SCS ENERGY

Landfill Gas to CNG 101 Basics of LFG Conversion to B-CNG and B-CNG Utilization

Jeffrey L. Pierce, P.E. Senior Vice President and Steve Hamilton Vice President SCS Energy Long Beach, California

16th Annual LMOP Conference and Project Expo

January 29-31, 2013 Baltimore, Maryland

B-CNG Feedstocks

- Landfill gas
- WWTP digester gas
- Other digester gases
- Common concerns
 - Moisture
 - High CO₂
 - $-H_2S$
 - VOCs

Landfill Gas as a B-CNG Feedstock

- Characteristics are landfill-specific
 - $CH_4 = 45\%$ to 55%
 - $-CO_2 = 36\%$ to 44%
 - $-N_2 = 17\%$ to 1%
 - $O_2 = 2\%$ to Nil
 - Saturated with moisture
 - $-H_2S = 25 \text{ ppmv to } 1,000 \text{ ppmv+}$
 - VOCs are variable

California Air Resources Board (CARB) Primary Standards for CNG

- Methane \geq 88%
- Oxygen $\leq 1\%$
- Carbon dioxide + nitrogen $\leq 4.5\%$
- For LFG, the CO₂ + N₂ + O₂ will require CH₄ to be above 95%
- Dew point of 10° F below ASHRE 99% low temperature for region

CARB Secondary Standards for CNG

- Ethane (C2) $\leq 6\%$ (60,000 ppmv)
- C3 and higher \leq 3%
- C6 and higher $\leq 0.2\%$
- Sulfur ≤ 16 ppmv
- CARB does not identify siloxane as a compound of concern, but as an industry, we recognize that it is a cause for concern

Cummins Westport Natural Gas Engine Standards

- Btu/lbm (LHV) ≥ 16,000
- $H_2S \le 6 \text{ ppmv}$
- Siloxanes \leq 3 ppmv
- Methane number ≥ 65
- 16,000 Btu/lbm (LHV) ~ 85% CH₄

Acceptable Landfill Gas Characteristics

- CO₂ removal is employed to increase CH₄ content of the landfill gas. An end point CO₂ of 2% is a comfortable target.
- Typical worst case acceptable B-CNG product would be:

$$-CH_4 = 85.0\%$$

$$-CO_2 = 2.0\%$$

$$-O_2 = 0.5\%$$

Acceptable Landfill Gas Characteristics (cont...)

Equivalent landfill gas for this product would be:

$$-CH_4 = 50.8\%$$

$$-CO_2 = 40.6\%$$

$$-N_2 = 7.8\%$$

 $-O_2 = 0.8\%$

 Nitrogen concentrates by a factor of about 1.6 during processing

Alternatives for CO₂ Removal

- Membrane separation
- Pressure swing adsorption
- Selexol
- All rely on the differences in the physical properties of CH₄ versus CO₂

Typical B-CNG Membrane Plant Sonoma County

- 100 scfm inlet
- Dedicated wells to reduce nitrogen level
- Low cost membrane configuration
 - Low pressure (100 psig versus conventional 150-170 psig)
 - Single-stage membrane
 - Both of above reduced methane recovery
 - Richer waste gas was returned to main wellfield for use in engine plant

Basis of Design (cont...)

- CNG delivery pressure 3,600 psig
- Slow fill system. No storage.
- Product gas = 40 scfm

Plant Components

- Centrifugal blower
- Air-to-gas cooler
- Chilled water to LFG heat exchanger (40° F)
- Reheat heat exchanger (LFG-to-LFG)
- Sliding vane type compressor (110 psig)
- Two in series activated carbon vessels
- Particulate filter
- Single-stage membrane

Plant Components (cont...)

- Odorization
- Three-stage reciprocating compressor (100 psig to 3,600 psig)
- Two-nozzle fill post for CNG dispensing
- SCADA
- Equipment, except for activated carbon vessels, are in a container

Typical Performance

Parameter	Raw LFG	Product Gas
Methane	54.7%	92.0%
Carbon Dioxide	40.7%	1.4%
Nitrogen	3.9%	6.2%
Oxygen	0.7%	0.4%

% Methane Recovery = 63%

Typical B-CNG Pressure Swing Adsorption Plant Basis of Design

- 75 scfm inlet (Guild standard module)
- Product gas = 40 scfm
- Percentage methane recovery ~ 90%
- Product gas pressure = 90 psig

Plant Components

- Centrifugal blower
- Air-to-gas cooler
- Chilled water to LFG heat exchanger (60° F)
- Feed compressor
- Air-to-gas cooler
- PSA vessels
- Vacuum pump
- Surge vessels
- Odorization
- Reciprocating compressor (100 psig to 3,600 psig)
- Slow fill CNG dispensers

Typical Performance

Parameter	Raw LFG	Product Gas
Methane	51.5%	85.5%
Carbon Dioxide	41.1%	2.0%
Nitrogen	6.9%	11.6%
Oxygen	0.5%	0.9%

Note: Inlet N₂ set at maximum acceptable level to yield a product gas CH₄ level acceptable to Cummins Westport

Rough Conversion Factors LFG to Liquid Fuel

- Low CH₄ recovery configuration (65% recovery)
 - 100 scfm LFG = 406 GDE per day
 - -100 scfm LFG = 429 GGE per day
- High CH₄ recovery configuration (90% recovery)
 - 100 scfm LFG = 561 GDE per day
 - 100 scfm LFG = 594 GGE per day

```
Note: LFG at 55% CH<sub>4</sub>
```


Slow Fill Versus Fast Fill

- Slow fill requires no storage, only compression to pressure required by vehicles (typically 3,600 psig)
- Vehicles can only be filled at the rate of the capacity of the plant (e.g., 100 scfm)
- Operation of the plant is likely to be at least somewhat intermittent
- Fast fill requires storage, (typically at 5,000 psig) in above-ground ASME code vessels
- A typical storage arrangement would employ three 20-inch diameter x 23-foot long tubes, each holding 10,000 scf

Slow Fill Versus Fast Fill (cont...)

 About 12,000 scf of the total volume stored is available for fueling, which is equal to about 100 GGE

Conclusions

- Conversion of biogas to B-CNG has been proven to be technically feasible
- B-CNG's raw landfill gas specification is more forgiving than pipeline quality gas plant specifications
- Economics are very project-specific. In general, B-CNG is:
 - More expensive than CNG (without grants and incentives)
 - Less expensive than liquid fuels

