

Star Energy Methane Emission Reduction

Syifail Ramadhana Star Energy (Kakap) Ltd.

GMI Workshop, April 27-28, 2015

Why Methane?

Every greenhouse gas has a global warming potential (GWP)—the measure of its ability to trap heat in the atmosphere relative to CO₂. Methane is referred to as a potent greenhouse gas because it has

a GWP of 21. This means that methane is 21 times more powerful than CO₂ at trapping heat in the atmosphere over a 100-year period.

President RI's Executive Order To Reduce Greenhouse Gas Emission at 26% before 2020

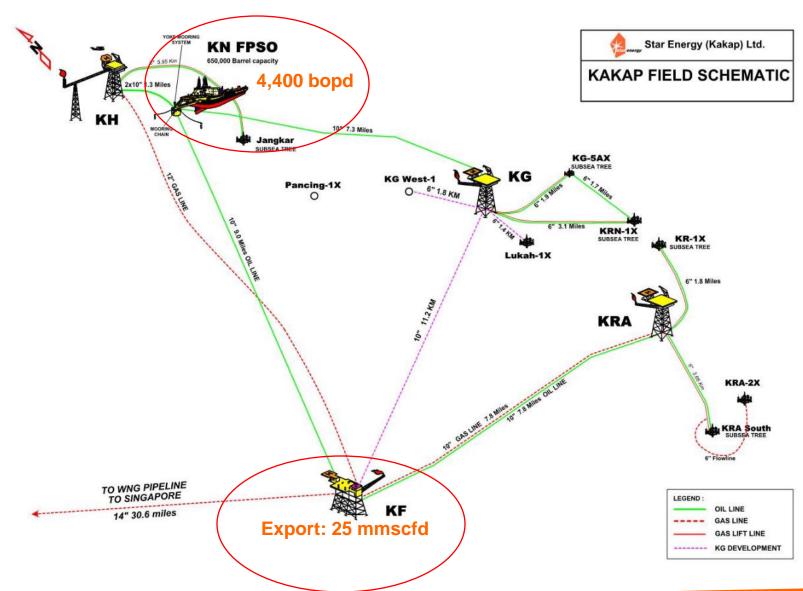
Why is Reducing Methane Emissions
Important?

Oil and natural gas operations are the largest humanmade source of methane emissions in the United States
and the second largest human-made source of methane emissions globally. Given methane's role as both
a potent greenhouse gas
and clean energy source,
reducing these emissions
can have significant environmental and economic benefits.

Decrees of Minister of ESDM /
Director General of Oil & Gas to
secure Flaring Reduction by 30% per
annum to achieve ZERO in 2025

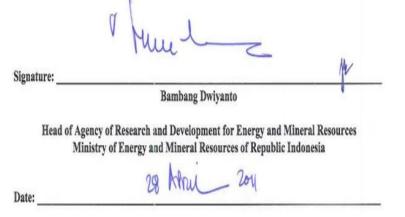
Overall national commitment

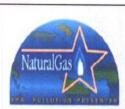
Reduce GHG emissions by 26% through domestic effort and 41% with international support by 2020 (from BAU baseline)


Gas flaring objective

To achieve zero flared gas in 2025

Process Philosophy – Methane Source


Partnership



OMB Control No. 2060-0328 Expires 07/31/2011

Term of Reference for the

Global Methane Initiative

Under the Methane to Markets
Initiative, The Natural Gas STAR
Program is a flexible, nonregulatory, and voluntary
partnership between the EPA and
the international oil and natural
gas industry aimed at facilitating
and accounting for cost-effective
methane emission reductions
worldwide.

The Natural Gas STAR Program has identified technologies and operating & maintenance practices in use by industry as cost-effective options for reducing methane emissions. A complete listing of these measures can be found at epa gov/gasstar,

NATURAL GAS STAR PROGRAM: MEMORANDUM OF UNDERSTANDING FOR INTERNATIONAL OPERATIONS

This is a w	oluntary agreement between Star Energy (Kakap) Ltd	(company name)		
and the U.	oluntary agreement between S. Environmental Protection Agency (EPA) for the purpose of reducing methane r e by implementing cost-effective emission reduction technologies and practices.	eleases to the		
Authorized	Company Representative Asrin Haznam, Vice President Oil & Gas Operation	s (name)		
Signature:	Date	May 23, 2011		
Dina Krug	er: Director, Climate Change Division, U.S. Environmental Protection Agency			
Signature:	Date:			
Nome	Designated Natural Gas STAR Implementation Manager: Wahyu Wicaksana	AB MA		
Title	Sr. Manager Operations			
Address:	Wisma Barito Pacific, Star Energy Tower 8th-11th floor, Letjend S. Parman Street, Kav. 62-63			
	West Jakarta / DKI Jakarta			
Zip Code/I	Postal Code:11410			
Country:_	Indonesia			
Telephone	(62-21) 532 58 28			
Far	(62-21) 530 79 28			
E-mail:	wahyu.wicaksana@starenergy.co.id			

Strategic Program


NO	PROGRAM	EMISSION REDUCTION (TON CO2 EQ/YEAR)	LATEST STATUS
1	Waste heat recover at KF gas turbine	3,500	Operational
2	KG gas flaring reduction	14,000	Operational
3	Fugitive emission reduction	350	Operational
4	Starting system replacement at KG gas booster compressor	200	Operational
5	KF flare gas recovery	N/A	Feasibility study
6	KN FSO vapor recovery N/A Feasibility study		Feasibility study

Star Energy's Involvement

- Measurement Study Objectives Formulation (end of 2011)
 - Identified and evaluated opportunities to reduce methane emissions
 - Venting
 - Fugitive
 - Flare efficiency
- Measurement Study was Conducted
 - KRA & KF (February 2012)
 - KN FSO (September 2012)
- Attended GMI workshop & study tour at Denver, Colorado (April 2012)
- Co-Hosted 2nd Asia Pacific GMI workshop with Pertamina EP, SPE, and GGFR (September 2012)

2nd Asia Pacific Global Methane Initiative Oil & Gas Sector Workshop

September 18, 2012
Presented by U.S. Environmental Protection Agency, Pertamina EP, Star Energy,
Society of Petroleum Engineers Java Indonesia, Global Gas Flaring Reduction Partnership and
BPMIGAS

Pertamina EP Offices Jakarta Standard Chartered Tower – 3th Floor Jl. Prof.Dr.Satrio 164 – Casablanca District Jakarta, 12950 - Indonesia

Measurement Study Result

KRA Platform Emission Source

General Fugitives	5 %
Centrifugal Comp. Seal	2 %
Flare	93 %

143 ton / year

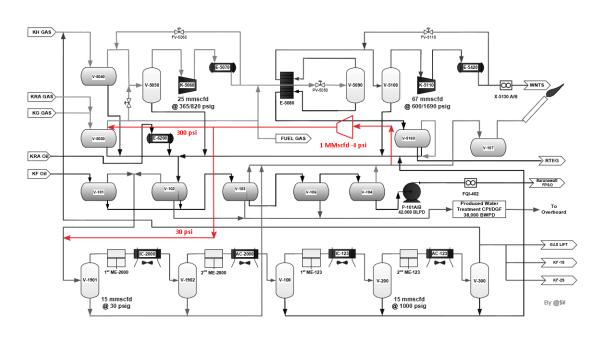
KF Platform Emission Source

General Fugitives	5 %
Reciprocating Comp. Packing	< 1 %
Centrifugal Comp. Seal	2 %
Flare	93 %

184 ton / year

Proposed Improvement

- Average gas to flare KF (2011):
 - 23 MMSCF / month
- Potential Revenue Loss:
 - USD 530K / month
- Gas to Flare Composition:
 - Average Methane 58 %


Proposed Improvement:

Flare Gas Recovery

Resources Required:

- 1. Accurate gas to flare measurement
- 2. Detail engineering complete with economic analysis
- 3. Compressor with high compression ratio

KF PLATFORM - Hydrocarbon Processing Diagram

Resources Available:

Support from US EPA for engineering study

Flare Gas Recovery Update

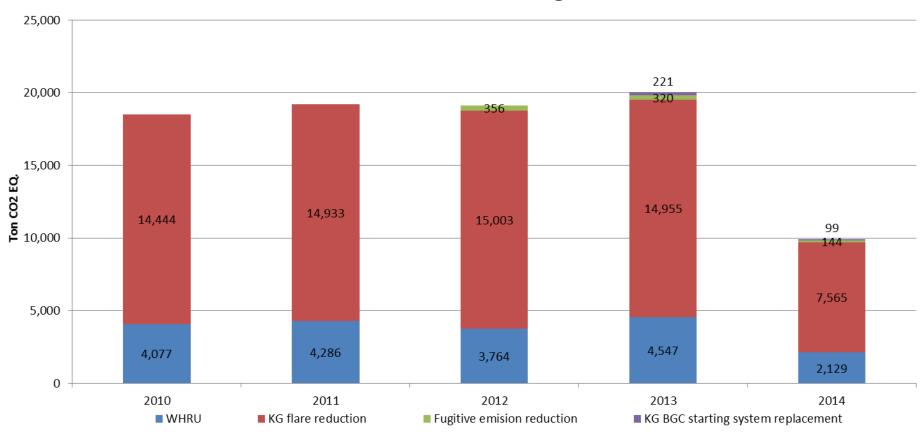
- Install thermal gas flow meter at end of May 2014.
- Gathering data set for feasibility study.
- Complete gathering data set for June & July 2014 and send to ICF for further study.

DATE	GAS TO FLARE MMSCFD	REMARKS
AVERAGE	1.199	Average all day (normal + shutdown)
AVERAGE	0.609	Average normal only (exclude shutdown)

Emission Reduction Practices

Engine Starting System Retrofit

- Retrofit from natural gas starting system to air starting system – Successful Trial
- 3-5 cranking before engine running
- Benefits:
 - Reduce emission
 - Reduce interruption on gas export
 - Reduce water coning risk

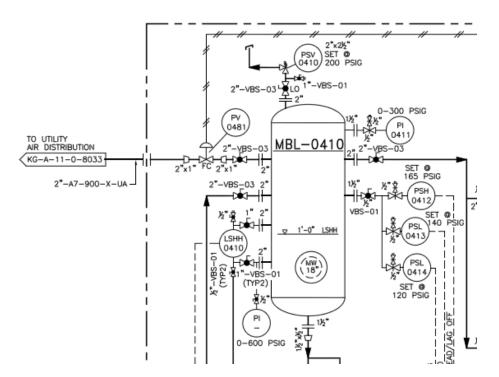


Emission Reduction Practices

Emission Reduction Program

THANK YOU

Existing Air Receiver



MBL-0410 UTILITY AIR RECEIVER

SIZE : 4'-0" O.D.x8'-6" S/S DESIGN : 200 PSIG @ 170 F OPERATING: 120-165 PSIG @ 110 F CZZ-0490B/0540A

AIR COMPRESSORS

CAPACITY : 150 SCFM (EACH) DISCHARGE PRESS.: 165 PSIG (NOTE 2) DRIVER : 100 H.P.

- Existing Air Receiver
 - Volume 106 cuft
 - Operating at 165 psig