Hydrological HBV 
model projects flood peak probabilities 
and discharge and used to adjust 
inundation map. 

Damage Scanner assesses losses based 
on flooding area, water depth and land 
use.  5% is indirect damages 

7.5-21% increase across 
region 
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Table 24: Projected Impacts of Climate Change on Inland Flooding Losses 
Study Geography Climate Scenarios and 

Time Periods 
Socioeconomic 
Scenario 

Climate Methodology Economic Methodology Predicted Change in 
Losses 

You et al 
(2001) 

China 2.5 deg C increase from 
1995-2100 

Low, medium, high 
population growth 
scenarios; also 
account for 
government 
adaptation 

Climate change will double flood 
damages 

Dynamic programming model of flood 
control, parameterizes empirical 
damage functions with parameters from 
literature. 

 

Notes:  In addition to the studies described in this table, several other research efforts have investigated the effects of climate change on inland flooding damages, including Nicholls et al (2005) and 
ABI (2005). 
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Appendix D    Wildfires 

The following subsections present data on historical losses from wildfires, discuss scientific evidence on 
how climate change could influence wildfires, and then summarize existing projections of the potential 
impact of climate change on economic damages from wildfires. 

Appendix D.1 Historical Damages from EM-DAT 

To illustrate the magnitude and regional distribution of economic losses from wildfires, Table 25 displays 
the average annual damages from wildfires, based on EM-DAT data.  The table shows that wildfires 
cause the greatest average damage in Northern America, Southern Europe, and South-Eastern Asia.  
Large numbers of people also affected in Southern America, although damages there are lower. 
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Table 25: Average Annual Wildfire Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 

2014$) 
North America 

Northern America 82 29,422 21 852 5 $1,088 
Central America 12 621 0 0 2 $9 
Caribbean 3 0 0 0 0 $0 

South America 
South America 30 10,353 19 207 4 $46 

Europe 
Western Europe 7 208 5 0 1 $0 
Northern Europe 1 0 0 0 0 $5 
Southern Europe 49 39,117 15 155 8 $440 
Eastern Europe 28 3,500 46 134 6 $83 

Africa 
Northern Africa 3 0 0 0 3 $0 
Western Africa 5 90 0 203 0 $0 
Eastern Africa 3 0 1 100 2 $0 
Middle Africa 4 3 0 122 0 $0 
Southern Africa 10 83 18 195 4 $16 

Asia 
Russian Federation 1 0 0 0 0 $0 
Central Asia 1 267 0 0 0 $0 
Western Asia 9 690 3 22 2 $12 
Eastern Asia 16 2,170 10 55 10 $94 
Southern Asia 6 0 0 1,800 3 $0 
South-Eastern Asia 17 101,143 16 100 10 $447 

Australia 
Australia and NZ 23 2,181 31 52 8 $96 
Melanesia 1 267 0 0 0 $0 
Micronesia 0 0 0 0 0 $0 
Polynesia 0 0 0 0 0 $0 

*This table is based on data for the 30-year period from 1985 to 2014. 
**People Affected refers to the number of people requiring immediate assistance (e.g. food, water, shelter, 
medical assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix D.2 Summary of Recent IPCC Findings 

The IPCC states that there is some evidence to support predictions of an increase in wildfire risk in 
Southern Europe and parts of Australia and New Zealand (IPCC, 2014).  Other studies have also 
projected increases in wildfire risk in areas of Australia, South America, the western United States, and 
Canada (IPCC, 2012, p. 252-261).   

These predictions are supported by more general evidence that droughts will rise in duration and 
frequency in certain regions of the world (southern Europe, central North America, Central America, 
Mexico, northeast Brazil, and southern Africa) under climate change (IPCC, 2012, p. 119).  Furthermore, 
some studies have found evidence that climate change may already be affecting wildfire patterns in the 
Western United States and Canada (Gillett et al, 2004; IPCC, 2012; Westerling et al, 2006; Westerling 
and Bryant, 2008).  These studies argue that observed increases in wildfires over the last several decades 
are related to rises in temperature and earlier snowmelt, each of which has been identified as a potential 
result of anthropogenic climate change. 

Appendix D.3 Studies of Economic Impacts under Climate Change 

Table 26 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future wildfire losses.  
 
 

Table 26: Projected Impacts of Climate Change on Wildfire Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario 

Climate       
Methodology 

Economic      
Methodology 

Predicted Change in 
Losses 

Howard, 
2014 

U.S., world A2, 2050 None Assumes U.S. 
wildfire incidence 
increases 50% by 
2050 

Assumes damages 
increase 
proportionally with 
incidence 

By the year 2050, 
climate change will 
cause additional 
wildfire damages of 
$10 to $62.5 billion in 
the United States, and 
$50 to $300 billion 
worldwide. 
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Appendix E    Small-Scale Storm-Related Phenomena (Hail, Tornadoes, Thunderstorms) 

Small-scale storm-related phenomena—such as hail, tornadoes, and thunderstorms—are capable of 
causing substantial amounts of damage in localized areas.  However, predicting how climate change could 
influence these categories of extreme weather is difficult.  Climate change will have both positive and 
negative effects on the physical processes that produce these events, and current climate models do not 
simulate these phenomena (IPCC, 2012, p.13).  Furthermore, due to improvements in reporting practices 
and monitoring technology, the historical record for these events is relatively poor (IPCC, 2012, p.141).  
As a result, the IPCC does not consider there to be enough evidence to make any consensus projections 
about the impact of climate change on these events. 

In regions that become more dry and arid due to climate change, it is possible that the number of sand and 
dust storms will rise.  There are a number of potential mechanisms through which this could occur, 
including changes in wind, precipitation, vegetation cover, and soil moisture.  However, due to the 
uncertainty in projections about these mediating factors, the IPCC is unable to evaluate whether climate 
change will affect sand and dust storms (IPCC, 2012, p.190). 

Although strong winds often occur as part of larger storm systems, they can also occur in other weather 
conditions.  In general, there are few studies of how climate change could influence extreme winds.  
These studies focus on different geographies, and use different models—some of which have known 
limitations with respect to simulating extreme winds.  Furthermore, the effect of changes in mean wind 
speeds on extreme wind speed is not well understood (IPCC, 2012, p.152).  The only exception to this 
lack of understanding is for extreme winds occurring in tropical cyclones, which are discussed above in 
Section 3.2. 

Extreme precipitation is typically defined in one of two ways.  The first is set a threshold value in terms 
of percentiles and return values—for example, whether an event exceeds the average annual 95th 
percentile daily rainfall total recorded over a 20-year period.  The second approach is to set an absolute 
threshold—for example, whether an event exceeds three inches of rainfall in a single day (IPCC, 2012, p. 
141). 

The following subsections present data on historical losses from extreme precipitation, discuss scientific 
evidence on how climate change could influence future extreme precipitation, and then summarize 
existing projections of the potential impact of climate change on economic damages from extreme 
precipitation. 

Appendix E.1 Historical Damages from EM-DAT 

Extreme precipitation can cause direct damages to buildings and stormwater/sewage infrastructure.  It can 
also cause damages indirectly, though landslides, debris flows, flooding, and pollution (e.g., tailings dam 
failure) (IPCC, 2012, p. 249, 253).  

To illustrate the magnitude and geographic distribution of damages from extreme precipitation, Table 27 
shows average annual impacts from EM-DAT, by region, for convective storm events (excluding 
sand/dust storms) and snow/ice events over the past 30 years. Northern America experiences the highest 
number of damaging small scale storms, 283 between 1985 and 2014, and also exhibits the highest level 
of average annual damages at nearly $6 billion. As is the case with other events, the reporting of small 
scale storm-related phenomena occurrence may be understated due to the impact thresholds for reporting 
in EM-DAT. 
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Table 27: Average Annual Small Scale Storm-Related Phenomena Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 

2014$) 
North America 

Northern America 283 9,236 373 1,514 114 $5,699 
Central America 4 17 2 0 1 $1 
Caribbean 3 7,435 6 0 0 $50 

South America 
South America 32 9,566 51 1,154 9 $9 

Europe 
Western Europe 50 247 20 27 5 $396 
Northern Europe 10 673 3 0 1 $98 
Southern Europe 17 18,257 21 2 1 $48 
Eastern Europe 27 1,300 10 1,082 7 $22 

Africa 
Northern Africa 6 3,900 4 0 5 $10 
Western Africa 10 2,810 1 1,122 7 $0 
Eastern Africa 10 1,070 4 572 4 $0 
Middle Africa 13 3,314 7 284 1 $0 
Southern Africa 19 4,346 28 580 4 $32 

Asia 
Russian Federation 1 0 0 0 1 $1 
Central Asia 1 0 0 0 0 $0 
Western Asia 13 73,907 124 333 3 $14 
Eastern Asia 98 6,214,139 4,413 43,709 65 $539 
Southern Asia 71 49,997 767 15,933 124 $124 
South-Eastern Asia 18 2,212 8 427 4 $1 

Australia 
Australia and NZ 28 15,931 5 35 1 $285 
Melanesia 0 0 0 0 0 $0 
Micronesia 0 0 0 0 0 $0 
Polynesia 0 0 0 0 0 $0 

*This table is based on data for the 30-year period from 1985 to 2014. 
**People Affected refers to the number of people requiring immediate assistance (e.g. food, water, shelter, 
medical assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix E.2 Summary of Recent IPCC Findings 

The primary mechanism through which global warming could affect extreme precipitation is via an 
increase in water vapor in the atmosphere (IPCC, 2012, p. 142-143).  

Table 28 summarizes the IPCC’s conclusions about the potential effects of climate change on extreme 
precipitation.  At the global level, there is good evidence that the frequency of extreme precipitation 
events will increase (IPCC, 2012, p. 141-149).  Individual storms are likely to become more intense 
(IPCC, 2013, p.1032).  On a regional basis, the quality of future projections varies, but most areas are 
projected to experience increases in heavy precipitation.  These conclusions are supported by the 
historical record, which suggests that the frequency of these heavy precipitation events increased between 
1950 and 2000, with the most consistent evidence occurring in North America (IPCC, 2012, p. 119, 141-
149, 196-201).   
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Table 28: Projected Impacts of Climate Change on Extreme Precipitation, from IPCC 

Characteristic* Geography Impact of 
Climate Change 

 
Likelihood 

Quality of 
Evidence Citation  

Frequency or proportion 
of total rainfall from 
heavy precipitation 
events 

Most of the world Increase ≥66% High (IPCC, 2012, 
p. 119) 

Total precipitation Some regions Decrease Not 
quantified Medium (IPCC, 2012, 

p. 149) 

HPD, HPC, and RV20 Canada and 
Alaska Increase ≥66% High (IPCC, 2012, 

p. 196) 

Heavy precipitation 

North America 
(except Canada 
and Alaska) and 
Central America 

Not specified 
(increase in some 
regions) 

Not 
quantified 

Low to 
medium 

(IPCC, 2012, 
p. 196) 

Heavy precipitation 
intensity and frequency 
in winter 

Northern Europe Increase ≥90% High (IPCC, 2012, 
p. 198) 

RV20 Northern Europe Increase ≥66% High (IPCC, 2012, 
p. 198) 

Heavy precipitation 
intensity and frequency 
in winter 

Central Europe Increase ≥66%  High (IPCC, 2012, 
p. 198) 

Heavy precipitation 
intensity and frequency 
in summer 

Central Europe Increase Not 
quantified Medium (IPCC, 2012, 

p. 198) 

Heavy precipitation 
Southern Europe 
and 
Mediterranean 

Direction varies 
across regions 

Not 
quantified Low (IPCC, 2012, 

p. 199) 

Heavy precipitation East Africa Increase ≥66% High (IPCC, 2012, 
p. 199) 

Heavy precipitation Africa (except 
East Africa) 

Not specified (no 
signal in most 
regions) 

Not 
quantified 

Low to 
medium 

(IPCC, 2012, 
p. 199) 

Heavy precipitation South America 
Not specified 
(increase in some 
regions) 

Not 
quantified 

Low to 
medium 

(IPCC, 2012, 
p. 200) 

Heavy precipitation 
frequency and intensity North Asia Increase ≥66% High (IPCC, 2012, 

p. 201) 

Heavy precipitation Asia (except 
North Asia) 

Not specified 
(increase in some 
regions) 

Not 
quantified 

Low to 
medium 

(IPCC, 2012, 
p. 201) 

* HPD=number of heavy precipitation days; HPC=percentage contribution to total precipitation; RV20=20-year 
return value of annual maximum daily precipitation rates; DP10=percentage of days with 10 millimeters or more 
of precipitation 

 

Appendix E.3 Studies of Economic Impacts under Climate Change 

Table 29 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future small-scale storm-related losses. 
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Table 29: Projected Impacts of Climate Change on Small-Scale Storm-Related Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario 

Climate       
Methodology 

Economic      
Methodology 

Predicted Change 
in Losses 

Botzen et 
al, 2010 

Netherlands 1-2 deg C 
temperature rise; 
2050 

Constant Assumed a positive 
relationship between 
hailstorm damages 
and minimum 
seasonal (spring, 
summer) 
temperatures 

Used normalized 
insurance data from 
hailstorm damages 
for agriculture and 
applied temperature 
variables from 
climate predictions 
provided by KMNI 

Change in 
hailstorm damages 
for outside 
farming: 
Yearly scenario: 
25-58% increase 
Summer scenario: 
25-53% increase 

McMaster, 
1999 

Australia Basline CO2 and 
doubled CO2, 
3GCMs (CCM1-
Oz, BMRC, 
CSIRO-Mk2) 

Constant Calculated enhanced 
greenhouse gas effect 
for hailstorms based 
on the difference 
between seasonal 
variables obtained 
from the GCMs    

The crop loss model 
applies upper air 
climatic variables to 
historical crop 
losses from hail 

Net loss of 0-3.3% 
depending on 
climate model and 
location 

Niall et al, 
2005 

Australia CO2 doubled from 
pre-industrial 
levels; 2040-2060 

Constant Assumed relationship 
between hail 
incidence and CAPE, 
which is calculated 
using climate data. 

Uses crop loss 
insurance data and 
models the 
probability of hail 
storms based on 
climate variables   

No significant 
change in crop loss 
damages due to 
hail storms for 
future climate 
scenarios 
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Appendix F    Landslides and Avalanches 

The following subsections present data on historical losses from landslides and avalanches, discuss 
scientific evidence on how climate change could influence landslides and avalanches, and then summarize 
existing projections of the potential impact of climate change on economic damages from these earth and 
snow movements. 

Appendix F.1 Historical Damages from EM-DAT 

To illustrate the magnitude and regional distribution of economic losses from these events, Table 30 
displays the average annual damages for water-related landslides and avalanches, based on EM-DAT 
data.  The losses shown in the figure exclude “dry” landslides and avalanches (Guha-Sapir et al, 2015).  
The figure shows that Eastern Asia has experienced the consistently highest average annual damages, of 
about $90 million per year.  A few other regions also experience substantial losses, including Central and 
South America, Western and Southern Europe, and the Russian Federation.   

Table 30 likely underestimates the total damages due to landslides and avalanches.  For one, EM-DAT’s 
disaster criteria requires either a minimum of 10 people reported killed, a minimum of 100 people 
reported effected, declaration of a state of emergency or call for international assistance; these criteria 
exclude smaller landslides that occur more frequently and have small but significant effects on 
communities.  In addition, landslides are less frequent than other disasters, are underreported, and often 
occur in less populous areas.  There is limited literature and data quantifying the losses due to landslides, 
but studies that attempt to quantify many disasters will sometimes include landslides.  Often, landslides 
are grouped together with floods (for wet landslides and avalanches – these are called “hydrological” 
disasters) or earthquakes and volcanos (for dry landslides and rockfalls – these are called “geophysical” 
disasters) (Swiss Re, 2011; Worthington, 2004; Vos, 2009).  In other studies, they are grouped with 
tropical cyclones or heavy precipitation events (Chiang, 2011).  In fact, landslides were noted as being a 
weak point in one study, due to insurance companies often not covering damages from landslides and 
therefore making it difficult to estimate baseline damages (BTE, 2011).  BTE (2011) estimates 1.2 million 
Australian dollars of annual direct and indirect losses from landslides in Australia (32 year average), but 
only large (at least $10 million cost, excluding death and injury) landslides were considered, so the 
average only reflects a single $40 million landslide (note that in Table 30, Australia as a region has $0 
average damages).  Hilker (2009) estimates 9.7, 14.9 and 0.4 million euros of direct losses in Switzerland 
from debris flows, landslides and rockfalls respectively (35 year average). 
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Table 30: Average Annual Avalanche and Landslide Impacts, By Region  

Region 

Total 
Number of 

Events, 
1985-2014 

Average Annual Impacts 

People 
Affected 

People 
Injured 

People 
Homeless Mortality 

Damages 
(millions; 2014$) 

North America 
Northern America 3 4 1 5 2 $1 
Central America 21 296 4 1,707 18 $18 
Caribbean 4 46 2 33 3 $0 

South America 
South America 83 16,453 120 6,233 156 $62 

Europe 
Western Europe 11 466 1 2 5 $56 
Northern Europe 2 2 1 0 1 $0 
Southern Europe 11 337 12 9 13 $41 
Eastern Europe 9 27 0 11 14 $0 

Africa 
Northern Africa 1 0 2 22 1 $0 
Western Africa 5 0 0 393 3 $0 
Eastern Africa 16 605 5 409 22 $0 
Middle Africa 6 5 0 42 3 $0 
Southern Africa 1 0 0 0 1 $0 

Asia 
Russian Federation 3 0 0 83 4 $24 
Central Asia 21 3,015 1 2,502 23 $12 
Western Asia 13 364 8 80 17 $1 
Eastern Asia 75 73,871 63 956 171 $93 
Southern Asia 93 29,788 40 123,370 211 $3 
South-Eastern Asia 86 26,514 36 4,404 135 $7 

Australia 
Australia and NZ 2 3 0 0 1 $0 
Melanesia 10 35 1 600 13 $0 
Micronesia 0 0 0 0 0 $0 
Polynesia 3 17 0 0 1 $0 
*This table is based on data for the 30-year period from 1985 to 2014. 
**People Affected refers to the number of people requiring immediate assistance (e.g. food, water, shelter, 
medical assistance) during a period of emergency. 
*** Data for damages are converted to 2014 dollars using the U.S. GDP deflator (BEA, 2015). 
Source: Guha-Sapir et al, 2015 
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Appendix F.2 Summary of Recent IPCC Findings 

Table 31 presents the IPCC’s main conclusions about the impact of climate change on landslides and 
avalanches.  As the table shows, the evidence is strongest that climate change will affect these disasters in 
high mountain regions, although the direction of the impact is unclear.  Due to the impacts of human 
activities, there is little evidence on whether climate change could influence the shallow landslides that 
cause damage in the places where people typically live. 

 

Table 31: Projected Impacts of Climate Change on Landslides and Avalanches, from 
IPCC 

Characteristic Geography Impact of Climate 
Change Likelihood Quality of 

Evidence Citation  

Landslides affected 
by heavy 
precipitation 

Some regions Not specified Not 
quantified High (IPCC, 2012, 

p. 189) 

Shallow landslides Temperate and tropical 
regions Not specified Not 

quantified Low (IPCC, 2012, 
p. 189) 

Bedrock stability High mountain regions Not specified Not 
quantified Medium (IPCC, 2012, 

p. 189) 

Mass movements High mountain areas Not specified Not 
quantified High (IPCC, 2012, 

p. 189). 

Slope instabilities High mountain areas Not specified Not 
quantified High (IPCC, 2012, 

p. 189) 

 

Appendix F.3 Studies of Economic Impacts under Climate Change 

Table 32 summarizes key information about the methodologies and results of selected studies that predict 
how climate change is likely to affect future landslide and avalanche losses. 

 
 

Table 32: Projected Impacts of Climate Change on Landslide and Avalanche Losses 

Study Geography 
Climate Scenarios 
and Time Periods 

Socioeconomic 
Scenario 

Climate       
Methodology 

Economic      
Methodology 

Predicted Change in 
Losses 

Roson 
(2006) 

World 1.04-1.75°C increase 
(by region), 2050 

 Increase in global 
temperature results 
in changes to 
ENSO and NAO 
oceanic oscillations 
(based on historical 
trends)  

Multi-country CGE 
model estimates 
expected damages 
based on historical 
averages of victims 
and damages by 
disaster and region 

Landslides statistically 
insignificant in all 
regions except Eastern 
Europe/former Soviet 
Union where $7 
million additional 
damages are expected 
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Glossary 

 

Avalanche: Movement of snow down a slope. 

Extratropical cyclone: Extratropical cyclones are large-scale storm systems that form outside of the 
tropics, typically in mid-latitudes.  They encompass a wide variety of phenomena, and are often referred 
to by weather forecasters as “lows” or “depressions”.  For the purposes of this report, we focus on the 
most severe forms of extratropical cyclones—e.g., winter storms or wind storms in Europe, and 
nor’easters along the U.S. Atlantic Coast.  Like tropical cyclones, these storm systems are associated with 
thunderstorms, strong winds, extreme precipitation, and waves and storm surges. 

Extreme precipitation: Precipitation (rain or snow) that exceed some threshold, defined in relative 
(percentile or return values) or absolute terms (IPCC, 2012, p. 141) 

Inland flood: Inland floods occur when water overflows from an existing body of water or when water 
accumulates over areas not normally submerged in water.  Inland floods can be divided into several 
categories, including floods along rivers (“fluvial” floods), floods that occur when heavy precipitation 
completely saturates the topsoil (“pluvial” floods – most common in urban areas), and floods related to 
glacial lakes.  The primary natural causes of flooding are extreme precipitation, melting snow or ice melt, 
and blockages to water flow, such as those caused by landslides (IPCC, 2012, p. 175). 

HPD:  Number of heavy precipitation days 

HPC:  Percentage contribution to total precipitation 

DP10: Percentage of days with 10 millimeters or more of precipitation 

Landslide: There are a number of disasters that occur in mountainous or hilly areas.  These include 
landslides, in which soil, mud, or rocks slide down a slope; and avalanches, which involve snow (IPCC, 
2012, p. 186).  While these disasters can be caused by weather and climate conditions, they also result 
from geological conditions or from human activities (such as deforestation). 

RV20:  20-year return value of annual maximum daily precipitation rates.  In other words, the RV20 is 
the quantity of daily precipitation that large enough that it is expected to occur only once every twenty 
years. 

Sea surface temperature (SST): The temperature of water close to the surface of the ocean or sea 

Small-scale storm-related phenomena:  Small-scale storm-related phenomena—such as hail, tornadoes, 
and thunderstorms—are capable of causing substantial amounts of damage in localized areas. 

Tropical cyclone: Tropical cyclones are large rotating storm systems that form over tropical ocean areas.  
These storms—which are variously called hurricanes, typhoons, or cyclones—feature thunderstorms, 
strong winds, heavy rainfall, waves, and storm surges. 

Vertical wind shear: The degree to which wind direction and speed change at different heights in the 
atmosphere 

Wildfire:  Wildfires are uncontrolled fires that burn in primarily undeveloped areas, such as farmland or 
wilderness.  They are distinct from urban fires, which burn primarily buildings.  Wildfires are complex 
events that depend on a variety of causal factors, including temperature and precipitation extremes. 
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