

Global Methane Initiative for Oil and Gas Sector

International Experts Workshops on Carbon Management and its Implications Dr. H. K. Patnaik, Sr. Advisor, QHSSE,

Chandrashekhar Bankar (Manager - Production) & Arun Pendse (Sr. Manager-HSE)

CAIRN INDIA LIMITED

April 27-28, 2015

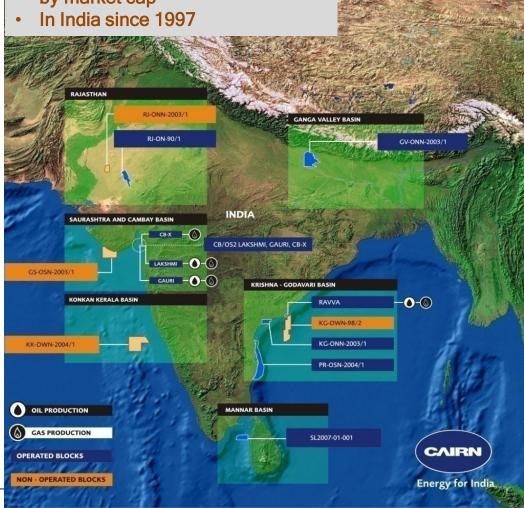
Emission Reduction Initiatives-

Contents

- ➤ About Cairn India
- ➤ GMI- Challenges to Opportunities
- ➤ Case study on 3-Stage emission reduction program from one of our Terminal
- >Initiatives to reduce Methane emissions from other facilities

Cairn India - An Overview

Rajasthan (RJ-ON-90/1)	
Cairn (Operator)	70%
ONGC	30%

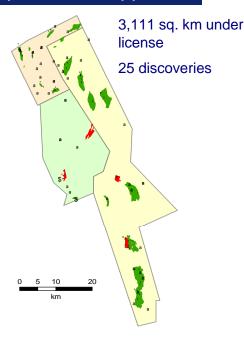

Cambay (CB/OS-2)	
Cairn (Operator)	40%
ONGC	50%

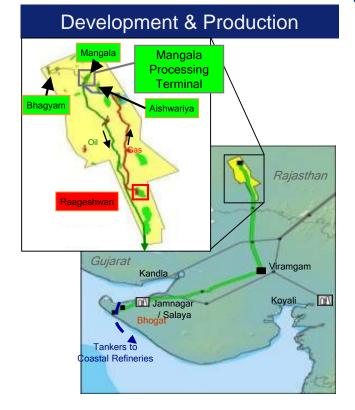
Ra	vva
Cairn (Operator)	22.5%
ONGC	40%

	Sri Lanka	
Cairn Lanka		100%

S	outh Africa
Cairn SA	60%
Petro SA	40%

- · Listed on BSE & NSE
- Market Capitalisation > USD10bn
- Amongst India's top 25 companies by market cap

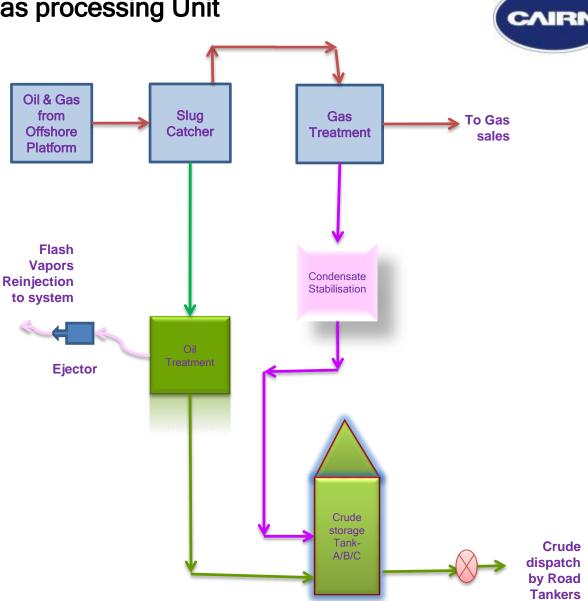



Rajasthan: Frontier Exploration to Production - The Journey

1997	2002	2002-4	2004	2004-9	2009	2010	2011	2014
								\longrightarrow
Cairn enters PSC	Guda Discovery/ Shell exit	Cairn exploration campaign	Well #15: Mangala Discovery	25 Discoveries 6.5 billion barrel resource identified	First oil from Mangala	World's longest continuously heated & insulated pipeline commissioned	Producing 175,000 bopd	Producing ~200,000 boepd

Exploration & Appraisal

GMI- Challenges to Opportunities



- ➤ Methane is an important climate change forcing greenhouse gas (GHG) which has a climate forcing effect 25 times greater on a 100 year basis than that of carbon dioxide, the primary greenhouse gas (GHG).
- ➤ There are many ways to reduce methane emissions, both fugitive (from leaks) and vented (from released-through bleeds, blow down, combustion or venting etc.)source.
- Reducing methane emissions add incremental revenue and also reduce at no extra cost the conventional pollutants that can harm public health and the environment.

Source: ICF International "Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries; March 2014

Process Overview: Suvali Oil & Gas processing Unit

- The Oil & Gas produced from the offshore fields is processed at onshore terminal.
- Natural Gas is being conditioned and put in the state gas grid.
- Crude oil & condensate generated after treatment (in two separate stream) is stored in fixed roof tank.
- The processed oil is loaded in 20 KL / 24 KL road tankers. It is a top loading system and complete manual operation.

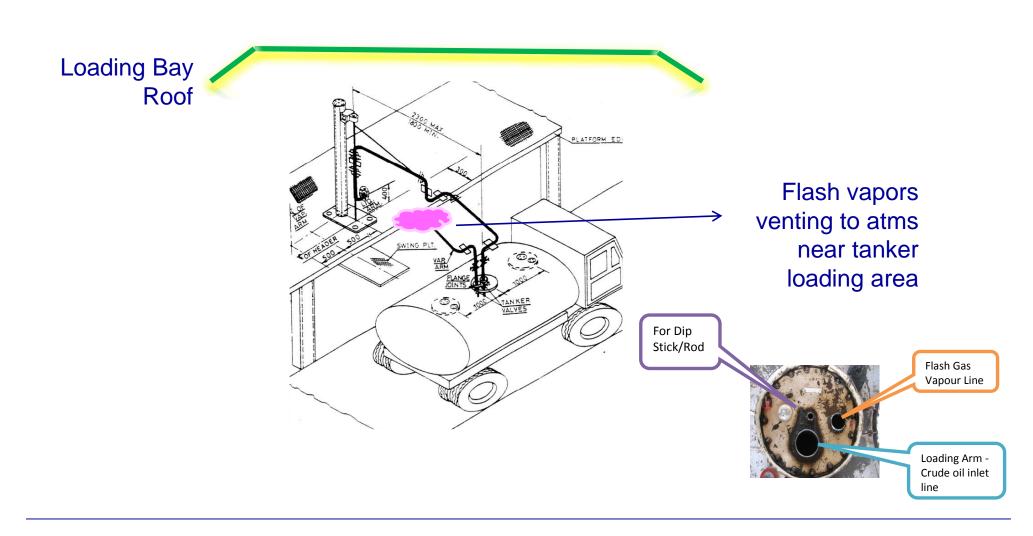
3-Stage Emission Reduction Program: :

STEP-I

- Providing the flash Vapor vent system at crude loading bay area.
 - To divert vapour at crude loading bay to minimize personal exposure.

STEP-II

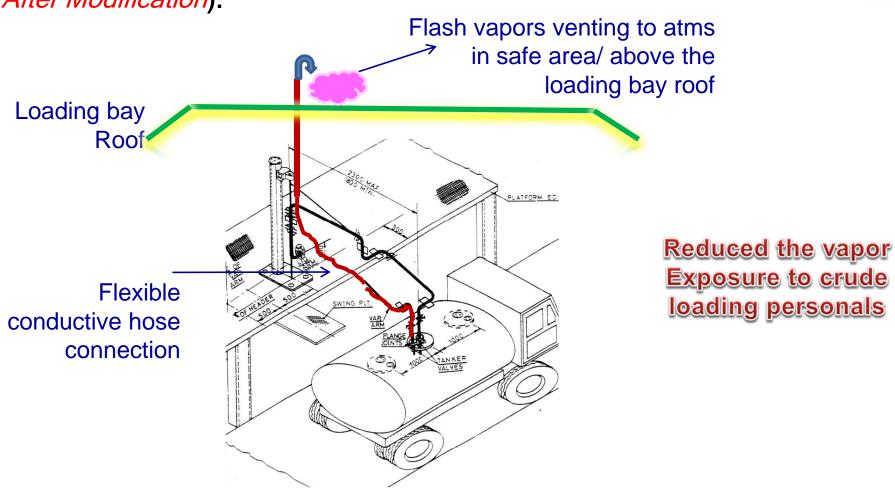
- Diverting Unstabilised condensate to Oil stabilisation unit .
 - To minimise vapor generation and losses due to flashing


STEP - III

- Providing Crude Tank Vapor balancing & Nitrogen blanketing in place of valuable Fuel gas :
- For optimum utilisation of flash vapor's
- Nitrogen blanketing provides additional safety protection for storage tanks.

❖ STEP-I

Providing the Vapor vent system at crude loading bay (<u>Before Modification</u>):

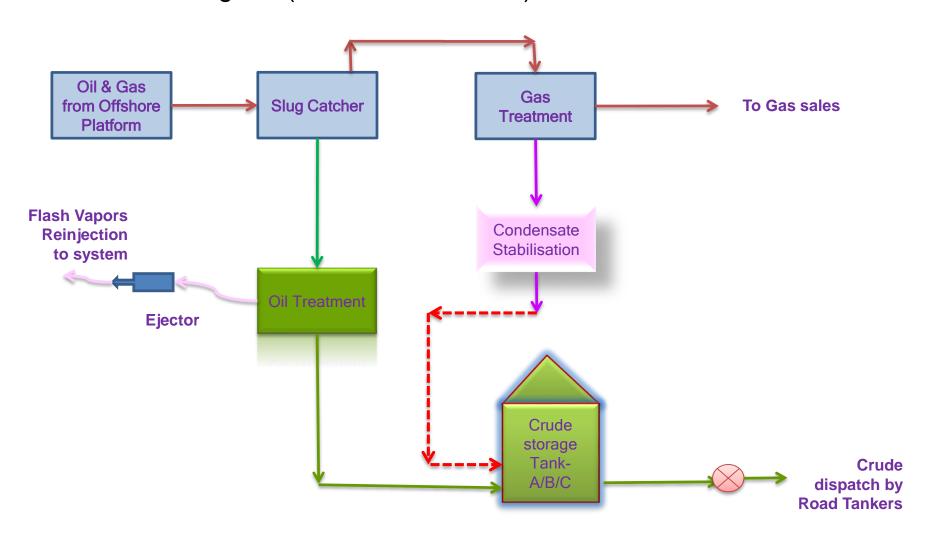


* STEP-I

Providing the Vapor vent system at crude loading bay

(After Modification):

Crude Loading bay overview (after implementation of STEP-I):

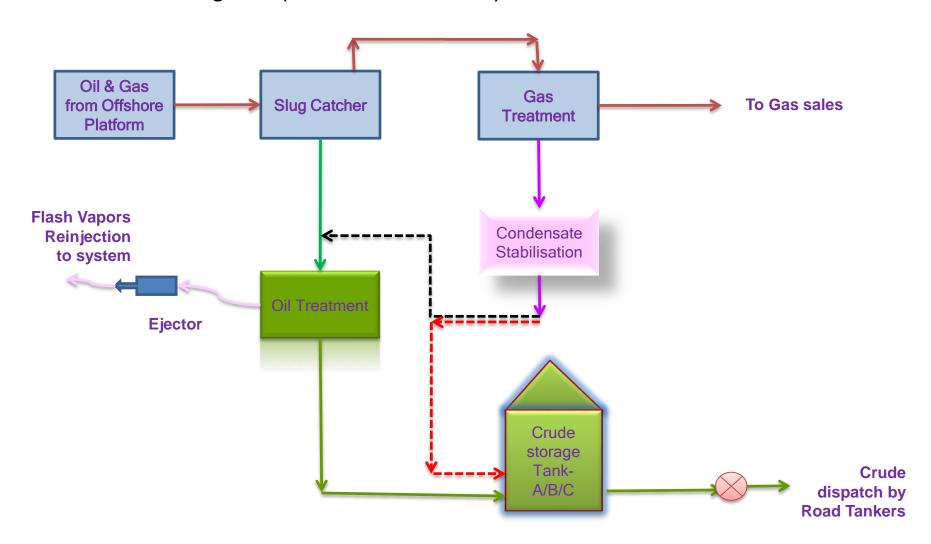

STEP - II - Diverting Unstabilised condensate to Oil stabilisation unit .

√ To minimise vapor generation & losses due to flashing

STEP-II: Diverting Un-stabilized condensate to Oil stabilisation unit.

Process Flow Diagram (Before Modification):

STEP-II: Diverting Un-stabilized condensate to Oil stabilisation unit.


- Issue:
- Observed Condensate not getting stabilized due to unsteady state flow rate

- Crude Oil Product RVP was in the range of 4.5 to 5.0 Psig (Ideal RVP should be < 1.0 psig).</p>
- Causing more vapor flashing & emission from the Crude Storage tank (~ 60 to 65 scm/hr) and at the loading bay.
- Corrective Actions:
- Unstabilised condensate diverted to Oil Stabilisation Unit inlet.

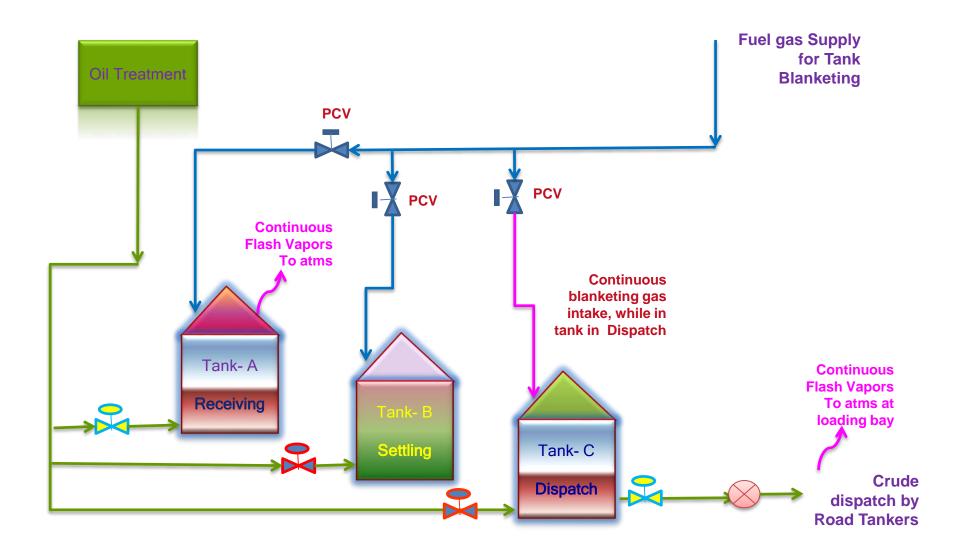
STEP-II: Diverting Un-stabilized condensate to Oil stabilisation unit.

Process Flow Diagram (After Modification):

STEP-II: Benefits

- ➤ This has resulted drastic reduction in flash vapor generation rate up to ~ 15 to 20 scm/hr from ~ 60 to 65 scm/hr due to reduction in Crude Oil Product RVP from 4.0 to 5.0 psig to 1.2 to 2.0 psig.
- Generation of flash Vapors in Oil handling section which are being recovered by Mechanical Ejector & injected back to natural gas stream.

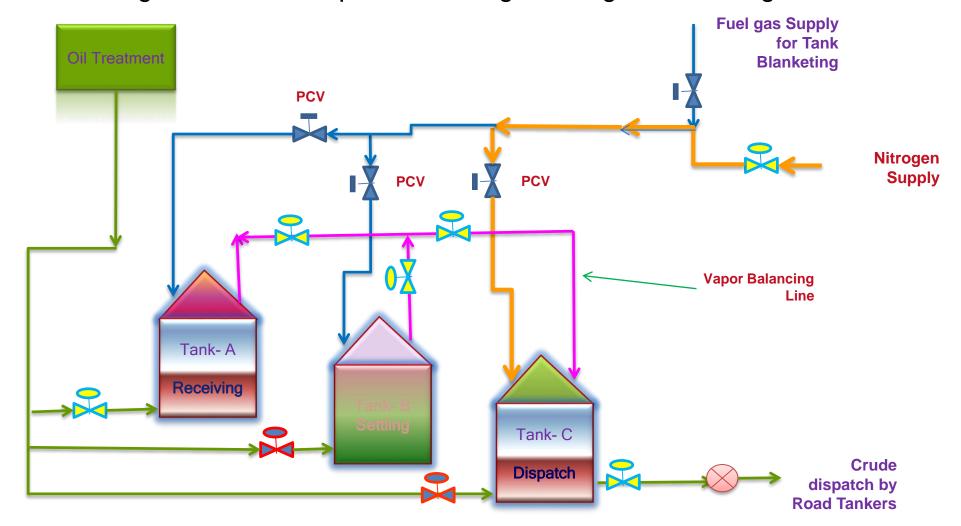
- Reduction in RVP at Loading bay and Storage tank, correspondingly reduction in HC vapor emission.
- Revenue generation of around ~ INR 35.0 Lakhs/Annum. Due to vapour recovery at Oil stabilisation unit.



<u>STEP - III - Providing Crude Tank Vapor balancing & Nitrogen blanketing in place of valuable Fuel gas :</u>

- ✓ For optimum utilisation of flash vapor's
- ✓ Nitrogen blanketing provides additional safety protection for storage tanks.

STEP-III: Process Flow Diagram (Before Modification):



STEP-III

Providing Crude Tank Vapour balancing & Nitrogen blanketing:

STEP-III: Providing Crude Tank Vapour balancing & Nitrogen blanketing:

- Crude tank Vapour balancing across the three tank, has resulted to optimum utilisation of flash vapors generated (15 to 20 scm/hr) while crude tank is in receipt mode & while crude tank is in dispatch mode.
- Reduced the venting of flash vapors to atms at the rate of ~50 scm/hr through Crude tank PVSV, while the tank is in receipt mode. The tank when in dispatch mode consumes fuel gas at the rate ~ 120 m3 / hr.
- Nitrogen blanketing has addedd additional safety protection for crude storage tanks.
- By providing the low cost Nitrogen blanketing in place of natural gas. (by 8-9 times) (Cost of nitrogen production is INR 1.62/sm3. Where as cost of treated Fuel gas is INR 9.72 /sm3).

Outcomes:

- Benzene exposure level reduced to Zero PPM from 0.4 PPM, to loading personal during crude loading operations.
- Reduction in cold venting (GHG emissions) from crude storage tank & at crude loading operations.
- Nitrogen blanketing provides additional safety protection for crude storage tanks.
- Conservation of natural resource:
- Effective utilization of flash vapors
- ❖ Revenue Generation up to ~ 60.0 to 70 Lakhs/Annum by optimization of natural gas usage and recovery of condensate vapor at Oil Stabilisation.

Lessons from this case study:

- Minimize HC exposure to personnel- In line with organisation's commitment towards Occupational health.
- Minimize GHG emissions Contribution towards organizational commitment to sustainable development
- Minimise Resource Depletions Overall natural resource conservation
- In addition to the above, such programs can lead to incremental revenue Generation - Financial gains to organization & Nation

Methane Emission Reduction Programs in Other Assets

- ❖ Vapor recovery units commissioned at the Mangala Processing Terminal (MPT) to recover ~1.5 MMSCFD associated gas
- ❖ Installation of low NOx flare tip with modified design has reduced the consumption of associated gas by ~0.5 MMSCFD. (MPT)
- ❖ Plant O&M initiatives to eliminate fugitive emissions: > 90% success in arresting flange/pipe/hose leaks (~3 mmscf/annum)
- Emission reduction targets set right upfront in the Engineering design/Stds.
- No cold venting permitted and if unavoidable (high CO2) flaring is allowed thereby reducing Methane emissions

Emission Reduction other Initiatives

- CAIRN
- Measurement key to Management Baseline Survey completed with the help of USEPA GMI program in 2014
- Options being looked into capturing flow back gas during fracing using a DST module with oil-gas separator.
- Green completions: After drilling new wells, instead of venting the well to remove debris from around the well bore, green completions use additional separator traps and dehydrators to route gas to sales.
- > Trial runs using brackish water for fracing in progress for maximum recycling and conservation of water.
- Other Initiatives includes W2E/W2R, Water Management Strategy, Emission and energy conservation Strategy, Alternate Energy use, Massive GB Development including Mangrove and Shelterbelts in about 50% of the total occupied area, partnership with IUCN for Bio-diversity/Eco-service resource Conservation etc.

25

Emission Reduction Initiatives-

Cairn India Limited

Thank You